xref: /linux/drivers/net/ethernet/freescale/dpaa/dpaa_eth.c (revision 63769819079d87dc322fefaf981589e227de2978)
1 // SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0-or-later
2 /*
3  * Copyright 2008 - 2016 Freescale Semiconductor Inc.
4  * Copyright 2020 NXP
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/of_platform.h>
12 #include <linux/of_mdio.h>
13 #include <linux/of_net.h>
14 #include <linux/io.h>
15 #include <linux/if_arp.h>
16 #include <linux/if_vlan.h>
17 #include <linux/icmp.h>
18 #include <linux/ip.h>
19 #include <linux/ipv6.h>
20 #include <linux/udp.h>
21 #include <linux/tcp.h>
22 #include <linux/net.h>
23 #include <linux/skbuff.h>
24 #include <linux/etherdevice.h>
25 #include <linux/if_ether.h>
26 #include <linux/highmem.h>
27 #include <linux/percpu.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/sort.h>
30 #include <linux/phy_fixed.h>
31 #include <linux/bpf.h>
32 #include <linux/bpf_trace.h>
33 #include <soc/fsl/bman.h>
34 #include <soc/fsl/qman.h>
35 #include "fman.h"
36 #include "fman_port.h"
37 #include "mac.h"
38 #include "dpaa_eth.h"
39 
40 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
41  * using trace events only need to #include <trace/events/sched.h>
42  */
43 #define CREATE_TRACE_POINTS
44 #include "dpaa_eth_trace.h"
45 
46 static int debug = -1;
47 module_param(debug, int, 0444);
48 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
49 
50 static u16 tx_timeout = 1000;
51 module_param(tx_timeout, ushort, 0444);
52 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
53 
54 #define FM_FD_STAT_RX_ERRORS						\
55 	(FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL	| \
56 	 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
57 	 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME	| \
58 	 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
59 	 FM_FD_ERR_PRS_HDR_ERR)
60 
61 #define FM_FD_STAT_TX_ERRORS \
62 	(FM_FD_ERR_UNSUPPORTED_FORMAT | \
63 	 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
64 
65 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
66 			  NETIF_MSG_LINK | NETIF_MSG_IFUP | \
67 			  NETIF_MSG_IFDOWN | NETIF_MSG_HW)
68 
69 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000
70 /* Ingress congestion threshold on FMan ports
71  * The size in bytes of the ingress tail-drop threshold on FMan ports.
72  * Traffic piling up above this value will be rejected by QMan and discarded
73  * by FMan.
74  */
75 
76 /* Size in bytes of the FQ taildrop threshold */
77 #define DPAA_FQ_TD 0x200000
78 
79 #define DPAA_CS_THRESHOLD_1G 0x06000000
80 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
81  * The size in bytes of the egress Congestion State notification threshold on
82  * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
83  * tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
84  * and the larger the frame size, the more acute the problem.
85  * So we have to find a balance between these factors:
86  * - avoiding the device staying congested for a prolonged time (risking
87  *   the netdev watchdog to fire - see also the tx_timeout module param);
88  * - affecting performance of protocols such as TCP, which otherwise
89  *   behave well under the congestion notification mechanism;
90  * - preventing the Tx cores from tightly-looping (as if the congestion
91  *   threshold was too low to be effective);
92  * - running out of memory if the CS threshold is set too high.
93  */
94 
95 #define DPAA_CS_THRESHOLD_10G 0x10000000
96 /* The size in bytes of the egress Congestion State notification threshold on
97  * 10G ports, range 0x1000 .. 0x10000000
98  */
99 
100 /* Largest value that the FQD's OAL field can hold */
101 #define FSL_QMAN_MAX_OAL	127
102 
103 /* Default alignment for start of data in an Rx FD */
104 #ifdef CONFIG_DPAA_ERRATUM_A050385
105 /* aligning data start to 64 avoids DMA transaction splits, unless the buffer
106  * is crossing a 4k page boundary
107  */
108 #define DPAA_FD_DATA_ALIGNMENT  (fman_has_errata_a050385() ? 64 : 16)
109 /* aligning to 256 avoids DMA transaction splits caused by 4k page boundary
110  * crossings; also, all SG fragments except the last must have a size multiple
111  * of 256 to avoid DMA transaction splits
112  */
113 #define DPAA_A050385_ALIGN 256
114 #define DPAA_FD_RX_DATA_ALIGNMENT (fman_has_errata_a050385() ? \
115 				   DPAA_A050385_ALIGN : 16)
116 #else
117 #define DPAA_FD_DATA_ALIGNMENT  16
118 #define DPAA_FD_RX_DATA_ALIGNMENT DPAA_FD_DATA_ALIGNMENT
119 #endif
120 
121 /* The DPAA requires 256 bytes reserved and mapped for the SGT */
122 #define DPAA_SGT_SIZE 256
123 
124 /* Values for the L3R field of the FM Parse Results
125  */
126 /* L3 Type field: First IP Present IPv4 */
127 #define FM_L3_PARSE_RESULT_IPV4	0x8000
128 /* L3 Type field: First IP Present IPv6 */
129 #define FM_L3_PARSE_RESULT_IPV6	0x4000
130 /* Values for the L4R field of the FM Parse Results */
131 /* L4 Type field: UDP */
132 #define FM_L4_PARSE_RESULT_UDP	0x40
133 /* L4 Type field: TCP */
134 #define FM_L4_PARSE_RESULT_TCP	0x20
135 
136 /* FD status field indicating whether the FM Parser has attempted to validate
137  * the L4 csum of the frame.
138  * Note that having this bit set doesn't necessarily imply that the checksum
139  * is valid. One would have to check the parse results to find that out.
140  */
141 #define FM_FD_STAT_L4CV         0x00000004
142 
143 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
144 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
145 
146 #define FSL_DPAA_BPID_INV		0xff
147 #define FSL_DPAA_ETH_MAX_BUF_COUNT	128
148 #define FSL_DPAA_ETH_REFILL_THRESHOLD	80
149 
150 #define DPAA_TX_PRIV_DATA_SIZE	16
151 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
152 #define DPAA_TIME_STAMP_SIZE 8
153 #define DPAA_HASH_RESULTS_SIZE 8
154 #define DPAA_HWA_SIZE (DPAA_PARSE_RESULTS_SIZE + DPAA_TIME_STAMP_SIZE \
155 		       + DPAA_HASH_RESULTS_SIZE)
156 #define DPAA_RX_PRIV_DATA_DEFAULT_SIZE (DPAA_TX_PRIV_DATA_SIZE + \
157 					XDP_PACKET_HEADROOM - DPAA_HWA_SIZE)
158 #ifdef CONFIG_DPAA_ERRATUM_A050385
159 #define DPAA_RX_PRIV_DATA_A050385_SIZE (DPAA_A050385_ALIGN - DPAA_HWA_SIZE)
160 #define DPAA_RX_PRIV_DATA_SIZE (fman_has_errata_a050385() ? \
161 				DPAA_RX_PRIV_DATA_A050385_SIZE : \
162 				DPAA_RX_PRIV_DATA_DEFAULT_SIZE)
163 #else
164 #define DPAA_RX_PRIV_DATA_SIZE DPAA_RX_PRIV_DATA_DEFAULT_SIZE
165 #endif
166 
167 #define DPAA_ETH_PCD_RXQ_NUM	128
168 
169 #define DPAA_ENQUEUE_RETRIES	100000
170 
171 enum port_type {RX, TX};
172 
173 struct fm_port_fqs {
174 	struct dpaa_fq *tx_defq;
175 	struct dpaa_fq *tx_errq;
176 	struct dpaa_fq *rx_defq;
177 	struct dpaa_fq *rx_errq;
178 	struct dpaa_fq *rx_pcdq;
179 };
180 
181 /* All the dpa bps in use at any moment */
182 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
183 
184 #define DPAA_BP_RAW_SIZE 4096
185 
186 #ifdef CONFIG_DPAA_ERRATUM_A050385
187 #define dpaa_bp_size(raw_size) (SKB_WITH_OVERHEAD(raw_size) & \
188 				~(DPAA_A050385_ALIGN - 1))
189 #else
190 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD(raw_size)
191 #endif
192 
193 static int dpaa_max_frm;
194 
195 static int dpaa_rx_extra_headroom;
196 
197 #define dpaa_get_max_mtu()	\
198 	(dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
199 
200 static int dpaa_netdev_init(struct net_device *net_dev,
201 			    const struct net_device_ops *dpaa_ops,
202 			    u16 tx_timeout)
203 {
204 	struct dpaa_priv *priv = netdev_priv(net_dev);
205 	struct device *dev = net_dev->dev.parent;
206 	struct dpaa_percpu_priv *percpu_priv;
207 	const u8 *mac_addr;
208 	int i, err;
209 
210 	/* Although we access another CPU's private data here
211 	 * we do it at initialization so it is safe
212 	 */
213 	for_each_possible_cpu(i) {
214 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
215 		percpu_priv->net_dev = net_dev;
216 	}
217 
218 	net_dev->netdev_ops = dpaa_ops;
219 	mac_addr = priv->mac_dev->addr;
220 
221 	net_dev->mem_start = priv->mac_dev->res->start;
222 	net_dev->mem_end = priv->mac_dev->res->end;
223 
224 	net_dev->min_mtu = ETH_MIN_MTU;
225 	net_dev->max_mtu = dpaa_get_max_mtu();
226 
227 	net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
228 				 NETIF_F_LLTX | NETIF_F_RXHASH);
229 
230 	net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
231 	/* The kernels enables GSO automatically, if we declare NETIF_F_SG.
232 	 * For conformity, we'll still declare GSO explicitly.
233 	 */
234 	net_dev->features |= NETIF_F_GSO;
235 	net_dev->features |= NETIF_F_RXCSUM;
236 
237 	net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
238 	/* we do not want shared skbs on TX */
239 	net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
240 
241 	net_dev->features |= net_dev->hw_features;
242 	net_dev->vlan_features = net_dev->features;
243 
244 	if (is_valid_ether_addr(mac_addr)) {
245 		memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
246 		eth_hw_addr_set(net_dev, mac_addr);
247 	} else {
248 		eth_hw_addr_random(net_dev);
249 		err = priv->mac_dev->change_addr(priv->mac_dev->fman_mac,
250 			(const enet_addr_t *)net_dev->dev_addr);
251 		if (err) {
252 			dev_err(dev, "Failed to set random MAC address\n");
253 			return -EINVAL;
254 		}
255 		dev_info(dev, "Using random MAC address: %pM\n",
256 			 net_dev->dev_addr);
257 	}
258 
259 	net_dev->ethtool_ops = &dpaa_ethtool_ops;
260 
261 	net_dev->needed_headroom = priv->tx_headroom;
262 	net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
263 
264 	/* start without the RUNNING flag, phylib controls it later */
265 	netif_carrier_off(net_dev);
266 
267 	err = register_netdev(net_dev);
268 	if (err < 0) {
269 		dev_err(dev, "register_netdev() = %d\n", err);
270 		return err;
271 	}
272 
273 	return 0;
274 }
275 
276 static int dpaa_stop(struct net_device *net_dev)
277 {
278 	struct mac_device *mac_dev;
279 	struct dpaa_priv *priv;
280 	int i, err, error;
281 
282 	priv = netdev_priv(net_dev);
283 	mac_dev = priv->mac_dev;
284 
285 	netif_tx_stop_all_queues(net_dev);
286 	/* Allow the Fman (Tx) port to process in-flight frames before we
287 	 * try switching it off.
288 	 */
289 	msleep(200);
290 
291 	err = mac_dev->stop(mac_dev);
292 	if (err < 0)
293 		netif_err(priv, ifdown, net_dev, "mac_dev->stop() = %d\n",
294 			  err);
295 
296 	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
297 		error = fman_port_disable(mac_dev->port[i]);
298 		if (error)
299 			err = error;
300 	}
301 
302 	if (net_dev->phydev)
303 		phy_disconnect(net_dev->phydev);
304 	net_dev->phydev = NULL;
305 
306 	msleep(200);
307 
308 	return err;
309 }
310 
311 static void dpaa_tx_timeout(struct net_device *net_dev, unsigned int txqueue)
312 {
313 	struct dpaa_percpu_priv *percpu_priv;
314 	const struct dpaa_priv	*priv;
315 
316 	priv = netdev_priv(net_dev);
317 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
318 
319 	netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
320 		   jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
321 
322 	percpu_priv->stats.tx_errors++;
323 }
324 
325 /* Calculates the statistics for the given device by adding the statistics
326  * collected by each CPU.
