1 // SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0-or-later 2 /* 3 * Copyright 2008 - 2016 Freescale Semiconductor Inc. 4 * Copyright 2020 NXP 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/init.h> 10 #include <linux/mod_devicetable.h> 11 #include <linux/module.h> 12 #include <linux/of_mdio.h> 13 #include <linux/of_net.h> 14 #include <linux/io.h> 15 #include <linux/if_arp.h> 16 #include <linux/if_vlan.h> 17 #include <linux/icmp.h> 18 #include <linux/ip.h> 19 #include <linux/ipv6.h> 20 #include <linux/platform_device.h> 21 #include <linux/udp.h> 22 #include <linux/tcp.h> 23 #include <linux/net.h> 24 #include <linux/skbuff.h> 25 #include <linux/etherdevice.h> 26 #include <linux/if_ether.h> 27 #include <linux/highmem.h> 28 #include <linux/percpu.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/sort.h> 31 #include <linux/phy_fixed.h> 32 #include <linux/bpf.h> 33 #include <linux/bpf_trace.h> 34 #include <soc/fsl/bman.h> 35 #include <soc/fsl/qman.h> 36 #include "fman.h" 37 #include "fman_port.h" 38 #include "mac.h" 39 #include "dpaa_eth.h" 40 41 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files 42 * using trace events only need to #include <trace/events/sched.h> 43 */ 44 #define CREATE_TRACE_POINTS 45 #include "dpaa_eth_trace.h" 46 47 static int debug = -1; 48 module_param(debug, int, 0444); 49 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)"); 50 51 static u16 tx_timeout = 1000; 52 module_param(tx_timeout, ushort, 0444); 53 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms"); 54 55 #define FM_FD_STAT_RX_ERRORS \ 56 (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL | \ 57 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \ 58 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME | \ 59 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \ 60 FM_FD_ERR_PRS_HDR_ERR) 61 62 #define FM_FD_STAT_TX_ERRORS \ 63 (FM_FD_ERR_UNSUPPORTED_FORMAT | \ 64 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA) 65 66 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \ 67 NETIF_MSG_LINK | NETIF_MSG_IFUP | \ 68 NETIF_MSG_IFDOWN | NETIF_MSG_HW) 69 70 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000 71 /* Ingress congestion threshold on FMan ports 72 * The size in bytes of the ingress tail-drop threshold on FMan ports. 73 * Traffic piling up above this value will be rejected by QMan and discarded 74 * by FMan. 75 */ 76 77 /* Size in bytes of the FQ taildrop threshold */ 78 #define DPAA_FQ_TD 0x200000 79 80 #define DPAA_CS_THRESHOLD_1G 0x06000000 81 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000 82 * The size in bytes of the egress Congestion State notification threshold on 83 * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a 84 * tight loop (e.g. by sending UDP datagrams at "while(1) speed"), 85 * and the larger the frame size, the more acute the problem. 86 * So we have to find a balance between these factors: 87 * - avoiding the device staying congested for a prolonged time (risking 88 * the netdev watchdog to fire - see also the tx_timeout module param); 89 * - affecting performance of protocols such as TCP, which otherwise 90 * behave well under the congestion notification mechanism; 91 * - preventing the Tx cores from tightly-looping (as if the congestion 92 * threshold was too low to be effective); 93 * - running out of memory if the CS threshold is set too high. 94 */ 95 96 #define DPAA_CS_THRESHOLD_10G 0x10000000 97 /* The size in bytes of the egress Congestion State notification threshold on 98 * 10G ports, range 0x1000 .. 0x10000000 99 */ 100 101 /* Largest value that the FQD's OAL field can hold */ 102 #define FSL_QMAN_MAX_OAL 127 103 104 /* Default alignment for start of data in an Rx FD */ 105 #ifdef CONFIG_DPAA_ERRATUM_A050385 106 /* aligning data start to 64 avoids DMA transaction splits, unless the buffer 107 * is crossing a 4k page boundary 108 */ 109 #define DPAA_FD_DATA_ALIGNMENT (fman_has_errata_a050385() ? 64 : 16) 110 /* aligning to 256 avoids DMA transaction splits caused by 4k page boundary 111 * crossings; also, all SG fragments except the last must have a size multiple 112 * of 256 to avoid DMA transaction splits 113 */ 114 #define DPAA_A050385_ALIGN 256 115 #define DPAA_FD_RX_DATA_ALIGNMENT (fman_has_errata_a050385() ? \ 116 DPAA_A050385_ALIGN : 16) 117 #else 118 #define DPAA_FD_DATA_ALIGNMENT 16 119 #define DPAA_FD_RX_DATA_ALIGNMENT DPAA_FD_DATA_ALIGNMENT 120 #endif 121 122 /* The DPAA requires 256 bytes reserved and mapped for the SGT */ 123 #define DPAA_SGT_SIZE 256 124 125 /* Values for the L3R field of the FM Parse Results 126 */ 127 /* L3 Type field: First IP Present IPv4 */ 128 #define FM_L3_PARSE_RESULT_IPV4 0x8000 129 /* L3 Type field: First IP Present IPv6 */ 130 #define FM_L3_PARSE_RESULT_IPV6 0x4000 131 /* Values for the L4R field of the FM Parse Results */ 132 /* L4 Type field: UDP */ 133 #define FM_L4_PARSE_RESULT_UDP 0x40 134 /* L4 Type field: TCP */ 135 #define FM_L4_PARSE_RESULT_TCP 0x20 136 137 /* FD status field indicating whether the FM Parser has attempted to validate 138 * the L4 csum of the frame. 139 * Note that having this bit set doesn't necessarily imply that the checksum 140 * is valid. One would have to check the parse results to find that out. 141 */ 142 #define FM_FD_STAT_L4CV 0x00000004 143 144 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */ 145 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */ 146 147 #define FSL_DPAA_BPID_INV 0xff 148 #define FSL_DPAA_ETH_MAX_BUF_COUNT 128 149 #define FSL_DPAA_ETH_REFILL_THRESHOLD 80 150 151 #define DPAA_TX_PRIV_DATA_SIZE 16 152 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result) 153 #define DPAA_TIME_STAMP_SIZE 8 154 #define DPAA_HASH_RESULTS_SIZE 8 155 #define DPAA_HWA_SIZE (DPAA_PARSE_RESULTS_SIZE + DPAA_TIME_STAMP_SIZE \ 156 + DPAA_HASH_RESULTS_SIZE) 157 #define DPAA_RX_PRIV_DATA_DEFAULT_SIZE (DPAA_TX_PRIV_DATA_SIZE + \ 158 XDP_PACKET_HEADROOM - DPAA_HWA_SIZE) 159 #ifdef CONFIG_DPAA_ERRATUM_A050385 160 #define DPAA_RX_PRIV_DATA_A050385_SIZE (DPAA_A050385_ALIGN - DPAA_HWA_SIZE) 161 #define DPAA_RX_PRIV_DATA_SIZE (fman_has_errata_a050385() ? \ 162 DPAA_RX_PRIV_DATA_A050385_SIZE : \ 163 DPAA_RX_PRIV_DATA_DEFAULT_SIZE) 164 #else 165 #define DPAA_RX_PRIV_DATA_SIZE DPAA_RX_PRIV_DATA_DEFAULT_SIZE 166 #endif 167 168 #define DPAA_ETH_PCD_RXQ_NUM 128 169 170 #define DPAA_ENQUEUE_RETRIES 100000 171 172 enum port_type {RX, TX}; 173 174 struct fm_port_fqs { 175 struct dpaa_fq *tx_defq; 176 struct dpaa_fq *tx_errq; 177 struct dpaa_fq *rx_defq; 178 struct dpaa_fq *rx_errq; 179 struct dpaa_fq *rx_pcdq; 180 }; 181 182 /* All the dpa bps in use at any moment */ 183 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS]; 184 185 #define DPAA_BP_RAW_SIZE 4096 186 187 #ifdef CONFIG_DPAA_ERRATUM_A050385 188 #define dpaa_bp_size(raw_size) (SKB_WITH_OVERHEAD(raw_size) & \ 189 ~(DPAA_A050385_ALIGN - 1)) 190 #else 191 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD(raw_size) 192 #endif 193 194 static int dpaa_max_frm; 195 196 static int dpaa_rx_extra_headroom; 197 198 #define dpaa_get_max_mtu() \ 199 (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN)) 200 201 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed); 202 203 static int dpaa_netdev_init(struct net_device *net_dev, 204 const struct net_device_ops *dpaa_ops, 205 u16 tx_timeout) 206 { 207 struct dpaa_priv *priv = netdev_priv(net_dev); 208 struct device *dev = net_dev->dev.parent; 209 struct mac_device *mac_dev = priv->mac_dev; 210 struct dpaa_percpu_priv *percpu_priv; 211 const u8 *mac_addr; 212 int i, err; 213 214 /* Although we access another CPU's private data here 215 * we do it at initialization so it is safe 216 */ 217 for_each_possible_cpu(i) { 218 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 219 percpu_priv->net_dev = net_dev; 220 } 221 222 net_dev->netdev_ops = dpaa_ops; 223 mac_addr = mac_dev->addr; 224 225 net_dev->mem_start = (unsigned long)priv->mac_dev->res->start; 226 net_dev->mem_end = (unsigned long)priv->mac_dev->res->end; 227 228 net_dev->min_mtu = ETH_MIN_MTU; 229 net_dev->max_mtu = dpaa_get_max_mtu(); 230 231 net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 232 NETIF_F_RXHASH); 233 234 net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA; 235 /* The kernels enables GSO automatically, if we declare NETIF_F_SG. 236 * For conformity, we'll still declare GSO explicitly. 237 */ 238 net_dev->features |= NETIF_F_GSO; 239 net_dev->features |= NETIF_F_RXCSUM; 240 241 net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 242 net_dev->lltx = true; 243 /* we do not want shared skbs on TX */ 244 net_dev->priv_flags &= ~IFF_TX_SKB_SHARING; 245 246 net_dev->features |= net_dev->hw_features; 247 net_dev->vlan_features = net_dev->features; 248 249 net_dev->xdp_features = NETDEV_XDP_ACT_BASIC | 250 NETDEV_XDP_ACT_REDIRECT | 251 NETDEV_XDP_ACT_NDO_XMIT; 252 253 if (is_valid_ether_addr(mac_addr)) { 254 memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len); 255 eth_hw_addr_set(net_dev, mac_addr); 256 } else { 257 eth_hw_addr_random(net_dev); 258 err = mac_dev->change_addr(mac_dev->fman_mac, 259 (const enet_addr_t *)net_dev->dev_addr); 260 if (err) { 261 dev_err(dev, "Failed to set random MAC address\n"); 262 return -EINVAL; 263 } 264 dev_info(dev, "Using random MAC address: %pM\n", 265 net_dev->dev_addr); 266 } 267 268 net_dev->ethtool_ops = &dpaa_ethtool_ops; 269 270 net_dev->needed_headroom = priv->tx_headroom; 271 net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout); 272 273 /* The rest of the config is filled in by the mac device already */ 274 mac_dev->phylink_config.dev = &net_dev->dev; 275 mac_dev->phylink_config.type = PHYLINK_NETDEV; 276 mac_dev->update_speed = dpaa_eth_cgr_set_speed; 277 mac_dev->phylink = phylink_create(&mac_dev->phylink_config, 278 dev_fwnode(mac_dev->dev), 279 mac_dev->phy_if, 280 mac_dev->phylink_ops); 281 if (IS_ERR(mac_dev->phylink)) { 282 err = PTR_ERR(mac_dev->phylink); 283 dev_err_probe(dev, err, "Could not create phylink\n"); 284 return err; 285 } 286 287 /* start without the RUNNING flag, phylib controls it later */ 288 netif_carrier_off(net_dev); 289 290 err = register_netdev(net_dev); 291 if (err < 0) { 292 dev_err(dev, "register_netdev() = %d\n", err); 293 phylink_destroy(mac_dev->phylink); 294 return err; 295 } 296 297 return 0; 298 } 299 300 static int dpaa_stop(struct net_device *net_dev) 301 { 302 struct mac_device *mac_dev; 303 struct dpaa_priv *priv; 304 int i, error; 305 int err = 0; 306 307 priv = netdev_priv(net_dev); 308 mac_dev = priv->mac_dev; 309 310 netif_tx_stop_all_queues(net_dev); 311 /* Allow the Fman (Tx) port to process in-flight frames before we 312 * try switching it off. 313 */ 314 msleep(200); 315 316 phylink_stop(mac_dev->phylink); 317 mac_dev->disable(mac_dev->fman_mac); 318 319 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) { 320 error = fman_port_disable(mac_dev->port[i]); 321 if (error) 322 err = error; 323 } 324 325 phylink_disconnect_phy(mac_dev->phylink); 326 net_dev->phydev = NULL; 327 328 msleep(200); 329 330 return err; 331 } 332 333 static void dpaa_tx_timeout(struct net_device *net_dev, unsigned int txqueue) 334 { 335 struct dpaa_percpu_priv *percpu_priv; 336 const struct dpaa_priv *priv; 337 338 priv = netdev_priv(net_dev); 339 percpu_priv = this_cpu_ptr(priv->percpu_priv); 340 341 netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n", 342 jiffies_to_msecs(jiffies - dev_trans_start(net_dev))); 343 344 percpu_priv->stats.tx_errors++; 345 } 346 347 /* Calculates the statistics for the given device by adding the statistics 348 * collected by each CPU. 349 */ 350 static void dpaa_get_stats64(struct net_device *net_dev, 351 struct rtnl_link_stats64 *s) 352 { 353 int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64); 354 struct dpaa_priv *priv = netdev_priv(net_dev); 355 struct dpaa_percpu_priv *percpu_priv; 356 u64 *netstats = (u64 *)s; 357 u64 *cpustats; 358 int i, j; 359 360 for_each_possible_cpu(i) { 361 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 362 363 cpustats = (u64 *)&percpu_priv->stats; 364 365 /* add stats from all CPUs */ 366 for (j = 0; j < numstats; j++) 367 netstats[j] += cpustats[j]; 368 } 369 } 370 371 static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type, 372 void *type_data) 373 { 374 struct dpaa_priv *priv = netdev_priv(net_dev); 375 int num_txqs_per_tc = dpaa_num_txqs_per_tc(); 376 struct tc_mqprio_qopt *mqprio = type_data; 377 u8 num_tc; 378 int i; 379 380 if (type != TC_SETUP_QDISC_MQPRIO) 381 return -EOPNOTSUPP; 382 383 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 384 num_tc = mqprio->num_tc; 385 386 if (num_tc == priv->num_tc) 387 return 0; 388 389 if (!num_tc) { 390 netdev_reset_tc(net_dev); 391 goto out; 392 } 393 394 if (num_tc > DPAA_TC_NUM) { 395 netdev_err(net_dev, "Too many traffic classes: max %d supported.