1 // SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0-or-later 2 /* 3 * Copyright 2008 - 2016 Freescale Semiconductor Inc. 4 * Copyright 2020 NXP 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/init.h> 10 #include <linux/mod_devicetable.h> 11 #include <linux/module.h> 12 #include <linux/of_mdio.h> 13 #include <linux/of_net.h> 14 #include <linux/io.h> 15 #include <linux/if_arp.h> 16 #include <linux/if_vlan.h> 17 #include <linux/icmp.h> 18 #include <linux/ip.h> 19 #include <linux/ipv6.h> 20 #include <linux/platform_device.h> 21 #include <linux/udp.h> 22 #include <linux/tcp.h> 23 #include <linux/net.h> 24 #include <linux/skbuff.h> 25 #include <linux/etherdevice.h> 26 #include <linux/if_ether.h> 27 #include <linux/highmem.h> 28 #include <linux/percpu.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/sort.h> 31 #include <linux/bpf.h> 32 #include <linux/bpf_trace.h> 33 #include <soc/fsl/bman.h> 34 #include <soc/fsl/qman.h> 35 #include "fman.h" 36 #include "fman_port.h" 37 #include "mac.h" 38 #include "dpaa_eth.h" 39 40 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files 41 * using trace events only need to #include <trace/events/sched.h> 42 */ 43 #define CREATE_TRACE_POINTS 44 #include "dpaa_eth_trace.h" 45 46 static int debug = -1; 47 module_param(debug, int, 0444); 48 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)"); 49 50 static u16 tx_timeout = 1000; 51 module_param(tx_timeout, ushort, 0444); 52 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms"); 53 54 #define FM_FD_STAT_RX_ERRORS \ 55 (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL | \ 56 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \ 57 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME | \ 58 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \ 59 FM_FD_ERR_PRS_HDR_ERR) 60 61 #define FM_FD_STAT_TX_ERRORS \ 62 (FM_FD_ERR_UNSUPPORTED_FORMAT | \ 63 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA) 64 65 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \ 66 NETIF_MSG_LINK | NETIF_MSG_IFUP | \ 67 NETIF_MSG_IFDOWN | NETIF_MSG_HW) 68 69 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000 70 /* Ingress congestion threshold on FMan ports 71 * The size in bytes of the ingress tail-drop threshold on FMan ports. 72 * Traffic piling up above this value will be rejected by QMan and discarded 73 * by FMan. 74 */ 75 76 /* Size in bytes of the FQ taildrop threshold */ 77 #define DPAA_FQ_TD 0x200000 78 79 #define DPAA_CS_THRESHOLD_1G 0x06000000 80 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000 81 * The size in bytes of the egress Congestion State notification threshold on 82 * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a 83 * tight loop (e.g. by sending UDP datagrams at "while(1) speed"), 84 * and the larger the frame size, the more acute the problem. 85 * So we have to find a balance between these factors: 86 * - avoiding the device staying congested for a prolonged time (risking 87 * the netdev watchdog to fire - see also the tx_timeout module param); 88 * - affecting performance of protocols such as TCP, which otherwise 89 * behave well under the congestion notification mechanism; 90 * - preventing the Tx cores from tightly-looping (as if the congestion 91 * threshold was too low to be effective); 92 * - running out of memory if the CS threshold is set too high. 93 */ 94 95 #define DPAA_CS_THRESHOLD_10G 0x10000000 96 /* The size in bytes of the egress Congestion State notification threshold on 97 * 10G ports, range 0x1000 .. 0x10000000 98 */ 99 100 /* Largest value that the FQD's OAL field can hold */ 101 #define FSL_QMAN_MAX_OAL 127 102 103 /* Default alignment for start of data in an Rx FD */ 104 #ifdef CONFIG_DPAA_ERRATUM_A050385 105 /* aligning data start to 64 avoids DMA transaction splits, unless the buffer 106 * is crossing a 4k page boundary 107 */ 108 #define DPAA_FD_DATA_ALIGNMENT (fman_has_errata_a050385() ? 64 : 16) 109 /* aligning to 256 avoids DMA transaction splits caused by 4k page boundary 110 * crossings; also, all SG fragments except the last must have a size multiple 111 * of 256 to avoid DMA transaction splits 112 */ 113 #define DPAA_A050385_ALIGN 256 114 #define DPAA_FD_RX_DATA_ALIGNMENT (fman_has_errata_a050385() ? \ 115 DPAA_A050385_ALIGN : 16) 116 #else 117 #define DPAA_FD_DATA_ALIGNMENT 16 118 #define DPAA_FD_RX_DATA_ALIGNMENT DPAA_FD_DATA_ALIGNMENT 119 #endif 120 121 /* The DPAA requires 256 bytes reserved and mapped for the SGT */ 122 #define DPAA_SGT_SIZE 256 123 124 /* Values for the L3R field of the FM Parse Results 125 */ 126 /* L3 Type field: First IP Present IPv4 */ 127 #define FM_L3_PARSE_RESULT_IPV4 0x8000 128 /* L3 Type field: First IP Present IPv6 */ 129 #define FM_L3_PARSE_RESULT_IPV6 0x4000 130 /* Values for the L4R field of the FM Parse Results */ 131 /* L4 Type field: UDP */ 132 #define FM_L4_PARSE_RESULT_UDP 0x40 133 /* L4 Type field: TCP */ 134 #define FM_L4_PARSE_RESULT_TCP 0x20 135 136 /* FD status field indicating whether the FM Parser has attempted to validate 137 * the L4 csum of the frame. 138 * Note that having this bit set doesn't necessarily imply that the checksum 139 * is valid. One would have to check the parse results to find that out. 140 */ 141 #define FM_FD_STAT_L4CV 0x00000004 142 143 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */ 144 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */ 145 146 #define FSL_DPAA_BPID_INV 0xff 147 #define FSL_DPAA_ETH_MAX_BUF_COUNT 128 148 #define FSL_DPAA_ETH_REFILL_THRESHOLD 80 149 150 #define DPAA_TX_PRIV_DATA_SIZE 16 151 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result) 152 #define DPAA_TIME_STAMP_SIZE 8 153 #define DPAA_HASH_RESULTS_SIZE 8 154 #define DPAA_HWA_SIZE (DPAA_PARSE_RESULTS_SIZE + DPAA_TIME_STAMP_SIZE \ 155 + DPAA_HASH_RESULTS_SIZE) 156 #define DPAA_RX_PRIV_DATA_DEFAULT_SIZE (DPAA_TX_PRIV_DATA_SIZE + \ 157 XDP_PACKET_HEADROOM - DPAA_HWA_SIZE) 158 #ifdef CONFIG_DPAA_ERRATUM_A050385 159 #define DPAA_RX_PRIV_DATA_A050385_SIZE (DPAA_A050385_ALIGN - DPAA_HWA_SIZE) 160 #define DPAA_RX_PRIV_DATA_SIZE (fman_has_errata_a050385() ? \ 161 DPAA_RX_PRIV_DATA_A050385_SIZE : \ 162 DPAA_RX_PRIV_DATA_DEFAULT_SIZE) 163 #else 164 #define DPAA_RX_PRIV_DATA_SIZE DPAA_RX_PRIV_DATA_DEFAULT_SIZE 165 #endif 166 167 #define DPAA_ETH_PCD_RXQ_NUM 128 168 169 #define DPAA_ENQUEUE_RETRIES 100000 170 171 enum port_type {RX, TX}; 172 173 struct fm_port_fqs { 174 struct dpaa_fq *tx_defq; 175 struct dpaa_fq *tx_errq; 176 struct dpaa_fq *rx_defq; 177 struct dpaa_fq *rx_errq; 178 struct dpaa_fq *rx_pcdq; 179 }; 180 181 /* All the dpa bps in use at any moment */ 182 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS]; 183 184 #define DPAA_BP_RAW_SIZE 4096 185 186 #ifdef CONFIG_DPAA_ERRATUM_A050385 187 #define dpaa_bp_size(raw_size) (SKB_WITH_OVERHEAD(raw_size) & \ 188 ~(DPAA_A050385_ALIGN - 1)) 189 #else 190 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD(raw_size) 191 #endif 192 193 static int dpaa_max_frm; 194 195 static int dpaa_rx_extra_headroom; 196 197 #define dpaa_get_max_mtu() \ 198 (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN)) 199 200 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed); 201 202 static int dpaa_netdev_init(struct net_device *net_dev, 203 const struct net_device_ops *dpaa_ops, 204 u16 tx_timeout) 205 { 206 struct dpaa_priv *priv = netdev_priv(net_dev); 207 struct device *dev = net_dev->dev.parent; 208 struct mac_device *mac_dev = priv->mac_dev; 209 struct dpaa_percpu_priv *percpu_priv; 210 const u8 *mac_addr; 211 int i, err; 212 213 /* Although we access another CPU's private data here 214 * we do it at initialization so it is safe 215 */ 216 for_each_possible_cpu(i) { 217 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 218 percpu_priv->net_dev = net_dev; 219 } 220 221 net_dev->netdev_ops = dpaa_ops; 222 mac_addr = mac_dev->addr; 223 224 net_dev->mem_start = (unsigned long)priv->mac_dev->res->start; 225 net_dev->mem_end = (unsigned long)priv->mac_dev->res->end; 226 227 net_dev->min_mtu = ETH_MIN_MTU; 228 net_dev->max_mtu = dpaa_get_max_mtu(); 229 230 net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 231 NETIF_F_RXHASH); 232 233 net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA; 234 /* The kernels enables GSO automatically, if we declare NETIF_F_SG. 235 * For conformity, we'll still declare GSO explicitly. 