327  */
328 static void dpaa_get_stats64(struct net_device *net_dev,
329 			     struct rtnl_link_stats64 *s)
330 {
331 	int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
332 	struct dpaa_priv *priv = netdev_priv(net_dev);
333 	struct dpaa_percpu_priv *percpu_priv;
334 	u64 *netstats = (u64 *)s;
335 	u64 *cpustats;
336 	int i, j;
337 
338 	for_each_possible_cpu(i) {
339 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
340 
341 		cpustats = (u64 *)&percpu_priv->stats;
342 
343 		/* add stats from all CPUs */
344 		for (j = 0; j < numstats; j++)
345 			netstats[j] += cpustats[j];
346 	}
347 }
348 
349 static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
350 			 void *type_data)
351 {
352 	struct dpaa_priv *priv = netdev_priv(net_dev);
353 	struct tc_mqprio_qopt *mqprio = type_data;
354 	u8 num_tc;
355 	int i;
356 
357 	if (type != TC_SETUP_QDISC_MQPRIO)
358 		return -EOPNOTSUPP;
359 
360 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
361 	num_tc = mqprio->num_tc;
362 
363 	if (num_tc == priv->num_tc)
364 		return 0;
365 
366 	if (!num_tc) {
367 		netdev_reset_tc(net_dev);
368 		goto out;
369 	}
370 
371 	if (num_tc > DPAA_TC_NUM) {
372 		netdev_err(net_dev, "Too many traffic classes: max %d supported.\n",
373 			   DPAA_TC_NUM);
374 		return -EINVAL;
375 	}
376 
377 	netdev_set_num_tc(net_dev, num_tc);
378 
379 	for (i = 0; i < num_tc; i++)
380 		netdev_set_tc_queue(net_dev, i, DPAA_TC_TXQ_NUM,
381 				    i * DPAA_TC_TXQ_NUM);
382 
383 out:
384 	priv->num_tc = num_tc ? : 1;
385 	netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
386 	return 0;
387 }
388 
389 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
390 {
391 	struct dpaa_eth_data *eth_data;
392 	struct device *dpaa_dev;
393 	struct mac_device *mac_dev;
394 
395 	dpaa_dev = &pdev->dev;
396 	eth_data = dpaa_dev->platform_data;
397 	if (!eth_data) {
398 		dev_err(dpaa_dev, "eth_data missing\n");
399 		return ERR_PTR(-ENODEV);
400 	}
401 	mac_dev = eth_data->mac_dev;
402 	if (!mac_dev) {
403 		dev_err(dpaa_dev, "mac_dev missing\n");
404 		return ERR_PTR(-EINVAL);
405 	}
406 
407 	return mac_dev;
408 }
409 
410 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
411 {
412 	const struct dpaa_priv *priv;
413 	struct mac_device *mac_dev;
414 	struct sockaddr old_addr;
415 	int err;
416 
417 	priv = netdev_priv(net_dev);
418 
419 	memcpy(old_addr.sa_data, net_dev->dev_addr,  ETH_ALEN);
420 
421 	err = eth_mac_addr(net_dev, addr);
422 	if (err < 0) {
423 		netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
424 		return err;
425 	}
426 
427 	mac_dev = priv->mac_dev;
428 
429 	err = mac_dev->change_addr(mac_dev->fman_mac,
430 				   (const enet_addr_t *)net_dev->dev_addr);
431 	if (err < 0) {
432 		netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
433 			  err);
434 		/* reverting to previous address */
435 		eth_mac_addr(net_dev, &old_addr);
436 
437 		return err;
438 	}
439 
440 	return 0;
441 }
442 
443 static void dpaa_set_rx_mode(struct net_device *net_dev)
444 {
445 	const struct dpaa_priv	*priv;
446 	int err;
447 
448 	priv = netdev_priv(net_dev);
449 
450 	if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
451 		priv->mac_dev->promisc = !priv->mac_dev->promisc;
452 		err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
453 						 priv->mac_dev->promisc);
454 		if (err < 0)
455 			netif_err(priv, drv, net_dev,
456 				  "mac_dev->set_promisc() = %d\n",
457 				  err);
458 	}
459 
460 	if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) {
461 		priv->mac_dev->allmulti = !priv->mac_dev->allmulti;
462 		err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac,
463 						  priv->mac_dev->allmulti);
464 		if (err < 0)
465 			netif_err(priv, drv, net_dev,
466 				  "mac_dev->set_allmulti() = %d\n",
467 				  err);
468 	}
469 
470 	err = priv->mac_dev->set_multi(net_dev, priv->mac_dev);
471 	if (err < 0)
472 		netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n",
473 			  err);
474 }
475 
476 static struct dpaa_bp *dpaa_bpid2pool(int bpid)
477 {
478 	if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
479 		return NULL;
480 
481 	return dpaa_bp_array[bpid];
482 }
483 
484 /* checks if this bpool is already allocated */
485 static bool dpaa_bpid2pool_use(int bpid)
486 {
487 	if (dpaa_bpid2pool(bpid)) {
488 		refcount_inc(&dpaa_bp_array[bpid]->refs);
489 		return true;
490 	}
491 
492 	return false;
493 }
494 
495 /* called only once per bpid by dpaa_bp_alloc_pool() */
496 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
497 {
498 	dpaa_bp_array[bpid] = dpaa_bp;
499 	refcount_set(&dpaa_bp->refs, 1);
500 }
501 
502 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
503 {
504 	int err;
505 
506 	if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
507 		pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
508 		       __func__);
509 		return -EINVAL;
510 	}
511 
512 	/* If the pool is already specified, we only create one per bpid */
513 	if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
514 	    dpaa_bpid2pool_use(dpaa_bp->bpid))
515 		return 0;
516 
517 	if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
518 		dpaa_bp->pool = bman_new_pool();
519 		if (!dpaa_bp->pool) {
520 			pr_err("%s: bman_new_pool() failed\n",
521 			       __func__);
522 			return -ENODEV;
523 		}
524 
525 		dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
526 	}
527 
528 	if (dpaa_bp->seed_cb) {
529 		err = dpaa_bp->seed_cb(dpaa_bp);
530 		if (err)
531 			goto pool_seed_failed;
532 	}
533 
534 	dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
535 
536 	return 0;
537 
538 pool_seed_failed:
539 	pr_err("%s: pool seeding failed\n", __func__);
540 	bman_free_pool(dpaa_bp->pool);
541 
542 	return err;
543 }
544 
545 /* remove and free all the buffers from the given buffer pool */
546 static void dpaa_bp_drain(struct dpaa_bp *bp)
547 {
548 	u8 num = 8;
549 	int ret;
550 
551 	do {
552 		struct bm_buffer bmb[8];
553 		int i;
554 
555 		ret = bman_acquire(bp->pool, bmb, num);
556 		if (ret < 0) {
557 			if (num == 8) {
558 				/* we have less than 8 buffers left;
559 				 * drain them one by one
560 				 */
561 				num = 1;
562 				ret = 1;
563 				continue;
564 			} else {
565 				/* Pool is fully drained */
566 				break;
567 			}
568 		}
569 
570 		if (bp->free_buf_cb)
571 			for (i = 0; i < num; i++)
572 				bp->free_buf_cb(bp, &bmb[i]);
573 	} while (ret > 0);
574 }
575 
576 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
577 {
578 	struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
579 
580 	/* the mapping between bpid and dpaa_bp is done very late in the
581 	 * allocation procedure; if something failed before the mapping, the bp
582 	 * was not configured, therefore we don't need the below instructions
583 	 */
584 	if (!bp)
585 		return;
586 
587 	if (!refcount_dec_and_test(&bp->refs))
588 		return;
589 
590 	if (bp->free_buf_cb)
591 		dpaa_bp_drain(bp);
592 
593 	dpaa_bp_array[bp->bpid] = NULL;
594 	bman_free_pool(bp->pool);
595 }
596 
597 static void dpaa_bps_free(struct dpaa_priv *priv)
598 {
599 	dpaa_bp_free(priv->dpaa_bp);
600 }
601 
602 /* Use multiple WQs for FQ assignment:
603  *	- Tx Confirmation queues go to WQ1.
604  *	- Rx Error and Tx Error queues go to WQ5 (giving them a better chance
605  *	  to be scheduled, in case there are many more FQs in WQ6).
606  *	- Rx Default goes to WQ6.
607  *	- Tx queues go to different WQs depending on their priority. Equal
608  *	  chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and
609  *	  WQ0 (highest priority).
610  * This ensures that Tx-confirmed buffers are timely released. In particular,
611  * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
612  * are greatly outnumbered by other FQs in the system, while
613  * dequeue scheduling is round-robin.
614  */
615 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx)
616 {
617 	switch (fq->fq_type) {
618 	case FQ_TYPE_TX_CONFIRM:
619 	case FQ_TYPE_TX_CONF_MQ:
620 		fq->wq = 1;
621 		break;
622 	case FQ_TYPE_RX_ERROR:
623 	case FQ_TYPE_TX_ERROR:
624 		fq->wq = 5;
625 		break;
626 	case FQ_TYPE_RX_DEFAULT:
627 	case FQ_TYPE_RX_PCD:
628 		fq->wq = 6;
629 		break;
630 	case FQ_TYPE_TX:
631 		switch (idx / DPAA_TC_TXQ_NUM) {
632 		case 0:
633 			/* Low priority (best effort) */
634 			fq->wq = 6;
635 			break;
636 		case 1:
637 			/* Medium priority */
638 			fq->wq = 2;
639 			break;
640 		case 2:
641 			/* High priority */
642 			fq->wq = 1;
643 			break;
644 		case 3:
645 			/* Very high priority */
646 			fq->wq = 0;
647 			break;
648 		default:
649 			WARN(1, "Too many TX FQs: more than %d!\n",
650 			     DPAA_ETH_TXQ_NUM);
651 		}
652 		break;
653 	default:
654 		WARN(1, "Invalid FQ type %d for FQID %d!\n",
655 		     fq->fq_type, fq->fqid);
656 	}
657 }
658 
659 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
660 				     u32 start, u32 count,
661 				     struct list_head *list,
662 				     enum dpaa_fq_type fq_type)
663 {
664 	struct dpaa_fq *dpaa_fq;
665 	int i;
666 
667 	dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq),
668 			       GFP_KERNEL);
669 	if (!dpaa_fq)
670 		return NULL;
671 
672 	for (i = 0; i < count; i++) {
673 		dpaa_fq[i].fq_type = fq_type;
674 		dpaa_fq[i].fqid = start ? start + i : 0;
675 		list_add_tail(&dpaa_fq[i].list, list);
676 	}
677 
678 	for (i = 0; i < count; i++)
679 		dpaa_assign_wq(dpaa_fq + i, i);
680 
681 	return dpaa_fq;
682 }
683 
684 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
685 			      struct fm_port_fqs *port_fqs)
686 {
687 	struct dpaa_fq *dpaa_fq;
688 	u32 fq_base, fq_base_aligned, i;
689 
690 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
691 	if (!dpaa_fq)
692 		goto fq_alloc_failed;
693 
694 	port_fqs->rx_errq = &dpaa_fq[0];
695 
696 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
697 	if (!dpaa_fq)
698 		goto fq_alloc_failed;
699 
700 	port_fqs->rx_defq = &dpaa_fq[0];
701 
702 	/* the PCD FQIDs range needs to be aligned for correct operation */
703 	if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM))
704 		goto fq_alloc_failed;
705 
706 	fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM);
707 
708 	for (i = fq_base; i < fq_base_aligned; i++)
709 		qman_release_fqid(i);
710 
711 	for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM;
712 	     i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++)
713 		qman_release_fqid(i);
714 
715 	dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM,
716 				list, FQ_TYPE_RX_PCD);
717 	if (!dpaa_fq)
718 		goto fq_alloc_failed;
719 
720 	port_fqs->rx_pcdq = &dpaa_fq[0];
721 
722 	if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ))
723 		goto fq_alloc_failed;
724 
725 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
726 	if (!dpaa_fq)
727 		goto fq_alloc_failed;
728 
729 	port_fqs->tx_errq = &dpaa_fq[0];
730 
731 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
732 	if (!dpaa_fq)
733 		goto fq_alloc_failed;
734 
735 	port_fqs->tx_defq = &dpaa_fq[0];
736 
737 	if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX))
738 		goto fq_alloc_failed;
739 
740 	return 0;
741 
742 fq_alloc_failed:
743 	dev_err(dev, "dpaa_fq_alloc() failed\n");
744 	return -ENOMEM;
745 }
746 
747 static u32 rx_pool_channel;
748 static DEFINE_SPINLOCK(rx_pool_channel_init);
749 
750 static int dpaa_get_channel(void)
751 {
752 	spin_lock(&rx_pool_channel_init);
753 	if (!rx_pool_channel) {
754 		u32 pool;
755 		int ret;
756 
757 		ret = qman_alloc_pool(&pool);
758 
759 		if (!ret)
760 			rx_pool_channel = pool;
761 	}
762 	spin_unlock(&rx_pool_channel_init);
763 	if (!rx_pool_channel)
764 		return -ENOMEM;
765 	return rx_pool_channel;
766 }
767 
768 static void dpaa_release_channel(void)
769 {
770 	qman_release_pool(rx_pool_channel);
771 }
772 
773 static void dpaa_eth_add_channel(u16 channel, struct device *dev)
774 {
775 	u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
776 	const cpumask_t *cpus = qman_affine_cpus();
777 	struct qman_portal *portal;
778 	int cpu;
779 
780 	for_each_cpu_and(cpu, cpus, cpu_online_mask) {
781 		portal = qman_get_affine_portal(cpu);
782 		qman_p_static_dequeue_add(portal, pool);
783 		qman_start_using_portal(portal, dev);
784 	}
785 }
786 
787 /* Congestion group state change notification callback.
788  * Stops the device's egress queues while they are congested and
789  * wakes them upon exiting congested state.
790  * Also updates some CGR-related stats.
791  */
792 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
793 			   int congested)
794 {
795 	struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
796 		struct dpaa_priv, cgr_data.cgr);
797 
798 	if (congested) {
799 		priv->cgr_data.congestion_start_jiffies = jiffies;
800 		netif_tx_stop_all_queues(priv->net_dev);
801 		priv->cgr_data.cgr_congested_count++;
802 	} else {
803 		priv->cgr_data.congested_jiffies +=
804 			(jiffies - priv->cgr_data.congestion_start_jiffies);
805 		netif_tx_wake_all_queues(priv->net_dev);
806 	}
807 }
808 
809 static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
810 {
811 	struct qm_mcc_initcgr initcgr;
812 	u32 cs_th;
813 	int err;
814 
815 	err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
816 	if (err < 0) {
817 		if (netif_msg_drv(priv))
818 			pr_err("%s: Error %d allocating CGR ID\n",
819 			       __func__, err);
820 		goto out_error;
821 	}
822 	priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
823 
824 	/* Enable Congestion State Change Notifications and CS taildrop */
825 	memset(&initcgr, 0, sizeof(initcgr));
826 	initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES);
827 	initcgr.cgr.cscn_en = QM_CGR_EN;
828 
829 	/* Set different thresholds based on the MAC speed.
830 	 * This may turn suboptimal if the MAC is reconfigured at a speed
831 	 * lower than its max, e.g. if a dTSEC later negotiates a 100Mbps link.
832 	 * In such cases, we ought to reconfigure the threshold, too.
833 	 */
834 	if (priv->mac_dev->if_support & SUPPORTED_10000baseT_Full)
835 		cs_th = DPAA_CS_THRESHOLD_10G;
836 	else
837 		cs_th = DPAA_CS_THRESHOLD_1G;
838 	qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
839 
840 	initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
841 	initcgr.cgr.cstd_en = QM_CGR_EN;
842 
843 	err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
844 			      &initcgr);
845 	if (err < 0) {
846 		if (netif_msg_drv(priv))
847 			pr_err("%s: Error %d creating CGR with ID %d\n",
848 			       __func__, err, priv->cgr_data.cgr.cgrid);
849 		qman_release_cgrid(priv->cgr_data.cgr.cgrid);
850 		goto out_error;
851 	}
852 	if (netif_msg_drv(priv))
853 		pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
854 			 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
855 			 priv->cgr_data.cgr.chan);
856 
857 out_error:
858 	return err;
859 }
860 
861 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
862 				      struct dpaa_fq *fq,
863 				      const struct qman_fq *template)
864 {
865 	fq->fq_base = *template;
866 	fq->net_dev = priv->net_dev;
867 
868 	fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
869 	fq->channel = priv->channel;
870 }
871 
872 static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
873 				     struct dpaa_fq *fq,
874 				     struct fman_port *port,
875 				     const struct qman_fq *template)
876 {
877 	fq->fq_base = *template;
878 	fq->net_dev = priv->net_dev;
879 
880 	if (port) {
881 		fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
882 		fq->channel = (u16)fman_port_get_qman_channel_id(port);
883 	} else {
884 		fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
885 	}
886 }
887 
888 static void dpaa_fq_setup(struct dpaa_priv *priv,
889 			  const struct dpaa_fq_cbs *fq_cbs,
890 			  struct fman_port *tx_port)
891 {
892 	int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu;
893 	const cpumask_t *affine_cpus = qman_affine_cpus();
894 	u16 channels[NR_CPUS];
895 	struct dpaa_fq *fq;
896 
897 	for_each_cpu_and(cpu, affine_cpus, cpu_online_mask)
898 		channels[num_portals++] = qman_affine_channel(cpu);
899 
900 	if (num_portals == 0)
901 		dev_err(priv->net_dev->dev.parent,
902 			"No Qman software (affine) channels found\n");
903 
904 	/* Initialize each FQ in the list */
905 	list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
906 		switch (fq->fq_type) {
907 		case FQ_TYPE_RX_DEFAULT:
908 			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
909 			break;
910 		case FQ_TYPE_RX_ERROR:
911 			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
912 			break;
913 		case FQ_TYPE_RX_PCD:
914 			if (!num_portals)
915 				continue;
916 			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
917 			fq->channel = channels[portal_cnt++ % num_portals];
918 			break;
919 		case FQ_TYPE_TX:
920 			dpaa_setup_egress(priv, fq, tx_port,
921 					  &fq_cbs->egress_ern);
922 			/* If we have more Tx queues than the number of cores,
923 			 * just ignore the extra ones.
924 			 */
925 			if (egress_cnt < DPAA_ETH_TXQ_NUM)
926 				priv->egress_fqs[egress_cnt++] = &fq->fq_base;
927 			break;
928 		case FQ_TYPE_TX_CONF_MQ:
929 			priv->conf_fqs[conf_cnt++] = &fq->fq_base;
930 			fallthrough;
931 		case FQ_TYPE_TX_CONFIRM:
932 			dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
933 			break;
934 		case FQ_TYPE_TX_ERROR:
935 			dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
936 			break;
937 		default:
938 			dev_warn(priv->net_dev->dev.parent,
939 				 "Unknown FQ type detected!\n");
940 			break;
941 		}
942 	}
943 
944 	 /* Make sure all CPUs receive a corresponding Tx queue. */
945 	while (egress_cnt < DPAA_ETH_TXQ_NUM) {
946 		list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
947 			if (fq->fq_type != FQ_TYPE_TX)
948 				continue;
949 			priv->egress_fqs[egress_cnt++] = &fq->fq_base;
950 			if (egress_cnt == DPAA_ETH_TXQ_NUM)
951 				break;
952 		}
953 	}
954 }
955 
956 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
957 				   struct qman_fq *tx_fq)
958 {
959 	int i;
960 
961 	for (i = 0; i < DPAA_ETH_TXQ_NUM; i++)
962 		if (priv->egress_fqs[i] == tx_fq)
963 			return i;
964 
965 	return -EINVAL;
966 }
967 
968 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
969 {
970 	const struct dpaa_priv	*priv;
971 	struct qman_fq *confq = NULL;
972 	struct qm_mcc_initfq initfq;
973 	struct device *dev;
974 	struct qman_fq *fq;
975 	int queue_id;
976 	int err;
977 
978 	priv = netdev_priv(dpaa_fq->net_dev);
979 	dev = dpaa_fq->net_dev->dev.parent;
980 
981 	if (dpaa_fq->fqid == 0)
982 		dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
983 
984 	dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
985 
986 	err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
987 	if (err) {
988 		dev_err(dev, "qman_create_fq() failed\n");
989 		return err;
990 	}
991 	fq = &dpaa_fq->fq_base;
992 
993 	if (dpaa_fq->init) {
994 		memset(&initfq, 0, sizeof(initfq));
995 
996 		initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL);
997 		/* Note: we may get to keep an empty FQ in cache */
998 		initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE);
999 
1000 		/* Try to reduce the number of portal interrupts for
1001 		 * Tx Confirmation FQs.