\n", 396 DPAA_TC_NUM); 397 return -EINVAL; 398 } 399 400 netdev_set_num_tc(net_dev, num_tc); 401 402 for (i = 0; i < num_tc; i++) 403 netdev_set_tc_queue(net_dev, i, num_txqs_per_tc, 404 i * num_txqs_per_tc); 405 406 out: 407 priv->num_tc = num_tc ? : 1; 408 netif_set_real_num_tx_queues(net_dev, priv->num_tc * num_txqs_per_tc); 409 return 0; 410 } 411 412 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev) 413 { 414 struct dpaa_eth_data *eth_data; 415 struct device *dpaa_dev; 416 struct mac_device *mac_dev; 417 418 dpaa_dev = &pdev->dev; 419 eth_data = dpaa_dev->platform_data; 420 if (!eth_data) { 421 dev_err(dpaa_dev, "eth_data missing\n"); 422 return ERR_PTR(-ENODEV); 423 } 424 mac_dev = eth_data->mac_dev; 425 if (!mac_dev) { 426 dev_err(dpaa_dev, "mac_dev missing\n"); 427 return ERR_PTR(-EINVAL); 428 } 429 430 return mac_dev; 431 } 432 433 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr) 434 { 435 const struct dpaa_priv *priv; 436 struct mac_device *mac_dev; 437 struct sockaddr old_addr; 438 int err; 439 440 priv = netdev_priv(net_dev); 441 442 memcpy(old_addr.sa_data, net_dev->dev_addr, ETH_ALEN); 443 444 err = eth_mac_addr(net_dev, addr); 445 if (err < 0) { 446 netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err); 447 return err; 448 } 449 450 mac_dev = priv->mac_dev; 451 452 err = mac_dev->change_addr(mac_dev->fman_mac, 453 (const enet_addr_t *)net_dev->dev_addr); 454 if (err < 0) { 455 netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n", 456 err); 457 /* reverting to previous address */ 458 eth_mac_addr(net_dev, &old_addr); 459 460 return err; 461 } 462 463 return 0; 464 } 465 466 static void dpaa_set_rx_mode(struct net_device *net_dev) 467 { 468 const struct dpaa_priv *priv; 469 int err; 470 471 priv = netdev_priv(net_dev); 472 473 if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) { 474 priv->mac_dev->promisc = !priv->mac_dev->promisc; 475 err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac, 476 priv->mac_dev->promisc); 477 if (err < 0) 478 netif_err(priv, drv, net_dev, 479 "mac_dev->set_promisc() = %d\n", 480 err); 481 } 482 483 if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) { 484 priv->mac_dev->allmulti = !priv->mac_dev->allmulti; 485 err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac, 486 priv->mac_dev->allmulti); 487 if (err < 0) 488 netif_err(priv, drv, net_dev, 489 "mac_dev->set_allmulti() = %d\n", 490 err); 491 } 492 493 err = priv->mac_dev->set_multi(net_dev, priv->mac_dev); 494 if (err < 0) 495 netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n", 496 err); 497 } 498 499 static struct dpaa_bp *dpaa_bpid2pool(int bpid) 500 { 501 if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS)) 502 return NULL; 503 504 return dpaa_bp_array[bpid]; 505 } 506 507 /* checks if this bpool is already allocated */ 508 static bool dpaa_bpid2pool_use(int bpid) 509 { 510 if (dpaa_bpid2pool(bpid)) { 511 refcount_inc(&dpaa_bp_array[bpid]->refs); 512 return true; 513 } 514 515 return false; 516 } 517 518 /* called only once per bpid by dpaa_bp_alloc_pool() */ 519 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp) 520 { 521 dpaa_bp_array[bpid] = dpaa_bp; 522 refcount_set(&dpaa_bp->refs, 1); 523 } 524 525 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp) 526 { 527 int err; 528 529 if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) { 530 pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n", 531 __func__); 532 return -EINVAL; 533 } 534 535 /* If the pool is already specified, we only create one per bpid */ 536 if (dpaa_bp->bpid != FSL_DPAA_BPID_INV && 537 dpaa_bpid2pool_use(dpaa_bp->bpid)) 538 return 0; 539 540 if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) { 541 dpaa_bp->pool = bman_new_pool(); 542 if (!dpaa_bp->pool) { 543 pr_err("%s: bman_new_pool() failed\n", 544 __func__); 545 return -ENODEV; 546 } 547 548 dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool); 549 } 550 551 if (dpaa_bp->seed_cb) { 552 err = dpaa_bp->seed_cb(dpaa_bp); 553 if (err) 554 goto pool_seed_failed; 555 } 556 557 dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp); 558 559 return 0; 560 561 pool_seed_failed: 562 pr_err("%s: pool seeding failed\n", __func__); 563 bman_free_pool(dpaa_bp->pool); 564 565 return err; 566 } 567 568 /* remove and free all the buffers from the given buffer pool */ 569 static void dpaa_bp_drain(struct dpaa_bp *bp) 570 { 571 u8 num = 8; 572 int ret; 573 574 do { 575 struct bm_buffer bmb[8]; 576 int i; 577 578 ret = bman_acquire(bp->pool, bmb, num); 579 if (ret < 0) { 580 if (num == 8) { 581 /* we have less than 8 buffers left; 582 * drain them one by one 583 */ 584 num = 1; 585 ret = 1; 586 continue; 587 } else { 588 /* Pool is fully drained */ 589 break; 590 } 591 } 592 593 if (bp->free_buf_cb) 594 for (i = 0; i < num; i++) 595 bp->free_buf_cb(bp, &bmb[i]); 596 } while (ret > 0); 597 } 598 599 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp) 600 { 601 struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid); 602 603 /* the mapping between bpid and dpaa_bp is done very late in the 604 * allocation procedure; if something failed before the mapping, the bp 605 * was not configured, therefore we don't need the below instructions 606 */ 607 if (!bp) 608 return; 609 610 if (!refcount_dec_and_test(&bp->refs)) 611 return; 612 613 if (bp->free_buf_cb) 614 dpaa_bp_drain(bp); 615 616 dpaa_bp_array[bp->bpid] = NULL; 617 bman_free_pool(bp->pool); 618 } 619 620 static void dpaa_bps_free(struct dpaa_priv *priv) 621 { 622 dpaa_bp_free(priv->dpaa_bp); 623 } 624 625 /* Use multiple WQs for FQ assignment: 626 * - Tx Confirmation queues go to WQ1. 627 * - Rx Error and Tx Error queues go to WQ5 (giving them a better chance 628 * to be scheduled, in case there are many more FQs in WQ6). 629 * - Rx Default goes to WQ6. 630 * - Tx queues go to different WQs depending on their priority. Equal 631 * chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and 632 * WQ0 (highest priority). 633 * This ensures that Tx-confirmed buffers are timely released. In particular, 634 * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they 635 * are greatly outnumbered by other FQs in the system, while 636 * dequeue scheduling is round-robin. 637 */ 638 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx) 639 { 640 switch (fq->fq_type) { 641 case FQ_TYPE_TX_CONFIRM: 642 case FQ_TYPE_TX_CONF_MQ: 643 fq->wq = 1; 644 break; 645 case FQ_TYPE_RX_ERROR: 646 case FQ_TYPE_TX_ERROR: 647 fq->wq = 5; 648 break; 649 case FQ_TYPE_RX_DEFAULT: 650 case FQ_TYPE_RX_PCD: 651 fq->wq = 6; 652 break; 653 case FQ_TYPE_TX: 654 switch (idx / dpaa_num_txqs_per_tc()) { 655 case 0: 656 /* Low priority (best effort) */ 657 fq->wq = 6; 658 break; 659 case 1: 660 /* Medium priority */ 661 fq->wq = 2; 662 break; 663 case 2: 664 /* High priority */ 665 fq->wq = 1; 666 break; 667 case 3: 668 /* Very high priority */ 669 fq->wq = 0; 670 break; 671 default: 672 WARN(1, "Too many TX FQs: more than %zu!\n", 673 dpaa_max_num_txqs()); 674 } 675 break; 676 default: 677 WARN(1, "Invalid FQ type %d for FQID %d!\n", 678 fq->fq_type, fq->fqid); 679 } 680 } 681 682 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev, 683 u32 start, u32 count, 684 struct list_head *list, 685 enum dpaa_fq_type fq_type) 686 { 687 struct dpaa_fq *dpaa_fq; 688 int i; 689 690 dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq), 691 GFP_KERNEL); 692 if (!dpaa_fq) 693 return NULL; 694 695 for (i = 0; i < count; i++) { 696 dpaa_fq[i].fq_type = fq_type; 697 dpaa_fq[i].fqid = start ? start + i : 0; 698 list_add_tail(&dpaa_fq[i].list, list); 699 } 700 701 for (i = 0; i < count; i++) 702 dpaa_assign_wq(dpaa_fq + i, i); 703 704 return dpaa_fq; 705 } 706 707 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list, 708 struct fm_port_fqs *port_fqs) 709 { 710 struct dpaa_fq *dpaa_fq; 711 u32 fq_base, fq_base_aligned, i; 712 713 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR); 714 if (!dpaa_fq) 715 goto fq_alloc_failed; 716 717 port_fqs->rx_errq = &dpaa_fq[0]; 718 719 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT); 720 if (!dpaa_fq) 721 goto fq_alloc_failed; 722 723 port_fqs->rx_defq = &dpaa_fq[0]; 724 725 /* the PCD FQIDs range needs to be aligned for correct operation */ 726 if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM)) 727 goto fq_alloc_failed; 728 729 fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM); 730 731 for (i = fq_base; i < fq_base_aligned; i++) 732 qman_release_fqid(i); 733 734 for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM; 735 i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++) 736 qman_release_fqid(i); 737 738 dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM, 739 list, FQ_TYPE_RX_PCD); 740 if (!dpaa_fq) 741 goto fq_alloc_failed; 742 743 port_fqs->rx_pcdq = &dpaa_fq[0]; 744 745 if (!dpaa_fq_alloc(dev, 0, dpaa_max_num_txqs(), list, 746 FQ_TYPE_TX_CONF_MQ)) 747 goto fq_alloc_failed; 748 749 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR); 750 if (!dpaa_fq) 751 goto fq_alloc_failed; 752 753 port_fqs->tx_errq = &dpaa_fq[0]; 754 755 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM); 756 if (!dpaa_fq) 757 goto fq_alloc_failed; 758 759 port_fqs->tx_defq = &dpaa_fq[0]; 760 761 if (!dpaa_fq_alloc(dev, 0, dpaa_max_num_txqs(), list, FQ_TYPE_TX)) 762 goto fq_alloc_failed; 763 764 return 0; 765 766 fq_alloc_failed: 767 dev_err(dev, "dpaa_fq_alloc() failed\n"); 768 return -ENOMEM; 769 } 770 771 static u32 rx_pool_channel; 772 static DEFINE_SPINLOCK(rx_pool_channel_init); 773 774 static int dpaa_get_channel(void) 775 { 776 spin_lock(&rx_pool_channel_init); 777 if (!rx_pool_channel) { 778 u32 pool; 779 int ret; 780 781 ret = qman_alloc_pool(&pool); 782 783 if (!ret) 784 rx_pool_channel = pool; 785 } 786 spin_unlock(&rx_pool_channel_init); 787 if (!rx_pool_channel) 788 return -ENOMEM; 789 return rx_pool_channel; 790 } 791 792 static void dpaa_release_channel(void) 793 { 794 qman_release_pool(rx_pool_channel); 795 } 796 797 static void dpaa_eth_add_channel(u16 channel, struct device *dev) 798 { 799 u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel); 800 const cpumask_t *cpus = qman_affine_cpus(); 801 struct qman_portal *portal; 802 int cpu; 803 804 for_each_cpu_and(cpu, cpus, cpu_online_mask) { 805 portal = qman_get_affine_portal(cpu); 806 qman_p_static_dequeue_add(portal, pool); 807 qman_start_using_portal(portal, dev); 808 } 809 } 810 811 /* Congestion group state change notification callback. 812 * Stops the device's egress queues while they are congested and 813 * wakes them upon exiting congested state. 814 * Also updates some CGR-related stats. 815 */ 816 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr, 817 int congested) 818 { 819 struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr, 820 struct dpaa_priv, cgr_data.cgr); 821 822 if (congested) { 823 priv->cgr_data.congestion_start_jiffies = jiffies; 824 netif_tx_stop_all_queues(priv->net_dev); 825 priv->cgr_data.cgr_congested_count++; 826 } else { 827 priv->cgr_data.congested_jiffies += 828 (jiffies - priv->cgr_data.congestion_start_jiffies); 829 netif_tx_wake_all_queues(priv->net_dev); 830 } 831 } 832 833 static int dpaa_eth_cgr_init(struct dpaa_priv *priv) 834 { 835 struct qm_mcc_initcgr initcgr; 836 u32 cs_th; 837 int err; 838 839 err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid); 840 if (err < 0) { 841 if (netif_msg_drv(priv)) 842 pr_err("%s: Error %d allocating CGR ID\n", 843 __func__, err); 844 goto out_error; 845 } 846 priv->cgr_data.cgr.cb = dpaa_eth_cgscn; 847 848 /* Enable Congestion State Change Notifications and CS taildrop */ 849 memset(&initcgr, 0, sizeof(initcgr)); 850 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES); 851 initcgr.cgr.cscn_en = QM_CGR_EN; 852 853 /* Set different thresholds based on the configured MAC speed. 854 * This may turn suboptimal if the MAC is reconfigured at another 855 * speed, so MACs must call dpaa_eth_cgr_set_speed in their link_up 856 * callback. 857 */ 858 if (priv->mac_dev->phylink_config.mac_capabilities & MAC_10000FD) 859 cs_th = DPAA_CS_THRESHOLD_10G; 860 else 861 cs_th = DPAA_CS_THRESHOLD_1G; 862 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1); 863 864 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN); 865 initcgr.cgr.cstd_en = QM_CGR_EN; 866 867 err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT, 868 &initcgr); 869 if (err < 0) { 870 if (netif_msg_drv(priv)) 871 pr_err("%s: Error %d creating CGR with ID %d\n", 872 __func__, err, priv->cgr_data.cgr.cgrid); 873 qman_release_cgrid(priv->cgr_data.cgr.cgrid); 874 goto out_error; 875 } 876 if (netif_msg_drv(priv)) 877 pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n", 878 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr, 879 priv->cgr_data.cgr.chan); 880 881 out_error: 882 return err; 883 } 884 885 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed) 886 { 887 struct net_device *net_dev = to_net_dev(mac_dev->phylink_config.dev); 888 struct dpaa_priv *priv = netdev_priv(net_dev); 889 struct qm_mcc_initcgr opts = { }; 890 u32 cs_th; 891 int err; 892 893 opts.