1 // SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0-or-later 2 /* 3 * Copyright 2008 - 2016 Freescale Semiconductor Inc. 4 * Copyright 2020 NXP 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/init.h> 10 #include <linux/mod_devicetable.h> 11 #include <linux/module.h> 12 #include <linux/of_mdio.h> 13 #include <linux/of_net.h> 14 #include <linux/io.h> 15 #include <linux/if_arp.h> 16 #include <linux/if_vlan.h> 17 #include <linux/icmp.h> 18 #include <linux/ip.h> 19 #include <linux/ipv6.h> 20 #include <linux/platform_device.h> 21 #include <linux/udp.h> 22 #include <linux/tcp.h> 23 #include <linux/net.h> 24 #include <linux/skbuff.h> 25 #include <linux/etherdevice.h> 26 #include <linux/if_ether.h> 27 #include <linux/highmem.h> 28 #include <linux/percpu.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/sort.h> 31 #include <linux/phy_fixed.h> 32 #include <linux/bpf.h> 33 #include <linux/bpf_trace.h> 34 #include <soc/fsl/bman.h> 35 #include <soc/fsl/qman.h> 36 #include "fman.h" 37 #include "fman_port.h" 38 #include "mac.h" 39 #include "dpaa_eth.h" 40 41 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files 42 * using trace events only need to #include <trace/events/sched.h> 43 */ 44 #define CREATE_TRACE_POINTS 45 #include "dpaa_eth_trace.h" 46 47 static int debug = -1; 48 module_param(debug, int, 0444); 49 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)"); 50 51 static u16 tx_timeout = 1000; 52 module_param(tx_timeout, ushort, 0444); 53 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms"); 54 55 #define FM_FD_STAT_RX_ERRORS \ 56 (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL | \ 57 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \ 58 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME | \ 59 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \ 60 FM_FD_ERR_PRS_HDR_ERR) 61 62 #define FM_FD_STAT_TX_ERRORS \ 63 (FM_FD_ERR_UNSUPPORTED_FORMAT | \ 64 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA) 65 66 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \ 67 NETIF_MSG_LINK | NETIF_MSG_IFUP | \ 68 NETIF_MSG_IFDOWN | NETIF_MSG_HW) 69 70 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000 71 /* Ingress congestion threshold on FMan ports 72 * The size in bytes of the ingress tail-drop threshold on FMan ports. 73 * Traffic piling up above this value will be rejected by QMan and discarded 74 * by FMan. 75 */ 76 77 /* Size in bytes of the FQ taildrop threshold */ 78 #define DPAA_FQ_TD 0x200000 79 80 #define DPAA_CS_THRESHOLD_1G 0x06000000 81 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000 82 * The size in bytes of the egress Congestion State notification threshold on 83 * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a 84 * tight loop (e.g. by sending UDP datagrams at "while(1) speed"), 85 * and the larger the frame size, the more acute the problem. 86 * So we have to find a balance between these factors: 87 * - avoiding the device staying congested for a prolonged time (risking 88 * the netdev watchdog to fire - see also the tx_timeout module param); 89 * - affecting performance of protocols such as TCP, which otherwise 90 * behave well under the congestion notification mechanism; 91 * - preventing the Tx cores from tightly-looping (as if the congestion 92 * threshold was too low to be effective); 93 * - running out of memory if the CS threshold is set too high. 94 */ 95 96 #define DPAA_CS_THRESHOLD_10G 0x10000000 97 /* The size in bytes of the egress Congestion State notification threshold on 98 * 10G ports, range 0x1000 .. 0x10000000 99 */ 100 101 /* Largest value that the FQD's OAL field can hold */ 102 #define FSL_QMAN_MAX_OAL 127 103 104 /* Default alignment for start of data in an Rx FD */ 105 #ifdef CONFIG_DPAA_ERRATUM_A050385 106 /* aligning data start to 64 avoids DMA transaction splits, unless the buffer 107 * is crossing a 4k page boundary 108 */ 109 #define DPAA_FD_DATA_ALIGNMENT (fman_has_errata_a050385() ? 64 : 16) 110 /* aligning to 256 avoids DMA transaction splits caused by 4k page boundary 111 * crossings; also, all SG fragments except the last must have a size multiple 112 * of 256 to avoid DMA transaction splits 113 */ 114 #define DPAA_A050385_ALIGN 256 115 #define DPAA_FD_RX_DATA_ALIGNMENT (fman_has_errata_a050385() ? \ 116 DPAA_A050385_ALIGN : 16) 117 #else 118 #define DPAA_FD_DATA_ALIGNMENT 16 119 #define DPAA_FD_RX_DATA_ALIGNMENT DPAA_FD_DATA_ALIGNMENT 120 #endif 121 122 /* The DPAA requires 256 bytes reserved and mapped for the SGT */ 123 #define DPAA_SGT_SIZE 256 124 125 /* Values for the L3R field of the FM Parse Results 126 */ 127 /* L3 Type field: First IP Present IPv4 */ 128 #define FM_L3_PARSE_RESULT_IPV4 0x8000 129 /* L3 Type field: First IP Present IPv6 */ 130 #define FM_L3_PARSE_RESULT_IPV6 0x4000 131 /* Values for the L4R field of the FM Parse Results */ 132 /* L4 Type field: UDP */ 133 #define FM_L4_PARSE_RESULT_UDP 0x40 134 /* L4 Type field: TCP */ 135 #define FM_L4_PARSE_RESULT_TCP 0x20 136 137 /* FD status field indicating whether the FM Parser has attempted to validate 138 * the L4 csum of the frame. 139 * Note that having this bit set doesn't necessarily imply that the checksum 140 * is valid. One would have to check the parse results to find that out. 141 */ 142 #define FM_FD_STAT_L4CV 0x00000004 143 144 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */ 145 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */ 146 147 #define FSL_DPAA_BPID_INV 0xff 148 #define FSL_DPAA_ETH_MAX_BUF_COUNT 128 149 #define FSL_DPAA_ETH_REFILL_THRESHOLD 80 150 151 #define DPAA_TX_PRIV_DATA_SIZE 16 152 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result) 153 #define DPAA_TIME_STAMP_SIZE 8 154 #define DPAA_HASH_RESULTS_SIZE 8 155 #define DPAA_HWA_SIZE (DPAA_PARSE_RESULTS_SIZE + DPAA_TIME_STAMP_SIZE \ 156 + DPAA_HASH_RESULTS_SIZE) 157 #define DPAA_RX_PRIV_DATA_DEFAULT_SIZE (DPAA_TX_PRIV_DATA_SIZE + \ 158 XDP_PACKET_HEADROOM - DPAA_HWA_SIZE) 159 #ifdef CONFIG_DPAA_ERRATUM_A050385 160 #define DPAA_RX_PRIV_DATA_A050385_SIZE (DPAA_A050385_ALIGN - DPAA_HWA_SIZE) 161 #define DPAA_RX_PRIV_DATA_SIZE (fman_has_errata_a050385() ? \ 162 DPAA_RX_PRIV_DATA_A050385_SIZE : \ 163 DPAA_RX_PRIV_DATA_DEFAULT_SIZE) 164 #else 165 #define DPAA_RX_PRIV_DATA_SIZE DPAA_RX_PRIV_DATA_DEFAULT_SIZE 166 #endif 167 168 #define DPAA_ETH_PCD_RXQ_NUM 128 169 170 #define DPAA_ENQUEUE_RETRIES 100000 171 172 enum port_type {RX, TX}; 173 174 struct fm_port_fqs { 175 struct dpaa_fq *tx_defq; 176 struct dpaa_fq *tx_errq; 177 struct dpaa_fq *rx_defq; 178 struct dpaa_fq *rx_errq; 179 struct dpaa_fq *rx_pcdq; 180 }; 181 182 /* All the dpa bps in use at any moment */ 183 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS]; 184 185 #define DPAA_BP_RAW_SIZE 4096 186 187 #ifdef CONFIG_DPAA_ERRATUM_A050385 188 #define dpaa_bp_size(raw_size) (SKB_WITH_OVERHEAD(raw_size) & \ 189 ~(DPAA_A050385_ALIGN - 1)) 190 #else 191 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD(raw_size) 192 #endif 193 194 static int dpaa_max_frm; 195 196 static int dpaa_rx_extra_headroom; 197 198 #define dpaa_get_max_mtu() \ 199 (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN)) 200 201 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed); 202 203 static int dpaa_netdev_init(struct net_device *net_dev, 204 const struct net_device_ops *dpaa_ops, 205 u16 tx_timeout) 206 { 207 struct dpaa_priv *priv = netdev_priv(net_dev); 208 struct device *dev = net_dev->dev.parent; 209 struct mac_device *mac_dev = priv->mac_dev; 210 struct dpaa_percpu_priv *percpu_priv; 211 const u8 *mac_addr; 212 int i, err; 213 214 /* Although we access another CPU's private data here 215 * we do it at initialization so it is safe 216 */ 217 for_each_possible_cpu(i) { 218 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 219 percpu_priv->net_dev = net_dev; 220 } 221 222 net_dev->netdev_ops = dpaa_ops; 223 mac_addr = mac_dev->addr; 224 225 net_dev->mem_start = (unsigned long)priv->mac_dev->res->start; 226 net_dev->mem_end = (unsigned long)priv->mac_dev->res->end; 227 228 net_dev->min_mtu = ETH_MIN_MTU; 229 net_dev->max_mtu = dpaa_get_max_mtu(); 230 231 net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 232 NETIF_F_RXHASH); 233 234 net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA; 235 /* The kernels enables GSO automatically, if we declare NETIF_F_SG. 236 * For conformity, we'll still declare GSO explicitly. 237 */ 238 net_dev->features |= NETIF_F_GSO; 239 net_dev->features |= NETIF_F_RXCSUM; 240 241 net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 242 net_dev->lltx = true; 243 /* we do not want shared skbs on TX */ 244 net_dev->priv_flags &= ~IFF_TX_SKB_SHARING; 245 246 net_dev->features |= net_dev->hw_features; 247 net_dev->vlan_features = net_dev->features; 248 249 net_dev->xdp_features = NETDEV_XDP_ACT_BASIC | 250 NETDEV_XDP_ACT_REDIRECT | 251 NETDEV_XDP_ACT_NDO_XMIT; 252 253 if (is_valid_ether_addr(mac_addr)) { 254 memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len); 255 eth_hw_addr_set(net_dev, mac_addr); 256 } else { 257 eth_hw_addr_random(net_dev); 258 err = mac_dev->change_addr(mac_dev->fman_mac, 259 (const enet_addr_t *)net_dev->dev_addr); 260 if (err) { 261 dev_err(dev, "Failed to set random MAC address\n"); 262 return -EINVAL; 263 } 264 dev_info(dev, "Using random MAC address: %pM\n", 265 net_dev->dev_addr); 266 } 267 268 net_dev->ethtool_ops = &dpaa_ethtool_ops; 269 270 net_dev->needed_headroom = priv->tx_headroom; 271 net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout); 272 273 /* The rest of the config is filled in by the mac device already */ 274 mac_dev->phylink_config.dev = &net_dev->dev; 275 mac_dev->phylink_config.type = PHYLINK_NETDEV; 276 mac_dev->update_speed = dpaa_eth_cgr_set_speed; 277 mac_dev->phylink = phylink_create(&mac_dev->phylink_config, 278 dev_fwnode(mac_dev->dev), 279 mac_dev->phy_if, 280 mac_dev->phylink_ops); 281 if (IS_ERR(mac_dev->phylink)) { 282 err = PTR_ERR(mac_dev->phylink); 283 dev_err_probe(dev, err, "Could not create phylink\n"); 284 return err; 285 } 286 287 /* start without the RUNNING flag, phylib controls it later */ 288 netif_carrier_off(net_dev); 289 290 err = register_netdev(net_dev); 291 if (err < 0) { 292 dev_err(dev, "register_netdev() = %d\n", err); 293 phylink_destroy(mac_dev->phylink); 294 return err; 295 } 296 297 return 0; 298 } 299 300 static int dpaa_stop(struct net_device *net_dev) 301 { 302 struct mac_device *mac_dev; 303 struct dpaa_priv *priv; 304 int i, error; 305 int err = 0; 306 307 priv = netdev_priv(net_dev); 308 mac_dev = priv->mac_dev; 309 310 netif_tx_stop_all_queues(net_dev); 311 /* Allow the Fman (Tx) port to process in-flight frames before we 312 * try switching it off. 313 */ 314 msleep(200); 315 316 phylink_stop(mac_dev->phylink); 317 mac_dev->disable(mac_dev->fman_mac); 318 319 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) { 320 error = fman_port_disable(mac_dev->port[i]); 321 if (error) 322 err = error; 323 } 324 325 phylink_disconnect_phy(mac_dev->phylink); 326 net_dev->phydev = NULL; 327 328 msleep(200); 329 330 return err; 331 } 332 333 static void dpaa_tx_timeout(struct net_device *net_dev, unsigned int txqueue) 334 { 335 struct dpaa_percpu_priv *percpu_priv; 336 const struct dpaa_priv *priv; 337 338 priv = netdev_priv(net_dev); 339 percpu_priv = this_cpu_ptr(priv->percpu_priv); 340 341 netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n", 342 jiffies_to_msecs(jiffies - dev_trans_start(net_dev))); 343 344 percpu_priv->stats.tx_errors++; 345 } 346 347 /* Calculates the statistics for the given device by adding the statistics 348 * collected by each CPU. 349 */ 350 static void dpaa_get_stats64(struct net_device *net_dev, 351 struct rtnl_link_stats64 *s) 352 { 353 int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64); 354 struct dpaa_priv *priv = netdev_priv(net_dev); 355 struct dpaa_percpu_priv *percpu_priv; 356 u64 *netstats = (u64 *)s; 357 u64 *cpustats; 358 int i, j; 359 360 for_each_possible_cpu(i) { 361 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 362 363 cpustats = (u64 *)&percpu_priv->stats; 364 365 /* add stats from all CPUs */ 366 for (j = 0; j < numstats; j++) 367 netstats[j] += cpustats[j]; 368 } 369 } 370 371 static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type, 372 void *type_data) 373 { 374 struct dpaa_priv *priv = netdev_priv(net_dev); 375 int num_txqs_per_tc = dpaa_num_txqs_per_tc(); 376 struct tc_mqprio_qopt *mqprio = type_data; 377 u8 num_tc; 378 int i; 379 380 if (type != TC_SETUP_QDISC_MQPRIO) 381 return -EOPNOTSUPP; 382 383 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 384 num_tc = mqprio->num_tc; 385 386 if (num_tc == priv->num_tc) 387 return 0; 388 389 if (!num_tc) { 390 netdev_reset_tc(net_dev); 391 goto out; 392 } 393 394 if (num_tc > DPAA_TC_NUM) { 395 netdev_err(net_dev, "Too many traffic classes: max %d supported.