1002 		 */
1003 		if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
1004 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK);
1005 
1006 		/* FQ placement */
1007 		initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ);
1008 
1009 		qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
1010 
1011 		/* Put all egress queues in a congestion group of their own.
1012 		 * Sensu stricto, the Tx confirmation queues are Rx FQs,
1013 		 * rather than Tx - but they nonetheless account for the
1014 		 * memory footprint on behalf of egress traffic. We therefore
1015 		 * place them in the netdev's CGR, along with the Tx FQs.
1016 		 */
1017 		if (dpaa_fq->fq_type == FQ_TYPE_TX ||
1018 		    dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
1019 		    dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
1020 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1021 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1022 			initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
1023 			/* Set a fixed overhead accounting, in an attempt to
1024 			 * reduce the impact of fixed-size skb shells and the
1025 			 * driver's needed headroom on system memory. This is
1026 			 * especially the case when the egress traffic is
1027 			 * composed of small datagrams.
1028 			 * Unfortunately, QMan's OAL value is capped to an
1029 			 * insufficient value, but even that is better than
1030 			 * no overhead accounting at all.
1031 			 */
1032 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1033 			qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1034 			qm_fqd_set_oal(&initfq.fqd,
1035 				       min(sizeof(struct sk_buff) +
1036 				       priv->tx_headroom,
1037 				       (size_t)FSL_QMAN_MAX_OAL));
1038 		}
1039 
1040 		if (td_enable) {
1041 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH);
1042 			qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
1043 			initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE);
1044 		}
1045 
1046 		if (dpaa_fq->fq_type == FQ_TYPE_TX) {
1047 			queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
1048 			if (queue_id >= 0)
1049 				confq = priv->conf_fqs[queue_id];
1050 			if (confq) {
1051 				initfq.we_mask |=
1052 					cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1053 			/* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
1054 			 *	     A2V=1 (contextA A2 field is valid)
1055 			 *	     A0V=1 (contextA A0 field is valid)
1056 			 *	     B0V=1 (contextB field is valid)
1057 			 * ContextA A2: EBD=1 (deallocate buffers inside FMan)
1058 			 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
1059 			 */
1060 				qm_fqd_context_a_set64(&initfq.fqd,
1061 						       0x1e00000080000000ULL);
1062 			}
1063 		}
1064 
1065 		/* Put all the ingress queues in our "ingress CGR". */
1066 		if (priv->use_ingress_cgr &&
1067 		    (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1068 		     dpaa_fq->fq_type == FQ_TYPE_RX_ERROR ||
1069 		     dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) {
1070 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1071 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1072 			initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
1073 			/* Set a fixed overhead accounting, just like for the
1074 			 * egress CGR.
1075 			 */
1076 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1077 			qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1078 			qm_fqd_set_oal(&initfq.fqd,
1079 				       min(sizeof(struct sk_buff) +
1080 				       priv->tx_headroom,
1081 				       (size_t)FSL_QMAN_MAX_OAL));
1082 		}
1083 
1084 		/* Initialization common to all ingress queues */
1085 		if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
1086 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1087 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE |
1088 						QM_FQCTRL_CTXASTASHING);
1089 			initfq.fqd.context_a.stashing.exclusive =
1090 				QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
1091 				QM_STASHING_EXCL_ANNOTATION;
1092 			qm_fqd_set_stashing(&initfq.fqd, 1, 2,
1093 					    DIV_ROUND_UP(sizeof(struct qman_fq),
1094 							 64));
1095 		}
1096 
1097 		err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
1098 		if (err < 0) {
1099 			dev_err(dev, "qman_init_fq(%u) = %d\n",
1100 				qman_fq_fqid(fq), err);
1101 			qman_destroy_fq(fq);
1102 			return err;
1103 		}
1104 	}
1105 
1106 	dpaa_fq->fqid = qman_fq_fqid(fq);
1107 
1108 	if (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1109 	    dpaa_fq->fq_type == FQ_TYPE_RX_PCD) {
1110 		err = xdp_rxq_info_reg(&dpaa_fq->xdp_rxq, dpaa_fq->net_dev,
1111 				       dpaa_fq->fqid, 0);
1112 		if (err) {
1113 			dev_err(dev, "xdp_rxq_info_reg() = %d\n", err);
1114 			return err;
1115 		}
1116 
1117 		err = xdp_rxq_info_reg_mem_model(&dpaa_fq->xdp_rxq,
1118 						 MEM_TYPE_PAGE_ORDER0, NULL);
1119 		if (err) {
1120 			dev_err(dev, "xdp_rxq_info_reg_mem_model() = %d\n",
1121 				err);
1122 			xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq);
1123 			return err;
1124 		}
1125 	}
1126 
1127 	return 0;
1128 }
1129 
1130 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
1131 {
1132 	const struct dpaa_priv  *priv;
1133 	struct dpaa_fq *dpaa_fq;
1134 	int err, error;
1135 
1136 	err = 0;
1137 
1138 	dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
1139 	priv = netdev_priv(dpaa_fq->net_dev);
1140 
1141 	if (dpaa_fq->init) {
1142 		err = qman_retire_fq(fq, NULL);
1143 		if (err < 0 && netif_msg_drv(priv))
1144 			dev_err(dev, "qman_retire_fq(%u) = %d\n",
1145 				qman_fq_fqid(fq), err);
1146 
1147 		error = qman_oos_fq(fq);
1148 		if (error < 0 && netif_msg_drv(priv)) {
1149 			dev_err(dev, "qman_oos_fq(%u) = %d\n",
1150 				qman_fq_fqid(fq), error);
1151 			if (err >= 0)
1152 				err = error;
1153 		}
1154 	}
1155 
1156 	if ((dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1157 	     dpaa_fq->fq_type == FQ_TYPE_RX_PCD) &&
1158 	    xdp_rxq_info_is_reg(&dpaa_fq->xdp_rxq))
1159 		xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq);
1160 
1161 	qman_destroy_fq(fq);
1162 	list_del(&dpaa_fq->list);
1163 
1164 	return err;
1165 }
1166 
1167 static int dpaa_fq_free(struct device *dev, struct list_head *list)
1168 {
1169 	struct dpaa_fq *dpaa_fq, *tmp;
1170 	int err, error;
1171 
1172 	err = 0;
1173 	list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
1174 		error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
1175 		if (error < 0 && err >= 0)
1176 			err = error;
1177 	}
1178 
1179 	return err;
1180 }
1181 
1182 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
1183 				 struct dpaa_fq *defq,
1184 				 struct dpaa_buffer_layout *buf_layout)
1185 {
1186 	struct fman_buffer_prefix_content buf_prefix_content;
1187 	struct fman_port_params params;
1188 	int err;
1189 
1190 	memset(&params, 0, sizeof(params));
1191 	memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1192 
1193 	buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1194 	buf_prefix_content.pass_prs_result = true;
1195 	buf_prefix_content.pass_hash_result = true;
1196 	buf_prefix_content.pass_time_stamp = true;
1197 	buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1198 
1199 	params.specific_params.non_rx_params.err_fqid = errq->fqid;
1200 	params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
1201 
1202 	err = fman_port_config(port, &params);
1203 	if (err) {
1204 		pr_err("%s: fman_port_config failed\n", __func__);
1205 		return err;
1206 	}
1207 
1208 	err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1209 	if (err) {
1210 		pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1211 		       __func__);
1212 		return err;
1213 	}
1214 
1215 	err = fman_port_init(port);
1216 	if (err)
1217 		pr_err("%s: fm_port_init failed\n", __func__);
1218 
1219 	return err;
1220 }
1221 
1222 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp *bp,
1223 				 struct dpaa_fq *errq,
1224 				 struct dpaa_fq *defq, struct dpaa_fq *pcdq,
1225 				 struct dpaa_buffer_layout *buf_layout)
1226 {
1227 	struct fman_buffer_prefix_content buf_prefix_content;
1228 	struct fman_port_rx_params *rx_p;
1229 	struct fman_port_params params;
1230 	int err;
1231 
1232 	memset(&params, 0, sizeof(params));
1233 	memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1234 
1235 	buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1236 	buf_prefix_content.pass_prs_result = true;
1237 	buf_prefix_content.pass_hash_result = true;
1238 	buf_prefix_content.pass_time_stamp = true;
1239 	buf_prefix_content.data_align = DPAA_FD_RX_DATA_ALIGNMENT;
1240 
1241 	rx_p = &params.specific_params.rx_params;
1242 	rx_p->err_fqid = errq->fqid;
1243 	rx_p->dflt_fqid = defq->fqid;
1244 	if (pcdq) {
1245 		rx_p->pcd_base_fqid = pcdq->fqid;
1246 		rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM;
1247 	}
1248 
1249 	rx_p->ext_buf_pools.num_of_pools_used = 1;
1250 	rx_p->ext_buf_pools.ext_buf_pool[0].id =  bp->bpid;
1251 	rx_p->ext_buf_pools.ext_buf_pool[0].size = (u16)bp->size;
1252 
1253 	err = fman_port_config(port, &params);
1254 	if (err) {
1255 		pr_err("%s: fman_port_config failed\n", __func__);
1256 		return err;
1257 	}
1258 
1259 	err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1260 	if (err) {
1261 		pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1262 		       __func__);
1263 		return err;
1264 	}
1265 
1266 	err = fman_port_init(port);
1267 	if (err)
1268 		pr_err("%s: fm_port_init failed\n", __func__);
1269 
1270 	return err;
1271 }
1272 
1273 static int dpaa_eth_init_ports(struct mac_device *mac_dev,
1274 			       struct dpaa_bp *bp,
1275 			       struct fm_port_fqs *port_fqs,
1276 			       struct dpaa_buffer_layout *buf_layout,
1277 			       struct device *dev)
1278 {
1279 	struct fman_port *rxport = mac_dev->port[RX];
1280 	struct fman_port *txport = mac_dev->port[TX];
1281 	int err;
1282 
1283 	err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
1284 				    port_fqs->tx_defq, &buf_layout[TX]);
1285 	if (err)
1286 		return err;
1287 
1288 	err = dpaa_eth_init_rx_port(rxport, bp, port_fqs->rx_errq,
1289 				    port_fqs->rx_defq, port_fqs->rx_pcdq,
1290 				    &buf_layout[RX]);
1291 
1292 	return err;
1293 }
1294 
1295 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
1296 			     struct bm_buffer *bmb, int cnt)
1297 {
1298 	int err;
1299 
1300 	err = bman_release(dpaa_bp->pool, bmb, cnt);
1301 	/* Should never occur, address anyway to avoid leaking the buffers */
1302 	if (WARN_ON(err) && dpaa_bp->free_buf_cb)
1303 		while (cnt-- > 0)
1304 			dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
1305 
1306 	return cnt;
1307 }
1308 
1309 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
1310 {
1311 	struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
1312 	struct dpaa_bp *dpaa_bp;
1313 	int i = 0, j;
1314 
1315 	memset(bmb, 0, sizeof(bmb));
1316 
1317 	do {
1318 		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1319 		if (!dpaa_bp)
1320 			return;
1321 
1322 		j = 0;
1323 		do {
1324 			WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1325 
1326 			bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
1327 
1328 			j++; i++;
1329 		} while (j < ARRAY_SIZE(bmb) &&
1330 				!qm_sg_entry_is_final(&sgt[i - 1]) &&
1331 				sgt[i - 1].bpid == sgt[i].bpid);
1332 
1333 		dpaa_bman_release(dpaa_bp, bmb, j);
1334 	} while (!qm_sg_entry_is_final(&sgt[i - 1]));
1335 }
1336 
1337 static void dpaa_fd_release(const struct net_device *net_dev,
1338 			    const struct qm_fd *fd)
1339 {
1340 	struct qm_sg_entry *sgt;
1341 	struct dpaa_bp *dpaa_bp;
1342 	struct bm_buffer bmb;
1343 	dma_addr_t addr;
1344 	void *vaddr;
1345 
1346 	bmb.data = 0;
1347 	bm_buffer_set64(&bmb, qm_fd_addr(fd));
1348 
1349 	dpaa_bp = dpaa_bpid2pool(fd->bpid);
1350 	if (!dpaa_bp)
1351 		return;
1352 
1353 	if (qm_fd_get_format(fd) == qm_fd_sg) {
1354 		vaddr = phys_to_virt(qm_fd_addr(fd));
1355 		sgt = vaddr + qm_fd_get_offset(fd);
1356 
1357 		dma_unmap_page(dpaa_bp->priv->rx_dma_dev, qm_fd_addr(fd),
1358 			       DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1359 
1360 		dpaa_release_sgt_members(sgt);
1361 
1362 		addr = dma_map_page(dpaa_bp->priv->rx_dma_dev,
1363 				    virt_to_page(vaddr), 0, DPAA_BP_RAW_SIZE,
1364 				    DMA_FROM_DEVICE);
1365 		if (dma_mapping_error(dpaa_bp->priv->rx_dma_dev, addr)) {
1366 			netdev_err(net_dev, "DMA mapping failed\n");
1367 			return;
1368 		}
1369 		bm_buffer_set64(&bmb, addr);
1370 	}
1371 
1372 	dpaa_bman_release(dpaa_bp, &bmb, 1);
1373 }
1374 
1375 static void count_ern(struct dpaa_percpu_priv *percpu_priv,
1376 		      const union qm_mr_entry *msg)
1377 {
1378 	switch (msg->ern.rc & QM_MR_RC_MASK) {
1379 	case QM_MR_RC_CGR_TAILDROP:
1380 		percpu_priv->ern_cnt.cg_tdrop++;
1381 		break;
1382 	case QM_MR_RC_WRED:
1383 		percpu_priv->ern_cnt.wred++;
1384 		break;
1385 	case QM_MR_RC_ERROR:
1386 		percpu_priv->ern_cnt.err_cond++;
1387 		break;
1388 	case QM_MR_RC_ORPWINDOW_EARLY:
1389 		percpu_priv->ern_cnt.early_window++;
1390 		break;
1391 	case QM_MR_RC_ORPWINDOW_LATE:
1392 		percpu_priv->ern_cnt.late_window++;
1393 		break;
1394 	case QM_MR_RC_FQ_TAILDROP:
1395 		percpu_priv->ern_cnt.fq_tdrop++;
1396 		break;
1397 	case QM_MR_RC_ORPWINDOW_RETIRED:
1398 		percpu_priv->ern_cnt.fq_retired++;
1399 		break;
1400 	case QM_MR_RC_ORP_ZERO:
1401 		percpu_priv->ern_cnt.orp_zero++;
1402 		break;
1403 	}
1404 }
1405 
1406 /* Turn on HW checksum computation for this outgoing frame.
1407  * If the current protocol is not something we support in this regard
1408  * (or if the stack has already computed the SW checksum), we do nothing.
1409  *
1410  * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
1411  * otherwise.
1412  *
1413  * Note that this function may modify the fd->cmd field and the skb data buffer
1414  * (the Parse Results area).
1415  */
1416 static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
1417 			       struct sk_buff *skb,
1418 			       struct qm_fd *fd,
1419 			       void *parse_results)
1420 {
1421 	struct fman_prs_result *parse_result;
1422 	u16 ethertype = ntohs(skb->protocol);
1423 	struct ipv6hdr *ipv6h = NULL;
1424 	struct iphdr *iph;
1425 	int retval = 0;
1426 	u8 l4_proto;
1427 
1428 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1429 		return 0;
1430 
1431 	/* Note: L3 csum seems to be already computed in sw, but we can't choose
1432 	 * L4 alone from the FM configuration anyway.