236 */ 237 net_dev->features |= NETIF_F_GSO; 238 net_dev->features |= NETIF_F_RXCSUM; 239 240 net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 241 net_dev->lltx = true; 242 /* we do not want shared skbs on TX */ 243 net_dev->priv_flags &= ~IFF_TX_SKB_SHARING; 244 245 net_dev->features |= net_dev->hw_features; 246 net_dev->vlan_features = net_dev->features; 247 248 net_dev->xdp_features = NETDEV_XDP_ACT_BASIC | 249 NETDEV_XDP_ACT_REDIRECT | 250 NETDEV_XDP_ACT_NDO_XMIT; 251 252 if (is_valid_ether_addr(mac_addr)) { 253 memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len); 254 eth_hw_addr_set(net_dev, mac_addr); 255 } else { 256 eth_hw_addr_random(net_dev); 257 err = mac_dev->change_addr(mac_dev->fman_mac, 258 (const enet_addr_t *)net_dev->dev_addr); 259 if (err) { 260 dev_err(dev, "Failed to set random MAC address\n"); 261 return -EINVAL; 262 } 263 dev_info(dev, "Using random MAC address: %pM\n", 264 net_dev->dev_addr); 265 } 266 267 net_dev->ethtool_ops = &dpaa_ethtool_ops; 268 269 net_dev->needed_headroom = priv->tx_headroom; 270 net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout); 271 272 /* The rest of the config is filled in by the mac device already */ 273 mac_dev->phylink_config.dev = &net_dev->dev; 274 mac_dev->phylink_config.type = PHYLINK_NETDEV; 275 mac_dev->update_speed = dpaa_eth_cgr_set_speed; 276 mac_dev->phylink = phylink_create(&mac_dev->phylink_config, 277 dev_fwnode(mac_dev->dev), 278 mac_dev->phy_if, 279 mac_dev->phylink_ops); 280 if (IS_ERR(mac_dev->phylink)) { 281 err = PTR_ERR(mac_dev->phylink); 282 dev_err_probe(dev, err, "Could not create phylink\n"); 283 return err; 284 } 285 286 /* start without the RUNNING flag, phylib controls it later */ 287 netif_carrier_off(net_dev); 288 289 err = register_netdev(net_dev); 290 if (err < 0) { 291 dev_err(dev, "register_netdev() = %d\n", err); 292 phylink_destroy(mac_dev->phylink); 293 return err; 294 } 295 296 return 0; 297 } 298 299 static int dpaa_stop(struct net_device *net_dev) 300 { 301 struct mac_device *mac_dev; 302 struct dpaa_priv *priv; 303 int i, error; 304 int err = 0; 305 306 priv = netdev_priv(net_dev); 307 mac_dev = priv->mac_dev; 308 309 netif_tx_stop_all_queues(net_dev); 310 /* Allow the Fman (Tx) port to process in-flight frames before we 311 * try switching it off. 312 */ 313 msleep(200); 314 315 phylink_stop(mac_dev->phylink); 316 mac_dev->disable(mac_dev->fman_mac); 317 318 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) { 319 error = fman_port_disable(mac_dev->port[i]); 320 if (error) 321 err = error; 322 } 323 324 phylink_disconnect_phy(mac_dev->phylink); 325 net_dev->phydev = NULL; 326 327 msleep(200); 328 329 return err; 330 } 331 332 static void dpaa_tx_timeout(struct net_device *net_dev, unsigned int txqueue) 333 { 334 struct dpaa_percpu_priv *percpu_priv; 335 const struct dpaa_priv *priv; 336 337 priv = netdev_priv(net_dev); 338 percpu_priv = this_cpu_ptr(priv->percpu_priv); 339 340 netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n", 341 jiffies_to_msecs(jiffies - dev_trans_start(net_dev))); 342 343 percpu_priv->stats.tx_errors++; 344 } 345 346 /* Calculates the statistics for the given device by adding the statistics 347 * collected by each CPU. 348 */ 349 static void dpaa_get_stats64(struct net_device *net_dev, 350 struct rtnl_link_stats64 *s) 351 { 352 int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64); 353 struct dpaa_priv *priv = netdev_priv(net_dev); 354 struct dpaa_percpu_priv *percpu_priv; 355 u64 *netstats = (u64 *)s; 356 u64 *cpustats; 357 int i, j; 358 359 for_each_possible_cpu(i) { 360 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 361 362 cpustats = (u64 *)&percpu_priv->stats; 363 364 /* add stats from all CPUs */ 365 for (j = 0; j < numstats; j++) 366 netstats[j] += cpustats[j]; 367 } 368 } 369 370 static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type, 371 void *type_data) 372 { 373 struct dpaa_priv *priv = netdev_priv(net_dev); 374 int num_txqs_per_tc = dpaa_num_txqs_per_tc(); 375 struct tc_mqprio_qopt *mqprio = type_data; 376 u8 num_tc; 377 int i; 378 379 if (type != TC_SETUP_QDISC_MQPRIO) 380 return -EOPNOTSUPP; 381 382 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 383 num_tc = mqprio->num_tc; 384 385 if (num_tc == priv->num_tc) 386 return 0; 387 388 if (!num_tc) { 389 netdev_reset_tc(net_dev); 390 goto out; 391 } 392 393 if (num_tc > DPAA_TC_NUM) { 394 netdev_err(net_dev, "Too many traffic classes: max %d supported.\n", 395 DPAA_TC_NUM); 396 return -EINVAL; 397 } 398 399 netdev_set_num_tc(net_dev, num_tc); 400 401 for (i = 0; i < num_tc; i++) 402 netdev_set_tc_queue(net_dev, i, num_txqs_per_tc, 403 i * num_txqs_per_tc); 404 405 out: 406 priv->num_tc = num_tc ? : 1; 407 netif_set_real_num_tx_queues(net_dev, priv->num_tc * num_txqs_per_tc); 408 return 0; 409 } 410 411 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev) 412 { 413 struct dpaa_eth_data *eth_data; 414 struct device *dpaa_dev; 415 struct mac_device *mac_dev; 416 417 dpaa_dev = &pdev->dev; 418 eth_data = dpaa_dev->platform_data; 419 if (!eth_data) { 420 dev_err(dpaa_dev, "eth_data missing\n"); 421 return ERR_PTR(-ENODEV); 422 } 423 mac_dev = eth_data->mac_dev; 424 if (!mac_dev) { 425 dev_err(dpaa_dev, "mac_dev missing\n"); 426 return ERR_PTR(-EINVAL); 427 } 428 429 return mac_dev; 430 } 431 432 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr) 433 { 434 const struct dpaa_priv *priv; 435 struct mac_device *mac_dev; 436 struct sockaddr old_addr; 437 int err; 438 439 priv = netdev_priv(net_dev); 440 441 memcpy(old_addr.sa_data, net_dev->dev_addr, ETH_ALEN); 442 443 err = eth_mac_addr(net_dev, addr); 444 if (err < 0) { 445 netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err); 446 return err; 447 } 448 449 mac_dev = priv->mac_dev; 450 451 err = mac_dev->change_addr(mac_dev->fman_mac, 452 (const enet_addr_t *)net_dev->dev_addr); 453 if (err < 0) { 454 netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n", 455 err); 456 /* reverting to previous address */ 457 eth_mac_addr(net_dev, &old_addr); 458 459 return err; 460 } 461 462 return 0; 463 } 464 465 static int dpaa_addr_sync(struct net_device *net_dev, const u8 *addr) 466 { 467 const struct dpaa_priv *priv = netdev_priv(net_dev); 468 469 return priv->mac_dev->add_hash_mac_addr(priv->mac_dev->fman_mac, 470 (enet_addr_t *)addr); 471 } 472 473 static int dpaa_addr_unsync(struct net_device *net_dev, const u8 *addr) 474 { 475 const struct dpaa_priv *priv = netdev_priv(net_dev); 476 477 return priv->mac_dev->remove_hash_mac_addr(priv->mac_dev->fman_mac, 478 (enet_addr_t *)addr); 479 } 480 481 static void dpaa_set_rx_mode(struct net_device *net_dev) 482 { 483 const struct dpaa_priv *priv; 484 int err; 485 486 priv = netdev_priv(net_dev); 487 488 if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) { 489 priv->mac_dev->promisc = !priv->mac_dev->promisc; 490 err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac, 491 priv->mac_dev->promisc); 492 if (err < 0) 493 netif_err(priv, drv, net_dev, 494 "mac_dev->set_promisc() = %d\n", 495 err); 496 } 497 498 if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) { 499 priv->mac_dev->allmulti = !priv->mac_dev->allmulti; 500 err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac, 501 priv->mac_dev->allmulti); 502 if (err < 0) 503 netif_err(priv, drv, net_dev, 504 "mac_dev->set_allmulti() = %d\n", 505 err); 506 } 507 508 err = __dev_mc_sync(net_dev, dpaa_addr_sync, dpaa_addr_unsync); 509 if (err < 0) 510 netif_err(priv, drv, net_dev, "dpaa_addr_sync() = %d\n", 511 err); 512 } 513 514 static struct dpaa_bp *dpaa_bpid2pool(int bpid) 515 { 516 if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS)) 517 return NULL; 518 519 return dpaa_bp_array[bpid]; 520 } 521 522 /* checks if this bpool is already allocated */ 523 static bool dpaa_bpid2pool_use(int bpid) 524 { 525 if (dpaa_bpid2pool(bpid)) { 526 refcount_inc(&dpaa_bp_array[bpid]->refs); 527 return true; 528 } 529 530 return false; 531 } 532 533 /* called only once per bpid by dpaa_bp_alloc_pool() */ 534 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp) 535 { 536 dpaa_bp_array[bpid] = dpaa_bp; 537 refcount_set(&dpaa_bp->refs, 1); 538 } 539 540 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp) 541 { 542 int err; 543 544 if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) { 545 pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n", 546 __func__); 547 return -EINVAL; 548 } 549 550 /* If the pool is already specified, we only create one per bpid */ 551 if (dpaa_bp->bpid != FSL_DPAA_BPID_INV && 552 dpaa_bpid2pool_use(dpaa_bp->bpid)) 553 return 0; 554 555 if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) { 556 dpaa_bp->pool = bman_new_pool(); 557 if (!dpaa_bp->pool) { 558 pr_err("%s: bman_new_pool() failed\n", 559 __func__); 560 return -ENODEV; 561 } 562 563 dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool); 564 } 565 566 if (dpaa_bp->seed_cb) { 567 err = dpaa_bp->seed_cb(dpaa_bp); 568 if (err) 569 goto pool_seed_failed; 570 } 571 572 dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp); 573 574 return 0; 575 576 pool_seed_failed: 577 pr_err("%s: pool seeding failed\n", __func__); 578 bman_free_pool(dpaa_bp->pool); 579 580 return err; 581 } 582 583 /* remove and free all the buffers from the given buffer pool */ 584 static void dpaa_bp_drain(struct dpaa_bp *bp) 585 { 586 u8 num = 8; 587 int ret; 588 589 do { 590 struct bm_buffer bmb[8]; 591 int i; 592 593 ret = bman_acquire(bp->pool, bmb, num); 594 if (ret < 0) { 595 if (num == 8) { 596 /* we have less than 8 buffers left; 597 * drain them one by one 598 */ 599 num = 1; 600 ret = 1; 601 continue; 602 } else { 603 /* Pool is fully drained */ 604 break; 605 } 606 } 607 608 if (bp->free_buf_cb) 609 for (i = 0; i < num; i++) 610 bp->free_buf_cb(bp, &bmb[i]); 611 } while (ret > 0); 612 } 613 614 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp) 615 { 616 struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid); 617 618 /* the mapping between bpid and dpaa_bp is done very late in the 619 * allocation procedure; if something failed before the mapping, the bp 620 * was not configured, therefore we don't need the below instructions 621 */ 622 if (!bp) 623 return; 624 625 if (!refcount_dec_and_test(&bp->refs)) 626 return; 627 628 if (bp->free_buf_cb) 629 dpaa_bp_drain(bp); 630 631 dpaa_bp_array[bp->bpid] = NULL; 632 bman_free_pool(bp->pool); 633 } 634 635 static void dpaa_bps_free(struct dpaa_priv *priv) 636 { 637 dpaa_bp_free(priv->dpaa_bp); 638 } 639 640 /* Use multiple WQs for FQ assignment: 641 * - Tx Confirmation queues go to WQ1. 