\n", 396 DPAA_TC_NUM); 397 return -EINVAL; 398 } 399 400 netdev_set_num_tc(net_dev, num_tc); 401 402 for (i = 0; i < num_tc; i++) 403 netdev_set_tc_queue(net_dev, i, num_txqs_per_tc, 404 i * num_txqs_per_tc); 405 406 out: 407 priv->num_tc = num_tc ? : 1; 408 netif_set_real_num_tx_queues(net_dev, priv->num_tc * num_txqs_per_tc); 409 return 0; 410 } 411 412 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev) 413 { 414 struct dpaa_eth_data *eth_data; 415 struct device *dpaa_dev; 416 struct mac_device *mac_dev; 417 418 dpaa_dev = &pdev->dev; 419 eth_data = dpaa_dev->platform_data; 420 if (!eth_data) { 421 dev_err(dpaa_dev, "eth_data missing\n"); 422 return ERR_PTR(-ENODEV); 423 } 424 mac_dev = eth_data->mac_dev; 425 if (!mac_dev) { 426 dev_err(dpaa_dev, "mac_dev missing\n"); 427 return ERR_PTR(-EINVAL); 428 } 429 430 return mac_dev; 431 } 432 433 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr) 434 { 435 const struct dpaa_priv *priv; 436 struct mac_device *mac_dev; 437 struct sockaddr old_addr; 438 int err; 439 440 priv = netdev_priv(net_dev); 441 442 memcpy(old_addr.sa_data, net_dev->dev_addr, ETH_ALEN); 443 444 err = eth_mac_addr(net_dev, addr); 445 if (err < 0) { 446 netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err); 447 return err; 448 } 449 450 mac_dev = priv->mac_dev; 451 452 err = mac_dev->change_addr(mac_dev->fman_mac, 453 (const enet_addr_t *)net_dev->dev_addr); 454 if (err < 0) { 455 netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n", 456 err); 457 /* reverting to previous address */ 458 eth_mac_addr(net_dev, &old_addr); 459 460 return err; 461 } 462 463 return 0; 464 } 465 466 static int dpaa_addr_sync(struct net_device *net_dev, const u8 *addr) 467 { 468 const struct dpaa_priv *priv = netdev_priv(net_dev); 469 470 return priv->mac_dev->add_hash_mac_addr(priv->mac_dev->fman_mac, 471 (enet_addr_t *)addr); 472 } 473 474 static int dpaa_addr_unsync(struct net_device *net_dev, const u8 *addr) 475 { 476 const struct dpaa_priv *priv = netdev_priv(net_dev); 477 478 return priv->mac_dev->remove_hash_mac_addr(priv->mac_dev->fman_mac, 479 (enet_addr_t *)addr); 480 } 481 482 static void dpaa_set_rx_mode(struct net_device *net_dev) 483 { 484 const struct dpaa_priv *priv; 485 int err; 486 487 priv = netdev_priv(net_dev); 488 489 if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) { 490 priv->mac_dev->promisc = !priv->mac_dev->promisc; 491 err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac, 492 priv->mac_dev->promisc); 493 if (err < 0) 494 netif_err(priv, drv, net_dev, 495 "mac_dev->set_promisc() = %d\n", 496 err); 497 } 498 499 if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) { 500 priv->mac_dev->allmulti = !priv->mac_dev->allmulti; 501 err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac, 502 priv->mac_dev->allmulti); 503 if (err < 0) 504 netif_err(priv, drv, net_dev, 505 "mac_dev->set_allmulti() = %d\n", 506 err); 507 } 508 509 err = __dev_mc_sync(net_dev, dpaa_addr_sync, dpaa_addr_unsync); 510 if (err < 0) 511 netif_err(priv, drv, net_dev, "dpaa_addr_sync() = %d\n", 512 err); 513 } 514 515 static struct dpaa_bp *dpaa_bpid2pool(int bpid) 516 { 517 if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS)) 518 return NULL; 519 520 return dpaa_bp_array[bpid]; 521 } 522 523 /* checks if this bpool is already allocated */ 524 static bool dpaa_bpid2pool_use(int bpid) 525 { 526 if (dpaa_bpid2pool(bpid)) { 527 refcount_inc(&dpaa_bp_array[bpid]->refs); 528 return true; 529 } 530 531 return false; 532 } 533 534 /* called only once per bpid by dpaa_bp_alloc_pool() */ 535 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp) 536 { 537 dpaa_bp_array[bpid] = dpaa_bp; 538 refcount_set(&dpaa_bp->refs, 1); 539 } 540 541 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp) 542 { 543 int err; 544 545 if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) { 546 pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n", 547 __func__); 548 return -EINVAL; 549 } 550 551 /* If the pool is already specified, we only create one per bpid */ 552 if (dpaa_bp->bpid != FSL_DPAA_BPID_INV && 553 dpaa_bpid2pool_use(dpaa_bp->bpid)) 554 return 0; 555 556 if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) { 557 dpaa_bp->pool = bman_new_pool(); 558 if (!dpaa_bp->pool) { 559 pr_err("%s: bman_new_pool() failed\n", 560 __func__); 561 return -ENODEV; 562 } 563 564 dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool); 565 } 566 567 if (dpaa_bp->seed_cb) { 568 err = dpaa_bp->seed_cb(dpaa_bp); 569 if (err) 570 goto pool_seed_failed; 571 } 572 573 dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp); 574 575 return 0; 576 577 pool_seed_failed: 578 pr_err("%s: pool seeding failed\n", __func__); 579 bman_free_pool(dpaa_bp->pool); 580 581 return err; 582 } 583 584 /* remove and free all the buffers from the given buffer pool */ 585 static void dpaa_bp_drain(struct dpaa_bp *bp) 586 { 587 u8 num = 8; 588 int ret; 589 590 do { 591 struct bm_buffer bmb[8]; 592 int i; 593 594 ret = bman_acquire(bp->pool, bmb, num); 595 if (ret < 0) { 596 if (num == 8) { 597 /* we have less than 8 buffers left; 598 * drain them one by one 599 */ 600 num = 1; 601 ret = 1; 602 continue; 603 } else { 604 /* Pool is fully drained */ 605 break; 606 } 607 } 608 609 if (bp->free_buf_cb) 610 for (i = 0; i < num; i++) 611 bp->free_buf_cb(bp, &bmb[i]); 612 } while (ret > 0); 613 } 614 615 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp) 616 { 617 struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid); 618 619 /* the mapping between bpid and dpaa_bp is done very late in the 620 * allocation procedure; if something failed before the mapping, the bp 621 * was not configured, therefore we don't need the below instructions 622 */ 623 if (!bp) 624 return; 625 626 if (!refcount_dec_and_test(&bp->refs)) 627 return; 628 629 if (bp->free_buf_cb) 630 dpaa_bp_drain(bp); 631 632 dpaa_bp_array[bp->bpid] = NULL; 633 bman_free_pool(bp->pool); 634 } 635 636 static void dpaa_bps_free(struct dpaa_priv *priv) 637 { 638 dpaa_bp_free(priv->dpaa_bp); 639 } 640 641 /* Use multiple WQs for FQ assignment: 642 * - Tx Confirmation queues go to WQ1. 643 * - Rx Error and Tx Error queues go to WQ5 (giving them a better chance 644 * to be scheduled, in case there are many more FQs in WQ6). 645 * - Rx Default goes to WQ6. 646 * - Tx queues go to different WQs depending on their priority. Equal 647 * chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and 648 * WQ0 (highest priority). 649 * This ensures that Tx-confirmed buffers are timely released. In particular, 650 * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they 651 * are greatly outnumbered by other FQs in the system, while 652 * dequeue scheduling is round-robin. 653 */ 654 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx) 655 { 656 switch (fq->fq_type) { 657 case FQ_TYPE_TX_CONFIRM: 658 case FQ_TYPE_TX_CONF_MQ: 659 fq->wq = 1; 660 break; 661 case FQ_TYPE_RX_ERROR: 662 case FQ_TYPE_TX_ERROR: 663 fq->wq = 5; 664 break; 665 case FQ_TYPE_RX_DEFAULT: 666 case FQ_TYPE_RX_PCD: 667 fq->wq = 6; 668 break; 669 case FQ_TYPE_TX: 670 switch (idx / dpaa_num_txqs_per_tc()) { 671 case 0: 672 /* Low priority (best effort) */ 673 fq->wq = 6; 674 break; 675 case 1: 676 /* Medium priority */ 677 fq->wq = 2; 678 break; 679 case 2: 680 /* High priority */ 681 fq->wq = 1; 682 break; 683 case 3: 684 /* Very high priority */ 685 fq->wq = 0; 686 break; 687 default: 688 WARN(1, "Too many TX FQs: more than %zu!\n", 689 dpaa_max_num_txqs()); 690 } 691 break; 692 default: 693 WARN(1, "Invalid FQ type %d for FQID %d!\n", 694 fq->fq_type, fq->fqid); 695 } 696 } 697 698 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev, 699 u32 start, u32 count, 700 struct list_head *list, 701 enum dpaa_fq_type fq_type) 702 { 703 struct dpaa_fq *dpaa_fq; 704 int i; 705 706 dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq), 707 GFP_KERNEL); 708 if (!dpaa_fq) 709 return NULL; 710 711 for (i = 0; i < count; i++) { 712 dpaa_fq[i].fq_type = fq_type; 713 dpaa_fq[i].fqid = start ? start + i : 0; 714 list_add_tail(&dpaa_fq[i].list, list); 715 } 716 717 for (i = 0; i < count; i++) 718 dpaa_assign_wq(dpaa_fq + i, i); 719 720 return dpaa_fq; 721 } 722 723 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list, 724 struct fm_port_fqs *port_fqs) 725 { 726 struct dpaa_fq *dpaa_fq; 727 u32 fq_base, fq_base_aligned, i; 728 729 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR); 730 if (!dpaa_fq) 731 goto fq_alloc_failed; 732 733 port_fqs->rx_errq = &dpaa_fq[0]; 734 735 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT); 736 if (!dpaa_fq) 737 goto fq_alloc_failed; 738 739 port_fqs->rx_defq = &dpaa_fq[0]; 740 741 /* the PCD FQIDs range needs to be aligned for correct operation */ 742 if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM)) 743 goto fq_alloc_failed; 744 745 fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM); 746 747 for (i = fq_base; i < fq_base_aligned; i++) 748 qman_release_fqid(i); 749 750 for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM; 751 i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++) 752 qman_release_fqid(i); 753 754 dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM, 755 list, FQ_TYPE_RX_PCD); 756 if (!dpaa_fq) 757 goto fq_alloc_failed; 758 759 port_fqs->rx_pcdq = &dpaa_fq[0]; 760 761 if (!dpaa_fq_alloc(dev, 0, dpaa_max_num_txqs(), list, 762 FQ_TYPE_TX_CONF_MQ)) 763 goto fq_alloc_failed; 764 765 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR); 766 if (!dpaa_fq) 767 goto fq_alloc_failed; 768 769 port_fqs->tx_errq = &dpaa_fq[0]; 770 771 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM); 772 if (!dpaa_fq) 773 goto fq_alloc_failed; 774 775 port_fqs->tx_defq = &dpaa_fq[0]; 776 777 if (!dpaa_fq_alloc(dev, 0, dpaa_max_num_txqs(), list, FQ_TYPE_TX)) 778 goto fq_alloc_failed; 779 780 return 0; 781 782 fq_alloc_failed: 783 dev_err(dev, "dpaa_fq_alloc() failed\n"); 784 return -ENOMEM; 785 } 786 787 static u32 rx_pool_channel; 788 static DEFINE_SPINLOCK(rx_pool_channel_init); 789 790 static int dpaa_get_channel(void) 791 { 792 spin_lock(&rx_pool_channel_init); 793 if (!rx_pool_channel) { 794 u32 pool; 795 int ret; 796 797 ret = qman_alloc_pool(&pool); 798 799 if (!ret) 800 rx_pool_channel = pool; 801 } 802 spin_unlock(&rx_pool_channel_init); 803 if (!rx_pool_channel) 804 return -ENOMEM; 805 return rx_pool_channel; 806 } 807 808 static void dpaa_release_channel(void) 809 { 810 qman_release_pool(rx_pool_channel); 811 } 812 813 static void dpaa_eth_add_channel(u16 channel, struct device *dev) 814 { 815 u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel); 816 const cpumask_t *cpus = qman_affine_cpus(); 817 struct qman_portal *portal; 818 int cpu; 819 820 for_each_cpu_and(cpu, cpus, cpu_online_mask) { 821 portal = qman_get_affine_portal(cpu); 822 qman_p_static_dequeue_add(portal, pool); 823 qman_start_using_portal(portal, dev); 824 } 825 } 826 827 /* Congestion group state change notification callback. 828 * Stops the device's egress queues while they are congested and 829 * wakes them upon exiting congested state. 830 * Also updates some CGR-related stats. 831 */ 832 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr, 833 int congested) 834 { 835 struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr, 836 struct dpaa_priv, cgr_data.cgr); 837 838 if (congested) { 839 priv->cgr_data.congestion_start_jiffies = jiffies; 840 netif_tx_stop_all_queues(priv->net_dev); 841 priv->cgr_data.cgr_congested_count++; 842 } else { 843 priv->cgr_data.congested_jiffies += 844 (jiffies - priv->cgr_data.congestion_start_jiffies); 845 netif_tx_wake_all_queues(priv->net_dev); 846 } 847 } 848 849 static int dpaa_eth_cgr_init(struct dpaa_priv *priv) 850 { 851 struct qm_mcc_initcgr initcgr; 852 u32 cs_th; 853 int err; 854 855 err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid); 856 if (err < 0) { 857 if (netif_msg_drv(priv)) 858 pr_err("%s: Error %d allocating CGR ID\n", 859 __func__, err); 860 goto out_error; 861 } 862 priv->cgr_data.cgr.cb = dpaa_eth_cgscn; 863 864 /* Enable Congestion State Change Notifications and CS taildrop */ 865 memset(&initcgr, 0, sizeof(initcgr)); 866 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES); 867 initcgr.cgr.cscn_en = QM_CGR_EN; 868 869 /* Set different thresholds based on the configured MAC speed. 870 * This may turn suboptimal if the MAC is reconfigured at another 871 * speed, so MACs must call dpaa_eth_cgr_set_speed in their link_up 872 * callback. 873 */ 874 if (priv->mac_dev->phylink_config.mac_capabilities & MAC_10000FD) 875 cs_th = DPAA_CS_THRESHOLD_10G; 876 else 877 cs_th = DPAA_CS_THRESHOLD_1G; 878 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1); 879 880 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN); 881 initcgr.cgr.cstd_en = QM_CGR_EN; 882 883 err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT, 884 &initcgr); 885 if (err < 0) { 886 if (netif_msg_drv(priv)) 887 pr_err("%s: Error %d creating CGR with ID %d\n", 888 __func__, err, priv->cgr_data.cgr.cgrid); 889 qman_release_cgrid(priv->cgr_data.cgr.cgrid); 890 goto out_error; 891 } 892 if (netif_msg_drv(priv)) 893 pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n", 894 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr, 895 priv->cgr_data.cgr.chan); 896 897 out_error: 898 return err; 899 } 900 901 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed) 902 { 903 struct net_device *net_dev = to_net_dev(mac_dev->phylink_config.dev); 904 struct dpaa_priv *priv = netdev_priv(net_dev); 905 struct qm_mcc_initcgr opts = { }; 906 u32 cs_th; 907 int err; 908 909 opts.