1433 	 */
1434 
1435 	/* Fill in some fields of the Parse Results array, so the FMan
1436 	 * can find them as if they came from the FMan Parser.
1437 	 */
1438 	parse_result = (struct fman_prs_result *)parse_results;
1439 
1440 	/* If we're dealing with VLAN, get the real Ethernet type */
1441 	if (ethertype == ETH_P_8021Q) {
1442 		/* We can't always assume the MAC header is set correctly
1443 		 * by the stack, so reset to beginning of skb->data
1444 		 */
1445 		skb_reset_mac_header(skb);
1446 		ethertype = ntohs(vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
1447 	}
1448 
1449 	/* Fill in the relevant L3 parse result fields
1450 	 * and read the L4 protocol type
1451 	 */
1452 	switch (ethertype) {
1453 	case ETH_P_IP:
1454 		parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
1455 		iph = ip_hdr(skb);
1456 		WARN_ON(!iph);
1457 		l4_proto = iph->protocol;
1458 		break;
1459 	case ETH_P_IPV6:
1460 		parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
1461 		ipv6h = ipv6_hdr(skb);
1462 		WARN_ON(!ipv6h);
1463 		l4_proto = ipv6h->nexthdr;
1464 		break;
1465 	default:
1466 		/* We shouldn't even be here */
1467 		if (net_ratelimit())
1468 			netif_alert(priv, tx_err, priv->net_dev,
1469 				    "Can't compute HW csum for L3 proto 0x%x\n",
1470 				    ntohs(skb->protocol));
1471 		retval = -EIO;
1472 		goto return_error;
1473 	}
1474 
1475 	/* Fill in the relevant L4 parse result fields */
1476 	switch (l4_proto) {
1477 	case IPPROTO_UDP:
1478 		parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
1479 		break;
1480 	case IPPROTO_TCP:
1481 		parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
1482 		break;
1483 	default:
1484 		if (net_ratelimit())
1485 			netif_alert(priv, tx_err, priv->net_dev,
1486 				    "Can't compute HW csum for L4 proto 0x%x\n",
1487 				    l4_proto);
1488 		retval = -EIO;
1489 		goto return_error;
1490 	}
1491 
1492 	/* At index 0 is IPOffset_1 as defined in the Parse Results */
1493 	parse_result->ip_off[0] = (u8)skb_network_offset(skb);
1494 	parse_result->l4_off = (u8)skb_transport_offset(skb);
1495 
1496 	/* Enable L3 (and L4, if TCP or UDP) HW checksum. */
1497 	fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC);
1498 
1499 	/* On P1023 and similar platforms fd->cmd interpretation could
1500 	 * be disabled by setting CONTEXT_A bit ICMD; currently this bit
1501 	 * is not set so we do not need to check; in the future, if/when
1502 	 * using context_a we need to check this bit
1503 	 */
1504 
1505 return_error:
1506 	return retval;
1507 }
1508 
1509 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
1510 {
1511 	struct net_device *net_dev = dpaa_bp->priv->net_dev;
1512 	struct bm_buffer bmb[8];
1513 	dma_addr_t addr;
1514 	struct page *p;
1515 	u8 i;
1516 
1517 	for (i = 0; i < 8; i++) {
1518 		p = dev_alloc_pages(0);
1519 		if (unlikely(!p)) {
1520 			netdev_err(net_dev, "dev_alloc_pages() failed\n");
1521 			goto release_previous_buffs;
1522 		}
1523 
1524 		addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, p, 0,
1525 				    DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1526 		if (unlikely(dma_mapping_error(dpaa_bp->priv->rx_dma_dev,
1527 					       addr))) {
1528 			netdev_err(net_dev, "DMA map failed\n");
1529 			goto release_previous_buffs;
1530 		}
1531 
1532 		bmb[i].data = 0;
1533 		bm_buffer_set64(&bmb[i], addr);
1534 	}
1535 
1536 release_bufs:
1537 	return dpaa_bman_release(dpaa_bp, bmb, i);
1538 
1539 release_previous_buffs:
1540 	WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
1541 
1542 	bm_buffer_set64(&bmb[i], 0);
1543 	/* Avoid releasing a completely null buffer; bman_release() requires
1544 	 * at least one buffer.
1545 	 */
1546 	if (likely(i))
1547 		goto release_bufs;
1548 
1549 	return 0;
1550 }
1551 
1552 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
1553 {
1554 	int i;
1555 
1556 	/* Give each CPU an allotment of "config_count" buffers */
1557 	for_each_possible_cpu(i) {
1558 		int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
1559 		int j;
1560 
1561 		/* Although we access another CPU's counters here
1562 		 * we do it at boot time so it is safe
1563 		 */
1564 		for (j = 0; j < dpaa_bp->config_count; j += 8)
1565 			*count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
1566 	}
1567 	return 0;
1568 }
1569 
1570 /* Add buffers/(pages) for Rx processing whenever bpool count falls below
1571  * REFILL_THRESHOLD.
1572  */
1573 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
1574 {
1575 	int count = *countptr;
1576 	int new_bufs;
1577 
1578 	if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
1579 		do {
1580 			new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
1581 			if (unlikely(!new_bufs)) {
1582 				/* Avoid looping forever if we've temporarily
1583 				 * run out of memory. We'll try again at the
1584 				 * next NAPI cycle.
1585 				 */
1586 				break;
1587 			}
1588 			count += new_bufs;
1589 		} while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
1590 
1591 		*countptr = count;
1592 		if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
1593 			return -ENOMEM;
1594 	}
1595 
1596 	return 0;
1597 }
1598 
1599 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
1600 {
1601 	struct dpaa_bp *dpaa_bp;
1602 	int *countptr;
1603 
1604 	dpaa_bp = priv->dpaa_bp;
1605 	if (!dpaa_bp)
1606 		return -EINVAL;
1607 	countptr = this_cpu_ptr(dpaa_bp->percpu_count);
1608 
1609 	return dpaa_eth_refill_bpool(dpaa_bp, countptr);
1610 }
1611 
1612 /* Cleanup function for outgoing frame descriptors that were built on Tx path,
1613  * either contiguous frames or scatter/gather ones.
1614  * Skb freeing is not handled here.
1615  *
1616  * This function may be called on error paths in the Tx function, so guard
1617  * against cases when not all fd relevant fields were filled in. To avoid
1618  * reading the invalid transmission timestamp for the error paths set ts to
1619  * false.
1620  *
1621  * Return the skb backpointer, since for S/G frames the buffer containing it
1622  * gets freed here.
1623  *
1624  * No skb backpointer is set when transmitting XDP frames. Cleanup the buffer
1625  * and return NULL in this case.
1626  */
1627 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
1628 					  const struct qm_fd *fd, bool ts)
1629 {
1630 	const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1631 	struct device *dev = priv->net_dev->dev.parent;
1632 	struct skb_shared_hwtstamps shhwtstamps;
1633 	dma_addr_t addr = qm_fd_addr(fd);
1634 	void *vaddr = phys_to_virt(addr);
1635 	const struct qm_sg_entry *sgt;
1636 	struct dpaa_eth_swbp *swbp;
1637 	struct sk_buff *skb;
1638 	u64 ns;
1639 	int i;
1640 
1641 	if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
1642 		dma_unmap_page(priv->tx_dma_dev, addr,
1643 			       qm_fd_get_offset(fd) + DPAA_SGT_SIZE,
1644 			       dma_dir);
1645 
1646 		/* The sgt buffer has been allocated with netdev_alloc_frag(),
1647 		 * it's from lowmem.
1648 		 */
1649 		sgt = vaddr + qm_fd_get_offset(fd);
1650 
1651 		/* sgt[0] is from lowmem, was dma_map_single()-ed */
1652 		dma_unmap_single(priv->tx_dma_dev, qm_sg_addr(&sgt[0]),
1653 				 qm_sg_entry_get_len(&sgt[0]), dma_dir);
1654 
1655 		/* remaining pages were mapped with skb_frag_dma_map() */
1656 		for (i = 1; (i < DPAA_SGT_MAX_ENTRIES) &&
1657 		     !qm_sg_entry_is_final(&sgt[i - 1]); i++) {
1658 			WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1659 
1660 			dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[i]),
1661 				       qm_sg_entry_get_len(&sgt[i]), dma_dir);
1662 		}
1663 	} else {
1664 		dma_unmap_single(priv->tx_dma_dev, addr,
1665 				 qm_fd_get_offset(fd) + qm_fd_get_length(fd),
1666 				 dma_dir);
1667 	}
1668 
1669 	swbp = (struct dpaa_eth_swbp *)vaddr;
1670 	skb = swbp->skb;
1671 
1672 	/* No skb backpointer is set when running XDP. An xdp_frame
1673 	 * backpointer is saved instead.
1674 	 */
1675 	if (!skb) {
1676 		xdp_return_frame(swbp->xdpf);
1677 		return NULL;
1678 	}
1679 
1680 	/* DMA unmapping is required before accessing the HW provided info */
1681 	if (ts && priv->tx_tstamp &&
1682 	    skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
1683 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
1684 
1685 		if (!fman_port_get_tstamp(priv->mac_dev->port[TX], vaddr,
1686 					  &ns)) {
1687 			shhwtstamps.hwtstamp = ns_to_ktime(ns);
1688 			skb_tstamp_tx(skb, &shhwtstamps);
1689 		} else {
1690 			dev_warn(dev, "fman_port_get_tstamp failed!\n");
1691 		}
1692 	}
1693 
1694 	if (qm_fd_get_format(fd) == qm_fd_sg)
1695 		/* Free the page that we allocated on Tx for the SGT */
1696 		free_pages((unsigned long)vaddr, 0);
1697 
1698 	return skb;
1699 }
1700 
1701 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd)
1702 {
1703 	/* The parser has run and performed L4 checksum validation.
1704 	 * We know there were no parser errors (and implicitly no
1705 	 * L4 csum error), otherwise we wouldn't be here.
1706 	 */
1707 	if ((priv->net_dev->features & NETIF_F_RXCSUM) &&
1708 	    (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV))
1709 		return CHECKSUM_UNNECESSARY;
1710 
1711 	/* We're here because either the parser didn't run or the L4 checksum
1712 	 * was not verified. This may include the case of a UDP frame with
1713 	 * checksum zero or an L4 proto other than TCP/UDP
1714 	 */
1715 	return CHECKSUM_NONE;
1716 }
1717 
1718 #define PTR_IS_ALIGNED(x, a) (IS_ALIGNED((unsigned long)(x), (a)))
1719 
1720 /* Build a linear skb around the received buffer.
1721  * We are guaranteed there is enough room at the end of the data buffer to
1722  * accommodate the shared info area of the skb.
1723  */
1724 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
1725 					const struct qm_fd *fd)
1726 {
1727 	ssize_t fd_off = qm_fd_get_offset(fd);
1728 	dma_addr_t addr = qm_fd_addr(fd);
1729 	struct dpaa_bp *dpaa_bp;
1730 	struct sk_buff *skb;
1731 	void *vaddr;
1732 
1733 	vaddr = phys_to_virt(addr);
1734 	WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1735 
1736 	dpaa_bp = dpaa_bpid2pool(fd->bpid);
1737 	if (!dpaa_bp)
1738 		goto free_buffer;
1739 
1740 	skb = build_skb(vaddr, dpaa_bp->size +
1741 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
1742 	if (WARN_ONCE(!skb, "Build skb failure on Rx\n"))
1743 		goto free_buffer;
1744 	skb_reserve(skb, fd_off);
1745 	skb_put(skb, qm_fd_get_length(fd));
1746 
1747 	skb->ip_summed = rx_csum_offload(priv, fd);
1748 
1749 	return skb;
1750 
1751 free_buffer:
1752 	free_pages((unsigned long)vaddr, 0);
1753 	return NULL;
1754 }
1755 
1756 /* Build an skb with the data of the first S/G entry in the linear portion and
1757  * the rest of the frame as skb fragments.
1758  *
1759  * The page fragment holding the S/G Table is recycled here.
1760  */
1761 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
1762 				    const struct qm_fd *fd)
1763 {
1764 	ssize_t fd_off = qm_fd_get_offset(fd);
1765 	dma_addr_t addr = qm_fd_addr(fd);
1766 	const struct qm_sg_entry *sgt;
1767 	struct page *page, *head_page;
1768 	struct dpaa_bp *dpaa_bp;
1769 	void *vaddr, *sg_vaddr;
1770 	int frag_off, frag_len;
1771 	struct sk_buff *skb;
1772 	dma_addr_t sg_addr;
1773 	int page_offset;
1774 	unsigned int sz;
1775 	int *count_ptr;
1776 	int i, j;
1777 
1778 	vaddr = phys_to_virt(addr);
1779 	WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1780 
1781 	/* Iterate through the SGT entries and add data buffers to the skb */
1782 	sgt = vaddr + fd_off;
1783 	skb = NULL;
1784 	for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
1785 		/* Extension bit is not supported */
1786 		WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1787 
1788 		sg_addr = qm_sg_addr(&sgt[i]);
1789 		sg_vaddr = phys_to_virt(sg_addr);
1790 		WARN_ON(!PTR_IS_ALIGNED(sg_vaddr, SMP_CACHE_BYTES));
1791 
1792 		dma_unmap_page(priv->rx_dma_dev, sg_addr,
1793 			       DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1794 
1795 		/* We may use multiple Rx pools */
1796 		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1797 		if (!dpaa_bp)
1798 			goto free_buffers;
1799 
1800 		if (!skb) {
1801 			sz = dpaa_bp->size +
1802 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1803 			skb = build_skb(sg_vaddr, sz);
1804 			if (WARN_ON(!skb))
1805 				goto free_buffers;
1806 
1807 			skb->ip_summed = rx_csum_offload(priv, fd);
1808 
1809 			/* Make sure forwarded skbs will have enough space
1810 			 * on Tx, if extra headers are added.
1811 			 */
1812 			WARN_ON(fd_off != priv->rx_headroom);
1813 			skb_reserve(skb, fd_off);
1814 			skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
1815 		} else {
1816 			/* Not the first S/G entry; all data from buffer will
1817 			 * be added in an skb fragment; fragment index is offset
1818 			 * by one since first S/G entry was incorporated in the
1819 			 * linear part of the skb.
1820 			 *
1821 			 * Caution: 'page' may be a tail page.
1822 			 */
1823 			page = virt_to_page(sg_vaddr);
1824 			head_page = virt_to_head_page(sg_vaddr);
1825 
1826 			/* Compute offset in (possibly tail) page */
1827 			page_offset = ((unsigned long)sg_vaddr &
1828 					(PAGE_SIZE - 1)) +
1829 				(page_address(page) - page_address(head_page));
1830 			/* page_offset only refers to the beginning of sgt[i];
1831 			 * but the buffer itself may have an internal offset.
1832 			 */
1833 			frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset;
1834 			frag_len = qm_sg_entry_get_len(&sgt[i]);
1835 			/* skb_add_rx_frag() does no checking on the page; if
1836 			 * we pass it a tail page, we'll end up with
1837 			 * bad page accounting and eventually with segafults.
