xref: /linux/drivers/net/ethernet/freescale/dpaa/dpaa_eth.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0-or-later
2 /*
3  * Copyright 2008 - 2016 Freescale Semiconductor Inc.
4  * Copyright 2020 NXP
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/init.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/module.h>
12 #include <linux/of_mdio.h>
13 #include <linux/of_net.h>
14 #include <linux/io.h>
15 #include <linux/if_arp.h>
16 #include <linux/if_vlan.h>
17 #include <linux/icmp.h>
18 #include <linux/ip.h>
19 #include <linux/ipv6.h>
20 #include <linux/platform_device.h>
21 #include <linux/udp.h>
22 #include <linux/tcp.h>
23 #include <linux/net.h>
24 #include <linux/skbuff.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/highmem.h>
28 #include <linux/percpu.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/sort.h>
31 #include <linux/phy_fixed.h>
32 #include <linux/bpf.h>
33 #include <linux/bpf_trace.h>
34 #include <soc/fsl/bman.h>
35 #include <soc/fsl/qman.h>
36 #include "fman.h"
37 #include "fman_port.h"
38 #include "mac.h"
39 #include "dpaa_eth.h"
40 
41 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
42  * using trace events only need to #include <trace/events/sched.h>
43  */
44 #define CREATE_TRACE_POINTS
45 #include "dpaa_eth_trace.h"
46 
47 static int debug = -1;
48 module_param(debug, int, 0444);
49 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
50 
51 static u16 tx_timeout = 1000;
52 module_param(tx_timeout, ushort, 0444);
53 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
54 
55 #define FM_FD_STAT_RX_ERRORS						\
56 	(FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL	| \
57 	 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
58 	 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME	| \
59 	 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
60 	 FM_FD_ERR_PRS_HDR_ERR)
61 
62 #define FM_FD_STAT_TX_ERRORS \
63 	(FM_FD_ERR_UNSUPPORTED_FORMAT | \
64 	 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
65 
66 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
67 			  NETIF_MSG_LINK | NETIF_MSG_IFUP | \
68 			  NETIF_MSG_IFDOWN | NETIF_MSG_HW)
69 
70 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000
71 /* Ingress congestion threshold on FMan ports
72  * The size in bytes of the ingress tail-drop threshold on FMan ports.
73  * Traffic piling up above this value will be rejected by QMan and discarded
74  * by FMan.
75  */
76 
77 /* Size in bytes of the FQ taildrop threshold */
78 #define DPAA_FQ_TD 0x200000
79 
80 #define DPAA_CS_THRESHOLD_1G 0x06000000
81 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
82  * The size in bytes of the egress Congestion State notification threshold on
83  * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
84  * tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
85  * and the larger the frame size, the more acute the problem.
86  * So we have to find a balance between these factors:
87  * - avoiding the device staying congested for a prolonged time (risking
88  *   the netdev watchdog to fire - see also the tx_timeout module param);
89  * - affecting performance of protocols such as TCP, which otherwise
90  *   behave well under the congestion notification mechanism;
91  * - preventing the Tx cores from tightly-looping (as if the congestion
92  *   threshold was too low to be effective);
93  * - running out of memory if the CS threshold is set too high.
94  */
95 
96 #define DPAA_CS_THRESHOLD_10G 0x10000000
97 /* The size in bytes of the egress Congestion State notification threshold on
98  * 10G ports, range 0x1000 .. 0x10000000
99  */
100 
101 /* Largest value that the FQD's OAL field can hold */
102 #define FSL_QMAN_MAX_OAL	127
103 
104 /* Default alignment for start of data in an Rx FD */
105 #ifdef CONFIG_DPAA_ERRATUM_A050385
106 /* aligning data start to 64 avoids DMA transaction splits, unless the buffer
107  * is crossing a 4k page boundary
108  */
109 #define DPAA_FD_DATA_ALIGNMENT  (fman_has_errata_a050385() ? 64 : 16)
110 /* aligning to 256 avoids DMA transaction splits caused by 4k page boundary
111  * crossings; also, all SG fragments except the last must have a size multiple
112  * of 256 to avoid DMA transaction splits
113  */
114 #define DPAA_A050385_ALIGN 256
115 #define DPAA_FD_RX_DATA_ALIGNMENT (fman_has_errata_a050385() ? \
116 				   DPAA_A050385_ALIGN : 16)
117 #else
118 #define DPAA_FD_DATA_ALIGNMENT  16
119 #define DPAA_FD_RX_DATA_ALIGNMENT DPAA_FD_DATA_ALIGNMENT
120 #endif
121 
122 /* The DPAA requires 256 bytes reserved and mapped for the SGT */
123 #define DPAA_SGT_SIZE 256
124 
125 /* Values for the L3R field of the FM Parse Results
126  */
127 /* L3 Type field: First IP Present IPv4 */
128 #define FM_L3_PARSE_RESULT_IPV4	0x8000
129 /* L3 Type field: First IP Present IPv6 */
130 #define FM_L3_PARSE_RESULT_IPV6	0x4000
131 /* Values for the L4R field of the FM Parse Results */
132 /* L4 Type field: UDP */
133 #define FM_L4_PARSE_RESULT_UDP	0x40
134 /* L4 Type field: TCP */
135 #define FM_L4_PARSE_RESULT_TCP	0x20
136 
137 /* FD status field indicating whether the FM Parser has attempted to validate
138  * the L4 csum of the frame.
139  * Note that having this bit set doesn't necessarily imply that the checksum
140  * is valid. One would have to check the parse results to find that out.
141  */
142 #define FM_FD_STAT_L4CV         0x00000004
143 
144 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
145 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
146 
147 #define FSL_DPAA_BPID_INV		0xff
148 #define FSL_DPAA_ETH_MAX_BUF_COUNT	128
149 #define FSL_DPAA_ETH_REFILL_THRESHOLD	80
150 
151 #define DPAA_TX_PRIV_DATA_SIZE	16
152 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
153 #define DPAA_TIME_STAMP_SIZE 8
154 #define DPAA_HASH_RESULTS_SIZE 8
155 #define DPAA_HWA_SIZE (DPAA_PARSE_RESULTS_SIZE + DPAA_TIME_STAMP_SIZE \
156 		       + DPAA_HASH_RESULTS_SIZE)
157 #define DPAA_RX_PRIV_DATA_DEFAULT_SIZE (DPAA_TX_PRIV_DATA_SIZE + \
158 					XDP_PACKET_HEADROOM - DPAA_HWA_SIZE)
159 #ifdef CONFIG_DPAA_ERRATUM_A050385
160 #define DPAA_RX_PRIV_DATA_A050385_SIZE (DPAA_A050385_ALIGN - DPAA_HWA_SIZE)
161 #define DPAA_RX_PRIV_DATA_SIZE (fman_has_errata_a050385() ? \
162 				DPAA_RX_PRIV_DATA_A050385_SIZE : \
163 				DPAA_RX_PRIV_DATA_DEFAULT_SIZE)
164 #else
165 #define DPAA_RX_PRIV_DATA_SIZE DPAA_RX_PRIV_DATA_DEFAULT_SIZE
166 #endif
167 
168 #define DPAA_ETH_PCD_RXQ_NUM	128
169 
170 #define DPAA_ENQUEUE_RETRIES	100000
171 
172 enum port_type {RX, TX};
173 
174 struct fm_port_fqs {
175 	struct dpaa_fq *tx_defq;
176 	struct dpaa_fq *tx_errq;
177 	struct dpaa_fq *rx_defq;
178 	struct dpaa_fq *rx_errq;
179 	struct dpaa_fq *rx_pcdq;
180 };
181 
182 /* All the dpa bps in use at any moment */
183 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
184 
185 #define DPAA_BP_RAW_SIZE 4096
186 
187 #ifdef CONFIG_DPAA_ERRATUM_A050385
188 #define dpaa_bp_size(raw_size) (SKB_WITH_OVERHEAD(raw_size) & \
189 				~(DPAA_A050385_ALIGN - 1))
190 #else
191 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD(raw_size)
192 #endif
193 
194 static int dpaa_max_frm;
195 
196 static int dpaa_rx_extra_headroom;
197 
198 #define dpaa_get_max_mtu()	\
199 	(dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
200 
201 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed);
202 
203 static int dpaa_netdev_init(struct net_device *net_dev,
204 			    const struct net_device_ops *dpaa_ops,
205 			    u16 tx_timeout)
206 {
207 	struct dpaa_priv *priv = netdev_priv(net_dev);
208 	struct device *dev = net_dev->dev.parent;
209 	struct mac_device *mac_dev = priv->mac_dev;
210 	struct dpaa_percpu_priv *percpu_priv;
211 	const u8 *mac_addr;
212 	int i, err;
213 
214 	/* Although we access another CPU's private data here
215 	 * we do it at initialization so it is safe
216 	 */
217 	for_each_possible_cpu(i) {
218 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
219 		percpu_priv->net_dev = net_dev;
220 	}
221 
222 	net_dev->netdev_ops = dpaa_ops;
223 	mac_addr = mac_dev->addr;
224 
225 	net_dev->mem_start = (unsigned long)priv->mac_dev->res->start;
226 	net_dev->mem_end = (unsigned long)priv->mac_dev->res->end;
227 
228 	net_dev->min_mtu = ETH_MIN_MTU;
229 	net_dev->max_mtu = dpaa_get_max_mtu();
230 
231 	net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
232 				 NETIF_F_RXHASH);
233 
234 	net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
235 	/* The kernels enables GSO automatically, if we declare NETIF_F_SG.
236 	 * For conformity, we'll still declare GSO explicitly.
237 	 */
238 	net_dev->features |= NETIF_F_GSO;
239 	net_dev->features |= NETIF_F_RXCSUM;
240 
241 	net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
242 	net_dev->lltx = true;
243 	/* we do not want shared skbs on TX */
244 	net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
245 
246 	net_dev->features |= net_dev->hw_features;
247 	net_dev->vlan_features = net_dev->features;
248 
249 	net_dev->xdp_features = NETDEV_XDP_ACT_BASIC |
250 				NETDEV_XDP_ACT_REDIRECT |
251 				NETDEV_XDP_ACT_NDO_XMIT;
252 
253 	if (is_valid_ether_addr(mac_addr)) {
254 		memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
255 		eth_hw_addr_set(net_dev, mac_addr);
256 	} else {
257 		eth_hw_addr_random(net_dev);
258 		err = mac_dev->change_addr(mac_dev->fman_mac,
259 			(const enet_addr_t *)net_dev->dev_addr);
260 		if (err) {
261 			dev_err(dev, "Failed to set random MAC address\n");
262 			return -EINVAL;
263 		}
264 		dev_info(dev, "Using random MAC address: %pM\n",
265 			 net_dev->dev_addr);
266 	}
267 
268 	net_dev->ethtool_ops = &dpaa_ethtool_ops;
269 
270 	net_dev->needed_headroom = priv->tx_headroom;
271 	net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
272 
273 	/* The rest of the config is filled in by the mac device already */
274 	mac_dev->phylink_config.dev = &net_dev->dev;
275 	mac_dev->phylink_config.type = PHYLINK_NETDEV;
276 	mac_dev->update_speed = dpaa_eth_cgr_set_speed;
277 	mac_dev->phylink = phylink_create(&mac_dev->phylink_config,
278 					  dev_fwnode(mac_dev->dev),
279 					  mac_dev->phy_if,
280 					  mac_dev->phylink_ops);
281 	if (IS_ERR(mac_dev->phylink)) {
282 		err = PTR_ERR(mac_dev->phylink);
283 		dev_err_probe(dev, err, "Could not create phylink\n");
284 		return err;
285 	}
286 
287 	/* start without the RUNNING flag, phylib controls it later */
288 	netif_carrier_off(net_dev);
289 
290 	err = register_netdev(net_dev);
291 	if (err < 0) {
292 		dev_err(dev, "register_netdev() = %d\n", err);
293 		phylink_destroy(mac_dev->phylink);
294 		return err;
295 	}
296 
297 	return 0;
298 }
299 
300 static int dpaa_stop(struct net_device *net_dev)
301 {
302 	struct mac_device *mac_dev;
303 	struct dpaa_priv *priv;
304 	int i, error;
305 	int err = 0;
306 
307 	priv = netdev_priv(net_dev);
308 	mac_dev = priv->mac_dev;
309 
310 	netif_tx_stop_all_queues(net_dev);
311 	/* Allow the Fman (Tx) port to process in-flight frames before we
312 	 * try switching it off.
313 	 */
314 	msleep(200);
315 
316 	phylink_stop(mac_dev->phylink);
317 	mac_dev->disable(mac_dev->fman_mac);
318 
319 	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
320 		error = fman_port_disable(mac_dev->port[i]);
321 		if (error)
322 			err = error;
323 	}
324 
325 	phylink_disconnect_phy(mac_dev->phylink);
326 	net_dev->phydev = NULL;
327 
328 	msleep(200);
329 
330 	return err;
331 }
332 
333 static void dpaa_tx_timeout(struct net_device *net_dev, unsigned int txqueue)
334 {
335 	struct dpaa_percpu_priv *percpu_priv;
336 	const struct dpaa_priv	*priv;
337 
338 	priv = netdev_priv(net_dev);
339 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
340 
341 	netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
342 		   jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
343 
344 	percpu_priv->stats.tx_errors++;
345 }
346 
347 /* Calculates the statistics for the given device by adding the statistics
348  * collected by each CPU.