642 * - Rx Error and Tx Error queues go to WQ5 (giving them a better chance 643 * to be scheduled, in case there are many more FQs in WQ6). 644 * - Rx Default goes to WQ6. 645 * - Tx queues go to different WQs depending on their priority. Equal 646 * chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and 647 * WQ0 (highest priority). 648 * This ensures that Tx-confirmed buffers are timely released. In particular, 649 * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they 650 * are greatly outnumbered by other FQs in the system, while 651 * dequeue scheduling is round-robin. 652 */ 653 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx) 654 { 655 switch (fq->fq_type) { 656 case FQ_TYPE_TX_CONFIRM: 657 case FQ_TYPE_TX_CONF_MQ: 658 fq->wq = 1; 659 break; 660 case FQ_TYPE_RX_ERROR: 661 case FQ_TYPE_TX_ERROR: 662 fq->wq = 5; 663 break; 664 case FQ_TYPE_RX_DEFAULT: 665 case FQ_TYPE_RX_PCD: 666 fq->wq = 6; 667 break; 668 case FQ_TYPE_TX: 669 switch (idx / dpaa_num_txqs_per_tc()) { 670 case 0: 671 /* Low priority (best effort) */ 672 fq->wq = 6; 673 break; 674 case 1: 675 /* Medium priority */ 676 fq->wq = 2; 677 break; 678 case 2: 679 /* High priority */ 680 fq->wq = 1; 681 break; 682 case 3: 683 /* Very high priority */ 684 fq->wq = 0; 685 break; 686 default: 687 WARN(1, "Too many TX FQs: more than %zu!\n", 688 dpaa_max_num_txqs()); 689 } 690 break; 691 default: 692 WARN(1, "Invalid FQ type %d for FQID %d!\n", 693 fq->fq_type, fq->fqid); 694 } 695 } 696 697 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev, 698 u32 start, u32 count, 699 struct list_head *list, 700 enum dpaa_fq_type fq_type) 701 { 702 struct dpaa_fq *dpaa_fq; 703 int i; 704 705 dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq), 706 GFP_KERNEL); 707 if (!dpaa_fq) 708 return NULL; 709 710 for (i = 0; i < count; i++) { 711 dpaa_fq[i].fq_type = fq_type; 712 dpaa_fq[i].fqid = start ? start + i : 0; 713 list_add_tail(&dpaa_fq[i].list, list); 714 } 715 716 for (i = 0; i < count; i++) 717 dpaa_assign_wq(dpaa_fq + i, i); 718 719 return dpaa_fq; 720 } 721 722 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list, 723 struct fm_port_fqs *port_fqs) 724 { 725 struct dpaa_fq *dpaa_fq; 726 u32 fq_base, fq_base_aligned, i; 727 728 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR); 729 if (!dpaa_fq) 730 goto fq_alloc_failed; 731 732 port_fqs->rx_errq = &dpaa_fq[0]; 733 734 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT); 735 if (!dpaa_fq) 736 goto fq_alloc_failed; 737 738 port_fqs->rx_defq = &dpaa_fq[0]; 739 740 /* the PCD FQIDs range needs to be aligned for correct operation */ 741 if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM)) 742 goto fq_alloc_failed; 743 744 fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM); 745 746 for (i = fq_base; i < fq_base_aligned; i++) 747 qman_release_fqid(i); 748 749 for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM; 750 i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++) 751 qman_release_fqid(i); 752 753 dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM, 754 list, FQ_TYPE_RX_PCD); 755 if (!dpaa_fq) 756 goto fq_alloc_failed; 757 758 port_fqs->rx_pcdq = &dpaa_fq[0]; 759 760 if (!dpaa_fq_alloc(dev, 0, dpaa_max_num_txqs(), list, 761 FQ_TYPE_TX_CONF_MQ)) 762 goto fq_alloc_failed; 763 764 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR); 765 if (!dpaa_fq) 766 goto fq_alloc_failed; 767 768 port_fqs->tx_errq = &dpaa_fq[0]; 769 770 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM); 771 if (!dpaa_fq) 772 goto fq_alloc_failed; 773 774 port_fqs->tx_defq = &dpaa_fq[0]; 775 776 if (!dpaa_fq_alloc(dev, 0, dpaa_max_num_txqs(), list, FQ_TYPE_TX)) 777 goto fq_alloc_failed; 778 779 return 0; 780 781 fq_alloc_failed: 782 dev_err(dev, "dpaa_fq_alloc() failed\n"); 783 return -ENOMEM; 784 } 785 786 static u32 rx_pool_channel; 787 static DEFINE_SPINLOCK(rx_pool_channel_init); 788 789 static int dpaa_get_channel(void) 790 { 791 spin_lock(&rx_pool_channel_init); 792 if (!rx_pool_channel) { 793 u32 pool; 794 int ret; 795 796 ret = qman_alloc_pool(&pool); 797 798 if (!ret) 799 rx_pool_channel = pool; 800 } 801 spin_unlock(&rx_pool_channel_init); 802 if (!rx_pool_channel) 803 return -ENOMEM; 804 return rx_pool_channel; 805 } 806 807 static void dpaa_release_channel(void) 808 { 809 qman_release_pool(rx_pool_channel); 810 } 811 812 static void dpaa_eth_add_channel(u16 channel, struct device *dev) 813 { 814 u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel); 815 const cpumask_t *cpus = qman_affine_cpus(); 816 struct qman_portal *portal; 817 int cpu; 818 819 for_each_cpu_and(cpu, cpus, cpu_online_mask) { 820 portal = qman_get_affine_portal(cpu); 821 qman_p_static_dequeue_add(portal, pool); 822 qman_start_using_portal(portal, dev); 823 } 824 } 825 826 /* Congestion group state change notification callback. 827 * Stops the device's egress queues while they are congested and 828 * wakes them upon exiting congested state. 829 * Also updates some CGR-related stats. 830 */ 831 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr, 832 int congested) 833 { 834 struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr, 835 struct dpaa_priv, cgr_data.cgr); 836 837 if (congested) { 838 priv->cgr_data.congestion_start_jiffies = jiffies; 839 netif_tx_stop_all_queues(priv->net_dev); 840 priv->cgr_data.cgr_congested_count++; 841 } else { 842 priv->cgr_data.congested_jiffies += 843 (jiffies - priv->cgr_data.congestion_start_jiffies); 844 netif_tx_wake_all_queues(priv->net_dev); 845 } 846 } 847 848 static int dpaa_eth_cgr_init(struct dpaa_priv *priv) 849 { 850 struct qm_mcc_initcgr initcgr; 851 u32 cs_th; 852 int err; 853 854 err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid); 855 if (err < 0) { 856 if (netif_msg_drv(priv)) 857 pr_err("%s: Error %d allocating CGR ID\n", 858 __func__, err); 859 goto out_error; 860 } 861 priv->cgr_data.cgr.cb = dpaa_eth_cgscn; 862 863 /* Enable Congestion State Change Notifications and CS taildrop */ 864 memset(&initcgr, 0, sizeof(initcgr)); 865 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES); 866 initcgr.cgr.cscn_en = QM_CGR_EN; 867 868 /* Set different thresholds based on the configured MAC speed. 869 * This may turn suboptimal if the MAC is reconfigured at another 870 * speed, so MACs must call dpaa_eth_cgr_set_speed in their link_up 871 * callback. 872 */ 873 if (priv->mac_dev->phylink_config.mac_capabilities & MAC_10000FD) 874 cs_th = DPAA_CS_THRESHOLD_10G; 875 else 876 cs_th = DPAA_CS_THRESHOLD_1G; 877 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1); 878 879 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN); 880 initcgr.cgr.cstd_en = QM_CGR_EN; 881 882 err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT, 883 &initcgr); 884 if (err < 0) { 885 if (netif_msg_drv(priv)) 886 pr_err("%s: Error %d creating CGR with ID %d\n", 887 __func__, err, priv->cgr_data.cgr.cgrid); 888 qman_release_cgrid(priv->cgr_data.cgr.cgrid); 889 goto out_error; 890 } 891 if (netif_msg_drv(priv)) 892 pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n", 893 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr, 894 priv->cgr_data.cgr.chan); 895 896 out_error: 897 return err; 898 } 899 900 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed) 901 { 902 struct net_device *net_dev = to_net_dev(mac_dev->phylink_config.dev); 903 struct dpaa_priv *priv = netdev_priv(net_dev); 904 struct qm_mcc_initcgr opts = { }; 905 u32 cs_th; 906 int err; 907 908 opts.