1838 			 */
1839 			skb_add_rx_frag(skb, i - 1, head_page, frag_off,
1840 					frag_len, dpaa_bp->size);
1841 		}
1842 
1843 		/* Update the pool count for the current {cpu x bpool} */
1844 		count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1845 		(*count_ptr)--;
1846 
1847 		if (qm_sg_entry_is_final(&sgt[i]))
1848 			break;
1849 	}
1850 	WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
1851 
1852 	/* free the SG table buffer */
1853 	free_pages((unsigned long)vaddr, 0);
1854 
1855 	return skb;
1856 
1857 free_buffers:
1858 	/* free all the SG entries */
1859 	for (j = 0; j < DPAA_SGT_MAX_ENTRIES ; j++) {
1860 		sg_addr = qm_sg_addr(&sgt[j]);
1861 		sg_vaddr = phys_to_virt(sg_addr);
1862 		/* all pages 0..i were unmaped */
1863 		if (j > i)
1864 			dma_unmap_page(priv->rx_dma_dev, qm_sg_addr(&sgt[j]),
1865 				       DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1866 		free_pages((unsigned long)sg_vaddr, 0);
1867 		/* counters 0..i-1 were decremented */
1868 		if (j >= i) {
1869 			dpaa_bp = dpaa_bpid2pool(sgt[j].bpid);
1870 			if (dpaa_bp) {
1871 				count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1872 				(*count_ptr)--;
1873 			}
1874 		}
1875 
1876 		if (qm_sg_entry_is_final(&sgt[j]))
1877 			break;
1878 	}
1879 	/* free the SGT fragment */
1880 	free_pages((unsigned long)vaddr, 0);
1881 
1882 	return NULL;
1883 }
1884 
1885 static int skb_to_contig_fd(struct dpaa_priv *priv,
1886 			    struct sk_buff *skb, struct qm_fd *fd,
1887 			    int *offset)
1888 {
1889 	struct net_device *net_dev = priv->net_dev;
1890 	enum dma_data_direction dma_dir;
1891 	struct dpaa_eth_swbp *swbp;
1892 	unsigned char *buff_start;
1893 	dma_addr_t addr;
1894 	int err;
1895 
1896 	/* We are guaranteed to have at least tx_headroom bytes
1897 	 * available, so just use that for offset.
1898 	 */
1899 	fd->bpid = FSL_DPAA_BPID_INV;
1900 	buff_start = skb->data - priv->tx_headroom;
1901 	dma_dir = DMA_TO_DEVICE;
1902 
1903 	swbp = (struct dpaa_eth_swbp *)buff_start;
1904 	swbp->skb = skb;
1905 
1906 	/* Enable L3/L4 hardware checksum computation.
1907 	 *
1908 	 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1909 	 * need to write into the skb.
1910 	 */
1911 	err = dpaa_enable_tx_csum(priv, skb, fd,
1912 				  buff_start + DPAA_TX_PRIV_DATA_SIZE);
1913 	if (unlikely(err < 0)) {
1914 		if (net_ratelimit())
1915 			netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1916 				  err);
1917 		return err;
1918 	}
1919 
1920 	/* Fill in the rest of the FD fields */
1921 	qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
1922 	fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1923 
1924 	/* Map the entire buffer size that may be seen by FMan, but no more */
1925 	addr = dma_map_single(priv->tx_dma_dev, buff_start,
1926 			      priv->tx_headroom + skb->len, dma_dir);
1927 	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
1928 		if (net_ratelimit())
1929 			netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
1930 		return -EINVAL;
1931 	}
1932 	qm_fd_addr_set64(fd, addr);
1933 
1934 	return 0;
1935 }
1936 
1937 static int skb_to_sg_fd(struct dpaa_priv *priv,
1938 			struct sk_buff *skb, struct qm_fd *fd)
1939 {
1940 	const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1941 	const int nr_frags = skb_shinfo(skb)->nr_frags;
1942 	struct net_device *net_dev = priv->net_dev;
1943 	struct dpaa_eth_swbp *swbp;
1944 	struct qm_sg_entry *sgt;
1945 	void *buff_start;
1946 	skb_frag_t *frag;
1947 	dma_addr_t addr;
1948 	size_t frag_len;
1949 	struct page *p;
1950 	int i, j, err;
1951 
1952 	/* get a page to store the SGTable */
1953 	p = dev_alloc_pages(0);
1954 	if (unlikely(!p)) {
1955 		netdev_err(net_dev, "dev_alloc_pages() failed\n");
1956 		return -ENOMEM;
1957 	}
1958 	buff_start = page_address(p);
1959 
1960 	/* Enable L3/L4 hardware checksum computation.
1961 	 *
1962 	 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1963 	 * need to write into the skb.
1964 	 */
1965 	err = dpaa_enable_tx_csum(priv, skb, fd,
1966 				  buff_start + DPAA_TX_PRIV_DATA_SIZE);
1967 	if (unlikely(err < 0)) {
1968 		if (net_ratelimit())
1969 			netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1970 				  err);
1971 		goto csum_failed;
1972 	}
1973 
1974 	/* SGT[0] is used by the linear part */
1975 	sgt = (struct qm_sg_entry *)(buff_start + priv->tx_headroom);
1976 	frag_len = skb_headlen(skb);
1977 	qm_sg_entry_set_len(&sgt[0], frag_len);
1978 	sgt[0].bpid = FSL_DPAA_BPID_INV;
1979 	sgt[0].offset = 0;
1980 	addr = dma_map_single(priv->tx_dma_dev, skb->data,
1981 			      skb_headlen(skb), dma_dir);
1982 	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
1983 		netdev_err(priv->net_dev, "DMA mapping failed\n");
1984 		err = -EINVAL;
1985 		goto sg0_map_failed;
1986 	}
1987 	qm_sg_entry_set64(&sgt[0], addr);
1988 
1989 	/* populate the rest of SGT entries */
1990 	for (i = 0; i < nr_frags; i++) {
1991 		frag = &skb_shinfo(skb)->frags[i];
1992 		frag_len = skb_frag_size(frag);
1993 		WARN_ON(!skb_frag_page(frag));
1994 		addr = skb_frag_dma_map(priv->tx_dma_dev, frag, 0,
1995 					frag_len, dma_dir);
1996 		if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
1997 			netdev_err(priv->net_dev, "DMA mapping failed\n");
1998 			err = -EINVAL;
1999 			goto sg_map_failed;
2000 		}
2001 
2002 		qm_sg_entry_set_len(&sgt[i + 1], frag_len);
2003 		sgt[i + 1].bpid = FSL_DPAA_BPID_INV;
2004 		sgt[i + 1].offset = 0;
2005 
2006 		/* keep the offset in the address */
2007 		qm_sg_entry_set64(&sgt[i + 1], addr);
2008 	}
2009 
2010 	/* Set the final bit in the last used entry of the SGT */
2011 	qm_sg_entry_set_f(&sgt[nr_frags], frag_len);
2012 
2013 	/* set fd offset to priv->tx_headroom */
2014 	qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
2015 
2016 	/* DMA map the SGT page */
2017 	swbp = (struct dpaa_eth_swbp *)buff_start;
2018 	swbp->skb = skb;
2019 
2020 	addr = dma_map_page(priv->tx_dma_dev, p, 0,
2021 			    priv->tx_headroom + DPAA_SGT_SIZE, dma_dir);
2022 	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2023 		netdev_err(priv->net_dev, "DMA mapping failed\n");
2024 		err = -EINVAL;
2025 		goto sgt_map_failed;
2026 	}
2027 
2028 	fd->bpid = FSL_DPAA_BPID_INV;
2029 	fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
2030 	qm_fd_addr_set64(fd, addr);
2031 
2032 	return 0;
2033 
2034 sgt_map_failed:
2035 sg_map_failed:
2036 	for (j = 0; j < i; j++)
2037 		dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[j]),
2038 			       qm_sg_entry_get_len(&sgt[j]), dma_dir);
2039 sg0_map_failed:
2040 csum_failed:
2041 	free_pages((unsigned long)buff_start, 0);
2042 
2043 	return err;
2044 }
2045 
2046 static inline int dpaa_xmit(struct dpaa_priv *priv,
2047 			    struct rtnl_link_stats64 *percpu_stats,
2048 			    int queue,
2049 			    struct qm_fd *fd)
2050 {
2051 	struct qman_fq *egress_fq;
2052 	int err, i;
2053 
2054 	egress_fq = priv->egress_fqs[queue];
2055 	if (fd->bpid == FSL_DPAA_BPID_INV)
2056 		fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue]));
2057 
2058 	/* Trace this Tx fd */
2059 	trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
2060 
2061 	for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
2062 		err = qman_enqueue(egress_fq, fd);
2063 		if (err != -EBUSY)
2064 			break;
2065 	}
2066 
2067 	if (unlikely(err < 0)) {
2068 		percpu_stats->tx_fifo_errors++;
2069 		return err;
2070 	}
2071 
2072 	percpu_stats->tx_packets++;
2073 	percpu_stats->tx_bytes += qm_fd_get_length(fd);
2074 
2075 	return 0;
2076 }
2077 
2078 #ifdef CONFIG_DPAA_ERRATUM_A050385
2079 static int dpaa_a050385_wa_skb(struct net_device *net_dev, struct sk_buff **s)
2080 {
2081 	struct dpaa_priv *priv = netdev_priv(net_dev);
2082 	struct sk_buff *new_skb, *skb = *s;
2083 	unsigned char *start, i;
2084 
2085 	/* check linear buffer alignment */
2086 	if (!PTR_IS_ALIGNED(skb->data, DPAA_A050385_ALIGN))
2087 		goto workaround;
2088 
2089 	/* linear buffers just need to have an aligned start */
2090 	if (!skb_is_nonlinear(skb))
2091 		return 0;
2092 
2093 	/* linear data size for nonlinear skbs needs to be aligned */
2094 	if (!IS_ALIGNED(skb_headlen(skb), DPAA_A050385_ALIGN))
2095 		goto workaround;
2096 
2097 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2098 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2099 
2100 		/* all fragments need to have aligned start addresses */
2101 		if (!IS_ALIGNED(skb_frag_off(frag), DPAA_A050385_ALIGN))
2102 			goto workaround;
2103 
2104 		/* all but last fragment need to have aligned sizes */
2105 		if (!IS_ALIGNED(skb_frag_size(frag), DPAA_A050385_ALIGN) &&
2106 		    (i < skb_shinfo(skb)->nr_frags - 1))
2107 			goto workaround;
2108 	}
2109 
2110 	return 0;
2111 
2112 workaround:
2113 	/* copy all the skb content into a new linear buffer */
2114 	new_skb = netdev_alloc_skb(net_dev, skb->len + DPAA_A050385_ALIGN - 1 +
2115 						priv->tx_headroom);
2116 	if (!new_skb)
2117 		return -ENOMEM;
2118 
2119 	/* NET_SKB_PAD bytes already reserved, adding up to tx_headroom */
2120 	skb_reserve(new_skb, priv->tx_headroom - NET_SKB_PAD);
2121 
2122 	/* Workaround for DPAA_A050385 requires data start to be aligned */
2123 	start = PTR_ALIGN(new_skb->data, DPAA_A050385_ALIGN);
2124 	if (start - new_skb->data)
2125 		skb_reserve(new_skb, start - new_skb->data);
2126 
2127 	skb_put(new_skb, skb->len);
2128 	skb_copy_bits(skb, 0, new_skb->data, skb->len);
2129 	skb_copy_header(new_skb, skb);
2130 	new_skb->dev = skb->dev;
2131 
2132 	/* Copy relevant timestamp info from the old skb to the new */
2133 	if (priv->tx_tstamp) {
2134 		skb_shinfo(new_skb)->tx_flags = skb_shinfo(skb)->tx_flags;
2135 		skb_shinfo(new_skb)->hwtstamps = skb_shinfo(skb)->hwtstamps;
2136 		skb_shinfo(new_skb)->tskey = skb_shinfo(skb)->tskey;
2137 		if (skb->sk)
2138 			skb_set_owner_w(new_skb, skb->sk);
2139 	}
2140 
2141 	/* We move the headroom when we align it so we have to reset the
2142 	 * network and transport header offsets relative to the new data
2143 	 * pointer. The checksum offload relies on these offsets.
2144 	 */
2145 	skb_set_network_header(new_skb, skb_network_offset(skb));
2146 	skb_set_transport_header(new_skb, skb_transport_offset(skb));
2147 
2148 	dev_kfree_skb(skb);
2149 	*s = new_skb;
2150 
2151 	return 0;
2152 }
2153 
2154 static int dpaa_a050385_wa_xdpf(struct dpaa_priv *priv,
2155 				struct xdp_frame **init_xdpf)
2156 {
2157 	struct xdp_frame *new_xdpf, *xdpf = *init_xdpf;
2158 	void *new_buff, *aligned_data;
2159 	struct page *p;
2160 	u32 data_shift;
2161 	int headroom;
2162 
2163 	/* Check the data alignment and make sure the headroom is large
2164 	 * enough to store the xdpf backpointer. Use an aligned headroom
2165 	 * value.
2166 	 *
2167 	 * Due to alignment constraints, we give XDP access to the full 256
2168 	 * byte frame headroom. If the XDP program uses all of it, copy the
2169 	 * data to a new buffer and make room for storing the backpointer.
2170 	 */
2171 	if (PTR_IS_ALIGNED(xdpf->data, DPAA_FD_DATA_ALIGNMENT) &&
2172 	    xdpf->headroom >= priv->tx_headroom) {
2173 		xdpf->headroom = priv->tx_headroom;
2174 		return 0;
2175 	}
2176 
2177 	/* Try to move the data inside the buffer just enough to align it and
2178 	 * store the xdpf backpointer. If the available headroom isn't large
2179 	 * enough, resort to allocating a new buffer and copying the data.
2180 	 */
2181 	aligned_data = PTR_ALIGN_DOWN(xdpf->data, DPAA_FD_DATA_ALIGNMENT);
2182 	data_shift = xdpf->data - aligned_data;
2183 
2184 	/* The XDP frame's headroom needs to be large enough to accommodate
2185 	 * shifting the data as well as storing the xdpf backpointer.
2186 	 */
2187 	if (xdpf->headroom  >= data_shift + priv->tx_headroom) {
2188 		memmove(aligned_data, xdpf->data, xdpf->len);
2189 		xdpf->data = aligned_data;
2190 		xdpf->headroom = priv->tx_headroom;
2191 		return 0;
2192 	}
2193 
2194 	/* The new xdp_frame is stored in the new buffer. Reserve enough space
2195 	 * in the headroom for storing it along with the driver's private
2196 	 * info. The headroom needs to be aligned to DPAA_FD_DATA_ALIGNMENT to
2197 	 * guarantee the data's alignment in the buffer.
2198 	 */
2199 	headroom = ALIGN(sizeof(*new_xdpf) + priv->tx_headroom,
2200 			 DPAA_FD_DATA_ALIGNMENT);
2201 
2202 	/* Assure the extended headroom and data don't overflow the buffer,
2203 	 * while maintaining the mandatory tailroom.
2204 	 */
2205 	if (headroom + xdpf->len > DPAA_BP_RAW_SIZE -
2206 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
2207 		return -ENOMEM;
2208 
2209 	p = dev_alloc_pages(0);
2210 	if (unlikely(!p))
2211 		return -ENOMEM;
2212 
2213 	/* Copy the data to the new buffer at a properly aligned offset */
2214 	new_buff = page_address(p);
2215 	memcpy(new_buff + headroom, xdpf->data, xdpf->len);
2216 
2217 	/* Create an XDP frame around the new buffer in a similar fashion
2218 	 * to xdp_convert_buff_to_frame.
2219 	 */
2220 	new_xdpf = new_buff;
2221 	new_xdpf->data = new_buff + headroom;
2222 	new_xdpf->len = xdpf->len;
2223 	new_xdpf->headroom = priv->tx_headroom;
2224 	new_xdpf->frame_sz = DPAA_BP_RAW_SIZE;
2225 	new_xdpf->mem.type = MEM_TYPE_PAGE_ORDER0;
2226 
2227 	/* Release the initial buffer */
2228 	xdp_return_frame_rx_napi(xdpf);
2229 
2230 	*init_xdpf = new_xdpf;
2231 	return 0;
2232 }
2233 #endif
2234 
2235 static netdev_tx_t
2236 dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
2237 {
2238 	const int queue_mapping = skb_get_queue_mapping(skb);
2239 	bool nonlinear = skb_is_nonlinear(skb);
2240 	struct rtnl_link_stats64 *percpu_stats;
2241 	struct dpaa_percpu_priv *percpu_priv;
2242 	struct netdev_queue *txq;
2243 	struct dpaa_priv *priv;
2244 	struct qm_fd fd;
2245 	int offset = 0;
2246 	int err = 0;
2247 
2248 	priv = netdev_priv(net_dev);
2249 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2250 	percpu_stats = &percpu_priv->stats;
2251 
2252 	qm_fd_clear_fd(&fd);
2253 
2254 	if (!nonlinear) {
2255 		/* We're going to store the skb backpointer at the beginning
2256 		 * of the data buffer, so we need a privately owned skb
2257 		 *
2258 		 * We've made sure skb is not shared in dev->priv_flags,
2259 		 * we need to verify the skb head is not cloned
2260 		 */
2261 		if (skb_cow_head(skb, priv->tx_headroom))
2262 			goto enomem;
2263 
2264 		WARN_ON(skb_is_nonlinear(skb));
2265 	}
2266 
2267 	/* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
2268 	 * make sure we don't feed FMan with more fragments than it supports.