349  */
350 static void dpaa_get_stats64(struct net_device *net_dev,
351 			     struct rtnl_link_stats64 *s)
352 {
353 	int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
354 	struct dpaa_priv *priv = netdev_priv(net_dev);
355 	struct dpaa_percpu_priv *percpu_priv;
356 	u64 *netstats = (u64 *)s;
357 	u64 *cpustats;
358 	int i, j;
359 
360 	for_each_possible_cpu(i) {
361 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
362 
363 		cpustats = (u64 *)&percpu_priv->stats;
364 
365 		/* add stats from all CPUs */
366 		for (j = 0; j < numstats; j++)
367 			netstats[j] += cpustats[j];
368 	}
369 }
370 
371 static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
372 			 void *type_data)
373 {
374 	struct dpaa_priv *priv = netdev_priv(net_dev);
375 	int num_txqs_per_tc = dpaa_num_txqs_per_tc();
376 	struct tc_mqprio_qopt *mqprio = type_data;
377 	u8 num_tc;
378 	int i;
379 
380 	if (type != TC_SETUP_QDISC_MQPRIO)
381 		return -EOPNOTSUPP;
382 
383 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
384 	num_tc = mqprio->num_tc;
385 
386 	if (num_tc == priv->num_tc)
387 		return 0;
388 
389 	if (!num_tc) {
390 		netdev_reset_tc(net_dev);
391 		goto out;
392 	}
393 
394 	if (num_tc > DPAA_TC_NUM) {
395 		netdev_err(net_dev, "Too many traffic classes: max %d supported.\n",
396 			   DPAA_TC_NUM);
397 		return -EINVAL;
398 	}
399 
400 	netdev_set_num_tc(net_dev, num_tc);
401 
402 	for (i = 0; i < num_tc; i++)
403 		netdev_set_tc_queue(net_dev, i, num_txqs_per_tc,
404 				    i * num_txqs_per_tc);
405 
406 out:
407 	priv->num_tc = num_tc ? : 1;
408 	netif_set_real_num_tx_queues(net_dev, priv->num_tc * num_txqs_per_tc);
409 	return 0;
410 }
411 
412 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
413 {
414 	struct dpaa_eth_data *eth_data;
415 	struct device *dpaa_dev;
416 	struct mac_device *mac_dev;
417 
418 	dpaa_dev = &pdev->dev;
419 	eth_data = dpaa_dev->platform_data;
420 	if (!eth_data) {
421 		dev_err(dpaa_dev, "eth_data missing\n");
422 		return ERR_PTR(-ENODEV);
423 	}
424 	mac_dev = eth_data->mac_dev;
425 	if (!mac_dev) {
426 		dev_err(dpaa_dev, "mac_dev missing\n");
427 		return ERR_PTR(-EINVAL);
428 	}
429 
430 	return mac_dev;
431 }
432 
433 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
434 {
435 	const struct dpaa_priv *priv;
436 	struct mac_device *mac_dev;
437 	struct sockaddr old_addr;
438 	int err;
439 
440 	priv = netdev_priv(net_dev);
441 
442 	memcpy(old_addr.sa_data, net_dev->dev_addr,  ETH_ALEN);
443 
444 	err = eth_mac_addr(net_dev, addr);
445 	if (err < 0) {
446 		netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
447 		return err;
448 	}
449 
450 	mac_dev = priv->mac_dev;
451 
452 	err = mac_dev->change_addr(mac_dev->fman_mac,
453 				   (const enet_addr_t *)net_dev->dev_addr);
454 	if (err < 0) {
455 		netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
456 			  err);
457 		/* reverting to previous address */
458 		eth_mac_addr(net_dev, &old_addr);
459 
460 		return err;
461 	}
462 
463 	return 0;
464 }
465 
466 static void dpaa_set_rx_mode(struct net_device *net_dev)
467 {
468 	const struct dpaa_priv	*priv;
469 	int err;
470 
471 	priv = netdev_priv(net_dev);
472 
473 	if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
474 		priv->mac_dev->promisc = !priv->mac_dev->promisc;
475 		err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
476 						 priv->mac_dev->promisc);
477 		if (err < 0)
478 			netif_err(priv, drv, net_dev,
479 				  "mac_dev->set_promisc() = %d\n",
480 				  err);
481 	}
482 
483 	if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) {
484 		priv->mac_dev->allmulti = !priv->mac_dev->allmulti;
485 		err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac,
486 						  priv->mac_dev->allmulti);
487 		if (err < 0)
488 			netif_err(priv, drv, net_dev,
489 				  "mac_dev->set_allmulti() = %d\n",
490 				  err);
491 	}
492 
493 	err = priv->mac_dev->set_multi(net_dev, priv->mac_dev);
494 	if (err < 0)
495 		netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n",
496 			  err);
497 }
498 
499 static struct dpaa_bp *dpaa_bpid2pool(int bpid)
500 {
501 	if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
502 		return NULL;
503 
504 	return dpaa_bp_array[bpid];
505 }
506 
507 /* checks if this bpool is already allocated */
508 static bool dpaa_bpid2pool_use(int bpid)
509 {
510 	if (dpaa_bpid2pool(bpid)) {
511 		refcount_inc(&dpaa_bp_array[bpid]->refs);
512 		return true;
513 	}
514 
515 	return false;
516 }
517 
518 /* called only once per bpid by dpaa_bp_alloc_pool() */
519 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
520 {
521 	dpaa_bp_array[bpid] = dpaa_bp;
522 	refcount_set(&dpaa_bp->refs, 1);
523 }
524 
525 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
526 {
527 	int err;
528 
529 	if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
530 		pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
531 		       __func__);
532 		return -EINVAL;
533 	}
534 
535 	/* If the pool is already specified, we only create one per bpid */
536 	if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
537 	    dpaa_bpid2pool_use(dpaa_bp->bpid))
538 		return 0;
539 
540 	if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
541 		dpaa_bp->pool = bman_new_pool();
542 		if (!dpaa_bp->pool) {
543 			pr_err("%s: bman_new_pool() failed\n",
544 			       __func__);
545 			return -ENODEV;
546 		}
547 
548 		dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
549 	}
550 
551 	if (dpaa_bp->seed_cb) {
552 		err = dpaa_bp->seed_cb(dpaa_bp);
553 		if (err)
554 			goto pool_seed_failed;
555 	}
556 
557 	dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
558 
559 	return 0;
560 
561 pool_seed_failed:
562 	pr_err("%s: pool seeding failed\n", __func__);
563 	bman_free_pool(dpaa_bp->pool);
564 
565 	return err;
566 }
567 
568 /* remove and free all the buffers from the given buffer pool */
569 static void dpaa_bp_drain(struct dpaa_bp *bp)
570 {
571 	u8 num = 8;
572 	int ret;
573 
574 	do {
575 		struct bm_buffer bmb[8];
576 		int i;
577 
578 		ret = bman_acquire(bp->pool, bmb, num);
579 		if (ret < 0) {
580 			if (num == 8) {
581 				/* we have less than 8 buffers left;
582 				 * drain them one by one
583 				 */
584 				num = 1;
585 				ret = 1;
586 				continue;
587 			} else {
588 				/* Pool is fully drained */
589 				break;
590 			}
591 		}
592 
593 		if (bp->free_buf_cb)
594 			for (i = 0; i < num; i++)
595 				bp->free_buf_cb(bp, &bmb[i]);
596 	} while (ret > 0);
597 }
598 
599 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
600 {
601 	struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
602 
603 	/* the mapping between bpid and dpaa_bp is done very late in the
604 	 * allocation procedure; if something failed before the mapping, the bp
605 	 * was not configured, therefore we don't need the below instructions
606 	 */
607 	if (!bp)
608 		return;
609 
610 	if (!refcount_dec_and_test(&bp->refs))
611 		return;
612 
613 	if (bp->free_buf_cb)
614 		dpaa_bp_drain(bp);
615 
616 	dpaa_bp_array[bp->bpid] = NULL;
617 	bman_free_pool(bp->pool);
618 }
619 
620 static void dpaa_bps_free(struct dpaa_priv *priv)
621 {
622 	dpaa_bp_free(priv->dpaa_bp);
623 }
624 
625 /* Use multiple WQs for FQ assignment:
626  *	- Tx Confirmation queues go to WQ1.
627  *	- Rx Error and Tx Error queues go to WQ5 (giving them a better chance
628  *	  to be scheduled, in case there are many more FQs in WQ6).
629  *	- Rx Default goes to WQ6.
630  *	- Tx queues go to different WQs depending on their priority. Equal
631  *	  chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and
632  *	  WQ0 (highest priority).
633  * This ensures that Tx-confirmed buffers are timely released. In particular,
634  * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
635  * are greatly outnumbered by other FQs in the system, while
636  * dequeue scheduling is round-robin.
637  */
638 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx)
639 {
640 	switch (fq->fq_type) {
641 	case FQ_TYPE_TX_CONFIRM:
642 	case FQ_TYPE_TX_CONF_MQ:
643 		fq->wq = 1;
644 		break;
645 	case FQ_TYPE_RX_ERROR:
646 	case FQ_TYPE_TX_ERROR:
647 		fq->wq = 5;
648 		break;
649 	case FQ_TYPE_RX_DEFAULT:
650 	case FQ_TYPE_RX_PCD:
651 		fq->wq = 6;
652 		break;
653 	case FQ_TYPE_TX:
654 		switch (idx / dpaa_num_txqs_per_tc()) {
655 		case 0:
656 			/* Low priority (best effort) */
657 			fq->wq = 6;
658 			break;
659 		case 1:
660 			/* Medium priority */
661 			fq->wq = 2;
662 			break;
663 		case 2:
664 			/* High priority */
665 			fq->wq = 1;
666 			break;
667 		case 3:
668 			/* Very high priority */
669 			fq->wq = 0;
670 			break;
671 		default:
672 			WARN(1, "Too many TX FQs: more than %zu!\n",
673 			     dpaa_max_num_txqs());
674 		}
675 		break;
676 	default:
677 		WARN(1, "Invalid FQ type %d for FQID %d!\n",
678 		     fq->fq_type, fq->fqid);
679 	}
680 }
681 
682 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
683 				     u32 start, u32 count,
684 				     struct list_head *list,
685 				     enum dpaa_fq_type fq_type)
686 {
687 	struct dpaa_fq *dpaa_fq;
688 	int i;
689 
690 	dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq),
691 			       GFP_KERNEL);
692 	if (!dpaa_fq)
693 		return NULL;
694 
695 	for (i = 0; i < count; i++) {
696 		dpaa_fq[i].fq_type = fq_type;
697 		dpaa_fq[i].fqid = start ? start + i : 0;
698 		list_add_tail(&dpaa_fq[i].list, list);
699 	}
700 
701 	for (i = 0; i < count; i++)
702 		dpaa_assign_wq(dpaa_fq + i, i);
703 
704 	return dpaa_fq;
705 }
706 
707 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
708 			      struct fm_port_fqs *port_fqs)
709 {
710 	struct dpaa_fq *dpaa_fq;
711 	u32 fq_base, fq_base_aligned, i;
712 
713 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
714 	if (!dpaa_fq)
715 		goto fq_alloc_failed;
716 
717 	port_fqs->rx_errq = &dpaa_fq[0];
718 
719 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
720 	if (!dpaa_fq)
721 		goto fq_alloc_failed;
722 
723 	port_fqs->rx_defq = &dpaa_fq[0];
724 
725 	/* the PCD FQIDs range needs to be aligned for correct operation */
726 	if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM))
727 		goto fq_alloc_failed;
728 
729 	fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM);
730 
731 	for (i = fq_base; i < fq_base_aligned; i++)
732 		qman_release_fqid(i);
733 
734 	for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM;
735 	     i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++)
736 		qman_release_fqid(i);
737 
738 	dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM,
739 				list, FQ_TYPE_RX_PCD);
740 	if (!dpaa_fq)
741 		goto fq_alloc_failed;
742 
743 	port_fqs->rx_pcdq = &dpaa_fq[0];
744 
745 	if (!dpaa_fq_alloc(dev, 0, dpaa_max_num_txqs(), list,
746 			   FQ_TYPE_TX_CONF_MQ))
747 		goto fq_alloc_failed;
748 
749 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
750 	if (!dpaa_fq)
751 		goto fq_alloc_failed;
752 
753 	port_fqs->tx_errq = &dpaa_fq[0];
754 
755 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
756 	if (!dpaa_fq)
757 		goto fq_alloc_failed;
758 
759 	port_fqs->tx_defq = &dpaa_fq[0];
760 
761 	if (!dpaa_fq_alloc(dev, 0, dpaa_max_num_txqs(), list, FQ_TYPE_TX))
762 		goto fq_alloc_failed;
763 
764 	return 0;
765 
766 fq_alloc_failed:
767 	dev_err(dev, "dpaa_fq_alloc() failed\n");
768 	return -ENOMEM;
769 }
770 
771 static u32 rx_pool_channel;
772 static DEFINE_SPINLOCK(rx_pool_channel_init);
773 
774 static int dpaa_get_channel(void)
775 {
776 	spin_lock(&rx_pool_channel_init);
777 	if (!rx_pool_channel) {
778 		u32 pool;
779 		int ret;
780 
781 		ret = qman_alloc_pool(&pool);
782 
783 		if (!ret)
784 			rx_pool_channel = pool;
785 	}
786 	spin_unlock(&rx_pool_channel_init);
787 	if (!rx_pool_channel)
788 		return -ENOMEM;
789 	return rx_pool_channel;
790 }
791 
792 static void dpaa_release_channel(void)
793 {
794 	qman_release_pool(rx_pool_channel);
795 }
796 
797 static void dpaa_eth_add_channel(u16 channel, struct device *dev)
798 {
799 	u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
800 	const cpumask_t *cpus = qman_affine_cpus();
801 	struct qman_portal *portal;
802 	int cpu;
803 
804 	for_each_cpu_and(cpu, cpus, cpu_online_mask) {
805 		portal = qman_get_affine_portal(cpu);
806 		qman_p_static_dequeue_add(portal, pool);
807 		qman_start_using_portal(portal, dev);
808 	}
809 }
810 
811 /* Congestion group state change notification callback.
812  * Stops the device's egress queues while they are congested and
813  * wakes them upon exiting congested state.
814  * Also updates some CGR-related stats.
815  */
816 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
817 			   int congested)
818 {
819 	struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
820 		struct dpaa_priv, cgr_data.cgr);
821 
822 	if (congested) {
823 		priv->cgr_data.congestion_start_jiffies = jiffies;
824 		netif_tx_stop_all_queues(priv->net_dev);
825 		priv->cgr_data.cgr_congested_count++;
826 	} else {
827 		priv->cgr_data.congested_jiffies +=
828 			(jiffies - priv->cgr_data.congestion_start_jiffies);
829 		netif_tx_wake_all_queues(priv->net_dev);
830 	}
831 }
832 
833 static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
834 {
835 	struct qm_mcc_initcgr initcgr;
836 	u32 cs_th;
837 	int err;
838 
839 	err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
840 	if (err < 0) {
841 		if (netif_msg_drv(priv))
842 			pr_err("%s: Error %d allocating CGR ID\n",
843 			       __func__, err);
844 		goto out_error;
845 	}
846 	priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
847 
848 	/* Enable Congestion State Change Notifications and CS taildrop */
849 	memset(&initcgr, 0, sizeof(initcgr));
850 	initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES);
851 	initcgr.cgr.cscn_en = QM_CGR_EN;
852 
853 	/* Set different thresholds based on the configured MAC speed.
854 	 * This may turn suboptimal if the MAC is reconfigured at another
855 	 * speed, so MACs must call dpaa_eth_cgr_set_speed in their link_up
856 	 * callback.
857 	 */
858 	if (priv->mac_dev->phylink_config.mac_capabilities & MAC_10000FD)
859 		cs_th = DPAA_CS_THRESHOLD_10G;
860 	else
861 		cs_th = DPAA_CS_THRESHOLD_1G;
862 	qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
863 
864 	initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
865 	initcgr.cgr.cstd_en = QM_CGR_EN;
866 
867 	err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
868 			      &initcgr);
869 	if (err < 0) {
870 		if (netif_msg_drv(priv))
871 			pr_err("%s: Error %d creating CGR with ID %d\n",
872 			       __func__, err, priv->cgr_data.cgr.cgrid);
873 		qman_release_cgrid(priv->cgr_data.cgr.cgrid);
874 		goto out_error;
875 	}
876 	if (netif_msg_drv(priv))
877 		pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
878 			 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
879 			 priv->cgr_data.cgr.chan);
880 
881 out_error:
882 	return err;
883 }
884 
885 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed)
886 {
887 	struct net_device *net_dev = to_net_dev(mac_dev->phylink_config.dev);
888 	struct dpaa_priv *priv = netdev_priv(net_dev);
889 	struct qm_mcc_initcgr opts = { };
890 	u32 cs_th;
891 	int err;
892 
893 	opts.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
894 	switch (speed) {
895 	case SPEED_10000:
896 		cs_th = DPAA_CS_THRESHOLD_10G;
897 		break;
898 	case SPEED_1000:
899 	default:
900 		cs_th = DPAA_CS_THRESHOLD_1G;
901 		break;
902 	}
903 	qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, cs_th, 1);
904 
905 	err = qman_update_cgr_safe(&priv->cgr_data.cgr, &opts);
906 	if (err)
907 		netdev_err(net_dev, "could not update speed: %d\n", err);
908 }
909 
910 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
911 				      struct dpaa_fq *fq,
912 				      const struct qman_fq *template)
913 {
914 	fq->fq_base = *template;
915 	fq->net_dev = priv->net_dev;
916 
917 	fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
918 	fq->channel = priv->channel;
919 }
920 
921 static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
922 				     struct dpaa_fq *fq,
923 				     struct fman_port *port,
924 				     const struct qman_fq *template)
925 {
926 	fq->fq_base = *template;
927 	fq->net_dev = priv->net_dev;
928 
929 	if (port) {
930 		fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
931 		fq->channel = (u16)fman_port_get_qman_channel_id(port);
932 	} else {
933 		fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
934 	}
935 }
936 
937 static int dpaa_fq_setup(struct dpaa_priv *priv,
938 			 const struct dpaa_fq_cbs *fq_cbs,
939 			 struct fman_port *tx_port)
940 {
941 	int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu;
942 	const cpumask_t *affine_cpus = qman_affine_cpus();
943 	struct dpaa_fq *fq;
944 	u16 *channels;
945 
946 	channels = kcalloc(num_possible_cpus(), sizeof(u16), GFP_KERNEL);
947 	if (!channels)
948 		return -ENOMEM;
949 
950 	for_each_cpu_and(cpu, affine_cpus, cpu_online_mask)
951 		channels[num_portals++] = qman_affine_channel(cpu);
952 
953 	if (num_portals == 0)
954 		dev_err(priv->net_dev->dev.parent,
955 			"No Qman software (affine) channels found\n");
956 
957 	/* Initialize each FQ in the list */
958 	list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
959 		switch (fq->fq_type) {
960 		case FQ_TYPE_RX_DEFAULT:
961 			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
962 			break;
963 		case FQ_TYPE_RX_ERROR:
964 			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
965 			break;
966 		case FQ_TYPE_RX_PCD:
967 			if (!num_portals)
968 				continue;
969 			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
970 			fq->channel = channels[portal_cnt++ % num_portals];
971 			break;
972 		case FQ_TYPE_TX:
973 			dpaa_setup_egress(priv, fq, tx_port,
974 					  &fq_cbs->egress_ern);
975 			priv->egress_fqs[egress_cnt++] = &fq->fq_base;
976 			break;
977 		case FQ_TYPE_TX_CONF_MQ:
978 			priv->conf_fqs[conf_cnt++] = &fq->fq_base;
979 			fallthrough;
980 		case FQ_TYPE_TX_CONFIRM:
981 			dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
982 			break;
983 		case FQ_TYPE_TX_ERROR:
984 			dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
985 			break;
986 		default:
987 			dev_warn(priv->net_dev->dev.parent,
988 				 "Unknown FQ type detected!\n");
989 			break;
990 		}
991 	}
992 
993 	kfree(channels);
994 
995 	return 0;
996 }
997 
998 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
999 				   struct qman_fq *tx_fq)
1000 {
1001 	int i;
1002 
1003 	for (i = 0; i < dpaa_max_num_txqs(); i++)
1004 		if (priv->egress_fqs[i] == tx_fq)
1005 			return i;
1006 
1007 	return -EINVAL;
1008 }
1009 
1010 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
1011 {
1012 	const struct dpaa_priv	*priv;
1013 	struct qman_fq *confq = NULL;
1014 	struct qm_mcc_initfq initfq;
1015 	struct device *dev;
1016 	struct qman_fq *fq;
1017 	int queue_id;
1018 	int err;
1019 
1020 	priv = netdev_priv(dpaa_fq->net_dev);
1021 	dev = dpaa_fq->net_dev->dev.parent;
1022 
1023 	if (dpaa_fq->fqid == 0)
1024 		dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
1025 
1026 	dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
1027 
1028 	err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
1029 	if (err) {
1030 		dev_err(dev, "qman_create_fq() failed\n");
1031 		return err;
1032 	}
1033 	fq = &dpaa_fq->fq_base;
1034 
1035 	if (dpaa_fq->init) {
1036 		memset(&initfq, 0, sizeof(initfq));
1037 
1038 		initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL);
1039 		/* Note: we may get to keep an empty FQ in cache */
1040 		initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE);
1041 
1042 		/* Try to reduce the number of portal interrupts for
1043 		 * Tx Confirmation FQs.