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES); 909 switch (speed) { 910 case SPEED_10000: 911 cs_th = DPAA_CS_THRESHOLD_10G; 912 break; 913 case SPEED_1000: 914 default: 915 cs_th = DPAA_CS_THRESHOLD_1G; 916 break; 917 } 918 qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, cs_th, 1); 919 920 err = qman_update_cgr_safe(&priv->cgr_data.cgr, &opts); 921 if (err) 922 netdev_err(net_dev, "could not update speed: %d\n", err); 923 } 924 925 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv, 926 struct dpaa_fq *fq, 927 const struct qman_fq *template) 928 { 929 fq->fq_base = *template; 930 fq->net_dev = priv->net_dev; 931 932 fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE; 933 fq->channel = priv->channel; 934 } 935 936 static inline void dpaa_setup_egress(const struct dpaa_priv *priv, 937 struct dpaa_fq *fq, 938 struct fman_port *port, 939 const struct qman_fq *template) 940 { 941 fq->fq_base = *template; 942 fq->net_dev = priv->net_dev; 943 944 if (port) { 945 fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL; 946 fq->channel = (u16)fman_port_get_qman_channel_id(port); 947 } else { 948 fq->flags = QMAN_FQ_FLAG_NO_MODIFY; 949 } 950 } 951 952 static int dpaa_fq_setup(struct dpaa_priv *priv, 953 const struct dpaa_fq_cbs *fq_cbs, 954 struct fman_port *tx_port) 955 { 956 int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu; 957 const cpumask_t *affine_cpus = qman_affine_cpus(); 958 struct dpaa_fq *fq; 959 u16 *channels; 960 961 channels = kcalloc(num_possible_cpus(), sizeof(u16), GFP_KERNEL); 962 if (!channels) 963 return -ENOMEM; 964 965 for_each_cpu_and(cpu, affine_cpus, cpu_online_mask) 966 channels[num_portals++] = qman_affine_channel(cpu); 967 968 if (num_portals == 0) 969 dev_err(priv->net_dev->dev.parent, 970 "No Qman software (affine) channels found\n"); 971 972 /* Initialize each FQ in the list */ 973 list_for_each_entry(fq, &priv->dpaa_fq_list, list) { 974 switch (fq->fq_type) { 975 case FQ_TYPE_RX_DEFAULT: 976 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq); 977 break; 978 case FQ_TYPE_RX_ERROR: 979 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq); 980 break; 981 case FQ_TYPE_RX_PCD: 982 if (!num_portals) 983 continue; 984 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq); 985 fq->channel = channels[portal_cnt++ % num_portals]; 986 break; 987 case FQ_TYPE_TX: 988 dpaa_setup_egress(priv, fq, tx_port, 989 &fq_cbs->egress_ern); 990 priv->egress_fqs[egress_cnt++] = &fq->fq_base; 991 break; 992 case FQ_TYPE_TX_CONF_MQ: 993 priv->conf_fqs[conf_cnt++] = &fq->fq_base; 994 fallthrough; 995 case FQ_TYPE_TX_CONFIRM: 996 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq); 997 break; 998 case FQ_TYPE_TX_ERROR: 999 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq); 1000 break; 1001 default: 1002 dev_warn(priv->net_dev->dev.parent, 1003 "Unknown FQ type detected!\n"); 1004 break; 1005 } 1006 } 1007 1008 kfree(channels); 1009 1010 return 0; 1011 } 1012 1013 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv, 1014 struct qman_fq *tx_fq) 1015 { 1016 int i; 1017 1018 for (i = 0; i < dpaa_max_num_txqs(); i++) 1019 if (priv->egress_fqs[i] == tx_fq) 1020 return i; 1021 1022 return -EINVAL; 1023 } 1024 1025 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable) 1026 { 1027 const struct dpaa_priv *priv; 1028 struct qman_fq *confq = NULL; 1029 struct qm_mcc_initfq initfq; 1030 struct device *dev; 1031 struct qman_fq *fq; 1032 int queue_id; 1033 int err; 1034 1035 priv = netdev_priv(dpaa_fq->net_dev); 1036 dev = dpaa_fq->net_dev->dev.parent; 1037 1038 if (dpaa_fq->fqid == 0) 1039 dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID; 1040 1041 dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY); 1042 1043 err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base); 1044 if (err) { 1045 dev_err(dev, "qman_create_fq() failed\n"); 1046 return err; 1047 } 1048 fq = &dpaa_fq->fq_base; 1049 1050 if (dpaa_fq->init) { 1051 memset(&initfq, 0, sizeof(initfq)); 1052 1053 initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL); 1054 /* Note: we may get to keep an empty FQ in cache */ 1055 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE); 1056 1057 /* Try to reduce the number of portal interrupts for 1058 * Tx Confirmation FQs. 1059 */ 1060 if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM) 1061 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK); 1062 1063 /* FQ placement */ 1064 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ); 1065 1066 qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq); 1067 1068 /* Put all egress queues in a congestion group of their own. 1069 * Sensu stricto, the Tx confirmation queues are Rx FQs, 1070 * rather than Tx - but they nonetheless account for the 1071 * memory footprint on behalf of egress traffic. We therefore 1072 * place them in the netdev's CGR, along with the Tx FQs. 1073 */ 1074 if (dpaa_fq->fq_type == FQ_TYPE_TX || 1075 dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM || 1076 dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) { 1077 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID); 1078 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE); 1079 initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid; 1080 /* Set a fixed overhead accounting, in an attempt to 1081 * reduce the impact of fixed-size skb shells and the 1082 * driver's needed headroom on system memory. This is 1083 * especially the case when the egress traffic is 1084 * composed of small datagrams. 1085 * Unfortunately, QMan's OAL value is capped to an 1086 * insufficient value, but even that is better than 1087 * no overhead accounting at all. 1088 */ 1089 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC); 1090 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG); 1091 qm_fqd_set_oal(&initfq.fqd, 1092 min(sizeof(struct sk_buff) + 1093 priv->tx_headroom, 1094 (size_t)FSL_QMAN_MAX_OAL)); 1095 } 1096 1097 if (td_enable) { 1098 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH); 1099 qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1); 1100 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE); 1101 } 1102 1103 if (dpaa_fq->fq_type == FQ_TYPE_TX) { 1104 queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base); 1105 if (queue_id >= 0) 1106 confq = priv->conf_fqs[queue_id]; 1107 if (confq) { 1108 initfq.we_mask |= 1109 cpu_to_be16(QM_INITFQ_WE_CONTEXTA); 1110 /* ContextA: OVOM=1(use contextA2 bits instead of ICAD) 1111 * A2V=1 (contextA A2 field is valid) 1112 * A0V=1 (contextA A0 field is valid) 1113 * B0V=1 (contextB field is valid) 1114 * ContextA A2: EBD=1 (deallocate buffers inside FMan) 1115 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID) 1116 */ 1117 qm_fqd_context_a_set64(&initfq.fqd, 1118 0x1e00000080000000ULL); 1119 } 1120 } 1121 1122 /* Put all the ingress queues in our "ingress CGR". */ 1123 if (priv->use_ingress_cgr && 1124 (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || 1125 dpaa_fq->fq_type == FQ_TYPE_RX_ERROR || 1126 dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) { 1127 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID); 1128 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE); 1129 initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid; 1130 /* Set a fixed overhead accounting, just like for the 1131 * egress CGR. 1132 */ 1133 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC); 1134 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG); 1135 qm_fqd_set_oal(&initfq.fqd, 1136 min(sizeof(struct sk_buff) + 1137 priv->tx_headroom, 1138 (size_t)FSL_QMAN_MAX_OAL)); 1139 } 1140 1141 /* Initialization common to all ingress queues */ 1142 if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) { 1143 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA); 1144 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE | 1145 QM_FQCTRL_CTXASTASHING); 1146 initfq.fqd.context_a.stashing.exclusive = 1147 QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX | 1148 QM_STASHING_EXCL_ANNOTATION; 1149 qm_fqd_set_stashing(&initfq.fqd, 1, 2, 1150 DIV_ROUND_UP(sizeof(struct qman_fq), 1151 64)); 1152 } 1153 1154 err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq); 1155 if (err < 0) { 1156 dev_err(dev, "qman_init_fq(%u) = %d\n", 1157 qman_fq_fqid(fq), err); 1158 qman_destroy_fq(fq); 1159 return err; 1160 } 1161 } 1162 1163 dpaa_fq->fqid = qman_fq_fqid(fq); 1164 1165 if (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || 1166 dpaa_fq->fq_type == FQ_TYPE_RX_PCD) { 1167 err = xdp_rxq_info_reg(&dpaa_fq->xdp_rxq, dpaa_fq->net_dev, 1168 dpaa_fq->fqid, 0); 1169 if (err) { 1170 dev_err(dev, "xdp_rxq_info_reg() = %d\n", err); 1171 return err; 1172 } 1173 1174 err = xdp_rxq_info_reg_mem_model(&dpaa_fq->xdp_rxq, 1175 MEM_TYPE_PAGE_ORDER0, NULL); 1176 if (err) { 1177 dev_err(dev, "xdp_rxq_info_reg_mem_model() = %d\n", 1178 err); 1179 xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq); 1180 return err; 1181 } 1182 } 1183 1184 return 0; 1185 } 1186 1187 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq) 1188 { 1189 const struct dpaa_priv *priv; 1190 struct dpaa_fq *dpaa_fq; 1191 int err, error; 1192 1193 err = 0; 1194 1195 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); 1196 priv = netdev_priv(dpaa_fq->net_dev); 1197 1198 if (dpaa_fq->init) { 1199 err = qman_retire_fq(fq, NULL); 1200 if (err < 0 && netif_msg_drv(priv)) 1201 dev_err(dev, "qman_retire_fq(%u) = %d\n", 1202 qman_fq_fqid(fq), err); 1203 1204 error = qman_oos_fq(fq); 1205 if (error < 0 && netif_msg_drv(priv)) { 1206 dev_err(dev, "qman_oos_fq(%u) = %d\n", 1207 qman_fq_fqid(fq), error); 1208 if (err >= 0) 1209 err = error; 1210 } 1211 } 1212 1213 if ((dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || 1214 dpaa_fq->fq_type == FQ_TYPE_RX_PCD) && 1215 xdp_rxq_info_is_reg(&dpaa_fq->xdp_rxq)) 1216 xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq); 1217 1218 qman_destroy_fq(fq); 1219 