1 // SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0-or-later 2 /* 3 * Copyright 2008 - 2016 Freescale Semiconductor Inc. 4 * Copyright 2020 NXP 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/init.h> 10 #include <linux/mod_devicetable.h> 11 #include <linux/module.h> 12 #include <linux/of_mdio.h> 13 #include <linux/of_net.h> 14 #include <linux/io.h> 15 #include <linux/if_arp.h> 16 #include <linux/if_vlan.h> 17 #include <linux/icmp.h> 18 #include <linux/ip.h> 19 #include <linux/ipv6.h> 20 #include <linux/platform_device.h> 21 #include <linux/udp.h> 22 #include <linux/tcp.h> 23 #include <linux/net.h> 24 #include <linux/skbuff.h> 25 #include <linux/etherdevice.h> 26 #include <linux/if_ether.h> 27 #include <linux/highmem.h> 28 #include <linux/percpu.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/sort.h> 31 #include <linux/phy_fixed.h> 32 #include <linux/bpf.h> 33 #include <linux/bpf_trace.h> 34 #include <soc/fsl/bman.h> 35 #include <soc/fsl/qman.h> 36 #include "fman.h" 37 #include "fman_port.h" 38 #include "mac.h" 39 #include "dpaa_eth.h" 40 41 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files 42 * using trace events only need to #include <trace/events/sched.h> 43 */ 44 #define CREATE_TRACE_POINTS 45 #include "dpaa_eth_trace.h" 46 47 static int debug = -1; 48 module_param(debug, int, 0444); 49 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)"); 50 51 static u16 tx_timeout = 1000; 52 module_param(tx_timeout, ushort, 0444); 53 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms"); 54 55 #define FM_FD_STAT_RX_ERRORS \ 56 (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL | \ 57 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \ 58 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME | \ 59 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \ 60 FM_FD_ERR_PRS_HDR_ERR) 61 62 #define FM_FD_STAT_TX_ERRORS \ 63 (FM_FD_ERR_UNSUPPORTED_FORMAT | \ 64 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA) 65 66 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \ 67 NETIF_MSG_LINK | NETIF_MSG_IFUP | \ 68 NETIF_MSG_IFDOWN | NETIF_MSG_HW) 69 70 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000 71 /* Ingress congestion threshold on FMan ports 72 * The size in bytes of the ingress tail-drop threshold on FMan ports. 73 * Traffic piling up above this value will be rejected by QMan and discarded 74 * by FMan. 75 */ 76 77 /* Size in bytes of the FQ taildrop threshold */ 78 #define DPAA_FQ_TD 0x200000 79 80 #define DPAA_CS_THRESHOLD_1G 0x06000000 81 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000 82 * The size in bytes of the egress Congestion State notification threshold on 83 * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a 84 * tight loop (e.g. by sending UDP datagrams at "while(1) speed"), 85 * and the larger the frame size, the more acute the problem. 86 * So we have to find a balance between these factors: 87 * - avoiding the device staying congested for a prolonged time (risking 88 * the netdev watchdog to fire - see also the tx_timeout module param); 89 * - affecting performance of protocols such as TCP, which otherwise 90 * behave well under the congestion notification mechanism; 91 * - preventing the Tx cores from tightly-looping (as if the congestion 92 * threshold was too low to be effective); 93 * - running out of memory if the CS threshold is set too high. 94 */ 95 96 #define DPAA_CS_THRESHOLD_10G 0x10000000 97 /* The size in bytes of the egress Congestion State notification threshold on 98 * 10G ports, range 0x1000 .. 0x10000000 99 */ 100 101 /* Largest value that the FQD's OAL field can hold */ 102 #define FSL_QMAN_MAX_OAL 127 103 104 /* Default alignment for start of data in an Rx FD */ 105 #ifdef CONFIG_DPAA_ERRATUM_A050385 106 /* aligning data start to 64 avoids DMA transaction splits, unless the buffer 107 * is crossing a 4k page boundary 108 */ 109 #define DPAA_FD_DATA_ALIGNMENT (fman_has_errata_a050385() ? 64 : 16) 110 /* aligning to 256 avoids DMA transaction splits caused by 4k page boundary 111 * crossings; also, all SG fragments except the last must have a size multiple 112 * of 256 to avoid DMA transaction splits 113 */ 114 #define DPAA_A050385_ALIGN 256 115 #define DPAA_FD_RX_DATA_ALIGNMENT (fman_has_errata_a050385() ? \ 116 DPAA_A050385_ALIGN : 16) 117 #else 118 #define DPAA_FD_DATA_ALIGNMENT 16 119 #define DPAA_FD_RX_DATA_ALIGNMENT DPAA_FD_DATA_ALIGNMENT 120 #endif 121 122 /* The DPAA requires 256 bytes reserved and mapped for the SGT */ 123 #define DPAA_SGT_SIZE 256 124 125 /* Values for the L3R field of the FM Parse Results 126 */ 127 /* L3 Type field: First IP Present IPv4 */ 128 #define FM_L3_PARSE_RESULT_IPV4 0x8000 129 /* L3 Type field: First IP Present IPv6 */ 130 #define FM_L3_PARSE_RESULT_IPV6 0x4000 131 /* Values for the L4R field of the FM Parse Results */ 132 /* L4 Type field: UDP */ 133 #define FM_L4_PARSE_RESULT_UDP 0x40 134 /* L4 Type field: TCP */ 135 #define FM_L4_PARSE_RESULT_TCP 0x20 136 137 /* FD status field indicating whether the FM Parser has attempted to validate 138 * the L4 csum of the frame. 139 * Note that having this bit set doesn't necessarily imply that the checksum 140 * is valid. One would have to check the parse results to find that out. 141 */ 142 #define FM_FD_STAT_L4CV 0x00000004 143 144 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */ 145 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */ 146 147 #define FSL_DPAA_BPID_INV 0xff 148 #define FSL_DPAA_ETH_MAX_BUF_COUNT 128 149 #define FSL_DPAA_ETH_REFILL_THRESHOLD 80 150 151 #define DPAA_TX_PRIV_DATA_SIZE 16 152 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result) 153 #define DPAA_TIME_STAMP_SIZE 8 154 #define DPAA_HASH_RESULTS_SIZE 8 155 #define DPAA_HWA_SIZE (DPAA_PARSE_RESULTS_SIZE + DPAA_TIME_STAMP_SIZE \ 156 + DPAA_HASH_RESULTS_SIZE) 157 #define DPAA_RX_PRIV_DATA_DEFAULT_SIZE (DPAA_TX_PRIV_DATA_SIZE + \ 158 XDP_PACKET_HEADROOM - DPAA_HWA_SIZE) 159 #ifdef CONFIG_DPAA_ERRATUM_A050385 160 #define DPAA_RX_PRIV_DATA_A050385_SIZE (DPAA_A050385_ALIGN - DPAA_HWA_SIZE) 161 #define DPAA_RX_PRIV_DATA_SIZE (fman_has_errata_a050385() ? \ 162 DPAA_RX_PRIV_DATA_A050385_SIZE : \ 163 DPAA_RX_PRIV_DATA_DEFAULT_SIZE) 164 #else 165 #define DPAA_RX_PRIV_DATA_SIZE DPAA_RX_PRIV_DATA_DEFAULT_SIZE 166 #endif 167 168 #define DPAA_ETH_PCD_RXQ_NUM 128 169 170 #define DPAA_ENQUEUE_RETRIES 100000 171 172 enum port_type {RX, TX}; 173 174 struct fm_port_fqs { 175 struct dpaa_fq *tx_defq; 176 struct dpaa_fq *tx_errq; 177 struct dpaa_fq *rx_defq; 178 struct dpaa_fq *rx_errq; 179 struct dpaa_fq *rx_pcdq; 180 }; 181 182 /* All the dpa bps in use at any moment */ 183 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS]; 184 185 #define DPAA_BP_RAW_SIZE 4096 186 187 #ifdef CONFIG_DPAA_ERRATUM_A050385 188 #define dpaa_bp_size(raw_size) (SKB_WITH_OVERHEAD(raw_size) & \ 189 ~(DPAA_A050385_ALIGN - 1)) 190 #else 191 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD(raw_size) 192 #endif 193 194 static int dpaa_max_frm; 195 196 static int dpaa_rx_extra_headroom; 197 198 #define dpaa_get_max_mtu() \ 199 (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN)) 200 201 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed); 202 203 static int dpaa_netdev_init(struct net_device *net_dev, 204 const struct net_device_ops *dpaa_ops, 205 u16 tx_timeout) 206 { 207 struct dpaa_priv *priv = netdev_priv(net_dev); 208 struct device *dev = net_dev->dev.parent; 209 struct mac_device *mac_dev = priv->mac_dev; 210 struct dpaa_percpu_priv *percpu_priv; 211 const u8 *mac_addr; 212 int i, err; 213 214 /* Although we access another CPU's private data here 215 * we do it at initialization so it is safe 216 */ 217 for_each_possible_cpu(i) { 218 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 219 percpu_priv->net_dev = net_dev; 220 } 221 222 net_dev->netdev_ops = dpaa_ops; 223 mac_addr = mac_dev->addr; 224 225 net_dev->mem_start = (unsigned long)priv->mac_dev->res->start; 226 net_dev->mem_end = (unsigned long)priv->mac_dev->res->end; 227 228 net_dev->min_mtu = ETH_MIN_MTU; 229 net_dev->max_mtu = dpaa_get_max_mtu(); 230 231 net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 232 NETIF_F_LLTX | NETIF_F_RXHASH); 233 234 net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA; 235 /* The kernels enables GSO automatically, if we declare NETIF_F_SG. 236 * For conformity, we'll still declare GSO explicitly. 237 */ 238 net_dev->features |= NETIF_F_GSO; 239 net_dev->features |= NETIF_F_RXCSUM; 240 241 net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 242 /* we do not want shared skbs on TX */ 243 net_dev->priv_flags &= ~IFF_TX_SKB_SHARING; 244 245 net_dev->features |= net_dev->hw_features; 246 net_dev->vlan_features = net_dev->features; 247 248 net_dev->xdp_features = NETDEV_XDP_ACT_BASIC | 249 NETDEV_XDP_ACT_REDIRECT | 250 NETDEV_XDP_ACT_NDO_XMIT; 251 252 if (is_valid_ether_addr(mac_addr)) { 253 memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len); 254 eth_hw_addr_set(net_dev, mac_addr); 255 } else { 256 eth_hw_addr_random(net_dev); 257 err = mac_dev->change_addr(mac_dev->fman_mac, 258 (const enet_addr_t *)net_dev->dev_addr); 259 if (err) { 260 dev_err(dev, "Failed to set random MAC address\n"); 261 return -EINVAL; 262 } 263 dev_info(dev, "Using random MAC address: %pM\n", 264 net_dev->dev_addr); 265 } 266 267 net_dev->ethtool_ops = &dpaa_ethtool_ops; 268 269 net_dev->needed_headroom = priv->tx_headroom; 270 net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout); 271 272 /* The rest of the config is filled in by the mac device already */ 273 mac_dev->phylink_config.dev = &net_dev->dev; 274 mac_dev->phylink_config.type = PHYLINK_NETDEV; 275 mac_dev->update_speed = dpaa_eth_cgr_set_speed; 276 mac_dev->phylink = phylink_create(&mac_dev->phylink_config, 277 dev_fwnode(mac_dev->dev), 278 mac_dev->phy_if, 279 mac_dev->phylink_ops); 280 if (IS_ERR(mac_dev->phylink)) { 281 err = PTR_ERR(mac_dev->phylink); 282 dev_err_probe(dev, err, "Could not create phylink\n"); 283 return err; 284 } 285 286 /* start without the RUNNING flag, phylib controls it later */ 287 netif_carrier_off(net_dev); 288 289 err = register_netdev(net_dev); 290 if (err < 0) { 291 dev_err(dev, "register_netdev() = %d\n", err); 292 phylink_destroy(mac_dev->phylink); 293 return err; 294 } 295 296 return 0; 297 } 298 299 static int dpaa_stop(struct net_device *net_dev) 300 { 301 struct mac_device *mac_dev; 302 struct dpaa_priv *priv; 303 int i, error; 304 int err = 0; 305 306 priv = netdev_priv(net_dev); 307 mac_dev = priv->mac_dev; 308 309 netif_tx_stop_all_queues(net_dev); 310 /* Allow the Fman (Tx) port to process in-flight frames before we 311 * try switching it off. 312 */ 313 msleep(200); 314 315 phylink_stop(mac_dev->phylink); 316 mac_dev->disable(mac_dev->fman_mac); 317 318 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) { 319 error = fman_port_disable(mac_dev->port[i]); 320 if (error) 321 err = error; 322 } 323 324 phylink_disconnect_phy(mac_dev->phylink); 325 net_dev->phydev = NULL; 326 327 msleep(200); 328 329 return err; 330 } 331 332 static void dpaa_tx_timeout(struct net_device *net_dev, unsigned int txqueue) 333 { 334 struct dpaa_percpu_priv *percpu_priv; 335 const struct dpaa_priv *priv; 336 337 priv = netdev_priv(net_dev); 338 percpu_priv = this_cpu_ptr(priv->percpu_priv); 339 340 netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n", 341 jiffies_to_msecs(jiffies - dev_trans_start(net_dev))); 342 343 percpu_priv->stats.tx_errors++; 344 } 345 346 /* Calculates the statistics for the given device by adding the statistics 347 * collected by each CPU. 348 */ 349 static void dpaa_get_stats64(struct net_device *net_dev, 350 struct rtnl_link_stats64 *s) 351 { 352 int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64); 353 struct dpaa_priv *priv = netdev_priv(net_dev); 354 struct dpaa_percpu_priv *percpu_priv; 355 u64 *netstats = (u64 *)s; 356 u64 *cpustats; 357 int i, j; 358 359 for_each_possible_cpu(i) { 360 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 361 362 cpustats = (u64 *)&percpu_priv->stats; 363 364 /* add stats from all CPUs */ 365 for (j = 0; j < numstats; j++) 366 netstats[j] += cpustats[j]; 367 } 368 } 369 370 static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type, 371 void *type_data) 372 { 373 struct dpaa_priv *priv = netdev_priv(net_dev); 374 int num_txqs_per_tc = dpaa_num_txqs_per_tc(); 375 struct tc_mqprio_qopt *mqprio = type_data; 376 u8 num_tc; 377 int i; 378 379 if (type != TC_SETUP_QDISC_MQPRIO) 380 return -EOPNOTSUPP; 381 382 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 383 num_tc = mqprio->num_tc; 384 385 if (num_tc == priv->num_tc) 386 return 0; 387 388 if (!num_tc) { 389 netdev_reset_tc(net_dev); 390 goto out; 391 } 392 393 if (num_tc > DPAA_TC_NUM) { 394 netdev_err(net_dev, "Too many traffic classes: max %d supported.