1044 		 */
1045 		if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
1046 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK);
1047 
1048 		/* FQ placement */
1049 		initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ);
1050 
1051 		qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
1052 
1053 		/* Put all egress queues in a congestion group of their own.
1054 		 * Sensu stricto, the Tx confirmation queues are Rx FQs,
1055 		 * rather than Tx - but they nonetheless account for the
1056 		 * memory footprint on behalf of egress traffic. We therefore
1057 		 * place them in the netdev's CGR, along with the Tx FQs.
1058 		 */
1059 		if (dpaa_fq->fq_type == FQ_TYPE_TX ||
1060 		    dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
1061 		    dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
1062 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1063 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1064 			initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
1065 			/* Set a fixed overhead accounting, in an attempt to
1066 			 * reduce the impact of fixed-size skb shells and the
1067 			 * driver's needed headroom on system memory. This is
1068 			 * especially the case when the egress traffic is
1069 			 * composed of small datagrams.
1070 			 * Unfortunately, QMan's OAL value is capped to an
1071 			 * insufficient value, but even that is better than
1072 			 * no overhead accounting at all.
1073 			 */
1074 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1075 			qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1076 			qm_fqd_set_oal(&initfq.fqd,
1077 				       min(sizeof(struct sk_buff) +
1078 				       priv->tx_headroom,
1079 				       (size_t)FSL_QMAN_MAX_OAL));
1080 		}
1081 
1082 		if (td_enable) {
1083 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH);
1084 			qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
1085 			initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE);
1086 		}
1087 
1088 		if (dpaa_fq->fq_type == FQ_TYPE_TX) {
1089 			queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
1090 			if (queue_id >= 0)
1091 				confq = priv->conf_fqs[queue_id];
1092 			if (confq) {
1093 				initfq.we_mask |=
1094 					cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1095 			/* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
1096 			 *	     A2V=1 (contextA A2 field is valid)
1097 			 *	     A0V=1 (contextA A0 field is valid)
1098 			 *	     B0V=1 (contextB field is valid)
1099 			 * ContextA A2: EBD=1 (deallocate buffers inside FMan)
1100 			 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
1101 			 */
1102 				qm_fqd_context_a_set64(&initfq.fqd,
1103 						       0x1e00000080000000ULL);
1104 			}
1105 		}
1106 
1107 		/* Put all the ingress queues in our "ingress CGR". */
1108 		if (priv->use_ingress_cgr &&
1109 		    (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1110 		     dpaa_fq->fq_type == FQ_TYPE_RX_ERROR ||
1111 		     dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) {
1112 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1113 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1114 			initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
1115 			/* Set a fixed overhead accounting, just like for the
1116 			 * egress CGR.
1117 			 */
1118 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1119 			qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1120 			qm_fqd_set_oal(&initfq.fqd,
1121 				       min(sizeof(struct sk_buff) +
1122 				       priv->tx_headroom,
1123 				       (size_t)FSL_QMAN_MAX_OAL));
1124 		}
1125 
1126 		/* Initialization common to all ingress queues */
1127 		if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
1128 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1129 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE |
1130 						QM_FQCTRL_CTXASTASHING);
1131 			initfq.fqd.context_a.stashing.exclusive =
1132 				QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
1133 				QM_STASHING_EXCL_ANNOTATION;
1134 			qm_fqd_set_stashing(&initfq.fqd, 1, 2,
1135 					    DIV_ROUND_UP(sizeof(struct qman_fq),
1136 							 64));
1137 		}
1138 
1139 		err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
1140 		if (err < 0) {
1141 			dev_err(dev, "qman_init_fq(%u) = %d\n",
1142 				qman_fq_fqid(fq), err);
1143 			qman_destroy_fq(fq);
1144 			return err;
1145 		}
1146 	}
1147 
1148 	dpaa_fq->fqid = qman_fq_fqid(fq);
1149 
1150 	if (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1151 	    dpaa_fq->fq_type == FQ_TYPE_RX_PCD) {
1152 		err = xdp_rxq_info_reg(&dpaa_fq->xdp_rxq, dpaa_fq->net_dev,
1153 				       dpaa_fq->fqid, 0);
1154 		if (err) {
1155 			dev_err(dev, "xdp_rxq_info_reg() = %d\n", err);
1156 			return err;
1157 		}
1158 
1159 		err = xdp_rxq_info_reg_mem_model(&dpaa_fq->xdp_rxq,
1160 						 MEM_TYPE_PAGE_ORDER0, NULL);
1161 		if (err) {
1162 			dev_err(dev, "xdp_rxq_info_reg_mem_model() = %d\n",
1163 				err);
1164 			xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq);
1165 			return err;
1166 		}
1167 	}
1168 
1169 	return 0;
1170 }
1171 
1172 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
1173 {
1174 	const struct dpaa_priv  *priv;
1175 	struct dpaa_fq *dpaa_fq;
1176 	int err, error;
1177 
1178 	err = 0;
1179 
1180 	dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
1181 	priv = netdev_priv(dpaa_fq->net_dev);
1182 
1183 	if (dpaa_fq->init) {
1184 		err = qman_retire_fq(fq, NULL);
1185 		if (err < 0 && netif_msg_drv(priv))
1186 			dev_err(dev, "qman_retire_fq(%u) = %d\n",
1187 				qman_fq_fqid(fq), err);
1188 
1189 		error = qman_oos_fq(fq);
1190 		if (error < 0 && netif_msg_drv(priv)) {
1191 			dev_err(dev, "qman_oos_fq(%u) = %d\n",
1192 				qman_fq_fqid(fq), error);
1193 			if (err >= 0)
1194 				err = error;
1195 		}
1196 	}
1197 
1198 	if ((dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1199 	     dpaa_fq->fq_type == FQ_TYPE_RX_PCD) &&
1200 	    xdp_rxq_info_is_reg(&dpaa_fq->xdp_rxq))
1201 		xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq);
1202 
1203 	qman_destroy_fq(fq);
1204 	list_del(&dpaa_fq->list);
1205 
1206 	return err;
1207 }
1208 
1209 static int dpaa_fq_free(struct device *dev, struct list_head *list)
1210 {
1211 	struct dpaa_fq *dpaa_fq, *tmp;
1212 	int err, error;
1213 
1214 	err = 0;
1215 	list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
1216 		error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
1217 		if (error < 0 && err >= 0)
1218 			err = error;
1219 	}
1220 
1221 	return err;
1222 }
1223 
1224 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
1225 				 struct dpaa_fq *defq,
1226 				 struct dpaa_buffer_layout *buf_layout)
1227 {
1228 	struct fman_buffer_prefix_content buf_prefix_content;
1229 	struct fman_port_params params;
1230 	int err;
1231 
1232 	memset(&params, 0, sizeof(params));
1233 	memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1234 
1235 	buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1236 	buf_prefix_content.pass_prs_result = true;
1237 	buf_prefix_content.pass_hash_result = true;
1238 	buf_prefix_content.pass_time_stamp = true;
1239 	buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1240 
1241 	params.specific_params.non_rx_params.err_fqid = errq->fqid;
1242 	params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
1243 
1244 	err = fman_port_config(port, &params);
1245 	if (err) {
1246 		pr_err("%s: fman_port_config failed\n", __func__);
1247 		return err;
1248 	}
1249 
1250 	err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1251 	if (err) {
1252 		pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1253 		       __func__);
1254 		return err;
1255 	}
1256 
1257 	err = fman_port_init(port);
1258 	if (err)
1259 		pr_err("%s: fm_port_init failed\n", __func__);
1260 
1261 	return err;
1262 }
1263 
1264 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp *bp,
1265 				 struct dpaa_fq *errq,
1266 				 struct dpaa_fq *defq, struct dpaa_fq *pcdq,
1267 				 struct dpaa_buffer_layout *buf_layout)
1268 {
1269 	struct fman_buffer_prefix_content buf_prefix_content;
1270 	struct fman_port_rx_params *rx_p;
1271 	struct fman_port_params params;
1272 	int err;
1273 
1274 	memset(&params, 0, sizeof(params));
1275 	memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1276 
1277 	buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1278 	buf_prefix_content.pass_prs_result = true;
1279 	buf_prefix_content.pass_hash_result = true;
1280 	buf_prefix_content.pass_time_stamp = true;
1281 	buf_prefix_content.data_align = DPAA_FD_RX_DATA_ALIGNMENT;
1282 
1283 	rx_p = &params.specific_params.rx_params;
1284 	rx_p->err_fqid = errq->fqid;
1285 	rx_p->dflt_fqid = defq->fqid;
1286 	if (pcdq) {
1287 		rx_p->pcd_base_fqid = pcdq->fqid;
1288 		rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM;
1289 	}
1290 
1291 	rx_p->ext_buf_pools.num_of_pools_used = 1;
1292 	rx_p->ext_buf_pools.ext_buf_pool[0].id =  bp->bpid;
1293 	rx_p->ext_buf_pools.ext_buf_pool[0].size = (u16)bp->size;
1294 
1295 	err = fman_port_config(port, &params);
1296 	if (err) {
1297 		pr_err("%s: fman_port_config failed\n", __func__);
1298 		return err;
1299 	}
1300 
1301 	err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1302 	if (err) {
1303 		pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1304 		       __func__);
1305 		return err;
1306 	}
1307 
1308 	err = fman_port_init(port);
1309 	if (err)
1310 		pr_err("%s: fm_port_init failed\n", __func__);
1311 
1312 	return err;
1313 }
1314 
1315 static int dpaa_eth_init_ports(struct mac_device *mac_dev,
1316 			       struct dpaa_bp *bp,
1317 			       struct fm_port_fqs *port_fqs,
1318 			       struct dpaa_buffer_layout *buf_layout,
1319 			       struct device *dev)
1320 {
1321 	struct fman_port *rxport = mac_dev->port[RX];
1322 	struct fman_port *txport = mac_dev->port[TX];
1323 	int err;
1324 
1325 	err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
1326 				    port_fqs->tx_defq, &buf_layout[TX]);
1327 	if (err)
1328 		return err;
1329 
1330 	err = dpaa_eth_init_rx_port(rxport, bp, port_fqs->rx_errq,
1331 				    port_fqs->rx_defq, port_fqs->rx_pcdq,
1332 				    &buf_layout[RX]);
1333 
1334 	return err;
1335 }
1336 
1337 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
1338 			     struct bm_buffer *bmb, int cnt)
1339 {
1340 	int err;
1341 
1342 	err = bman_release(dpaa_bp->pool, bmb, cnt);
1343 	/* Should never occur, address anyway to avoid leaking the buffers */
1344 	if (WARN_ON(err) && dpaa_bp->free_buf_cb)
1345 		while (cnt-- > 0)
1346 			dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
1347 
1348 	return cnt;
1349 }
1350 
1351 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
1352 {
1353 	struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
1354 	struct dpaa_bp *dpaa_bp;
1355 	int i = 0, j;
1356 
1357 	memset(bmb, 0, sizeof(bmb));
1358 
1359 	do {
1360 		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1361 		if (!dpaa_bp)
1362 			return;
1363 
1364 		j = 0;
1365 		do {
1366 			WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1367 
1368 			bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
1369 
1370 			j++; i++;
1371 		} while (j < ARRAY_SIZE(bmb) &&
1372 				!qm_sg_entry_is_final(&sgt[i - 1]) &&
1373 				sgt[i - 1].bpid == sgt[i].bpid);
1374 
1375 		dpaa_bman_release(dpaa_bp, bmb, j);
1376 	} while (!qm_sg_entry_is_final(&sgt[i - 1]));
1377 }
1378 
1379 static void dpaa_fd_release(const struct net_device *net_dev,
1380 			    const struct qm_fd *fd)
1381 {
1382 	struct qm_sg_entry *sgt;
1383 	struct dpaa_bp *dpaa_bp;
1384 	struct bm_buffer bmb;
1385 	dma_addr_t addr;
1386 	void *vaddr;
1387 
1388 	bmb.data = 0;
1389 	bm_buffer_set64(&bmb, qm_fd_addr(fd));
1390 
1391 	dpaa_bp = dpaa_bpid2pool(fd->bpid);
1392 	if (!dpaa_bp)
1393 		return;
1394 
1395 	if (qm_fd_get_format(fd) == qm_fd_sg) {
1396 		vaddr = phys_to_virt(qm_fd_addr(fd));
1397 		sgt = vaddr + qm_fd_get_offset(fd);
1398 
1399 		dma_unmap_page(dpaa_bp->priv->rx_dma_dev, qm_fd_addr(fd),
1400 			       DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1401 
1402 		dpaa_release_sgt_members(sgt);
1403 
1404 		addr = dma_map_page(dpaa_bp->priv->rx_dma_dev,
1405 				    virt_to_page(vaddr), 0, DPAA_BP_RAW_SIZE,
1406 				    DMA_FROM_DEVICE);
1407 		if (dma_mapping_error(dpaa_bp->priv->rx_dma_dev, addr)) {
1408 			netdev_err(net_dev, "DMA mapping failed\n");
1409 			return;
1410 		}
1411 		bm_buffer_set64(&bmb, addr);
1412 	}
1413 
1414 	dpaa_bman_release(dpaa_bp, &bmb, 1);
1415 }
1416 
1417 static void count_ern(struct dpaa_percpu_priv *percpu_priv,
1418 		      const union qm_mr_entry *msg)
1419 {
1420 	switch (msg->ern.rc & QM_MR_RC_MASK) {
1421 	case QM_MR_RC_CGR_TAILDROP:
1422 		percpu_priv->ern_cnt.cg_tdrop++;
1423 		break;
1424 	case QM_MR_RC_WRED:
1425 		percpu_priv->ern_cnt.wred++;
1426 		break;
1427 	case QM_MR_RC_ERROR:
1428 		percpu_priv->ern_cnt.err_cond++;
1429 		break;
1430 	case QM_MR_RC_ORPWINDOW_EARLY:
1431 		percpu_priv->ern_cnt.early_window++;
1432 		break;
1433 	case QM_MR_RC_ORPWINDOW_LATE:
1434 		percpu_priv->ern_cnt.late_window++;
1435 		break;
1436 	case QM_MR_RC_FQ_TAILDROP:
1437 		percpu_priv->ern_cnt.fq_tdrop++;
1438 		break;
1439 	case QM_MR_RC_ORPWINDOW_RETIRED:
1440 		percpu_priv->ern_cnt.fq_retired++;
1441 		break;
1442 	case QM_MR_RC_ORP_ZERO:
1443 		percpu_priv->ern_cnt.orp_zero++;
1444 		break;
1445 	}
1446 }
1447 
1448 /* Turn on HW checksum computation for this outgoing frame.