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES); 894 switch (speed) { 895 case SPEED_10000: 896 cs_th = DPAA_CS_THRESHOLD_10G; 897 break; 898 case SPEED_1000: 899 default: 900 cs_th = DPAA_CS_THRESHOLD_1G; 901 break; 902 } 903 qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, cs_th, 1); 904 905 err = qman_update_cgr_safe(&priv->cgr_data.cgr, &opts); 906 if (err) 907 netdev_err(net_dev, "could not update speed: %d\n", err); 908 } 909 910 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv, 911 struct dpaa_fq *fq, 912 const struct qman_fq *template) 913 { 914 fq->fq_base = *template; 915 fq->net_dev = priv->net_dev; 916 917 fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE; 918 fq->channel = priv->channel; 919 } 920 921 static inline void dpaa_setup_egress(const struct dpaa_priv *priv, 922 struct dpaa_fq *fq, 923 struct fman_port *port, 924 const struct qman_fq *template) 925 { 926 fq->fq_base = *template; 927 fq->net_dev = priv->net_dev; 928 929 if (port) { 930 fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL; 931 fq->channel = (u16)fman_port_get_qman_channel_id(port); 932 } else { 933 fq->flags = QMAN_FQ_FLAG_NO_MODIFY; 934 } 935 } 936 937 static int dpaa_fq_setup(struct dpaa_priv *priv, 938 const struct dpaa_fq_cbs *fq_cbs, 939 struct fman_port *tx_port) 940 { 941 int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu; 942 const cpumask_t *affine_cpus = qman_affine_cpus(); 943 struct dpaa_fq *fq; 944 u16 *channels; 945 946 channels = kcalloc(num_possible_cpus(), sizeof(u16), GFP_KERNEL); 947 if (!channels) 948 return -ENOMEM; 949 950 for_each_cpu_and(cpu, affine_cpus, cpu_online_mask) 951 channels[num_portals++] = qman_affine_channel(cpu); 952 953 if (num_portals == 0) 954 dev_err(priv->net_dev->dev.parent, 955 "No Qman software (affine) channels found\n"); 956 957 /* Initialize each FQ in the list */ 958 list_for_each_entry(fq, &priv->dpaa_fq_list, list) { 959 switch (fq->fq_type) { 960 case FQ_TYPE_RX_DEFAULT: 961 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq); 962 break; 963 case FQ_TYPE_RX_ERROR: 964 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq); 965 break; 966 case FQ_TYPE_RX_PCD: 967 if (!num_portals) 968 continue; 969 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq); 970 fq->channel = channels[portal_cnt++ % num_portals]; 971 break; 972 case FQ_TYPE_TX: 973 dpaa_setup_egress(priv, fq, tx_port, 974 &fq_cbs->egress_ern); 975 priv->egress_fqs[egress_cnt++] = &fq->fq_base; 976 break; 977 case FQ_TYPE_TX_CONF_MQ: 978 priv->conf_fqs[conf_cnt++] = &fq->fq_base; 979 fallthrough; 980 case FQ_TYPE_TX_CONFIRM: 981 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq); 982 break; 983 case FQ_TYPE_TX_ERROR: 984 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq); 985 break; 986 default: 987 dev_warn(priv->net_dev->dev.parent, 988 "Unknown FQ type detected!\n"); 989 break; 990 } 991 } 992 993 kfree(channels); 994 995 return 0; 996 } 997 998 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv, 999 struct qman_fq *tx_fq) 1000 { 1001 int i; 1002 1003 for (i = 0; i < dpaa_max_num_txqs(); i++) 1004 if (priv->egress_fqs[i] == tx_fq) 1005 return i; 1006 1007 return -EINVAL; 1008 } 1009 1010 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable) 1011 { 1012 const struct dpaa_priv *priv; 1013 struct qman_fq *confq = NULL; 1014 struct qm_mcc_initfq initfq; 1015 struct device *dev; 1016 struct qman_fq *fq; 1017 int queue_id; 1018 int err; 1019 1020 priv = netdev_priv(dpaa_fq->net_dev); 1021 dev = dpaa_fq->net_dev->dev.parent; 1022 1023 if (dpaa_fq->fqid == 0) 1024 dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID; 1025 1026 dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY); 1027 1028 err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base); 1029 if (err) { 1030 dev_err(dev, "qman_create_fq() failed\n"); 1031 return err; 1032 } 1033 fq = &dpaa_fq->fq_base; 1034 1035 if (dpaa_fq->init) { 1036 memset(&initfq, 0, sizeof(initfq)); 1037 1038 initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL); 1039 /* Note: we may get to keep an empty FQ in cache */ 1040 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE); 1041 1042 /* Try to reduce the number of portal interrupts for 1043 * Tx Confirmation FQs. 1044 */ 1045 if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM) 1046 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK); 1047 1048 /* FQ placement */ 1049 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ); 1050 1051 qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq); 1052 1053 /* Put all egress queues in a congestion group of their own. 1054 * Sensu stricto, the Tx confirmation queues are Rx FQs, 1055 * rather than Tx - but they nonetheless account for the 1056 * memory footprint on behalf of egress traffic. We therefore 1057 * place them in the netdev's CGR, along with the Tx FQs. 1058 */ 1059 if (dpaa_fq->fq_type == FQ_TYPE_TX || 1060 dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM || 1061 dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) { 1062 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID); 1063 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE); 1064 initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid; 1065 /* Set a fixed overhead accounting, in an attempt to 1066 * reduce the impact of fixed-size skb shells and the 1067 * driver's needed headroom on system memory. This is 1068 * especially the case when the egress traffic is 1069 * composed of small datagrams. 1070 * Unfortunately, QMan's OAL value is capped to an 1071 * insufficient value, but even that is better than 1072 * no overhead accounting at all. 1073 */ 1074 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC); 1075 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG); 1076 qm_fqd_set_oal(&initfq.fqd, 1077 min(sizeof(struct sk_buff) + 1078 priv->tx_headroom, 1079 (size_t)FSL_QMAN_MAX_OAL)); 1080 } 1081 1082 if (td_enable) { 1083 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH); 1084 qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1); 1085 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE); 1086 } 1087 1088 if (dpaa_fq->fq_type == FQ_TYPE_TX) { 1089 queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base); 1090 if (queue_id >= 0) 1091 confq = priv->conf_fqs[queue_id]; 1092 if (confq) { 1093 initfq.we_mask |= 1094 cpu_to_be16(QM_INITFQ_WE_CONTEXTA); 1095 /* ContextA: OVOM=1(use contextA2 bits instead of ICAD) 1096 * A2V=1 (contextA A2 field is valid) 1097 * A0V=1 (contextA A0 field is valid) 1098 * B0V=1 (contextB field is valid) 1099 * ContextA A2: EBD=1 (deallocate buffers inside FMan) 1100 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID) 1101 */ 1102 qm_fqd_context_a_set64(&initfq.fqd, 1103 0x1e00000080000000ULL); 1104 } 1105 } 1106 1107 /* Put all the ingress queues in our "ingress CGR". */ 1108 if (priv->use_ingress_cgr && 1109 (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || 1110 dpaa_fq->fq_type == FQ_TYPE_RX_ERROR || 1111 dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) { 1112 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID); 1113 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE); 1114 initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid; 1115 /* Set a fixed overhead accounting, just like for the 1116 * egress CGR. 1117 */ 1118 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC); 1119 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG); 1120 qm_fqd_set_oal(&initfq.fqd, 1121 min(sizeof(struct sk_buff) + 1122 priv->tx_headroom, 1123 (size_t)FSL_QMAN_MAX_OAL)); 1124 } 1125 1126 /* Initialization common to all ingress queues */ 1127 if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) { 1128 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA); 1129 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE | 1130 QM_FQCTRL_CTXASTASHING); 1131 initfq.fqd.context_a.stashing.exclusive = 1132 QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX | 1133 QM_STASHING_EXCL_ANNOTATION; 1134 qm_fqd_set_stashing(&initfq.fqd, 1, 2, 1135 DIV_ROUND_UP(sizeof(struct qman_fq), 1136 64)); 1137 } 1138 1139 err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq); 1140 if (err < 0) { 1141 dev_err(dev, "qman_init_fq(%u) = %d\n", 1142 qman_fq_fqid(fq), err); 1143 qman_destroy_fq(fq); 1144 return err; 1145 } 1146 } 1147 1148 dpaa_fq->fqid = qman_fq_fqid(fq); 1149 1150 if (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || 1151 dpaa_fq->fq_type == FQ_TYPE_RX_PCD) { 1152 err = xdp_rxq_info_reg(&dpaa_fq->xdp_rxq, dpaa_fq->net_dev, 1153 dpaa_fq->fqid, 0); 1154 if (err) { 1155 dev_err(dev, "xdp_rxq_info_reg() = %d\n", err); 1156 return err; 1157 } 1158 1159 err = xdp_rxq_info_reg_mem_model(&dpaa_fq->xdp_rxq, 1160 MEM_TYPE_PAGE_ORDER0, NULL); 1161 if (err) { 1162 dev_err(dev, "xdp_rxq_info_reg_mem_model() = %d\n", 1163 err); 1164 xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq); 1165 return err; 1166 } 1167 } 1168 1169 return 0; 1170 } 1171 1172 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq) 1173 { 1174 const struct dpaa_priv *priv; 1175 struct dpaa_fq *dpaa_fq; 1176 int err, error; 1177 1178 err = 0; 1179 1180 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); 1181 priv = netdev_priv(dpaa_fq->net_dev); 1182 1183 if (dpaa_fq->init) { 1184 err = qman_retire_fq(fq, NULL); 1185 if (err < 0 && netif_msg_drv(priv)) 1186 dev_err(dev, "qman_retire_fq(%u) = %d\n", 1187 qman_fq_fqid(fq), err); 1188 1189 error = qman_oos_fq(fq); 1190 if (error < 0 && netif_msg_drv(priv)) { 1191 dev_err(dev, "qman_oos_fq(%u) = %d\n", 1192 qman_fq_fqid(fq), error); 1193 if (err >= 0) 1194 err = error; 1195 } 1196 } 1197 1198 if ((dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || 1199 dpaa_fq->fq_type == FQ_TYPE_RX_PCD) && 1200 xdp_rxq_info_is_reg(&dpaa_fq->xdp_rxq)) 1201 xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq); 1202 1203 qman_destroy_fq(fq); 1204 list_del(&dpaa_fq->list); 1205 1206 return err; 1207 } 1208 1209 static int dpaa_fq_free(struct device *dev, struct list_head *list) 1210 { 1211 struct dpaa_fq *dpaa_fq, *tmp; 1212 int err, error; 1213 1214 err = 0; 1215 list_for_each_entry_safe(dpaa_fq, tmp, list, list) { 1216 error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq); 1217 if (error < 0 && err >= 0) 1218 err = error; 1219 } 1220 1221 return err; 1222 } 1223 1224 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq, 1225 struct dpaa_fq *defq, 1226 struct dpaa_buffer_layout *buf_layout) 1227 { 1228 struct fman_buffer_prefix_content buf_prefix_content; 1229 struct fman_port_params params; 1230 int err; 1231 1232 memset(¶ms, 0, sizeof(params)); 1233 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content)); 1234 1235 buf_prefix_content.priv_data_size = buf_layout->priv_data_size; 1236 buf_prefix_content.pass_prs_result = true; 1237 buf_prefix_content.pass_hash_result = true; 1238 buf_prefix_content.pass_time_stamp = true; 1239 buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT; 1240 1241 params.specific_params.non_rx_params.err_fqid = errq->fqid; 1242 params.specific_params.non_rx_params.dflt_fqid = defq->fqid; 1243 1244 err = fman_port_config(port, ¶ms); 1245 if (err) { 1246 pr_err("%s: fman_port_config failed\n", __func__); 1247 return err; 1248 } 1249 1250 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content); 1251 if (err) { 1252 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n", 1253 __func__); 1254 return err; 1255 } 1256 1257 err = fman_port_init(port); 1258 if (err) 1259 pr_err("%s: fm_port_init failed\n", __func__); 1260 1261 return err; 1262 } 1263 1264 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp *bp, 1265 struct dpaa_fq *errq, 1266 struct dpaa_fq *defq, struct dpaa_fq *pcdq, 1267 struct dpaa_buffer_layout *buf_layout) 1268 { 1269 struct fman_buffer_prefix_content buf_prefix_content; 1270 struct fman_port_rx_params *rx_p; 1271 struct fman_port_params params; 1272 int err; 1273 1274 memset(¶ms, 0, sizeof(params)); 1275 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content)); 1276 1277 buf_prefix_content.priv_data_size = buf_layout->priv_data_size; 1278 buf_prefix_content.pass_prs_result = true; 1279 buf_prefix_content.pass_hash_result = true; 1280 buf_prefix_content.pass_time_stamp = true; 1281 buf_prefix_content.data_align = DPAA_FD_RX_DATA_ALIGNMENT; 1282 1283 rx_p = ¶ms.specific_params.rx_params; 1284 rx_p->err_fqid = errq->fqid; 1285 rx_p->dflt_fqid = defq->fqid; 1286 if (pcdq) { 1287 rx_p->pcd_base_fqid = pcdq->fqid; 1288 rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM; 1289 } 1290 1291 rx_p->ext_buf_pools.num_of_pools_used = 1; 1292 rx_p->ext_buf_pools.ext_buf_pool[0].id = bp->bpid; 1293 rx_p->ext_buf_pools.ext_buf_pool[0].size = (u16)bp->size; 1294 1295 err = fman_port_config(port, ¶ms); 1296 if (err) { 1297 pr_err("%s: fman_port_config failed\n", __func__); 1298 return err; 1299 } 1300 1301 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content); 1302 if (err) { 1303 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n", 1304 __func__); 1305 return err; 1306 } 1307 1308 err = fman_port_init(port); 1309 if (err) 1310 pr_err("%s: fm_port_init failed\n", __func__); 1311 1312 return err; 1313 } 1314 1315 static int dpaa_eth_init_ports(struct mac_device *mac_dev, 1316 struct dpaa_bp *bp, 1317 struct fm_port_fqs *port_fqs, 1318 struct dpaa_buffer_layout *buf_layout, 1319 struct device *dev) 1320 { 1321 struct fman_port *rxport = mac_dev->port[RX]; 1322 struct fman_port *txport = mac_dev->port[TX]; 1323 int err; 1324 1325 err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq, 1326 port_fqs->tx_defq, &buf_layout[TX]); 1327 if (err) 1328 return err; 1329 1330 err = dpaa_eth_init_rx_port(rxport, bp, port_fqs->rx_errq, 1331 port_fqs->rx_defq, port_fqs->rx_pcdq, 1332 &buf_layout[RX]); 1333 1334 return err; 1335 } 1336 1337 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp, 1338 struct bm_buffer *bmb, int cnt) 1339 { 1340 int err; 1341 1342 err = bman_release(dpaa_bp->pool, bmb, cnt); 1343 /* Should never occur, address anyway to avoid leaking the buffers */ 1344 if (WARN_ON(err) && dpaa_bp->free_buf_cb) 1345 while (cnt-- > 0) 1346 dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]); 1347 1348 return cnt; 1349 } 1350 1351 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt) 1352 { 1353 struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX]; 1354 struct dpaa_bp *dpaa_bp; 1355 int i = 0, j; 1356 1357 memset(bmb, 0, sizeof(bmb)); 1358 1359 do { 1360 