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES); 910 switch (speed) { 911 case SPEED_10000: 912 cs_th = DPAA_CS_THRESHOLD_10G; 913 break; 914 case SPEED_1000: 915 default: 916 cs_th = DPAA_CS_THRESHOLD_1G; 917 break; 918 } 919 qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, cs_th, 1); 920 921 err = qman_update_cgr_safe(&priv->cgr_data.cgr, &opts); 922 if (err) 923 netdev_err(net_dev, "could not update speed: %d\n", err); 924 } 925 926 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv, 927 struct dpaa_fq *fq, 928 const struct qman_fq *template) 929 { 930 fq->fq_base = *template; 931 fq->net_dev = priv->net_dev; 932 933 fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE; 934 fq->channel = priv->channel; 935 } 936 937 static inline void dpaa_setup_egress(const struct dpaa_priv *priv, 938 struct dpaa_fq *fq, 939 struct fman_port *port, 940 const struct qman_fq *template) 941 { 942 fq->fq_base = *template; 943 fq->net_dev = priv->net_dev; 944 945 if (port) { 946 fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL; 947 fq->channel = (u16)fman_port_get_qman_channel_id(port); 948 } else { 949 fq->flags = QMAN_FQ_FLAG_NO_MODIFY; 950 } 951 } 952 953 static int dpaa_fq_setup(struct dpaa_priv *priv, 954 const struct dpaa_fq_cbs *fq_cbs, 955 struct fman_port *tx_port) 956 { 957 int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu; 958 const cpumask_t *affine_cpus = qman_affine_cpus(); 959 struct dpaa_fq *fq; 960 u16 *channels; 961 962 channels = kcalloc(num_possible_cpus(), sizeof(u16), GFP_KERNEL); 963 if (!channels) 964 return -ENOMEM; 965 966 for_each_cpu_and(cpu, affine_cpus, cpu_online_mask) 967 channels[num_portals++] = qman_affine_channel(cpu); 968 969 if (num_portals == 0) 970 dev_err(priv->net_dev->dev.parent, 971 "No Qman software (affine) channels found\n"); 972 973 /* Initialize each FQ in the list */ 974 list_for_each_entry(fq, &priv->dpaa_fq_list, list) { 975 switch (fq->fq_type) { 976 case FQ_TYPE_RX_DEFAULT: 977 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq); 978 break; 979 case FQ_TYPE_RX_ERROR: 980 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq); 981 break; 982 case FQ_TYPE_RX_PCD: 983 if (!num_portals) 984 continue; 985 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq); 986 fq->channel = channels[portal_cnt++ % num_portals]; 987 break; 988 case FQ_TYPE_TX: 989 dpaa_setup_egress(priv, fq, tx_port, 990 &fq_cbs->egress_ern); 991 priv->egress_fqs[egress_cnt++] = &fq->fq_base; 992 break; 993 case FQ_TYPE_TX_CONF_MQ: 994 priv->conf_fqs[conf_cnt++] = &fq->fq_base; 995 fallthrough; 996 case FQ_TYPE_TX_CONFIRM: 997 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq); 998 break; 999 case FQ_TYPE_TX_ERROR: 1000 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq); 1001 break; 1002 default: 1003 dev_warn(priv->net_dev->dev.parent, 1004 "Unknown FQ type detected!\n"); 1005 break; 1006 } 1007 } 1008 1009 kfree(channels); 1010 1011 return 0; 1012 } 1013 1014 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv, 1015 struct qman_fq *tx_fq) 1016 { 1017 int i; 1018 1019 for (i = 0; i < dpaa_max_num_txqs(); i++) 1020 if (priv->egress_fqs[i] == tx_fq) 1021 return i; 1022 1023 return -EINVAL; 1024 } 1025 1026 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable) 1027 { 1028 const struct dpaa_priv *priv; 1029 struct qman_fq *confq = NULL; 1030 struct qm_mcc_initfq initfq; 1031 struct device *dev; 1032 struct qman_fq *fq; 1033 int queue_id; 1034 int err; 1035 1036 priv = netdev_priv(dpaa_fq->net_dev); 1037 dev = dpaa_fq->net_dev->dev.parent; 1038 1039 if (dpaa_fq->fqid == 0) 1040 dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID; 1041 1042 dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY); 1043 1044 err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base); 1045 if (err) { 1046 dev_err(dev, "qman_create_fq() failed\n"); 1047 return err; 1048 } 1049 fq = &dpaa_fq->fq_base; 1050 1051 if (dpaa_fq->init) { 1052 memset(&initfq, 0, sizeof(initfq)); 1053 1054 initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL); 1055 /* Note: we may get to keep an empty FQ in cache */ 1056 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE); 1057 1058 /* Try to reduce the number of portal interrupts for 1059 * Tx Confirmation FQs. 1060 */ 1061 if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM) 1062 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK); 1063 1064 /* FQ placement */ 1065 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ); 1066 1067 qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq); 1068 1069 /* Put all egress queues in a congestion group of their own. 1070 * Sensu stricto, the Tx confirmation queues are Rx FQs, 1071 * rather than Tx - but they nonetheless account for the 1072 * memory footprint on behalf of egress traffic. We therefore 1073 * place them in the netdev's CGR, along with the Tx FQs. 1074 */ 1075 if (dpaa_fq->fq_type == FQ_TYPE_TX || 1076 dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM || 1077 dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) { 1078 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID); 1079 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE); 1080 initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid; 1081 /* Set a fixed overhead accounting, in an attempt to 1082 * reduce the impact of fixed-size skb shells and the 1083 * driver's needed headroom on system memory. This is 1084 * especially the case when the egress traffic is 1085 * composed of small datagrams. 1086 * Unfortunately, QMan's OAL value is capped to an 1087 * insufficient value, but even that is better than 1088 * no overhead accounting at all. 1089 */ 1090 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC); 1091 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG); 1092 qm_fqd_set_oal(&initfq.fqd, 1093 min(sizeof(struct sk_buff) + 1094 priv->tx_headroom, 1095 (size_t)FSL_QMAN_MAX_OAL)); 1096 } 1097 1098 if (td_enable) { 1099 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH); 1100 qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1); 1101 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE); 1102 } 1103 1104 if (dpaa_fq->fq_type == FQ_TYPE_TX) { 1105 queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base); 1106 if (queue_id >= 0) 1107 confq = priv->conf_fqs[queue_id]; 1108 if (confq) { 1109 initfq.we_mask |= 1110 cpu_to_be16(QM_INITFQ_WE_CONTEXTA); 1111 /* ContextA: OVOM=1(use contextA2 bits instead of ICAD) 1112 * A2V=1 (contextA A2 field is valid) 1113 * A0V=1 (contextA A0 field is valid) 1114 * B0V=1 (contextB field is valid) 1115 * ContextA A2: EBD=1 (deallocate buffers inside FMan) 1116 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID) 1117 */ 1118 qm_fqd_context_a_set64(&initfq.fqd, 1119 0x1e00000080000000ULL); 1120 } 1121 } 1122 1123 /* Put all the ingress queues in our "ingress CGR". */ 1124 if (priv->use_ingress_cgr && 1125 (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || 1126 dpaa_fq->fq_type == FQ_TYPE_RX_ERROR || 1127 dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) { 1128 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID); 1129 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE); 1130 initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid; 1131 /* Set a fixed overhead accounting, just like for the 1132 * egress CGR. 1133 */ 1134 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC); 1135 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG); 1136 qm_fqd_set_oal(&initfq.fqd, 1137 min(sizeof(struct sk_buff) + 1138 priv->tx_headroom, 1139 (size_t)FSL_QMAN_MAX_OAL)); 1140 } 1141 1142 /* Initialization common to all ingress queues */ 1143 if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) { 1144 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA); 1145 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE | 1146 QM_FQCTRL_CTXASTASHING); 1147 initfq.fqd.context_a.stashing.exclusive = 1148 QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX | 1149 QM_STASHING_EXCL_ANNOTATION; 1150 qm_fqd_set_stashing(&initfq.fqd, 1, 2, 1151 DIV_ROUND_UP(sizeof(struct qman_fq), 1152 64)); 1153 } 1154 1155 err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq); 1156 if (err < 0) { 1157 dev_err(dev, "qman_init_fq(%u) = %d\n", 1158 qman_fq_fqid(fq), err); 1159 qman_destroy_fq(fq); 1160 return err; 1161 } 1162 } 1163 1164 dpaa_fq->fqid = qman_fq_fqid(fq); 1165 1166 if (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || 1167 dpaa_fq->fq_type == FQ_TYPE_RX_PCD) { 1168 err = xdp_rxq_info_reg(&dpaa_fq->xdp_rxq, dpaa_fq->net_dev, 1169 dpaa_fq->fqid, 0); 1170 if (err) { 1171 dev_err(dev, "xdp_rxq_info_reg() = %d\n", err); 1172 return err; 1173 } 1174 1175 err = xdp_rxq_info_reg_mem_model(&dpaa_fq->xdp_rxq, 1176 MEM_TYPE_PAGE_ORDER0, NULL); 1177 if (err) { 1178 dev_err(dev, "xdp_rxq_info_reg_mem_model() = %d\n", 1179 err); 1180 xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq); 1181 return err; 1182 } 1183 } 1184 1185 return 0; 1186 } 1187 1188 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq) 1189 { 1190 const struct dpaa_priv *priv; 1191 struct dpaa_fq *dpaa_fq; 1192 int err, error; 1193 1194 err = 0; 1195 1196 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); 1197 priv = netdev_priv(dpaa_fq->net_dev); 1198 1199 if (dpaa_fq->init) { 1200 err = qman_retire_fq(fq, NULL); 1201 if (err < 0 && netif_msg_drv(priv)) 1202 dev_err(dev, "qman_retire_fq(%u) = %d\n", 1203 qman_fq_fqid(fq), err); 1204 1205 error = qman_oos_fq(fq); 1206 if (error < 0 && netif_msg_drv(priv)) { 1207 dev_err(dev, "qman_oos_fq(%u) = %d\n", 1208 qman_fq_fqid(fq), error); 1209 if (err >= 0) 1210 err = error; 1211 } 1212 } 1213 1214 if ((dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || 1215 dpaa_fq->fq_type == FQ_TYPE_RX_PCD) && 1216 xdp_rxq_info_is_reg(&dpaa_fq->xdp_rxq)) 1217 xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq); 1218 1219 qman_destroy_fq(fq); 1220 list_del(&dpaa_fq->list); 1221 1222 return err; 1223 } 1224 1225 static int dpaa_fq_free(struct device *dev, struct list_head *list) 1226 { 1227 struct dpaa_fq *dpaa_fq, *tmp; 1228 int err, error; 1229 1230 err = 0; 1231 list_for_each_entry_safe(dpaa_fq, tmp, list, list) { 1232 error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq); 1233 if (error < 0 && err >= 0) 1234 err = error; 1235 } 1236 1237 return err; 1238 } 1239 1240 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq, 1241 struct dpaa_fq *defq, 1242 struct dpaa_buffer_layout *buf_layout) 1243 { 1244 struct fman_buffer_prefix_content buf_prefix_content; 1245 struct fman_port_params params; 1246 int err; 1247 1248 memset(¶ms, 0, sizeof(params)); 1249 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content)); 1250 1251 buf_prefix_content.priv_data_size = buf_layout->priv_data_size; 1252 buf_prefix_content.pass_prs_result = true; 1253 buf_prefix_content.pass_hash_result = true; 1254 buf_prefix_content.pass_time_stamp = true; 1255 buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT; 1256 1257 params.specific_params.non_rx_params.err_fqid = errq->fqid; 1258 params.specific_params.non_rx_params.dflt_fqid = defq->fqid; 1259 1260 err = fman_port_config(port, ¶ms); 1261 if (err) { 1262 pr_err("%s: fman_port_config failed\n", __func__); 1263 return err; 1264 } 1265 1266 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content); 1267 if (err) { 1268 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n", 1269 __func__); 1270 return err; 1271 } 1272 1273 err = fman_port_init(port); 1274 if (err) 1275 pr_err("%s: fm_port_init failed\n", __func__); 1276 1277 return err; 1278 } 1279 1280 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp *bp, 1281 struct dpaa_fq *errq, 1282 struct dpaa_fq *defq, struct dpaa_fq *pcdq, 1283 struct dpaa_buffer_layout *buf_layout) 1284 { 1285 struct fman_buffer_prefix_content buf_prefix_content; 1286 struct fman_port_rx_params *rx_p; 1287 struct fman_port_params params; 1288 int err; 1289 1290 memset(¶ms, 0, sizeof(params)); 1291 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content)); 1292 1293 buf_prefix_content.priv_data_size = buf_layout->priv_data_size; 1294 buf_prefix_content.pass_prs_result = true; 1295 buf_prefix_content.pass_hash_result = true; 1296 buf_prefix_content.pass_time_stamp = true; 1297 buf_prefix_content.data_align = DPAA_FD_RX_DATA_ALIGNMENT; 1298 1299 rx_p = ¶ms.specific_params.rx_params; 1300 rx_p->err_fqid = errq->fqid; 1301 rx_p->dflt_fqid = defq->fqid; 1302 if (pcdq) { 1303 rx_p->pcd_base_fqid = pcdq->fqid; 1304 rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM; 1305 } 1306 1307 rx_p->ext_buf_pools.num_of_pools_used = 1; 1308 rx_p->ext_buf_pools.ext_buf_pool[0].id = bp->bpid; 1309 rx_p->ext_buf_pools.ext_buf_pool[0].size = (u16)bp->size; 1310 1311 err = fman_port_config(port, ¶ms); 1312 if (err) { 1313 pr_err("%s: fman_port_config failed\n", __func__); 1314 return err; 1315 } 1316 1317 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content); 1318 if (err) { 1319 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n", 1320 __func__); 1321 return err; 1322 } 1323 1324 err = fman_port_init(port); 1325 if (err) 1326 pr_err("%s: fm_port_init failed\n", __func__); 1327 1328 return err; 1329 } 1330 1331 static int dpaa_eth_init_ports(struct mac_device *mac_dev, 1332 struct dpaa_bp *bp, 1333 struct fm_port_fqs *port_fqs, 1334 struct dpaa_buffer_layout *buf_layout, 1335 struct device *dev) 1336 { 1337 struct fman_port *rxport = mac_dev->port[RX]; 1338 struct fman_port *txport = mac_dev->port[TX]; 1339 int err; 1340 1341 err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq, 1342 port_fqs->tx_defq, &buf_layout[TX]); 1343 if (err) 1344 return err; 1345 1346 err = dpaa_eth_init_rx_port(rxport, bp, port_fqs->rx_errq, 1347 port_fqs->rx_defq, port_fqs->rx_pcdq, 1348 &buf_layout[RX]); 1349 1350 return err; 1351 } 1352 1353 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp, 1354 struct bm_buffer *bmb, int cnt) 1355 { 1356 int err; 1357 1358 err = bman_release(dpaa_bp->pool, bmb, cnt); 1359 /* Should never occur, address anyway to avoid leaking the buffers */ 1360 if (WARN_ON(err) && dpaa_bp->free_buf_cb) 1361 while (cnt-- > 0) 1362 dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]); 1363 1364 return cnt; 1365 } 1366 1367 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt) 1368 { 1369 struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX]; 1370 struct dpaa_bp *dpaa_bp; 1371 int i = 0, j; 1372 1373 memset(bmb, 0, sizeof(bmb)); 1374 1375 do { 1376 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid); 1377 if (!dpaa_bp) 1378 return; 1379 1380 j = 0; 1381 do { 1382 WARN_ON(qm_sg_entry_is_ext(&sgt[i])); 1383 1384 bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i])); 1385 1386 j++; i++; 1387 } while (j < ARRAY_SIZE(bmb) && 1388 !qm_sg_entry_is_final(&sgt[i - 1]) && 1389 sgt[i - 1].bpid == sgt[i].bpid); 1390 1391 dpaa_bman_release(dpaa_bp, bmb, j); 1392 } while (!qm_sg_entry_is_final(&sgt[i - 1])); 1393 } 1394 1395 static void dpaa_fd_release(const struct net_device *net_dev, 1396 const struct qm_fd *fd) 1397 { 1398 struct qm_sg_entry *sgt; 1399 struct dpaa_bp *dpaa_bp; 1400 struct bm_buffer bmb; 1401 dma_addr_t addr; 1402 void *vaddr; 1403 1404 bmb.data = 0; 1405 bm_buffer_set64(&bmb, qm_fd_addr(fd)); 1406 1407 dpaa_bp = dpaa_bpid2pool(fd->bpid); 1408 if (!dpaa_bp) 1409 return; 1410 1411 if (qm_fd_get_format(fd) == qm_fd_sg) { 1412 vaddr = phys_to_virt(qm_fd_addr(fd)); 1413 sgt = vaddr + qm_fd_get_offset(fd); 1414 1415 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, qm_fd_addr(fd), 1416 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1417 1418 dpaa_release_sgt_members(sgt); 1419 1420 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, 1421 virt_to_page(vaddr), 0, DPAA_BP_RAW_SIZE, 1422 DMA_FROM_DEVICE); 1423 if (dma_mapping_error(dpaa_bp->priv->rx_dma_dev, addr)) { 1424 netdev_err(net_dev, "DMA mapping failed\n"); 1425 return; 1426 } 1427 bm_buffer_set64(&bmb, addr); 1428 } 1429 1430 dpaa_bman_release(dpaa_bp, &bmb, 1); 1431 } 1432 1433 static void count_ern(struct dpaa_percpu_priv *percpu_priv, 1434 const union qm_mr_entry *msg) 1435 { 1436 switch (msg->ern.rc & QM_MR_RC_MASK) { 1437 case QM_MR_RC_CGR_TAILDROP: 1438 percpu_priv->ern_cnt.cg_tdrop++; 1439 break; 1440 case QM_MR_RC_WRED: 1441 percpu_priv->ern_cnt.wred++; 1442 break; 1443 case QM_MR_RC_ERROR: 1444 percpu_priv->ern_cnt.err_cond++; 1445 break; 1446 case QM_MR_RC_ORPWINDOW_EARLY: 1447 percpu_priv->ern_cnt.early_window++; 1448 break; 1449 case QM_MR_RC_ORPWINDOW_LATE: 1450 percpu_priv->ern_cnt.late_window++; 1451 break; 1452 case QM_MR_RC_FQ_TAILDROP: 1453 percpu_priv->ern_cnt.fq_tdrop++; 1454 break; 1455 case QM_MR_RC_ORPWINDOW_RETIRED: 1456 percpu_priv->ern_cnt.fq_retired++; 1457 break; 1458 case QM_MR_RC_ORP_ZERO: 1459 percpu_priv->ern_cnt.orp_zero++; 1460 break; 1461 } 1462 } 1463 1464 /* Turn on HW checksum computation for this outgoing frame. 1465 * If the current protocol is not something we support in this regard 1466 * (or if the stack has already computed the SW checksum), we do nothing. 1467 * 1468 * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value 1469 * otherwise. 1470 * 1471 * Note that this function may modify the fd->cmd field and the skb data buffer 1472 * (the Parse Results area). 1473 */ 1474 static int dpaa_enable_tx_csum(struct dpaa_priv *priv, 1475 struct sk_buff *skb, 1476 struct qm_fd *fd, 1477 void *parse_results) 1478 { 1479 struct fman_prs_result *parse_result; 1480 u16 ethertype = ntohs(skb->protocol); 1481 struct ipv6hdr *ipv6h = NULL; 1482 struct iphdr *iph; 1483 int retval = 0; 1484 u8 l4_proto; 1485 1486 if (skb->ip_summed != CHECKSUM_PARTIAL) 1487 return 0; 1488 1489 /* Note: L3 csum seems to be already computed in sw, but we can't choose 1490 * L4 alone from the FM configuration anyway. 1491 */ 1492 1493 /* Fill in some fields of the Parse Results array, so the FMan 1494 * can find them as if they came from the FMan Parser. 1495 */ 1496 parse_result = (struct fman_prs_result *)parse_results; 1497 1498 /* If we're dealing with VLAN, get the real Ethernet type */ 1499 if (ethertype == ETH_P_8021Q) 1500 ethertype = ntohs(skb_vlan_eth_hdr(skb)->h_vlan_encapsulated_proto); 1501 1502 /* Fill in the relevant L3 parse result fields 1503 * and read the L4 protocol type 1504 */ 1505 switch (ethertype) { 1506 case ETH_P_IP: 1507 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4); 1508 iph = ip_hdr(skb); 1509 WARN_ON(!iph); 1510 l4_proto = iph->protocol; 1511 break; 1512 case ETH_P_IPV6: 1513 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6); 1514 ipv6h = ipv6_hdr(skb); 1515 WARN_ON(!ipv6h); 1516 l4_proto = ipv6h->nexthdr; 1517 break; 1518 default: 1519 /* We shouldn't even be here */ 1520 if (net_ratelimit()) 1521 netif_alert(priv, tx_err, priv->net_dev, 1522 "Can't compute HW csum for L3 proto 0x%x\n", 1523 ntohs(skb->protocol)); 1524 retval = -EIO; 1525 goto return_error; 1526 } 1527 1528 /* Fill in the relevant L4 parse result fields */ 1529 switch (l4_proto) { 1530 case IPPROTO_UDP: 1531 parse_result->l4r = FM_L4_PARSE_RESULT_UDP; 1532 break; 1533 case IPPROTO_TCP: 1534 parse_result->l4r = FM_L4_PARSE_RESULT_TCP; 1535 break; 1536 default: 1537 if (net_ratelimit()) 1538 netif_alert(priv, tx_err, priv->net_dev, 1539 "Can't compute HW csum for L4 proto 0x%x\n", 1540 l4_proto); 1541 retval = -EIO; 1542 goto return_error; 1543 } 1544 1545 /* At index 0 is IPOffset_1 as defined in the Parse Results */ 1546 parse_result->ip_off[0] = (u8)skb_network_offset(skb); 1547 parse_result->l4_off = (u8)skb_transport_offset(skb); 1548 1549 /* Enable L3 (and L4, if TCP or UDP) HW checksum. */ 1550 fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC); 1551 1552 /* On P1023 and similar platforms fd->cmd interpretation could 1553 * be disabled by setting CONTEXT_A bit ICMD; currently this bit 1554 * is not set so we do not need to check; in the future, if/when 1555 * using context_a we need to check this bit 1556 */ 1557 1558 return_error: 1559 return retval; 1560 } 1561 1562 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp) 1563 { 1564 struct net_device *net_dev = dpaa_bp->priv->net_dev; 1565 struct bm_buffer bmb[8]; 1566 dma_addr_t addr; 1567 struct page *p; 1568 u8 i; 1569 1570 for (i = 0; i < 8; i++) { 1571 p = dev_alloc_pages(0); 1572 if (unlikely(!p)) { 1573 netdev_err(net_dev, "dev_alloc_pages() failed\n"); 1574 goto release_previous_buffs; 1575 } 1576 1577 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, p, 0, 1578 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1579 if (unlikely(dma_mapping_error(dpaa_bp->priv->rx_dma_dev, 1580 addr))) { 1581 netdev_err(net_dev, "DMA map failed\n"); 1582 goto release_previous_buffs; 1583 } 1584 1585 bmb[i].data = 0; 1586 bm_buffer_set64(&bmb[i], addr); 1587 } 1588 1589 release_bufs: 1590 return dpaa_bman_release(dpaa_bp, bmb, i); 1591 1592 release_previous_buffs: 1593 WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n"); 1594 1595 bm_buffer_set64(&bmb[i], 0); 1596 /* Avoid releasing a completely null buffer; bman_release() requires 1597 * at least one buffer. 1598 */ 1599 if (likely(i)) 1600 goto release_bufs; 1601 1602 return 0; 1603 } 1604 1605 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp) 1606 { 1607 int i; 1608 1609 /* Give each CPU an allotment of "config_count" buffers */ 1610 for_each_possible_cpu(i) { 1611 int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i); 1612 int j; 1613 1614 /* Although we access another CPU's counters here 1615 * we do it at boot time so it is safe 1616 */ 1617 for (j = 0; j < dpaa_bp->config_count; j += 8) 1618 *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp); 1619 } 1620 return 0; 1621 } 1622 1623 /* Add buffers/(pages) for Rx processing whenever bpool count falls below 1624 * REFILL_THRESHOLD. 1625 */ 1626 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr) 1627 { 1628 int count = *countptr; 1629 int new_bufs; 1630 1631 if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) { 1632 do { 1633 new_bufs = dpaa_bp_add_8_bufs(dpaa_bp); 1634 if (unlikely(!new_bufs)) { 1635 /* Avoid looping forever if we've temporarily 1636 * run out of memory. We'll try again at the 1637 * next NAPI cycle. 1638 */ 1639 break; 1640 } 1641 count += new_bufs; 1642 } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT); 1643 1644 *countptr = count; 1645 if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT)) 1646 return -ENOMEM; 1647 } 1648 1649 return 0; 1650 } 1651 1652 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv) 1653 { 1654 struct dpaa_bp *dpaa_bp; 1655 int *countptr; 1656 1657 dpaa_bp = priv->dpaa_bp; 1658 if (!dpaa_bp) 1659 return -EINVAL; 1660 countptr = this_cpu_ptr(dpaa_bp->percpu_count); 1661 1662 return dpaa_eth_refill_bpool(dpaa_bp, countptr); 1663 } 1664 1665 /* Cleanup function for outgoing frame descriptors that were built on Tx path, 1666 * either contiguous frames or scatter/gather ones. 1667 * Skb freeing is not handled here. 1668 * 1669 * This function may be called on error paths in the Tx function, so guard 1670 * against cases when not all fd relevant fields were filled in. To avoid 1671 * reading the invalid transmission timestamp for the error paths set ts to 1672 * false. 1673 * 1674 * Return the skb backpointer, since for S/G frames the buffer containing it 1675 * gets freed here. 1676 * 1677 * No skb backpointer is set when transmitting XDP frames. Cleanup the buffer 1678 * and return NULL in this case. 1679 */ 1680 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv, 1681 const struct qm_fd *fd, bool ts) 1682 { 1683 const enum dma_data_direction dma_dir = DMA_TO_DEVICE; 1684 struct device *dev = priv->net_dev->dev.parent; 1685 struct skb_shared_hwtstamps shhwtstamps; 1686 dma_addr_t addr = qm_fd_addr(fd); 1687 void *vaddr = phys_to_virt(addr); 1688 const struct qm_sg_entry *sgt; 1689 struct dpaa_eth_swbp *swbp; 1690 struct sk_buff *skb; 1691 u64 ns; 1692 int i; 1693 1694 if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) { 1695 dma_unmap_page(priv->tx_dma_dev, addr, 1696 qm_fd_get_offset(fd) + DPAA_SGT_SIZE, 1697 dma_dir); 1698 1699 /* The sgt buffer has been allocated with netdev_alloc_frag(), 1700 * it's from lowmem. 1701 */ 1702 sgt = vaddr + qm_fd_get_offset(fd); 1703 1704 /* sgt[0] is from lowmem, was dma_map_single()-ed */ 1705 dma_unmap_single(priv->tx_dma_dev, qm_sg_addr(&sgt[0]), 1706 qm_sg_entry_get_len(&sgt[0]), dma_dir); 1707 1708 /* remaining pages were mapped with skb_frag_dma_map() */ 1709 for (i = 1; (i < DPAA_SGT_MAX_ENTRIES) && 1710 !qm_sg_entry_is_final(&sgt[i - 1]); i++) { 1711 WARN_ON(qm_sg_entry_is_ext(&sgt[i])); 1712 1713 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[i]), 1714 qm_sg_entry_get_len(&sgt[i]), dma_dir); 1715 } 1716 } else { 1717 dma_unmap_single(priv->tx_dma_dev, addr, 1718 qm_fd_get_offset(fd) + qm_fd_get_length(fd), 1719 dma_dir); 1720 } 1721 1722 swbp = (struct dpaa_eth_swbp *)vaddr; 1723 skb = swbp->skb; 1724 1725 /* No skb backpointer is set when running XDP. An xdp_frame 1726 * backpointer is saved instead. 1727 */ 1728 if (!skb) { 1729 xdp_return_frame(swbp->xdpf); 1730 return NULL; 1731 } 1732 1733 /* DMA unmapping is required before accessing the HW provided info */ 1734 if (ts && priv->tx_tstamp && 1735 skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { 1736 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 1737 1738 if (!fman_port_get_tstamp(priv->mac_dev->port[TX], vaddr, 1739 &ns)) { 1740 shhwtstamps.hwtstamp = ns_to_ktime(ns); 1741 skb_tstamp_tx(skb, &shhwtstamps); 1742 } else { 1743 dev_warn(dev, "fman_port_get_tstamp failed!\n"); 1744 } 1745 } 1746 1747 if (qm_fd_get_format(fd) == qm_fd_sg) 1748 /* Free the page that we allocated on Tx for the SGT */ 1749 free_pages((unsigned long)vaddr, 0); 1750 1751 return skb; 1752 } 1753 1754 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd) 1755 { 1756 /* The parser has run and performed L4 checksum validation. 1757 * We know there were no parser errors (and implicitly no 1758 * L4 csum error), otherwise we wouldn't be here. 1759 */ 1760 if ((priv->net_dev->features & NETIF_F_RXCSUM) && 1761 (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV)) 1762 return CHECKSUM_UNNECESSARY; 1763 1764 /* We're here because either the parser didn't run or the L4 checksum 1765 * was not verified. This may include the case of a UDP frame with 1766 * checksum zero or an L4 proto other than TCP/UDP 1767 */ 1768 return CHECKSUM_NONE; 1769 } 1770 1771 #define PTR_IS_ALIGNED(x, a) (IS_ALIGNED((unsigned long)(x), (a))) 1772 1773 /* Build a linear skb around the received buffer. 1774 * We are guaranteed there is enough room at the end of the data buffer to 1775 * accommodate the shared info area of the skb. 1776 */ 1777 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv, 1778 const struct qm_fd *fd) 1779 { 1780 ssize_t fd_off = qm_fd_get_offset(fd); 1781 dma_addr_t addr = qm_fd_addr(fd); 1782 struct dpaa_bp *dpaa_bp; 1783 struct sk_buff *skb; 1784 void *vaddr; 1785 1786 vaddr = phys_to_virt(addr); 1787 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES)); 1788 1789 dpaa_bp = dpaa_bpid2pool(fd->bpid); 1790 if (!dpaa_bp) 1791 goto free_buffer; 1792 1793 skb = build_skb(vaddr, dpaa_bp->size + 1794 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))); 1795 if (WARN_ONCE(!skb, "Build skb failure on Rx\n")) 1796 goto free_buffer; 1797 skb_reserve(skb, fd_off); 1798 skb_put(skb, qm_fd_get_length(fd)); 1799 1800 skb->ip_summed = rx_csum_offload(priv, fd); 1801 1802 return skb; 1803 1804 free_buffer: 1805 free_pages((unsigned long)vaddr, 0); 1806 return NULL; 1807 } 1808 1809 /* Build an skb with the data of the first S/G entry in the linear portion and 1810 * the rest of the frame as skb fragments. 