\n", 395 DPAA_TC_NUM); 396 return -EINVAL; 397 } 398 399 netdev_set_num_tc(net_dev, num_tc); 400 401 for (i = 0; i < num_tc; i++) 402 netdev_set_tc_queue(net_dev, i, num_txqs_per_tc, 403 i * num_txqs_per_tc); 404 405 out: 406 priv->num_tc = num_tc ? : 1; 407 netif_set_real_num_tx_queues(net_dev, priv->num_tc * num_txqs_per_tc); 408 return 0; 409 } 410 411 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev) 412 { 413 struct dpaa_eth_data *eth_data; 414 struct device *dpaa_dev; 415 struct mac_device *mac_dev; 416 417 dpaa_dev = &pdev->dev; 418 eth_data = dpaa_dev->platform_data; 419 if (!eth_data) { 420 dev_err(dpaa_dev, "eth_data missing\n"); 421 return ERR_PTR(-ENODEV); 422 } 423 mac_dev = eth_data->mac_dev; 424 if (!mac_dev) { 425 dev_err(dpaa_dev, "mac_dev missing\n"); 426 return ERR_PTR(-EINVAL); 427 } 428 429 return mac_dev; 430 } 431 432 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr) 433 { 434 const struct dpaa_priv *priv; 435 struct mac_device *mac_dev; 436 struct sockaddr old_addr; 437 int err; 438 439 priv = netdev_priv(net_dev); 440 441 memcpy(old_addr.sa_data, net_dev->dev_addr, ETH_ALEN); 442 443 err = eth_mac_addr(net_dev, addr); 444 if (err < 0) { 445 netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err); 446 return err; 447 } 448 449 mac_dev = priv->mac_dev; 450 451 err = mac_dev->change_addr(mac_dev->fman_mac, 452 (const enet_addr_t *)net_dev->dev_addr); 453 if (err < 0) { 454 netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n", 455 err); 456 /* reverting to previous address */ 457 eth_mac_addr(net_dev, &old_addr); 458 459 return err; 460 } 461 462 return 0; 463 } 464 465 static void dpaa_set_rx_mode(struct net_device *net_dev) 466 { 467 const struct dpaa_priv *priv; 468 int err; 469 470 priv = netdev_priv(net_dev); 471 472 if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) { 473 priv->mac_dev->promisc = !priv->mac_dev->promisc; 474 err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac, 475 priv->mac_dev->promisc); 476 if (err < 0) 477 netif_err(priv, drv, net_dev, 478 "mac_dev->set_promisc() = %d\n", 479 err); 480 } 481 482 if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) { 483 priv->mac_dev->allmulti = !priv->mac_dev->allmulti; 484 err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac, 485 priv->mac_dev->allmulti); 486 if (err < 0) 487 netif_err(priv, drv, net_dev, 488 "mac_dev->set_allmulti() = %d\n", 489 err); 490 } 491 492 err = priv->mac_dev->set_multi(net_dev, priv->mac_dev); 493 if (err < 0) 494 netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n", 495 err); 496 } 497 498 static struct dpaa_bp *dpaa_bpid2pool(int bpid) 499 { 500 if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS)) 501 return NULL; 502 503 return dpaa_bp_array[bpid]; 504 } 505 506 /* checks if this bpool is already allocated */ 507 static bool dpaa_bpid2pool_use(int bpid) 508 { 509 if (dpaa_bpid2pool(bpid)) { 510 refcount_inc(&dpaa_bp_array[bpid]->refs); 511 return true; 512 } 513 514 return false; 515 } 516 517 /* called only once per bpid by dpaa_bp_alloc_pool() */ 518 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp) 519 { 520 dpaa_bp_array[bpid] = dpaa_bp; 521 refcount_set(&dpaa_bp->refs, 1); 522 } 523 524 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp) 525 { 526 int err; 527 528 if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) { 529 pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n", 530 __func__); 531 return -EINVAL; 532 } 533 534 /* If the pool is already specified, we only create one per bpid */ 535 if (dpaa_bp->bpid != FSL_DPAA_BPID_INV && 536 dpaa_bpid2pool_use(dpaa_bp->bpid)) 537 return 0; 538 539 if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) { 540 dpaa_bp->pool = bman_new_pool(); 541 if (!dpaa_bp->pool) { 542 pr_err("%s: bman_new_pool() failed\n", 543 __func__); 544 return -ENODEV; 545 } 546 547 dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool); 548 } 549 550 if (dpaa_bp->seed_cb) { 551 err = dpaa_bp->seed_cb(dpaa_bp); 552 if (err) 553 goto pool_seed_failed; 554 } 555 556 dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp); 557 558 return 0; 559 560 pool_seed_failed: 561 pr_err("%s: pool seeding failed\n", __func__); 562 bman_free_pool(dpaa_bp->pool); 563 564 return err; 565 } 566 567 /* remove and free all the buffers from the given buffer pool */ 568 static void dpaa_bp_drain(struct dpaa_bp *bp) 569 { 570 u8 num = 8; 571 int ret; 572 573 do { 574 struct bm_buffer bmb[8]; 575 int i; 576 577 ret = bman_acquire(bp->pool, bmb, num); 578 if (ret < 0) { 579 if (num == 8) { 580 /* we have less than 8 buffers left; 581 * drain them one by one 582 */ 583 num = 1; 584 ret = 1; 585 continue; 586 } else { 587 /* Pool is fully drained */ 588 break; 589 } 590 } 591 592 if (bp->free_buf_cb) 593 for (i = 0; i < num; i++) 594 bp->free_buf_cb(bp, &bmb[i]); 595 } while (ret > 0); 596 } 597 598 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp) 599 { 600 struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid); 601 602 /* the mapping between bpid and dpaa_bp is done very late in the 603 * allocation procedure; if something failed before the mapping, the bp 604 * was not configured, therefore we don't need the below instructions 605 */ 606 if (!bp) 607 return; 608 609 if (!refcount_dec_and_test(&bp->refs)) 610 return; 611 612 if (bp->free_buf_cb) 613 dpaa_bp_drain(bp); 614 615 dpaa_bp_array[bp->bpid] = NULL; 616 bman_free_pool(bp->pool); 617 } 618 619 static void dpaa_bps_free(struct dpaa_priv *priv) 620 { 621 dpaa_bp_free(priv->dpaa_bp); 622 } 623 624 /* Use multiple WQs for FQ assignment: 625 * - Tx Confirmation queues go to WQ1. 626 * - Rx Error and Tx Error queues go to WQ5 (giving them a better chance 627 * to be scheduled, in case there are many more FQs in WQ6). 628 * - Rx Default goes to WQ6. 629 * - Tx queues go to different WQs depending on their priority. Equal 630 * chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and 631 * WQ0 (highest priority). 632 * This ensures that Tx-confirmed buffers are timely released. In particular, 633 * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they 634 * are greatly outnumbered by other FQs in the system, while 635 * dequeue scheduling is round-robin. 636 */ 637 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx) 638 { 639 switch (fq->fq_type) { 640 case FQ_TYPE_TX_CONFIRM: 641 case FQ_TYPE_TX_CONF_MQ: 642 fq->wq = 1; 643 break; 644 case FQ_TYPE_RX_ERROR: 645 case FQ_TYPE_TX_ERROR: 646 fq->wq = 5; 647 break; 648 case FQ_TYPE_RX_DEFAULT: 649 case FQ_TYPE_RX_PCD: 650 fq->wq = 6; 651 break; 652 case FQ_TYPE_TX: 653 switch (idx / dpaa_num_txqs_per_tc()) { 654 case 0: 655 /* Low priority (best effort) */ 656 fq->wq = 6; 657 break; 658 case 1: 659 /* Medium priority */ 660 fq->wq = 2; 661 break; 662 case 2: 663 /* High priority */ 664 fq->wq = 1; 665 break; 666 case 3: 667 /* Very high priority */ 668 fq->wq = 0; 669 break; 670 default: 671 WARN(1, "Too many TX FQs: more than %zu!\n", 672 dpaa_max_num_txqs()); 673 } 674 break; 675 default: 676 WARN(1, "Invalid FQ type %d for FQID %d!\n", 677 fq->fq_type, fq->fqid); 678 } 679 } 680 681 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev, 682 u32 start, u32 count, 683 struct list_head *list, 684 enum dpaa_fq_type fq_type) 685 { 686 struct dpaa_fq *dpaa_fq; 687 int i; 688 689 dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq), 690 GFP_KERNEL); 691 if (!dpaa_fq) 692 return NULL; 693 694 for (i = 0; i < count; i++) { 695 dpaa_fq[i].fq_type = fq_type; 696 dpaa_fq[i].fqid = start ? start + i : 0; 697 list_add_tail(&dpaa_fq[i].list, list); 698 } 699 700 for (i = 0; i < count; i++) 701 dpaa_assign_wq(dpaa_fq + i, i); 702 703 return dpaa_fq; 704 } 705 706 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list, 707 struct fm_port_fqs *port_fqs) 708 { 709 struct dpaa_fq *dpaa_fq; 710 u32 fq_base, fq_base_aligned, i; 711 712 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR); 713 if (!dpaa_fq) 714 goto fq_alloc_failed; 715 716 port_fqs->rx_errq = &dpaa_fq[0]; 717 718 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT); 719 if (!dpaa_fq) 720 goto fq_alloc_failed; 721 722 port_fqs->rx_defq = &dpaa_fq[0]; 723 724 /* the PCD FQIDs range needs to be aligned for correct operation */ 725 if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM)) 726 goto fq_alloc_failed; 727 728 fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM); 729 730 for (i = fq_base; i < fq_base_aligned; i++) 731 qman_release_fqid(i); 732 733 for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM; 734 i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++) 735 qman_release_fqid(i); 736 737 dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM, 738 list, FQ_TYPE_RX_PCD); 739 if (!dpaa_fq) 740 goto fq_alloc_failed; 741 742 port_fqs->rx_pcdq = &dpaa_fq[0]; 743 744 if (!dpaa_fq_alloc(dev, 0, dpaa_max_num_txqs(), list, 745 FQ_TYPE_TX_CONF_MQ)) 746 goto fq_alloc_failed; 747 748 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR); 749 if (!dpaa_fq) 750 goto fq_alloc_failed; 751 752 port_fqs->tx_errq = &dpaa_fq[0]; 753 754 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM); 755 if (!dpaa_fq) 756 goto fq_alloc_failed; 757 758 port_fqs->tx_defq = &dpaa_fq[0]; 759 760 if (!dpaa_fq_alloc(dev, 0, dpaa_max_num_txqs(), list, FQ_TYPE_TX)) 761 goto fq_alloc_failed; 762 763 return 0; 764 765 fq_alloc_failed: 766 dev_err(dev, "dpaa_fq_alloc() failed\n"); 767 return -ENOMEM; 768 } 769 770 static u32 rx_pool_channel; 771 static DEFINE_SPINLOCK(rx_pool_channel_init); 772 773 static int dpaa_get_channel(void) 774 { 775 spin_lock(&rx_pool_channel_init); 776 if (!rx_pool_channel) { 777 u32 pool; 778 int ret; 779 780 ret = qman_alloc_pool(&pool); 781 782 if (!ret) 783 rx_pool_channel = pool; 784 } 785 spin_unlock(&rx_pool_channel_init); 786 if (!rx_pool_channel) 787 return -ENOMEM; 788 return rx_pool_channel; 789 } 790 791 static void dpaa_release_channel(void) 792 { 793 qman_release_pool(rx_pool_channel); 794 } 795 796 static void dpaa_eth_add_channel(u16 channel, struct device *dev) 797 { 798 u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel); 799 const cpumask_t *cpus = qman_affine_cpus(); 800 struct qman_portal *portal; 801 int cpu; 802 803 for_each_cpu_and(cpu, cpus, cpu_online_mask) { 804 portal = qman_get_affine_portal(cpu); 805 qman_p_static_dequeue_add(portal, pool); 806 qman_start_using_portal(portal, dev); 807 } 808 } 809 810 /* Congestion group state change notification callback. 811 * Stops the device's egress queues while they are congested and 812 * wakes them upon exiting congested state. 813 * Also updates some CGR-related stats. 814 */ 815 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr, 816 int congested) 817 { 818 struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr, 819 struct dpaa_priv, cgr_data.cgr); 820 821 if (congested) { 822 priv->cgr_data.congestion_start_jiffies = jiffies; 823 netif_tx_stop_all_queues(priv->net_dev); 824 priv->cgr_data.cgr_congested_count++; 825 } else { 826 priv->cgr_data.congested_jiffies += 827 (jiffies - priv->cgr_data.congestion_start_jiffies); 828 netif_tx_wake_all_queues(priv->net_dev); 829 } 830 } 831 832 static int dpaa_eth_cgr_init(struct dpaa_priv *priv) 833 { 834 struct qm_mcc_initcgr initcgr; 835 u32 cs_th; 836 int err; 837 838 err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid); 839 if (err < 0) { 840 if (netif_msg_drv(priv)) 841 pr_err("%s: Error %d allocating CGR ID\n", 842 __func__, err); 843 goto out_error; 844 } 845 priv->cgr_data.cgr.cb = dpaa_eth_cgscn; 846 847 /* Enable Congestion State Change Notifications and CS taildrop */ 848 memset(&initcgr, 0, sizeof(initcgr)); 849 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES); 850 initcgr.cgr.cscn_en = QM_CGR_EN; 851 852 /* Set different thresholds based on the configured MAC speed. 853 * This may turn suboptimal if the MAC is reconfigured at another 854 * speed, so MACs must call dpaa_eth_cgr_set_speed in their link_up 855 * callback. 856 */ 857 if (priv->mac_dev->phylink_config.mac_capabilities & MAC_10000FD) 858 cs_th = DPAA_CS_THRESHOLD_10G; 859 else 860 cs_th = DPAA_CS_THRESHOLD_1G; 861 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1); 862 863 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN); 864 initcgr.cgr.cstd_en = QM_CGR_EN; 865 866 err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT, 867 &initcgr); 868 if (err < 0) { 869 if (netif_msg_drv(priv)) 870 pr_err("%s: Error %d creating CGR with ID %d\n", 871 __func__, err, priv->cgr_data.cgr.cgrid); 872 qman_release_cgrid(priv->cgr_data.cgr.cgrid); 873 goto out_error; 874 } 875 if (netif_msg_drv(priv)) 876 pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n", 877 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr, 878 priv->cgr_data.cgr.chan); 879 880 out_error: 881 return err; 882 } 883 884 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed) 885 { 886 struct net_device *net_dev = to_net_dev(mac_dev->phylink_config.dev); 887 struct dpaa_priv *priv = netdev_priv(net_dev); 888 struct qm_mcc_initcgr opts = { }; 889 u32 cs_th; 890 int err; 891 892 opts.