2269 	 */
2270 	if (unlikely(nonlinear &&
2271 		     (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) {
2272 		/* If the egress skb contains more fragments than we support
2273 		 * we have no choice but to linearize it ourselves.
2274 		 */
2275 		if (__skb_linearize(skb))
2276 			goto enomem;
2277 
2278 		nonlinear = skb_is_nonlinear(skb);
2279 	}
2280 
2281 #ifdef CONFIG_DPAA_ERRATUM_A050385
2282 	if (unlikely(fman_has_errata_a050385())) {
2283 		if (dpaa_a050385_wa_skb(net_dev, &skb))
2284 			goto enomem;
2285 		nonlinear = skb_is_nonlinear(skb);
2286 	}
2287 #endif
2288 
2289 	if (nonlinear) {
2290 		/* Just create a S/G fd based on the skb */
2291 		err = skb_to_sg_fd(priv, skb, &fd);
2292 		percpu_priv->tx_frag_skbuffs++;
2293 	} else {
2294 		/* Create a contig FD from this skb */
2295 		err = skb_to_contig_fd(priv, skb, &fd, &offset);
2296 	}
2297 	if (unlikely(err < 0))
2298 		goto skb_to_fd_failed;
2299 
2300 	txq = netdev_get_tx_queue(net_dev, queue_mapping);
2301 
2302 	/* LLTX requires to do our own update of trans_start */
2303 	txq_trans_cond_update(txq);
2304 
2305 	if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
2306 		fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD);
2307 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2308 	}
2309 
2310 	if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
2311 		return NETDEV_TX_OK;
2312 
2313 	dpaa_cleanup_tx_fd(priv, &fd, false);
2314 skb_to_fd_failed:
2315 enomem:
2316 	percpu_stats->tx_errors++;
2317 	dev_kfree_skb(skb);
2318 	return NETDEV_TX_OK;
2319 }
2320 
2321 static void dpaa_rx_error(struct net_device *net_dev,
2322 			  const struct dpaa_priv *priv,
2323 			  struct dpaa_percpu_priv *percpu_priv,
2324 			  const struct qm_fd *fd,
2325 			  u32 fqid)
2326 {
2327 	if (net_ratelimit())
2328 		netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
2329 			  be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS);
2330 
2331 	percpu_priv->stats.rx_errors++;
2332 
2333 	if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA)
2334 		percpu_priv->rx_errors.dme++;
2335 	if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL)
2336 		percpu_priv->rx_errors.fpe++;
2337 	if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE)
2338 		percpu_priv->rx_errors.fse++;
2339 	if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR)
2340 		percpu_priv->rx_errors.phe++;
2341 
2342 	dpaa_fd_release(net_dev, fd);
2343 }
2344 
2345 static void dpaa_tx_error(struct net_device *net_dev,
2346 			  const struct dpaa_priv *priv,
2347 			  struct dpaa_percpu_priv *percpu_priv,
2348 			  const struct qm_fd *fd,
2349 			  u32 fqid)
2350 {
2351 	struct sk_buff *skb;
2352 
2353 	if (net_ratelimit())
2354 		netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2355 			   be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS);
2356 
2357 	percpu_priv->stats.tx_errors++;
2358 
2359 	skb = dpaa_cleanup_tx_fd(priv, fd, false);
2360 	dev_kfree_skb(skb);
2361 }
2362 
2363 static int dpaa_eth_poll(struct napi_struct *napi, int budget)
2364 {
2365 	struct dpaa_napi_portal *np =
2366 			container_of(napi, struct dpaa_napi_portal, napi);
2367 	int cleaned;
2368 
2369 	np->xdp_act = 0;
2370 
2371 	cleaned = qman_p_poll_dqrr(np->p, budget);
2372 
2373 	if (cleaned < budget) {
2374 		napi_complete_done(napi, cleaned);
2375 		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2376 	} else if (np->down) {
2377 		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2378 	}
2379 
2380 	if (np->xdp_act & XDP_REDIRECT)
2381 		xdp_do_flush();
2382 
2383 	return cleaned;
2384 }
2385 
2386 static void dpaa_tx_conf(struct net_device *net_dev,
2387 			 const struct dpaa_priv *priv,
2388 			 struct dpaa_percpu_priv *percpu_priv,
2389 			 const struct qm_fd *fd,
2390 			 u32 fqid)
2391 {
2392 	struct sk_buff	*skb;
2393 
2394 	if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) {
2395 		if (net_ratelimit())
2396 			netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2397 				   be32_to_cpu(fd->status) &
2398 				   FM_FD_STAT_TX_ERRORS);
2399 
2400 		percpu_priv->stats.tx_errors++;
2401 	}
2402 
2403 	percpu_priv->tx_confirm++;
2404 
2405 	skb = dpaa_cleanup_tx_fd(priv, fd, true);
2406 
2407 	consume_skb(skb);
2408 }
2409 
2410 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
2411 					 struct qman_portal *portal, bool sched_napi)
2412 {
2413 	if (sched_napi) {
2414 		/* Disable QMan IRQ and invoke NAPI */
2415 		qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
2416 
2417 		percpu_priv->np.p = portal;
2418 		napi_schedule(&percpu_priv->np.napi);
2419 		percpu_priv->in_interrupt++;
2420 		return 1;
2421 	}
2422 	return 0;
2423 }
2424 
2425 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
2426 					      struct qman_fq *fq,
2427 					      const struct qm_dqrr_entry *dq,
2428 					      bool sched_napi)
2429 {
2430 	struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2431 	struct dpaa_percpu_priv *percpu_priv;
2432 	struct net_device *net_dev;
2433 	struct dpaa_bp *dpaa_bp;
2434 	struct dpaa_priv *priv;
2435 
2436 	net_dev = dpaa_fq->net_dev;
2437 	priv = netdev_priv(net_dev);
2438 	dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2439 	if (!dpaa_bp)
2440 		return qman_cb_dqrr_consume;
2441 
2442 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2443 
2444 	if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2445 		return qman_cb_dqrr_stop;
2446 
2447 	dpaa_eth_refill_bpools(priv);
2448 	dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2449 
2450 	return qman_cb_dqrr_consume;
2451 }
2452 
2453 static int dpaa_xdp_xmit_frame(struct net_device *net_dev,
2454 			       struct xdp_frame *xdpf)
2455 {
2456 	struct dpaa_priv *priv = netdev_priv(net_dev);
2457 	struct rtnl_link_stats64 *percpu_stats;
2458 	struct dpaa_percpu_priv *percpu_priv;
2459 	struct dpaa_eth_swbp *swbp;
2460 	struct netdev_queue *txq;
2461 	void *buff_start;
2462 	struct qm_fd fd;
2463 	dma_addr_t addr;
2464 	int err;
2465 
2466 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2467 	percpu_stats = &percpu_priv->stats;
2468 
2469 #ifdef CONFIG_DPAA_ERRATUM_A050385
2470 	if (unlikely(fman_has_errata_a050385())) {
2471 		if (dpaa_a050385_wa_xdpf(priv, &xdpf)) {
2472 			err = -ENOMEM;
2473 			goto out_error;
2474 		}
2475 	}
2476 #endif
2477 
2478 	if (xdpf->headroom < DPAA_TX_PRIV_DATA_SIZE) {
2479 		err = -EINVAL;
2480 		goto out_error;
2481 	}
2482 
2483 	buff_start = xdpf->data - xdpf->headroom;
2484 
2485 	/* Leave empty the skb backpointer at the start of the buffer.
2486 	 * Save the XDP frame for easy cleanup on confirmation.
2487 	 */
2488 	swbp = (struct dpaa_eth_swbp *)buff_start;
2489 	swbp->skb = NULL;
2490 	swbp->xdpf = xdpf;
2491 
2492 	qm_fd_clear_fd(&fd);
2493 	fd.bpid = FSL_DPAA_BPID_INV;
2494 	fd.cmd |= cpu_to_be32(FM_FD_CMD_FCO);
2495 	qm_fd_set_contig(&fd, xdpf->headroom, xdpf->len);
2496 
2497 	addr = dma_map_single(priv->tx_dma_dev, buff_start,
2498 			      xdpf->headroom + xdpf->len,
2499 			      DMA_TO_DEVICE);
2500 	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2501 		err = -EINVAL;
2502 		goto out_error;
2503 	}
2504 
2505 	qm_fd_addr_set64(&fd, addr);
2506 
2507 	/* Bump the trans_start */
2508 	txq = netdev_get_tx_queue(net_dev, smp_processor_id());
2509 	txq_trans_cond_update(txq);
2510 
2511 	err = dpaa_xmit(priv, percpu_stats, smp_processor_id(), &fd);
2512 	if (err) {
2513 		dma_unmap_single(priv->tx_dma_dev, addr,
2514 				 qm_fd_get_offset(&fd) + qm_fd_get_length(&fd),
2515 				 DMA_TO_DEVICE);
2516 		goto out_error;
2517 	}
2518 
2519 	return 0;
2520 
2521 out_error:
2522 	percpu_stats->tx_errors++;
2523 	return err;
2524 }
2525 
2526 static u32 dpaa_run_xdp(struct dpaa_priv *priv, struct qm_fd *fd, void *vaddr,
2527 			struct dpaa_fq *dpaa_fq, unsigned int *xdp_meta_len)
2528 {
2529 	ssize_t fd_off = qm_fd_get_offset(fd);
2530 	struct bpf_prog *xdp_prog;
2531 	struct xdp_frame *xdpf;
2532 	struct xdp_buff xdp;
2533 	u32 xdp_act;
2534 	int err;
2535 
2536 	xdp_prog = READ_ONCE(priv->xdp_prog);
2537 	if (!xdp_prog)
2538 		return XDP_PASS;
2539 
2540 	xdp_init_buff(&xdp, DPAA_BP_RAW_SIZE - DPAA_TX_PRIV_DATA_SIZE,
2541 		      &dpaa_fq->xdp_rxq);
2542 	xdp_prepare_buff(&xdp, vaddr + fd_off - XDP_PACKET_HEADROOM,
2543 			 XDP_PACKET_HEADROOM, qm_fd_get_length(fd), true);
2544 
2545 	/* We reserve a fixed headroom of 256 bytes under the erratum and we
2546 	 * offer it all to XDP programs to use. If no room is left for the
2547 	 * xdpf backpointer on TX, we will need to copy the data.
2548 	 * Disable metadata support since data realignments might be required
2549 	 * and the information can be lost.
2550 	 */
2551 #ifdef CONFIG_DPAA_ERRATUM_A050385
2552 	if (unlikely(fman_has_errata_a050385())) {
2553 		xdp_set_data_meta_invalid(&xdp);
2554 		xdp.data_hard_start = vaddr;
2555 		xdp.frame_sz = DPAA_BP_RAW_SIZE;
2556 	}
2557 #endif
2558 
2559 	xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp);
2560 
2561 	/* Update the length and the offset of the FD */
2562 	qm_fd_set_contig(fd, xdp.data - vaddr, xdp.data_end - xdp.data);
2563 
2564 	switch (xdp_act) {
2565 	case XDP_PASS:
2566 #ifdef CONFIG_DPAA_ERRATUM_A050385
2567 		*xdp_meta_len = xdp_data_meta_unsupported(&xdp) ? 0 :
2568 				xdp.data - xdp.data_meta;
2569 #else
2570 		*xdp_meta_len = xdp.data - xdp.data_meta;
2571 #endif
2572 		break;
2573 	case XDP_TX:
2574 		/* We can access the full headroom when sending the frame
2575 		 * back out
2576 		 */
2577 		xdp.data_hard_start = vaddr;
2578 		xdp.frame_sz = DPAA_BP_RAW_SIZE;
2579 		xdpf = xdp_convert_buff_to_frame(&xdp);
2580 		if (unlikely(!xdpf)) {
2581 			free_pages((unsigned long)vaddr, 0);
2582 			break;
2583 		}
2584 
2585 		if (dpaa_xdp_xmit_frame(priv->net_dev, xdpf))
2586 			xdp_return_frame_rx_napi(xdpf);
2587 
2588 		break;
2589 	case XDP_REDIRECT:
2590 		/* Allow redirect to use the full headroom */
2591 		xdp.data_hard_start = vaddr;
2592 		xdp.frame_sz = DPAA_BP_RAW_SIZE;
2593 
2594 		err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog);
2595 		if (err) {
2596 			trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act);
2597 			free_pages((unsigned long)vaddr, 0);
2598 		}
2599 		break;
2600 	default:
2601 		bpf_warn_invalid_xdp_action(priv->net_dev, xdp_prog, xdp_act);
2602 		fallthrough;
2603 	case XDP_ABORTED:
2604 		trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act);
2605 		fallthrough;
2606 	case XDP_DROP:
2607 		/* Free the buffer */
2608 		free_pages((unsigned long)vaddr, 0);
2609 		break;
2610 	}
2611 
2612 	return xdp_act;
2613 }
2614 
2615 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
2616 						struct qman_fq *fq,
2617 						const struct qm_dqrr_entry *dq,
2618 						bool sched_napi)
2619 {
2620 	bool ts_valid = false, hash_valid = false;
2621 	struct skb_shared_hwtstamps *shhwtstamps;
2622 	unsigned int skb_len, xdp_meta_len = 0;
2623 	struct rtnl_link_stats64 *percpu_stats;
2624 	struct dpaa_percpu_priv *percpu_priv;
2625 	const struct qm_fd *fd = &dq->fd;
2626 	dma_addr_t addr = qm_fd_addr(fd);
2627 	struct dpaa_napi_portal *np;
2628 	enum qm_fd_format fd_format;
2629 	struct net_device *net_dev;
2630 	u32 fd_status, hash_offset;
2631 	struct qm_sg_entry *sgt;
2632 	struct dpaa_bp *dpaa_bp;
2633 	struct dpaa_fq *dpaa_fq;
2634 	struct dpaa_priv *priv;
2635 	struct sk_buff *skb;
2636 	int *count_ptr;
2637 	u32 xdp_act;
2638 	void *vaddr;
2639 	u32 hash;
2640 	u64 ns;
2641 
2642 	dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2643 	fd_status = be32_to_cpu(fd->status);
2644 	fd_format = qm_fd_get_format(fd);
2645 	net_dev = dpaa_fq->net_dev;
2646 	priv = netdev_priv(net_dev);
2647 	dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2648 	if (!dpaa_bp)
2649 		return qman_cb_dqrr_consume;
2650 
2651 	/* Trace the Rx fd */
2652 	trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
2653 
2654 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2655 	percpu_stats = &percpu_priv->stats;
2656 	np = &percpu_priv->np;
2657 
2658 	if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)))
2659 		return qman_cb_dqrr_stop;
2660 
2661 	/* Make sure we didn't run out of buffers */
2662 	if (unlikely(dpaa_eth_refill_bpools(priv))) {
2663 		/* Unable to refill the buffer pool due to insufficient
2664 		 * system memory. Just release the frame back into the pool,
2665 		 * otherwise we'll soon end up with an empty buffer pool.
2666 		 */
2667 		dpaa_fd_release(net_dev, &dq->fd);
2668 		return qman_cb_dqrr_consume;
2669 	}
2670 
2671 	if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
2672 		if (net_ratelimit())
2673 			netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2674 				   fd_status & FM_FD_STAT_RX_ERRORS);
2675 
2676 		percpu_stats->rx_errors++;
2677 		dpaa_fd_release(net_dev, fd);
2678 		return qman_cb_dqrr_consume;
2679 	}
2680 
2681 	dma_unmap_page(dpaa_bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
2682 		       DMA_FROM_DEVICE);
2683 
2684 	/* prefetch the first 64 bytes of the frame or the SGT start */
2685 	vaddr = phys_to_virt(addr);
2686 	prefetch(vaddr + qm_fd_get_offset(fd));
2687 
2688 	/* The only FD types that we may receive are contig and S/G */
2689 	WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
2690 
2691 	/* Account for either the contig buffer or the SGT buffer (depending on
2692 	 * which case we were in) having been removed from the pool.