1449  * If the current protocol is not something we support in this regard
1450  * (or if the stack has already computed the SW checksum), we do nothing.
1451  *
1452  * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
1453  * otherwise.
1454  *
1455  * Note that this function may modify the fd->cmd field and the skb data buffer
1456  * (the Parse Results area).
1457  */
1458 static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
1459 			       struct sk_buff *skb,
1460 			       struct qm_fd *fd,
1461 			       void *parse_results)
1462 {
1463 	struct fman_prs_result *parse_result;
1464 	u16 ethertype = ntohs(skb->protocol);
1465 	struct ipv6hdr *ipv6h = NULL;
1466 	struct iphdr *iph;
1467 	int retval = 0;
1468 	u8 l4_proto;
1469 
1470 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1471 		return 0;
1472 
1473 	/* Note: L3 csum seems to be already computed in sw, but we can't choose
1474 	 * L4 alone from the FM configuration anyway.
1475 	 */
1476 
1477 	/* Fill in some fields of the Parse Results array, so the FMan
1478 	 * can find them as if they came from the FMan Parser.
1479 	 */
1480 	parse_result = (struct fman_prs_result *)parse_results;
1481 
1482 	/* If we're dealing with VLAN, get the real Ethernet type */
1483 	if (ethertype == ETH_P_8021Q)
1484 		ethertype = ntohs(skb_vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
1485 
1486 	/* Fill in the relevant L3 parse result fields
1487 	 * and read the L4 protocol type
1488 	 */
1489 	switch (ethertype) {
1490 	case ETH_P_IP:
1491 		parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
1492 		iph = ip_hdr(skb);
1493 		WARN_ON(!iph);
1494 		l4_proto = iph->protocol;
1495 		break;
1496 	case ETH_P_IPV6:
1497 		parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
1498 		ipv6h = ipv6_hdr(skb);
1499 		WARN_ON(!ipv6h);
1500 		l4_proto = ipv6h->nexthdr;
1501 		break;
1502 	default:
1503 		/* We shouldn't even be here */
1504 		if (net_ratelimit())
1505 			netif_alert(priv, tx_err, priv->net_dev,
1506 				    "Can't compute HW csum for L3 proto 0x%x\n",
1507 				    ntohs(skb->protocol));
1508 		retval = -EIO;
1509 		goto return_error;
1510 	}
1511 
1512 	/* Fill in the relevant L4 parse result fields */
1513 	switch (l4_proto) {
1514 	case IPPROTO_UDP:
1515 		parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
1516 		break;
1517 	case IPPROTO_TCP:
1518 		parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
1519 		break;
1520 	default:
1521 		if (net_ratelimit())
1522 			netif_alert(priv, tx_err, priv->net_dev,
1523 				    "Can't compute HW csum for L4 proto 0x%x\n",
1524 				    l4_proto);
1525 		retval = -EIO;
1526 		goto return_error;
1527 	}
1528 
1529 	/* At index 0 is IPOffset_1 as defined in the Parse Results */
1530 	parse_result->ip_off[0] = (u8)skb_network_offset(skb);
1531 	parse_result->l4_off = (u8)skb_transport_offset(skb);
1532 
1533 	/* Enable L3 (and L4, if TCP or UDP) HW checksum. */
1534 	fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC);
1535 
1536 	/* On P1023 and similar platforms fd->cmd interpretation could
1537 	 * be disabled by setting CONTEXT_A bit ICMD; currently this bit
1538 	 * is not set so we do not need to check; in the future, if/when
1539 	 * using context_a we need to check this bit
1540 	 */
1541 
1542 return_error:
1543 	return retval;
1544 }
1545 
1546 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
1547 {
1548 	struct net_device *net_dev = dpaa_bp->priv->net_dev;
1549 	struct bm_buffer bmb[8];
1550 	dma_addr_t addr;
1551 	struct page *p;
1552 	u8 i;
1553 
1554 	for (i = 0; i < 8; i++) {
1555 		p = dev_alloc_pages(0);
1556 		if (unlikely(!p)) {
1557 			netdev_err(net_dev, "dev_alloc_pages() failed\n");
1558 			goto release_previous_buffs;
1559 		}
1560 
1561 		addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, p, 0,
1562 				    DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1563 		if (unlikely(dma_mapping_error(dpaa_bp->priv->rx_dma_dev,
1564 					       addr))) {
1565 			netdev_err(net_dev, "DMA map failed\n");
1566 			goto release_previous_buffs;
1567 		}
1568 
1569 		bmb[i].data = 0;
1570 		bm_buffer_set64(&bmb[i], addr);
1571 	}
1572 
1573 release_bufs:
1574 	return dpaa_bman_release(dpaa_bp, bmb, i);
1575 
1576 release_previous_buffs:
1577 	WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
1578 
1579 	bm_buffer_set64(&bmb[i], 0);
1580 	/* Avoid releasing a completely null buffer; bman_release() requires
1581 	 * at least one buffer.
1582 	 */
1583 	if (likely(i))
1584 		goto release_bufs;
1585 
1586 	return 0;
1587 }
1588 
1589 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
1590 {
1591 	int i;
1592 
1593 	/* Give each CPU an allotment of "config_count" buffers */
1594 	for_each_possible_cpu(i) {
1595 		int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
1596 		int j;
1597 
1598 		/* Although we access another CPU's counters here
1599 		 * we do it at boot time so it is safe
1600 		 */
1601 		for (j = 0; j < dpaa_bp->config_count; j += 8)
1602 			*count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
1603 	}
1604 	return 0;
1605 }
1606 
1607 /* Add buffers/(pages) for Rx processing whenever bpool count falls below
1608  * REFILL_THRESHOLD.
1609  */
1610 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
1611 {
1612 	int count = *countptr;
1613 	int new_bufs;
1614 
1615 	if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
1616 		do {
1617 			new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
1618 			if (unlikely(!new_bufs)) {
1619 				/* Avoid looping forever if we've temporarily
1620 				 * run out of memory. We'll try again at the
1621 				 * next NAPI cycle.
1622 				 */
1623 				break;
1624 			}
1625 			count += new_bufs;
1626 		} while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
1627 
1628 		*countptr = count;
1629 		if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
1630 			return -ENOMEM;
1631 	}
1632 
1633 	return 0;
1634 }
1635 
1636 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
1637 {
1638 	struct dpaa_bp *dpaa_bp;
1639 	int *countptr;
1640 
1641 	dpaa_bp = priv->dpaa_bp;
1642 	if (!dpaa_bp)
1643 		return -EINVAL;
1644 	countptr = this_cpu_ptr(dpaa_bp->percpu_count);
1645 
1646 	return dpaa_eth_refill_bpool(dpaa_bp, countptr);
1647 }
1648 
1649 /* Cleanup function for outgoing frame descriptors that were built on Tx path,
1650  * either contiguous frames or scatter/gather ones.
1651  * Skb freeing is not handled here.
1652  *
1653  * This function may be called on error paths in the Tx function, so guard
1654  * against cases when not all fd relevant fields were filled in. To avoid
1655  * reading the invalid transmission timestamp for the error paths set ts to
1656  * false.
1657  *
1658  * Return the skb backpointer, since for S/G frames the buffer containing it
1659  * gets freed here.
1660  *
1661  * No skb backpointer is set when transmitting XDP frames. Cleanup the buffer
1662  * and return NULL in this case.
1663  */
1664 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
1665 					  const struct qm_fd *fd, bool ts)
1666 {
1667 	const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1668 	struct device *dev = priv->net_dev->dev.parent;
1669 	struct skb_shared_hwtstamps shhwtstamps;
1670 	dma_addr_t addr = qm_fd_addr(fd);
1671 	void *vaddr = phys_to_virt(addr);
1672 	const struct qm_sg_entry *sgt;
1673 	struct dpaa_eth_swbp *swbp;
1674 	struct sk_buff *skb;
1675 	u64 ns;
1676 	int i;
1677 
1678 	if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
1679 		dma_unmap_page(priv->tx_dma_dev, addr,
1680 			       qm_fd_get_offset(fd) + DPAA_SGT_SIZE,
1681 			       dma_dir);
1682 
1683 		/* The sgt buffer has been allocated with netdev_alloc_frag(),
1684 		 * it's from lowmem.
1685 		 */
1686 		sgt = vaddr + qm_fd_get_offset(fd);
1687 
1688 		/* sgt[0] is from lowmem, was dma_map_single()-ed */
1689 		dma_unmap_single(priv->tx_dma_dev, qm_sg_addr(&sgt[0]),
1690 				 qm_sg_entry_get_len(&sgt[0]), dma_dir);
1691 
1692 		/* remaining pages were mapped with skb_frag_dma_map() */
1693 		for (i = 1; (i < DPAA_SGT_MAX_ENTRIES) &&
1694 		     !qm_sg_entry_is_final(&sgt[i - 1]); i++) {
1695 			WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1696 
1697 			dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[i]),
1698 				       qm_sg_entry_get_len(&sgt[i]), dma_dir);
1699 		}
1700 	} else {
1701 		dma_unmap_single(priv->tx_dma_dev, addr,
1702 				 qm_fd_get_offset(fd) + qm_fd_get_length(fd),
1703 				 dma_dir);
1704 	}
1705 
1706 	swbp = (struct dpaa_eth_swbp *)vaddr;
1707 	skb = swbp->skb;
1708 
1709 	/* No skb backpointer is set when running XDP. An xdp_frame
1710 	 * backpointer is saved instead.
1711 	 */
1712 	if (!skb) {
1713 		xdp_return_frame(swbp->xdpf);
1714 		return NULL;
1715 	}
1716 
1717 	/* DMA unmapping is required before accessing the HW provided info */
1718 	if (ts && priv->tx_tstamp &&
1719 	    skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
1720 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
1721 
1722 		if (!fman_port_get_tstamp(priv->mac_dev->port[TX], vaddr,
1723 					  &ns)) {
1724 			shhwtstamps.hwtstamp = ns_to_ktime(ns);
1725 			skb_tstamp_tx(skb, &shhwtstamps);
1726 		} else {
1727 			dev_warn(dev, "fman_port_get_tstamp failed!\n");
1728 		}
1729 	}
1730 
1731 	if (qm_fd_get_format(fd) == qm_fd_sg)
1732 		/* Free the page that we allocated on Tx for the SGT */
1733 		free_pages((unsigned long)vaddr, 0);
1734 
1735 	return skb;
1736 }
1737 
1738 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd)
1739 {
1740 	/* The parser has run and performed L4 checksum validation.
1741 	 * We know there were no parser errors (and implicitly no
1742 	 * L4 csum error), otherwise we wouldn't be here.
1743 	 */
1744 	if ((priv->net_dev->features & NETIF_F_RXCSUM) &&
1745 	    (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV))
1746 		return CHECKSUM_UNNECESSARY;
1747 
1748 	/* We're here because either the parser didn't run or the L4 checksum
1749 	 * was not verified. This may include the case of a UDP frame with
1750 	 * checksum zero or an L4 proto other than TCP/UDP
1751 	 */
1752 	return CHECKSUM_NONE;
1753 }
1754 
1755 #define PTR_IS_ALIGNED(x, a) (IS_ALIGNED((unsigned long)(x), (a)))
1756 
1757 /* Build a linear skb around the received buffer.
1758  * We are guaranteed there is enough room at the end of the data buffer to
1759  * accommodate the shared info area of the skb.
1760  */
1761 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
1762 					const struct qm_fd *fd)
1763 {
1764 	ssize_t fd_off = qm_fd_get_offset(fd);
1765 	dma_addr_t addr = qm_fd_addr(fd);
1766 	struct dpaa_bp *dpaa_bp;
1767 	struct sk_buff *skb;
1768 	void *vaddr;
1769 
1770 	vaddr = phys_to_virt(addr);
1771 	WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1772 
1773 	dpaa_bp = dpaa_bpid2pool(fd->bpid);
1774 	if (!dpaa_bp)
1775 		goto free_buffer;
1776 
1777 	skb = build_skb(vaddr, dpaa_bp->size +
1778 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
1779 	if (WARN_ONCE(!skb, "Build skb failure on Rx\n"))
1780 		goto free_buffer;
1781 	skb_reserve(skb, fd_off);
1782 	skb_put(skb, qm_fd_get_length(fd));
1783 
1784 	skb->ip_summed = rx_csum_offload(priv, fd);
1785 
1786 	return skb;
1787 
1788 free_buffer:
1789 	free_pages((unsigned long)vaddr, 0);
1790 	return NULL;
1791 }
1792 
1793 /* Build an skb with the data of the first S/G entry in the linear portion and
1794  * the rest of the frame as skb fragments.
1795  *
1796  * The page fragment holding the S/G Table is recycled here.
1797  */
1798 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
1799 				    const struct qm_fd *fd)
1800 {
1801 	ssize_t fd_off = qm_fd_get_offset(fd);
1802 	dma_addr_t addr = qm_fd_addr(fd);
1803 	const struct qm_sg_entry *sgt;
1804 	struct page *page, *head_page;
1805 	struct dpaa_bp *dpaa_bp;
1806 	void *vaddr, *sg_vaddr;
1807 	int frag_off, frag_len;
1808 	struct sk_buff *skb;
1809 	dma_addr_t sg_addr;
1810 	int page_offset;
1811 	unsigned int sz;
1812 	int *count_ptr;
1813 	int i, j;
1814 
1815 	vaddr = phys_to_virt(addr);
1816 	WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1817 
1818 	/* Iterate through the SGT entries and add data buffers to the skb */
1819 	sgt = vaddr + fd_off;
1820 	skb = NULL;
1821 	for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
1822 		/* Extension bit is not supported */
1823 		WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1824 
1825 		sg_addr = qm_sg_addr(&sgt[i]);
1826 		sg_vaddr = phys_to_virt(sg_addr);
1827 		WARN_ON(!PTR_IS_ALIGNED(sg_vaddr, SMP_CACHE_BYTES));
1828 
1829 		dma_unmap_page(priv->rx_dma_dev, sg_addr,
1830 			       DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1831 
1832 		/* We may use multiple Rx pools */
1833 		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1834 		if (!dpaa_bp)
1835 			goto free_buffers;
1836 
1837 		if (!skb) {
1838 			sz = dpaa_bp->size +
1839 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1840 			skb = build_skb(sg_vaddr, sz);
1841 			if (WARN_ON(!skb))
1842 				goto free_buffers;
1843 
1844 			skb->ip_summed = rx_csum_offload(priv, fd);
1845 
1846 			/* Make sure forwarded skbs will have enough space
1847 			 * on Tx, if extra headers are added.
1848 			 */
1849 			WARN_ON(fd_off != priv->rx_headroom);
1850 			skb_reserve(skb, fd_off);
1851 			skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
1852 		} else {
1853 			/* Not the first S/G entry; all data from buffer will
1854 			 * be added in an skb fragment; fragment index is offset
1855 			 * by one since first S/G entry was incorporated in the
1856 			 * linear part of the skb.
1857 			 *
1858 			 * Caution: 'page' may be a tail page.
1859 			 */
1860 			page = virt_to_page(sg_vaddr);
1861 			head_page = virt_to_head_page(sg_vaddr);
1862 
1863 			/* Compute offset in (possibly tail) page */
1864 			page_offset = ((unsigned long)sg_vaddr &
1865 					(PAGE_SIZE - 1)) +
1866 				(page_address(page) - page_address(head_page));
1867 			/* page_offset only refers to the beginning of sgt[i];
1868 			 * but the buffer itself may have an internal offset.
1869 			 */
1870 			frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset;
1871 			frag_len = qm_sg_entry_get_len(&sgt[i]);
1872 			/* skb_add_rx_frag() does no checking on the page; if
1873 			 * we pass it a tail page, we'll end up with
1874 			 * bad page accounting and eventually with segafults.