list_del(&dpaa_fq->list); 1220 1221 return err; 1222 } 1223 1224 static int dpaa_fq_free(struct device *dev, struct list_head *list) 1225 { 1226 struct dpaa_fq *dpaa_fq, *tmp; 1227 int err, error; 1228 1229 err = 0; 1230 list_for_each_entry_safe(dpaa_fq, tmp, list, list) { 1231 error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq); 1232 if (error < 0 && err >= 0) 1233 err = error; 1234 } 1235 1236 return err; 1237 } 1238 1239 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq, 1240 struct dpaa_fq *defq, 1241 struct dpaa_buffer_layout *buf_layout) 1242 { 1243 struct fman_buffer_prefix_content buf_prefix_content; 1244 struct fman_port_params params; 1245 int err; 1246 1247 memset(¶ms, 0, sizeof(params)); 1248 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content)); 1249 1250 buf_prefix_content.priv_data_size = buf_layout->priv_data_size; 1251 buf_prefix_content.pass_prs_result = true; 1252 buf_prefix_content.pass_hash_result = true; 1253 buf_prefix_content.pass_time_stamp = true; 1254 buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT; 1255 1256 params.specific_params.non_rx_params.err_fqid = errq->fqid; 1257 params.specific_params.non_rx_params.dflt_fqid = defq->fqid; 1258 1259 err = fman_port_config(port, ¶ms); 1260 if (err) { 1261 pr_err("%s: fman_port_config failed\n", __func__); 1262 return err; 1263 } 1264 1265 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content); 1266 if (err) { 1267 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n", 1268 __func__); 1269 return err; 1270 } 1271 1272 err = fman_port_init(port); 1273 if (err) 1274 pr_err("%s: fm_port_init failed\n", __func__); 1275 1276 return err; 1277 } 1278 1279 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp *bp, 1280 struct dpaa_fq *errq, 1281 struct dpaa_fq *defq, struct dpaa_fq *pcdq, 1282 struct dpaa_buffer_layout *buf_layout) 1283 { 1284 struct fman_buffer_prefix_content buf_prefix_content; 1285 struct fman_port_rx_params *rx_p; 1286 struct fman_port_params params; 1287 int err; 1288 1289 memset(¶ms, 0, sizeof(params)); 1290 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content)); 1291 1292 buf_prefix_content.priv_data_size = buf_layout->priv_data_size; 1293 buf_prefix_content.pass_prs_result = true; 1294 buf_prefix_content.pass_hash_result = true; 1295 buf_prefix_content.pass_time_stamp = true; 1296 buf_prefix_content.data_align = DPAA_FD_RX_DATA_ALIGNMENT; 1297 1298 rx_p = ¶ms.specific_params.rx_params; 1299 rx_p->err_fqid = errq->fqid; 1300 rx_p->dflt_fqid = defq->fqid; 1301 if (pcdq) { 1302 rx_p->pcd_base_fqid = pcdq->fqid; 1303 rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM; 1304 } 1305 1306 rx_p->ext_buf_pools.num_of_pools_used = 1; 1307 rx_p->ext_buf_pools.ext_buf_pool[0].id = bp->bpid; 1308 rx_p->ext_buf_pools.ext_buf_pool[0].size = (u16)bp->size; 1309 1310 err = fman_port_config(port, ¶ms); 1311 if (err) { 1312 pr_err("%s: fman_port_config failed\n", __func__); 1313 return err; 1314 } 1315 1316 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content); 1317 if (err) { 1318 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n", 1319 __func__); 1320 return err; 1321 } 1322 1323 err = fman_port_init(port); 1324 if (err) 1325 pr_err("%s: fm_port_init failed\n", __func__); 1326 1327 return err; 1328 } 1329 1330 static int dpaa_eth_init_ports(struct mac_device *mac_dev, 1331 struct dpaa_bp *bp, 1332 struct fm_port_fqs *port_fqs, 1333 struct dpaa_buffer_layout *buf_layout, 1334 struct device *dev) 1335 { 1336 struct fman_port *rxport = mac_dev->port[RX]; 1337 struct fman_port *txport = mac_dev->port[TX]; 1338 int err; 1339 1340 err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq, 1341 port_fqs->tx_defq, &buf_layout[TX]); 1342 if (err) 1343 return err; 1344 1345 err = dpaa_eth_init_rx_port(rxport, bp, port_fqs->rx_errq, 1346 port_fqs->rx_defq, port_fqs->rx_pcdq, 1347 &buf_layout[RX]); 1348 1349 return err; 1350 } 1351 1352 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp, 1353 struct bm_buffer *bmb, int cnt) 1354 { 1355 int err; 1356 1357 err = bman_release(dpaa_bp->pool, bmb, cnt); 1358 /* Should never occur, address anyway to avoid leaking the buffers */ 1359 if (WARN_ON(err) && dpaa_bp->free_buf_cb) 1360 while (cnt-- > 0) 1361 dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]); 1362 1363 return cnt; 1364 } 1365 1366 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt) 1367 { 1368 struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX]; 1369 struct dpaa_bp *dpaa_bp; 1370 int i = 0, j; 1371 1372 memset(bmb, 0, sizeof(bmb)); 1373 1374 do { 1375 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid); 1376 if (!dpaa_bp) 1377 return; 1378 1379 j = 0; 1380 do { 1381 WARN_ON(qm_sg_entry_is_ext(&sgt[i])); 1382 1383 bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i])); 1384 1385 j++; i++; 1386 } while (j < ARRAY_SIZE(bmb) && 1387 !qm_sg_entry_is_final(&sgt[i - 1]) && 1388 sgt[i - 1].bpid == sgt[i].bpid); 1389 1390 dpaa_bman_release(dpaa_bp, bmb, j); 1391 } while (!qm_sg_entry_is_final(&sgt[i - 1])); 1392 } 1393 1394 static void dpaa_fd_release(const struct net_device *net_dev, 1395 const struct qm_fd *fd) 1396 { 1397 struct qm_sg_entry *sgt; 1398 struct dpaa_bp *dpaa_bp; 1399 struct bm_buffer bmb; 1400 dma_addr_t addr; 1401 void *vaddr; 1402 1403 bmb.data = 0; 1404 bm_buffer_set64(&bmb, qm_fd_addr(fd)); 1405 1406 dpaa_bp = dpaa_bpid2pool(fd->bpid); 1407 if (!dpaa_bp) 1408 return; 1409 1410 if (qm_fd_get_format(fd) == qm_fd_sg) { 1411 vaddr = phys_to_virt(qm_fd_addr(fd)); 1412 sgt = vaddr + qm_fd_get_offset(fd); 1413 1414 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, qm_fd_addr(fd), 1415 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1416 1417 dpaa_release_sgt_members(sgt); 1418 1419 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, 1420 virt_to_page(vaddr), 0, DPAA_BP_RAW_SIZE, 1421 DMA_FROM_DEVICE); 1422 if (dma_mapping_error(dpaa_bp->priv->rx_dma_dev, addr)) { 1423 netdev_err(net_dev, "DMA mapping failed\n"); 1424 return; 1425 } 1426 bm_buffer_set64(&bmb, addr); 1427 } 1428 1429 dpaa_bman_release(dpaa_bp, &bmb, 1); 1430 } 1431 1432 static void count_ern(struct dpaa_percpu_priv *percpu_priv, 1433 const union qm_mr_entry *msg) 1434 { 1435 switch (msg->ern.rc & QM_MR_RC_MASK) { 1436 case QM_MR_RC_CGR_TAILDROP: 1437 percpu_priv->ern_cnt.cg_tdrop++; 1438 break; 1439 case QM_MR_RC_WRED: 1440 percpu_priv->ern_cnt.wred++; 1441 break; 1442 case QM_MR_RC_ERROR: 1443 percpu_priv->ern_cnt.err_cond++; 1444 break; 1445 case QM_MR_RC_ORPWINDOW_EARLY: 1446 percpu_priv->ern_cnt.early_window++; 1447 break; 1448 case QM_MR_RC_ORPWINDOW_LATE: 1449 percpu_priv->ern_cnt.late_window++; 1450 break; 1451 case QM_MR_RC_FQ_TAILDROP: 1452 percpu_priv->ern_cnt.fq_tdrop++; 1453 break; 1454 case QM_MR_RC_ORPWINDOW_RETIRED: 1455 percpu_priv->ern_cnt.fq_retired++; 1456 break; 1457 case QM_MR_RC_ORP_ZERO: 1458 percpu_priv->ern_cnt.orp_zero++; 1459 break; 1460 } 1461 } 1462 1463 /* Turn on HW checksum computation for this outgoing frame. 1464 * If the current protocol is not something we support in this regard 1465 * (or if the stack has already computed the SW checksum), we do nothing. 1466 * 1467 * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value 1468 * otherwise. 1469 * 1470 * Note that this function may modify the fd->cmd field and the skb data buffer 1471 * (the Parse Results area). 1472 */ 1473 static int dpaa_enable_tx_csum(struct dpaa_priv *priv, 1474 struct sk_buff *skb, 1475 struct qm_fd *fd, 1476 void *parse_results) 1477 { 1478 struct fman_prs_result *parse_result; 1479 u16 ethertype = ntohs(skb->protocol); 1480 struct ipv6hdr *ipv6h = NULL; 1481 struct iphdr *iph; 1482 int retval = 0; 1483 u8 l4_proto; 1484 1485 if (skb->ip_summed != CHECKSUM_PARTIAL) 1486 return 0; 1487 1488 /* Note: L3 csum seems to be already computed in sw, but we can't choose 1489 * L4 alone from the FM configuration anyway. 1490 */ 1491 1492 /* Fill in some fields of the Parse Results array, so the FMan 1493 * can find them as if they came from the FMan Parser. 