2693 	 */
2694 	count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
2695 	(*count_ptr)--;
2696 
2697 	/* Extract the timestamp stored in the headroom before running XDP */
2698 	if (priv->rx_tstamp) {
2699 		if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns))
2700 			ts_valid = true;
2701 		else
2702 			WARN_ONCE(1, "fman_port_get_tstamp failed!\n");
2703 	}
2704 
2705 	/* Extract the hash stored in the headroom before running XDP */
2706 	if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use &&
2707 	    !fman_port_get_hash_result_offset(priv->mac_dev->port[RX],
2708 					      &hash_offset)) {
2709 		hash = be32_to_cpu(*(u32 *)(vaddr + hash_offset));
2710 		hash_valid = true;
2711 	}
2712 
2713 	if (likely(fd_format == qm_fd_contig)) {
2714 		xdp_act = dpaa_run_xdp(priv, (struct qm_fd *)fd, vaddr,
2715 				       dpaa_fq, &xdp_meta_len);
2716 		np->xdp_act |= xdp_act;
2717 		if (xdp_act != XDP_PASS) {
2718 			percpu_stats->rx_packets++;
2719 			percpu_stats->rx_bytes += qm_fd_get_length(fd);
2720 			return qman_cb_dqrr_consume;
2721 		}
2722 		skb = contig_fd_to_skb(priv, fd);
2723 	} else {
2724 		/* XDP doesn't support S/G frames. Return the fragments to the
2725 		 * buffer pool and release the SGT.
2726 		 */
2727 		if (READ_ONCE(priv->xdp_prog)) {
2728 			WARN_ONCE(1, "S/G frames not supported under XDP\n");
2729 			sgt = vaddr + qm_fd_get_offset(fd);
2730 			dpaa_release_sgt_members(sgt);
2731 			free_pages((unsigned long)vaddr, 0);
2732 			return qman_cb_dqrr_consume;
2733 		}
2734 		skb = sg_fd_to_skb(priv, fd);
2735 	}
2736 	if (!skb)
2737 		return qman_cb_dqrr_consume;
2738 
2739 	if (xdp_meta_len)
2740 		skb_metadata_set(skb, xdp_meta_len);
2741 
2742 	/* Set the previously extracted timestamp */
2743 	if (ts_valid) {
2744 		shhwtstamps = skb_hwtstamps(skb);
2745 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2746 		shhwtstamps->hwtstamp = ns_to_ktime(ns);
2747 	}
2748 
2749 	skb->protocol = eth_type_trans(skb, net_dev);
2750 
2751 	/* Set the previously extracted hash */
2752 	if (hash_valid) {
2753 		enum pkt_hash_types type;
2754 
2755 		/* if L4 exists, it was used in the hash generation */
2756 		type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ?
2757 			PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
2758 		skb_set_hash(skb, hash, type);
2759 	}
2760 
2761 	skb_len = skb->len;
2762 
2763 	if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) {
2764 		percpu_stats->rx_dropped++;
2765 		return qman_cb_dqrr_consume;
2766 	}
2767 
2768 	percpu_stats->rx_packets++;
2769 	percpu_stats->rx_bytes += skb_len;
2770 
2771 	return qman_cb_dqrr_consume;
2772 }
2773 
2774 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
2775 						struct qman_fq *fq,
2776 						const struct qm_dqrr_entry *dq,
2777 						bool sched_napi)
2778 {
2779 	struct dpaa_percpu_priv *percpu_priv;
2780 	struct net_device *net_dev;
2781 	struct dpaa_priv *priv;
2782 
2783 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2784 	priv = netdev_priv(net_dev);
2785 
2786 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2787 
2788 	if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2789 		return qman_cb_dqrr_stop;
2790 
2791 	dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2792 
2793 	return qman_cb_dqrr_consume;
2794 }
2795 
2796 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
2797 					       struct qman_fq *fq,
2798 					       const struct qm_dqrr_entry *dq,
2799 					       bool sched_napi)
2800 {
2801 	struct dpaa_percpu_priv *percpu_priv;
2802 	struct net_device *net_dev;
2803 	struct dpaa_priv *priv;
2804 
2805 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2806 	priv = netdev_priv(net_dev);
2807 
2808 	/* Trace the fd */
2809 	trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
2810 
2811 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2812 
2813 	if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2814 		return qman_cb_dqrr_stop;
2815 
2816 	dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2817 
2818 	return qman_cb_dqrr_consume;
2819 }
2820 
2821 static void egress_ern(struct qman_portal *portal,
2822 		       struct qman_fq *fq,
2823 		       const union qm_mr_entry *msg)
2824 {
2825 	const struct qm_fd *fd = &msg->ern.fd;
2826 	struct dpaa_percpu_priv *percpu_priv;
2827 	const struct dpaa_priv *priv;
2828 	struct net_device *net_dev;
2829 	struct sk_buff *skb;
2830 
2831 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2832 	priv = netdev_priv(net_dev);
2833 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2834 
2835 	percpu_priv->stats.tx_dropped++;
2836 	percpu_priv->stats.tx_fifo_errors++;
2837 	count_ern(percpu_priv, msg);
2838 
2839 	skb = dpaa_cleanup_tx_fd(priv, fd, false);
2840 	dev_kfree_skb_any(skb);
2841 }
2842 
2843 static const struct dpaa_fq_cbs dpaa_fq_cbs = {
2844 	.rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
2845 	.tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
2846 	.rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
2847 	.tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
2848 	.egress_ern = { .cb = { .ern = egress_ern } }
2849 };
2850 
2851 static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
2852 {
2853 	struct dpaa_percpu_priv *percpu_priv;
2854 	int i;
2855 
2856 	for_each_online_cpu(i) {
2857 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2858 
2859 		percpu_priv->np.down = false;
2860 		napi_enable(&percpu_priv->np.napi);
2861 	}
2862 }
2863 
2864 static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
2865 {
2866 	struct dpaa_percpu_priv *percpu_priv;
2867 	int i;
2868 
2869 	for_each_online_cpu(i) {
2870 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2871 
2872 		percpu_priv->np.down = true;
2873 		napi_disable(&percpu_priv->np.napi);
2874 	}
2875 }
2876 
2877 static void dpaa_adjust_link(struct net_device *net_dev)
2878 {
2879 	struct mac_device *mac_dev;
2880 	struct dpaa_priv *priv;
2881 
2882 	priv = netdev_priv(net_dev);
2883 	mac_dev = priv->mac_dev;
2884 	mac_dev->adjust_link(mac_dev);
2885 }
2886 
2887 /* The Aquantia PHYs are capable of performing rate adaptation */
2888 #define PHY_VEND_AQUANTIA	0x03a1b400
2889 
2890 static int dpaa_phy_init(struct net_device *net_dev)
2891 {
2892 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
2893 	struct mac_device *mac_dev;
2894 	struct phy_device *phy_dev;
2895 	struct dpaa_priv *priv;
2896 
2897 	priv = netdev_priv(net_dev);
2898 	mac_dev = priv->mac_dev;
2899 
2900 	phy_dev = of_phy_connect(net_dev, mac_dev->phy_node,
2901 				 &dpaa_adjust_link, 0,
2902 				 mac_dev->phy_if);
2903 	if (!phy_dev) {
2904 		netif_err(priv, ifup, net_dev, "init_phy() failed\n");
2905 		return -ENODEV;
2906 	}
2907 
2908 	/* Unless the PHY is capable of rate adaptation */
2909 	if (mac_dev->phy_if != PHY_INTERFACE_MODE_XGMII ||
2910 	    ((phy_dev->drv->phy_id & GENMASK(31, 10)) != PHY_VEND_AQUANTIA)) {
2911 		/* remove any features not supported by the controller */
2912 		ethtool_convert_legacy_u32_to_link_mode(mask,
2913 							mac_dev->if_support);
2914 		linkmode_and(phy_dev->supported, phy_dev->supported, mask);
2915 	}
2916 
2917 	phy_support_asym_pause(phy_dev);
2918 
2919 	mac_dev->phy_dev = phy_dev;
2920 	net_dev->phydev = phy_dev;
2921 
2922 	return 0;
2923 }
2924 
2925 static int dpaa_open(struct net_device *net_dev)
2926 {
2927 	struct mac_device *mac_dev;
2928 	struct dpaa_priv *priv;
2929 	int err, i;
2930 
2931 	priv = netdev_priv(net_dev);
2932 	mac_dev = priv->mac_dev;
2933 	dpaa_eth_napi_enable(priv);
2934 
2935 	err = dpaa_phy_init(net_dev);
2936 	if (err)
2937 		goto phy_init_failed;
2938 
2939 	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
2940 		err = fman_port_enable(mac_dev->port[i]);
2941 		if (err)
2942 			goto mac_start_failed;
2943 	}
2944 
2945 	err = priv->mac_dev->start(mac_dev);
2946 	if (err < 0) {
2947 		netif_err(priv, ifup, net_dev, "mac_dev->start() = %d\n", err);
2948 		goto mac_start_failed;
2949 	}
2950 
2951 	netif_tx_start_all_queues(net_dev);
2952 
2953 	return 0;
2954 
2955 mac_start_failed:
2956 	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
2957 		fman_port_disable(mac_dev->port[i]);
2958 
2959 phy_init_failed:
2960 	dpaa_eth_napi_disable(priv);
2961 
2962 	return err;
2963 }
2964 
2965 static int dpaa_eth_stop(struct net_device *net_dev)
2966 {
2967 	struct dpaa_priv *priv;
2968 	int err;
2969 
2970 	err = dpaa_stop(net_dev);
2971 
2972 	priv = netdev_priv(net_dev);
2973 	dpaa_eth_napi_disable(priv);
2974 
2975 	return err;
2976 }
2977 
2978 static bool xdp_validate_mtu(struct dpaa_priv *priv, int mtu)
2979 {
2980 	int max_contig_data = priv->dpaa_bp->size - priv->rx_headroom;
2981 
2982 	/* We do not support S/G fragments when XDP is enabled.
2983 	 * Limit the MTU in relation to the buffer size.
2984 	 */
2985 	if (mtu + VLAN_ETH_HLEN + ETH_FCS_LEN > max_contig_data) {
2986 		dev_warn(priv->net_dev->dev.parent,
2987 			 "The maximum MTU for XDP is %d\n",
2988 			 max_contig_data - VLAN_ETH_HLEN - ETH_FCS_LEN);
2989 		return false;
2990 	}
2991 
2992 	return true;
2993 }
2994 
2995 static int dpaa_change_mtu(struct net_device *net_dev, int new_mtu)
2996 {
2997 	struct dpaa_priv *priv = netdev_priv(net_dev);
2998 
2999 	if (priv->xdp_prog && !xdp_validate_mtu(priv, new_mtu))
3000 		return -EINVAL;
3001 
3002 	net_dev->mtu = new_mtu;
3003 	return 0;
3004 }
3005 
3006 static int dpaa_setup_xdp(struct net_device *net_dev, struct netdev_bpf *bpf)
3007 {
3008 	struct dpaa_priv *priv = netdev_priv(net_dev);
3009 	struct bpf_prog *old_prog;
3010 	int err;
3011 	bool up;
3012 
3013 	/* S/G fragments are not supported in XDP-mode */
3014 	if (bpf->prog && !xdp_validate_mtu(priv, net_dev->mtu)) {
3015 		NL_SET_ERR_MSG_MOD(bpf->extack, "MTU too large for XDP");
3016 		return -EINVAL;
3017 	}
3018 
3019 	up = netif_running(net_dev);
3020 
3021 	if (up)
3022 		dpaa_eth_stop(net_dev);
3023 
3024 	old_prog = xchg(&priv->xdp_prog, bpf->prog);
3025 	if (old_prog)
3026 		bpf_prog_put(old_prog);
3027 
3028 	if (up) {
3029 		err = dpaa_open(net_dev);
3030 		if (err) {
3031 			NL_SET_ERR_MSG_MOD(bpf->extack, "dpaa_open() failed");
3032 			return err;
3033 		}
3034 	}
3035 
3036 	return 0;
3037 }
3038 
3039 static int dpaa_xdp(struct net_device *net_dev, struct netdev_bpf *xdp)
3040 {
3041 	switch (xdp->command) {
3042 	case XDP_SETUP_PROG:
3043 		return dpaa_setup_xdp(net_dev, xdp);
3044 	default:
3045 		return -EINVAL;
3046 	}
3047 }
3048 
3049 static int dpaa_xdp_xmit(struct net_device *net_dev, int n,
3050 			 struct xdp_frame **frames, u32 flags)
3051 {
3052 	struct xdp_frame *xdpf;
3053 	int i, nxmit = 0;
3054 
3055 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3056 		return -EINVAL;
3057 
3058 	if (!netif_running(net_dev))
3059 		return -ENETDOWN;
3060 
3061 	for (i = 0; i < n; i++) {
3062 		xdpf = frames[i];
3063 		if (dpaa_xdp_xmit_frame(net_dev, xdpf))
3064 			break;
3065 		nxmit++;
3066 	}
3067 
3068 	return nxmit;
3069 }
3070 
3071 static int dpaa_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3072 {
3073 	struct dpaa_priv *priv = netdev_priv(dev);
3074 	struct hwtstamp_config config;
3075 
3076 	if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
3077 		return -EFAULT;
3078 
3079 	switch (config.tx_type) {
3080 	case HWTSTAMP_TX_OFF:
3081 		/* Couldn't disable rx/tx timestamping separately.
3082 		 * Do nothing here.
3083 		 */
3084 		priv->tx_tstamp = false;
3085 		break;
3086 	case HWTSTAMP_TX_ON:
3087 		priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
3088 		priv->tx_tstamp = true;
3089 		break;
3090 	default:
3091 		return -ERANGE;
3092 	}
3093 
3094 	if (config.rx_filter == HWTSTAMP_FILTER_NONE) {
3095 		/* Couldn't disable rx/tx timestamping separately.
3096 		 * Do nothing here.
3097 		 */
3098 		priv->rx_tstamp = false;
3099 	} else {
3100 		priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
3101 		priv->rx_tstamp = true;
3102 		/* TS is set for all frame types, not only those requested */
3103 		config.rx_filter = HWTSTAMP_FILTER_ALL;
3104 	}
3105 
3106 	return copy_to_user(rq->ifr_data, &config, sizeof(config)) ?