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES); 893 switch (speed) { 894 case SPEED_10000: 895 cs_th = DPAA_CS_THRESHOLD_10G; 896 break; 897 case SPEED_1000: 898 default: 899 cs_th = DPAA_CS_THRESHOLD_1G; 900 break; 901 } 902 qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, cs_th, 1); 903 904 err = qman_update_cgr_safe(&priv->cgr_data.cgr, &opts); 905 if (err) 906 netdev_err(net_dev, "could not update speed: %d\n", err); 907 } 908 909 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv, 910 struct dpaa_fq *fq, 911 const struct qman_fq *template) 912 { 913 fq->fq_base = *template; 914 fq->net_dev = priv->net_dev; 915 916 fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE; 917 fq->channel = priv->channel; 918 } 919 920 static inline void dpaa_setup_egress(const struct dpaa_priv *priv, 921 struct dpaa_fq *fq, 922 struct fman_port *port, 923 const struct qman_fq *template) 924 { 925 fq->fq_base = *template; 926 fq->net_dev = priv->net_dev; 927 928 if (port) { 929 fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL; 930 fq->channel = (u16)fman_port_get_qman_channel_id(port); 931 } else { 932 fq->flags = QMAN_FQ_FLAG_NO_MODIFY; 933 } 934 } 935 936 static int dpaa_fq_setup(struct dpaa_priv *priv, 937 const struct dpaa_fq_cbs *fq_cbs, 938 struct fman_port *tx_port) 939 { 940 int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu; 941 const cpumask_t *affine_cpus = qman_affine_cpus(); 942 struct dpaa_fq *fq; 943 u16 *channels; 944 945 channels = kcalloc(num_possible_cpus(), sizeof(u16), GFP_KERNEL); 946 if (!channels) 947 return -ENOMEM; 948 949 for_each_cpu_and(cpu, affine_cpus, cpu_online_mask) 950 channels[num_portals++] = qman_affine_channel(cpu); 951 952 if (num_portals == 0) 953 dev_err(priv->net_dev->dev.parent, 954 "No Qman software (affine) channels found\n"); 955 956 /* Initialize each FQ in the list */ 957 list_for_each_entry(fq, &priv->dpaa_fq_list, list) { 958 switch (fq->fq_type) { 959 case FQ_TYPE_RX_DEFAULT: 960 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq); 961 break; 962 case FQ_TYPE_RX_ERROR: 963 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq); 964 break; 965 case FQ_TYPE_RX_PCD: 966 if (!num_portals) 967 continue; 968 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq); 969 fq->channel = channels[portal_cnt++ % num_portals]; 970 break; 971 case FQ_TYPE_TX: 972 dpaa_setup_egress(priv, fq, tx_port, 973 &fq_cbs->egress_ern); 974 priv->egress_fqs[egress_cnt++] = &fq->fq_base; 975 break; 976 case FQ_TYPE_TX_CONF_MQ: 977 priv->conf_fqs[conf_cnt++] = &fq->fq_base; 978 fallthrough; 979 case FQ_TYPE_TX_CONFIRM: 980 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq); 981 break; 982 case FQ_TYPE_TX_ERROR: 983 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq); 984 break; 985 default: 986 dev_warn(priv->net_dev->dev.parent, 987 "Unknown FQ type detected!\n"); 988 break; 989 } 990 } 991 992 kfree(channels); 993 994 return 0; 995 } 996 997 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv, 998 struct qman_fq *tx_fq) 999 { 1000 int i; 1001 1002 for (i = 0; i < dpaa_max_num_txqs(); i++) 1003 if (priv->egress_fqs[i] == tx_fq) 1004 return i; 1005 1006 return -EINVAL; 1007 } 1008 1009 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable) 1010 { 1011 const struct dpaa_priv *priv; 1012 struct qman_fq *confq = NULL; 1013 struct qm_mcc_initfq initfq; 1014 struct device *dev; 1015 struct qman_fq *fq; 1016 int queue_id; 1017 int err; 1018 1019 priv = netdev_priv(dpaa_fq->net_dev); 1020 dev = dpaa_fq->net_dev->dev.parent; 1021 1022 if (dpaa_fq->fqid == 0) 1023 dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID; 1024 1025 dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY); 1026 1027 err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base); 1028 if (err) { 1029 dev_err(dev, "qman_create_fq() failed\n"); 1030 return err; 1031 } 1032 fq = &dpaa_fq->fq_base; 1033 1034 if (dpaa_fq->init) { 1035 memset(&initfq, 0, sizeof(initfq)); 1036 1037 initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL); 1038 /* Note: we may get to keep an empty FQ in cache */ 1039 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE); 1040 1041 /* Try to reduce the number of portal interrupts for 1042 * Tx Confirmation FQs. 1043 */ 1044 if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM) 1045 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK); 1046 1047 /* FQ placement */ 1048 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ); 1049 1050 qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq); 1051 1052 /* Put all egress queues in a congestion group of their own. 1053 * Sensu stricto, the Tx confirmation queues are Rx FQs, 1054 * rather than Tx - but they nonetheless account for the 1055 * memory footprint on behalf of egress traffic. We therefore 1056 * place them in the netdev's CGR, along with the Tx FQs. 1057 */ 1058 if (dpaa_fq->fq_type == FQ_TYPE_TX || 1059 dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM || 1060 dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) { 1061 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID); 1062 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE); 1063 initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid; 1064 /* Set a fixed overhead accounting, in an attempt to 1065 * reduce the impact of fixed-size skb shells and the 1066 * driver's needed headroom on system memory. This is 1067 * especially the case when the egress traffic is 1068 * composed of small datagrams. 1069 * Unfortunately, QMan's OAL value is capped to an 1070 * insufficient value, but even that is better than 1071 * no overhead accounting at all. 1072 */ 1073 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC); 1074 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG); 1075 qm_fqd_set_oal(&initfq.fqd, 1076 min(sizeof(struct sk_buff) + 1077 priv->tx_headroom, 1078 (size_t)FSL_QMAN_MAX_OAL)); 1079 } 1080 1081 if (td_enable) { 1082 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH); 1083 qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1); 1084 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE); 1085 } 1086 1087 if (dpaa_fq->fq_type == FQ_TYPE_TX) { 1088 queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base); 1089 if (queue_id >= 0) 1090 confq = priv->conf_fqs[queue_id]; 1091 if (confq) { 1092 initfq.we_mask |= 1093 cpu_to_be16(QM_INITFQ_WE_CONTEXTA); 1094 /* ContextA: OVOM=1(use contextA2 bits instead of ICAD) 1095 * A2V=1 (contextA A2 field is valid) 1096 * A0V=1 (contextA A0 field is valid) 1097 * B0V=1 (contextB field is valid) 1098 * ContextA A2: EBD=1 (deallocate buffers inside FMan) 1099 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID) 1100 */ 1101 qm_fqd_context_a_set64(&initfq.fqd, 1102 0x1e00000080000000ULL); 1103 } 1104 } 1105 1106 /* Put all the ingress queues in our "ingress CGR". */ 1107 if (priv->use_ingress_cgr && 1108 (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || 1109 dpaa_fq->fq_type == FQ_TYPE_RX_ERROR || 1110 dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) { 1111 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID); 1112 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE); 1113 initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid; 1114 /* Set a fixed overhead accounting, just like for the 1115 * egress CGR. 1116 */ 1117 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC); 1118 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG); 1119 qm_fqd_set_oal(&initfq.fqd, 1120 min(sizeof(struct sk_buff) + 1121 priv->tx_headroom, 1122 (size_t)FSL_QMAN_MAX_OAL)); 1123 } 1124 1125 /* Initialization common to all ingress queues */ 1126 if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) { 1127 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA); 1128 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE | 1129 QM_FQCTRL_CTXASTASHING); 1130 initfq.fqd.context_a.stashing.exclusive = 1131 QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX | 1132 QM_STASHING_EXCL_ANNOTATION; 1133 qm_fqd_set_stashing(&initfq.fqd, 1, 2, 1134 DIV_ROUND_UP(sizeof(struct qman_fq), 1135 64)); 1136 } 1137 1138 err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq); 1139 if (err < 0) { 1140 dev_err(dev, "qman_init_fq(%u) = %d\n", 1141 qman_fq_fqid(fq), err); 1142 qman_destroy_fq(fq); 1143 return err; 1144 } 1145 } 1146 1147 dpaa_fq->fqid = qman_fq_fqid(fq); 1148 1149 if (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || 1150 dpaa_fq->fq_type == FQ_TYPE_RX_PCD) { 1151 err = xdp_rxq_info_reg(&dpaa_fq->xdp_rxq, dpaa_fq->net_dev, 1152 dpaa_fq->fqid, 0); 1153 if (err) { 1154 dev_err(dev, "xdp_rxq_info_reg() = %d\n", err); 1155 return err; 1156 } 1157 1158 err = xdp_rxq_info_reg_mem_model(&dpaa_fq->xdp_rxq, 1159 MEM_TYPE_PAGE_ORDER0, NULL); 1160 if (err) { 1161 dev_err(dev, "xdp_rxq_info_reg_mem_model() = %d\n", 1162 err); 1163 xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq); 1164 return err; 1165 } 1166 } 1167 1168 return 0; 1169 } 1170 1171 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq) 1172 { 1173 const struct dpaa_priv *priv; 1174 struct dpaa_fq *dpaa_fq; 1175 int err, error; 1176 1177 err = 0; 1178 1179 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); 1180 priv = netdev_priv(dpaa_fq->net_dev); 1181 1182 if (dpaa_fq->init) { 1183 err = qman_retire_fq(fq, NULL); 1184 if (err < 0 && netif_msg_drv(priv)) 1185 dev_err(dev, "qman_retire_fq(%u) = %d\n", 1186 qman_fq_fqid(fq), err); 1187 1188 error = qman_oos_fq(fq); 1189 if (error < 0 && netif_msg_drv(priv)) { 1190 dev_err(dev, "qman_oos_fq(%u) = %d\n", 1191 qman_fq_fqid(fq), error); 1192 if (err >= 0) 1193 err = error; 1194 } 1195 } 1196 1197 if ((dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || 1198 dpaa_fq->fq_type == FQ_TYPE_RX_PCD) && 1199 xdp_rxq_info_is_reg(&dpaa_fq->xdp_rxq)) 1200 xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq); 1201 1202 qman_destroy_fq(fq); 1203 list_del(&dpaa_fq->list); 1204 1205 return err; 1206 } 1207 1208 static int dpaa_fq_free(struct device *dev, struct list_head *list) 1209 { 1210 struct dpaa_fq *dpaa_fq, *tmp; 1211 int err, error; 1212 1213 err = 0; 1214 list_for_each_entry_safe(dpaa_fq, tmp, list, list) { 1215 error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq); 1216 if (error < 0 && err >= 0) 1217 err = error; 1218 } 1219 1220 return err; 1221 } 1222 1223 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq, 1224 struct dpaa_fq *defq, 1225 struct dpaa_buffer_layout *buf_layout) 1226 { 1227 struct fman_buffer_prefix_content buf_prefix_content; 1228 struct fman_port_params params; 1229 int err; 1230 1231 memset(¶ms, 0, sizeof(params)); 1232 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content)); 1233 1234 buf_prefix_content.priv_data_size = buf_layout->priv_data_size; 1235 buf_prefix_content.pass_prs_result = true; 1236 buf_prefix_content.pass_hash_result = true; 1237 buf_prefix_content.pass_time_stamp = true; 1238 buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT; 1239 1240 params.specific_params.non_rx_params.err_fqid = errq->fqid; 1241 params.specific_params.non_rx_params.dflt_fqid = defq->fqid; 1242 1243 err = fman_port_config(port, ¶ms); 1244 if (err) { 1245 pr_err("%s: fman_port_config failed\n", __func__); 1246 return err; 1247 } 1248 1249 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content); 1250 if (err) { 1251 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n", 1252 __func__); 1253 return err; 1254 } 1255 1256 err = fman_port_init(port); 1257 if (err) 1258 pr_err("%s: fm_port_init failed\n", __func__); 1259 1260 return err; 1261 } 1262 1263 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp *bp, 1264 struct dpaa_fq *errq, 1265 struct dpaa_fq *defq, struct dpaa_fq *pcdq, 1266 struct dpaa_buffer_layout *buf_layout) 1267 { 1268 struct fman_buffer_prefix_content buf_prefix_content; 1269 struct fman_port_rx_params *rx_p; 1270 struct fman_port_params params; 1271 int err; 1272 1273 memset(¶ms, 0, sizeof(params)); 1274 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content)); 1275 1276 buf_prefix_content.priv_data_size = buf_layout->priv_data_size; 1277 buf_prefix_content.pass_prs_result = true; 1278 buf_prefix_content.pass_hash_result = true; 1279 buf_prefix_content.pass_time_stamp = true; 1280 buf_prefix_content.data_align = DPAA_FD_RX_DATA_ALIGNMENT; 1281 1282 rx_p = ¶ms.specific_params.rx_params; 1283 rx_p->err_fqid = errq->fqid; 1284 rx_p->dflt_fqid = defq->fqid; 1285 if (pcdq) { 1286 rx_p->pcd_base_fqid = pcdq->fqid; 1287 rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM; 1288 } 1289 1290 rx_p->ext_buf_pools.num_of_pools_used = 1; 1291 rx_p->ext_buf_pools.ext_buf_pool[0].id = bp->bpid; 1292 rx_p->ext_buf_pools.ext_buf_pool[0].size = (u16)bp->size; 1293 1294 err = fman_port_config(port, ¶ms); 1295 if (err) { 1296 pr_err("%s: fman_port_config failed\n", __func__); 1297 return err; 1298 } 1299 1300 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content); 1301 if (err) { 1302 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n", 1303 __func__); 1304 return err; 1305 } 1306 1307 err = fman_port_init(port); 1308 if (err) 1309 pr_err("%s: fm_port_init failed\n", __func__); 1310 1311 return err; 1312 } 1313 1314 static int dpaa_eth_init_ports(struct mac_device *mac_dev, 1315 struct dpaa_bp *bp, 1316 struct fm_port_fqs *port_fqs, 1317 struct dpaa_buffer_layout *buf_layout, 1318 struct device *dev) 1319 { 1320 struct fman_port *rxport = mac_dev->port[RX]; 1321 struct fman_port *txport = mac_dev->port[TX]; 1322 int err; 1323 1324 err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq, 1325 port_fqs->tx_defq, &buf_layout[TX]); 1326 if (err) 1327 return err; 1328 1329 err = dpaa_eth_init_rx_port(rxport, bp, port_fqs->rx_errq, 1330 port_fqs->rx_defq, port_fqs->rx_pcdq, 1331 &buf_layout[RX]); 1332 1333 return err; 1334 } 1335 1336 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp, 1337 struct bm_buffer *bmb, int cnt) 1338 { 1339 int err; 1340 1341 err = bman_release(dpaa_bp->pool, bmb, cnt); 1342 /* Should never occur, address anyway to avoid leaking the buffers */ 1343 if (WARN_ON(err) && dpaa_bp->free_buf_cb) 1344 while (cnt-- > 0) 1345 dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]); 1346 1347 return cnt; 1348 } 1349 1350 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt) 1351 { 1352 struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX]; 1353 struct dpaa_bp *dpaa_bp; 1354 int i = 0, j; 1355 1356 memset(bmb, 0, sizeof(bmb)); 1357 1358 do { 1359 