1494 */ 1495 parse_result = (struct fman_prs_result *)parse_results; 1496 1497 /* If we're dealing with VLAN, get the real Ethernet type */ 1498 if (ethertype == ETH_P_8021Q) 1499 ethertype = ntohs(skb_vlan_eth_hdr(skb)->h_vlan_encapsulated_proto); 1500 1501 /* Fill in the relevant L3 parse result fields 1502 * and read the L4 protocol type 1503 */ 1504 switch (ethertype) { 1505 case ETH_P_IP: 1506 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4); 1507 iph = ip_hdr(skb); 1508 WARN_ON(!iph); 1509 l4_proto = iph->protocol; 1510 break; 1511 case ETH_P_IPV6: 1512 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6); 1513 ipv6h = ipv6_hdr(skb); 1514 WARN_ON(!ipv6h); 1515 l4_proto = ipv6h->nexthdr; 1516 break; 1517 default: 1518 /* We shouldn't even be here */ 1519 if (net_ratelimit()) 1520 netif_alert(priv, tx_err, priv->net_dev, 1521 "Can't compute HW csum for L3 proto 0x%x\n", 1522 ntohs(skb->protocol)); 1523 retval = -EIO; 1524 goto return_error; 1525 } 1526 1527 /* Fill in the relevant L4 parse result fields */ 1528 switch (l4_proto) { 1529 case IPPROTO_UDP: 1530 parse_result->l4r = FM_L4_PARSE_RESULT_UDP; 1531 break; 1532 case IPPROTO_TCP: 1533 parse_result->l4r = FM_L4_PARSE_RESULT_TCP; 1534 break; 1535 default: 1536 if (net_ratelimit()) 1537 netif_alert(priv, tx_err, priv->net_dev, 1538 "Can't compute HW csum for L4 proto 0x%x\n", 1539 l4_proto); 1540 retval = -EIO; 1541 goto return_error; 1542 } 1543 1544 /* At index 0 is IPOffset_1 as defined in the Parse Results */ 1545 parse_result->ip_off[0] = (u8)skb_network_offset(skb); 1546 parse_result->l4_off = (u8)skb_transport_offset(skb); 1547 1548 /* Enable L3 (and L4, if TCP or UDP) HW checksum. */ 1549 fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC); 1550 1551 /* On P1023 and similar platforms fd->cmd interpretation could 1552 * be disabled by setting CONTEXT_A bit ICMD; currently this bit 1553 * is not set so we do not need to check; in the future, if/when 1554 * using context_a we need to check this bit 1555 */ 1556 1557 return_error: 1558 return retval; 1559 } 1560 1561 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp) 1562 { 1563 struct net_device *net_dev = dpaa_bp->priv->net_dev; 1564 struct bm_buffer bmb[8]; 1565 dma_addr_t addr; 1566 struct page *p; 1567 u8 i; 1568 1569 for (i = 0; i < 8; i++) { 1570 p = dev_alloc_pages(0); 1571 if (unlikely(!p)) { 1572 netdev_err(net_dev, "dev_alloc_pages() failed\n"); 1573 goto release_previous_buffs; 1574 } 1575 1576 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, p, 0, 1577 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1578 if (unlikely(dma_mapping_error(dpaa_bp->priv->rx_dma_dev, 1579 addr))) { 1580 netdev_err(net_dev, "DMA map failed\n"); 1581 goto release_previous_buffs; 1582 } 1583 1584 bmb[i].data = 0; 1585 bm_buffer_set64(&bmb[i], addr); 1586 } 1587 1588 release_bufs: 1589 return dpaa_bman_release(dpaa_bp, bmb, i); 1590 1591 release_previous_buffs: 1592 WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n"); 1593 1594 bm_buffer_set64(&bmb[i], 0); 1595 /* Avoid releasing a completely null buffer; bman_release() requires 1596 * at least one buffer. 1597 */ 1598 if (likely(i)) 1599 goto release_bufs; 1600 1601 return 0; 1602 } 1603 1604 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp) 1605 { 1606 int i; 1607 1608 /* Give each CPU an allotment of "config_count" buffers */ 1609 for_each_possible_cpu(i) { 1610 int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i); 1611 int j; 1612 1613 /* Although we access another CPU's counters here 1614 * we do it at boot time so it is safe 1615 */ 1616 for (j = 0; j < dpaa_bp->config_count; j += 8) 1617 *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp); 1618 } 1619 return 0; 1620 } 1621 1622 /* Add buffers/(pages) for Rx processing whenever bpool count falls below 1623 * REFILL_THRESHOLD. 1624 */ 1625 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr) 1626 { 1627 int count = *countptr; 1628 int new_bufs; 1629 1630 if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) { 1631 do { 1632 new_bufs = dpaa_bp_add_8_bufs(dpaa_bp); 1633 if (unlikely(!new_bufs)) { 1634 /* Avoid looping forever if we've temporarily 1635 * run out of memory. We'll try again at the 1636 * next NAPI cycle. 1637 */ 1638 break; 1639 } 1640 count += new_bufs; 1641 } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT); 1642 1643 *countptr = count; 1644 if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT)) 1645 return -ENOMEM; 1646 } 1647 1648 return 0; 1649 } 1650 1651 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv) 1652 { 1653 struct dpaa_bp *dpaa_bp; 1654 int *countptr; 1655 1656 dpaa_bp = priv->dpaa_bp; 1657 if (!dpaa_bp) 1658 return -EINVAL; 1659 countptr = this_cpu_ptr(dpaa_bp->percpu_count); 1660 1661 return dpaa_eth_refill_bpool(dpaa_bp, countptr); 1662 } 1663 1664 /* Cleanup function for outgoing frame descriptors that were built on Tx path, 1665 * either contiguous frames or scatter/gather ones. 1666 * Skb freeing is not handled here. 1667 * 1668 * This function may be called on error paths in the Tx function, so guard 1669 * against cases when not all fd relevant fields were filled in. To avoid 1670 * reading the invalid transmission timestamp for the error paths set ts to 1671 * false. 1672 * 1673 * Return the skb backpointer, since for S/G frames the buffer containing it 1674 * gets freed here. 1675 * 1676 * No skb backpointer is set when transmitting XDP frames. Cleanup the buffer 1677 * and return NULL in this case. 1678 */ 1679 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv, 1680 const struct qm_fd *fd, bool ts) 1681 { 1682 const enum dma_data_direction dma_dir = DMA_TO_DEVICE; 1683 struct device *dev = priv->net_dev->dev.parent; 1684 struct skb_shared_hwtstamps shhwtstamps; 1685 dma_addr_t addr = qm_fd_addr(fd); 1686 void *vaddr = phys_to_virt(addr); 1687 const struct qm_sg_entry *sgt; 1688 struct dpaa_eth_swbp *swbp; 1689 struct sk_buff *skb; 1690 u64 ns; 1691 int i; 1692 1693 if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) { 1694 dma_unmap_page(priv->tx_dma_dev, addr, 1695 qm_fd_get_offset(fd) + DPAA_SGT_SIZE, 1696 dma_dir); 1697 1698 /* The sgt buffer has been allocated with netdev_alloc_frag(), 1699 * it's from lowmem. 1700 */ 1701 sgt = vaddr + qm_fd_get_offset(fd); 1702 1703 /* sgt[0] is from lowmem, was dma_map_single()-ed */ 1704 dma_unmap_single(priv->tx_dma_dev, qm_sg_addr(&sgt[0]), 1705 qm_sg_entry_get_len(&sgt[0]), dma_dir); 1706 1707 /* remaining pages were mapped with skb_frag_dma_map() */ 1708 for (i = 1; (i < DPAA_SGT_MAX_ENTRIES) && 1709 !qm_sg_entry_is_final(&sgt[i - 1]); i++) { 1710 WARN_ON(qm_sg_entry_is_ext(&sgt[i])); 1711 1712 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[i]), 1713 qm_sg_entry_get_len(&sgt[i]), dma_dir); 1714 } 1715 } else { 1716 dma_unmap_single(priv->tx_dma_dev, addr, 1717 qm_fd_get_offset(fd) + qm_fd_get_length(fd), 1718 dma_dir); 1719 } 1720 1721 swbp = (struct dpaa_eth_swbp *)vaddr; 1722 skb = swbp->skb; 1723 1724 /* No skb backpointer is set when running XDP. An xdp_frame 1725 * backpointer is saved instead. 1726 */ 1727 if (!skb) { 1728 xdp_return_frame(swbp->xdpf); 1729 return NULL; 1730 } 1731 1732 /* DMA unmapping is required before accessing the HW provided info */ 1733 if (ts && priv->tx_tstamp && 1734 skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { 1735 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 1736 1737 if (!fman_port_get_tstamp(priv->mac_dev->port[TX], vaddr, 1738 &ns)) { 1739 shhwtstamps.hwtstamp = ns_to_ktime(ns); 1740 skb_tstamp_tx(skb, &shhwtstamps); 1741 } else { 1742 dev_warn(dev, "fman_port_get_tstamp failed!\n"); 1743 } 1744 } 1745 1746 if (qm_fd_get_format(fd) == qm_fd_sg) 1747 /* Free the page that we allocated on Tx for the SGT */ 1748 free_pages((unsigned long)vaddr, 0); 1749 1750 return skb; 1751 } 1752 1753 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd) 1754 { 1755 /* The parser has run and performed L4 checksum validation. 1756 * We know there were no parser errors (and implicitly no 1757 * L4 csum error), otherwise we wouldn't be here. 1758 */ 1759 if ((priv->net_dev->features & NETIF_F_RXCSUM) && 1760 (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV)) 1761 return CHECKSUM_UNNECESSARY; 1762 1763 /* We're here because either the parser didn't run or the L4 checksum 1764 * was not verified. This may include the case of a UDP frame with 1765 * checksum zero or an L4 proto other than TCP/UDP 1766 */ 1767 return CHECKSUM_NONE; 1768 } 1769 1770 #define PTR_IS_ALIGNED(x, a) (IS_ALIGNED((unsigned long)(x), (a))) 1771 1772 /* Build a linear skb around the received buffer. 1773 * We are guaranteed there is enough room at the end of the data buffer to 1774 * accommodate the shared info area of the skb. 1775 */ 1776 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv, 1777 const struct qm_fd *fd) 1778 { 1779 ssize_t fd_off = qm_fd_get_offset(fd); 1780 dma_addr_t addr = qm_fd_addr(fd); 1781 struct dpaa_bp *dpaa_bp; 1782 struct sk_buff *skb; 1783 void *vaddr; 1784 1785 vaddr = phys_to_virt(addr); 1786 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES)); 1787 1788 dpaa_bp = dpaa_bpid2pool(fd->bpid); 1789 if (!dpaa_bp) 1790 goto free_buffer; 1791 1792 skb = build_skb(vaddr, dpaa_bp->size + 1793 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))); 1794 if (WARN_ONCE(!skb, "Build skb failure on Rx\n")) 1795 goto free_buffer; 1796 skb_reserve(skb, fd_off); 1797 skb_put(skb, qm_fd_get_length(fd)); 1798 1799 skb->ip_summed = rx_csum_offload(priv, fd); 1800 1801 return skb; 1802 1803 free_buffer: 1804 free_pages((unsigned long)vaddr, 0); 1805 return NULL; 1806 } 1807 1808 /* Build an skb with the data of the first S/G entry in the linear portion and 1809 * the rest of the frame as skb fragments. 