1811 * 1812 * The page fragment holding the S/G Table is recycled here. 1813 */ 1814 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv, 1815 const struct qm_fd *fd) 1816 { 1817 ssize_t fd_off = qm_fd_get_offset(fd); 1818 dma_addr_t addr = qm_fd_addr(fd); 1819 const struct qm_sg_entry *sgt; 1820 struct page *page, *head_page; 1821 struct dpaa_bp *dpaa_bp; 1822 void *vaddr, *sg_vaddr; 1823 struct sk_buff *skb; 1824 dma_addr_t sg_addr; 1825 int page_offset; 1826 unsigned int sz; 1827 int *count_ptr; 1828 int i, j; 1829 1830 vaddr = phys_to_virt(addr); 1831 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES)); 1832 1833 /* Iterate through the SGT entries and add data buffers to the skb */ 1834 sgt = vaddr + fd_off; 1835 skb = NULL; 1836 for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) { 1837 /* Extension bit is not supported */ 1838 WARN_ON(qm_sg_entry_is_ext(&sgt[i])); 1839 1840 sg_addr = qm_sg_addr(&sgt[i]); 1841 sg_vaddr = phys_to_virt(sg_addr); 1842 WARN_ON(!PTR_IS_ALIGNED(sg_vaddr, SMP_CACHE_BYTES)); 1843 1844 dma_unmap_page(priv->rx_dma_dev, sg_addr, 1845 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1846 1847 /* We may use multiple Rx pools */ 1848 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid); 1849 if (!dpaa_bp) 1850 goto free_buffers; 1851 1852 if (!skb) { 1853 sz = dpaa_bp->size + 1854 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1855 skb = build_skb(sg_vaddr, sz); 1856 if (WARN_ON(!skb)) 1857 goto free_buffers; 1858 1859 skb->ip_summed = rx_csum_offload(priv, fd); 1860 1861 /* Make sure forwarded skbs will have enough space 1862 * on Tx, if extra headers are added. 1863 */ 1864 WARN_ON(fd_off != priv->rx_headroom); 1865 /* The offset to data start within the buffer holding 1866 * the SGT should always be equal to the offset to data 1867 * start within the first buffer holding the frame. 1868 */ 1869 WARN_ON_ONCE(fd_off != qm_sg_entry_get_off(&sgt[i])); 1870 skb_reserve(skb, fd_off); 1871 skb_put(skb, qm_sg_entry_get_len(&sgt[i])); 1872 } else { 1873 /* Not the first S/G entry; all data from buffer will 1874 * be added in an skb fragment; fragment index is offset 1875 * by one since first S/G entry was incorporated in the 1876 * linear part of the skb. 1877 * 1878 * Caution: 'page' may be a tail page. 1879 */ 1880 page = virt_to_page(sg_vaddr); 1881 head_page = virt_to_head_page(sg_vaddr); 1882 1883 /* Compute offset of sg_vaddr in (possibly tail) page */ 1884 page_offset = ((unsigned long)sg_vaddr & 1885 (PAGE_SIZE - 1)) + 1886 (page_address(page) - page_address(head_page)); 1887 1888 /* Non-initial SGT entries should not have a buffer 1889 * offset. 1890 */ 1891 WARN_ON_ONCE(qm_sg_entry_get_off(&sgt[i])); 1892 1893 /* skb_add_rx_frag() does no checking on the page; if 1894 * we pass it a tail page, we'll end up with 1895 * bad page accounting and eventually with segfaults. 1896 */ 1897 skb_add_rx_frag(skb, i - 1, head_page, page_offset, 1898 qm_sg_entry_get_len(&sgt[i]), 1899 dpaa_bp->size); 1900 } 1901 1902 /* Update the pool count for the current {cpu x bpool} */ 1903 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); 1904 (*count_ptr)--; 1905 1906 if (qm_sg_entry_is_final(&sgt[i])) 1907 break; 1908 } 1909 WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n"); 1910 1911 /* free the SG table buffer */ 1912 free_pages((unsigned long)vaddr, 0); 1913 1914 return skb; 1915 1916 free_buffers: 1917 /* free all the SG entries */ 1918 for (j = 0; j < DPAA_SGT_MAX_ENTRIES ; j++) { 1919 sg_addr = qm_sg_addr(&sgt[j]); 1920 sg_vaddr = phys_to_virt(sg_addr); 1921 /* all pages 0..i were unmaped */ 1922 if (j > i) 1923 dma_unmap_page(priv->rx_dma_dev, qm_sg_addr(&sgt[j]), 1924 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1925 free_pages((unsigned long)sg_vaddr, 0); 1926 /* counters 0..i-1 were decremented */ 1927 if (j >= i) { 1928 dpaa_bp = dpaa_bpid2pool(sgt[j].bpid); 1929 if (dpaa_bp) { 1930 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); 1931 (*count_ptr)--; 1932 } 1933 } 1934 1935 if (qm_sg_entry_is_final(&sgt[j])) 1936 break; 1937 } 1938 /* free the SGT fragment */ 1939 free_pages((unsigned long)vaddr, 0); 1940 1941 return NULL; 1942 } 1943 1944 static int skb_to_contig_fd(struct dpaa_priv *priv, 1945 struct sk_buff *skb, struct qm_fd *fd, 1946 int *offset) 1947 { 1948 struct net_device *net_dev = priv->net_dev; 1949 enum dma_data_direction dma_dir; 1950 struct dpaa_eth_swbp *swbp; 1951 unsigned char *buff_start; 1952 dma_addr_t addr; 1953 int err; 1954 1955 /* We are guaranteed to have at least tx_headroom bytes 1956 * available, so just use that for offset. 1957 */ 1958 fd->bpid = FSL_DPAA_BPID_INV; 1959 buff_start = skb->data - priv->tx_headroom; 1960 dma_dir = DMA_TO_DEVICE; 1961 1962 swbp = (struct dpaa_eth_swbp *)buff_start; 1963 swbp->skb = skb; 1964 1965 /* Enable L3/L4 hardware checksum computation. 1966 * 1967 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may 1968 * need to write into the skb. 1969 */ 1970 err = dpaa_enable_tx_csum(priv, skb, fd, 1971 buff_start + DPAA_TX_PRIV_DATA_SIZE); 1972 if (unlikely(err < 0)) { 1973 if (net_ratelimit()) 1974 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n", 1975 err); 1976 return err; 1977 } 1978 1979 /* Fill in the rest of the FD fields */ 1980 qm_fd_set_contig(fd, priv->tx_headroom, skb->len); 1981 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO); 1982 1983 /* Map the entire buffer size that may be seen by FMan, but no more */ 1984 addr = dma_map_single(priv->tx_dma_dev, buff_start, 1985 priv->tx_headroom + skb->len, dma_dir); 1986 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 1987 if (net_ratelimit()) 1988 netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n"); 1989 return -EINVAL; 1990 } 1991 qm_fd_addr_set64(fd, addr); 1992 1993 return 0; 1994 } 1995 1996 static int skb_to_sg_fd(struct dpaa_priv *priv, 1997 struct sk_buff *skb, struct qm_fd *fd) 1998 { 1999 const enum dma_data_direction dma_dir = DMA_TO_DEVICE; 2000 const int nr_frags = skb_shinfo(skb)->nr_frags; 2001 struct net_device *net_dev = priv->net_dev; 2002 struct dpaa_eth_swbp *swbp; 2003 struct qm_sg_entry *sgt; 2004 void *buff_start; 2005 skb_frag_t *frag; 2006 dma_addr_t addr; 2007 size_t frag_len; 2008 struct page *p; 2009 int i, j, err; 2010 2011 /* get a page to store the SGTable */ 2012 p = dev_alloc_pages(0); 2013 if (unlikely(!p)) { 2014 netdev_err(net_dev, "dev_alloc_pages() failed\n"); 2015 return -ENOMEM; 2016 } 2017 buff_start = page_address(p); 2018 2019 /* Enable L3/L4 hardware checksum computation. 2020 * 2021 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may 2022 * need to write into the skb. 2023 */ 2024 err = dpaa_enable_tx_csum(priv, skb, fd, 2025 buff_start + DPAA_TX_PRIV_DATA_SIZE); 2026 if (unlikely(err < 0)) { 2027 if (net_ratelimit()) 2028 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n", 2029 err); 2030 goto csum_failed; 2031 } 2032 2033 /* SGT[0] is used by the linear part */ 2034 sgt = (struct qm_sg_entry *)(buff_start + priv->tx_headroom); 2035 frag_len = skb_headlen(skb); 2036 qm_sg_entry_set_len(&sgt[0], frag_len); 2037 sgt[0].bpid = FSL_DPAA_BPID_INV; 2038 sgt[0].offset = 0; 2039 addr = dma_map_single(priv->tx_dma_dev, skb->data, 2040 skb_headlen(skb), dma_dir); 2041 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2042 netdev_err(priv->net_dev, "DMA mapping failed\n"); 2043 err = -EINVAL; 2044 goto sg0_map_failed; 2045 } 2046 qm_sg_entry_set64(&sgt[0], addr); 2047 2048 /* populate the rest of SGT entries */ 2049 for (i = 0; i < nr_frags; i++) { 2050 frag = &skb_shinfo(skb)->frags[i]; 2051 frag_len = skb_frag_size(frag); 2052 WARN_ON(!skb_frag_page(frag)); 2053 addr = skb_frag_dma_map(priv->tx_dma_dev, frag, 0, 2054 frag_len, dma_dir); 2055 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2056 netdev_err(priv->net_dev, "DMA mapping failed\n"); 2057 err = -EINVAL; 2058 goto sg_map_failed; 2059 } 2060 2061 qm_sg_entry_set_len(&sgt[i + 1], frag_len); 2062 sgt[i + 1].bpid = FSL_DPAA_BPID_INV; 2063 sgt[i + 1].offset = 0; 2064 2065 /* keep the offset in the address */ 2066 qm_sg_entry_set64(&sgt[i + 1], addr); 2067 } 2068 2069 /* Set the final bit in the last used entry of the SGT */ 2070 qm_sg_entry_set_f(&sgt[nr_frags], frag_len); 2071 2072 /* set fd offset to priv->tx_headroom */ 2073 qm_fd_set_sg(fd, priv->tx_headroom, skb->len); 2074 2075 /* DMA map the SGT page */ 2076 swbp = (struct dpaa_eth_swbp *)buff_start; 2077 swbp->skb = skb; 2078 2079 addr = dma_map_page(priv->tx_dma_dev, p, 0, 2080 priv->tx_headroom + DPAA_SGT_SIZE, dma_dir); 2081 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2082 netdev_err(priv->net_dev, "DMA mapping failed\n"); 2083 err = -EINVAL; 2084 goto sgt_map_failed; 2085 } 2086 2087 fd->bpid = FSL_DPAA_BPID_INV; 2088 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO); 2089 qm_fd_addr_set64(fd, addr); 2090 2091 return 0; 2092 2093 sgt_map_failed: 2094 sg_map_failed: 2095 for (j = 0; j < i; j++) 2096 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[j]), 2097 qm_sg_entry_get_len(&sgt[j]), dma_dir); 2098 sg0_map_failed: 2099 csum_failed: 2100 free_pages((unsigned long)buff_start, 0); 2101 2102 return err; 2103 } 2104 2105 static inline int dpaa_xmit(struct dpaa_priv *priv, 2106 struct rtnl_link_stats64 *percpu_stats, 2107 int queue, 2108 struct qm_fd *fd) 2109 { 2110 struct qman_fq *egress_fq; 2111 int err, i; 2112 2113 egress_fq = priv->egress_fqs[queue]; 2114 if (fd->bpid == FSL_DPAA_BPID_INV) 2115 fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue])); 2116 2117 /* Trace this Tx fd */ 2118 trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd); 2119 2120 for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) { 2121 err = qman_enqueue(egress_fq, fd); 2122 if (err != -EBUSY) 2123 break; 2124 } 2125 2126 if (unlikely(err < 0)) { 2127 percpu_stats->tx_fifo_errors++; 2128 return err; 2129 } 2130 2131 percpu_stats->tx_packets++; 2132 percpu_stats->tx_bytes += qm_fd_get_length(fd); 2133 2134 return 0; 2135 } 2136 2137 #ifdef CONFIG_DPAA_ERRATUM_A050385 2138 static int dpaa_a050385_wa_skb(struct net_device *net_dev, struct sk_buff **s) 2139 { 2140 struct dpaa_priv *priv = netdev_priv(net_dev); 2141 struct sk_buff *new_skb, *skb = *s; 2142 unsigned char *start, i; 2143 2144 /* check linear buffer alignment */ 2145 if (!PTR_IS_ALIGNED(skb->data, DPAA_A050385_ALIGN)) 2146 goto workaround; 2147 2148 /* linear buffers just need to have an aligned start */ 2149 if (!skb_is_nonlinear(skb)) 2150 return 0; 2151 2152 /* linear data size for nonlinear skbs needs to be aligned */ 2153 if (!IS_ALIGNED(skb_headlen(skb), DPAA_A050385_ALIGN)) 2154 goto workaround; 2155 2156 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2157 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2158 2159 /* all fragments need to have aligned start addresses */ 2160 if (!IS_ALIGNED(skb_frag_off(frag), DPAA_A050385_ALIGN)) 2161 goto workaround; 2162 2163 /* all but last fragment need to have aligned sizes */ 2164 if (!IS_ALIGNED(skb_frag_size(frag), DPAA_A050385_ALIGN) && 2165 (i < skb_shinfo(skb)->nr_frags - 1)) 2166 goto workaround; 2167 } 2168 2169 return 0; 2170 2171 workaround: 2172 /* copy all the skb content into a new linear buffer */ 2173 new_skb = netdev_alloc_skb(net_dev, skb->len + DPAA_A050385_ALIGN - 1 + 2174 priv->tx_headroom); 2175 if (!new_skb) 2176 return -ENOMEM; 2177 2178 /* NET_SKB_PAD bytes already reserved, adding up to tx_headroom */ 2179 skb_reserve(new_skb, priv->tx_headroom - NET_SKB_PAD); 2180 2181 /* Workaround for DPAA_A050385 requires data start to be aligned */ 2182 start = PTR_ALIGN(new_skb->data, DPAA_A050385_ALIGN); 2183 if (start - new_skb->data) 2184 skb_reserve(new_skb, start - new_skb->data); 2185 2186 skb_put(new_skb, skb->len); 2187 skb_copy_bits(skb, 0, new_skb->data, skb->len); 2188 skb_copy_header(new_skb, skb); 2189 new_skb->dev = skb->dev; 2190 2191 /* Copy relevant timestamp info from the old skb to the new */ 2192 if (priv->tx_tstamp) { 2193 skb_shinfo(new_skb)->tx_flags = skb_shinfo(skb)->tx_flags; 2194 skb_shinfo(new_skb)->hwtstamps = skb_shinfo(skb)->hwtstamps; 2195 skb_shinfo(new_skb)->tskey = skb_shinfo(skb)->tskey; 2196 if (skb->sk) 2197 skb_set_owner_w(new_skb, skb->sk); 2198 } 2199 2200 /* We move the headroom when we align it so we have to reset the 2201 * network and transport header offsets relative to the new data 2202 * pointer. The checksum offload relies on these offsets. 2203 */ 2204 skb_set_network_header(new_skb, skb_network_offset(skb)); 2205 skb_set_transport_header(new_skb, skb_transport_offset(skb)); 2206 2207 dev_kfree_skb(skb); 2208 *s = new_skb; 2209 2210 return 0; 2211 } 2212 2213 static int dpaa_a050385_wa_xdpf(struct dpaa_priv *priv, 2214 struct xdp_frame **init_xdpf) 2215 { 2216 struct xdp_frame *new_xdpf, *xdpf = *init_xdpf; 2217 void *new_buff, *aligned_data; 2218 struct page *p; 2219 u32 data_shift; 2220 int headroom; 2221 2222 /* Check the data alignment and make sure the headroom is large 2223 * enough to store the xdpf backpointer. Use an aligned headroom 2224 * value. 2225 * 2226 * Due to alignment constraints, we give XDP access to the full 256 2227 * byte frame headroom. If the XDP program uses all of it, copy the 2228 * data to a new buffer and make room for storing the backpointer. 2229 */ 2230 if (PTR_IS_ALIGNED(xdpf->data, DPAA_FD_DATA_ALIGNMENT) && 2231 xdpf->headroom >= priv->tx_headroom) { 2232 xdpf->headroom = priv->tx_headroom; 2233 return 0; 2234 } 2235 2236 /* Try to move the data inside the buffer just enough to align it and 2237 * store the xdpf backpointer. If the available headroom isn't large 2238 * enough, resort to allocating a new buffer and copying the data. 2239 */ 2240 aligned_data = PTR_ALIGN_DOWN(xdpf->data, DPAA_FD_DATA_ALIGNMENT); 2241 data_shift = xdpf->data - aligned_data; 2242 2243 /* The XDP frame's headroom needs to be large enough to accommodate 2244 * shifting the data as well as storing the xdpf backpointer. 