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid); 1360 if (!dpaa_bp) 1361 return; 1362 1363 j = 0; 1364 do { 1365 WARN_ON(qm_sg_entry_is_ext(&sgt[i])); 1366 1367 bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i])); 1368 1369 j++; i++; 1370 } while (j < ARRAY_SIZE(bmb) && 1371 !qm_sg_entry_is_final(&sgt[i - 1]) && 1372 sgt[i - 1].bpid == sgt[i].bpid); 1373 1374 dpaa_bman_release(dpaa_bp, bmb, j); 1375 } while (!qm_sg_entry_is_final(&sgt[i - 1])); 1376 } 1377 1378 static void dpaa_fd_release(const struct net_device *net_dev, 1379 const struct qm_fd *fd) 1380 { 1381 struct qm_sg_entry *sgt; 1382 struct dpaa_bp *dpaa_bp; 1383 struct bm_buffer bmb; 1384 dma_addr_t addr; 1385 void *vaddr; 1386 1387 bmb.data = 0; 1388 bm_buffer_set64(&bmb, qm_fd_addr(fd)); 1389 1390 dpaa_bp = dpaa_bpid2pool(fd->bpid); 1391 if (!dpaa_bp) 1392 return; 1393 1394 if (qm_fd_get_format(fd) == qm_fd_sg) { 1395 vaddr = phys_to_virt(qm_fd_addr(fd)); 1396 sgt = vaddr + qm_fd_get_offset(fd); 1397 1398 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, qm_fd_addr(fd), 1399 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1400 1401 dpaa_release_sgt_members(sgt); 1402 1403 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, 1404 virt_to_page(vaddr), 0, DPAA_BP_RAW_SIZE, 1405 DMA_FROM_DEVICE); 1406 if (dma_mapping_error(dpaa_bp->priv->rx_dma_dev, addr)) { 1407 netdev_err(net_dev, "DMA mapping failed\n"); 1408 return; 1409 } 1410 bm_buffer_set64(&bmb, addr); 1411 } 1412 1413 dpaa_bman_release(dpaa_bp, &bmb, 1); 1414 } 1415 1416 static void count_ern(struct dpaa_percpu_priv *percpu_priv, 1417 const union qm_mr_entry *msg) 1418 { 1419 switch (msg->ern.rc & QM_MR_RC_MASK) { 1420 case QM_MR_RC_CGR_TAILDROP: 1421 percpu_priv->ern_cnt.cg_tdrop++; 1422 break; 1423 case QM_MR_RC_WRED: 1424 percpu_priv->ern_cnt.wred++; 1425 break; 1426 case QM_MR_RC_ERROR: 1427 percpu_priv->ern_cnt.err_cond++; 1428 break; 1429 case QM_MR_RC_ORPWINDOW_EARLY: 1430 percpu_priv->ern_cnt.early_window++; 1431 break; 1432 case QM_MR_RC_ORPWINDOW_LATE: 1433 percpu_priv->ern_cnt.late_window++; 1434 break; 1435 case QM_MR_RC_FQ_TAILDROP: 1436 percpu_priv->ern_cnt.fq_tdrop++; 1437 break; 1438 case QM_MR_RC_ORPWINDOW_RETIRED: 1439 percpu_priv->ern_cnt.fq_retired++; 1440 break; 1441 case QM_MR_RC_ORP_ZERO: 1442 percpu_priv->ern_cnt.orp_zero++; 1443 break; 1444 } 1445 } 1446 1447 /* Turn on HW checksum computation for this outgoing frame. 1448 * If the current protocol is not something we support in this regard 1449 * (or if the stack has already computed the SW checksum), we do nothing. 1450 * 1451 * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value 1452 * otherwise. 1453 * 1454 * Note that this function may modify the fd->cmd field and the skb data buffer 1455 * (the Parse Results area). 1456 */ 1457 static int dpaa_enable_tx_csum(struct dpaa_priv *priv, 1458 struct sk_buff *skb, 1459 struct qm_fd *fd, 1460 void *parse_results) 1461 { 1462 struct fman_prs_result *parse_result; 1463 u16 ethertype = ntohs(skb->protocol); 1464 struct ipv6hdr *ipv6h = NULL; 1465 struct iphdr *iph; 1466 int retval = 0; 1467 u8 l4_proto; 1468 1469 if (skb->ip_summed != CHECKSUM_PARTIAL) 1470 return 0; 1471 1472 /* Note: L3 csum seems to be already computed in sw, but we can't choose 1473 * L4 alone from the FM configuration anyway. 1474 */ 1475 1476 /* Fill in some fields of the Parse Results array, so the FMan 1477 * can find them as if they came from the FMan Parser. 1478 */ 1479 parse_result = (struct fman_prs_result *)parse_results; 1480 1481 /* If we're dealing with VLAN, get the real Ethernet type */ 1482 if (ethertype == ETH_P_8021Q) 1483 ethertype = ntohs(skb_vlan_eth_hdr(skb)->h_vlan_encapsulated_proto); 1484 1485 /* Fill in the relevant L3 parse result fields 1486 * and read the L4 protocol type 1487 */ 1488 switch (ethertype) { 1489 case ETH_P_IP: 1490 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4); 1491 iph = ip_hdr(skb); 1492 WARN_ON(!iph); 1493 l4_proto = iph->protocol; 1494 break; 1495 case ETH_P_IPV6: 1496 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6); 1497 ipv6h = ipv6_hdr(skb); 1498 WARN_ON(!ipv6h); 1499 l4_proto = ipv6h->nexthdr; 1500 break; 1501 default: 1502 /* We shouldn't even be here */ 1503 if (net_ratelimit()) 1504 netif_alert(priv, tx_err, priv->net_dev, 1505 "Can't compute HW csum for L3 proto 0x%x\n", 1506 ntohs(skb->protocol)); 1507 retval = -EIO; 1508 goto return_error; 1509 } 1510 1511 /* Fill in the relevant L4 parse result fields */ 1512 switch (l4_proto) { 1513 case IPPROTO_UDP: 1514 parse_result->l4r = FM_L4_PARSE_RESULT_UDP; 1515 break; 1516 case IPPROTO_TCP: 1517 parse_result->l4r = FM_L4_PARSE_RESULT_TCP; 1518 break; 1519 default: 1520 if (net_ratelimit()) 1521 netif_alert(priv, tx_err, priv->net_dev, 1522 "Can't compute HW csum for L4 proto 0x%x\n", 1523 l4_proto); 1524 retval = -EIO; 1525 goto return_error; 1526 } 1527 1528 /* At index 0 is IPOffset_1 as defined in the Parse Results */ 1529 parse_result->ip_off[0] = (u8)skb_network_offset(skb); 1530 parse_result->l4_off = (u8)skb_transport_offset(skb); 1531 1532 /* Enable L3 (and L4, if TCP or UDP) HW checksum. */ 1533 fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC); 1534 1535 /* On P1023 and similar platforms fd->cmd interpretation could 1536 * be disabled by setting CONTEXT_A bit ICMD; currently this bit 1537 * is not set so we do not need to check; in the future, if/when 1538 * using context_a we need to check this bit 1539 */ 1540 1541 return_error: 1542 return retval; 1543 } 1544 1545 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp) 1546 { 1547 struct net_device *net_dev = dpaa_bp->priv->net_dev; 1548 struct bm_buffer bmb[8]; 1549 dma_addr_t addr; 1550 struct page *p; 1551 u8 i; 1552 1553 for (i = 0; i < 8; i++) { 1554 p = dev_alloc_pages(0); 1555 if (unlikely(!p)) { 1556 netdev_err(net_dev, "dev_alloc_pages() failed\n"); 1557 goto release_previous_buffs; 1558 } 1559 1560 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, p, 0, 1561 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1562 if (unlikely(dma_mapping_error(dpaa_bp->priv->rx_dma_dev, 1563 addr))) { 1564 netdev_err(net_dev, "DMA map failed\n"); 1565 goto release_previous_buffs; 1566 } 1567 1568 bmb[i].data = 0; 1569 bm_buffer_set64(&bmb[i], addr); 1570 } 1571 1572 release_bufs: 1573 return dpaa_bman_release(dpaa_bp, bmb, i); 1574 1575 release_previous_buffs: 1576 WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n"); 1577 1578 bm_buffer_set64(&bmb[i], 0); 1579 /* Avoid releasing a completely null buffer; bman_release() requires 1580 * at least one buffer. 1581 */ 1582 if (likely(i)) 1583 goto release_bufs; 1584 1585 return 0; 1586 } 1587 1588 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp) 1589 { 1590 int i; 1591 1592 /* Give each CPU an allotment of "config_count" buffers */ 1593 for_each_possible_cpu(i) { 1594 int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i); 1595 int j; 1596 1597 /* Although we access another CPU's counters here 1598 * we do it at boot time so it is safe 1599 */ 1600 for (j = 0; j < dpaa_bp->config_count; j += 8) 1601 *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp); 1602 } 1603 return 0; 1604 } 1605 1606 /* Add buffers/(pages) for Rx processing whenever bpool count falls below 1607 * REFILL_THRESHOLD. 1608 */ 1609 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr) 1610 { 1611 int count = *countptr; 1612 int new_bufs; 1613 1614 if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) { 1615 do { 1616 new_bufs = dpaa_bp_add_8_bufs(dpaa_bp); 1617 if (unlikely(!new_bufs)) { 1618 /* Avoid looping forever if we've temporarily 1619 * run out of memory. We'll try again at the 1620 * next NAPI cycle. 1621 */ 1622 break; 1623 } 1624 count += new_bufs; 1625 } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT); 1626 1627 *countptr = count; 1628 if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT)) 1629 return -ENOMEM; 1630 } 1631 1632 return 0; 1633 } 1634 1635 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv) 1636 { 1637 struct dpaa_bp *dpaa_bp; 1638 int *countptr; 1639 1640 dpaa_bp = priv->dpaa_bp; 1641 if (!dpaa_bp) 1642 return -EINVAL; 1643 countptr = this_cpu_ptr(dpaa_bp->percpu_count); 1644 1645 return dpaa_eth_refill_bpool(dpaa_bp, countptr); 1646 } 1647 1648 /* Cleanup function for outgoing frame descriptors that were built on Tx path, 1649 * either contiguous frames or scatter/gather ones. 1650 * Skb freeing is not handled here. 1651 * 1652 * This function may be called on error paths in the Tx function, so guard 1653 * against cases when not all fd relevant fields were filled in. To avoid 1654 * reading the invalid transmission timestamp for the error paths set ts to 1655 * false. 1656 * 1657 * Return the skb backpointer, since for S/G frames the buffer containing it 1658 * gets freed here. 1659 * 1660 * No skb backpointer is set when transmitting XDP frames. Cleanup the buffer 1661 * and return NULL in this case. 1662 */ 1663 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv, 1664 const struct qm_fd *fd, bool ts) 1665 { 1666 const enum dma_data_direction dma_dir = DMA_TO_DEVICE; 1667 struct device *dev = priv->net_dev->dev.parent; 1668 struct skb_shared_hwtstamps shhwtstamps; 1669 dma_addr_t addr = qm_fd_addr(fd); 1670 void *vaddr = phys_to_virt(addr); 1671 const struct qm_sg_entry *sgt; 1672 struct dpaa_eth_swbp *swbp; 1673 struct sk_buff *skb; 1674 u64 ns; 1675 int i; 1676 1677 if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) { 1678 dma_unmap_page(priv->tx_dma_dev, addr, 1679 qm_fd_get_offset(fd) + DPAA_SGT_SIZE, 1680 dma_dir); 1681 1682 /* The sgt buffer has been allocated with netdev_alloc_frag(), 1683 * it's from lowmem. 1684 */ 1685 sgt = vaddr + qm_fd_get_offset(fd); 1686 1687 /* sgt[0] is from lowmem, was dma_map_single()-ed */ 1688 dma_unmap_single(priv->tx_dma_dev, qm_sg_addr(&sgt[0]), 1689 qm_sg_entry_get_len(&sgt[0]), dma_dir); 1690 1691 /* remaining pages were mapped with skb_frag_dma_map() */ 1692 for (i = 1; (i < DPAA_SGT_MAX_ENTRIES) && 1693 !qm_sg_entry_is_final(&sgt[i - 1]); i++) { 1694 WARN_ON(qm_sg_entry_is_ext(&sgt[i])); 1695 1696 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[i]), 1697 qm_sg_entry_get_len(&sgt[i]), dma_dir); 1698 } 1699 } else { 1700 dma_unmap_single(priv->tx_dma_dev, addr, 1701 qm_fd_get_offset(fd) + qm_fd_get_length(fd), 1702 dma_dir); 1703 } 1704 1705 swbp = (struct dpaa_eth_swbp *)vaddr; 1706 skb = swbp->skb; 1707 1708 /* No skb backpointer is set when running XDP. An xdp_frame 1709 * backpointer is saved instead. 1710 */ 1711 if (!skb) { 1712 xdp_return_frame(swbp->xdpf); 1713 return NULL; 1714 } 1715 1716 /* DMA unmapping is required before accessing the HW provided info */ 1717 if (ts && priv->tx_tstamp && 1718 skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { 1719 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 1720 1721 if (!fman_port_get_tstamp(priv->mac_dev->port[TX], vaddr, 1722 &ns)) { 1723 shhwtstamps.hwtstamp = ns_to_ktime(ns); 1724 skb_tstamp_tx(skb, &shhwtstamps); 1725 } else { 1726 dev_warn(dev, "fman_port_get_tstamp failed!\n"); 1727 } 1728 } 1729 1730 if (qm_fd_get_format(fd) == qm_fd_sg) 1731 /* Free the page that we allocated on Tx for the SGT */ 1732 free_pages((unsigned long)vaddr, 0); 1733 1734 return skb; 1735 } 1736 1737 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd) 1738 { 1739 /* The parser has run and performed L4 checksum validation. 1740 * We know there were no parser errors (and implicitly no 1741 * L4 csum error), otherwise we wouldn't be here. 1742 */ 1743 if ((priv->net_dev->features & NETIF_F_RXCSUM) && 1744 (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV)) 1745 return CHECKSUM_UNNECESSARY; 1746 1747 /* We're here because either the parser didn't run or the L4 checksum 1748 * was not verified. This may include the case of a UDP frame with 1749 * checksum zero or an L4 proto other than TCP/UDP 1750 */ 1751 return CHECKSUM_NONE; 1752 } 1753 1754 #define PTR_IS_ALIGNED(x, a) (IS_ALIGNED((unsigned long)(x), (a))) 1755 1756 /* Build a linear skb around the received buffer. 1757 * We are guaranteed there is enough room at the end of the data buffer to 1758 * accommodate the shared info area of the skb. 1759 */ 1760 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv, 1761 const struct qm_fd *fd) 1762 { 1763 ssize_t fd_off = qm_fd_get_offset(fd); 1764 dma_addr_t addr = qm_fd_addr(fd); 1765 struct dpaa_bp *dpaa_bp; 1766 struct sk_buff *skb; 1767 void *vaddr; 1768 1769 vaddr = phys_to_virt(addr); 1770 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES)); 1771 1772 dpaa_bp = dpaa_bpid2pool(fd->bpid); 1773 if (!dpaa_bp) 1774 goto free_buffer; 1775 1776 skb = build_skb(vaddr, dpaa_bp->size + 1777 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))); 1778 if (WARN_ONCE(!skb, "Build skb failure on Rx\n")) 1779 goto free_buffer; 1780 skb_reserve(skb, fd_off); 1781 skb_put(skb, qm_fd_get_length(fd)); 1782 1783 skb->ip_summed = rx_csum_offload(priv, fd); 1784 1785 return skb; 1786 1787 free_buffer: 1788 free_pages((unsigned long)vaddr, 0); 1789 return NULL; 1790 } 1791 1792 /* Build an skb with the data of the first S/G entry in the linear portion and 1793 * the rest of the frame as skb fragments. 