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid); 1361 if (!dpaa_bp) 1362 return; 1363 1364 j = 0; 1365 do { 1366 WARN_ON(qm_sg_entry_is_ext(&sgt[i])); 1367 1368 bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i])); 1369 1370 j++; i++; 1371 } while (j < ARRAY_SIZE(bmb) && 1372 !qm_sg_entry_is_final(&sgt[i - 1]) && 1373 sgt[i - 1].bpid == sgt[i].bpid); 1374 1375 dpaa_bman_release(dpaa_bp, bmb, j); 1376 } while (!qm_sg_entry_is_final(&sgt[i - 1])); 1377 } 1378 1379 static void dpaa_fd_release(const struct net_device *net_dev, 1380 const struct qm_fd *fd) 1381 { 1382 struct qm_sg_entry *sgt; 1383 struct dpaa_bp *dpaa_bp; 1384 struct bm_buffer bmb; 1385 dma_addr_t addr; 1386 void *vaddr; 1387 1388 bmb.data = 0; 1389 bm_buffer_set64(&bmb, qm_fd_addr(fd)); 1390 1391 dpaa_bp = dpaa_bpid2pool(fd->bpid); 1392 if (!dpaa_bp) 1393 return; 1394 1395 if (qm_fd_get_format(fd) == qm_fd_sg) { 1396 vaddr = phys_to_virt(qm_fd_addr(fd)); 1397 sgt = vaddr + qm_fd_get_offset(fd); 1398 1399 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, qm_fd_addr(fd), 1400 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1401 1402 dpaa_release_sgt_members(sgt); 1403 1404 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, 1405 virt_to_page(vaddr), 0, DPAA_BP_RAW_SIZE, 1406 DMA_FROM_DEVICE); 1407 if (dma_mapping_error(dpaa_bp->priv->rx_dma_dev, addr)) { 1408 netdev_err(net_dev, "DMA mapping failed\n"); 1409 return; 1410 } 1411 bm_buffer_set64(&bmb, addr); 1412 } 1413 1414 dpaa_bman_release(dpaa_bp, &bmb, 1); 1415 } 1416 1417 static void count_ern(struct dpaa_percpu_priv *percpu_priv, 1418 const union qm_mr_entry *msg) 1419 { 1420 switch (msg->ern.rc & QM_MR_RC_MASK) { 1421 case QM_MR_RC_CGR_TAILDROP: 1422 percpu_priv->ern_cnt.cg_tdrop++; 1423 break; 1424 case QM_MR_RC_WRED: 1425 percpu_priv->ern_cnt.wred++; 1426 break; 1427 case QM_MR_RC_ERROR: 1428 percpu_priv->ern_cnt.err_cond++; 1429 break; 1430 case QM_MR_RC_ORPWINDOW_EARLY: 1431 percpu_priv->ern_cnt.early_window++; 1432 break; 1433 case QM_MR_RC_ORPWINDOW_LATE: 1434 percpu_priv->ern_cnt.late_window++; 1435 break; 1436 case QM_MR_RC_FQ_TAILDROP: 1437 percpu_priv->ern_cnt.fq_tdrop++; 1438 break; 1439 case QM_MR_RC_ORPWINDOW_RETIRED: 1440 percpu_priv->ern_cnt.fq_retired++; 1441 break; 1442 case QM_MR_RC_ORP_ZERO: 1443 percpu_priv->ern_cnt.orp_zero++; 1444 break; 1445 } 1446 } 1447 1448 /* Turn on HW checksum computation for this outgoing frame. 1449 * If the current protocol is not something we support in this regard 1450 * (or if the stack has already computed the SW checksum), we do nothing. 1451 * 1452 * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value 1453 * otherwise. 1454 * 1455 * Note that this function may modify the fd->cmd field and the skb data buffer 1456 * (the Parse Results area). 1457 */ 1458 static int dpaa_enable_tx_csum(struct dpaa_priv *priv, 1459 struct sk_buff *skb, 1460 struct qm_fd *fd, 1461 void *parse_results) 1462 { 1463 struct fman_prs_result *parse_result; 1464 u16 ethertype = ntohs(skb->protocol); 1465 struct ipv6hdr *ipv6h = NULL; 1466 struct iphdr *iph; 1467 int retval = 0; 1468 u8 l4_proto; 1469 1470 if (skb->ip_summed != CHECKSUM_PARTIAL) 1471 return 0; 1472 1473 /* Note: L3 csum seems to be already computed in sw, but we can't choose 1474 * L4 alone from the FM configuration anyway. 1475 */ 1476 1477 /* Fill in some fields of the Parse Results array, so the FMan 1478 * can find them as if they came from the FMan Parser. 1479 */ 1480 parse_result = (struct fman_prs_result *)parse_results; 1481 1482 /* If we're dealing with VLAN, get the real Ethernet type */ 1483 if (ethertype == ETH_P_8021Q) 1484 ethertype = ntohs(skb_vlan_eth_hdr(skb)->h_vlan_encapsulated_proto); 1485 1486 /* Fill in the relevant L3 parse result fields 1487 * and read the L4 protocol type 1488 */ 1489 switch (ethertype) { 1490 case ETH_P_IP: 1491 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4); 1492 iph = ip_hdr(skb); 1493 WARN_ON(!iph); 1494 l4_proto = iph->protocol; 1495 break; 1496 case ETH_P_IPV6: 1497 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6); 1498 ipv6h = ipv6_hdr(skb); 1499 WARN_ON(!ipv6h); 1500 l4_proto = ipv6h->nexthdr; 1501 break; 1502 default: 1503 /* We shouldn't even be here */ 1504 if (net_ratelimit()) 1505 netif_alert(priv, tx_err, priv->net_dev, 1506 "Can't compute HW csum for L3 proto 0x%x\n", 1507 ntohs(skb->protocol)); 1508 retval = -EIO; 1509 goto return_error; 1510 } 1511 1512 /* Fill in the relevant L4 parse result fields */ 1513 switch (l4_proto) { 1514 case IPPROTO_UDP: 1515 parse_result->l4r = FM_L4_PARSE_RESULT_UDP; 1516 break; 1517 case IPPROTO_TCP: 1518 parse_result->l4r = FM_L4_PARSE_RESULT_TCP; 1519 break; 1520 default: 1521 if (net_ratelimit()) 1522 netif_alert(priv, tx_err, priv->net_dev, 1523 "Can't compute HW csum for L4 proto 0x%x\n", 1524 l4_proto); 1525 retval = -EIO; 1526 goto return_error; 1527 } 1528 1529 /* At index 0 is IPOffset_1 as defined in the Parse Results */ 1530 parse_result->ip_off[0] = (u8)skb_network_offset(skb); 1531 parse_result->l4_off = (u8)skb_transport_offset(skb); 1532 1533 /* Enable L3 (and L4, if TCP or UDP) HW checksum. */ 1534 fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC); 1535 1536 /* On P1023 and similar platforms fd->cmd interpretation could 1537 * be disabled by setting CONTEXT_A bit ICMD; currently this bit 1538 * is not set so we do not need to check; in the future, if/when 1539 * using context_a we need to check this bit 1540 */ 1541 1542 return_error: 1543 return retval; 1544 } 1545 1546 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp) 1547 { 1548 struct net_device *net_dev = dpaa_bp->priv->net_dev; 1549 struct bm_buffer bmb[8]; 1550 dma_addr_t addr; 1551 struct page *p; 1552 u8 i; 1553 1554 for (i = 0; i < 8; i++) { 1555 p = dev_alloc_pages(0); 1556 if (unlikely(!p)) { 1557 netdev_err(net_dev, "dev_alloc_pages() failed\n"); 1558 goto release_previous_buffs; 1559 } 1560 1561 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, p, 0, 1562 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1563 if (unlikely(dma_mapping_error(dpaa_bp->priv->rx_dma_dev, 1564 addr))) { 1565 netdev_err(net_dev, "DMA map failed\n"); 1566 goto release_previous_buffs; 1567 } 1568 1569 bmb[i].data = 0; 1570 bm_buffer_set64(&bmb[i], addr); 1571 } 1572 1573 release_bufs: 1574 return dpaa_bman_release(dpaa_bp, bmb, i); 1575 1576 release_previous_buffs: 1577 WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n"); 1578 1579 bm_buffer_set64(&bmb[i], 0); 1580 /* Avoid releasing a completely null buffer; bman_release() requires 1581 * at least one buffer. 1582 */ 1583 if (likely(i)) 1584 goto release_bufs; 1585 1586 return 0; 1587 } 1588 1589 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp) 1590 { 1591 int i; 1592 1593 /* Give each CPU an allotment of "config_count" buffers */ 1594 for_each_possible_cpu(i) { 1595 int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i); 1596 int j; 1597 1598 /* Although we access another CPU's counters here 1599 * we do it at boot time so it is safe 1600 */ 1601 for (j = 0; j < dpaa_bp->config_count; j += 8) 1602 *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp); 1603 } 1604 return 0; 1605 } 1606 1607 /* Add buffers/(pages) for Rx processing whenever bpool count falls below 1608 * REFILL_THRESHOLD. 1609 */ 1610 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr) 1611 { 1612 int count = *countptr; 1613 int new_bufs; 1614 1615 if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) { 1616 do { 1617 new_bufs = dpaa_bp_add_8_bufs(dpaa_bp); 1618 if (unlikely(!new_bufs)) { 1619 /* Avoid looping forever if we've temporarily 1620 * run out of memory. We'll try again at the 1621 * next NAPI cycle. 1622 */ 1623 break; 1624 } 1625 count += new_bufs; 1626 } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT); 1627 1628 *countptr = count; 1629 if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT)) 1630 return -ENOMEM; 1631 } 1632 1633 return 0; 1634 } 1635 1636 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv) 1637 { 1638 struct dpaa_bp *dpaa_bp; 1639 int *countptr; 1640 1641 dpaa_bp = priv->dpaa_bp; 1642 if (!dpaa_bp) 1643 return -EINVAL; 1644 countptr = this_cpu_ptr(dpaa_bp->percpu_count); 1645 1646 return dpaa_eth_refill_bpool(dpaa_bp, countptr); 1647 } 1648 1649 /* Cleanup function for outgoing frame descriptors that were built on Tx path, 1650 * either contiguous frames or scatter/gather ones. 1651 * Skb freeing is not handled here. 1652 * 1653 * This function may be called on error paths in the Tx function, so guard 1654 * against cases when not all fd relevant fields were filled in. To avoid 1655 * reading the invalid transmission timestamp for the error paths set ts to 1656 * false. 1657 * 1658 * Return the skb backpointer, since for S/G frames the buffer containing it 1659 * gets freed here. 1660 * 1661 * No skb backpointer is set when transmitting XDP frames. Cleanup the buffer 1662 * and return NULL in this case. 1663 */ 1664 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv, 1665 const struct qm_fd *fd, bool ts) 1666 { 1667 const enum dma_data_direction dma_dir = DMA_TO_DEVICE; 1668 struct device *dev = priv->net_dev->dev.parent; 1669 struct skb_shared_hwtstamps shhwtstamps; 1670 dma_addr_t addr = qm_fd_addr(fd); 1671 void *vaddr = phys_to_virt(addr); 1672 const struct qm_sg_entry *sgt; 1673 struct dpaa_eth_swbp *swbp; 1674 struct sk_buff *skb; 1675 u64 ns; 1676 int i; 1677 1678 if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) { 1679 dma_unmap_page(priv->tx_dma_dev, addr, 1680 qm_fd_get_offset(fd) + DPAA_SGT_SIZE, 1681 dma_dir); 1682 1683 /* The sgt buffer has been allocated with netdev_alloc_frag(), 1684 * it's from lowmem. 1685 */ 1686 sgt = vaddr + qm_fd_get_offset(fd); 1687 1688 /* sgt[0] is from lowmem, was dma_map_single()-ed */ 1689 dma_unmap_single(priv->tx_dma_dev, qm_sg_addr(&sgt[0]), 1690 qm_sg_entry_get_len(&sgt[0]), dma_dir); 1691 1692 /* remaining pages were mapped with skb_frag_dma_map() */ 1693 for (i = 1; (i < DPAA_SGT_MAX_ENTRIES) && 1694 !qm_sg_entry_is_final(&sgt[i - 1]); i++) { 1695 WARN_ON(qm_sg_entry_is_ext(&sgt[i])); 1696 1697 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[i]), 1698 qm_sg_entry_get_len(&sgt[i]), dma_dir); 1699 } 1700 } else { 1701 dma_unmap_single(priv->tx_dma_dev, addr, 1702 qm_fd_get_offset(fd) + qm_fd_get_length(fd), 1703 dma_dir); 1704 } 1705 1706 swbp = (struct dpaa_eth_swbp *)vaddr; 1707 skb = swbp->skb; 1708 1709 /* No skb backpointer is set when running XDP. An xdp_frame 1710 * backpointer is saved instead. 1711 */ 1712 if (!skb) { 1713 xdp_return_frame(swbp->xdpf); 1714 return NULL; 1715 } 1716 1717 /* DMA unmapping is required before accessing the HW provided info */ 1718 if (ts && priv->tx_tstamp && 1719 skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { 1720 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 1721 1722 if (!fman_port_get_tstamp(priv->mac_dev->port[TX], vaddr, 1723 &ns)) { 1724 shhwtstamps.hwtstamp = ns_to_ktime(ns); 1725 skb_tstamp_tx(skb, &shhwtstamps); 1726 } else { 1727 dev_warn(dev, "fman_port_get_tstamp failed!\n"); 1728 } 1729 } 1730 1731 if (qm_fd_get_format(fd) == qm_fd_sg) 1732 /* Free the page that we allocated on Tx for the SGT */ 1733 free_pages((unsigned long)vaddr, 0); 1734 1735 return skb; 1736 } 1737 1738 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd) 1739 { 1740 /* The parser has run and performed L4 checksum validation. 1741 * We know there were no parser errors (and implicitly no 1742 * L4 csum error), otherwise we wouldn't be here. 1743 */ 1744 if ((priv->net_dev->features & NETIF_F_RXCSUM) && 1745 (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV)) 1746 return CHECKSUM_UNNECESSARY; 1747 1748 /* We're here because either the parser didn't run or the L4 checksum 1749 * was not verified. This may include the case of a UDP frame with 1750 * checksum zero or an L4 proto other than TCP/UDP 1751 */ 1752 return CHECKSUM_NONE; 1753 } 1754 1755 #define PTR_IS_ALIGNED(x, a) (IS_ALIGNED((unsigned long)(x), (a))) 1756 1757 /* Build a linear skb around the received buffer. 1758 * We are guaranteed there is enough room at the end of the data buffer to 1759 * accommodate the shared info area of the skb. 1760 */ 1761 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv, 1762 const struct qm_fd *fd) 1763 { 1764 ssize_t fd_off = qm_fd_get_offset(fd); 1765 dma_addr_t addr = qm_fd_addr(fd); 1766 struct dpaa_bp *dpaa_bp; 1767 struct sk_buff *skb; 1768 void *vaddr; 1769 1770 vaddr = phys_to_virt(addr); 1771 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES)); 1772 1773 dpaa_bp = dpaa_bpid2pool(fd->bpid); 1774 if (!dpaa_bp) 1775 goto free_buffer; 1776 1777 skb = build_skb(vaddr, dpaa_bp->size + 1778 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))); 1779 if (WARN_ONCE(!skb, "Build skb failure on Rx\n")) 1780 goto free_buffer; 1781 skb_reserve(skb, fd_off); 1782 skb_put(skb, qm_fd_get_length(fd)); 1783 1784 skb->ip_summed = rx_csum_offload(priv, fd); 1785 1786 return skb; 1787 1788 free_buffer: 1789 free_pages((unsigned long)vaddr, 0); 1790 return NULL; 1791 } 1792 1793 /* Build an skb with the data of the first S/G entry in the linear portion and 1794 * the rest of the frame as skb fragments. 