2245 */ 2246 if (xdpf->headroom >= data_shift + priv->tx_headroom) { 2247 memmove(aligned_data, xdpf->data, xdpf->len); 2248 xdpf->data = aligned_data; 2249 xdpf->headroom = priv->tx_headroom; 2250 return 0; 2251 } 2252 2253 /* The new xdp_frame is stored in the new buffer. Reserve enough space 2254 * in the headroom for storing it along with the driver's private 2255 * info. The headroom needs to be aligned to DPAA_FD_DATA_ALIGNMENT to 2256 * guarantee the data's alignment in the buffer. 2257 */ 2258 headroom = ALIGN(sizeof(*new_xdpf) + priv->tx_headroom, 2259 DPAA_FD_DATA_ALIGNMENT); 2260 2261 /* Assure the extended headroom and data don't overflow the buffer, 2262 * while maintaining the mandatory tailroom. 2263 */ 2264 if (headroom + xdpf->len > DPAA_BP_RAW_SIZE - 2265 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 2266 return -ENOMEM; 2267 2268 p = dev_alloc_pages(0); 2269 if (unlikely(!p)) 2270 return -ENOMEM; 2271 2272 /* Copy the data to the new buffer at a properly aligned offset */ 2273 new_buff = page_address(p); 2274 memcpy(new_buff + headroom, xdpf->data, xdpf->len); 2275 2276 /* Create an XDP frame around the new buffer in a similar fashion 2277 * to xdp_convert_buff_to_frame. 2278 */ 2279 new_xdpf = new_buff; 2280 new_xdpf->data = new_buff + headroom; 2281 new_xdpf->len = xdpf->len; 2282 new_xdpf->headroom = priv->tx_headroom; 2283 new_xdpf->frame_sz = DPAA_BP_RAW_SIZE; 2284 new_xdpf->mem.type = MEM_TYPE_PAGE_ORDER0; 2285 2286 /* Release the initial buffer */ 2287 xdp_return_frame_rx_napi(xdpf); 2288 2289 *init_xdpf = new_xdpf; 2290 return 0; 2291 } 2292 #endif 2293 2294 static netdev_tx_t 2295 dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev) 2296 { 2297 const int queue_mapping = skb_get_queue_mapping(skb); 2298 struct rtnl_link_stats64 *percpu_stats; 2299 struct dpaa_percpu_priv *percpu_priv; 2300 struct netdev_queue *txq; 2301 struct dpaa_priv *priv; 2302 struct qm_fd fd; 2303 bool nonlinear; 2304 int offset = 0; 2305 int err = 0; 2306 2307 priv = netdev_priv(net_dev); 2308 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2309 percpu_stats = &percpu_priv->stats; 2310 2311 qm_fd_clear_fd(&fd); 2312 2313 /* Packet data is always read as 32-bit words, so zero out any part of 2314 * the skb which might be sent if we have to pad the packet 2315 */ 2316 if (__skb_put_padto(skb, ETH_ZLEN, false)) 2317 goto enomem; 2318 2319 nonlinear = skb_is_nonlinear(skb); 2320 if (!nonlinear) { 2321 /* We're going to store the skb backpointer at the beginning 2322 * of the data buffer, so we need a privately owned skb 2323 * 2324 * We've made sure skb is not shared in dev->priv_flags, 2325 * we need to verify the skb head is not cloned 2326 */ 2327 if (skb_cow_head(skb, priv->tx_headroom)) 2328 goto enomem; 2329 2330 WARN_ON(skb_is_nonlinear(skb)); 2331 } 2332 2333 /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES; 2334 * make sure we don't feed FMan with more fragments than it supports. 2335 */ 2336 if (unlikely(nonlinear && 2337 (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) { 2338 /* If the egress skb contains more fragments than we support 2339 * we have no choice but to linearize it ourselves. 2340 */ 2341 if (__skb_linearize(skb)) 2342 goto enomem; 2343 2344 nonlinear = skb_is_nonlinear(skb); 2345 } 2346 2347 #ifdef CONFIG_DPAA_ERRATUM_A050385 2348 if (unlikely(fman_has_errata_a050385())) { 2349 if (dpaa_a050385_wa_skb(net_dev, &skb)) 2350 goto enomem; 2351 nonlinear = skb_is_nonlinear(skb); 2352 } 2353 #endif 2354 2355 if (nonlinear) { 2356 /* Just create a S/G fd based on the skb */ 2357 err = skb_to_sg_fd(priv, skb, &fd); 2358 percpu_priv->tx_frag_skbuffs++; 2359 } else { 2360 /* Create a contig FD from this skb */ 2361 err = skb_to_contig_fd(priv, skb, &fd, &offset); 2362 } 2363 if (unlikely(err < 0)) 2364 goto skb_to_fd_failed; 2365 2366 txq = netdev_get_tx_queue(net_dev, queue_mapping); 2367 2368 /* LLTX requires to do our own update of trans_start */ 2369 txq_trans_cond_update(txq); 2370 2371 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { 2372 fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD); 2373 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2374 } 2375 2376 if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0)) 2377 return NETDEV_TX_OK; 2378 2379 dpaa_cleanup_tx_fd(priv, &fd, false); 2380 skb_to_fd_failed: 2381 enomem: 2382 percpu_stats->tx_errors++; 2383 dev_kfree_skb(skb); 2384 return NETDEV_TX_OK; 2385 } 2386 2387 static void dpaa_rx_error(struct net_device *net_dev, 2388 const struct dpaa_priv *priv, 2389 struct dpaa_percpu_priv *percpu_priv, 2390 const struct qm_fd *fd, 2391 u32 fqid) 2392 { 2393 if (net_ratelimit()) 2394 netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n", 2395 be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS); 2396 2397 percpu_priv->stats.rx_errors++; 2398 2399 if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA) 2400 percpu_priv->rx_errors.dme++; 2401 if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL) 2402 percpu_priv->rx_errors.fpe++; 2403 if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE) 2404 percpu_priv->rx_errors.fse++; 2405 if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR) 2406 percpu_priv->rx_errors.phe++; 2407 2408 dpaa_fd_release(net_dev, fd); 2409 } 2410 2411 static void dpaa_tx_error(struct net_device *net_dev, 2412 const struct dpaa_priv *priv, 2413 struct dpaa_percpu_priv *percpu_priv, 2414 const struct qm_fd *fd, 2415 u32 fqid) 2416 { 2417 struct sk_buff *skb; 2418 2419 if (net_ratelimit()) 2420 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", 2421 be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS); 2422 2423 percpu_priv->stats.tx_errors++; 2424 2425 skb = dpaa_cleanup_tx_fd(priv, fd, false); 2426 dev_kfree_skb(skb); 2427 } 2428 2429 static int dpaa_eth_poll(struct napi_struct *napi, int budget) 2430 { 2431 struct dpaa_napi_portal *np = 2432 container_of(napi, struct dpaa_napi_portal, napi); 2433 int cleaned; 2434 2435 np->xdp_act = 0; 2436 2437 cleaned = qman_p_poll_dqrr(np->p, budget); 2438 2439 if (np->xdp_act & XDP_REDIRECT) 2440 xdp_do_flush(); 2441 2442 if (cleaned < budget) { 2443 napi_complete_done(napi, cleaned); 2444 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); 2445 } else if (np->down) { 2446 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); 2447 } 2448 2449 return cleaned; 2450 } 2451 2452 static void dpaa_tx_conf(struct net_device *net_dev, 2453 const struct dpaa_priv *priv, 2454 struct dpaa_percpu_priv *percpu_priv, 2455 const struct qm_fd *fd, 2456 u32 fqid) 2457 { 2458 struct sk_buff *skb; 2459 2460 if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) { 2461 if (net_ratelimit()) 2462 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", 2463 be32_to_cpu(fd->status) & 2464 FM_FD_STAT_TX_ERRORS); 2465 2466 percpu_priv->stats.tx_errors++; 2467 } 2468 2469 percpu_priv->tx_confirm++; 2470 2471 skb = dpaa_cleanup_tx_fd(priv, fd, true); 2472 2473 consume_skb(skb); 2474 } 2475 2476 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv, 2477 struct qman_portal *portal, bool sched_napi) 2478 { 2479 if (sched_napi) { 2480 /* Disable QMan IRQ and invoke NAPI */ 2481 qman_p_irqsource_remove(portal, QM_PIRQ_DQRI); 2482 2483 percpu_priv->np.p = portal; 2484 napi_schedule(&percpu_priv->np.napi); 2485 percpu_priv->in_interrupt++; 2486 return 1; 2487 } 2488 return 0; 2489 } 2490 2491 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal, 2492 struct qman_fq *fq, 2493 const struct qm_dqrr_entry *dq, 2494 bool sched_napi) 2495 { 2496 struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); 2497 struct dpaa_percpu_priv *percpu_priv; 2498 struct net_device *net_dev; 2499 struct dpaa_bp *dpaa_bp; 2500 struct dpaa_priv *priv; 2501 2502 net_dev = dpaa_fq->net_dev; 2503 priv = netdev_priv(net_dev); 2504 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid); 2505 if (!dpaa_bp) 2506 return qman_cb_dqrr_consume; 2507 2508 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2509 2510 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)) 2511 return qman_cb_dqrr_stop; 2512 2513 dpaa_eth_refill_bpools(priv); 2514 dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); 2515 2516 return qman_cb_dqrr_consume; 2517 } 2518 2519 static int dpaa_xdp_xmit_frame(struct net_device *net_dev, 2520 struct xdp_frame *xdpf) 2521 { 2522 struct dpaa_priv *priv = netdev_priv(net_dev); 2523 struct rtnl_link_stats64 *percpu_stats; 2524 struct dpaa_percpu_priv *percpu_priv; 2525 struct dpaa_eth_swbp *swbp; 2526 struct netdev_queue *txq; 2527 void *buff_start; 2528 struct qm_fd fd; 2529 dma_addr_t addr; 2530 int err; 2531 2532 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2533 percpu_stats = &percpu_priv->stats; 2534 2535 #ifdef CONFIG_DPAA_ERRATUM_A050385 2536 if (unlikely(fman_has_errata_a050385())) { 2537 if (dpaa_a050385_wa_xdpf(priv, &xdpf)) { 2538 err = -ENOMEM; 2539 goto out_error; 2540 } 2541 } 2542 #endif 2543 2544 if (xdpf->headroom < DPAA_TX_PRIV_DATA_SIZE) { 2545 err = -EINVAL; 2546 goto out_error; 2547 } 2548 2549 buff_start = xdpf->data - xdpf->headroom; 2550 2551 /* Leave empty the skb backpointer at the start of the buffer. 2552 * Save the XDP frame for easy cleanup on confirmation. 2553 */ 2554 swbp = (struct dpaa_eth_swbp *)buff_start; 2555 swbp->skb = NULL; 2556 swbp->xdpf = xdpf; 2557 2558 qm_fd_clear_fd(&fd); 2559 fd.bpid = FSL_DPAA_BPID_INV; 2560 fd.cmd |= cpu_to_be32(FM_FD_CMD_FCO); 2561 qm_fd_set_contig(&fd, xdpf->headroom, xdpf->len); 2562 2563 addr = dma_map_single(priv->tx_dma_dev, buff_start, 2564 xdpf->headroom + xdpf->len, 2565 DMA_TO_DEVICE); 2566 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2567 err = -EINVAL; 2568 goto out_error; 2569 } 2570 2571 qm_fd_addr_set64(&fd, addr); 2572 2573 /* Bump the trans_start */ 2574 txq = netdev_get_tx_queue(net_dev, smp_processor_id()); 2575 txq_trans_cond_update(txq); 2576 2577 err = dpaa_xmit(priv, percpu_stats, smp_processor_id(), &fd); 2578 if (err) { 2579 dma_unmap_single(priv->tx_dma_dev, addr, 2580 qm_fd_get_offset(&fd) + qm_fd_get_length(&fd), 2581 DMA_TO_DEVICE); 2582 goto out_error; 2583 } 2584 2585 return 0; 2586 2587 out_error: 2588 percpu_stats->tx_errors++; 2589 return err; 2590 } 2591 2592 static u32 dpaa_run_xdp(struct dpaa_priv *priv, struct qm_fd *fd, void *vaddr, 2593 struct dpaa_fq *dpaa_fq, unsigned int *xdp_meta_len) 2594 { 2595 ssize_t fd_off = qm_fd_get_offset(fd); 2596 struct bpf_prog *xdp_prog; 2597 struct xdp_frame *xdpf; 2598 struct xdp_buff xdp; 2599 u32 xdp_act; 2600 int err; 2601 2602 xdp_prog = READ_ONCE(priv->xdp_prog); 2603 if (!xdp_prog) 2604 return XDP_PASS; 2605 2606 xdp_init_buff(&xdp, DPAA_BP_RAW_SIZE - DPAA_TX_PRIV_DATA_SIZE, 2607 &dpaa_fq->xdp_rxq); 2608 xdp_prepare_buff(&xdp, vaddr + fd_off - XDP_PACKET_HEADROOM, 2609 XDP_PACKET_HEADROOM, qm_fd_get_length(fd), true); 2610 2611 /* We reserve a fixed headroom of 256 bytes under the erratum and we 2612 * offer it all to XDP programs to use. If no room is left for the 2613 * xdpf backpointer on TX, we will need to copy the data. 2614 * Disable metadata support since data realignments might be required 2615 * and the information can be lost. 2616 */ 2617 #ifdef CONFIG_DPAA_ERRATUM_A050385 2618 if (unlikely(fman_has_errata_a050385())) { 2619 xdp_set_data_meta_invalid(&xdp); 2620 xdp.data_hard_start = vaddr; 2621 xdp.frame_sz = DPAA_BP_RAW_SIZE; 2622 } 2623 #endif 2624 2625 xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp); 2626 2627 /* Update the length and the offset of the FD */ 2628 qm_fd_set_contig(fd, xdp.data - vaddr, xdp.data_end - xdp.data); 2629 2630 switch (xdp_act) { 2631 case XDP_PASS: 2632 #ifdef CONFIG_DPAA_ERRATUM_A050385 2633 *xdp_meta_len = xdp_data_meta_unsupported(&xdp) ? 