1794 * 1795 * The page fragment holding the S/G Table is recycled here. 1796 */ 1797 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv, 1798 const struct qm_fd *fd) 1799 { 1800 ssize_t fd_off = qm_fd_get_offset(fd); 1801 dma_addr_t addr = qm_fd_addr(fd); 1802 const struct qm_sg_entry *sgt; 1803 struct page *page, *head_page; 1804 struct dpaa_bp *dpaa_bp; 1805 void *vaddr, *sg_vaddr; 1806 int frag_off, frag_len; 1807 struct sk_buff *skb; 1808 dma_addr_t sg_addr; 1809 int page_offset; 1810 unsigned int sz; 1811 int *count_ptr; 1812 int i, j; 1813 1814 vaddr = phys_to_virt(addr); 1815 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES)); 1816 1817 /* Iterate through the SGT entries and add data buffers to the skb */ 1818 sgt = vaddr + fd_off; 1819 skb = NULL; 1820 for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) { 1821 /* Extension bit is not supported */ 1822 WARN_ON(qm_sg_entry_is_ext(&sgt[i])); 1823 1824 sg_addr = qm_sg_addr(&sgt[i]); 1825 sg_vaddr = phys_to_virt(sg_addr); 1826 WARN_ON(!PTR_IS_ALIGNED(sg_vaddr, SMP_CACHE_BYTES)); 1827 1828 dma_unmap_page(priv->rx_dma_dev, sg_addr, 1829 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1830 1831 /* We may use multiple Rx pools */ 1832 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid); 1833 if (!dpaa_bp) 1834 goto free_buffers; 1835 1836 if (!skb) { 1837 sz = dpaa_bp->size + 1838 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1839 skb = build_skb(sg_vaddr, sz); 1840 if (WARN_ON(!skb)) 1841 goto free_buffers; 1842 1843 skb->ip_summed = rx_csum_offload(priv, fd); 1844 1845 /* Make sure forwarded skbs will have enough space 1846 * on Tx, if extra headers are added. 1847 */ 1848 WARN_ON(fd_off != priv->rx_headroom); 1849 skb_reserve(skb, fd_off); 1850 skb_put(skb, qm_sg_entry_get_len(&sgt[i])); 1851 } else { 1852 /* Not the first S/G entry; all data from buffer will 1853 * be added in an skb fragment; fragment index is offset 1854 * by one since first S/G entry was incorporated in the 1855 * linear part of the skb. 1856 * 1857 * Caution: 'page' may be a tail page. 1858 */ 1859 page = virt_to_page(sg_vaddr); 1860 head_page = virt_to_head_page(sg_vaddr); 1861 1862 /* Compute offset in (possibly tail) page */ 1863 page_offset = ((unsigned long)sg_vaddr & 1864 (PAGE_SIZE - 1)) + 1865 (page_address(page) - page_address(head_page)); 1866 /* page_offset only refers to the beginning of sgt[i]; 1867 * but the buffer itself may have an internal offset. 1868 */ 1869 frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset; 1870 frag_len = qm_sg_entry_get_len(&sgt[i]); 1871 /* skb_add_rx_frag() does no checking on the page; if 1872 * we pass it a tail page, we'll end up with 1873 * bad page accounting and eventually with segafults. 1874 */ 1875 skb_add_rx_frag(skb, i - 1, head_page, frag_off, 1876 frag_len, dpaa_bp->size); 1877 } 1878 1879 /* Update the pool count for the current {cpu x bpool} */ 1880 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); 1881 (*count_ptr)--; 1882 1883 if (qm_sg_entry_is_final(&sgt[i])) 1884 break; 1885 } 1886 WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n"); 1887 1888 /* free the SG table buffer */ 1889 free_pages((unsigned long)vaddr, 0); 1890 1891 return skb; 1892 1893 free_buffers: 1894 /* free all the SG entries */ 1895 for (j = 0; j < DPAA_SGT_MAX_ENTRIES ; j++) { 1896 sg_addr = qm_sg_addr(&sgt[j]); 1897 sg_vaddr = phys_to_virt(sg_addr); 1898 /* all pages 0..i were unmaped */ 1899 if (j > i) 1900 dma_unmap_page(priv->rx_dma_dev, qm_sg_addr(&sgt[j]), 1901 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1902 free_pages((unsigned long)sg_vaddr, 0); 1903 /* counters 0..i-1 were decremented */ 1904 if (j >= i) { 1905 dpaa_bp = dpaa_bpid2pool(sgt[j].bpid); 1906 if (dpaa_bp) { 1907 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); 1908 (*count_ptr)--; 1909 } 1910 } 1911 1912 if (qm_sg_entry_is_final(&sgt[j])) 1913 break; 1914 } 1915 /* free the SGT fragment */ 1916 free_pages((unsigned long)vaddr, 0); 1917 1918 return NULL; 1919 } 1920 1921 static int skb_to_contig_fd(struct dpaa_priv *priv, 1922 struct sk_buff *skb, struct qm_fd *fd, 1923 int *offset) 1924 { 1925 struct net_device *net_dev = priv->net_dev; 1926 enum dma_data_direction dma_dir; 1927 struct dpaa_eth_swbp *swbp; 1928 unsigned char *buff_start; 1929 dma_addr_t addr; 1930 int err; 1931 1932 /* We are guaranteed to have at least tx_headroom bytes 1933 * available, so just use that for offset. 1934 */ 1935 fd->bpid = FSL_DPAA_BPID_INV; 1936 buff_start = skb->data - priv->tx_headroom; 1937 dma_dir = DMA_TO_DEVICE; 1938 1939 swbp = (struct dpaa_eth_swbp *)buff_start; 1940 swbp->skb = skb; 1941 1942 /* Enable L3/L4 hardware checksum computation. 1943 * 1944 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may 1945 * need to write into the skb. 1946 */ 1947 err = dpaa_enable_tx_csum(priv, skb, fd, 1948 buff_start + DPAA_TX_PRIV_DATA_SIZE); 1949 if (unlikely(err < 0)) { 1950 if (net_ratelimit()) 1951 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n", 1952 err); 1953 return err; 1954 } 1955 1956 /* Fill in the rest of the FD fields */ 1957 qm_fd_set_contig(fd, priv->tx_headroom, skb->len); 1958 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO); 1959 1960 /* Map the entire buffer size that may be seen by FMan, but no more */ 1961 addr = dma_map_single(priv->tx_dma_dev, buff_start, 1962 priv->tx_headroom + skb->len, dma_dir); 1963 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 1964 if (net_ratelimit()) 1965 netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n"); 1966 return -EINVAL; 1967 } 1968 qm_fd_addr_set64(fd, addr); 1969 1970 return 0; 1971 } 1972 1973 static int skb_to_sg_fd(struct dpaa_priv *priv, 1974 struct sk_buff *skb, struct qm_fd *fd) 1975 { 1976 const enum dma_data_direction dma_dir = DMA_TO_DEVICE; 1977 const int nr_frags = skb_shinfo(skb)->nr_frags; 1978 struct net_device *net_dev = priv->net_dev; 1979 struct dpaa_eth_swbp *swbp; 1980 struct qm_sg_entry *sgt; 1981 void *buff_start; 1982 skb_frag_t *frag; 1983 dma_addr_t addr; 1984 size_t frag_len; 1985 struct page *p; 1986 int i, j, err; 1987 1988 /* get a page to store the SGTable */ 1989 p = dev_alloc_pages(0); 1990 if (unlikely(!p)) { 1991 netdev_err(net_dev, "dev_alloc_pages() failed\n"); 1992 return -ENOMEM; 1993 } 1994 buff_start = page_address(p); 1995 1996 /* Enable L3/L4 hardware checksum computation. 1997 * 1998 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may 1999 * need to write into the skb. 2000 */ 2001 err = dpaa_enable_tx_csum(priv, skb, fd, 2002 buff_start + DPAA_TX_PRIV_DATA_SIZE); 2003 if (unlikely(err < 0)) { 2004 if (net_ratelimit()) 2005 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n", 2006 err); 2007 goto csum_failed; 2008 } 2009 2010 /* SGT[0] is used by the linear part */ 2011 sgt = (struct qm_sg_entry *)(buff_start + priv->tx_headroom); 2012 frag_len = skb_headlen(skb); 2013 qm_sg_entry_set_len(&sgt[0], frag_len); 2014 sgt[0].bpid = FSL_DPAA_BPID_INV; 2015 sgt[0].offset = 0; 2016 addr = dma_map_single(priv->tx_dma_dev, skb->data, 2017 skb_headlen(skb), dma_dir); 2018 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2019 netdev_err(priv->net_dev, "DMA mapping failed\n"); 2020 err = -EINVAL; 2021 goto sg0_map_failed; 2022 } 2023 qm_sg_entry_set64(&sgt[0], addr); 2024 2025 /* populate the rest of SGT entries */ 2026 for (i = 0; i < nr_frags; i++) { 2027 frag = &skb_shinfo(skb)->frags[i]; 2028 frag_len = skb_frag_size(frag); 2029 WARN_ON(!skb_frag_page(frag)); 2030 addr = skb_frag_dma_map(priv->tx_dma_dev, frag, 0, 2031 frag_len, dma_dir); 2032 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2033 netdev_err(priv->net_dev, "DMA mapping failed\n"); 2034 err = -EINVAL; 2035 goto sg_map_failed; 2036 } 2037 2038 qm_sg_entry_set_len(&sgt[i + 1], frag_len); 2039 sgt[i + 1].bpid = FSL_DPAA_BPID_INV; 2040 sgt[i + 1].offset = 0; 2041 2042 /* keep the offset in the address */ 2043 qm_sg_entry_set64(&sgt[i + 1], addr); 2044 } 2045 2046 /* Set the final bit in the last used entry of the SGT */ 2047 qm_sg_entry_set_f(&sgt[nr_frags], frag_len); 2048 2049 /* set fd offset to priv->tx_headroom */ 2050 qm_fd_set_sg(fd, priv->tx_headroom, skb->len); 2051 2052 /* DMA map the SGT page */ 2053 swbp = (struct dpaa_eth_swbp *)buff_start; 2054 swbp->skb = skb; 2055 2056 addr = dma_map_page(priv->tx_dma_dev, p, 0, 2057 priv->tx_headroom + DPAA_SGT_SIZE, dma_dir); 2058 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2059 netdev_err(priv->net_dev, "DMA mapping failed\n"); 2060 err = -EINVAL; 2061 goto sgt_map_failed; 2062 } 2063 2064 fd->bpid = FSL_DPAA_BPID_INV; 2065 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO); 2066 qm_fd_addr_set64(fd, addr); 2067 2068 return 0; 2069 2070 sgt_map_failed: 2071 sg_map_failed: 2072 for (j = 0; j < i; j++) 2073 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[j]), 2074 qm_sg_entry_get_len(&sgt[j]), dma_dir); 2075 sg0_map_failed: 2076 csum_failed: 2077 free_pages((unsigned long)buff_start, 0); 2078 2079 return err; 2080 } 2081 2082 static inline int dpaa_xmit(struct dpaa_priv *priv, 2083 struct rtnl_link_stats64 *percpu_stats, 2084 int queue, 2085 struct qm_fd *fd) 2086 { 2087 struct qman_fq *egress_fq; 2088 int err, i; 2089 2090 egress_fq = priv->egress_fqs[queue]; 2091 if (fd->bpid == FSL_DPAA_BPID_INV) 2092 fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue])); 2093 2094 /* Trace this Tx fd */ 2095 trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd); 2096 2097 for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) { 2098 err = qman_enqueue(egress_fq, fd); 2099 if (err != -EBUSY) 2100 break; 2101 } 2102 2103 if (unlikely(err < 0)) { 2104 percpu_stats->tx_fifo_errors++; 2105 return err; 2106 } 2107 2108 percpu_stats->tx_packets++; 2109 percpu_stats->tx_bytes += qm_fd_get_length(fd); 2110 2111 return 0; 2112 } 2113 2114 #ifdef CONFIG_DPAA_ERRATUM_A050385 2115 static int dpaa_a050385_wa_skb(struct net_device *net_dev, struct sk_buff **s) 2116 { 2117 struct dpaa_priv *priv = netdev_priv(net_dev); 2118 struct sk_buff *new_skb, *skb = *s; 2119 unsigned char *start, i; 2120 2121 /* check linear buffer alignment */ 2122 if (!PTR_IS_ALIGNED(skb->data, DPAA_A050385_ALIGN)) 2123 goto workaround; 2124 2125 /* linear buffers just need to have an aligned start */ 2126 if (!skb_is_nonlinear(skb)) 2127 return 0; 2128 2129 /* linear data size for nonlinear skbs needs to be aligned */ 2130 if (!IS_ALIGNED(skb_headlen(skb), DPAA_A050385_ALIGN)) 2131 goto workaround; 2132 2133 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2134 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2135 2136 /* all fragments need to have aligned start addresses */ 2137 if (!IS_ALIGNED(skb_frag_off(frag), DPAA_A050385_ALIGN)) 2138 goto workaround; 2139 2140 /* all but last fragment need to have aligned sizes */ 2141 if (!IS_ALIGNED(skb_frag_size(frag), DPAA_A050385_ALIGN) && 2142 (i < skb_shinfo(skb)->nr_frags - 1)) 2143 goto workaround; 2144 } 2145 2146 return 0; 2147 2148 workaround: 2149 /* copy all the skb content into a new linear buffer */ 2150 new_skb = netdev_alloc_skb(net_dev, skb->len + DPAA_A050385_ALIGN - 1 + 2151 priv->tx_headroom); 2152 if (!new_skb) 2153 return -ENOMEM; 2154 2155 /* NET_SKB_PAD bytes already reserved, adding up to tx_headroom */ 2156 skb_reserve(new_skb, priv->tx_headroom - NET_SKB_PAD); 2157 2158 /* Workaround for DPAA_A050385 requires data start to be aligned */ 2159 start = PTR_ALIGN(new_skb->data, DPAA_A050385_ALIGN); 2160 if (start - new_skb->data) 2161 skb_reserve(new_skb, start - new_skb->data); 2162 2163 skb_put(new_skb, skb->len); 2164 skb_copy_bits(skb, 0, new_skb->data, skb->len); 2165 skb_copy_header(new_skb, skb); 2166 new_skb->dev = skb->dev; 2167 2168 /* Copy relevant timestamp info from the old skb to the new */ 2169 if (priv->tx_tstamp) { 2170 skb_shinfo(new_skb)->tx_flags = skb_shinfo(skb)->tx_flags; 2171 skb_shinfo(new_skb)->hwtstamps = skb_shinfo(skb)->hwtstamps; 2172 skb_shinfo(new_skb)->tskey = skb_shinfo(skb)->tskey; 2173 if (skb->sk) 2174 skb_set_owner_w(new_skb, skb->sk); 2175 } 2176 2177 /* We move the headroom when we align it so we have to reset the 2178 * network and transport header offsets relative to the new data 2179 * pointer. The checksum offload relies on these offsets. 2180 */ 2181 skb_set_network_header(new_skb, skb_network_offset(skb)); 2182 skb_set_transport_header(new_skb, skb_transport_offset(skb)); 2183 2184 dev_kfree_skb(skb); 2185 *s = new_skb; 2186 2187 return 0; 2188 } 2189 2190 static int dpaa_a050385_wa_xdpf(struct dpaa_priv *priv, 2191 struct xdp_frame **init_xdpf) 2192 { 2193 struct xdp_frame *new_xdpf, *xdpf = *init_xdpf; 2194 void *new_buff, *aligned_data; 2195 struct page *p; 2196 u32 data_shift; 2197 int headroom; 2198 2199 /* Check the data alignment and make sure the headroom is large 2200 * enough to store the xdpf backpointer. Use an aligned headroom 2201 * value. 2202 * 2203 * Due to alignment constraints, we give XDP access to the full 256 2204 * byte frame headroom. If the XDP program uses all of it, copy the 2205 * data to a new buffer and make room for storing the backpointer. 2206 */ 2207 if (PTR_IS_ALIGNED(xdpf->data, DPAA_FD_DATA_ALIGNMENT) && 2208 xdpf->headroom >= priv->tx_headroom) { 2209 xdpf->headroom = priv->tx_headroom; 2210 return 0; 2211 } 2212 2213 /* Try to move the data inside the buffer just enough to align it and 2214 * store the xdpf backpointer. If the available headroom isn't large 2215 * enough, resort to allocating a new buffer and copying the data. 2216 */ 2217 aligned_data = PTR_ALIGN_DOWN(xdpf->data, DPAA_FD_DATA_ALIGNMENT); 2218 data_shift = xdpf->data - aligned_data; 2219 2220 /* The XDP frame's headroom needs to be large enough to accommodate 2221 * shifting the data as well as storing the xdpf backpointer. 