1795 * 1796 * The page fragment holding the S/G Table is recycled here. 1797 */ 1798 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv, 1799 const struct qm_fd *fd) 1800 { 1801 ssize_t fd_off = qm_fd_get_offset(fd); 1802 dma_addr_t addr = qm_fd_addr(fd); 1803 const struct qm_sg_entry *sgt; 1804 struct page *page, *head_page; 1805 struct dpaa_bp *dpaa_bp; 1806 void *vaddr, *sg_vaddr; 1807 int frag_off, frag_len; 1808 struct sk_buff *skb; 1809 dma_addr_t sg_addr; 1810 int page_offset; 1811 unsigned int sz; 1812 int *count_ptr; 1813 int i, j; 1814 1815 vaddr = phys_to_virt(addr); 1816 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES)); 1817 1818 /* Iterate through the SGT entries and add data buffers to the skb */ 1819 sgt = vaddr + fd_off; 1820 skb = NULL; 1821 for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) { 1822 /* Extension bit is not supported */ 1823 WARN_ON(qm_sg_entry_is_ext(&sgt[i])); 1824 1825 sg_addr = qm_sg_addr(&sgt[i]); 1826 sg_vaddr = phys_to_virt(sg_addr); 1827 WARN_ON(!PTR_IS_ALIGNED(sg_vaddr, SMP_CACHE_BYTES)); 1828 1829 dma_unmap_page(priv->rx_dma_dev, sg_addr, 1830 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1831 1832 /* We may use multiple Rx pools */ 1833 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid); 1834 if (!dpaa_bp) 1835 goto free_buffers; 1836 1837 if (!skb) { 1838 sz = dpaa_bp->size + 1839 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1840 skb = build_skb(sg_vaddr, sz); 1841 if (WARN_ON(!skb)) 1842 goto free_buffers; 1843 1844 skb->ip_summed = rx_csum_offload(priv, fd); 1845 1846 /* Make sure forwarded skbs will have enough space 1847 * on Tx, if extra headers are added. 1848 */ 1849 WARN_ON(fd_off != priv->rx_headroom); 1850 skb_reserve(skb, fd_off); 1851 skb_put(skb, qm_sg_entry_get_len(&sgt[i])); 1852 } else { 1853 /* Not the first S/G entry; all data from buffer will 1854 * be added in an skb fragment; fragment index is offset 1855 * by one since first S/G entry was incorporated in the 1856 * linear part of the skb. 1857 * 1858 * Caution: 'page' may be a tail page. 1859 */ 1860 page = virt_to_page(sg_vaddr); 1861 head_page = virt_to_head_page(sg_vaddr); 1862 1863 /* Compute offset in (possibly tail) page */ 1864 page_offset = ((unsigned long)sg_vaddr & 1865 (PAGE_SIZE - 1)) + 1866 (page_address(page) - page_address(head_page)); 1867 /* page_offset only refers to the beginning of sgt[i]; 1868 * but the buffer itself may have an internal offset. 1869 */ 1870 frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset; 1871 frag_len = qm_sg_entry_get_len(&sgt[i]); 1872 /* skb_add_rx_frag() does no checking on the page; if 1873 * we pass it a tail page, we'll end up with 1874 * bad page accounting and eventually with segafults. 1875 */ 1876 skb_add_rx_frag(skb, i - 1, head_page, frag_off, 1877 frag_len, dpaa_bp->size); 1878 } 1879 1880 /* Update the pool count for the current {cpu x bpool} */ 1881 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); 1882 (*count_ptr)--; 1883 1884 if (qm_sg_entry_is_final(&sgt[i])) 1885 break; 1886 } 1887 WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n"); 1888 1889 /* free the SG table buffer */ 1890 free_pages((unsigned long)vaddr, 0); 1891 1892 return skb; 1893 1894 free_buffers: 1895 /* free all the SG entries */ 1896 for (j = 0; j < DPAA_SGT_MAX_ENTRIES ; j++) { 1897 sg_addr = qm_sg_addr(&sgt[j]); 1898 sg_vaddr = phys_to_virt(sg_addr); 1899 /* all pages 0..i were unmaped */ 1900 if (j > i) 1901 dma_unmap_page(priv->rx_dma_dev, qm_sg_addr(&sgt[j]), 1902 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1903 free_pages((unsigned long)sg_vaddr, 0); 1904 /* counters 0..i-1 were decremented */ 1905 if (j >= i) { 1906 dpaa_bp = dpaa_bpid2pool(sgt[j].bpid); 1907 if (dpaa_bp) { 1908 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); 1909 (*count_ptr)--; 1910 } 1911 } 1912 1913 if (qm_sg_entry_is_final(&sgt[j])) 1914 break; 1915 } 1916 /* free the SGT fragment */ 1917 free_pages((unsigned long)vaddr, 0); 1918 1919 return NULL; 1920 } 1921 1922 static int skb_to_contig_fd(struct dpaa_priv *priv, 1923 struct sk_buff *skb, struct qm_fd *fd, 1924 int *offset) 1925 { 1926 struct net_device *net_dev = priv->net_dev; 1927 enum dma_data_direction dma_dir; 1928 struct dpaa_eth_swbp *swbp; 1929 unsigned char *buff_start; 1930 dma_addr_t addr; 1931 int err; 1932 1933 /* We are guaranteed to have at least tx_headroom bytes 1934 * available, so just use that for offset. 1935 */ 1936 fd->bpid = FSL_DPAA_BPID_INV; 1937 buff_start = skb->data - priv->tx_headroom; 1938 dma_dir = DMA_TO_DEVICE; 1939 1940 swbp = (struct dpaa_eth_swbp *)buff_start; 1941 swbp->skb = skb; 1942 1943 /* Enable L3/L4 hardware checksum computation. 1944 * 1945 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may 1946 * need to write into the skb. 1947 */ 1948 err = dpaa_enable_tx_csum(priv, skb, fd, 1949 buff_start + DPAA_TX_PRIV_DATA_SIZE); 1950 if (unlikely(err < 0)) { 1951 if (net_ratelimit()) 1952 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n", 1953 err); 1954 return err; 1955 } 1956 1957 /* Fill in the rest of the FD fields */ 1958 qm_fd_set_contig(fd, priv->tx_headroom, skb->len); 1959 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO); 1960 1961 /* Map the entire buffer size that may be seen by FMan, but no more */ 1962 addr = dma_map_single(priv->tx_dma_dev, buff_start, 1963 priv->tx_headroom + skb->len, dma_dir); 1964 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 1965 if (net_ratelimit()) 1966 netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n"); 1967 return -EINVAL; 1968 } 1969 qm_fd_addr_set64(fd, addr); 1970 1971 return 0; 1972 } 1973 1974 static int skb_to_sg_fd(struct dpaa_priv *priv, 1975 struct sk_buff *skb, struct qm_fd *fd) 1976 { 1977 const enum dma_data_direction dma_dir = DMA_TO_DEVICE; 1978 const int nr_frags = skb_shinfo(skb)->nr_frags; 1979 struct net_device *net_dev = priv->net_dev; 1980 struct dpaa_eth_swbp *swbp; 1981 struct qm_sg_entry *sgt; 1982 void *buff_start; 1983 skb_frag_t *frag; 1984 dma_addr_t addr; 1985 size_t frag_len; 1986 struct page *p; 1987 int i, j, err; 1988 1989 /* get a page to store the SGTable */ 1990 p = dev_alloc_pages(0); 1991 if (unlikely(!p)) { 1992 netdev_err(net_dev, "dev_alloc_pages() failed\n"); 1993 return -ENOMEM; 1994 } 1995 buff_start = page_address(p); 1996 1997 /* Enable L3/L4 hardware checksum computation. 1998 * 1999 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may 2000 * need to write into the skb. 2001 */ 2002 err = dpaa_enable_tx_csum(priv, skb, fd, 2003 buff_start + DPAA_TX_PRIV_DATA_SIZE); 2004 if (unlikely(err < 0)) { 2005 if (net_ratelimit()) 2006 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n", 2007 err); 2008 goto csum_failed; 2009 } 2010 2011 /* SGT[0] is used by the linear part */ 2012 sgt = (struct qm_sg_entry *)(buff_start + priv->tx_headroom); 2013 frag_len = skb_headlen(skb); 2014 qm_sg_entry_set_len(&sgt[0], frag_len); 2015 sgt[0].bpid = FSL_DPAA_BPID_INV; 2016 sgt[0].offset = 0; 2017 addr = dma_map_single(priv->tx_dma_dev, skb->data, 2018 skb_headlen(skb), dma_dir); 2019 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2020 netdev_err(priv->net_dev, "DMA mapping failed\n"); 2021 err = -EINVAL; 2022 goto sg0_map_failed; 2023 } 2024 qm_sg_entry_set64(&sgt[0], addr); 2025 2026 /* populate the rest of SGT entries */ 2027 for (i = 0; i < nr_frags; i++) { 2028 frag = &skb_shinfo(skb)->frags[i]; 2029 frag_len = skb_frag_size(frag); 2030 WARN_ON(!skb_frag_page(frag)); 2031 addr = skb_frag_dma_map(priv->tx_dma_dev, frag, 0, 2032 frag_len, dma_dir); 2033 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2034 netdev_err(priv->net_dev, "DMA mapping failed\n"); 2035 err = -EINVAL; 2036 goto sg_map_failed; 2037 } 2038 2039 qm_sg_entry_set_len(&sgt[i + 1], frag_len); 2040 sgt[i + 1].bpid = FSL_DPAA_BPID_INV; 2041 sgt[i + 1].offset = 0; 2042 2043 /* keep the offset in the address */ 2044 qm_sg_entry_set64(&sgt[i + 1], addr); 2045 } 2046 2047 /* Set the final bit in the last used entry of the SGT */ 2048 qm_sg_entry_set_f(&sgt[nr_frags], frag_len); 2049 2050 /* set fd offset to priv->tx_headroom */ 2051 qm_fd_set_sg(fd, priv->tx_headroom, skb->len); 2052 2053 /* DMA map the SGT page */ 2054 swbp = (struct dpaa_eth_swbp *)buff_start; 2055 swbp->skb = skb; 2056 2057 addr = dma_map_page(priv->tx_dma_dev, p, 0, 2058 priv->tx_headroom + DPAA_SGT_SIZE, dma_dir); 2059 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2060 netdev_err(priv->net_dev, "DMA mapping failed\n"); 2061 err = -EINVAL; 2062 goto sgt_map_failed; 2063 } 2064 2065 fd->bpid = FSL_DPAA_BPID_INV; 2066 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO); 2067 qm_fd_addr_set64(fd, addr); 2068 2069 return 0; 2070 2071 sgt_map_failed: 2072 sg_map_failed: 2073 for (j = 0; j < i; j++) 2074 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[j]), 2075 qm_sg_entry_get_len(&sgt[j]), dma_dir); 2076 sg0_map_failed: 2077 csum_failed: 2078 free_pages((unsigned long)buff_start, 0); 2079 2080 return err; 2081 } 2082 2083 static inline int dpaa_xmit(struct dpaa_priv *priv, 2084 struct rtnl_link_stats64 *percpu_stats, 2085 int queue, 2086 struct qm_fd *fd) 2087 { 2088 struct qman_fq *egress_fq; 2089 int err, i; 2090 2091 egress_fq = priv->egress_fqs[queue]; 2092 if (fd->bpid == FSL_DPAA_BPID_INV) 2093 fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue])); 2094 2095 /* Trace this Tx fd */ 2096 trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd); 2097 2098 for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) { 2099 err = qman_enqueue(egress_fq, fd); 2100 if (err != -EBUSY) 2101 break; 2102 } 2103 2104 if (unlikely(err < 0)) { 2105 percpu_stats->tx_fifo_errors++; 2106 return err; 2107 } 2108 2109 percpu_stats->tx_packets++; 2110 percpu_stats->tx_bytes += qm_fd_get_length(fd); 2111 2112 return 0; 2113 } 2114 2115 #ifdef CONFIG_DPAA_ERRATUM_A050385 2116 static int dpaa_a050385_wa_skb(struct net_device *net_dev, struct sk_buff **s) 2117 { 2118 struct dpaa_priv *priv = netdev_priv(net_dev); 2119 struct sk_buff *new_skb, *skb = *s; 2120 unsigned char *start, i; 2121 2122 /* check linear buffer alignment */ 2123 if (!PTR_IS_ALIGNED(skb->data, DPAA_A050385_ALIGN)) 2124 goto workaround; 2125 2126 /* linear buffers just need to have an aligned start */ 2127 if (!skb_is_nonlinear(skb)) 2128 return 0; 2129 2130 /* linear data size for nonlinear skbs needs to be aligned */ 2131 if (!IS_ALIGNED(skb_headlen(skb), DPAA_A050385_ALIGN)) 2132 goto workaround; 2133 2134 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2135 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2136 2137 /* all fragments need to have aligned start addresses */ 2138 if (!IS_ALIGNED(skb_frag_off(frag), DPAA_A050385_ALIGN)) 2139 goto workaround; 2140 2141 /* all but last fragment need to have aligned sizes */ 2142 if (!IS_ALIGNED(skb_frag_size(frag), DPAA_A050385_ALIGN) && 2143 (i < skb_shinfo(skb)->nr_frags - 1)) 2144 goto workaround; 2145 } 2146 2147 return 0; 2148 2149 workaround: 2150 /* copy all the skb content into a new linear buffer */ 2151 new_skb = netdev_alloc_skb(net_dev, skb->len + DPAA_A050385_ALIGN - 1 + 2152 priv->tx_headroom); 2153 if (!new_skb) 2154 return -ENOMEM; 2155 2156 /* NET_SKB_PAD bytes already reserved, adding up to tx_headroom */ 2157 skb_reserve(new_skb, priv->tx_headroom - NET_SKB_PAD); 2158 2159 /* Workaround for DPAA_A050385 requires data start to be aligned */ 2160 start = PTR_ALIGN(new_skb->data, DPAA_A050385_ALIGN); 2161 if (start - new_skb->data) 2162 skb_reserve(new_skb, start - new_skb->data); 2163 2164 skb_put(new_skb, skb->len); 2165 skb_copy_bits(skb, 0, new_skb->data, skb->len); 2166 skb_copy_header(new_skb, skb); 2167 new_skb->dev = skb->dev; 2168 2169 /* Copy relevant timestamp info from the old skb to the new */ 2170 if (priv->tx_tstamp) { 2171 skb_shinfo(new_skb)->tx_flags = skb_shinfo(skb)->tx_flags; 2172 skb_shinfo(new_skb)->hwtstamps = skb_shinfo(skb)->hwtstamps; 2173 skb_shinfo(new_skb)->tskey = skb_shinfo(skb)->tskey; 2174 if (skb->sk) 2175 skb_set_owner_w(new_skb, skb->sk); 2176 } 2177 2178 /* We move the headroom when we align it so we have to reset the 2179 * network and transport header offsets relative to the new data 2180 * pointer. The checksum offload relies on these offsets. 2181 */ 2182 skb_set_network_header(new_skb, skb_network_offset(skb)); 2183 skb_set_transport_header(new_skb, skb_transport_offset(skb)); 2184 2185 dev_kfree_skb(skb); 2186 *s = new_skb; 2187 2188 return 0; 2189 } 2190 2191 static int dpaa_a050385_wa_xdpf(struct dpaa_priv *priv, 2192 struct xdp_frame **init_xdpf) 2193 { 2194 struct xdp_frame *new_xdpf, *xdpf = *init_xdpf; 2195 void *new_buff, *aligned_data; 2196 struct page *p; 2197 u32 data_shift; 2198 int headroom; 2199 2200 /* Check the data alignment and make sure the headroom is large 2201 * enough to store the xdpf backpointer. Use an aligned headroom 2202 * value. 2203 * 2204 * Due to alignment constraints, we give XDP access to the full 256 2205 * byte frame headroom. If the XDP program uses all of it, copy the 2206 * data to a new buffer and make room for storing the backpointer. 2207 */ 2208 if (PTR_IS_ALIGNED(xdpf->data, DPAA_FD_DATA_ALIGNMENT) && 2209 xdpf->headroom >= priv->tx_headroom) { 2210 xdpf->headroom = priv->tx_headroom; 2211 return 0; 2212 } 2213 2214 /* Try to move the data inside the buffer just enough to align it and 2215 * store the xdpf backpointer. If the available headroom isn't large 2216 * enough, resort to allocating a new buffer and copying the data. 2217 */ 2218 aligned_data = PTR_ALIGN_DOWN(xdpf->data, DPAA_FD_DATA_ALIGNMENT); 2219 data_shift = xdpf->data - aligned_data; 2220 2221 /* The XDP frame's headroom needs to be large enough to accommodate 2222 * shifting the data as well as storing the xdpf backpointer. 