0 : 2634 xdp.data - xdp.data_meta; 2635 #else 2636 *xdp_meta_len = xdp.data - xdp.data_meta; 2637 #endif 2638 break; 2639 case XDP_TX: 2640 /* We can access the full headroom when sending the frame 2641 * back out 2642 */ 2643 xdp.data_hard_start = vaddr; 2644 xdp.frame_sz = DPAA_BP_RAW_SIZE; 2645 xdpf = xdp_convert_buff_to_frame(&xdp); 2646 if (unlikely(!xdpf)) { 2647 free_pages((unsigned long)vaddr, 0); 2648 break; 2649 } 2650 2651 if (dpaa_xdp_xmit_frame(priv->net_dev, xdpf)) 2652 xdp_return_frame_rx_napi(xdpf); 2653 2654 break; 2655 case XDP_REDIRECT: 2656 /* Allow redirect to use the full headroom */ 2657 xdp.data_hard_start = vaddr; 2658 xdp.frame_sz = DPAA_BP_RAW_SIZE; 2659 2660 err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog); 2661 if (err) { 2662 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 2663 free_pages((unsigned long)vaddr, 0); 2664 } 2665 break; 2666 default: 2667 bpf_warn_invalid_xdp_action(priv->net_dev, xdp_prog, xdp_act); 2668 fallthrough; 2669 case XDP_ABORTED: 2670 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 2671 fallthrough; 2672 case XDP_DROP: 2673 /* Free the buffer */ 2674 free_pages((unsigned long)vaddr, 0); 2675 break; 2676 } 2677 2678 return xdp_act; 2679 } 2680 2681 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal, 2682 struct qman_fq *fq, 2683 const struct qm_dqrr_entry *dq, 2684 bool sched_napi) 2685 { 2686 bool ts_valid = false, hash_valid = false; 2687 struct skb_shared_hwtstamps *shhwtstamps; 2688 unsigned int skb_len, xdp_meta_len = 0; 2689 struct rtnl_link_stats64 *percpu_stats; 2690 struct dpaa_percpu_priv *percpu_priv; 2691 const struct qm_fd *fd = &dq->fd; 2692 dma_addr_t addr = qm_fd_addr(fd); 2693 struct dpaa_napi_portal *np; 2694 enum qm_fd_format fd_format; 2695 struct net_device *net_dev; 2696 u32 fd_status, hash_offset; 2697 struct qm_sg_entry *sgt; 2698 struct dpaa_bp *dpaa_bp; 2699 struct dpaa_fq *dpaa_fq; 2700 struct dpaa_priv *priv; 2701 struct sk_buff *skb; 2702 int *count_ptr; 2703 u32 xdp_act; 2704 void *vaddr; 2705 u32 hash; 2706 u64 ns; 2707 2708 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); 2709 fd_status = be32_to_cpu(fd->status); 2710 fd_format = qm_fd_get_format(fd); 2711 net_dev = dpaa_fq->net_dev; 2712 priv = netdev_priv(net_dev); 2713 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid); 2714 if (!dpaa_bp) 2715 return qman_cb_dqrr_consume; 2716 2717 /* Trace the Rx fd */ 2718 trace_dpaa_rx_fd(net_dev, fq, &dq->fd); 2719 2720 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2721 percpu_stats = &percpu_priv->stats; 2722 np = &percpu_priv->np; 2723 2724 if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))) 2725 return qman_cb_dqrr_stop; 2726 2727 /* Make sure we didn't run out of buffers */ 2728 if (unlikely(dpaa_eth_refill_bpools(priv))) { 2729 /* Unable to refill the buffer pool due to insufficient 2730 * system memory. Just release the frame back into the pool, 2731 * otherwise we'll soon end up with an empty buffer pool. 2732 */ 2733 dpaa_fd_release(net_dev, &dq->fd); 2734 return qman_cb_dqrr_consume; 2735 } 2736 2737 if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) { 2738 if (net_ratelimit()) 2739 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", 2740 fd_status & FM_FD_STAT_RX_ERRORS); 2741 2742 percpu_stats->rx_errors++; 2743 dpaa_fd_release(net_dev, fd); 2744 return qman_cb_dqrr_consume; 2745 } 2746 2747 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE, 2748 DMA_FROM_DEVICE); 2749 2750 /* prefetch the first 64 bytes of the frame or the SGT start */ 2751 vaddr = phys_to_virt(addr); 2752 prefetch(vaddr + qm_fd_get_offset(fd)); 2753 2754 /* The only FD types that we may receive are contig and S/G */ 2755 WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg)); 2756 2757 /* Account for either the contig buffer or the SGT buffer (depending on 2758 * which case we were in) having been removed from the pool. 2759 */ 2760 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); 2761 (*count_ptr)--; 2762 2763 /* Extract the timestamp stored in the headroom before running XDP */ 2764 if (priv->rx_tstamp) { 2765 if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns)) 2766 ts_valid = true; 2767 else 2768 WARN_ONCE(1, "fman_port_get_tstamp failed!\n"); 2769 } 2770 2771 /* Extract the hash stored in the headroom before running XDP */ 2772 if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use && 2773 !fman_port_get_hash_result_offset(priv->mac_dev->port[RX], 2774 &hash_offset)) { 2775 hash = be32_to_cpu(*(__be32 *)(vaddr + hash_offset)); 2776 hash_valid = true; 2777 } 2778 2779 if (likely(fd_format == qm_fd_contig)) { 2780 xdp_act = dpaa_run_xdp(priv, (struct qm_fd *)fd, vaddr, 2781 dpaa_fq, &xdp_meta_len); 2782 np->xdp_act |= xdp_act; 2783 if (xdp_act != XDP_PASS) { 2784 percpu_stats->rx_packets++; 2785 percpu_stats->rx_bytes += qm_fd_get_length(fd); 2786 return qman_cb_dqrr_consume; 2787 } 2788 skb = contig_fd_to_skb(priv, fd); 2789 } else { 2790 /* XDP doesn't support S/G frames. Return the fragments to the 2791 * buffer pool and release the SGT. 2792 */ 2793 if (READ_ONCE(priv->xdp_prog)) { 2794 WARN_ONCE(1, "S/G frames not supported under XDP\n"); 2795 sgt = vaddr + qm_fd_get_offset(fd); 2796 dpaa_release_sgt_members(sgt); 2797 free_pages((unsigned long)vaddr, 0); 2798 return qman_cb_dqrr_consume; 2799 } 2800 skb = sg_fd_to_skb(priv, fd); 2801 } 2802 if (!skb) 2803 return qman_cb_dqrr_consume; 2804 2805 if (xdp_meta_len) 2806 skb_metadata_set(skb, xdp_meta_len); 2807 2808 /* Set the previously extracted timestamp */ 2809 if (ts_valid) { 2810 shhwtstamps = skb_hwtstamps(skb); 2811 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2812 shhwtstamps->hwtstamp = ns_to_ktime(ns); 2813 } 2814 2815 skb->protocol = eth_type_trans(skb, net_dev); 2816 2817 /* Set the previously extracted hash */ 2818 if (hash_valid) { 2819 enum pkt_hash_types type; 2820 2821 /* if L4 exists, it was used in the hash generation */ 2822 type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ? 2823 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3; 2824 skb_set_hash(skb, hash, type); 2825 } 2826 2827 skb_len = skb->len; 2828 2829 if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) { 2830 percpu_stats->rx_dropped++; 2831 return qman_cb_dqrr_consume; 2832 } 2833 2834 percpu_stats->rx_packets++; 2835 percpu_stats->rx_bytes += skb_len; 2836 2837 return qman_cb_dqrr_consume; 2838 } 2839 2840 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal, 2841 struct qman_fq *fq, 2842 const struct qm_dqrr_entry *dq, 2843 bool sched_napi) 2844 { 2845 struct dpaa_percpu_priv *percpu_priv; 2846 struct net_device *net_dev; 2847 struct dpaa_priv *priv; 2848 2849 net_dev = ((struct dpaa_fq *)fq)->net_dev; 2850 priv = netdev_priv(net_dev); 2851 2852 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2853 2854 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)) 2855 return qman_cb_dqrr_stop; 2856 2857 dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); 2858 2859 return qman_cb_dqrr_consume; 2860 } 2861 2862 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal, 2863 struct qman_fq *fq, 2864 const struct qm_dqrr_entry *dq, 2865 bool sched_napi) 2866 { 2867 struct dpaa_percpu_priv *percpu_priv; 2868 struct net_device *net_dev; 2869 struct dpaa_priv *priv; 2870 2871 net_dev = ((struct dpaa_fq *)fq)->net_dev; 2872 priv = netdev_priv(net_dev); 2873 2874 /* Trace the fd */ 2875 trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd); 2876 2877 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2878 2879 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)) 2880 return qman_cb_dqrr_stop; 2881 2882 dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); 2883 2884 return qman_cb_dqrr_consume; 2885 } 2886 2887 static void egress_ern(struct qman_portal *portal, 2888 struct qman_fq *fq, 2889 const union qm_mr_entry *msg) 2890 { 2891 const struct qm_fd *fd = &msg->ern.fd; 2892 struct dpaa_percpu_priv *percpu_priv; 2893 const struct dpaa_priv *priv; 2894 struct net_device *net_dev; 2895 struct sk_buff *skb; 2896 2897 net_dev = ((struct dpaa_fq *)fq)->net_dev; 2898 priv = netdev_priv(net_dev); 2899 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2900 2901 percpu_priv->stats.tx_dropped++; 2902 percpu_priv->stats.tx_fifo_errors++; 2903 count_ern(percpu_priv, msg); 2904 2905 skb = dpaa_cleanup_tx_fd(priv, fd, false); 2906 dev_kfree_skb_any(skb); 2907 } 2908 2909 static const struct dpaa_fq_cbs dpaa_fq_cbs = { 2910 .rx_defq = { .cb = { .dqrr = rx_default_dqrr } }, 2911 .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } }, 2912 .rx_errq = { .cb = { .dqrr = rx_error_dqrr } }, 2913 .tx_errq = { .cb = { .dqrr = conf_error_dqrr } }, 2914 .egress_ern = { .cb = { .ern = egress_ern } } 2915 }; 2916 2917 static void dpaa_eth_napi_enable(struct dpaa_priv *priv) 2918 { 2919 struct dpaa_percpu_priv *percpu_priv; 2920 int i; 2921 2922 for_each_online_cpu(i) { 2923 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 2924 2925 percpu_priv->np.down = false; 2926 napi_enable(&percpu_priv->np.napi); 2927 } 2928 } 2929 2930 static void dpaa_eth_napi_disable(struct dpaa_priv *priv) 2931 { 2932 struct dpaa_percpu_priv *percpu_priv; 2933 int i; 2934 2935 for_each_online_cpu(i) { 2936 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 2937 2938 percpu_priv->np.down = true; 2939 napi_disable(&percpu_priv->np.napi); 2940 } 2941 } 2942 2943 static int dpaa_open(struct net_device *net_dev) 2944 { 2945 struct mac_device *mac_dev; 2946 struct dpaa_priv *priv; 2947 int err, i; 2948 2949 priv = netdev_priv(net_dev); 2950 mac_dev = priv->mac_dev; 2951 dpaa_eth_napi_enable(priv); 2952 2953 err = phylink_of_phy_connect(mac_dev->phylink, 2954 mac_dev->dev->of_node, 0); 2955 if (err) 2956 goto phy_init_failed; 2957 2958 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) { 2959 err = fman_port_enable(mac_dev->port[i]); 2960 if (err) 2961 goto mac_start_failed; 2962 } 2963 2964 err = priv->mac_dev->enable(mac_dev->fman_mac); 2965 if (err < 0) { 2966 netif_err(priv, ifup, net_dev, "mac_dev->enable() = %d\n", err); 2967 goto mac_start_failed; 2968 } 2969 phylink_start(mac_dev->phylink); 2970 2971 netif_tx_start_all_queues(net_dev); 2972 2973 return 0; 2974 2975 mac_start_failed: 2976 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) 2977 fman_port_disable(mac_dev->port[i]); 2978 phylink_disconnect_phy(mac_dev->phylink); 2979 2980 phy_init_failed: 2981 dpaa_eth_napi_disable(priv); 2982 2983 return err; 2984 } 2985 2986 static int dpaa_eth_stop(struct net_device *net_dev) 2987 { 2988 struct dpaa_priv *priv; 2989 int err; 2990 2991 err = dpaa_stop(net_dev); 2992 2993 priv = netdev_priv(net_dev); 2994 dpaa_eth_napi_disable(priv); 2995 2996 return err; 2997 } 2998 2999 static bool xdp_validate_mtu(struct dpaa_priv *priv, int mtu) 3000 { 3001 int max_contig_data = priv->dpaa_bp->size - priv->rx_headroom; 3002 3003 /* We do not support S/G fragments when XDP is enabled. 3004 * Limit the MTU in relation to the buffer size. 3005 */ 3006 if (mtu + VLAN_ETH_HLEN + ETH_FCS_LEN > max_contig_data) { 3007 dev_warn(priv->net_dev->dev.parent, 3008 "The maximum MTU for XDP is %d\n", 3009 max_contig_data - VLAN_ETH_HLEN - ETH_FCS_LEN); 3010 return false; 3011 } 3012 3013 return true; 3014 } 3015 3016 static int dpaa_change_mtu(struct net_device *net_dev, int new_mtu) 3017 { 3018 struct dpaa_priv *priv = netdev_priv(net_dev); 3019 3020 if (priv->xdp_prog && !xdp_validate_mtu(priv, new_mtu)) 3021 return -EINVAL; 3022 3023 WRITE_ONCE(net_dev->mtu, new_mtu); 3024 return 0; 3025 } 3026 3027 static int dpaa_setup_xdp(struct net_device *net_dev, struct netdev_bpf *bpf) 3028 { 3029 struct dpaa_priv *priv = netdev_priv(net_dev); 3030 struct bpf_prog *old_prog; 3031 int err; 3032 bool up; 3033 3034 /* S/G fragments are not supported in XDP-mode */ 3035 if (bpf->prog && !xdp_validate_mtu(priv, net_dev->mtu)) { 3036 NL_SET_ERR_MSG_MOD(bpf->extack, "MTU too large for XDP"); 3037 return -EINVAL; 3038 } 3039 3040 up = netif_running(net_dev); 3041 3042 if (up) 3043 dpaa_eth_stop(net_dev); 3044 3045 old_prog = xchg(&priv->xdp_prog, bpf->prog); 3046 if (old_prog) 3047 bpf_prog_put(old_prog); 3048 3049 if (up) { 3050 err = dpaa_open(net_dev); 3051 if (err) { 3052 NL_SET_ERR_MSG_MOD(bpf->extack, "dpaa_open() failed"); 3053 return err; 3054 } 3055 } 3056 3057 return 0; 3058 } 3059 3060 static int dpaa_xdp(struct net_device *net_dev, struct netdev_bpf *xdp) 3061 { 3062 switch (xdp->command) { 3063 case XDP_SETUP_PROG: 3064 return dpaa_setup_xdp(net_dev, xdp); 3065 default: 3066 return -EINVAL; 3067 } 3068 } 3069 3070 static int dpaa_xdp_xmit(struct net_device *net_dev, int n, 3071 struct xdp_frame **frames, u32 flags) 3072 { 3073 struct xdp_frame *xdpf; 3074 int i, nxmit = 0; 3075 3076 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 3077 return -EINVAL; 3078 3079 if (!netif_running(net_dev)) 3080 return -ENETDOWN; 3081 3082 for (i = 0; i < n; i++) { 3083 xdpf = frames[i]; 3084 if (dpaa_xdp_xmit_frame(net_dev, xdpf)) 3085 break; 3086 nxmit++; 3087 } 3088 3089 return nxmit; 3090 } 3091 3092 static int dpaa_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 3093 { 3094 struct dpaa_priv *priv = netdev_priv(dev); 3095 struct hwtstamp_config config; 3096 3097 if (copy_from_user(&config, rq->ifr_data, sizeof(config))) 3098 return -EFAULT; 3099 3100 switch (config.tx_type) { 3101 case HWTSTAMP_TX_OFF: 3102 /* Couldn't disable rx/tx timestamping separately. 3103 * Do nothing here. 3104 */ 3105 priv->tx_tstamp = false; 3106 break; 3107 case HWTSTAMP_TX_ON: 3108 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true); 3109 priv->tx_tstamp = true; 3110 break; 3111 default: 3112 return -ERANGE; 3113 } 3114 3115 if (config.rx_filter == HWTSTAMP_FILTER_NONE) { 3116 /* Couldn't disable rx/tx timestamping separately. 3117 * Do nothing here. 3118 */ 3119 priv->rx_tstamp = false; 3120 } else { 3121 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true); 3122 priv->rx_tstamp = true; 3123 /* TS is set for all frame types, not only those requested */ 3124 config.rx_filter = HWTSTAMP_FILTER_ALL; 3125 } 3126 3127 return copy_to_user(rq->ifr_data, &config, sizeof(config)) ? 