2222 */ 2223 if (xdpf->headroom >= data_shift + priv->tx_headroom) { 2224 memmove(aligned_data, xdpf->data, xdpf->len); 2225 xdpf->data = aligned_data; 2226 xdpf->headroom = priv->tx_headroom; 2227 return 0; 2228 } 2229 2230 /* The new xdp_frame is stored in the new buffer. Reserve enough space 2231 * in the headroom for storing it along with the driver's private 2232 * info. The headroom needs to be aligned to DPAA_FD_DATA_ALIGNMENT to 2233 * guarantee the data's alignment in the buffer. 2234 */ 2235 headroom = ALIGN(sizeof(*new_xdpf) + priv->tx_headroom, 2236 DPAA_FD_DATA_ALIGNMENT); 2237 2238 /* Assure the extended headroom and data don't overflow the buffer, 2239 * while maintaining the mandatory tailroom. 2240 */ 2241 if (headroom + xdpf->len > DPAA_BP_RAW_SIZE - 2242 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 2243 return -ENOMEM; 2244 2245 p = dev_alloc_pages(0); 2246 if (unlikely(!p)) 2247 return -ENOMEM; 2248 2249 /* Copy the data to the new buffer at a properly aligned offset */ 2250 new_buff = page_address(p); 2251 memcpy(new_buff + headroom, xdpf->data, xdpf->len); 2252 2253 /* Create an XDP frame around the new buffer in a similar fashion 2254 * to xdp_convert_buff_to_frame. 2255 */ 2256 new_xdpf = new_buff; 2257 new_xdpf->data = new_buff + headroom; 2258 new_xdpf->len = xdpf->len; 2259 new_xdpf->headroom = priv->tx_headroom; 2260 new_xdpf->frame_sz = DPAA_BP_RAW_SIZE; 2261 new_xdpf->mem.type = MEM_TYPE_PAGE_ORDER0; 2262 2263 /* Release the initial buffer */ 2264 xdp_return_frame_rx_napi(xdpf); 2265 2266 *init_xdpf = new_xdpf; 2267 return 0; 2268 } 2269 #endif 2270 2271 static netdev_tx_t 2272 dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev) 2273 { 2274 const int queue_mapping = skb_get_queue_mapping(skb); 2275 bool nonlinear = skb_is_nonlinear(skb); 2276 struct rtnl_link_stats64 *percpu_stats; 2277 struct dpaa_percpu_priv *percpu_priv; 2278 struct netdev_queue *txq; 2279 struct dpaa_priv *priv; 2280 struct qm_fd fd; 2281 int offset = 0; 2282 int err = 0; 2283 2284 priv = netdev_priv(net_dev); 2285 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2286 percpu_stats = &percpu_priv->stats; 2287 2288 qm_fd_clear_fd(&fd); 2289 2290 if (!nonlinear) { 2291 /* We're going to store the skb backpointer at the beginning 2292 * of the data buffer, so we need a privately owned skb 2293 * 2294 * We've made sure skb is not shared in dev->priv_flags, 2295 * we need to verify the skb head is not cloned 2296 */ 2297 if (skb_cow_head(skb, priv->tx_headroom)) 2298 goto enomem; 2299 2300 WARN_ON(skb_is_nonlinear(skb)); 2301 } 2302 2303 /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES; 2304 * make sure we don't feed FMan with more fragments than it supports. 2305 */ 2306 if (unlikely(nonlinear && 2307 (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) { 2308 /* If the egress skb contains more fragments than we support 2309 * we have no choice but to linearize it ourselves. 2310 */ 2311 if (__skb_linearize(skb)) 2312 goto enomem; 2313 2314 nonlinear = skb_is_nonlinear(skb); 2315 } 2316 2317 #ifdef CONFIG_DPAA_ERRATUM_A050385 2318 if (unlikely(fman_has_errata_a050385())) { 2319 if (dpaa_a050385_wa_skb(net_dev, &skb)) 2320 goto enomem; 2321 nonlinear = skb_is_nonlinear(skb); 2322 } 2323 #endif 2324 2325 if (nonlinear) { 2326 /* Just create a S/G fd based on the skb */ 2327 err = skb_to_sg_fd(priv, skb, &fd); 2328 percpu_priv->tx_frag_skbuffs++; 2329 } else { 2330 /* Create a contig FD from this skb */ 2331 err = skb_to_contig_fd(priv, skb, &fd, &offset); 2332 } 2333 if (unlikely(err < 0)) 2334 goto skb_to_fd_failed; 2335 2336 txq = netdev_get_tx_queue(net_dev, queue_mapping); 2337 2338 /* LLTX requires to do our own update of trans_start */ 2339 txq_trans_cond_update(txq); 2340 2341 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { 2342 fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD); 2343 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2344 } 2345 2346 if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0)) 2347 return NETDEV_TX_OK; 2348 2349 dpaa_cleanup_tx_fd(priv, &fd, false); 2350 skb_to_fd_failed: 2351 enomem: 2352 percpu_stats->tx_errors++; 2353 dev_kfree_skb(skb); 2354 return NETDEV_TX_OK; 2355 } 2356 2357 static void dpaa_rx_error(struct net_device *net_dev, 2358 const struct dpaa_priv *priv, 2359 struct dpaa_percpu_priv *percpu_priv, 2360 const struct qm_fd *fd, 2361 u32 fqid) 2362 { 2363 if (net_ratelimit()) 2364 netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n", 2365 be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS); 2366 2367 percpu_priv->stats.rx_errors++; 2368 2369 if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA) 2370 percpu_priv->rx_errors.dme++; 2371 if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL) 2372 percpu_priv->rx_errors.fpe++; 2373 if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE) 2374 percpu_priv->rx_errors.fse++; 2375 if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR) 2376 percpu_priv->rx_errors.phe++; 2377 2378 dpaa_fd_release(net_dev, fd); 2379 } 2380 2381 static void dpaa_tx_error(struct net_device *net_dev, 2382 const struct dpaa_priv *priv, 2383 struct dpaa_percpu_priv *percpu_priv, 2384 const struct qm_fd *fd, 2385 u32 fqid) 2386 { 2387 struct sk_buff *skb; 2388 2389 if (net_ratelimit()) 2390 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", 2391 be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS); 2392 2393 percpu_priv->stats.tx_errors++; 2394 2395 skb = dpaa_cleanup_tx_fd(priv, fd, false); 2396 dev_kfree_skb(skb); 2397 } 2398 2399 static int dpaa_eth_poll(struct napi_struct *napi, int budget) 2400 { 2401 struct dpaa_napi_portal *np = 2402 container_of(napi, struct dpaa_napi_portal, napi); 2403 int cleaned; 2404 2405 np->xdp_act = 0; 2406 2407 cleaned = qman_p_poll_dqrr(np->p, budget); 2408 2409 if (np->xdp_act & XDP_REDIRECT) 2410 xdp_do_flush(); 2411 2412 if (cleaned < budget) { 2413 napi_complete_done(napi, cleaned); 2414 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); 2415 } else if (np->down) { 2416 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); 2417 } 2418 2419 return cleaned; 2420 } 2421 2422 static void dpaa_tx_conf(struct net_device *net_dev, 2423 const struct dpaa_priv *priv, 2424 struct dpaa_percpu_priv *percpu_priv, 2425 const struct qm_fd *fd, 2426 u32 fqid) 2427 { 2428 struct sk_buff *skb; 2429 2430 if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) { 2431 if (net_ratelimit()) 2432 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", 2433 be32_to_cpu(fd->status) & 2434 FM_FD_STAT_TX_ERRORS); 2435 2436 percpu_priv->stats.tx_errors++; 2437 } 2438 2439 percpu_priv->tx_confirm++; 2440 2441 skb = dpaa_cleanup_tx_fd(priv, fd, true); 2442 2443 consume_skb(skb); 2444 } 2445 2446 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv, 2447 struct qman_portal *portal, bool sched_napi) 2448 { 2449 if (sched_napi) { 2450 /* Disable QMan IRQ and invoke NAPI */ 2451 qman_p_irqsource_remove(portal, QM_PIRQ_DQRI); 2452 2453 percpu_priv->np.p = portal; 2454 napi_schedule(&percpu_priv->np.napi); 2455 percpu_priv->in_interrupt++; 2456 return 1; 2457 } 2458 return 0; 2459 } 2460 2461 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal, 2462 struct qman_fq *fq, 2463 const struct qm_dqrr_entry *dq, 2464 bool sched_napi) 2465 { 2466 struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); 2467 struct dpaa_percpu_priv *percpu_priv; 2468 struct net_device *net_dev; 2469 struct dpaa_bp *dpaa_bp; 2470 struct dpaa_priv *priv; 2471 2472 net_dev = dpaa_fq->net_dev; 2473 priv = netdev_priv(net_dev); 2474 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid); 2475 if (!dpaa_bp) 2476 return qman_cb_dqrr_consume; 2477 2478 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2479 2480 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)) 2481 return qman_cb_dqrr_stop; 2482 2483 dpaa_eth_refill_bpools(priv); 2484 dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); 2485 2486 return qman_cb_dqrr_consume; 2487 } 2488 2489 static int dpaa_xdp_xmit_frame(struct net_device *net_dev, 2490 struct xdp_frame *xdpf) 2491 { 2492 struct dpaa_priv *priv = netdev_priv(net_dev); 2493 struct rtnl_link_stats64 *percpu_stats; 2494 struct dpaa_percpu_priv *percpu_priv; 2495 struct dpaa_eth_swbp *swbp; 2496 struct netdev_queue *txq; 2497 void *buff_start; 2498 struct qm_fd fd; 2499 dma_addr_t addr; 2500 int err; 2501 2502 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2503 percpu_stats = &percpu_priv->stats; 2504 2505 #ifdef CONFIG_DPAA_ERRATUM_A050385 2506 if (unlikely(fman_has_errata_a050385())) { 2507 if (dpaa_a050385_wa_xdpf(priv, &xdpf)) { 2508 err = -ENOMEM; 2509 goto out_error; 2510 } 2511 } 2512 #endif 2513 2514 if (xdpf->headroom < DPAA_TX_PRIV_DATA_SIZE) { 2515 err = -EINVAL; 2516 goto out_error; 2517 } 2518 2519 buff_start = xdpf->data - xdpf->headroom; 2520 2521 /* Leave empty the skb backpointer at the start of the buffer. 2522 * Save the XDP frame for easy cleanup on confirmation. 2523 */ 2524 swbp = (struct dpaa_eth_swbp *)buff_start; 2525 swbp->skb = NULL; 2526 swbp->xdpf = xdpf; 2527 2528 qm_fd_clear_fd(&fd); 2529 fd.bpid = FSL_DPAA_BPID_INV; 2530 fd.cmd |= cpu_to_be32(FM_FD_CMD_FCO); 2531 qm_fd_set_contig(&fd, xdpf->headroom, xdpf->len); 2532 2533 addr = dma_map_single(priv->tx_dma_dev, buff_start, 2534 xdpf->headroom + xdpf->len, 2535 DMA_TO_DEVICE); 2536 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2537 err = -EINVAL; 2538 goto out_error; 2539 } 2540 2541 qm_fd_addr_set64(&fd, addr); 2542 2543 /* Bump the trans_start */ 2544 txq = netdev_get_tx_queue(net_dev, smp_processor_id()); 2545 txq_trans_cond_update(txq); 2546 2547 err = dpaa_xmit(priv, percpu_stats, smp_processor_id(), &fd); 2548 if (err) { 2549 dma_unmap_single(priv->tx_dma_dev, addr, 2550 qm_fd_get_offset(&fd) + qm_fd_get_length(&fd), 2551 DMA_TO_DEVICE); 2552 goto out_error; 2553 } 2554 2555 return 0; 2556 2557 out_error: 2558 percpu_stats->tx_errors++; 2559 return err; 2560 } 2561 2562 static u32 dpaa_run_xdp(struct dpaa_priv *priv, struct qm_fd *fd, void *vaddr, 2563 struct dpaa_fq *dpaa_fq, unsigned int *xdp_meta_len) 2564 { 2565 ssize_t fd_off = qm_fd_get_offset(fd); 2566 struct bpf_prog *xdp_prog; 2567 struct xdp_frame *xdpf; 2568 struct xdp_buff xdp; 2569 u32 xdp_act; 2570 int err; 2571 2572 xdp_prog = READ_ONCE(priv->xdp_prog); 2573 if (!xdp_prog) 2574 return XDP_PASS; 2575 2576 xdp_init_buff(&xdp, DPAA_BP_RAW_SIZE - DPAA_TX_PRIV_DATA_SIZE, 2577 &dpaa_fq->xdp_rxq); 2578 xdp_prepare_buff(&xdp, vaddr + fd_off - XDP_PACKET_HEADROOM, 2579 XDP_PACKET_HEADROOM, qm_fd_get_length(fd), true); 2580 2581 /* We reserve a fixed headroom of 256 bytes under the erratum and we 2582 * offer it all to XDP programs to use. If no room is left for the 2583 * xdpf backpointer on TX, we will need to copy the data. 2584 * Disable metadata support since data realignments might be required 2585 * and the information can be lost. 2586 */ 2587 #ifdef CONFIG_DPAA_ERRATUM_A050385 2588 if (unlikely(fman_has_errata_a050385())) { 2589 xdp_set_data_meta_invalid(&xdp); 2590 xdp.data_hard_start = vaddr; 2591 xdp.frame_sz = DPAA_BP_RAW_SIZE; 2592 } 2593 #endif 2594 2595 xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp); 2596 2597 /* Update the length and the offset of the FD */ 2598 qm_fd_set_contig(fd, xdp.data - vaddr, xdp.data_end - xdp.data); 2599 2600 switch (xdp_act) { 2601 case XDP_PASS: 2602 #ifdef CONFIG_DPAA_ERRATUM_A050385 2603 *xdp_meta_len = xdp_data_meta_unsupported(&xdp) ? 