1875 			 */
1876 			skb_add_rx_frag(skb, i - 1, head_page, frag_off,
1877 					frag_len, dpaa_bp->size);
1878 		}
1879 
1880 		/* Update the pool count for the current {cpu x bpool} */
1881 		count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1882 		(*count_ptr)--;
1883 
1884 		if (qm_sg_entry_is_final(&sgt[i]))
1885 			break;
1886 	}
1887 	WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
1888 
1889 	/* free the SG table buffer */
1890 	free_pages((unsigned long)vaddr, 0);
1891 
1892 	return skb;
1893 
1894 free_buffers:
1895 	/* free all the SG entries */
1896 	for (j = 0; j < DPAA_SGT_MAX_ENTRIES ; j++) {
1897 		sg_addr = qm_sg_addr(&sgt[j]);
1898 		sg_vaddr = phys_to_virt(sg_addr);
1899 		/* all pages 0..i were unmaped */
1900 		if (j > i)
1901 			dma_unmap_page(priv->rx_dma_dev, qm_sg_addr(&sgt[j]),
1902 				       DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1903 		free_pages((unsigned long)sg_vaddr, 0);
1904 		/* counters 0..i-1 were decremented */
1905 		if (j >= i) {
1906 			dpaa_bp = dpaa_bpid2pool(sgt[j].bpid);
1907 			if (dpaa_bp) {
1908 				count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1909 				(*count_ptr)--;
1910 			}
1911 		}
1912 
1913 		if (qm_sg_entry_is_final(&sgt[j]))
1914 			break;
1915 	}
1916 	/* free the SGT fragment */
1917 	free_pages((unsigned long)vaddr, 0);
1918 
1919 	return NULL;
1920 }
1921 
1922 static int skb_to_contig_fd(struct dpaa_priv *priv,
1923 			    struct sk_buff *skb, struct qm_fd *fd,
1924 			    int *offset)
1925 {
1926 	struct net_device *net_dev = priv->net_dev;
1927 	enum dma_data_direction dma_dir;
1928 	struct dpaa_eth_swbp *swbp;
1929 	unsigned char *buff_start;
1930 	dma_addr_t addr;
1931 	int err;
1932 
1933 	/* We are guaranteed to have at least tx_headroom bytes
1934 	 * available, so just use that for offset.
1935 	 */
1936 	fd->bpid = FSL_DPAA_BPID_INV;
1937 	buff_start = skb->data - priv->tx_headroom;
1938 	dma_dir = DMA_TO_DEVICE;
1939 
1940 	swbp = (struct dpaa_eth_swbp *)buff_start;
1941 	swbp->skb = skb;
1942 
1943 	/* Enable L3/L4 hardware checksum computation.
1944 	 *
1945 	 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1946 	 * need to write into the skb.
1947 	 */
1948 	err = dpaa_enable_tx_csum(priv, skb, fd,
1949 				  buff_start + DPAA_TX_PRIV_DATA_SIZE);
1950 	if (unlikely(err < 0)) {
1951 		if (net_ratelimit())
1952 			netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1953 				  err);
1954 		return err;
1955 	}
1956 
1957 	/* Fill in the rest of the FD fields */
1958 	qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
1959 	fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1960 
1961 	/* Map the entire buffer size that may be seen by FMan, but no more */
1962 	addr = dma_map_single(priv->tx_dma_dev, buff_start,
1963 			      priv->tx_headroom + skb->len, dma_dir);
1964 	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
1965 		if (net_ratelimit())
1966 			netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
1967 		return -EINVAL;
1968 	}
1969 	qm_fd_addr_set64(fd, addr);
1970 
1971 	return 0;
1972 }
1973 
1974 static int skb_to_sg_fd(struct dpaa_priv *priv,
1975 			struct sk_buff *skb, struct qm_fd *fd)
1976 {
1977 	const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1978 	const int nr_frags = skb_shinfo(skb)->nr_frags;
1979 	struct net_device *net_dev = priv->net_dev;
1980 	struct dpaa_eth_swbp *swbp;
1981 	struct qm_sg_entry *sgt;
1982 	void *buff_start;
1983 	skb_frag_t *frag;
1984 	dma_addr_t addr;
1985 	size_t frag_len;
1986 	struct page *p;
1987 	int i, j, err;
1988 
1989 	/* get a page to store the SGTable */
1990 	p = dev_alloc_pages(0);
1991 	if (unlikely(!p)) {
1992 		netdev_err(net_dev, "dev_alloc_pages() failed\n");
1993 		return -ENOMEM;
1994 	}
1995 	buff_start = page_address(p);
1996 
1997 	/* Enable L3/L4 hardware checksum computation.
1998 	 *
1999 	 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
2000 	 * need to write into the skb.
2001 	 */
2002 	err = dpaa_enable_tx_csum(priv, skb, fd,
2003 				  buff_start + DPAA_TX_PRIV_DATA_SIZE);
2004 	if (unlikely(err < 0)) {
2005 		if (net_ratelimit())
2006 			netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
2007 				  err);
2008 		goto csum_failed;
2009 	}
2010 
2011 	/* SGT[0] is used by the linear part */
2012 	sgt = (struct qm_sg_entry *)(buff_start + priv->tx_headroom);
2013 	frag_len = skb_headlen(skb);
2014 	qm_sg_entry_set_len(&sgt[0], frag_len);
2015 	sgt[0].bpid = FSL_DPAA_BPID_INV;
2016 	sgt[0].offset = 0;
2017 	addr = dma_map_single(priv->tx_dma_dev, skb->data,
2018 			      skb_headlen(skb), dma_dir);
2019 	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2020 		netdev_err(priv->net_dev, "DMA mapping failed\n");
2021 		err = -EINVAL;
2022 		goto sg0_map_failed;
2023 	}
2024 	qm_sg_entry_set64(&sgt[0], addr);
2025 
2026 	/* populate the rest of SGT entries */
2027 	for (i = 0; i < nr_frags; i++) {
2028 		frag = &skb_shinfo(skb)->frags[i];
2029 		frag_len = skb_frag_size(frag);
2030 		WARN_ON(!skb_frag_page(frag));
2031 		addr = skb_frag_dma_map(priv->tx_dma_dev, frag, 0,
2032 					frag_len, dma_dir);
2033 		if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2034 			netdev_err(priv->net_dev, "DMA mapping failed\n");
2035 			err = -EINVAL;
2036 			goto sg_map_failed;
2037 		}
2038 
2039 		qm_sg_entry_set_len(&sgt[i + 1], frag_len);
2040 		sgt[i + 1].bpid = FSL_DPAA_BPID_INV;
2041 		sgt[i + 1].offset = 0;
2042 
2043 		/* keep the offset in the address */
2044 		qm_sg_entry_set64(&sgt[i + 1], addr);
2045 	}
2046 
2047 	/* Set the final bit in the last used entry of the SGT */
2048 	qm_sg_entry_set_f(&sgt[nr_frags], frag_len);
2049 
2050 	/* set fd offset to priv->tx_headroom */
2051 	qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
2052 
2053 	/* DMA map the SGT page */
2054 	swbp = (struct dpaa_eth_swbp *)buff_start;
2055 	swbp->skb = skb;
2056 
2057 	addr = dma_map_page(priv->tx_dma_dev, p, 0,
2058 			    priv->tx_headroom + DPAA_SGT_SIZE, dma_dir);
2059 	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2060 		netdev_err(priv->net_dev, "DMA mapping failed\n");
2061 		err = -EINVAL;
2062 		goto sgt_map_failed;
2063 	}
2064 
2065 	fd->bpid = FSL_DPAA_BPID_INV;
2066 	fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
2067 	qm_fd_addr_set64(fd, addr);
2068 
2069 	return 0;
2070 
2071 sgt_map_failed:
2072 sg_map_failed:
2073 	for (j = 0; j < i; j++)
2074 		dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[j]),
2075 			       qm_sg_entry_get_len(&sgt[j]), dma_dir);
2076 sg0_map_failed:
2077 csum_failed:
2078 	free_pages((unsigned long)buff_start, 0);
2079 
2080 	return err;
2081 }
2082 
2083 static inline int dpaa_xmit(struct dpaa_priv *priv,
2084 			    struct rtnl_link_stats64 *percpu_stats,
2085 			    int queue,
2086 			    struct qm_fd *fd)
2087 {
2088 	struct qman_fq *egress_fq;
2089 	int err, i;
2090 
2091 	egress_fq = priv->egress_fqs[queue];
2092 	if (fd->bpid == FSL_DPAA_BPID_INV)
2093 		fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue]));
2094 
2095 	/* Trace this Tx fd */
2096 	trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
2097 
2098 	for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
2099 		err = qman_enqueue(egress_fq, fd);
2100 		if (err != -EBUSY)
2101 			break;
2102 	}
2103 
2104 	if (unlikely(err < 0)) {
2105 		percpu_stats->tx_fifo_errors++;
2106 		return err;
2107 	}
2108 
2109 	percpu_stats->tx_packets++;
2110 	percpu_stats->tx_bytes += qm_fd_get_length(fd);
2111 
2112 	return 0;
2113 }
2114 
2115 #ifdef CONFIG_DPAA_ERRATUM_A050385
2116 static int dpaa_a050385_wa_skb(struct net_device *net_dev, struct sk_buff **s)
2117 {
2118 	struct dpaa_priv *priv = netdev_priv(net_dev);
2119 	struct sk_buff *new_skb, *skb = *s;
2120 	unsigned char *start, i;
2121 
2122 	/* check linear buffer alignment */
2123 	if (!PTR_IS_ALIGNED(skb->data, DPAA_A050385_ALIGN))
2124 		goto workaround;
2125 
2126 	/* linear buffers just need to have an aligned start */
2127 	if (!skb_is_nonlinear(skb))
2128 		return 0;
2129 
2130 	/* linear data size for nonlinear skbs needs to be aligned */
2131 	if (!IS_ALIGNED(skb_headlen(skb), DPAA_A050385_ALIGN))
2132 		goto workaround;
2133 
2134 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2135 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2136 
2137 		/* all fragments need to have aligned start addresses */
2138 		if (!IS_ALIGNED(skb_frag_off(frag), DPAA_A050385_ALIGN))
2139 			goto workaround;
2140 
2141 		/* all but last fragment need to have aligned sizes */
2142 		if (!IS_ALIGNED(skb_frag_size(frag), DPAA_A050385_ALIGN) &&
2143 		    (i < skb_shinfo(skb)->nr_frags - 1))
2144 			goto workaround;
2145 	}
2146 
2147 	return 0;
2148 
2149 workaround:
2150 	/* copy all the skb content into a new linear buffer */
2151 	new_skb = netdev_alloc_skb(net_dev, skb->len + DPAA_A050385_ALIGN - 1 +
2152 						priv->tx_headroom);
2153 	if (!new_skb)
2154 		return -ENOMEM;
2155 
2156 	/* NET_SKB_PAD bytes already reserved, adding up to tx_headroom */
2157 	skb_reserve(new_skb, priv->tx_headroom - NET_SKB_PAD);
2158 
2159 	/* Workaround for DPAA_A050385 requires data start to be aligned */
2160 	start = PTR_ALIGN(new_skb->data, DPAA_A050385_ALIGN);
2161 	if (start - new_skb->data)
2162 		skb_reserve(new_skb, start - new_skb->data);
2163 
2164 	skb_put(new_skb, skb->len);
2165 	skb_copy_bits(skb, 0, new_skb->data, skb->len);
2166 	skb_copy_header(new_skb, skb);
2167 	new_skb->dev = skb->dev;
2168 
2169 	/* Copy relevant timestamp info from the old skb to the new */
2170 	if (priv->tx_tstamp) {
2171 		skb_shinfo(new_skb)->tx_flags = skb_shinfo(skb)->tx_flags;
2172 		skb_shinfo(new_skb)->hwtstamps = skb_shinfo(skb)->hwtstamps;
2173 		skb_shinfo(new_skb)->tskey = skb_shinfo(skb)->tskey;
2174 		if (skb->sk)
2175 			skb_set_owner_w(new_skb, skb->sk);
2176 	}
2177 
2178 	/* We move the headroom when we align it so we have to reset the
2179 	 * network and transport header offsets relative to the new data
2180 	 * pointer. The checksum offload relies on these offsets.
2181 	 */
2182 	skb_set_network_header(new_skb, skb_network_offset(skb));
2183 	skb_set_transport_header(new_skb, skb_transport_offset(skb));
2184 
2185 	dev_kfree_skb(skb);
2186 	*s = new_skb;
2187 
2188 	return 0;
2189 }
2190 
2191 static int dpaa_a050385_wa_xdpf(struct dpaa_priv *priv,
2192 				struct xdp_frame **init_xdpf)
2193 {
2194 	struct xdp_frame *new_xdpf, *xdpf = *init_xdpf;
2195 	void *new_buff, *aligned_data;
2196 	struct page *p;
2197 	u32 data_shift;
2198 	int headroom;
2199 
2200 	/* Check the data alignment and make sure the headroom is large
2201 	 * enough to store the xdpf backpointer. Use an aligned headroom
2202 	 * value.
2203 	 *
2204 	 * Due to alignment constraints, we give XDP access to the full 256
2205 	 * byte frame headroom. If the XDP program uses all of it, copy the
2206 	 * data to a new buffer and make room for storing the backpointer.
2207 	 */
2208 	if (PTR_IS_ALIGNED(xdpf->data, DPAA_FD_DATA_ALIGNMENT) &&
2209 	    xdpf->headroom >= priv->tx_headroom) {
2210 		xdpf->headroom = priv->tx_headroom;
2211 		return 0;
2212 	}
2213 
2214 	/* Try to move the data inside the buffer just enough to align it and
2215 	 * store the xdpf backpointer. If the available headroom isn't large
2216 	 * enough, resort to allocating a new buffer and copying the data.
2217 	 */
2218 	aligned_data = PTR_ALIGN_DOWN(xdpf->data, DPAA_FD_DATA_ALIGNMENT);
2219 	data_shift = xdpf->data - aligned_data;
2220 
2221 	/* The XDP frame's headroom needs to be large enough to accommodate
2222 	 * shifting the data as well as storing the xdpf backpointer.
2223 	 */
2224 	if (xdpf->headroom  >= data_shift + priv->tx_headroom) {
2225 		memmove(aligned_data, xdpf->data, xdpf->len);
2226 		xdpf->data = aligned_data;
2227 		xdpf->headroom = priv->tx_headroom;
2228 		return 0;
2229 	}
2230 
2231 	/* The new xdp_frame is stored in the new buffer. Reserve enough space
2232 	 * in the headroom for storing it along with the driver's private
2233 	 * info. The headroom needs to be aligned to DPAA_FD_DATA_ALIGNMENT to
2234 	 * guarantee the data's alignment in the buffer.
2235 	 */
2236 	headroom = ALIGN(sizeof(*new_xdpf) + priv->tx_headroom,
2237 			 DPAA_FD_DATA_ALIGNMENT);
2238 
2239 	/* Assure the extended headroom and data don't overflow the buffer,
2240 	 * while maintaining the mandatory tailroom.
2241 	 */
2242 	if (headroom + xdpf->len > DPAA_BP_RAW_SIZE -
2243 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
2244 		return -ENOMEM;
2245 
2246 	p = dev_alloc_pages(0);
2247 	if (unlikely(!p))
2248 		return -ENOMEM;
2249 
2250 	/* Copy the data to the new buffer at a properly aligned offset */
2251 	new_buff = page_address(p);
2252 	memcpy(new_buff + headroom, xdpf->data, xdpf->len);
2253 
2254 	/* Create an XDP frame around the new buffer in a similar fashion
2255 	 * to xdp_convert_buff_to_frame.