2223 */ 2224 if (xdpf->headroom >= data_shift + priv->tx_headroom) { 2225 memmove(aligned_data, xdpf->data, xdpf->len); 2226 xdpf->data = aligned_data; 2227 xdpf->headroom = priv->tx_headroom; 2228 return 0; 2229 } 2230 2231 /* The new xdp_frame is stored in the new buffer. Reserve enough space 2232 * in the headroom for storing it along with the driver's private 2233 * info. The headroom needs to be aligned to DPAA_FD_DATA_ALIGNMENT to 2234 * guarantee the data's alignment in the buffer. 2235 */ 2236 headroom = ALIGN(sizeof(*new_xdpf) + priv->tx_headroom, 2237 DPAA_FD_DATA_ALIGNMENT); 2238 2239 /* Assure the extended headroom and data don't overflow the buffer, 2240 * while maintaining the mandatory tailroom. 2241 */ 2242 if (headroom + xdpf->len > DPAA_BP_RAW_SIZE - 2243 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 2244 return -ENOMEM; 2245 2246 p = dev_alloc_pages(0); 2247 if (unlikely(!p)) 2248 return -ENOMEM; 2249 2250 /* Copy the data to the new buffer at a properly aligned offset */ 2251 new_buff = page_address(p); 2252 memcpy(new_buff + headroom, xdpf->data, xdpf->len); 2253 2254 /* Create an XDP frame around the new buffer in a similar fashion 2255 * to xdp_convert_buff_to_frame. 2256 */ 2257 new_xdpf = new_buff; 2258 new_xdpf->data = new_buff + headroom; 2259 new_xdpf->len = xdpf->len; 2260 new_xdpf->headroom = priv->tx_headroom; 2261 new_xdpf->frame_sz = DPAA_BP_RAW_SIZE; 2262 new_xdpf->mem.type = MEM_TYPE_PAGE_ORDER0; 2263 2264 /* Release the initial buffer */ 2265 xdp_return_frame_rx_napi(xdpf); 2266 2267 *init_xdpf = new_xdpf; 2268 return 0; 2269 } 2270 #endif 2271 2272 static netdev_tx_t 2273 dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev) 2274 { 2275 const int queue_mapping = skb_get_queue_mapping(skb); 2276 bool nonlinear = skb_is_nonlinear(skb); 2277 struct rtnl_link_stats64 *percpu_stats; 2278 struct dpaa_percpu_priv *percpu_priv; 2279 struct netdev_queue *txq; 2280 struct dpaa_priv *priv; 2281 struct qm_fd fd; 2282 int offset = 0; 2283 int err = 0; 2284 2285 priv = netdev_priv(net_dev); 2286 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2287 percpu_stats = &percpu_priv->stats; 2288 2289 qm_fd_clear_fd(&fd); 2290 2291 if (!nonlinear) { 2292 /* We're going to store the skb backpointer at the beginning 2293 * of the data buffer, so we need a privately owned skb 2294 * 2295 * We've made sure skb is not shared in dev->priv_flags, 2296 * we need to verify the skb head is not cloned 2297 */ 2298 if (skb_cow_head(skb, priv->tx_headroom)) 2299 goto enomem; 2300 2301 WARN_ON(skb_is_nonlinear(skb)); 2302 } 2303 2304 /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES; 2305 * make sure we don't feed FMan with more fragments than it supports. 2306 */ 2307 if (unlikely(nonlinear && 2308 (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) { 2309 /* If the egress skb contains more fragments than we support 2310 * we have no choice but to linearize it ourselves. 2311 */ 2312 if (__skb_linearize(skb)) 2313 goto enomem; 2314 2315 nonlinear = skb_is_nonlinear(skb); 2316 } 2317 2318 #ifdef CONFIG_DPAA_ERRATUM_A050385 2319 if (unlikely(fman_has_errata_a050385())) { 2320 if (dpaa_a050385_wa_skb(net_dev, &skb)) 2321 goto enomem; 2322 nonlinear = skb_is_nonlinear(skb); 2323 } 2324 #endif 2325 2326 if (nonlinear) { 2327 /* Just create a S/G fd based on the skb */ 2328 err = skb_to_sg_fd(priv, skb, &fd); 2329 percpu_priv->tx_frag_skbuffs++; 2330 } else { 2331 /* Create a contig FD from this skb */ 2332 err = skb_to_contig_fd(priv, skb, &fd, &offset); 2333 } 2334 if (unlikely(err < 0)) 2335 goto skb_to_fd_failed; 2336 2337 txq = netdev_get_tx_queue(net_dev, queue_mapping); 2338 2339 /* LLTX requires to do our own update of trans_start */ 2340 txq_trans_cond_update(txq); 2341 2342 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { 2343 fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD); 2344 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2345 } 2346 2347 if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0)) 2348 return NETDEV_TX_OK; 2349 2350 dpaa_cleanup_tx_fd(priv, &fd, false); 2351 skb_to_fd_failed: 2352 enomem: 2353 percpu_stats->tx_errors++; 2354 dev_kfree_skb(skb); 2355 return NETDEV_TX_OK; 2356 } 2357 2358 static void dpaa_rx_error(struct net_device *net_dev, 2359 const struct dpaa_priv *priv, 2360 struct dpaa_percpu_priv *percpu_priv, 2361 const struct qm_fd *fd, 2362 u32 fqid) 2363 { 2364 if (net_ratelimit()) 2365 netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n", 2366 be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS); 2367 2368 percpu_priv->stats.rx_errors++; 2369 2370 if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA) 2371 percpu_priv->rx_errors.dme++; 2372 if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL) 2373 percpu_priv->rx_errors.fpe++; 2374 if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE) 2375 percpu_priv->rx_errors.fse++; 2376 if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR) 2377 percpu_priv->rx_errors.phe++; 2378 2379 dpaa_fd_release(net_dev, fd); 2380 } 2381 2382 static void dpaa_tx_error(struct net_device *net_dev, 2383 const struct dpaa_priv *priv, 2384 struct dpaa_percpu_priv *percpu_priv, 2385 const struct qm_fd *fd, 2386 u32 fqid) 2387 { 2388 struct sk_buff *skb; 2389 2390 if (net_ratelimit()) 2391 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", 2392 be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS); 2393 2394 percpu_priv->stats.tx_errors++; 2395 2396 skb = dpaa_cleanup_tx_fd(priv, fd, false); 2397 dev_kfree_skb(skb); 2398 } 2399 2400 static int dpaa_eth_poll(struct napi_struct *napi, int budget) 2401 { 2402 struct dpaa_napi_portal *np = 2403 container_of(napi, struct dpaa_napi_portal, napi); 2404 int cleaned; 2405 2406 np->xdp_act = 0; 2407 2408 cleaned = qman_p_poll_dqrr(np->p, budget); 2409 2410 if (np->xdp_act & XDP_REDIRECT) 2411 xdp_do_flush(); 2412 2413 if (cleaned < budget) { 2414 napi_complete_done(napi, cleaned); 2415 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); 2416 } else if (np->down) { 2417 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); 2418 } 2419 2420 return cleaned; 2421 } 2422 2423 static void dpaa_tx_conf(struct net_device *net_dev, 2424 const struct dpaa_priv *priv, 2425 struct dpaa_percpu_priv *percpu_priv, 2426 const struct qm_fd *fd, 2427 u32 fqid) 2428 { 2429 struct sk_buff *skb; 2430 2431 if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) { 2432 if (net_ratelimit()) 2433 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", 2434 be32_to_cpu(fd->status) & 2435 FM_FD_STAT_TX_ERRORS); 2436 2437 percpu_priv->stats.tx_errors++; 2438 } 2439 2440 percpu_priv->tx_confirm++; 2441 2442 skb = dpaa_cleanup_tx_fd(priv, fd, true); 2443 2444 consume_skb(skb); 2445 } 2446 2447 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv, 2448 struct qman_portal *portal, bool sched_napi) 2449 { 2450 if (sched_napi) { 2451 /* Disable QMan IRQ and invoke NAPI */ 2452 qman_p_irqsource_remove(portal, QM_PIRQ_DQRI); 2453 2454 percpu_priv->np.p = portal; 2455 napi_schedule(&percpu_priv->np.napi); 2456 percpu_priv->in_interrupt++; 2457 return 1; 2458 } 2459 return 0; 2460 } 2461 2462 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal, 2463 struct qman_fq *fq, 2464 const struct qm_dqrr_entry *dq, 2465 bool sched_napi) 2466 { 2467 struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); 2468 struct dpaa_percpu_priv *percpu_priv; 2469 struct net_device *net_dev; 2470 struct dpaa_bp *dpaa_bp; 2471 struct dpaa_priv *priv; 2472 2473 net_dev = dpaa_fq->net_dev; 2474 priv = netdev_priv(net_dev); 2475 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid); 2476 if (!dpaa_bp) 2477 return qman_cb_dqrr_consume; 2478 2479 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2480 2481 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)) 2482 return qman_cb_dqrr_stop; 2483 2484 dpaa_eth_refill_bpools(priv); 2485 dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); 2486 2487 return qman_cb_dqrr_consume; 2488 } 2489 2490 static int dpaa_xdp_xmit_frame(struct net_device *net_dev, 2491 struct xdp_frame *xdpf) 2492 { 2493 struct dpaa_priv *priv = netdev_priv(net_dev); 2494 struct rtnl_link_stats64 *percpu_stats; 2495 struct dpaa_percpu_priv *percpu_priv; 2496 struct dpaa_eth_swbp *swbp; 2497 struct netdev_queue *txq; 2498 void *buff_start; 2499 struct qm_fd fd; 2500 dma_addr_t addr; 2501 int err; 2502 2503 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2504 percpu_stats = &percpu_priv->stats; 2505 2506 #ifdef CONFIG_DPAA_ERRATUM_A050385 2507 if (unlikely(fman_has_errata_a050385())) { 2508 if (dpaa_a050385_wa_xdpf(priv, &xdpf)) { 2509 err = -ENOMEM; 2510 goto out_error; 2511 } 2512 } 2513 #endif 2514 2515 if (xdpf->headroom < DPAA_TX_PRIV_DATA_SIZE) { 2516 err = -EINVAL; 2517 goto out_error; 2518 } 2519 2520 buff_start = xdpf->data - xdpf->headroom; 2521 2522 /* Leave empty the skb backpointer at the start of the buffer. 2523 * Save the XDP frame for easy cleanup on confirmation. 2524 */ 2525 swbp = (struct dpaa_eth_swbp *)buff_start; 2526 swbp->skb = NULL; 2527 swbp->xdpf = xdpf; 2528 2529 qm_fd_clear_fd(&fd); 2530 fd.bpid = FSL_DPAA_BPID_INV; 2531 fd.cmd |= cpu_to_be32(FM_FD_CMD_FCO); 2532 qm_fd_set_contig(&fd, xdpf->headroom, xdpf->len); 2533 2534 addr = dma_map_single(priv->tx_dma_dev, buff_start, 2535 xdpf->headroom + xdpf->len, 2536 DMA_TO_DEVICE); 2537 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2538 err = -EINVAL; 2539 goto out_error; 2540 } 2541 2542 qm_fd_addr_set64(&fd, addr); 2543 2544 /* Bump the trans_start */ 2545 txq = netdev_get_tx_queue(net_dev, smp_processor_id()); 2546 txq_trans_cond_update(txq); 2547 2548 err = dpaa_xmit(priv, percpu_stats, smp_processor_id(), &fd); 2549 if (err) { 2550 dma_unmap_single(priv->tx_dma_dev, addr, 2551 qm_fd_get_offset(&fd) + qm_fd_get_length(&fd), 2552 DMA_TO_DEVICE); 2553 goto out_error; 2554 } 2555 2556 return 0; 2557 2558 out_error: 2559 percpu_stats->tx_errors++; 2560 return err; 2561 } 2562 2563 static u32 dpaa_run_xdp(struct dpaa_priv *priv, struct qm_fd *fd, void *vaddr, 2564 struct dpaa_fq *dpaa_fq, unsigned int *xdp_meta_len) 2565 { 2566 ssize_t fd_off = qm_fd_get_offset(fd); 2567 struct bpf_prog *xdp_prog; 2568 struct xdp_frame *xdpf; 2569 struct xdp_buff xdp; 2570 u32 xdp_act; 2571 int err; 2572 2573 xdp_prog = READ_ONCE(priv->xdp_prog); 2574 if (!xdp_prog) 2575 return XDP_PASS; 2576 2577 xdp_init_buff(&xdp, DPAA_BP_RAW_SIZE - DPAA_TX_PRIV_DATA_SIZE, 2578 &dpaa_fq->xdp_rxq); 2579 xdp_prepare_buff(&xdp, vaddr + fd_off - XDP_PACKET_HEADROOM, 2580 XDP_PACKET_HEADROOM, qm_fd_get_length(fd), true); 2581 2582 /* We reserve a fixed headroom of 256 bytes under the erratum and we 2583 * offer it all to XDP programs to use. If no room is left for the 2584 * xdpf backpointer on TX, we will need to copy the data. 2585 * Disable metadata support since data realignments might be required 2586 * and the information can be lost. 2587 */ 2588 #ifdef CONFIG_DPAA_ERRATUM_A050385 2589 if (unlikely(fman_has_errata_a050385())) { 2590 xdp_set_data_meta_invalid(&xdp); 2591 xdp.data_hard_start = vaddr; 2592 xdp.frame_sz = DPAA_BP_RAW_SIZE; 2593 } 2594 #endif 2595 2596 xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp); 2597 2598 /* Update the length and the offset of the FD */ 2599 qm_fd_set_contig(fd, xdp.data - vaddr, xdp.data_end - xdp.data); 2600 2601 switch (xdp_act) { 2602 case XDP_PASS: 2603 #ifdef CONFIG_DPAA_ERRATUM_A050385 2604 *xdp_meta_len = xdp_data_meta_unsupported(&xdp) ? 