0 : 2604 xdp.data - xdp.data_meta; 2605 #else 2606 *xdp_meta_len = xdp.data - xdp.data_meta; 2607 #endif 2608 break; 2609 case XDP_TX: 2610 /* We can access the full headroom when sending the frame 2611 * back out 2612 */ 2613 xdp.data_hard_start = vaddr; 2614 xdp.frame_sz = DPAA_BP_RAW_SIZE; 2615 xdpf = xdp_convert_buff_to_frame(&xdp); 2616 if (unlikely(!xdpf)) { 2617 free_pages((unsigned long)vaddr, 0); 2618 break; 2619 } 2620 2621 if (dpaa_xdp_xmit_frame(priv->net_dev, xdpf)) 2622 xdp_return_frame_rx_napi(xdpf); 2623 2624 break; 2625 case XDP_REDIRECT: 2626 /* Allow redirect to use the full headroom */ 2627 xdp.data_hard_start = vaddr; 2628 xdp.frame_sz = DPAA_BP_RAW_SIZE; 2629 2630 err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog); 2631 if (err) { 2632 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 2633 free_pages((unsigned long)vaddr, 0); 2634 } 2635 break; 2636 default: 2637 bpf_warn_invalid_xdp_action(priv->net_dev, xdp_prog, xdp_act); 2638 fallthrough; 2639 case XDP_ABORTED: 2640 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 2641 fallthrough; 2642 case XDP_DROP: 2643 /* Free the buffer */ 2644 free_pages((unsigned long)vaddr, 0); 2645 break; 2646 } 2647 2648 return xdp_act; 2649 } 2650 2651 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal, 2652 struct qman_fq *fq, 2653 const struct qm_dqrr_entry *dq, 2654 bool sched_napi) 2655 { 2656 bool ts_valid = false, hash_valid = false; 2657 struct skb_shared_hwtstamps *shhwtstamps; 2658 unsigned int skb_len, xdp_meta_len = 0; 2659 struct rtnl_link_stats64 *percpu_stats; 2660 struct dpaa_percpu_priv *percpu_priv; 2661 const struct qm_fd *fd = &dq->fd; 2662 dma_addr_t addr = qm_fd_addr(fd); 2663 struct dpaa_napi_portal *np; 2664 enum qm_fd_format fd_format; 2665 struct net_device *net_dev; 2666 u32 fd_status, hash_offset; 2667 struct qm_sg_entry *sgt; 2668 struct dpaa_bp *dpaa_bp; 2669 struct dpaa_fq *dpaa_fq; 2670 struct dpaa_priv *priv; 2671 struct sk_buff *skb; 2672 int *count_ptr; 2673 u32 xdp_act; 2674 void *vaddr; 2675 u32 hash; 2676 u64 ns; 2677 2678 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); 2679 fd_status = be32_to_cpu(fd->status); 2680 fd_format = qm_fd_get_format(fd); 2681 net_dev = dpaa_fq->net_dev; 2682 priv = netdev_priv(net_dev); 2683 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid); 2684 if (!dpaa_bp) 2685 return qman_cb_dqrr_consume; 2686 2687 /* Trace the Rx fd */ 2688 trace_dpaa_rx_fd(net_dev, fq, &dq->fd); 2689 2690 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2691 percpu_stats = &percpu_priv->stats; 2692 np = &percpu_priv->np; 2693 2694 if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))) 2695 return qman_cb_dqrr_stop; 2696 2697 /* Make sure we didn't run out of buffers */ 2698 if (unlikely(dpaa_eth_refill_bpools(priv))) { 2699 /* Unable to refill the buffer pool due to insufficient 2700 * system memory. Just release the frame back into the pool, 2701 * otherwise we'll soon end up with an empty buffer pool. 2702 */ 2703 dpaa_fd_release(net_dev, &dq->fd); 2704 return qman_cb_dqrr_consume; 2705 } 2706 2707 if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) { 2708 if (net_ratelimit()) 2709 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", 2710 fd_status & FM_FD_STAT_RX_ERRORS); 2711 2712 percpu_stats->rx_errors++; 2713 dpaa_fd_release(net_dev, fd); 2714 return qman_cb_dqrr_consume; 2715 } 2716 2717 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE, 2718 DMA_FROM_DEVICE); 2719 2720 /* prefetch the first 64 bytes of the frame or the SGT start */ 2721 vaddr = phys_to_virt(addr); 2722 prefetch(vaddr + qm_fd_get_offset(fd)); 2723 2724 /* The only FD types that we may receive are contig and S/G */ 2725 WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg)); 2726 2727 /* Account for either the contig buffer or the SGT buffer (depending on 2728 * which case we were in) having been removed from the pool. 2729 */ 2730 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); 2731 (*count_ptr)--; 2732 2733 /* Extract the timestamp stored in the headroom before running XDP */ 2734 if (priv->rx_tstamp) { 2735 if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns)) 2736 ts_valid = true; 2737 else 2738 WARN_ONCE(1, "fman_port_get_tstamp failed!\n"); 2739 } 2740 2741 /* Extract the hash stored in the headroom before running XDP */ 2742 if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use && 2743 !fman_port_get_hash_result_offset(priv->mac_dev->port[RX], 2744 &hash_offset)) { 2745 hash = be32_to_cpu(*(u32 *)(vaddr + hash_offset)); 2746 hash_valid = true; 2747 } 2748 2749 if (likely(fd_format == qm_fd_contig)) { 2750 xdp_act = dpaa_run_xdp(priv, (struct qm_fd *)fd, vaddr, 2751 dpaa_fq, &xdp_meta_len); 2752 np->xdp_act |= xdp_act; 2753 if (xdp_act != XDP_PASS) { 2754 percpu_stats->rx_packets++; 2755 percpu_stats->rx_bytes += qm_fd_get_length(fd); 2756 return qman_cb_dqrr_consume; 2757 } 2758 skb = contig_fd_to_skb(priv, fd); 2759 } else { 2760 /* XDP doesn't support S/G frames. Return the fragments to the 2761 * buffer pool and release the SGT. 2762 */ 2763 if (READ_ONCE(priv->xdp_prog)) { 2764 WARN_ONCE(1, "S/G frames not supported under XDP\n"); 2765 sgt = vaddr + qm_fd_get_offset(fd); 2766 dpaa_release_sgt_members(sgt); 2767 free_pages((unsigned long)vaddr, 0); 2768 return qman_cb_dqrr_consume; 2769 } 2770 skb = sg_fd_to_skb(priv, fd); 2771 } 2772 if (!skb) 2773 return qman_cb_dqrr_consume; 2774 2775 if (xdp_meta_len) 2776 skb_metadata_set(skb, xdp_meta_len); 2777 2778 /* Set the previously extracted timestamp */ 2779 if (ts_valid) { 2780 shhwtstamps = skb_hwtstamps(skb); 2781 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2782 shhwtstamps->hwtstamp = ns_to_ktime(ns); 2783 } 2784 2785 skb->protocol = eth_type_trans(skb, net_dev); 2786 2787 /* Set the previously extracted hash */ 2788 if (hash_valid) { 2789 enum pkt_hash_types type; 2790 2791 /* if L4 exists, it was used in the hash generation */ 2792 type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ? 2793 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3; 2794 skb_set_hash(skb, hash, type); 2795 } 2796 2797 skb_len = skb->len; 2798 2799 if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) { 2800 percpu_stats->rx_dropped++; 2801 return qman_cb_dqrr_consume; 2802 } 2803 2804 percpu_stats->rx_packets++; 2805 percpu_stats->rx_bytes += skb_len; 2806 2807 return qman_cb_dqrr_consume; 2808 } 2809 2810 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal, 2811 struct qman_fq *fq, 2812 const struct qm_dqrr_entry *dq, 2813 bool sched_napi) 2814 { 2815 struct dpaa_percpu_priv *percpu_priv; 2816 struct net_device *net_dev; 2817 struct dpaa_priv *priv; 2818 2819 net_dev = ((struct dpaa_fq *)fq)->net_dev; 2820 priv = netdev_priv(net_dev); 2821 2822 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2823 2824 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)) 2825 return qman_cb_dqrr_stop; 2826 2827 dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); 2828 2829 return qman_cb_dqrr_consume; 2830 } 2831 2832 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal, 2833 struct qman_fq *fq, 2834 const struct qm_dqrr_entry *dq, 2835 bool sched_napi) 2836 { 2837 struct dpaa_percpu_priv *percpu_priv; 2838 struct net_device *net_dev; 2839 struct dpaa_priv *priv; 2840 2841 net_dev = ((struct dpaa_fq *)fq)->net_dev; 2842 priv = netdev_priv(net_dev); 2843 2844 /* Trace the fd */ 2845 trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd); 2846 2847 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2848 2849 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)) 2850 return qman_cb_dqrr_stop; 2851 2852 dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); 2853 2854 return qman_cb_dqrr_consume; 2855 } 2856 2857 static void egress_ern(struct qman_portal *portal, 2858 struct qman_fq *fq, 2859 const union qm_mr_entry *msg) 2860 { 2861 const struct qm_fd *fd = &msg->ern.fd; 2862 struct dpaa_percpu_priv *percpu_priv; 2863 const struct dpaa_priv *priv; 2864 struct net_device *net_dev; 2865 struct sk_buff *skb; 2866 2867 net_dev = ((struct dpaa_fq *)fq)->net_dev; 2868 priv = netdev_priv(net_dev); 2869 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2870 2871 percpu_priv->stats.tx_dropped++; 2872 percpu_priv->stats.tx_fifo_errors++; 2873 count_ern(percpu_priv, msg); 2874 2875 skb = dpaa_cleanup_tx_fd(priv, fd, false); 2876 dev_kfree_skb_any(skb); 2877 } 2878 2879 static const struct dpaa_fq_cbs dpaa_fq_cbs = { 2880 .rx_defq = { .cb = { .dqrr = rx_default_dqrr } }, 2881 .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } }, 2882 .rx_errq = { .cb = { .dqrr = rx_error_dqrr } }, 2883 .tx_errq = { .cb = { .dqrr = conf_error_dqrr } }, 2884 .egress_ern = { .cb = { .ern = egress_ern } } 2885 }; 2886 2887 static void dpaa_eth_napi_enable(struct dpaa_priv *priv) 2888 { 2889 struct dpaa_percpu_priv *percpu_priv; 2890 int i; 2891 2892 for_each_online_cpu(i) { 2893 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 2894 2895 percpu_priv->np.down = false; 2896 napi_enable(&percpu_priv->np.napi); 2897 } 2898 } 2899 2900 static void dpaa_eth_napi_disable(struct dpaa_priv *priv) 2901 { 2902 struct dpaa_percpu_priv *percpu_priv; 2903 int i; 2904 2905 for_each_online_cpu(i) { 2906 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 2907 2908 percpu_priv->np.down = true; 2909 napi_disable(&percpu_priv->np.napi); 2910 } 2911 } 2912 2913 static int dpaa_open(struct net_device *net_dev) 2914 { 2915 struct mac_device *mac_dev; 2916 struct dpaa_priv *priv; 2917 int err, i; 2918 2919 priv = netdev_priv(net_dev); 2920 mac_dev = priv->mac_dev; 2921 dpaa_eth_napi_enable(priv); 2922 2923 err = phylink_of_phy_connect(mac_dev->phylink, 2924 mac_dev->dev->of_node, 0); 2925 if (err) 2926 goto phy_init_failed; 2927 2928 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) { 2929 err = fman_port_enable(mac_dev->port[i]); 2930 if (err) 2931 goto mac_start_failed; 2932 } 2933 2934 err = priv->mac_dev->enable(mac_dev->fman_mac); 2935 if (err < 0) { 2936 netif_err(priv, ifup, net_dev, "mac_dev->enable() = %d\n", err); 2937 goto mac_start_failed; 2938 } 2939 phylink_start(mac_dev->phylink); 2940 2941 netif_tx_start_all_queues(net_dev); 2942 2943 return 0; 2944 2945 mac_start_failed: 2946 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) 2947 fman_port_disable(mac_dev->port[i]); 2948 phylink_disconnect_phy(mac_dev->phylink); 2949 2950 phy_init_failed: 2951 dpaa_eth_napi_disable(priv); 2952 2953 return err; 2954 } 2955 2956 static int dpaa_eth_stop(struct net_device *net_dev) 2957 { 2958 struct dpaa_priv *priv; 2959 int err; 2960 2961 err = dpaa_stop(net_dev); 2962 2963 priv = netdev_priv(net_dev); 2964 dpaa_eth_napi_disable(priv); 2965 2966 return err; 2967 } 2968 2969 static bool xdp_validate_mtu(struct dpaa_priv *priv, int mtu) 2970 { 2971 int max_contig_data = priv->dpaa_bp->size - priv->rx_headroom; 2972 2973 /* We do not support S/G fragments when XDP is enabled. 2974 * Limit the MTU in relation to the buffer size. 2975 */ 2976 if (mtu + VLAN_ETH_HLEN + ETH_FCS_LEN > max_contig_data) { 2977 dev_warn(priv->net_dev->dev.parent, 2978 "The maximum MTU for XDP is %d\n", 2979 max_contig_data - VLAN_ETH_HLEN - ETH_FCS_LEN); 2980 return false; 2981 } 2982 2983 return true; 2984 } 2985 2986 static int dpaa_change_mtu(struct net_device *net_dev, int new_mtu) 2987 { 2988 struct dpaa_priv *priv = netdev_priv(net_dev); 2989 2990 if (priv->xdp_prog && !xdp_validate_mtu(priv, new_mtu)) 2991 return -EINVAL; 2992 2993 WRITE_ONCE(net_dev->mtu, new_mtu); 2994 return 0; 2995 } 2996 2997 static int dpaa_setup_xdp(struct net_device *net_dev, struct netdev_bpf *bpf) 2998 { 2999 struct dpaa_priv *priv = netdev_priv(net_dev); 3000 struct bpf_prog *old_prog; 3001 int err; 3002 bool up; 3003 3004 /* S/G fragments are not supported in XDP-mode */ 3005 if (bpf->prog && !xdp_validate_mtu(priv, net_dev->mtu)) { 3006 NL_SET_ERR_MSG_MOD(bpf->extack, "MTU too large for XDP"); 3007 return -EINVAL; 3008 } 3009 3010 up = netif_running(net_dev); 3011 3012 if (up) 3013 dpaa_eth_stop(net_dev); 3014 3015 old_prog = xchg(&priv->xdp_prog, bpf->prog); 3016 if (old_prog) 3017 bpf_prog_put(old_prog); 3018 3019 if (up) { 3020 err = dpaa_open(net_dev); 3021 if (err) { 3022 NL_SET_ERR_MSG_MOD(bpf->extack, "dpaa_open() failed"); 3023 return err; 3024 } 3025 } 3026 3027 return 0; 3028 } 3029 3030 static int dpaa_xdp(struct net_device *net_dev, struct netdev_bpf *xdp) 3031 { 3032 switch (xdp->command) { 3033 case XDP_SETUP_PROG: 3034 return dpaa_setup_xdp(net_dev, xdp); 3035 default: 3036 return -EINVAL; 3037 } 3038 } 3039 3040 static int dpaa_xdp_xmit(struct net_device *net_dev, int n, 3041 struct xdp_frame **frames, u32 flags) 3042 { 3043 struct xdp_frame *xdpf; 3044 int i, nxmit = 0; 3045 3046 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 3047 return -EINVAL; 3048 3049 if (!netif_running(net_dev)) 3050 return -ENETDOWN; 3051 3052 for (i = 0; i < n; i++) { 3053 xdpf = frames[i]; 3054 if (dpaa_xdp_xmit_frame(net_dev, xdpf)) 3055 break; 3056 nxmit++; 3057 } 3058 3059 return nxmit; 3060 } 3061 3062 static int dpaa_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 3063 { 3064 struct dpaa_priv *priv = netdev_priv(dev); 3065 struct hwtstamp_config config; 3066 3067 if (copy_from_user(&config, rq->ifr_data, sizeof(config))) 3068 return -EFAULT; 3069 3070 switch (config.tx_type) { 3071 case HWTSTAMP_TX_OFF: 3072 /* Couldn't disable rx/tx timestamping separately. 3073 * Do nothing here. 3074 */ 3075 priv->tx_tstamp = false; 3076 break; 3077 case HWTSTAMP_TX_ON: 3078 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true); 3079 priv->tx_tstamp = true; 3080 break; 3081 default: 3082 return -ERANGE; 3083 } 3084 3085 if (config.rx_filter == HWTSTAMP_FILTER_NONE) { 3086 /* Couldn't disable rx/tx timestamping separately. 3087 * Do nothing here. 3088 */ 3089 priv->rx_tstamp = false; 3090 } else { 3091 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true); 3092 priv->rx_tstamp = true; 3093 /* TS is set for all frame types, not only those requested */ 3094 config.rx_filter = HWTSTAMP_FILTER_ALL; 3095 } 3096 3097 return copy_to_user(rq->ifr_data, &config, sizeof(config)) ? 