2256 	 */
2257 	new_xdpf = new_buff;
2258 	new_xdpf->data = new_buff + headroom;
2259 	new_xdpf->len = xdpf->len;
2260 	new_xdpf->headroom = priv->tx_headroom;
2261 	new_xdpf->frame_sz = DPAA_BP_RAW_SIZE;
2262 	new_xdpf->mem.type = MEM_TYPE_PAGE_ORDER0;
2263 
2264 	/* Release the initial buffer */
2265 	xdp_return_frame_rx_napi(xdpf);
2266 
2267 	*init_xdpf = new_xdpf;
2268 	return 0;
2269 }
2270 #endif
2271 
2272 static netdev_tx_t
2273 dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
2274 {
2275 	const int queue_mapping = skb_get_queue_mapping(skb);
2276 	struct rtnl_link_stats64 *percpu_stats;
2277 	struct dpaa_percpu_priv *percpu_priv;
2278 	struct netdev_queue *txq;
2279 	struct dpaa_priv *priv;
2280 	struct qm_fd fd;
2281 	bool nonlinear;
2282 	int offset = 0;
2283 	int err = 0;
2284 
2285 	priv = netdev_priv(net_dev);
2286 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2287 	percpu_stats = &percpu_priv->stats;
2288 
2289 	qm_fd_clear_fd(&fd);
2290 
2291 	/* Packet data is always read as 32-bit words, so zero out any part of
2292 	 * the skb which might be sent if we have to pad the packet
2293 	 */
2294 	if (__skb_put_padto(skb, ETH_ZLEN, false))
2295 		goto enomem;
2296 
2297 	nonlinear = skb_is_nonlinear(skb);
2298 	if (!nonlinear) {
2299 		/* We're going to store the skb backpointer at the beginning
2300 		 * of the data buffer, so we need a privately owned skb
2301 		 *
2302 		 * We've made sure skb is not shared in dev->priv_flags,
2303 		 * we need to verify the skb head is not cloned
2304 		 */
2305 		if (skb_cow_head(skb, priv->tx_headroom))
2306 			goto enomem;
2307 
2308 		WARN_ON(skb_is_nonlinear(skb));
2309 	}
2310 
2311 	/* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
2312 	 * make sure we don't feed FMan with more fragments than it supports.
2313 	 */
2314 	if (unlikely(nonlinear &&
2315 		     (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) {
2316 		/* If the egress skb contains more fragments than we support
2317 		 * we have no choice but to linearize it ourselves.
2318 		 */
2319 		if (__skb_linearize(skb))
2320 			goto enomem;
2321 
2322 		nonlinear = skb_is_nonlinear(skb);
2323 	}
2324 
2325 #ifdef CONFIG_DPAA_ERRATUM_A050385
2326 	if (unlikely(fman_has_errata_a050385())) {
2327 		if (dpaa_a050385_wa_skb(net_dev, &skb))
2328 			goto enomem;
2329 		nonlinear = skb_is_nonlinear(skb);
2330 	}
2331 #endif
2332 
2333 	if (nonlinear) {
2334 		/* Just create a S/G fd based on the skb */
2335 		err = skb_to_sg_fd(priv, skb, &fd);
2336 		percpu_priv->tx_frag_skbuffs++;
2337 	} else {
2338 		/* Create a contig FD from this skb */
2339 		err = skb_to_contig_fd(priv, skb, &fd, &offset);
2340 	}
2341 	if (unlikely(err < 0))
2342 		goto skb_to_fd_failed;
2343 
2344 	txq = netdev_get_tx_queue(net_dev, queue_mapping);
2345 
2346 	/* LLTX requires to do our own update of trans_start */
2347 	txq_trans_cond_update(txq);
2348 
2349 	if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
2350 		fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD);
2351 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2352 	}
2353 
2354 	if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
2355 		return NETDEV_TX_OK;
2356 
2357 	dpaa_cleanup_tx_fd(priv, &fd, false);
2358 skb_to_fd_failed:
2359 enomem:
2360 	percpu_stats->tx_errors++;
2361 	dev_kfree_skb(skb);
2362 	return NETDEV_TX_OK;
2363 }
2364 
2365 static void dpaa_rx_error(struct net_device *net_dev,
2366 			  const struct dpaa_priv *priv,
2367 			  struct dpaa_percpu_priv *percpu_priv,
2368 			  const struct qm_fd *fd,
2369 			  u32 fqid)
2370 {
2371 	if (net_ratelimit())
2372 		netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
2373 			  be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS);
2374 
2375 	percpu_priv->stats.rx_errors++;
2376 
2377 	if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA)
2378 		percpu_priv->rx_errors.dme++;
2379 	if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL)
2380 		percpu_priv->rx_errors.fpe++;
2381 	if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE)
2382 		percpu_priv->rx_errors.fse++;
2383 	if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR)
2384 		percpu_priv->rx_errors.phe++;
2385 
2386 	dpaa_fd_release(net_dev, fd);
2387 }
2388 
2389 static void dpaa_tx_error(struct net_device *net_dev,
2390 			  const struct dpaa_priv *priv,
2391 			  struct dpaa_percpu_priv *percpu_priv,
2392 			  const struct qm_fd *fd,
2393 			  u32 fqid)
2394 {
2395 	struct sk_buff *skb;
2396 
2397 	if (net_ratelimit())
2398 		netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2399 			   be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS);
2400 
2401 	percpu_priv->stats.tx_errors++;
2402 
2403 	skb = dpaa_cleanup_tx_fd(priv, fd, false);
2404 	dev_kfree_skb(skb);
2405 }
2406 
2407 static int dpaa_eth_poll(struct napi_struct *napi, int budget)
2408 {
2409 	struct dpaa_napi_portal *np =
2410 			container_of(napi, struct dpaa_napi_portal, napi);
2411 	int cleaned;
2412 
2413 	np->xdp_act = 0;
2414 
2415 	cleaned = qman_p_poll_dqrr(np->p, budget);
2416 
2417 	if (np->xdp_act & XDP_REDIRECT)
2418 		xdp_do_flush();
2419 
2420 	if (cleaned < budget) {
2421 		napi_complete_done(napi, cleaned);
2422 		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2423 	} else if (np->down) {
2424 		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2425 	}
2426 
2427 	return cleaned;
2428 }
2429 
2430 static void dpaa_tx_conf(struct net_device *net_dev,
2431 			 const struct dpaa_priv *priv,
2432 			 struct dpaa_percpu_priv *percpu_priv,
2433 			 const struct qm_fd *fd,
2434 			 u32 fqid)
2435 {
2436 	struct sk_buff	*skb;
2437 
2438 	if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) {
2439 		if (net_ratelimit())
2440 			netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2441 				   be32_to_cpu(fd->status) &
2442 				   FM_FD_STAT_TX_ERRORS);
2443 
2444 		percpu_priv->stats.tx_errors++;
2445 	}
2446 
2447 	percpu_priv->tx_confirm++;
2448 
2449 	skb = dpaa_cleanup_tx_fd(priv, fd, true);
2450 
2451 	consume_skb(skb);
2452 }
2453 
2454 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
2455 					 struct qman_portal *portal, bool sched_napi)
2456 {
2457 	if (sched_napi) {
2458 		/* Disable QMan IRQ and invoke NAPI */
2459 		qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
2460 
2461 		percpu_priv->np.p = portal;
2462 		napi_schedule(&percpu_priv->np.napi);
2463 		percpu_priv->in_interrupt++;
2464 		return 1;
2465 	}
2466 	return 0;
2467 }
2468 
2469 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
2470 					      struct qman_fq *fq,
2471 					      const struct qm_dqrr_entry *dq,
2472 					      bool sched_napi)
2473 {
2474 	struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2475 	struct dpaa_percpu_priv *percpu_priv;
2476 	struct net_device *net_dev;
2477 	struct dpaa_bp *dpaa_bp;
2478 	struct dpaa_priv *priv;
2479 
2480 	net_dev = dpaa_fq->net_dev;
2481 	priv = netdev_priv(net_dev);
2482 	dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2483 	if (!dpaa_bp)
2484 		return qman_cb_dqrr_consume;
2485 
2486 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2487 
2488 	if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2489 		return qman_cb_dqrr_stop;
2490 
2491 	dpaa_eth_refill_bpools(priv);
2492 	dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2493 
2494 	return qman_cb_dqrr_consume;
2495 }
2496 
2497 static int dpaa_xdp_xmit_frame(struct net_device *net_dev,
2498 			       struct xdp_frame *xdpf)
2499 {
2500 	struct dpaa_priv *priv = netdev_priv(net_dev);
2501 	struct rtnl_link_stats64 *percpu_stats;
2502 	struct dpaa_percpu_priv *percpu_priv;
2503 	struct dpaa_eth_swbp *swbp;
2504 	struct netdev_queue *txq;
2505 	void *buff_start;
2506 	struct qm_fd fd;
2507 	dma_addr_t addr;
2508 	int err;
2509 
2510 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2511 	percpu_stats = &percpu_priv->stats;
2512 
2513 #ifdef CONFIG_DPAA_ERRATUM_A050385
2514 	if (unlikely(fman_has_errata_a050385())) {
2515 		if (dpaa_a050385_wa_xdpf(priv, &xdpf)) {
2516 			err = -ENOMEM;
2517 			goto out_error;
2518 		}
2519 	}
2520 #endif
2521 
2522 	if (xdpf->headroom < DPAA_TX_PRIV_DATA_SIZE) {
2523 		err = -EINVAL;
2524 		goto out_error;
2525 	}
2526 
2527 	buff_start = xdpf->data - xdpf->headroom;
2528 
2529 	/* Leave empty the skb backpointer at the start of the buffer.
2530 	 * Save the XDP frame for easy cleanup on confirmation.
2531 	 */
2532 	swbp = (struct dpaa_eth_swbp *)buff_start;
2533 	swbp->skb = NULL;
2534 	swbp->xdpf = xdpf;
2535 
2536 	qm_fd_clear_fd(&fd);
2537 	fd.bpid = FSL_DPAA_BPID_INV;
2538 	fd.cmd |= cpu_to_be32(FM_FD_CMD_FCO);
2539 	qm_fd_set_contig(&fd, xdpf->headroom, xdpf->len);
2540 
2541 	addr = dma_map_single(priv->tx_dma_dev, buff_start,
2542 			      xdpf->headroom + xdpf->len,
2543 			      DMA_TO_DEVICE);
2544 	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2545 		err = -EINVAL;
2546 		goto out_error;
2547 	}
2548 
2549 	qm_fd_addr_set64(&fd, addr);
2550 
2551 	/* Bump the trans_start */
2552 	txq = netdev_get_tx_queue(net_dev, smp_processor_id());
2553 	txq_trans_cond_update(txq);
2554 
2555 	err = dpaa_xmit(priv, percpu_stats, smp_processor_id(), &fd);
2556 	if (err) {
2557 		dma_unmap_single(priv->tx_dma_dev, addr,
2558 				 qm_fd_get_offset(&fd) + qm_fd_get_length(&fd),
2559 				 DMA_TO_DEVICE);
2560 		goto out_error;
2561 	}
2562 
2563 	return 0;
2564 
2565 out_error:
2566 	percpu_stats->tx_errors++;
2567 	return err;
2568 }
2569 
2570 static u32 dpaa_run_xdp(struct dpaa_priv *priv, struct qm_fd *fd, void *vaddr,
2571 			struct dpaa_fq *dpaa_fq, unsigned int *xdp_meta_len)
2572 {
2573 	ssize_t fd_off = qm_fd_get_offset(fd);
2574 	struct bpf_prog *xdp_prog;
2575 	struct xdp_frame *xdpf;
2576 	struct xdp_buff xdp;
2577 	u32 xdp_act;
2578 	int err;
2579 
2580 	xdp_prog = READ_ONCE(priv->xdp_prog);
2581 	if (!xdp_prog)
2582 		return XDP_PASS;
2583 
2584 	xdp_init_buff(&xdp, DPAA_BP_RAW_SIZE - DPAA_TX_PRIV_DATA_SIZE,
2585 		      &dpaa_fq->xdp_rxq);
2586 	xdp_prepare_buff(&xdp, vaddr + fd_off - XDP_PACKET_HEADROOM,
2587 			 XDP_PACKET_HEADROOM, qm_fd_get_length(fd), true);
2588 
2589 	/* We reserve a fixed headroom of 256 bytes under the erratum and we
2590 	 * offer it all to XDP programs to use. If no room is left for the
2591 	 * xdpf backpointer on TX, we will need to copy the data.
2592 	 * Disable metadata support since data realignments might be required
2593 	 * and the information can be lost.
2594 	 */
2595 #ifdef CONFIG_DPAA_ERRATUM_A050385
2596 	if (unlikely(fman_has_errata_a050385())) {
2597 		xdp_set_data_meta_invalid(&xdp);
2598 		xdp.data_hard_start = vaddr;
2599 		xdp.frame_sz = DPAA_BP_RAW_SIZE;
2600 	}
2601 #endif
2602 
2603 	xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp);
2604 
2605 	/* Update the length and the offset of the FD */
2606 	qm_fd_set_contig(fd, xdp.data - vaddr, xdp.data_end - xdp.data);
2607 
2608 	switch (xdp_act) {
2609 	case XDP_PASS:
2610 #ifdef CONFIG_DPAA_ERRATUM_A050385
2611 		*xdp_meta_len = xdp_data_meta_unsupported(&xdp) ? 0 :
2612 				xdp.data - xdp.data_meta;
2613 #else
2614 		*xdp_meta_len = xdp.data - xdp.data_meta;
2615 #endif
2616 		break;
2617 	case XDP_TX:
2618 		/* We can access the full headroom when sending the frame
2619 		 * back out
2620 		 */
2621 		xdp.data_hard_start = vaddr;
2622 		xdp.frame_sz = DPAA_BP_RAW_SIZE;
2623 		xdpf = xdp_convert_buff_to_frame(&xdp);
2624 		if (unlikely(!xdpf)) {
2625 			free_pages((unsigned long)vaddr, 0);
2626 			break;
2627 		}
2628 
2629 		if (dpaa_xdp_xmit_frame(priv->net_dev, xdpf))
2630 			xdp_return_frame_rx_napi(xdpf);
2631 
2632 		break;
2633 	case XDP_REDIRECT:
2634 		/* Allow redirect to use the full headroom */
2635 		xdp.data_hard_start = vaddr;
2636 		xdp.frame_sz = DPAA_BP_RAW_SIZE;
2637 
2638 		err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog);
2639 		if (err) {
2640 			trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act);
2641 			free_pages((unsigned long)vaddr, 0);
2642 		}
2643 		break;
2644 	default:
2645 		bpf_warn_invalid_xdp_action(priv->net_dev, xdp_prog, xdp_act);
2646 		fallthrough;
2647 	case XDP_ABORTED:
2648 		trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act);
2649 		fallthrough;
2650 	case XDP_DROP:
2651 		/* Free the buffer */
2652 		free_pages((unsigned long)vaddr, 0);
2653 		break;
2654 	}
2655 
2656 	return xdp_act;
2657 }
2658 
2659 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
2660 						struct qman_fq *fq,
2661 						const struct qm_dqrr_entry *dq,
2662 						bool sched_napi)
2663 {
2664 	bool ts_valid = false, hash_valid = false;
2665 	struct skb_shared_hwtstamps *shhwtstamps;
2666 	unsigned int skb_len, xdp_meta_len = 0;
2667 	struct rtnl_link_stats64 *percpu_stats;
2668 	struct dpaa_percpu_priv *percpu_priv;
2669 	const struct qm_fd *fd = &dq->fd;
2670 	dma_addr_t addr = qm_fd_addr(fd);
2671 	struct dpaa_napi_portal *np;
2672 	enum qm_fd_format fd_format;
2673 	struct net_device *net_dev;
2674 	u32 fd_status, hash_offset;
2675 	struct qm_sg_entry *sgt;
2676 	struct dpaa_bp *dpaa_bp;
2677 	struct dpaa_fq *dpaa_fq;
2678 	struct dpaa_priv *priv;
2679 	struct sk_buff *skb;
2680 	int *count_ptr;
2681 	u32 xdp_act;
2682 	void *vaddr;
2683 	u32 hash;
2684 	u64 ns;
2685 
2686 	dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2687 	fd_status = be32_to_cpu(fd->status);
2688 	fd_format = qm_fd_get_format(fd);
2689 	net_dev = dpaa_fq->net_dev;
2690 	priv = netdev_priv(net_dev);
2691 	dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2692 	if (!dpaa_bp)
2693 		return qman_cb_dqrr_consume;
2694 
2695 	/* Trace the Rx fd */
2696 	trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
2697 
2698 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2699 	percpu_stats = &percpu_priv->stats;
2700 	np = &percpu_priv->np;
2701 
2702 	if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)))
2703 		return qman_cb_dqrr_stop;
2704 
2705 	/* Make sure we didn't run out of buffers */
2706 	if (unlikely(dpaa_eth_refill_bpools(priv))) {
2707 		/* Unable to refill the buffer pool due to insufficient
2708 		 * system memory. Just release the frame back into the pool,
2709 		 * otherwise we'll soon end up with an empty buffer pool.