0 : 2605 xdp.data - xdp.data_meta; 2606 #else 2607 *xdp_meta_len = xdp.data - xdp.data_meta; 2608 #endif 2609 break; 2610 case XDP_TX: 2611 /* We can access the full headroom when sending the frame 2612 * back out 2613 */ 2614 xdp.data_hard_start = vaddr; 2615 xdp.frame_sz = DPAA_BP_RAW_SIZE; 2616 xdpf = xdp_convert_buff_to_frame(&xdp); 2617 if (unlikely(!xdpf)) { 2618 free_pages((unsigned long)vaddr, 0); 2619 break; 2620 } 2621 2622 if (dpaa_xdp_xmit_frame(priv->net_dev, xdpf)) 2623 xdp_return_frame_rx_napi(xdpf); 2624 2625 break; 2626 case XDP_REDIRECT: 2627 /* Allow redirect to use the full headroom */ 2628 xdp.data_hard_start = vaddr; 2629 xdp.frame_sz = DPAA_BP_RAW_SIZE; 2630 2631 err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog); 2632 if (err) { 2633 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 2634 free_pages((unsigned long)vaddr, 0); 2635 } 2636 break; 2637 default: 2638 bpf_warn_invalid_xdp_action(priv->net_dev, xdp_prog, xdp_act); 2639 fallthrough; 2640 case XDP_ABORTED: 2641 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 2642 fallthrough; 2643 case XDP_DROP: 2644 /* Free the buffer */ 2645 free_pages((unsigned long)vaddr, 0); 2646 break; 2647 } 2648 2649 return xdp_act; 2650 } 2651 2652 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal, 2653 struct qman_fq *fq, 2654 const struct qm_dqrr_entry *dq, 2655 bool sched_napi) 2656 { 2657 bool ts_valid = false, hash_valid = false; 2658 struct skb_shared_hwtstamps *shhwtstamps; 2659 unsigned int skb_len, xdp_meta_len = 0; 2660 struct rtnl_link_stats64 *percpu_stats; 2661 struct dpaa_percpu_priv *percpu_priv; 2662 const struct qm_fd *fd = &dq->fd; 2663 dma_addr_t addr = qm_fd_addr(fd); 2664 struct dpaa_napi_portal *np; 2665 enum qm_fd_format fd_format; 2666 struct net_device *net_dev; 2667 u32 fd_status, hash_offset; 2668 struct qm_sg_entry *sgt; 2669 struct dpaa_bp *dpaa_bp; 2670 struct dpaa_fq *dpaa_fq; 2671 struct dpaa_priv *priv; 2672 struct sk_buff *skb; 2673 int *count_ptr; 2674 u32 xdp_act; 2675 void *vaddr; 2676 u32 hash; 2677 u64 ns; 2678 2679 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); 2680 fd_status = be32_to_cpu(fd->status); 2681 fd_format = qm_fd_get_format(fd); 2682 net_dev = dpaa_fq->net_dev; 2683 priv = netdev_priv(net_dev); 2684 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid); 2685 if (!dpaa_bp) 2686 return qman_cb_dqrr_consume; 2687 2688 /* Trace the Rx fd */ 2689 trace_dpaa_rx_fd(net_dev, fq, &dq->fd); 2690 2691 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2692 percpu_stats = &percpu_priv->stats; 2693 np = &percpu_priv->np; 2694 2695 if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))) 2696 return qman_cb_dqrr_stop; 2697 2698 /* Make sure we didn't run out of buffers */ 2699 if (unlikely(dpaa_eth_refill_bpools(priv))) { 2700 /* Unable to refill the buffer pool due to insufficient 2701 * system memory. Just release the frame back into the pool, 2702 * otherwise we'll soon end up with an empty buffer pool. 2703 */ 2704 dpaa_fd_release(net_dev, &dq->fd); 2705 return qman_cb_dqrr_consume; 2706 } 2707 2708 if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) { 2709 if (net_ratelimit()) 2710 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", 2711 fd_status & FM_FD_STAT_RX_ERRORS); 2712 2713 percpu_stats->rx_errors++; 2714 dpaa_fd_release(net_dev, fd); 2715 return qman_cb_dqrr_consume; 2716 } 2717 2718 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE, 2719 DMA_FROM_DEVICE); 2720 2721 /* prefetch the first 64 bytes of the frame or the SGT start */ 2722 vaddr = phys_to_virt(addr); 2723 prefetch(vaddr + qm_fd_get_offset(fd)); 2724 2725 /* The only FD types that we may receive are contig and S/G */ 2726 WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg)); 2727 2728 /* Account for either the contig buffer or the SGT buffer (depending on 2729 * which case we were in) having been removed from the pool. 2730 */ 2731 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); 2732 (*count_ptr)--; 2733 2734 /* Extract the timestamp stored in the headroom before running XDP */ 2735 if (priv->rx_tstamp) { 2736 if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns)) 2737 ts_valid = true; 2738 else 2739 WARN_ONCE(1, "fman_port_get_tstamp failed!\n"); 2740 } 2741 2742 /* Extract the hash stored in the headroom before running XDP */ 2743 if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use && 2744 !fman_port_get_hash_result_offset(priv->mac_dev->port[RX], 2745 &hash_offset)) { 2746 hash = be32_to_cpu(*(u32 *)(vaddr + hash_offset)); 2747 hash_valid = true; 2748 } 2749 2750 if (likely(fd_format == qm_fd_contig)) { 2751 xdp_act = dpaa_run_xdp(priv, (struct qm_fd *)fd, vaddr, 2752 dpaa_fq, &xdp_meta_len); 2753 np->xdp_act |= xdp_act; 2754 if (xdp_act != XDP_PASS) { 2755 percpu_stats->rx_packets++; 2756 percpu_stats->rx_bytes += qm_fd_get_length(fd); 2757 return qman_cb_dqrr_consume; 2758 } 2759 skb = contig_fd_to_skb(priv, fd); 2760 } else { 2761 /* XDP doesn't support S/G frames. Return the fragments to the 2762 * buffer pool and release the SGT. 2763 */ 2764 if (READ_ONCE(priv->xdp_prog)) { 2765 WARN_ONCE(1, "S/G frames not supported under XDP\n"); 2766 sgt = vaddr + qm_fd_get_offset(fd); 2767 dpaa_release_sgt_members(sgt); 2768 free_pages((unsigned long)vaddr, 0); 2769 return qman_cb_dqrr_consume; 2770 } 2771 skb = sg_fd_to_skb(priv, fd); 2772 } 2773 if (!skb) 2774 return qman_cb_dqrr_consume; 2775 2776 if (xdp_meta_len) 2777 skb_metadata_set(skb, xdp_meta_len); 2778 2779 /* Set the previously extracted timestamp */ 2780 if (ts_valid) { 2781 shhwtstamps = skb_hwtstamps(skb); 2782 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2783 shhwtstamps->hwtstamp = ns_to_ktime(ns); 2784 } 2785 2786 skb->protocol = eth_type_trans(skb, net_dev); 2787 2788 /* Set the previously extracted hash */ 2789 if (hash_valid) { 2790 enum pkt_hash_types type; 2791 2792 /* if L4 exists, it was used in the hash generation */ 2793 type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ? 2794 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3; 2795 skb_set_hash(skb, hash, type); 2796 } 2797 2798 skb_len = skb->len; 2799 2800 if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) { 2801 percpu_stats->rx_dropped++; 2802 return qman_cb_dqrr_consume; 2803 } 2804 2805 percpu_stats->rx_packets++; 2806 percpu_stats->rx_bytes += skb_len; 2807 2808 return qman_cb_dqrr_consume; 2809 } 2810 2811 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal, 2812 struct qman_fq *fq, 2813 const struct qm_dqrr_entry *dq, 2814 bool sched_napi) 2815 { 2816 struct dpaa_percpu_priv *percpu_priv; 2817 struct net_device *net_dev; 2818 struct dpaa_priv *priv; 2819 2820 net_dev = ((struct dpaa_fq *)fq)->net_dev; 2821 priv = netdev_priv(net_dev); 2822 2823 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2824 2825 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)) 2826 return qman_cb_dqrr_stop; 2827 2828 dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); 2829 2830 return qman_cb_dqrr_consume; 2831 } 2832 2833 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal, 2834 struct qman_fq *fq, 2835 const struct qm_dqrr_entry *dq, 2836 bool sched_napi) 2837 { 2838 struct dpaa_percpu_priv *percpu_priv; 2839 struct net_device *net_dev; 2840 struct dpaa_priv *priv; 2841 2842 net_dev = ((struct dpaa_fq *)fq)->net_dev; 2843 priv = netdev_priv(net_dev); 2844 2845 /* Trace the fd */ 2846 trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd); 2847 2848 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2849 2850 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)) 2851 return qman_cb_dqrr_stop; 2852 2853 dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); 2854 2855 return qman_cb_dqrr_consume; 2856 } 2857 2858 static void egress_ern(struct qman_portal *portal, 2859 struct qman_fq *fq, 2860 const union qm_mr_entry *msg) 2861 { 2862 const struct qm_fd *fd = &msg->ern.fd; 2863 struct dpaa_percpu_priv *percpu_priv; 2864 const struct dpaa_priv *priv; 2865 struct net_device *net_dev; 2866 struct sk_buff *skb; 2867 2868 net_dev = ((struct dpaa_fq *)fq)->net_dev; 2869 priv = netdev_priv(net_dev); 2870 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2871 2872 percpu_priv->stats.tx_dropped++; 2873 percpu_priv->stats.tx_fifo_errors++; 2874 count_ern(percpu_priv, msg); 2875 2876 skb = dpaa_cleanup_tx_fd(priv, fd, false); 2877 dev_kfree_skb_any(skb); 2878 } 2879 2880 static const struct dpaa_fq_cbs dpaa_fq_cbs = { 2881 .rx_defq = { .cb = { .dqrr = rx_default_dqrr } }, 2882 .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } }, 2883 .rx_errq = { .cb = { .dqrr = rx_error_dqrr } }, 2884 .tx_errq = { .cb = { .dqrr = conf_error_dqrr } }, 2885 .egress_ern = { .cb = { .ern = egress_ern } } 2886 }; 2887 2888 static void dpaa_eth_napi_enable(struct dpaa_priv *priv) 2889 { 2890 struct dpaa_percpu_priv *percpu_priv; 2891 int i; 2892 2893 for_each_online_cpu(i) { 2894 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 2895 2896 percpu_priv->np.down = false; 2897 napi_enable(&percpu_priv->np.napi); 2898 } 2899 } 2900 2901 static void dpaa_eth_napi_disable(struct dpaa_priv *priv) 2902 { 2903 struct dpaa_percpu_priv *percpu_priv; 2904 int i; 2905 2906 for_each_online_cpu(i) { 2907 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 2908 2909 percpu_priv->np.down = true; 2910 napi_disable(&percpu_priv->np.napi); 2911 } 2912 } 2913 2914 static int dpaa_open(struct net_device *net_dev) 2915 { 2916 struct mac_device *mac_dev; 2917 struct dpaa_priv *priv; 2918 int err, i; 2919 2920 priv = netdev_priv(net_dev); 2921 mac_dev = priv->mac_dev; 2922 dpaa_eth_napi_enable(priv); 2923 2924 err = phylink_of_phy_connect(mac_dev->phylink, 2925 mac_dev->dev->of_node, 0); 2926 if (err) 2927 goto phy_init_failed; 2928 2929 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) { 2930 err = fman_port_enable(mac_dev->port[i]); 2931 if (err) 2932 goto mac_start_failed; 2933 } 2934 2935 err = priv->mac_dev->enable(mac_dev->fman_mac); 2936 if (err < 0) { 2937 netif_err(priv, ifup, net_dev, "mac_dev->enable() = %d\n", err); 2938 goto mac_start_failed; 2939 } 2940 phylink_start(mac_dev->phylink); 2941 2942 netif_tx_start_all_queues(net_dev); 2943 2944 return 0; 2945 2946 mac_start_failed: 2947 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) 2948 fman_port_disable(mac_dev->port[i]); 2949 phylink_disconnect_phy(mac_dev->phylink); 2950 2951 phy_init_failed: 2952 dpaa_eth_napi_disable(priv); 2953 2954 return err; 2955 } 2956 2957 static int dpaa_eth_stop(struct net_device *net_dev) 2958 { 2959 struct dpaa_priv *priv; 2960 int err; 2961 2962 err = dpaa_stop(net_dev); 2963 2964 priv = netdev_priv(net_dev); 2965 dpaa_eth_napi_disable(priv); 2966 2967 return err; 2968 } 2969 2970 static bool xdp_validate_mtu(struct dpaa_priv *priv, int mtu) 2971 { 2972 int max_contig_data = priv->dpaa_bp->size - priv->rx_headroom; 2973 2974 /* We do not support S/G fragments when XDP is enabled. 2975 * Limit the MTU in relation to the buffer size. 2976 */ 2977 if (mtu + VLAN_ETH_HLEN + ETH_FCS_LEN > max_contig_data) { 2978 dev_warn(priv->net_dev->dev.parent, 2979 "The maximum MTU for XDP is %d\n", 2980 max_contig_data - VLAN_ETH_HLEN - ETH_FCS_LEN); 2981 return false; 2982 } 2983 2984 return true; 2985 } 2986 2987 static int dpaa_change_mtu(struct net_device *net_dev, int new_mtu) 2988 { 2989 struct dpaa_priv *priv = netdev_priv(net_dev); 2990 2991 if (priv->xdp_prog && !xdp_validate_mtu(priv, new_mtu)) 2992 return -EINVAL; 2993 2994 WRITE_ONCE(net_dev->mtu, new_mtu); 2995 return 0; 2996 } 2997 2998 static int dpaa_setup_xdp(struct net_device *net_dev, struct netdev_bpf *bpf) 2999 { 3000 struct dpaa_priv *priv = netdev_priv(net_dev); 3001 struct bpf_prog *old_prog; 3002 int err; 3003 bool up; 3004 3005 /* S/G fragments are not supported in XDP-mode */ 3006 if (bpf->prog && !xdp_validate_mtu(priv, net_dev->mtu)) { 3007 NL_SET_ERR_MSG_MOD(bpf->extack, "MTU too large for XDP"); 3008 return -EINVAL; 3009 } 3010 3011 up = netif_running(net_dev); 3012 3013 if (up) 3014 dpaa_eth_stop(net_dev); 3015 3016 old_prog = xchg(&priv->xdp_prog, bpf->prog); 3017 if (old_prog) 3018 bpf_prog_put(old_prog); 3019 3020 if (up) { 3021 err = dpaa_open(net_dev); 3022 if (err) { 3023 NL_SET_ERR_MSG_MOD(bpf->extack, "dpaa_open() failed"); 3024 return err; 3025 } 3026 } 3027 3028 return 0; 3029 } 3030 3031 static int dpaa_xdp(struct net_device *net_dev, struct netdev_bpf *xdp) 3032 { 3033 switch (xdp->command) { 3034 case XDP_SETUP_PROG: 3035 return dpaa_setup_xdp(net_dev, xdp); 3036 default: 3037 return -EINVAL; 3038 } 3039 } 3040 3041 static int dpaa_xdp_xmit(struct net_device *net_dev, int n, 3042 struct xdp_frame **frames, u32 flags) 3043 { 3044 struct xdp_frame *xdpf; 3045 int i, nxmit = 0; 3046 3047 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 3048 return -EINVAL; 3049 3050 if (!netif_running(net_dev)) 3051 return -ENETDOWN; 3052 3053 for (i = 0; i < n; i++) { 3054 xdpf = frames[i]; 3055 if (dpaa_xdp_xmit_frame(net_dev, xdpf)) 3056 break; 3057 nxmit++; 3058 } 3059 3060 return nxmit; 3061 } 3062 3063 static int dpaa_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 3064 { 3065 struct dpaa_priv *priv = netdev_priv(dev); 3066 struct hwtstamp_config config; 3067 3068 if (copy_from_user(&config, rq->ifr_data, sizeof(config))) 3069 return -EFAULT; 3070 3071 switch (config.tx_type) { 3072 case HWTSTAMP_TX_OFF: 3073 /* Couldn't disable rx/tx timestamping separately. 3074 * Do nothing here. 3075 */ 3076 priv->tx_tstamp = false; 3077 break; 3078 case HWTSTAMP_TX_ON: 3079 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true); 3080 priv->tx_tstamp = true; 3081 break; 3082 default: 3083 return -ERANGE; 3084 } 3085 3086 if (config.rx_filter == HWTSTAMP_FILTER_NONE) { 3087 /* Couldn't disable rx/tx timestamping separately. 3088 * Do nothing here. 3089 */ 3090 priv->rx_tstamp = false; 3091 } else { 3092 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true); 3093 priv->rx_tstamp = true; 3094 /* TS is set for all frame types, not only those requested */ 3095 config.rx_filter = HWTSTAMP_FILTER_ALL; 3096 } 3097 3098 return copy_to_user(rq->ifr_data, &config, sizeof(config)) ? 