3098 -EFAULT : 0; 3099 } 3100 3101 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd) 3102 { 3103 int ret = -EINVAL; 3104 struct dpaa_priv *priv = netdev_priv(net_dev); 3105 3106 if (cmd == SIOCGMIIREG) { 3107 if (net_dev->phydev) 3108 return phylink_mii_ioctl(priv->mac_dev->phylink, rq, 3109 cmd); 3110 } 3111 3112 if (cmd == SIOCSHWTSTAMP) 3113 return dpaa_ts_ioctl(net_dev, rq, cmd); 3114 3115 return ret; 3116 } 3117 3118 static const struct net_device_ops dpaa_ops = { 3119 .ndo_open = dpaa_open, 3120 .ndo_start_xmit = dpaa_start_xmit, 3121 .ndo_stop = dpaa_eth_stop, 3122 .ndo_tx_timeout = dpaa_tx_timeout, 3123 .ndo_get_stats64 = dpaa_get_stats64, 3124 .ndo_change_carrier = fixed_phy_change_carrier, 3125 .ndo_set_mac_address = dpaa_set_mac_address, 3126 .ndo_validate_addr = eth_validate_addr, 3127 .ndo_set_rx_mode = dpaa_set_rx_mode, 3128 .ndo_eth_ioctl = dpaa_ioctl, 3129 .ndo_setup_tc = dpaa_setup_tc, 3130 .ndo_change_mtu = dpaa_change_mtu, 3131 .ndo_bpf = dpaa_xdp, 3132 .ndo_xdp_xmit = dpaa_xdp_xmit, 3133 }; 3134 3135 static int dpaa_napi_add(struct net_device *net_dev) 3136 { 3137 struct dpaa_priv *priv = netdev_priv(net_dev); 3138 struct dpaa_percpu_priv *percpu_priv; 3139 int cpu; 3140 3141 for_each_possible_cpu(cpu) { 3142 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu); 3143 3144 netif_napi_add(net_dev, &percpu_priv->np.napi, dpaa_eth_poll); 3145 } 3146 3147 return 0; 3148 } 3149 3150 static void dpaa_napi_del(struct net_device *net_dev) 3151 { 3152 struct dpaa_priv *priv = netdev_priv(net_dev); 3153 struct dpaa_percpu_priv *percpu_priv; 3154 int cpu; 3155 3156 for_each_possible_cpu(cpu) { 3157 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu); 3158 3159 netif_napi_del(&percpu_priv->np.napi); 3160 } 3161 } 3162 3163 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp, 3164 struct bm_buffer *bmb) 3165 { 3166 dma_addr_t addr = bm_buf_addr(bmb); 3167 3168 dma_unmap_page(bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE, 3169 DMA_FROM_DEVICE); 3170 3171 skb_free_frag(phys_to_virt(addr)); 3172 } 3173 3174 /* Alloc the dpaa_bp struct and configure default values */ 3175 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev) 3176 { 3177 struct dpaa_bp *dpaa_bp; 3178 3179 dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL); 3180 if (!dpaa_bp) 3181 return ERR_PTR(-ENOMEM); 3182 3183 dpaa_bp->bpid = FSL_DPAA_BPID_INV; 3184 dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count); 3185 if (!dpaa_bp->percpu_count) 3186 return ERR_PTR(-ENOMEM); 3187 3188 dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT; 3189 3190 dpaa_bp->seed_cb = dpaa_bp_seed; 3191 dpaa_bp->free_buf_cb = dpaa_bp_free_pf; 3192 3193 return dpaa_bp; 3194 } 3195 3196 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR. 3197 * We won't be sending congestion notifications to FMan; for now, we just use 3198 * this CGR to generate enqueue rejections to FMan in order to drop the frames 3199 * before they reach our ingress queues and eat up memory. 3200 */ 3201 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv) 3202 { 3203 struct qm_mcc_initcgr initcgr; 3204 u32 cs_th; 3205 int err; 3206 3207 err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid); 3208 if (err < 0) { 3209 if (netif_msg_drv(priv)) 3210 pr_err("Error %d allocating CGR ID\n", err); 3211 goto out_error; 3212 } 3213 3214 /* Enable CS TD, but disable Congestion State Change Notifications. */ 3215 memset(&initcgr, 0, sizeof(initcgr)); 3216 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES); 3217 initcgr.cgr.cscn_en = QM_CGR_EN; 3218 cs_th = DPAA_INGRESS_CS_THRESHOLD; 3219 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1); 3220 3221 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN); 3222 initcgr.cgr.cstd_en = QM_CGR_EN; 3223 3224 /* This CGR will be associated with the SWP affined to the current CPU. 3225 * However, we'll place all our ingress FQs in it. 3226 */ 3227 err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT, 3228 &initcgr); 3229 if (err < 0) { 3230 if (netif_msg_drv(priv)) 3231 pr_err("Error %d creating ingress CGR with ID %d\n", 3232 err, priv->ingress_cgr.cgrid); 3233 qman_release_cgrid(priv->ingress_cgr.cgrid); 3234 goto out_error; 3235 } 3236 if (netif_msg_drv(priv)) 3237 pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n", 3238 priv->ingress_cgr.cgrid, priv->mac_dev->addr); 3239 3240 priv->use_ingress_cgr = true; 3241 3242 out_error: 3243 return err; 3244 } 3245 3246 static u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl, 3247 enum port_type port) 3248 { 3249 u16 headroom; 3250 3251 /* The frame headroom must accommodate: 3252 * - the driver private data area 3253 * - parse results, hash results, timestamp if selected 3254 * If either hash results or time stamp are selected, both will 3255 * be copied to/from the frame headroom, as TS is located between PR and 3256 * HR in the IC and IC copy size has a granularity of 16bytes 3257 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM) 3258 * 3259 * Also make sure the headroom is a multiple of data_align bytes 3260 */ 3261 headroom = (u16)(bl[port].priv_data_size + DPAA_HWA_SIZE); 3262 3263 if (port == RX) { 3264 #ifdef CONFIG_DPAA_ERRATUM_A050385 3265 if (unlikely(fman_has_errata_a050385())) 3266 headroom = XDP_PACKET_HEADROOM; 3267 #endif 3268 3269 return ALIGN(headroom, DPAA_FD_RX_DATA_ALIGNMENT); 3270 } else { 3271 return ALIGN(headroom, DPAA_FD_DATA_ALIGNMENT); 3272 } 3273 } 3274 3275 static int dpaa_eth_probe(struct platform_device *pdev) 3276 { 3277 struct net_device *net_dev = NULL; 3278 struct dpaa_bp *dpaa_bp = NULL; 3279 struct dpaa_fq *dpaa_fq, *tmp; 3280 struct dpaa_priv *priv = NULL; 3281 struct fm_port_fqs port_fqs; 3282 struct mac_device *mac_dev; 3283 int err = 0, channel; 3284 struct device *dev; 3285 3286 dev = &pdev->dev; 3287 3288 err = bman_is_probed(); 3289 if (!err) 3290 return -EPROBE_DEFER; 3291 if (err < 0) { 3292 dev_err(dev, "failing probe due to bman probe error\n"); 3293 return -ENODEV; 3294 } 3295 err = qman_is_probed(); 3296 if (!err) 3297 return -EPROBE_DEFER; 3298 if (err < 0) { 3299 dev_err(dev, "failing probe due to qman probe error\n"); 3300 return -ENODEV; 3301 } 3302 err = bman_portals_probed(); 3303 if (!err) 3304 return -EPROBE_DEFER; 3305 if (err < 0) { 3306 dev_err(dev, 3307 "failing probe due to bman portals probe error\n"); 3308 return -ENODEV; 3309 } 3310 err = qman_portals_probed(); 3311 if (!err) 3312 return -EPROBE_DEFER; 3313 if (err < 0) { 3314 dev_err(dev, 3315 "failing probe due to qman portals probe error\n"); 3316 return -ENODEV; 3317 } 3318 3319 /* Allocate this early, so we can store relevant information in 3320 * the private area 3321 */ 3322 net_dev = alloc_etherdev_mq(sizeof(*priv), dpaa_max_num_txqs()); 3323 if (!net_dev) { 3324 dev_err(dev, "alloc_etherdev_mq() failed\n"); 3325 return -ENOMEM; 3326 } 3327 3328 /* Do this here, so we can be verbose early */ 3329 SET_NETDEV_DEV(net_dev, dev->parent); 3330 dev_set_drvdata(dev, net_dev); 3331 3332 priv = netdev_priv(net_dev); 3333 priv->net_dev = net_dev; 3334 3335 priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT); 3336 3337 priv->egress_fqs = devm_kcalloc(dev, dpaa_max_num_txqs(), 3338 sizeof(*priv->egress_fqs), 3339 GFP_KERNEL); 3340 if (!priv->egress_fqs) { 3341 err = -ENOMEM; 3342 goto free_netdev; 3343 } 3344 3345 priv->conf_fqs = devm_kcalloc(dev, dpaa_max_num_txqs(), 3346 sizeof(*priv->conf_fqs), 3347 GFP_KERNEL); 3348 if (!priv->conf_fqs) { 3349 err = -ENOMEM; 3350 goto free_netdev; 3351 } 3352 3353 mac_dev = dpaa_mac_dev_get(pdev); 3354 if (IS_ERR(mac_dev)) { 3355 netdev_err(net_dev, "dpaa_mac_dev_get() failed\n"); 3356 err = PTR_ERR(mac_dev); 3357 goto free_netdev; 3358 } 3359 3360 /* Devices used for DMA mapping */ 3361 priv->rx_dma_dev = fman_port_get_device(mac_dev->port[RX]); 3362 priv->tx_dma_dev = fman_port_get_device(mac_dev->port[TX]); 3363 err = dma_coerce_mask_and_coherent(priv->rx_dma_dev, DMA_BIT_MASK(40)); 3364 if (!err) 3365 err = dma_coerce_mask_and_coherent(priv->tx_dma_dev, 3366 DMA_BIT_MASK(40)); 3367 if (err) { 3368 netdev_err(net_dev, "dma_coerce_mask_and_coherent() failed\n"); 3369 goto free_netdev; 3370 } 3371 3372 /* If fsl_fm_max_frm is set to a higher value than the all-common 1500, 3373 * we choose conservatively and let the user explicitly set a higher 3374 * MTU via ifconfig. Otherwise, the user may end up with different MTUs 3375 * in the same LAN. 3376 * If on the other hand fsl_fm_max_frm has been chosen below 1500, 3377 * start with the maximum allowed. 3378 */ 3379 net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN); 3380 3381 netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n", 3382 net_dev->mtu); 3383 3384 priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */ 3385 priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */ 3386 3387 /* bp init */ 3388 dpaa_bp = dpaa_bp_alloc(dev); 3389 if (IS_ERR(dpaa_bp)) { 3390 err = PTR_ERR(dpaa_bp); 3391 goto free_dpaa_bps; 3392 } 3393 /* the raw size of the buffers used for reception */ 3394 dpaa_bp->raw_size = DPAA_BP_RAW_SIZE; 3395 /* avoid runtime computations by keeping the usable size here */ 3396 dpaa_bp->size = dpaa_bp_size(dpaa_bp->raw_size); 3397 dpaa_bp->priv = priv; 3398 3399 err = dpaa_bp_alloc_pool(dpaa_bp); 3400 if (err < 0) 3401 goto free_dpaa_bps; 3402 priv->dpaa_bp = dpaa_bp; 3403 3404 INIT_LIST_HEAD(&priv->dpaa_fq_list); 3405 3406 memset(&port_fqs, 0, sizeof(port_fqs)); 3407 3408 err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs); 3409 if (err < 0) { 3410 dev_err(dev, "dpaa_alloc_all_fqs() failed\n"); 3411 goto free_dpaa_bps; 3412 } 3413 3414 priv->mac_dev = mac_dev; 3415 3416 channel = dpaa_get_channel(); 3417 if (channel < 0) { 3418 dev_err(dev, "dpaa_get_channel() failed\n"); 3419 err = channel; 3420 goto free_dpaa_bps; 3421 } 3422 3423 priv->channel = (u16)channel; 3424 3425 /* Walk the CPUs with affine portals 3426 * and add this pool channel to each's dequeue mask. 3427 */ 3428 dpaa_eth_add_channel(priv->channel, &pdev->dev); 3429 3430 err = dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]); 3431 if (err) 3432 goto free_dpaa_bps; 3433 3434 /* Create a congestion group for this netdev, with 3435 * dynamically-allocated CGR ID. 3436 * Must be executed after probing the MAC, but before 3437 * assigning the egress FQs to the CGRs. 3438 */ 3439 err = dpaa_eth_cgr_init(priv); 3440 if (err < 0) { 3441 dev_err(dev, "Error initializing CGR\n"); 3442 goto free_dpaa_bps; 3443 } 3444 3445 err = dpaa_ingress_cgr_init(priv); 3446 if (err < 0) { 3447 dev_err(dev, "Error initializing ingress CGR\n"); 3448 goto delete_egress_cgr; 3449 } 3450 3451 /* Add the FQs to the interface, and make them active */ 3452 list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) { 3453 err = dpaa_fq_init(dpaa_fq, false); 3454 if (err < 0) 3455 goto free_dpaa_fqs; 3456 } 3457 3458 priv->tx_headroom = dpaa_get_headroom(priv->buf_layout, TX); 3459 priv->rx_headroom = dpaa_get_headroom(priv->buf_layout, RX); 3460 3461 /* All real interfaces need their ports initialized */ 3462 err = dpaa_eth_init_ports(mac_dev, dpaa_bp, &port_fqs, 3463 &priv->buf_layout[0], dev); 3464 if (err) 3465 goto free_dpaa_fqs; 3466 3467 /* Rx traffic distribution based on keygen hashing defaults to on */ 3468 priv->keygen_in_use = true; 3469 3470 priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv); 3471 if (!priv->percpu_priv) { 3472 dev_err(dev, "devm_alloc_percpu() failed\n"); 3473 err = -ENOMEM; 3474 goto free_dpaa_fqs; 3475 } 3476 3477 priv->num_tc = 1; 3478 netif_set_real_num_tx_queues(net_dev, 3479 priv->num_tc * dpaa_num_txqs_per_tc()); 3480 3481 /* Initialize NAPI */ 3482 err = dpaa_napi_add(net_dev); 3483 if (err < 0) 3484 goto delete_dpaa_napi; 3485 3486 err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout); 3487 if (err < 0) 3488 goto delete_dpaa_napi; 3489 3490 dpaa_eth_sysfs_init(&net_dev->dev); 3491 3492 netif_info(priv, probe, net_dev, "Probed interface %s\n", 3493 net_dev->name); 3494 3495 return 0; 3496 3497 delete_dpaa_napi: 3498 dpaa_napi_del(net_dev); 3499 free_dpaa_fqs: 3500 dpaa_fq_free(dev, &priv->dpaa_fq_list); 3501 qman_delete_cgr_safe(&priv->ingress_cgr); 3502 qman_release_cgrid(priv->ingress_cgr.cgrid); 3503 delete_egress_cgr: 3504 qman_delete_cgr_safe(&priv->cgr_data.cgr); 3505 qman_release_cgrid(priv->cgr_data.cgr.cgrid); 3506 free_dpaa_bps: 3507 dpaa_bps_free(priv); 3508 free_netdev: 3509 dev_set_drvdata(dev, NULL); 3510 free_netdev(net_dev); 3511 3512 return err; 3513 } 3514 3515 static void dpaa_remove(struct platform_device *pdev) 3516 { 3517 struct net_device *net_dev; 3518 struct dpaa_priv *priv; 3519 struct device *dev; 3520 int err; 3521 3522 dev = &pdev->dev; 3523 net_dev = dev_get_drvdata(dev); 3524 3525 priv = netdev_priv(net_dev); 3526 3527 dpaa_eth_sysfs_remove(dev); 3528 3529 dev_set_drvdata(dev, NULL); 3530 unregister_netdev(net_dev); 3531 phylink_destroy(priv->mac_dev->phylink); 3532 3533 err = dpaa_fq_free(dev, &priv->dpaa_fq_list); 3534 if (err) 3535 dev_err(dev, "Failed to free FQs on remove (%pE)\n", 3536 ERR_PTR(err)); 3537 3538 qman_delete_cgr_safe(&priv->ingress_cgr); 3539 qman_release_cgrid(priv->ingress_cgr.cgrid); 3540 qman_delete_cgr_safe(&priv->cgr_data.cgr); 3541 qman_release_cgrid(priv->cgr_data.cgr.cgrid); 3542 3543 dpaa_napi_del(net_dev); 3544 3545 dpaa_bps_free(priv); 3546 3547 free_netdev(net_dev); 3548 } 3549 3550 static const struct platform_device_id dpaa_devtype[] = { 3551 { 3552 .name = "dpaa-ethernet", 3553 .driver_data = 0, 3554 }, { 3555 } 3556 }; 3557 MODULE_DEVICE_TABLE(platform, dpaa_devtype); 3558 3559 static struct platform_driver dpaa_driver = { 3560 .driver = { 3561 .name = KBUILD_MODNAME, 3562 }, 3563 .id_table = dpaa_devtype, 3564 .probe = dpaa_eth_probe, 3565 .remove_new = dpaa_remove 3566 }; 3567 3568 static int __init dpaa_load(void) 3569 { 3570 int err; 3571 3572 pr_debug("FSL DPAA Ethernet driver\n"); 3573 3574 /* initialize dpaa_eth mirror values */ 3575 dpaa_rx_extra_headroom = fman_get_rx_extra_headroom(); 3576 dpaa_max_frm = fman_get_max_frm(); 3577 3578 err = platform_driver_register(&dpaa_driver); 3579 if (err < 0) 3580 pr_err("Error, platform_driver_register() = %d\n", err); 3581 3582 return err; 3583 } 3584 module_init(dpaa_load); 3585 3586 static void __exit dpaa_unload(void) 3587 { 3588 platform_driver_unregister(&dpaa_driver); 3589 3590 /* Only one channel is used and needs to be released after all 3591 * interfaces are removed 3592 */ 3593 dpaa_release_channel(); 3594 } 3595 module_exit(dpaa_unload); 3596 3597 MODULE_LICENSE("Dual BSD/GPL"); 3598 MODULE_DESCRIPTION("FSL DPAA Ethernet driver"); 3599