2710 		 */
2711 		dpaa_fd_release(net_dev, &dq->fd);
2712 		return qman_cb_dqrr_consume;
2713 	}
2714 
2715 	if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
2716 		if (net_ratelimit())
2717 			netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2718 				   fd_status & FM_FD_STAT_RX_ERRORS);
2719 
2720 		percpu_stats->rx_errors++;
2721 		dpaa_fd_release(net_dev, fd);
2722 		return qman_cb_dqrr_consume;
2723 	}
2724 
2725 	dma_unmap_page(dpaa_bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
2726 		       DMA_FROM_DEVICE);
2727 
2728 	/* prefetch the first 64 bytes of the frame or the SGT start */
2729 	vaddr = phys_to_virt(addr);
2730 	prefetch(vaddr + qm_fd_get_offset(fd));
2731 
2732 	/* The only FD types that we may receive are contig and S/G */
2733 	WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
2734 
2735 	/* Account for either the contig buffer or the SGT buffer (depending on
2736 	 * which case we were in) having been removed from the pool.
2737 	 */
2738 	count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
2739 	(*count_ptr)--;
2740 
2741 	/* Extract the timestamp stored in the headroom before running XDP */
2742 	if (priv->rx_tstamp) {
2743 		if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns))
2744 			ts_valid = true;
2745 		else
2746 			WARN_ONCE(1, "fman_port_get_tstamp failed!\n");
2747 	}
2748 
2749 	/* Extract the hash stored in the headroom before running XDP */
2750 	if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use &&
2751 	    !fman_port_get_hash_result_offset(priv->mac_dev->port[RX],
2752 					      &hash_offset)) {
2753 		hash = be32_to_cpu(*(u32 *)(vaddr + hash_offset));
2754 		hash_valid = true;
2755 	}
2756 
2757 	if (likely(fd_format == qm_fd_contig)) {
2758 		xdp_act = dpaa_run_xdp(priv, (struct qm_fd *)fd, vaddr,
2759 				       dpaa_fq, &xdp_meta_len);
2760 		np->xdp_act |= xdp_act;
2761 		if (xdp_act != XDP_PASS) {
2762 			percpu_stats->rx_packets++;
2763 			percpu_stats->rx_bytes += qm_fd_get_length(fd);
2764 			return qman_cb_dqrr_consume;
2765 		}
2766 		skb = contig_fd_to_skb(priv, fd);
2767 	} else {
2768 		/* XDP doesn't support S/G frames. Return the fragments to the
2769 		 * buffer pool and release the SGT.
2770 		 */
2771 		if (READ_ONCE(priv->xdp_prog)) {
2772 			WARN_ONCE(1, "S/G frames not supported under XDP\n");
2773 			sgt = vaddr + qm_fd_get_offset(fd);
2774 			dpaa_release_sgt_members(sgt);
2775 			free_pages((unsigned long)vaddr, 0);
2776 			return qman_cb_dqrr_consume;
2777 		}
2778 		skb = sg_fd_to_skb(priv, fd);
2779 	}
2780 	if (!skb)
2781 		return qman_cb_dqrr_consume;
2782 
2783 	if (xdp_meta_len)
2784 		skb_metadata_set(skb, xdp_meta_len);
2785 
2786 	/* Set the previously extracted timestamp */
2787 	if (ts_valid) {
2788 		shhwtstamps = skb_hwtstamps(skb);
2789 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2790 		shhwtstamps->hwtstamp = ns_to_ktime(ns);
2791 	}
2792 
2793 	skb->protocol = eth_type_trans(skb, net_dev);
2794 
2795 	/* Set the previously extracted hash */
2796 	if (hash_valid) {
2797 		enum pkt_hash_types type;
2798 
2799 		/* if L4 exists, it was used in the hash generation */
2800 		type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ?
2801 			PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
2802 		skb_set_hash(skb, hash, type);
2803 	}
2804 
2805 	skb_len = skb->len;
2806 
2807 	if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) {
2808 		percpu_stats->rx_dropped++;
2809 		return qman_cb_dqrr_consume;
2810 	}
2811 
2812 	percpu_stats->rx_packets++;
2813 	percpu_stats->rx_bytes += skb_len;
2814 
2815 	return qman_cb_dqrr_consume;
2816 }
2817 
2818 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
2819 						struct qman_fq *fq,
2820 						const struct qm_dqrr_entry *dq,
2821 						bool sched_napi)
2822 {
2823 	struct dpaa_percpu_priv *percpu_priv;
2824 	struct net_device *net_dev;
2825 	struct dpaa_priv *priv;
2826 
2827 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2828 	priv = netdev_priv(net_dev);
2829 
2830 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2831 
2832 	if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2833 		return qman_cb_dqrr_stop;
2834 
2835 	dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2836 
2837 	return qman_cb_dqrr_consume;
2838 }
2839 
2840 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
2841 					       struct qman_fq *fq,
2842 					       const struct qm_dqrr_entry *dq,
2843 					       bool sched_napi)
2844 {
2845 	struct dpaa_percpu_priv *percpu_priv;
2846 	struct net_device *net_dev;
2847 	struct dpaa_priv *priv;
2848 
2849 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2850 	priv = netdev_priv(net_dev);
2851 
2852 	/* Trace the fd */
2853 	trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
2854 
2855 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2856 
2857 	if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2858 		return qman_cb_dqrr_stop;
2859 
2860 	dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2861 
2862 	return qman_cb_dqrr_consume;
2863 }
2864 
2865 static void egress_ern(struct qman_portal *portal,
2866 		       struct qman_fq *fq,
2867 		       const union qm_mr_entry *msg)
2868 {
2869 	const struct qm_fd *fd = &msg->ern.fd;
2870 	struct dpaa_percpu_priv *percpu_priv;
2871 	const struct dpaa_priv *priv;
2872 	struct net_device *net_dev;
2873 	struct sk_buff *skb;
2874 
2875 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2876 	priv = netdev_priv(net_dev);
2877 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2878 
2879 	percpu_priv->stats.tx_dropped++;
2880 	percpu_priv->stats.tx_fifo_errors++;
2881 	count_ern(percpu_priv, msg);
2882 
2883 	skb = dpaa_cleanup_tx_fd(priv, fd, false);
2884 	dev_kfree_skb_any(skb);
2885 }
2886 
2887 static const struct dpaa_fq_cbs dpaa_fq_cbs = {
2888 	.rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
2889 	.tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
2890 	.rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
2891 	.tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
2892 	.egress_ern = { .cb = { .ern = egress_ern } }
2893 };
2894 
2895 static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
2896 {
2897 	struct dpaa_percpu_priv *percpu_priv;
2898 	int i;
2899 
2900 	for_each_online_cpu(i) {
2901 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2902 
2903 		percpu_priv->np.down = false;
2904 		napi_enable(&percpu_priv->np.napi);
2905 	}
2906 }
2907 
2908 static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
2909 {
2910 	struct dpaa_percpu_priv *percpu_priv;
2911 	int i;
2912 
2913 	for_each_online_cpu(i) {
2914 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2915 
2916 		percpu_priv->np.down = true;
2917 		napi_disable(&percpu_priv->np.napi);
2918 	}
2919 }
2920 
2921 static int dpaa_open(struct net_device *net_dev)
2922 {
2923 	struct mac_device *mac_dev;
2924 	struct dpaa_priv *priv;
2925 	int err, i;
2926 
2927 	priv = netdev_priv(net_dev);
2928 	mac_dev = priv->mac_dev;
2929 	dpaa_eth_napi_enable(priv);
2930 
2931 	err = phylink_of_phy_connect(mac_dev->phylink,
2932 				     mac_dev->dev->of_node, 0);
2933 	if (err)
2934 		goto phy_init_failed;
2935 
2936 	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
2937 		err = fman_port_enable(mac_dev->port[i]);
2938 		if (err)
2939 			goto mac_start_failed;
2940 	}
2941 
2942 	err = priv->mac_dev->enable(mac_dev->fman_mac);
2943 	if (err < 0) {
2944 		netif_err(priv, ifup, net_dev, "mac_dev->enable() = %d\n", err);
2945 		goto mac_start_failed;
2946 	}
2947 	phylink_start(mac_dev->phylink);
2948 
2949 	netif_tx_start_all_queues(net_dev);
2950 
2951 	return 0;
2952 
2953 mac_start_failed:
2954 	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
2955 		fman_port_disable(mac_dev->port[i]);
2956 	phylink_disconnect_phy(mac_dev->phylink);
2957 
2958 phy_init_failed:
2959 	dpaa_eth_napi_disable(priv);
2960 
2961 	return err;
2962 }
2963 
2964 static int dpaa_eth_stop(struct net_device *net_dev)
2965 {
2966 	struct dpaa_priv *priv;
2967 	int err;
2968 
2969 	err = dpaa_stop(net_dev);
2970 
2971 	priv = netdev_priv(net_dev);
2972 	dpaa_eth_napi_disable(priv);
2973 
2974 	return err;
2975 }
2976 
2977 static bool xdp_validate_mtu(struct dpaa_priv *priv, int mtu)
2978 {
2979 	int max_contig_data = priv->dpaa_bp->size - priv->rx_headroom;
2980 
2981 	/* We do not support S/G fragments when XDP is enabled.
2982 	 * Limit the MTU in relation to the buffer size.
2983 	 */
2984 	if (mtu + VLAN_ETH_HLEN + ETH_FCS_LEN > max_contig_data) {
2985 		dev_warn(priv->net_dev->dev.parent,
2986 			 "The maximum MTU for XDP is %d\n",
2987 			 max_contig_data - VLAN_ETH_HLEN - ETH_FCS_LEN);
2988 		return false;
2989 	}
2990 
2991 	return true;
2992 }
2993 
2994 static int dpaa_change_mtu(struct net_device *net_dev, int new_mtu)
2995 {
2996 	struct dpaa_priv *priv = netdev_priv(net_dev);
2997 
2998 	if (priv->xdp_prog && !xdp_validate_mtu(priv, new_mtu))
2999 		return -EINVAL;
3000 
3001 	WRITE_ONCE(net_dev->mtu, new_mtu);
3002 	return 0;
3003 }
3004 
3005 static int dpaa_setup_xdp(struct net_device *net_dev, struct netdev_bpf *bpf)
3006 {
3007 	struct dpaa_priv *priv = netdev_priv(net_dev);
3008 	struct bpf_prog *old_prog;
3009 	int err;
3010 	bool up;
3011 
3012 	/* S/G fragments are not supported in XDP-mode */
3013 	if (bpf->prog && !xdp_validate_mtu(priv, net_dev->mtu)) {
3014 		NL_SET_ERR_MSG_MOD(bpf->extack, "MTU too large for XDP");
3015 		return -EINVAL;
3016 	}
3017 
3018 	up = netif_running(net_dev);
3019 
3020 	if (up)
3021 		dpaa_eth_stop(net_dev);
3022 
3023 	old_prog = xchg(&priv->xdp_prog, bpf->prog);
3024 	if (old_prog)
3025 		bpf_prog_put(old_prog);
3026 
3027 	if (up) {
3028 		err = dpaa_open(net_dev);
3029 		if (err) {
3030 			NL_SET_ERR_MSG_MOD(bpf->extack, "dpaa_open() failed");
3031 			return err;
3032 		}
3033 	}
3034 
3035 	return 0;
3036 }
3037 
3038 static int dpaa_xdp(struct net_device *net_dev, struct netdev_bpf *xdp)
3039 {
3040 	switch (xdp->command) {
3041 	case XDP_SETUP_PROG:
3042 		return dpaa_setup_xdp(net_dev, xdp);
3043 	default:
3044 		return -EINVAL;
3045 	}
3046 }
3047 
3048 static int dpaa_xdp_xmit(struct net_device *net_dev, int n,
3049 			 struct xdp_frame **frames, u32 flags)
3050 {
3051 	struct xdp_frame *xdpf;
3052 	int i, nxmit = 0;
3053 
3054 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3055 		return -EINVAL;
3056 
3057 	if (!netif_running(net_dev))
3058 		return -ENETDOWN;
3059 
3060 	for (i = 0; i < n; i++) {
3061 		xdpf = frames[i];
3062 		if (dpaa_xdp_xmit_frame(net_dev, xdpf))
3063 			break;
3064 		nxmit++;
3065 	}
3066 
3067 	return nxmit;
3068 }
3069 
3070 static int dpaa_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3071 {
3072 	struct dpaa_priv *priv = netdev_priv(dev);
3073 	struct hwtstamp_config config;
3074 
3075 	if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
3076 		return -EFAULT;
3077 
3078 	switch (config.tx_type) {
3079 	case HWTSTAMP_TX_OFF:
3080 		/* Couldn't disable rx/tx timestamping separately.
3081 		 * Do nothing here.
3082 		 */
3083 		priv->tx_tstamp = false;
3084 		break;
3085 	case HWTSTAMP_TX_ON:
3086 		priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
3087 		priv->tx_tstamp = true;
3088 		break;
3089 	default:
3090 		return -ERANGE;
3091 	}
3092 
3093 	if (config.rx_filter == HWTSTAMP_FILTER_NONE) {
3094 		/* Couldn't disable rx/tx timestamping separately.
3095 		 * Do nothing here.
3096 		 */
3097 		priv->rx_tstamp = false;
3098 	} else {
3099 		priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
3100 		priv->rx_tstamp = true;
3101 		/* TS is set for all frame types, not only those requested */
3102 		config.rx_filter = HWTSTAMP_FILTER_ALL;
3103 	}
3104 
3105 	return copy_to_user(rq->ifr_data, &config, sizeof(config)) ?
3106 			-EFAULT : 0;
3107 }
3108 
3109 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
3110 {
3111 	int ret = -EINVAL;
3112 	struct dpaa_priv *priv = netdev_priv(net_dev);
3113 
3114 	if (cmd == SIOCGMIIREG) {
3115 		if (net_dev->phydev)
3116 			return phylink_mii_ioctl(priv->mac_dev->phylink, rq,
3117 						 cmd);
3118 	}
3119 
3120 	if (cmd == SIOCSHWTSTAMP)
3121 		return dpaa_ts_ioctl(net_dev, rq, cmd);
3122 
3123 	return ret;
3124 }
3125 
3126 static const struct net_device_ops dpaa_ops = {
3127 	.ndo_open = dpaa_open,
3128 	.ndo_start_xmit = dpaa_start_xmit,
3129 	.ndo_stop = dpaa_eth_stop,
3130 	.ndo_tx_timeout = dpaa_tx_timeout,
3131 	.ndo_get_stats64 = dpaa_get_stats64,
3132 	.ndo_change_carrier = fixed_phy_change_carrier,
3133 	.ndo_set_mac_address = dpaa_set_mac_address,
3134 	.ndo_validate_addr = eth_validate_addr,
3135 	.ndo_set_rx_mode = dpaa_set_rx_mode,
3136 	.ndo_eth_ioctl = dpaa_ioctl,
3137 	.ndo_setup_tc = dpaa_setup_tc,
3138 	.ndo_change_mtu = dpaa_change_mtu,
3139 	.ndo_bpf = dpaa_xdp,
3140 	.ndo_xdp_xmit = dpaa_xdp_xmit,
3141 };
3142 
3143 static int dpaa_napi_add(struct net_device *net_dev)
3144 {
3145 	struct dpaa_priv *priv = netdev_priv(net_dev);
3146 	struct dpaa_percpu_priv *percpu_priv;
3147 	int cpu;
3148 
3149 	for_each_possible_cpu(cpu) {
3150 		percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
3151 
3152 		netif_napi_add(net_dev, &percpu_priv->np.napi, dpaa_eth_poll);
3153 	}
3154 
3155 	return 0;
3156 }
3157 
3158 static void dpaa_napi_del(struct net_device *net_dev)
3159 {
3160 	struct dpaa_priv *priv = netdev_priv(net_dev);
3161 	struct dpaa_percpu_priv *percpu_priv;
3162 	int cpu;
3163 
3164 	for_each_possible_cpu(cpu) {
3165 		percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
3166 
3167 		__netif_napi_del(&percpu_priv->np.napi);
3168 	}
3169 	synchronize_net();
3170 }
3171 
3172 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
3173 				   struct bm_buffer *bmb)
3174 {
3175 	dma_addr_t addr = bm_buf_addr(bmb);
3176 
3177 	dma_unmap_page(bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
3178 		       DMA_FROM_DEVICE);
3179 
3180 	skb_free_frag(phys_to_virt(addr));
3181 }
3182 
3183 /* Alloc the dpaa_bp struct and configure default values */
3184 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
3185 {
3186 	struct dpaa_bp *dpaa_bp;
3187 
3188 	dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
3189 	if (!dpaa_bp)
3190 		return ERR_PTR(-ENOMEM);
3191 
3192 	dpaa_bp->bpid = FSL_DPAA_BPID_INV;
3193 	dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
3194 	if (!dpaa_bp->percpu_count)
3195 		return ERR_PTR(-ENOMEM);
3196 
3197 	dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
3198 
3199 	dpaa_bp->seed_cb = dpaa_bp_seed;
3200 	dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
3201 
3202 	return dpaa_bp;
3203 }
3204 
3205 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
3206  * We won't be sending congestion notifications to FMan; for now, we just use
3207  * this CGR to generate enqueue rejections to FMan in order to drop the frames
3208  * before they reach our ingress queues and eat up memory.