3107 			-EFAULT : 0;
3108 }
3109 
3110 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
3111 {
3112 	int ret = -EINVAL;
3113 
3114 	if (cmd == SIOCGMIIREG) {
3115 		if (net_dev->phydev)
3116 			return phy_mii_ioctl(net_dev->phydev, rq, cmd);
3117 	}
3118 
3119 	if (cmd == SIOCSHWTSTAMP)
3120 		return dpaa_ts_ioctl(net_dev, rq, cmd);
3121 
3122 	return ret;
3123 }
3124 
3125 static const struct net_device_ops dpaa_ops = {
3126 	.ndo_open = dpaa_open,
3127 	.ndo_start_xmit = dpaa_start_xmit,
3128 	.ndo_stop = dpaa_eth_stop,
3129 	.ndo_tx_timeout = dpaa_tx_timeout,
3130 	.ndo_get_stats64 = dpaa_get_stats64,
3131 	.ndo_change_carrier = fixed_phy_change_carrier,
3132 	.ndo_set_mac_address = dpaa_set_mac_address,
3133 	.ndo_validate_addr = eth_validate_addr,
3134 	.ndo_set_rx_mode = dpaa_set_rx_mode,
3135 	.ndo_eth_ioctl = dpaa_ioctl,
3136 	.ndo_setup_tc = dpaa_setup_tc,
3137 	.ndo_change_mtu = dpaa_change_mtu,
3138 	.ndo_bpf = dpaa_xdp,
3139 	.ndo_xdp_xmit = dpaa_xdp_xmit,
3140 };
3141 
3142 static int dpaa_napi_add(struct net_device *net_dev)
3143 {
3144 	struct dpaa_priv *priv = netdev_priv(net_dev);
3145 	struct dpaa_percpu_priv *percpu_priv;
3146 	int cpu;
3147 
3148 	for_each_possible_cpu(cpu) {
3149 		percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
3150 
3151 		netif_napi_add(net_dev, &percpu_priv->np.napi,
3152 			       dpaa_eth_poll, NAPI_POLL_WEIGHT);
3153 	}
3154 
3155 	return 0;
3156 }
3157 
3158 static void dpaa_napi_del(struct net_device *net_dev)
3159 {
3160 	struct dpaa_priv *priv = netdev_priv(net_dev);
3161 	struct dpaa_percpu_priv *percpu_priv;
3162 	int cpu;
3163 
3164 	for_each_possible_cpu(cpu) {
3165 		percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
3166 
3167 		netif_napi_del(&percpu_priv->np.napi);
3168 	}
3169 }
3170 
3171 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
3172 				   struct bm_buffer *bmb)
3173 {
3174 	dma_addr_t addr = bm_buf_addr(bmb);
3175 
3176 	dma_unmap_page(bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
3177 		       DMA_FROM_DEVICE);
3178 
3179 	skb_free_frag(phys_to_virt(addr));
3180 }
3181 
3182 /* Alloc the dpaa_bp struct and configure default values */
3183 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
3184 {
3185 	struct dpaa_bp *dpaa_bp;
3186 
3187 	dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
3188 	if (!dpaa_bp)
3189 		return ERR_PTR(-ENOMEM);
3190 
3191 	dpaa_bp->bpid = FSL_DPAA_BPID_INV;
3192 	dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
3193 	if (!dpaa_bp->percpu_count)
3194 		return ERR_PTR(-ENOMEM);
3195 
3196 	dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
3197 
3198 	dpaa_bp->seed_cb = dpaa_bp_seed;
3199 	dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
3200 
3201 	return dpaa_bp;
3202 }
3203 
3204 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
3205  * We won't be sending congestion notifications to FMan; for now, we just use
3206  * this CGR to generate enqueue rejections to FMan in order to drop the frames
3207  * before they reach our ingress queues and eat up memory.
3208  */
3209 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
3210 {
3211 	struct qm_mcc_initcgr initcgr;
3212 	u32 cs_th;
3213 	int err;
3214 
3215 	err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
3216 	if (err < 0) {
3217 		if (netif_msg_drv(priv))
3218 			pr_err("Error %d allocating CGR ID\n", err);
3219 		goto out_error;
3220 	}
3221 
3222 	/* Enable CS TD, but disable Congestion State Change Notifications. */
3223 	memset(&initcgr, 0, sizeof(initcgr));
3224 	initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
3225 	initcgr.cgr.cscn_en = QM_CGR_EN;
3226 	cs_th = DPAA_INGRESS_CS_THRESHOLD;
3227 	qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
3228 
3229 	initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
3230 	initcgr.cgr.cstd_en = QM_CGR_EN;
3231 
3232 	/* This CGR will be associated with the SWP affined to the current CPU.
3233 	 * However, we'll place all our ingress FQs in it.
3234 	 */
3235 	err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
3236 			      &initcgr);
3237 	if (err < 0) {
3238 		if (netif_msg_drv(priv))
3239 			pr_err("Error %d creating ingress CGR with ID %d\n",
3240 			       err, priv->ingress_cgr.cgrid);
3241 		qman_release_cgrid(priv->ingress_cgr.cgrid);
3242 		goto out_error;
3243 	}
3244 	if (netif_msg_drv(priv))
3245 		pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
3246 			 priv->ingress_cgr.cgrid, priv->mac_dev->addr);
3247 
3248 	priv->use_ingress_cgr = true;
3249 
3250 out_error:
3251 	return err;
3252 }
3253 
3254 static u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl,
3255 			     enum port_type port)
3256 {
3257 	u16 headroom;
3258 
3259 	/* The frame headroom must accommodate:
3260 	 * - the driver private data area
3261 	 * - parse results, hash results, timestamp if selected
3262 	 * If either hash results or time stamp are selected, both will
3263 	 * be copied to/from the frame headroom, as TS is located between PR and
3264 	 * HR in the IC and IC copy size has a granularity of 16bytes
3265 	 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
3266 	 *
3267 	 * Also make sure the headroom is a multiple of data_align bytes
3268 	 */
3269 	headroom = (u16)(bl[port].priv_data_size + DPAA_HWA_SIZE);
3270 
3271 	if (port == RX) {
3272 #ifdef CONFIG_DPAA_ERRATUM_A050385
3273 		if (unlikely(fman_has_errata_a050385()))
3274 			headroom = XDP_PACKET_HEADROOM;
3275 #endif
3276 
3277 		return ALIGN(headroom, DPAA_FD_RX_DATA_ALIGNMENT);
3278 	} else {
3279 		return ALIGN(headroom, DPAA_FD_DATA_ALIGNMENT);
3280 	}
3281 }
3282 
3283 static int dpaa_eth_probe(struct platform_device *pdev)
3284 {
3285 	struct net_device *net_dev = NULL;
3286 	struct dpaa_bp *dpaa_bp = NULL;
3287 	struct dpaa_fq *dpaa_fq, *tmp;
3288 	struct dpaa_priv *priv = NULL;
3289 	struct fm_port_fqs port_fqs;
3290 	struct mac_device *mac_dev;
3291 	int err = 0, channel;
3292 	struct device *dev;
3293 
3294 	dev = &pdev->dev;
3295 
3296 	err = bman_is_probed();
3297 	if (!err)
3298 		return -EPROBE_DEFER;
3299 	if (err < 0) {
3300 		dev_err(dev, "failing probe due to bman probe error\n");
3301 		return -ENODEV;
3302 	}
3303 	err = qman_is_probed();
3304 	if (!err)
3305 		return -EPROBE_DEFER;
3306 	if (err < 0) {
3307 		dev_err(dev, "failing probe due to qman probe error\n");
3308 		return -ENODEV;
3309 	}
3310 	err = bman_portals_probed();
3311 	if (!err)
3312 		return -EPROBE_DEFER;
3313 	if (err < 0) {
3314 		dev_err(dev,
3315 			"failing probe due to bman portals probe error\n");
3316 		return -ENODEV;
3317 	}
3318 	err = qman_portals_probed();
3319 	if (!err)
3320 		return -EPROBE_DEFER;
3321 	if (err < 0) {
3322 		dev_err(dev,
3323 			"failing probe due to qman portals probe error\n");
3324 		return -ENODEV;
3325 	}
3326 
3327 	/* Allocate this early, so we can store relevant information in
3328 	 * the private area
3329 	 */
3330 	net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM);
3331 	if (!net_dev) {
3332 		dev_err(dev, "alloc_etherdev_mq() failed\n");
3333 		return -ENOMEM;
3334 	}
3335 
3336 	/* Do this here, so we can be verbose early */
3337 	SET_NETDEV_DEV(net_dev, dev->parent);
3338 	dev_set_drvdata(dev, net_dev);
3339 
3340 	priv = netdev_priv(net_dev);
3341 	priv->net_dev = net_dev;
3342 
3343 	priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
3344 
3345 	mac_dev = dpaa_mac_dev_get(pdev);
3346 	if (IS_ERR(mac_dev)) {
3347 		netdev_err(net_dev, "dpaa_mac_dev_get() failed\n");
3348 		err = PTR_ERR(mac_dev);
3349 		goto free_netdev;
3350 	}
3351 
3352 	/* Devices used for DMA mapping */
3353 	priv->rx_dma_dev = fman_port_get_device(mac_dev->port[RX]);
3354 	priv->tx_dma_dev = fman_port_get_device(mac_dev->port[TX]);
3355 	err = dma_coerce_mask_and_coherent(priv->rx_dma_dev, DMA_BIT_MASK(40));
3356 	if (!err)
3357 		err = dma_coerce_mask_and_coherent(priv->tx_dma_dev,
3358 						   DMA_BIT_MASK(40));
3359 	if (err) {
3360 		netdev_err(net_dev, "dma_coerce_mask_and_coherent() failed\n");
3361 		goto free_netdev;
3362 	}
3363 
3364 	/* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
3365 	 * we choose conservatively and let the user explicitly set a higher
3366 	 * MTU via ifconfig. Otherwise, the user may end up with different MTUs
3367 	 * in the same LAN.
3368 	 * If on the other hand fsl_fm_max_frm has been chosen below 1500,
3369 	 * start with the maximum allowed.
3370 	 */
3371 	net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
3372 
3373 	netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
3374 		   net_dev->mtu);
3375 
3376 	priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
3377 	priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
3378 
3379 	/* bp init */
3380 	dpaa_bp = dpaa_bp_alloc(dev);
3381 	if (IS_ERR(dpaa_bp)) {
3382 		err = PTR_ERR(dpaa_bp);
3383 		goto free_dpaa_bps;
3384 	}
3385 	/* the raw size of the buffers used for reception */
3386 	dpaa_bp->raw_size = DPAA_BP_RAW_SIZE;
3387 	/* avoid runtime computations by keeping the usable size here */
3388 	dpaa_bp->size = dpaa_bp_size(dpaa_bp->raw_size);
3389 	dpaa_bp->priv = priv;
3390 
3391 	err = dpaa_bp_alloc_pool(dpaa_bp);
3392 	if (err < 0)
3393 		goto free_dpaa_bps;
3394 	priv->dpaa_bp = dpaa_bp;
3395 
3396 	INIT_LIST_HEAD(&priv->dpaa_fq_list);
3397 
3398 	memset(&port_fqs, 0, sizeof(port_fqs));
3399 
3400 	err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
3401 	if (err < 0) {
3402 		dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
3403 		goto free_dpaa_bps;
3404 	}
3405 
3406 	priv->mac_dev = mac_dev;
3407 
3408 	channel = dpaa_get_channel();
3409 	if (channel < 0) {
3410 		dev_err(dev, "dpaa_get_channel() failed\n");
3411 		err = channel;
3412 		goto free_dpaa_bps;
3413 	}
3414 
3415 	priv->channel = (u16)channel;
3416 
3417 	/* Walk the CPUs with affine portals
3418 	 * and add this pool channel to each's dequeue mask.
3419 	 */
3420 	dpaa_eth_add_channel(priv->channel, &pdev->dev);
3421 
3422 	dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
3423 
3424 	/* Create a congestion group for this netdev, with
3425 	 * dynamically-allocated CGR ID.
3426 	 * Must be executed after probing the MAC, but before
3427 	 * assigning the egress FQs to the CGRs.
3428 	 */
3429 	err = dpaa_eth_cgr_init(priv);
3430 	if (err < 0) {
3431 		dev_err(dev, "Error initializing CGR\n");
3432 		goto free_dpaa_bps;
3433 	}
3434 
3435 	err = dpaa_ingress_cgr_init(priv);
3436 	if (err < 0) {
3437 		dev_err(dev, "Error initializing ingress CGR\n");
3438 		goto delete_egress_cgr;
3439 	}
3440 
3441 	/* Add the FQs to the interface, and make them active */
3442 	list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
3443 		err = dpaa_fq_init(dpaa_fq, false);
3444 		if (err < 0)
3445 			goto free_dpaa_fqs;
3446 	}
3447 
3448 	priv->tx_headroom = dpaa_get_headroom(priv->buf_layout, TX);
3449 	priv->rx_headroom = dpaa_get_headroom(priv->buf_layout, RX);
3450 
3451 	/* All real interfaces need their ports initialized */
3452 	err = dpaa_eth_init_ports(mac_dev, dpaa_bp, &port_fqs,
3453 				  &priv->buf_layout[0], dev);
3454 	if (err)
3455 		goto free_dpaa_fqs;
3456 
3457 	/* Rx traffic distribution based on keygen hashing defaults to on */
3458 	priv->keygen_in_use = true;
3459 
3460 	priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
3461 	if (!priv->percpu_priv) {
3462 		dev_err(dev, "devm_alloc_percpu() failed\n");
3463 		err = -ENOMEM;
3464 		goto free_dpaa_fqs;
3465 	}
3466 
3467 	priv->num_tc = 1;
3468 	netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
3469 
3470 	/* Initialize NAPI */
3471 	err = dpaa_napi_add(net_dev);
3472 	if (err < 0)
3473 		goto delete_dpaa_napi;
3474 
3475 	err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
3476 	if (err < 0)
3477 		goto delete_dpaa_napi;
3478 
3479 	dpaa_eth_sysfs_init(&net_dev->dev);
3480 
3481 	netif_info(priv, probe, net_dev, "Probed interface %s\n",
3482 		   net_dev->name);
3483 
3484 	return 0;
3485 
3486 delete_dpaa_napi:
3487 	dpaa_napi_del(net_dev);
3488 free_dpaa_fqs:
3489 	dpaa_fq_free(dev, &priv->dpaa_fq_list);
3490 	qman_delete_cgr_safe(&priv->ingress_cgr);
3491 	qman_release_cgrid(priv->ingress_cgr.cgrid);
3492 delete_egress_cgr:
3493 	qman_delete_cgr_safe(&priv->cgr_data.cgr);
3494 	qman_release_cgrid(priv->cgr_data.cgr.cgrid);
3495 free_dpaa_bps:
3496 	dpaa_bps_free(priv);
3497 free_netdev:
3498 	dev_set_drvdata(dev, NULL);
3499 	free_netdev(net_dev);
3500 
3501 	return err;
3502 }
3503 
3504 static int dpaa_remove(struct platform_device *pdev)
3505 {
3506 	struct net_device *net_dev;
3507 	struct dpaa_priv *priv;
3508 	struct device *dev;
3509 	int err;
3510 
3511 	dev = &pdev->dev;
3512 	net_dev = dev_get_drvdata(dev);
3513 
3514 	priv = netdev_priv(net_dev);
3515 
3516 	dpaa_eth_sysfs_remove(dev);
3517 
3518 	dev_set_drvdata(dev, NULL);
3519 	unregister_netdev(net_dev);
3520 
3521 	err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
3522 
3523 	qman_delete_cgr_safe(&priv->ingress_cgr);
3524 	qman_release_cgrid(priv->ingress_cgr.cgrid);
3525 	qman_delete_cgr_safe(&priv->cgr_data.cgr);
3526 	qman_release_cgrid(priv->cgr_data.cgr.cgrid);
3527 
3528 	dpaa_napi_del(net_dev);
3529 
3530 	dpaa_bps_free(priv);
3531 
3532 	free_netdev(net_dev);
3533 
3534 	return err;
3535 }
3536 
3537 static const struct platform_device_id dpaa_devtype[] = {
3538 	{
3539 		.name = "dpaa-ethernet",
3540 		.driver_data = 0,
3541 	}, {
3542 	}
3543 };
3544 MODULE_DEVICE_TABLE(platform, dpaa_devtype);
3545 
3546 static struct platform_driver dpaa_driver = {
3547 	.driver = {
3548 		.name = KBUILD_MODNAME,
3549 	},
3550 	.id_table = dpaa_devtype,
3551 	.probe = dpaa_eth_probe,
3552 	.remove = dpaa_remove
3553 };
3554 
3555 static int __init dpaa_load(void)
3556 {
3557 	int err;
3558 
3559 	pr_debug("FSL DPAA Ethernet driver\n");
3560 
3561 	/* initialize dpaa_eth mirror values */
3562 	dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
3563 	dpaa_max_frm = fman_get_max_frm();
3564 
3565 	err = platform_driver_register(&dpaa_driver);
3566 	if (err < 0)
3567 		pr_err("Error, platform_driver_register() = %d\n", err);
3568 
3569 	return err;
3570 }
3571 module_init(dpaa_load);
3572 
3573 static void __exit dpaa_unload(void)
3574 {
3575 	platform_driver_unregister(&dpaa_driver);
3576 
3577 	/* Only one channel is used and needs to be released after all
3578 	 * interfaces are removed
3579 	 */
3580 	dpaa_release_channel();
3581 }
3582 module_exit(dpaa_unload);
3583 
3584 MODULE_LICENSE("Dual BSD/GPL");
3585 MODULE_DESCRIPTION("FSL DPAA Ethernet driver");
3586