3099 -EFAULT : 0; 3100 } 3101 3102 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd) 3103 { 3104 int ret = -EINVAL; 3105 struct dpaa_priv *priv = netdev_priv(net_dev); 3106 3107 if (cmd == SIOCGMIIREG) { 3108 if (net_dev->phydev) 3109 return phylink_mii_ioctl(priv->mac_dev->phylink, rq, 3110 cmd); 3111 } 3112 3113 if (cmd == SIOCSHWTSTAMP) 3114 return dpaa_ts_ioctl(net_dev, rq, cmd); 3115 3116 return ret; 3117 } 3118 3119 static const struct net_device_ops dpaa_ops = { 3120 .ndo_open = dpaa_open, 3121 .ndo_start_xmit = dpaa_start_xmit, 3122 .ndo_stop = dpaa_eth_stop, 3123 .ndo_tx_timeout = dpaa_tx_timeout, 3124 .ndo_get_stats64 = dpaa_get_stats64, 3125 .ndo_change_carrier = fixed_phy_change_carrier, 3126 .ndo_set_mac_address = dpaa_set_mac_address, 3127 .ndo_validate_addr = eth_validate_addr, 3128 .ndo_set_rx_mode = dpaa_set_rx_mode, 3129 .ndo_eth_ioctl = dpaa_ioctl, 3130 .ndo_setup_tc = dpaa_setup_tc, 3131 .ndo_change_mtu = dpaa_change_mtu, 3132 .ndo_bpf = dpaa_xdp, 3133 .ndo_xdp_xmit = dpaa_xdp_xmit, 3134 }; 3135 3136 static int dpaa_napi_add(struct net_device *net_dev) 3137 { 3138 struct dpaa_priv *priv = netdev_priv(net_dev); 3139 struct dpaa_percpu_priv *percpu_priv; 3140 int cpu; 3141 3142 for_each_possible_cpu(cpu) { 3143 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu); 3144 3145 netif_napi_add(net_dev, &percpu_priv->np.napi, dpaa_eth_poll); 3146 } 3147 3148 return 0; 3149 } 3150 3151 static void dpaa_napi_del(struct net_device *net_dev) 3152 { 3153 struct dpaa_priv *priv = netdev_priv(net_dev); 3154 struct dpaa_percpu_priv *percpu_priv; 3155 int cpu; 3156 3157 for_each_possible_cpu(cpu) { 3158 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu); 3159 3160 __netif_napi_del(&percpu_priv->np.napi); 3161 } 3162 synchronize_net(); 3163 } 3164 3165 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp, 3166 struct bm_buffer *bmb) 3167 { 3168 dma_addr_t addr = bm_buf_addr(bmb); 3169 3170 dma_unmap_page(bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE, 3171 DMA_FROM_DEVICE); 3172 3173 skb_free_frag(phys_to_virt(addr)); 3174 } 3175 3176 /* Alloc the dpaa_bp struct and configure default values */ 3177 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev) 3178 { 3179 struct dpaa_bp *dpaa_bp; 3180 3181 dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL); 3182 if (!dpaa_bp) 3183 return ERR_PTR(-ENOMEM); 3184 3185 dpaa_bp->bpid = FSL_DPAA_BPID_INV; 3186 dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count); 3187 if (!dpaa_bp->percpu_count) 3188 return ERR_PTR(-ENOMEM); 3189 3190 dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT; 3191 3192 dpaa_bp->seed_cb = dpaa_bp_seed; 3193 dpaa_bp->free_buf_cb = dpaa_bp_free_pf; 3194 3195 return dpaa_bp; 3196 } 3197 3198 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR. 3199 * We won't be sending congestion notifications to FMan; for now, we just use 3200 * this CGR to generate enqueue rejections to FMan in order to drop the frames 3201 * before they reach our ingress queues and eat up memory. 3202 */ 3203 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv) 3204 { 3205 struct qm_mcc_initcgr initcgr; 3206 u32 cs_th; 3207 int err; 3208 3209 err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid); 3210 if (err < 0) { 3211 if (netif_msg_drv(priv)) 3212 pr_err("Error %d allocating CGR ID\n", err); 3213 goto out_error; 3214 } 3215 3216 /* Enable CS TD, but disable Congestion State Change Notifications. */ 3217 memset(&initcgr, 0, sizeof(initcgr)); 3218 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES); 3219 initcgr.cgr.cscn_en = QM_CGR_EN; 3220 cs_th = DPAA_INGRESS_CS_THRESHOLD; 3221 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1); 3222 3223 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN); 3224 initcgr.cgr.cstd_en = QM_CGR_EN; 3225 3226 /* This CGR will be associated with the SWP affined to the current CPU. 3227 * However, we'll place all our ingress FQs in it. 3228 */ 3229 err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT, 3230 &initcgr); 3231 if (err < 0) { 3232 if (netif_msg_drv(priv)) 3233 pr_err("Error %d creating ingress CGR with ID %d\n", 3234 err, priv->ingress_cgr.cgrid); 3235 qman_release_cgrid(priv->ingress_cgr.cgrid); 3236 goto out_error; 3237 } 3238 if (netif_msg_drv(priv)) 3239 pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n", 3240 priv->ingress_cgr.cgrid, priv->mac_dev->addr); 3241 3242 priv->use_ingress_cgr = true; 3243 3244 out_error: 3245 return err; 3246 } 3247 3248 static u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl, 3249 enum port_type port) 3250 { 3251 u16 headroom; 3252 3253 /* The frame headroom must accommodate: 3254 * - the driver private data area 3255 * - parse results, hash results, timestamp if selected 3256 * If either hash results or time stamp are selected, both will 3257 * be copied to/from the frame headroom, as TS is located between PR and 3258 * HR in the IC and IC copy size has a granularity of 16bytes 3259 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM) 3260 * 3261 * Also make sure the headroom is a multiple of data_align bytes 3262 */ 3263 headroom = (u16)(bl[port].priv_data_size + DPAA_HWA_SIZE); 3264 3265 if (port == RX) { 3266 #ifdef CONFIG_DPAA_ERRATUM_A050385 3267 if (unlikely(fman_has_errata_a050385())) 3268 headroom = XDP_PACKET_HEADROOM; 3269 #endif 3270 3271 return ALIGN(headroom, DPAA_FD_RX_DATA_ALIGNMENT); 3272 } else { 3273 return ALIGN(headroom, DPAA_FD_DATA_ALIGNMENT); 3274 } 3275 } 3276 3277 static int dpaa_eth_probe(struct platform_device *pdev) 3278 { 3279 struct net_device *net_dev = NULL; 3280 struct dpaa_bp *dpaa_bp = NULL; 3281 struct dpaa_fq *dpaa_fq, *tmp; 3282 struct dpaa_priv *priv = NULL; 3283 struct fm_port_fqs port_fqs; 3284 struct mac_device *mac_dev; 3285 int err = 0, channel; 3286 struct device *dev; 3287 3288 dev = &pdev->dev; 3289 3290 err = bman_is_probed(); 3291 if (!err) 3292 return -EPROBE_DEFER; 3293 if (err < 0) { 3294 dev_err(dev, "failing probe due to bman probe error\n"); 3295 return -ENODEV; 3296 } 3297 err = qman_is_probed(); 3298 if (!err) 3299 return -EPROBE_DEFER; 3300 if (err < 0) { 3301 dev_err(dev, "failing probe due to qman probe error\n"); 3302 return -ENODEV; 3303 } 3304 err = bman_portals_probed(); 3305 if (!err) 3306 return -EPROBE_DEFER; 3307 if (err < 0) { 3308 dev_err(dev, 3309 "failing probe due to bman portals probe error\n"); 3310 return -ENODEV; 3311 } 3312 err = qman_portals_probed(); 3313 if (!err) 3314 return -EPROBE_DEFER; 3315 if (err < 0) { 3316 dev_err(dev, 3317 "failing probe due to qman portals probe error\n"); 3318 return -ENODEV; 3319 } 3320 3321 /* Allocate this early, so we can store relevant information in 3322 * the private area 3323 */ 3324 net_dev = alloc_etherdev_mq(sizeof(*priv), dpaa_max_num_txqs()); 3325 if (!net_dev) { 3326 dev_err(dev, "alloc_etherdev_mq() failed\n"); 3327 return -ENOMEM; 3328 } 3329 3330 /* Do this here, so we can be verbose early */ 3331 SET_NETDEV_DEV(net_dev, dev->parent); 3332 dev_set_drvdata(dev, net_dev); 3333 3334 priv = netdev_priv(net_dev); 3335 priv->net_dev = net_dev; 3336 3337 priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT); 3338 3339 priv->egress_fqs = devm_kcalloc(dev, dpaa_max_num_txqs(), 3340 sizeof(*priv->egress_fqs), 3341 GFP_KERNEL); 3342 if (!priv->egress_fqs) { 3343 err = -ENOMEM; 3344 goto free_netdev; 3345 } 3346 3347 priv->conf_fqs = devm_kcalloc(dev, dpaa_max_num_txqs(), 3348 sizeof(*priv->conf_fqs), 3349 GFP_KERNEL); 3350 if (!priv->conf_fqs) { 3351 err = -ENOMEM; 3352 goto free_netdev; 3353 } 3354 3355 mac_dev = dpaa_mac_dev_get(pdev); 3356 if (IS_ERR(mac_dev)) { 3357 netdev_err(net_dev, "dpaa_mac_dev_get() failed\n"); 3358 err = PTR_ERR(mac_dev); 3359 goto free_netdev; 3360 } 3361 3362 /* Devices used for DMA mapping */ 3363 priv->rx_dma_dev = fman_port_get_device(mac_dev->port[RX]); 3364 priv->tx_dma_dev = fman_port_get_device(mac_dev->port[TX]); 3365 err = dma_coerce_mask_and_coherent(priv->rx_dma_dev, DMA_BIT_MASK(40)); 3366 if (!err) 3367 err = dma_coerce_mask_and_coherent(priv->tx_dma_dev, 3368 DMA_BIT_MASK(40)); 3369 if (err) { 3370 netdev_err(net_dev, "dma_coerce_mask_and_coherent() failed\n"); 3371 goto free_netdev; 3372 } 3373 3374 /* If fsl_fm_max_frm is set to a higher value than the all-common 1500, 3375 * we choose conservatively and let the user explicitly set a higher 3376 * MTU via ifconfig. Otherwise, the user may end up with different MTUs 3377 * in the same LAN. 3378 * If on the other hand fsl_fm_max_frm has been chosen below 1500, 3379 * start with the maximum allowed. 3380 */ 3381 net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN); 3382 3383 netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n", 3384 net_dev->mtu); 3385 3386 priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */ 3387 priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */ 3388 3389 /* bp init */ 3390 dpaa_bp = dpaa_bp_alloc(dev); 3391 if (IS_ERR(dpaa_bp)) { 3392 err = PTR_ERR(dpaa_bp); 3393 goto free_dpaa_bps; 3394 } 3395 /* the raw size of the buffers used for reception */ 3396 dpaa_bp->raw_size = DPAA_BP_RAW_SIZE; 3397 /* avoid runtime computations by keeping the usable size here */ 3398 dpaa_bp->size = dpaa_bp_size(dpaa_bp->raw_size); 3399 dpaa_bp->priv = priv; 3400 3401 err = dpaa_bp_alloc_pool(dpaa_bp); 3402 if (err < 0) 3403 goto free_dpaa_bps; 3404 priv->dpaa_bp = dpaa_bp; 3405 3406 INIT_LIST_HEAD(&priv->dpaa_fq_list); 3407 3408 memset(&port_fqs, 0, sizeof(port_fqs)); 3409 3410 err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs); 3411 if (err < 0) { 3412 dev_err(dev, "dpaa_alloc_all_fqs() failed\n"); 3413 goto free_dpaa_bps; 3414 } 3415 3416 priv->mac_dev = mac_dev; 3417 3418 channel = dpaa_get_channel(); 3419 if (channel < 0) { 3420 dev_err(dev, "dpaa_get_channel() failed\n"); 3421 err = channel; 3422 goto free_dpaa_bps; 3423 } 3424 3425 priv->channel = (u16)channel; 3426 3427 /* Walk the CPUs with affine portals 3428 * and add this pool channel to each's dequeue mask. 3429 */ 3430 dpaa_eth_add_channel(priv->channel, &pdev->dev); 3431 3432 err = dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]); 3433 if (err) 3434 goto free_dpaa_bps; 3435 3436 /* Create a congestion group for this netdev, with 3437 * dynamically-allocated CGR ID. 3438 * Must be executed after probing the MAC, but before 3439 * assigning the egress FQs to the CGRs. 3440 */ 3441 err = dpaa_eth_cgr_init(priv); 3442 if (err < 0) { 3443 dev_err(dev, "Error initializing CGR\n"); 3444 goto free_dpaa_bps; 3445 } 3446 3447 err = dpaa_ingress_cgr_init(priv); 3448 if (err < 0) { 3449 dev_err(dev, "Error initializing ingress CGR\n"); 3450 goto delete_egress_cgr; 3451 } 3452 3453 /* Add the FQs to the interface, and make them active */ 3454 list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) { 3455 err = dpaa_fq_init(dpaa_fq, false); 3456 if (err < 0) 3457 goto free_dpaa_fqs; 3458 } 3459 3460 priv->tx_headroom = dpaa_get_headroom(priv->buf_layout, TX); 3461 priv->rx_headroom = dpaa_get_headroom(priv->buf_layout, RX); 3462 3463 /* All real interfaces need their ports initialized */ 3464 err = dpaa_eth_init_ports(mac_dev, dpaa_bp, &port_fqs, 3465 &priv->buf_layout[0], dev); 3466 if (err) 3467 goto free_dpaa_fqs; 3468 3469 /* Rx traffic distribution based on keygen hashing defaults to on */ 3470 priv->keygen_in_use = true; 3471 3472 priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv); 3473 if (!priv->percpu_priv) { 3474 dev_err(dev, "devm_alloc_percpu() failed\n"); 3475 err = -ENOMEM; 3476 goto free_dpaa_fqs; 3477 } 3478 3479 priv->num_tc = 1; 3480 netif_set_real_num_tx_queues(net_dev, 3481 priv->num_tc * dpaa_num_txqs_per_tc()); 3482 3483 /* Initialize NAPI */ 3484 err = dpaa_napi_add(net_dev); 3485 if (err < 0) 3486 goto delete_dpaa_napi; 3487 3488 err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout); 3489 if (err < 0) 3490 goto delete_dpaa_napi; 3491 3492 dpaa_eth_sysfs_init(&net_dev->dev); 3493 3494 netif_info(priv, probe, net_dev, "Probed interface %s\n", 3495 net_dev->name); 3496 3497 return 0; 3498 3499 delete_dpaa_napi: 3500 dpaa_napi_del(net_dev); 3501 free_dpaa_fqs: 3502 dpaa_fq_free(dev, &priv->dpaa_fq_list); 3503 qman_delete_cgr_safe(&priv->ingress_cgr); 3504 qman_release_cgrid(priv->ingress_cgr.cgrid); 3505 delete_egress_cgr: 3506 qman_delete_cgr_safe(&priv->cgr_data.cgr); 3507 qman_release_cgrid(priv->cgr_data.cgr.cgrid); 3508 free_dpaa_bps: 3509 dpaa_bps_free(priv); 3510 free_netdev: 3511 dev_set_drvdata(dev, NULL); 3512 free_netdev(net_dev); 3513 3514 return err; 3515 } 3516 3517 static void dpaa_remove(struct platform_device *pdev) 3518 { 3519 struct net_device *net_dev; 3520 struct dpaa_priv *priv; 3521 struct device *dev; 3522 int err; 3523 3524 dev = &pdev->dev; 3525 net_dev = dev_get_drvdata(dev); 3526 3527 priv = netdev_priv(net_dev); 3528 3529 dpaa_eth_sysfs_remove(dev); 3530 3531 dev_set_drvdata(dev, NULL); 3532 unregister_netdev(net_dev); 3533 phylink_destroy(priv->mac_dev->phylink); 3534 3535 err = dpaa_fq_free(dev, &priv->dpaa_fq_list); 3536 if (err) 3537 dev_err(dev, "Failed to free FQs on remove (%pE)\n", 3538 ERR_PTR(err)); 3539 3540 qman_delete_cgr_safe(&priv->ingress_cgr); 3541 qman_release_cgrid(priv->ingress_cgr.cgrid); 3542 qman_delete_cgr_safe(&priv->cgr_data.cgr); 3543 qman_release_cgrid(priv->cgr_data.cgr.cgrid); 3544 3545 dpaa_napi_del(net_dev); 3546 3547 dpaa_bps_free(priv); 3548 3549 free_netdev(net_dev); 3550 } 3551 3552 static const struct platform_device_id dpaa_devtype[] = { 3553 { 3554 .name = "dpaa-ethernet", 3555 .driver_data = 0, 3556 }, { 3557 } 3558 }; 3559 MODULE_DEVICE_TABLE(platform, dpaa_devtype); 3560 3561 static struct platform_driver dpaa_driver = { 3562 .driver = { 3563 .name = KBUILD_MODNAME, 3564 }, 3565 .id_table = dpaa_devtype, 3566 .probe = dpaa_eth_probe, 3567 .remove_new = dpaa_remove 3568 }; 3569 3570 static int __init dpaa_load(void) 3571 { 3572 int err; 3573 3574 pr_debug("FSL DPAA Ethernet driver\n"); 3575 3576 /* initialize dpaa_eth mirror values */ 3577 dpaa_rx_extra_headroom = fman_get_rx_extra_headroom(); 3578 dpaa_max_frm = fman_get_max_frm(); 3579 3580 err = platform_driver_register(&dpaa_driver); 3581 if (err < 0) 3582 pr_err("Error, platform_driver_register() = %d\n", err); 3583 3584 return err; 3585 } 3586 module_init(dpaa_load); 3587 3588 static void __exit dpaa_unload(void) 3589 { 3590 platform_driver_unregister(&dpaa_driver); 3591 3592 /* Only one channel is used and needs to be released after all 3593 * interfaces are removed 3594 */ 3595 dpaa_release_channel(); 3596 } 3597 module_exit(dpaa_unload); 3598 3599 MODULE_LICENSE("Dual BSD/GPL"); 3600 MODULE_DESCRIPTION("FSL DPAA Ethernet driver"); 3601