3209  */
3210 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
3211 {
3212 	struct qm_mcc_initcgr initcgr;
3213 	u32 cs_th;
3214 	int err;
3215 
3216 	err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
3217 	if (err < 0) {
3218 		if (netif_msg_drv(priv))
3219 			pr_err("Error %d allocating CGR ID\n", err);
3220 		goto out_error;
3221 	}
3222 
3223 	/* Enable CS TD, but disable Congestion State Change Notifications. */
3224 	memset(&initcgr, 0, sizeof(initcgr));
3225 	initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
3226 	initcgr.cgr.cscn_en = QM_CGR_EN;
3227 	cs_th = DPAA_INGRESS_CS_THRESHOLD;
3228 	qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
3229 
3230 	initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
3231 	initcgr.cgr.cstd_en = QM_CGR_EN;
3232 
3233 	/* This CGR will be associated with the SWP affined to the current CPU.
3234 	 * However, we'll place all our ingress FQs in it.
3235 	 */
3236 	err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
3237 			      &initcgr);
3238 	if (err < 0) {
3239 		if (netif_msg_drv(priv))
3240 			pr_err("Error %d creating ingress CGR with ID %d\n",
3241 			       err, priv->ingress_cgr.cgrid);
3242 		qman_release_cgrid(priv->ingress_cgr.cgrid);
3243 		goto out_error;
3244 	}
3245 	if (netif_msg_drv(priv))
3246 		pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
3247 			 priv->ingress_cgr.cgrid, priv->mac_dev->addr);
3248 
3249 	priv->use_ingress_cgr = true;
3250 
3251 out_error:
3252 	return err;
3253 }
3254 
3255 static u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl,
3256 			     enum port_type port)
3257 {
3258 	u16 headroom;
3259 
3260 	/* The frame headroom must accommodate:
3261 	 * - the driver private data area
3262 	 * - parse results, hash results, timestamp if selected
3263 	 * If either hash results or time stamp are selected, both will
3264 	 * be copied to/from the frame headroom, as TS is located between PR and
3265 	 * HR in the IC and IC copy size has a granularity of 16bytes
3266 	 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
3267 	 *
3268 	 * Also make sure the headroom is a multiple of data_align bytes
3269 	 */
3270 	headroom = (u16)(bl[port].priv_data_size + DPAA_HWA_SIZE);
3271 
3272 	if (port == RX) {
3273 #ifdef CONFIG_DPAA_ERRATUM_A050385
3274 		if (unlikely(fman_has_errata_a050385()))
3275 			headroom = XDP_PACKET_HEADROOM;
3276 #endif
3277 
3278 		return ALIGN(headroom, DPAA_FD_RX_DATA_ALIGNMENT);
3279 	} else {
3280 		return ALIGN(headroom, DPAA_FD_DATA_ALIGNMENT);
3281 	}
3282 }
3283 
3284 static int dpaa_eth_probe(struct platform_device *pdev)
3285 {
3286 	struct net_device *net_dev = NULL;
3287 	struct dpaa_bp *dpaa_bp = NULL;
3288 	struct dpaa_fq *dpaa_fq, *tmp;
3289 	struct dpaa_priv *priv = NULL;
3290 	struct fm_port_fqs port_fqs;
3291 	struct mac_device *mac_dev;
3292 	int err = 0, channel;
3293 	struct device *dev;
3294 
3295 	dev = &pdev->dev;
3296 
3297 	err = bman_is_probed();
3298 	if (!err)
3299 		return -EPROBE_DEFER;
3300 	if (err < 0) {
3301 		dev_err(dev, "failing probe due to bman probe error\n");
3302 		return -ENODEV;
3303 	}
3304 	err = qman_is_probed();
3305 	if (!err)
3306 		return -EPROBE_DEFER;
3307 	if (err < 0) {
3308 		dev_err(dev, "failing probe due to qman probe error\n");
3309 		return -ENODEV;
3310 	}
3311 	err = bman_portals_probed();
3312 	if (!err)
3313 		return -EPROBE_DEFER;
3314 	if (err < 0) {
3315 		dev_err(dev,
3316 			"failing probe due to bman portals probe error\n");
3317 		return -ENODEV;
3318 	}
3319 	err = qman_portals_probed();
3320 	if (!err)
3321 		return -EPROBE_DEFER;
3322 	if (err < 0) {
3323 		dev_err(dev,
3324 			"failing probe due to qman portals probe error\n");
3325 		return -ENODEV;
3326 	}
3327 
3328 	/* Allocate this early, so we can store relevant information in
3329 	 * the private area
3330 	 */
3331 	net_dev = alloc_etherdev_mq(sizeof(*priv), dpaa_max_num_txqs());
3332 	if (!net_dev) {
3333 		dev_err(dev, "alloc_etherdev_mq() failed\n");
3334 		return -ENOMEM;
3335 	}
3336 
3337 	/* Do this here, so we can be verbose early */
3338 	SET_NETDEV_DEV(net_dev, dev->parent);
3339 	dev_set_drvdata(dev, net_dev);
3340 
3341 	priv = netdev_priv(net_dev);
3342 	priv->net_dev = net_dev;
3343 
3344 	priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
3345 
3346 	priv->egress_fqs = devm_kcalloc(dev, dpaa_max_num_txqs(),
3347 					sizeof(*priv->egress_fqs),
3348 					GFP_KERNEL);
3349 	if (!priv->egress_fqs) {
3350 		err = -ENOMEM;
3351 		goto free_netdev;
3352 	}
3353 
3354 	priv->conf_fqs = devm_kcalloc(dev, dpaa_max_num_txqs(),
3355 				      sizeof(*priv->conf_fqs),
3356 				      GFP_KERNEL);
3357 	if (!priv->conf_fqs) {
3358 		err = -ENOMEM;
3359 		goto free_netdev;
3360 	}
3361 
3362 	mac_dev = dpaa_mac_dev_get(pdev);
3363 	if (IS_ERR(mac_dev)) {
3364 		netdev_err(net_dev, "dpaa_mac_dev_get() failed\n");
3365 		err = PTR_ERR(mac_dev);
3366 		goto free_netdev;
3367 	}
3368 
3369 	/* Devices used for DMA mapping */
3370 	priv->rx_dma_dev = fman_port_get_device(mac_dev->port[RX]);
3371 	priv->tx_dma_dev = fman_port_get_device(mac_dev->port[TX]);
3372 	err = dma_coerce_mask_and_coherent(priv->rx_dma_dev, DMA_BIT_MASK(40));
3373 	if (!err)
3374 		err = dma_coerce_mask_and_coherent(priv->tx_dma_dev,
3375 						   DMA_BIT_MASK(40));
3376 	if (err) {
3377 		netdev_err(net_dev, "dma_coerce_mask_and_coherent() failed\n");
3378 		goto free_netdev;
3379 	}
3380 
3381 	/* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
3382 	 * we choose conservatively and let the user explicitly set a higher
3383 	 * MTU via ifconfig. Otherwise, the user may end up with different MTUs
3384 	 * in the same LAN.
3385 	 * If on the other hand fsl_fm_max_frm has been chosen below 1500,
3386 	 * start with the maximum allowed.
3387 	 */
3388 	net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
3389 
3390 	netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
3391 		   net_dev->mtu);
3392 
3393 	priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
3394 	priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
3395 
3396 	/* bp init */
3397 	dpaa_bp = dpaa_bp_alloc(dev);
3398 	if (IS_ERR(dpaa_bp)) {
3399 		err = PTR_ERR(dpaa_bp);
3400 		goto free_dpaa_bps;
3401 	}
3402 	/* the raw size of the buffers used for reception */
3403 	dpaa_bp->raw_size = DPAA_BP_RAW_SIZE;
3404 	/* avoid runtime computations by keeping the usable size here */
3405 	dpaa_bp->size = dpaa_bp_size(dpaa_bp->raw_size);
3406 	dpaa_bp->priv = priv;
3407 
3408 	err = dpaa_bp_alloc_pool(dpaa_bp);
3409 	if (err < 0)
3410 		goto free_dpaa_bps;
3411 	priv->dpaa_bp = dpaa_bp;
3412 
3413 	INIT_LIST_HEAD(&priv->dpaa_fq_list);
3414 
3415 	memset(&port_fqs, 0, sizeof(port_fqs));
3416 
3417 	err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
3418 	if (err < 0) {
3419 		dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
3420 		goto free_dpaa_bps;
3421 	}
3422 
3423 	priv->mac_dev = mac_dev;
3424 
3425 	channel = dpaa_get_channel();
3426 	if (channel < 0) {
3427 		dev_err(dev, "dpaa_get_channel() failed\n");
3428 		err = channel;
3429 		goto free_dpaa_bps;
3430 	}
3431 
3432 	priv->channel = (u16)channel;
3433 
3434 	/* Walk the CPUs with affine portals
3435 	 * and add this pool channel to each's dequeue mask.
3436 	 */
3437 	dpaa_eth_add_channel(priv->channel, &pdev->dev);
3438 
3439 	err = dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
3440 	if (err)
3441 		goto free_dpaa_bps;
3442 
3443 	/* Create a congestion group for this netdev, with
3444 	 * dynamically-allocated CGR ID.
3445 	 * Must be executed after probing the MAC, but before
3446 	 * assigning the egress FQs to the CGRs.
3447 	 */
3448 	err = dpaa_eth_cgr_init(priv);
3449 	if (err < 0) {
3450 		dev_err(dev, "Error initializing CGR\n");
3451 		goto free_dpaa_bps;
3452 	}
3453 
3454 	err = dpaa_ingress_cgr_init(priv);
3455 	if (err < 0) {
3456 		dev_err(dev, "Error initializing ingress CGR\n");
3457 		goto delete_egress_cgr;
3458 	}
3459 
3460 	/* Add the FQs to the interface, and make them active */
3461 	list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
3462 		err = dpaa_fq_init(dpaa_fq, false);
3463 		if (err < 0)
3464 			goto free_dpaa_fqs;
3465 	}
3466 
3467 	priv->tx_headroom = dpaa_get_headroom(priv->buf_layout, TX);
3468 	priv->rx_headroom = dpaa_get_headroom(priv->buf_layout, RX);
3469 
3470 	/* All real interfaces need their ports initialized */
3471 	err = dpaa_eth_init_ports(mac_dev, dpaa_bp, &port_fqs,
3472 				  &priv->buf_layout[0], dev);
3473 	if (err)
3474 		goto free_dpaa_fqs;
3475 
3476 	/* Rx traffic distribution based on keygen hashing defaults to on */
3477 	priv->keygen_in_use = true;
3478 
3479 	priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
3480 	if (!priv->percpu_priv) {
3481 		dev_err(dev, "devm_alloc_percpu() failed\n");
3482 		err = -ENOMEM;
3483 		goto free_dpaa_fqs;
3484 	}
3485 
3486 	priv->num_tc = 1;
3487 	netif_set_real_num_tx_queues(net_dev,
3488 				     priv->num_tc * dpaa_num_txqs_per_tc());
3489 
3490 	/* Initialize NAPI */
3491 	err = dpaa_napi_add(net_dev);
3492 	if (err < 0)
3493 		goto delete_dpaa_napi;
3494 
3495 	err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
3496 	if (err < 0)
3497 		goto delete_dpaa_napi;
3498 
3499 	dpaa_eth_sysfs_init(&net_dev->dev);
3500 
3501 	netif_info(priv, probe, net_dev, "Probed interface %s\n",
3502 		   net_dev->name);
3503 
3504 	return 0;
3505 
3506 delete_dpaa_napi:
3507 	dpaa_napi_del(net_dev);
3508 free_dpaa_fqs:
3509 	dpaa_fq_free(dev, &priv->dpaa_fq_list);
3510 	qman_delete_cgr_safe(&priv->ingress_cgr);
3511 	qman_release_cgrid(priv->ingress_cgr.cgrid);
3512 delete_egress_cgr:
3513 	qman_delete_cgr_safe(&priv->cgr_data.cgr);
3514 	qman_release_cgrid(priv->cgr_data.cgr.cgrid);
3515 free_dpaa_bps:
3516 	dpaa_bps_free(priv);
3517 free_netdev:
3518 	dev_set_drvdata(dev, NULL);
3519 	free_netdev(net_dev);
3520 
3521 	return err;
3522 }
3523 
3524 static void dpaa_remove(struct platform_device *pdev)
3525 {
3526 	struct net_device *net_dev;
3527 	struct dpaa_priv *priv;
3528 	struct device *dev;
3529 	int err;
3530 
3531 	dev = &pdev->dev;
3532 	net_dev = dev_get_drvdata(dev);
3533 
3534 	priv = netdev_priv(net_dev);
3535 
3536 	dpaa_eth_sysfs_remove(dev);
3537 
3538 	dev_set_drvdata(dev, NULL);
3539 	unregister_netdev(net_dev);
3540 	phylink_destroy(priv->mac_dev->phylink);
3541 
3542 	err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
3543 	if (err)
3544 		dev_err(dev, "Failed to free FQs on remove (%pE)\n",
3545 			ERR_PTR(err));
3546 
3547 	qman_delete_cgr_safe(&priv->ingress_cgr);
3548 	qman_release_cgrid(priv->ingress_cgr.cgrid);
3549 	qman_delete_cgr_safe(&priv->cgr_data.cgr);
3550 	qman_release_cgrid(priv->cgr_data.cgr.cgrid);
3551 
3552 	dpaa_napi_del(net_dev);
3553 
3554 	dpaa_bps_free(priv);
3555 
3556 	free_netdev(net_dev);
3557 }
3558 
3559 static const struct platform_device_id dpaa_devtype[] = {
3560 	{
3561 		.name = "dpaa-ethernet",
3562 		.driver_data = 0,
3563 	}, {
3564 	}
3565 };
3566 MODULE_DEVICE_TABLE(platform, dpaa_devtype);
3567 
3568 static struct platform_driver dpaa_driver = {
3569 	.driver = {
3570 		.name = KBUILD_MODNAME,
3571 	},
3572 	.id_table = dpaa_devtype,
3573 	.probe = dpaa_eth_probe,
3574 	.remove_new = dpaa_remove
3575 };
3576 
3577 static int __init dpaa_load(void)
3578 {
3579 	int err;
3580 
3581 	pr_debug("FSL DPAA Ethernet driver\n");
3582 
3583 	/* initialize dpaa_eth mirror values */
3584 	dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
3585 	dpaa_max_frm = fman_get_max_frm();
3586 
3587 	err = platform_driver_register(&dpaa_driver);
3588 	if (err < 0)
3589 		pr_err("Error, platform_driver_register() = %d\n", err);
3590 
3591 	return err;
3592 }
3593 module_init(dpaa_load);
3594 
3595 static void __exit dpaa_unload(void)
3596 {
3597 	platform_driver_unregister(&dpaa_driver);
3598 
3599 	/* Only one channel is used and needs to be released after all
3600 	 * interfaces are removed
3601 	 */
3602 	dpaa_release_channel();
3603 }
3604 module_exit(dpaa_unload);
3605 
3606 MODULE_LICENSE("Dual BSD/GPL");
3607 MODULE_DESCRIPTION("FSL DPAA Ethernet driver");
3608