3128 -EFAULT : 0; 3129 } 3130 3131 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd) 3132 { 3133 int ret = -EINVAL; 3134 struct dpaa_priv *priv = netdev_priv(net_dev); 3135 3136 if (cmd == SIOCGMIIREG) { 3137 if (net_dev->phydev) 3138 return phylink_mii_ioctl(priv->mac_dev->phylink, rq, 3139 cmd); 3140 } 3141 3142 if (cmd == SIOCSHWTSTAMP) 3143 return dpaa_ts_ioctl(net_dev, rq, cmd); 3144 3145 return ret; 3146 } 3147 3148 static const struct net_device_ops dpaa_ops = { 3149 .ndo_open = dpaa_open, 3150 .ndo_start_xmit = dpaa_start_xmit, 3151 .ndo_stop = dpaa_eth_stop, 3152 .ndo_tx_timeout = dpaa_tx_timeout, 3153 .ndo_get_stats64 = dpaa_get_stats64, 3154 .ndo_change_carrier = fixed_phy_change_carrier, 3155 .ndo_set_mac_address = dpaa_set_mac_address, 3156 .ndo_validate_addr = eth_validate_addr, 3157 .ndo_set_rx_mode = dpaa_set_rx_mode, 3158 .ndo_eth_ioctl = dpaa_ioctl, 3159 .ndo_setup_tc = dpaa_setup_tc, 3160 .ndo_change_mtu = dpaa_change_mtu, 3161 .ndo_bpf = dpaa_xdp, 3162 .ndo_xdp_xmit = dpaa_xdp_xmit, 3163 }; 3164 3165 static int dpaa_napi_add(struct net_device *net_dev) 3166 { 3167 struct dpaa_priv *priv = netdev_priv(net_dev); 3168 struct dpaa_percpu_priv *percpu_priv; 3169 int cpu; 3170 3171 for_each_possible_cpu(cpu) { 3172 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu); 3173 3174 netif_napi_add(net_dev, &percpu_priv->np.napi, dpaa_eth_poll); 3175 } 3176 3177 return 0; 3178 } 3179 3180 static void dpaa_napi_del(struct net_device *net_dev) 3181 { 3182 struct dpaa_priv *priv = netdev_priv(net_dev); 3183 struct dpaa_percpu_priv *percpu_priv; 3184 int cpu; 3185 3186 for_each_possible_cpu(cpu) { 3187 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu); 3188 3189 __netif_napi_del(&percpu_priv->np.napi); 3190 } 3191 synchronize_net(); 3192 } 3193 3194 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp, 3195 struct bm_buffer *bmb) 3196 { 3197 dma_addr_t addr = bm_buf_addr(bmb); 3198 3199 dma_unmap_page(bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE, 3200 DMA_FROM_DEVICE); 3201 3202 skb_free_frag(phys_to_virt(addr)); 3203 } 3204 3205 /* Alloc the dpaa_bp struct and configure default values */ 3206 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev) 3207 { 3208 struct dpaa_bp *dpaa_bp; 3209 3210 dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL); 3211 if (!dpaa_bp) 3212 return ERR_PTR(-ENOMEM); 3213 3214 dpaa_bp->bpid = FSL_DPAA_BPID_INV; 3215 dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count); 3216 if (!dpaa_bp->percpu_count) 3217 return ERR_PTR(-ENOMEM); 3218 3219 dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT; 3220 3221 dpaa_bp->seed_cb = dpaa_bp_seed; 3222 dpaa_bp->free_buf_cb = dpaa_bp_free_pf; 3223 3224 return dpaa_bp; 3225 } 3226 3227 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR. 3228 * We won't be sending congestion notifications to FMan; for now, we just use 3229 * this CGR to generate enqueue rejections to FMan in order to drop the frames 3230 * before they reach our ingress queues and eat up memory. 3231 */ 3232 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv) 3233 { 3234 struct qm_mcc_initcgr initcgr; 3235 u32 cs_th; 3236 int err; 3237 3238 err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid); 3239 if (err < 0) { 3240 if (netif_msg_drv(priv)) 3241 pr_err("Error %d allocating CGR ID\n", err); 3242 goto out_error; 3243 } 3244 3245 /* Enable CS TD, but disable Congestion State Change Notifications. */ 3246 memset(&initcgr, 0, sizeof(initcgr)); 3247 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES); 3248 initcgr.cgr.cscn_en = QM_CGR_EN; 3249 cs_th = DPAA_INGRESS_CS_THRESHOLD; 3250 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1); 3251 3252 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN); 3253 initcgr.cgr.cstd_en = QM_CGR_EN; 3254 3255 /* This CGR will be associated with the SWP affined to the current CPU. 3256 * However, we'll place all our ingress FQs in it. 3257 */ 3258 err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT, 3259 &initcgr); 3260 if (err < 0) { 3261 if (netif_msg_drv(priv)) 3262 pr_err("Error %d creating ingress CGR with ID %d\n", 3263 err, priv->ingress_cgr.cgrid); 3264 qman_release_cgrid(priv->ingress_cgr.cgrid); 3265 goto out_error; 3266 } 3267 if (netif_msg_drv(priv)) 3268 pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n", 3269 priv->ingress_cgr.cgrid, priv->mac_dev->addr); 3270 3271 priv->use_ingress_cgr = true; 3272 3273 out_error: 3274 return err; 3275 } 3276 3277 static u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl, 3278 enum port_type port) 3279 { 3280 u16 headroom; 3281 3282 /* The frame headroom must accommodate: 3283 * - the driver private data area 3284 * - parse results, hash results, timestamp if selected 3285 * If either hash results or time stamp are selected, both will 3286 * be copied to/from the frame headroom, as TS is located between PR and 3287 * HR in the IC and IC copy size has a granularity of 16bytes 3288 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM) 3289 * 3290 * Also make sure the headroom is a multiple of data_align bytes 3291 */ 3292 headroom = (u16)(bl[port].priv_data_size + DPAA_HWA_SIZE); 3293 3294 if (port == RX) { 3295 #ifdef CONFIG_DPAA_ERRATUM_A050385 3296 if (unlikely(fman_has_errata_a050385())) 3297 headroom = XDP_PACKET_HEADROOM; 3298 #endif 3299 3300 return ALIGN(headroom, DPAA_FD_RX_DATA_ALIGNMENT); 3301 } else { 3302 return ALIGN(headroom, DPAA_FD_DATA_ALIGNMENT); 3303 } 3304 } 3305 3306 static int dpaa_eth_probe(struct platform_device *pdev) 3307 { 3308 struct net_device *net_dev = NULL; 3309 struct dpaa_bp *dpaa_bp = NULL; 3310 struct dpaa_fq *dpaa_fq, *tmp; 3311 struct dpaa_priv *priv = NULL; 3312 struct fm_port_fqs port_fqs; 3313 struct mac_device *mac_dev; 3314 int err = 0, channel; 3315 struct device *dev; 3316 3317 dev = &pdev->dev; 3318 3319 err = bman_is_probed(); 3320 if (!err) 3321 return -EPROBE_DEFER; 3322 if (err < 0) { 3323 dev_err(dev, "failing probe due to bman probe error\n"); 3324 return -ENODEV; 3325 } 3326 err = qman_is_probed(); 3327 if (!err) 3328 return -EPROBE_DEFER; 3329 if (err < 0) { 3330 dev_err(dev, "failing probe due to qman probe error\n"); 3331 return -ENODEV; 3332 } 3333 err = bman_portals_probed(); 3334 if (!err) 3335 return -EPROBE_DEFER; 3336 if (err < 0) { 3337 dev_err(dev, 3338 "failing probe due to bman portals probe error\n"); 3339 return -ENODEV; 3340 } 3341 err = qman_portals_probed(); 3342 if (!err) 3343 return -EPROBE_DEFER; 3344 if (err < 0) { 3345 dev_err(dev, 3346 "failing probe due to qman portals probe error\n"); 3347 return -ENODEV; 3348 } 3349 3350 /* Allocate this early, so we can store relevant information in 3351 * the private area 3352 */ 3353 net_dev = alloc_etherdev_mq(sizeof(*priv), dpaa_max_num_txqs()); 3354 if (!net_dev) { 3355 dev_err(dev, "alloc_etherdev_mq() failed\n"); 3356 return -ENOMEM; 3357 } 3358 3359 /* Do this here, so we can be verbose early */ 3360 SET_NETDEV_DEV(net_dev, dev->parent); 3361 dev_set_drvdata(dev, net_dev); 3362 3363 priv = netdev_priv(net_dev); 3364 priv->net_dev = net_dev; 3365 3366 priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT); 3367 3368 priv->egress_fqs = devm_kcalloc(dev, dpaa_max_num_txqs(), 3369 sizeof(*priv->egress_fqs), 3370 GFP_KERNEL); 3371 if (!priv->egress_fqs) { 3372 err = -ENOMEM; 3373 goto free_netdev; 3374 } 3375 3376 priv->conf_fqs = devm_kcalloc(dev, dpaa_max_num_txqs(), 3377 sizeof(*priv->conf_fqs), 3378 GFP_KERNEL); 3379 if (!priv->conf_fqs) { 3380 err = -ENOMEM; 3381 goto free_netdev; 3382 } 3383 3384 mac_dev = dpaa_mac_dev_get(pdev); 3385 if (IS_ERR(mac_dev)) { 3386 netdev_err(net_dev, "dpaa_mac_dev_get() failed\n"); 3387 err = PTR_ERR(mac_dev); 3388 goto free_netdev; 3389 } 3390 3391 /* Devices used for DMA mapping */ 3392 priv->rx_dma_dev = fman_port_get_device(mac_dev->port[RX]); 3393 priv->tx_dma_dev = fman_port_get_device(mac_dev->port[TX]); 3394 err = dma_coerce_mask_and_coherent(priv->rx_dma_dev, DMA_BIT_MASK(40)); 3395 if (!err) 3396 err = dma_coerce_mask_and_coherent(priv->tx_dma_dev, 3397 DMA_BIT_MASK(40)); 3398 if (err) { 3399 netdev_err(net_dev, "dma_coerce_mask_and_coherent() failed\n"); 3400 goto free_netdev; 3401 } 3402 3403 /* If fsl_fm_max_frm is set to a higher value than the all-common 1500, 3404 * we choose conservatively and let the user explicitly set a higher 3405 * MTU via ifconfig. Otherwise, the user may end up with different MTUs 3406 * in the same LAN. 3407 * If on the other hand fsl_fm_max_frm has been chosen below 1500, 3408 * start with the maximum allowed. 3409 */ 3410 net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN); 3411 3412 netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n", 3413 net_dev->mtu); 3414 3415 priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */ 3416 priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */ 3417 3418 /* bp init */ 3419 dpaa_bp = dpaa_bp_alloc(dev); 3420 if (IS_ERR(dpaa_bp)) { 3421 err = PTR_ERR(dpaa_bp); 3422 goto free_dpaa_bps; 3423 } 3424 /* the raw size of the buffers used for reception */ 3425 dpaa_bp->raw_size = DPAA_BP_RAW_SIZE; 3426 /* avoid runtime computations by keeping the usable size here */ 3427 dpaa_bp->size = dpaa_bp_size(dpaa_bp->raw_size); 3428 dpaa_bp->priv = priv; 3429 3430 err = dpaa_bp_alloc_pool(dpaa_bp); 3431 if (err < 0) 3432 goto free_dpaa_bps; 3433 priv->dpaa_bp = dpaa_bp; 3434 3435 INIT_LIST_HEAD(&priv->dpaa_fq_list); 3436 3437 memset(&port_fqs, 0, sizeof(port_fqs)); 3438 3439 err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs); 3440 if (err < 0) { 3441 dev_err(dev, "dpaa_alloc_all_fqs() failed\n"); 3442 goto free_dpaa_bps; 3443 } 3444 3445 priv->mac_dev = mac_dev; 3446 3447 channel = dpaa_get_channel(); 3448 if (channel < 0) { 3449 dev_err(dev, "dpaa_get_channel() failed\n"); 3450 err = channel; 3451 goto free_dpaa_bps; 3452 } 3453 3454 priv->channel = (u16)channel; 3455 3456 /* Walk the CPUs with affine portals 3457 * and add this pool channel to each's dequeue mask. 3458 */ 3459 dpaa_eth_add_channel(priv->channel, &pdev->dev); 3460 3461 err = dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]); 3462 if (err) 3463 goto free_dpaa_bps; 3464 3465 /* Create a congestion group for this netdev, with 3466 * dynamically-allocated CGR ID. 3467 * Must be executed after probing the MAC, but before 3468 * assigning the egress FQs to the CGRs. 3469 */ 3470 err = dpaa_eth_cgr_init(priv); 3471 if (err < 0) { 3472 dev_err(dev, "Error initializing CGR\n"); 3473 goto free_dpaa_bps; 3474 } 3475 3476 err = dpaa_ingress_cgr_init(priv); 3477 if (err < 0) { 3478 dev_err(dev, "Error initializing ingress CGR\n"); 3479 goto delete_egress_cgr; 3480 } 3481 3482 /* Add the FQs to the interface, and make them active */ 3483 list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) { 3484 err = dpaa_fq_init(dpaa_fq, false); 3485 if (err < 0) 3486 goto free_dpaa_fqs; 3487 } 3488 3489 priv->tx_headroom = dpaa_get_headroom(priv->buf_layout, TX); 3490 priv->rx_headroom = dpaa_get_headroom(priv->buf_layout, RX); 3491 3492 /* All real interfaces need their ports initialized */ 3493 err = dpaa_eth_init_ports(mac_dev, dpaa_bp, &port_fqs, 3494 &priv->buf_layout[0], dev); 3495 if (err) 3496 goto free_dpaa_fqs; 3497 3498 /* Rx traffic distribution based on keygen hashing defaults to on */ 3499 priv->keygen_in_use = true; 3500 3501 priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv); 3502 if (!priv->percpu_priv) { 3503 dev_err(dev, "devm_alloc_percpu() failed\n"); 3504 err = -ENOMEM; 3505 goto free_dpaa_fqs; 3506 } 3507 3508 priv->num_tc = 1; 3509 netif_set_real_num_tx_queues(net_dev, 3510 priv->num_tc * dpaa_num_txqs_per_tc()); 3511 3512 /* Initialize NAPI */ 3513 err = dpaa_napi_add(net_dev); 3514 if (err < 0) 3515 goto delete_dpaa_napi; 3516 3517 err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout); 3518 if (err < 0) 3519 goto delete_dpaa_napi; 3520 3521 dpaa_eth_sysfs_init(&net_dev->dev); 3522 3523 netif_info(priv, probe, net_dev, "Probed interface %s\n", 3524 net_dev->name); 3525 3526 return 0; 3527 3528 delete_dpaa_napi: 3529 dpaa_napi_del(net_dev); 3530 free_dpaa_fqs: 3531 dpaa_fq_free(dev, &priv->dpaa_fq_list); 3532 qman_delete_cgr_safe(&priv->ingress_cgr); 3533 qman_release_cgrid(priv->ingress_cgr.cgrid); 3534 delete_egress_cgr: 3535 qman_delete_cgr_safe(&priv->cgr_data.cgr); 3536 qman_release_cgrid(priv->cgr_data.cgr.cgrid); 3537 free_dpaa_bps: 3538 dpaa_bps_free(priv); 3539 free_netdev: 3540 dev_set_drvdata(dev, NULL); 3541 free_netdev(net_dev); 3542 3543 return err; 3544 } 3545 3546 static void dpaa_remove(struct platform_device *pdev) 3547 { 3548 struct net_device *net_dev; 3549 struct dpaa_priv *priv; 3550 struct device *dev; 3551 int err; 3552 3553 dev = &pdev->dev; 3554 net_dev = dev_get_drvdata(dev); 3555 3556 priv = netdev_priv(net_dev); 3557 3558 dpaa_eth_sysfs_remove(dev); 3559 3560 dev_set_drvdata(dev, NULL); 3561 unregister_netdev(net_dev); 3562 phylink_destroy(priv->mac_dev->phylink); 3563 3564 err = dpaa_fq_free(dev, &priv->dpaa_fq_list); 3565 if (err) 3566 dev_err(dev, "Failed to free FQs on remove (%pE)\n", 3567 ERR_PTR(err)); 3568 3569 qman_delete_cgr_safe(&priv->ingress_cgr); 3570 qman_release_cgrid(priv->ingress_cgr.cgrid); 3571 qman_delete_cgr_safe(&priv->cgr_data.cgr); 3572 qman_release_cgrid(priv->cgr_data.cgr.cgrid); 3573 3574 dpaa_napi_del(net_dev); 3575 3576 dpaa_bps_free(priv); 3577 3578 free_netdev(net_dev); 3579 } 3580 3581 static const struct platform_device_id dpaa_devtype[] = { 3582 { 3583 .name = "dpaa-ethernet", 3584 .driver_data = 0, 3585 }, { 3586 } 3587 }; 3588 MODULE_DEVICE_TABLE(platform, dpaa_devtype); 3589 3590 static struct platform_driver dpaa_driver = { 3591 .driver = { 3592 .name = KBUILD_MODNAME, 3593 }, 3594 .id_table = dpaa_devtype, 3595 .probe = dpaa_eth_probe, 3596 .remove = dpaa_remove 3597 }; 3598 3599 static int __init dpaa_load(void) 3600 { 3601 int err; 3602 3603 pr_debug("FSL DPAA Ethernet driver\n"); 3604 3605 /* initialize dpaa_eth mirror values */ 3606 dpaa_rx_extra_headroom = fman_get_rx_extra_headroom(); 3607 dpaa_max_frm = fman_get_max_frm(); 3608 3609 err = platform_driver_register(&dpaa_driver); 3610 if (err < 0) 3611 pr_err("Error, platform_driver_register() = %d\n", err); 3612 3613 return err; 3614 } 3615 module_init(dpaa_load); 3616 3617 static void __exit dpaa_unload(void) 3618 { 3619 platform_driver_unregister(&dpaa_driver); 3620 3621 /* Only one channel is used and needs to be released after all 3622 * interfaces are removed 3623 */ 3624 dpaa_release_channel(); 3625 } 3626 module_exit(dpaa_unload); 3627 3628 MODULE_LICENSE("Dual BSD/GPL"); 3629 MODULE_DESCRIPTION("FSL DPAA Ethernet driver"); 3630