1810 * 1811 * The page fragment holding the S/G Table is recycled here. 1812 */ 1813 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv, 1814 const struct qm_fd *fd) 1815 { 1816 ssize_t fd_off = qm_fd_get_offset(fd); 1817 dma_addr_t addr = qm_fd_addr(fd); 1818 const struct qm_sg_entry *sgt; 1819 struct page *page, *head_page; 1820 struct dpaa_bp *dpaa_bp; 1821 void *vaddr, *sg_vaddr; 1822 struct sk_buff *skb; 1823 dma_addr_t sg_addr; 1824 int page_offset; 1825 unsigned int sz; 1826 int *count_ptr; 1827 int i, j; 1828 1829 vaddr = phys_to_virt(addr); 1830 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES)); 1831 1832 /* Iterate through the SGT entries and add data buffers to the skb */ 1833 sgt = vaddr + fd_off; 1834 skb = NULL; 1835 for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) { 1836 /* Extension bit is not supported */ 1837 WARN_ON(qm_sg_entry_is_ext(&sgt[i])); 1838 1839 sg_addr = qm_sg_addr(&sgt[i]); 1840 sg_vaddr = phys_to_virt(sg_addr); 1841 WARN_ON(!PTR_IS_ALIGNED(sg_vaddr, SMP_CACHE_BYTES)); 1842 1843 dma_unmap_page(priv->rx_dma_dev, sg_addr, 1844 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1845 1846 /* We may use multiple Rx pools */ 1847 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid); 1848 if (!dpaa_bp) 1849 goto free_buffers; 1850 1851 if (!skb) { 1852 sz = dpaa_bp->size + 1853 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1854 skb = build_skb(sg_vaddr, sz); 1855 if (WARN_ON(!skb)) 1856 goto free_buffers; 1857 1858 skb->ip_summed = rx_csum_offload(priv, fd); 1859 1860 /* Make sure forwarded skbs will have enough space 1861 * on Tx, if extra headers are added. 1862 */ 1863 WARN_ON(fd_off != priv->rx_headroom); 1864 /* The offset to data start within the buffer holding 1865 * the SGT should always be equal to the offset to data 1866 * start within the first buffer holding the frame. 1867 */ 1868 WARN_ON_ONCE(fd_off != qm_sg_entry_get_off(&sgt[i])); 1869 skb_reserve(skb, fd_off); 1870 skb_put(skb, qm_sg_entry_get_len(&sgt[i])); 1871 } else { 1872 /* Not the first S/G entry; all data from buffer will 1873 * be added in an skb fragment; fragment index is offset 1874 * by one since first S/G entry was incorporated in the 1875 * linear part of the skb. 1876 * 1877 * Caution: 'page' may be a tail page. 1878 */ 1879 page = virt_to_page(sg_vaddr); 1880 head_page = virt_to_head_page(sg_vaddr); 1881 1882 /* Compute offset of sg_vaddr in (possibly tail) page */ 1883 page_offset = ((unsigned long)sg_vaddr & 1884 (PAGE_SIZE - 1)) + 1885 (page_address(page) - page_address(head_page)); 1886 1887 /* Non-initial SGT entries should not have a buffer 1888 * offset. 1889 */ 1890 WARN_ON_ONCE(qm_sg_entry_get_off(&sgt[i])); 1891 1892 /* skb_add_rx_frag() does no checking on the page; if 1893 * we pass it a tail page, we'll end up with 1894 * bad page accounting and eventually with segfaults. 1895 */ 1896 skb_add_rx_frag(skb, i - 1, head_page, page_offset, 1897 qm_sg_entry_get_len(&sgt[i]), 1898 dpaa_bp->size); 1899 } 1900 1901 /* Update the pool count for the current {cpu x bpool} */ 1902 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); 1903 (*count_ptr)--; 1904 1905 if (qm_sg_entry_is_final(&sgt[i])) 1906 break; 1907 } 1908 WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n"); 1909 1910 /* free the SG table buffer */ 1911 free_pages((unsigned long)vaddr, 0); 1912 1913 return skb; 1914 1915 free_buffers: 1916 /* free all the SG entries */ 1917 for (j = 0; j < DPAA_SGT_MAX_ENTRIES ; j++) { 1918 sg_addr = qm_sg_addr(&sgt[j]); 1919 sg_vaddr = phys_to_virt(sg_addr); 1920 /* all pages 0..i were unmaped */ 1921 if (j > i) 1922 dma_unmap_page(priv->rx_dma_dev, qm_sg_addr(&sgt[j]), 1923 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1924 free_pages((unsigned long)sg_vaddr, 0); 1925 /* counters 0..i-1 were decremented */ 1926 if (j >= i) { 1927 dpaa_bp = dpaa_bpid2pool(sgt[j].bpid); 1928 if (dpaa_bp) { 1929 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); 1930 (*count_ptr)--; 1931 } 1932 } 1933 1934 if (qm_sg_entry_is_final(&sgt[j])) 1935 break; 1936 } 1937 /* free the SGT fragment */ 1938 free_pages((unsigned long)vaddr, 0); 1939 1940 return NULL; 1941 } 1942 1943 static int skb_to_contig_fd(struct dpaa_priv *priv, 1944 struct sk_buff *skb, struct qm_fd *fd, 1945 int *offset) 1946 { 1947 struct net_device *net_dev = priv->net_dev; 1948 enum dma_data_direction dma_dir; 1949 struct dpaa_eth_swbp *swbp; 1950 unsigned char *buff_start; 1951 dma_addr_t addr; 1952 int err; 1953 1954 /* We are guaranteed to have at least tx_headroom bytes 1955 * available, so just use that for offset. 1956 */ 1957 fd->bpid = FSL_DPAA_BPID_INV; 1958 buff_start = skb->data - priv->tx_headroom; 1959 dma_dir = DMA_TO_DEVICE; 1960 1961 swbp = (struct dpaa_eth_swbp *)buff_start; 1962 swbp->skb = skb; 1963 1964 /* Enable L3/L4 hardware checksum computation. 1965 * 1966 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may 1967 * need to write into the skb. 1968 */ 1969 err = dpaa_enable_tx_csum(priv, skb, fd, 1970 buff_start + DPAA_TX_PRIV_DATA_SIZE); 1971 if (unlikely(err < 0)) { 1972 if (net_ratelimit()) 1973 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n", 1974 err); 1975 return err; 1976 } 1977 1978 /* Fill in the rest of the FD fields */ 1979 qm_fd_set_contig(fd, priv->tx_headroom, skb->len); 1980 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO); 1981 1982 /* Map the entire buffer size that may be seen by FMan, but no more */ 1983 addr = dma_map_single(priv->tx_dma_dev, buff_start, 1984 priv->tx_headroom + skb->len, dma_dir); 1985 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 1986 if (net_ratelimit()) 1987 netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n"); 1988 return -EINVAL; 1989 } 1990 qm_fd_addr_set64(fd, addr); 1991 1992 return 0; 1993 } 1994 1995 static int skb_to_sg_fd(struct dpaa_priv *priv, 1996 struct sk_buff *skb, struct qm_fd *fd) 1997 { 1998 const enum dma_data_direction dma_dir = DMA_TO_DEVICE; 1999 const int nr_frags = skb_shinfo(skb)->nr_frags; 2000 struct net_device *net_dev = priv->net_dev; 2001 struct dpaa_eth_swbp *swbp; 2002 struct qm_sg_entry *sgt; 2003 void *buff_start; 2004 skb_frag_t *frag; 2005 dma_addr_t addr; 2006 size_t frag_len; 2007 struct page *p; 2008 int i, j, err; 2009 2010 /* get a page to store the SGTable */ 2011 p = dev_alloc_pages(0); 2012 if (unlikely(!p)) { 2013 netdev_err(net_dev, "dev_alloc_pages() failed\n"); 2014 return -ENOMEM; 2015 } 2016 buff_start = page_address(p); 2017 2018 /* Enable L3/L4 hardware checksum computation. 2019 * 2020 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may 2021 * need to write into the skb. 2022 */ 2023 err = dpaa_enable_tx_csum(priv, skb, fd, 2024 buff_start + DPAA_TX_PRIV_DATA_SIZE); 2025 if (unlikely(err < 0)) { 2026 if (net_ratelimit()) 2027 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n", 2028 err); 2029 goto csum_failed; 2030 } 2031 2032 /* SGT[0] is used by the linear part */ 2033 sgt = (struct qm_sg_entry *)(buff_start + priv->tx_headroom); 2034 frag_len = skb_headlen(skb); 2035 qm_sg_entry_set_len(&sgt[0], frag_len); 2036 sgt[0].bpid = FSL_DPAA_BPID_INV; 2037 sgt[0].offset = 0; 2038 addr = dma_map_single(priv->tx_dma_dev, skb->data, 2039 skb_headlen(skb), dma_dir); 2040 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2041 netdev_err(priv->net_dev, "DMA mapping failed\n"); 2042 err = -EINVAL; 2043 goto sg0_map_failed; 2044 } 2045 qm_sg_entry_set64(&sgt[0], addr); 2046 2047 /* populate the rest of SGT entries */ 2048 for (i = 0; i < nr_frags; i++) { 2049 frag = &skb_shinfo(skb)->frags[i]; 2050 frag_len = skb_frag_size(frag); 2051 WARN_ON(!skb_frag_page(frag)); 2052 addr = skb_frag_dma_map(priv->tx_dma_dev, frag, 0, 2053 frag_len, dma_dir); 2054 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2055 netdev_err(priv->net_dev, "DMA mapping failed\n"); 2056 err = -EINVAL; 2057 goto sg_map_failed; 2058 } 2059 2060 qm_sg_entry_set_len(&sgt[i + 1], frag_len); 2061 sgt[i + 1].bpid = FSL_DPAA_BPID_INV; 2062 sgt[i + 1].offset = 0; 2063 2064 /* keep the offset in the address */ 2065 qm_sg_entry_set64(&sgt[i + 1], addr); 2066 } 2067 2068 /* Set the final bit in the last used entry of the SGT */ 2069 qm_sg_entry_set_f(&sgt[nr_frags], frag_len); 2070 2071 /* set fd offset to priv->tx_headroom */ 2072 qm_fd_set_sg(fd, priv->tx_headroom, skb->len); 2073 2074 /* DMA map the SGT page */ 2075 swbp = (struct dpaa_eth_swbp *)buff_start; 2076 swbp->skb = skb; 2077 2078 addr = dma_map_page(priv->tx_dma_dev, p, 0, 2079 priv->tx_headroom + DPAA_SGT_SIZE, dma_dir); 2080 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2081 netdev_err(priv->net_dev, "DMA mapping failed\n"); 2082 err = -EINVAL; 2083 goto sgt_map_failed; 2084 } 2085 2086 fd->bpid = FSL_DPAA_BPID_INV; 2087 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO); 2088 qm_fd_addr_set64(fd, addr); 2089 2090 return 0; 2091 2092 sgt_map_failed: 2093 sg_map_failed: 2094 for (j = 0; j < i; j++) 2095 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[j]), 2096 qm_sg_entry_get_len(&sgt[j]), dma_dir); 2097 sg0_map_failed: 2098 csum_failed: 2099 free_pages((unsigned long)buff_start, 0); 2100 2101 return err; 2102 } 2103 2104 static inline int dpaa_xmit(struct dpaa_priv *priv, 2105 struct rtnl_link_stats64 *percpu_stats, 2106 int queue, 2107 struct qm_fd *fd) 2108 { 2109 struct qman_fq *egress_fq; 2110 int err, i; 2111 2112 egress_fq = priv->egress_fqs[queue]; 2113 if (fd->bpid == FSL_DPAA_BPID_INV) 2114 fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue])); 2115 2116 /* Trace this Tx fd */ 2117 trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd); 2118 2119 for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) { 2120 err = qman_enqueue(egress_fq, fd); 2121 if (err != -EBUSY) 2122 break; 2123 } 2124 2125 if (unlikely(err < 0)) { 2126 percpu_stats->tx_fifo_errors++; 2127 return err; 2128 } 2129 2130 percpu_stats->tx_packets++; 2131 percpu_stats->tx_bytes += qm_fd_get_length(fd); 2132 2133 return 0; 2134 } 2135 2136 #ifdef CONFIG_DPAA_ERRATUM_A050385 2137 static int dpaa_a050385_wa_skb(struct net_device *net_dev, struct sk_buff **s) 2138 { 2139 struct dpaa_priv *priv = netdev_priv(net_dev); 2140 struct sk_buff *new_skb, *skb = *s; 2141 unsigned char *start, i; 2142 2143 /* check linear buffer alignment */ 2144 if (!PTR_IS_ALIGNED(skb->data, DPAA_A050385_ALIGN)) 2145 goto workaround; 2146 2147 /* linear buffers just need to have an aligned start */ 2148 if (!skb_is_nonlinear(skb)) 2149 return 0; 2150 2151 /* linear data size for nonlinear skbs needs to be aligned */ 2152 if (!IS_ALIGNED(skb_headlen(skb), DPAA_A050385_ALIGN)) 2153 goto workaround; 2154 2155 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2156 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2157 2158 /* all fragments need to have aligned start addresses */ 2159 if (!IS_ALIGNED(skb_frag_off(frag), DPAA_A050385_ALIGN)) 2160 goto workaround; 2161 2162 /* all but last fragment need to have aligned sizes */ 2163 if (!IS_ALIGNED(skb_frag_size(frag), DPAA_A050385_ALIGN) && 2164 (i < skb_shinfo(skb)->nr_frags - 1)) 2165 goto workaround; 2166 } 2167 2168 return 0; 2169 2170 workaround: 2171 /* copy all the skb content into a new linear buffer */ 2172 new_skb = netdev_alloc_skb(net_dev, skb->len + DPAA_A050385_ALIGN - 1 + 2173 priv->tx_headroom); 2174 if (!new_skb) 2175 return -ENOMEM; 2176 2177 /* NET_SKB_PAD bytes already reserved, adding up to tx_headroom */ 2178 skb_reserve(new_skb, priv->tx_headroom - NET_SKB_PAD); 2179 2180 /* Workaround for DPAA_A050385 requires data start to be aligned */ 2181 start = PTR_ALIGN(new_skb->data, DPAA_A050385_ALIGN); 2182 if (start - new_skb->data) 2183 skb_reserve(new_skb, start - new_skb->data); 2184 2185 skb_put(new_skb, skb->len); 2186 skb_copy_bits(skb, 0, new_skb->data, skb->len); 2187 skb_copy_header(new_skb, skb); 2188 new_skb->dev = skb->dev; 2189 2190 /* Copy relevant timestamp info from the old skb to the new */ 2191 if (priv->tx_tstamp) { 2192 skb_shinfo(new_skb)->tx_flags = skb_shinfo(skb)->tx_flags; 2193 skb_shinfo(new_skb)->hwtstamps = skb_shinfo(skb)->hwtstamps; 2194 skb_shinfo(new_skb)->tskey = skb_shinfo(skb)->tskey; 2195 if (skb->sk) 2196 skb_set_owner_w(new_skb, skb->sk); 2197 } 2198 2199 /* We move the headroom when we align it so we have to reset the 2200 * network and transport header offsets relative to the new data 2201 * pointer. The checksum offload relies on these offsets. 2202 */ 2203 skb_set_network_header(new_skb, skb_network_offset(skb)); 2204 skb_set_transport_header(new_skb, skb_transport_offset(skb)); 2205 2206 dev_kfree_skb(skb); 2207 *s = new_skb; 2208 2209 return 0; 2210 } 2211 2212 static int dpaa_a050385_wa_xdpf(struct dpaa_priv *priv, 2213 struct xdp_frame **init_xdpf) 2214 { 2215 struct xdp_frame *new_xdpf, *xdpf = *init_xdpf; 2216 void *new_buff, *aligned_data; 2217 struct page *p; 2218 u32 data_shift; 2219 int headroom; 2220 2221 /* Check the data alignment and make sure the headroom is large 2222 * enough to store the xdpf backpointer. Use an aligned headroom 2223 * value. 2224 * 2225 * Due to alignment constraints, we give XDP access to the full 256 2226 * byte frame headroom. If the XDP program uses all of it, copy the 2227 * data to a new buffer and make room for storing the backpointer. 2228 */ 2229 if (PTR_IS_ALIGNED(xdpf->data, DPAA_FD_DATA_ALIGNMENT) && 2230 xdpf->headroom >= priv->tx_headroom) { 2231 xdpf->headroom = priv->tx_headroom; 2232 return 0; 2233 } 2234 2235 /* Try to move the data inside the buffer just enough to align it and 2236 * store the xdpf backpointer. If the available headroom isn't large 2237 * enough, resort to allocating a new buffer and copying the data. 2238 */ 2239 aligned_data = PTR_ALIGN_DOWN(xdpf->data, DPAA_FD_DATA_ALIGNMENT); 2240 data_shift = xdpf->data - aligned_data; 2241 2242 /* The XDP frame's headroom needs to be large enough to accommodate 2243 * shifting the data as well as storing the xdpf backpointer. 2244 */ 2245 if (xdpf->headroom >= data_shift + priv->tx_headroom) { 2246 memmove(aligned_data, xdpf->data, xdpf->len); 2247 xdpf->data = aligned_data; 2248 xdpf->headroom = priv->tx_headroom; 2249 return 0; 2250 } 2251 2252 /* The new xdp_frame is stored in the new buffer. Reserve enough space 2253 * in the headroom for storing it along with the driver's private 2254 * info. The headroom needs to be aligned to DPAA_FD_DATA_ALIGNMENT to 2255 * guarantee the data's alignment in the buffer. 2256 */ 2257 headroom = ALIGN(sizeof(*new_xdpf) + priv->tx_headroom, 2258 DPAA_FD_DATA_ALIGNMENT); 2259 2260 /* Assure the extended headroom and data don't overflow the buffer, 2261 * while maintaining the mandatory tailroom. 2262 */ 2263 if (headroom + xdpf->len > DPAA_BP_RAW_SIZE - 2264 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 2265 return -ENOMEM; 2266 2267 p = dev_alloc_pages(0); 2268 if (unlikely(!p)) 2269 return -ENOMEM; 2270 2271 /* Copy the data to the new buffer at a properly aligned offset */ 2272 new_buff = page_address(p); 2273 memcpy(new_buff + headroom, xdpf->data, xdpf->len); 2274 2275 /* Create an XDP frame around the new buffer in a similar fashion 2276 * to xdp_convert_buff_to_frame. 2277 */ 2278 new_xdpf = new_buff; 2279 new_xdpf->data = new_buff + headroom; 2280 new_xdpf->len = xdpf->len; 2281 new_xdpf->headroom = priv->tx_headroom; 2282 new_xdpf->frame_sz = DPAA_BP_RAW_SIZE; 2283 new_xdpf->mem_type = MEM_TYPE_PAGE_ORDER0; 2284 2285 /* Release the initial buffer */ 2286 xdp_return_frame_rx_napi(xdpf); 2287 2288 *init_xdpf = new_xdpf; 2289 return 0; 2290 } 2291 #endif 2292 2293 static netdev_tx_t 2294 dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev) 2295 { 2296 const int queue_mapping = skb_get_queue_mapping(skb); 2297 struct rtnl_link_stats64 *percpu_stats; 2298 struct dpaa_percpu_priv *percpu_priv; 2299 struct netdev_queue *txq; 2300 struct dpaa_priv *priv; 2301 struct qm_fd fd; 2302 bool nonlinear; 2303 int offset = 0; 2304 int err = 0; 2305 2306 priv = netdev_priv(net_dev); 2307 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2308 percpu_stats = &percpu_priv->stats; 2309 2310 qm_fd_clear_fd(&fd); 2311 2312 /* Packet data is always read as 32-bit words, so zero out any part of 2313 * the skb which might be sent if we have to pad the packet 2314 */ 2315 if (__skb_put_padto(skb, ETH_ZLEN, false)) 2316 goto enomem; 2317 2318 nonlinear = skb_is_nonlinear(skb); 2319 if (!nonlinear) { 2320 /* We're going to store the skb backpointer at the beginning 2321 * of the data buffer, so we need a privately owned skb 2322 * 2323 * We've made sure skb is not shared in dev->priv_flags, 2324 * we need to verify the skb head is not cloned 2325 */ 2326 if (skb_cow_head(skb, priv->tx_headroom)) 2327 goto enomem; 2328 2329 WARN_ON(skb_is_nonlinear(skb)); 2330 } 2331 2332 /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES; 2333 * make sure we don't feed FMan with more fragments than it supports. 2334 */ 2335 if (unlikely(nonlinear && 2336 (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) { 2337 /* If the egress skb contains more fragments than we support 2338 * we have no choice but to linearize it ourselves. 2339 */ 2340 if (__skb_linearize(skb)) 2341 goto enomem; 2342 2343 nonlinear = skb_is_nonlinear(skb); 2344 } 2345 2346 #ifdef CONFIG_DPAA_ERRATUM_A050385 2347 if (unlikely(fman_has_errata_a050385())) { 2348 if (dpaa_a050385_wa_skb(net_dev, &skb)) 2349 goto enomem; 2350 nonlinear = skb_is_nonlinear(skb); 2351 } 2352 #endif 2353 2354 if (nonlinear) { 2355 /* Just create a S/G fd based on the skb */ 2356 err = skb_to_sg_fd(priv, skb, &fd); 2357 percpu_priv->tx_frag_skbuffs++; 2358 } else { 2359 /* Create a contig FD from this skb */ 2360 err = skb_to_contig_fd(priv, skb, &fd, &offset); 2361 } 2362 if (unlikely(err < 0)) 2363 goto skb_to_fd_failed; 2364 2365 txq = netdev_get_tx_queue(net_dev, queue_mapping); 2366 2367 /* LLTX requires to do our own update of trans_start */ 2368 txq_trans_cond_update(txq); 2369 2370 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { 2371 fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD); 2372 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2373 } 2374 2375 if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0)) 2376 return NETDEV_TX_OK; 2377 2378 dpaa_cleanup_tx_fd(priv, &fd, false); 2379 skb_to_fd_failed: 2380 enomem: 2381 percpu_stats->tx_errors++; 2382 dev_kfree_skb(skb); 2383 return NETDEV_TX_OK; 2384 } 2385 2386 static void dpaa_rx_error(struct net_device *net_dev, 2387 const struct dpaa_priv *priv, 2388 struct dpaa_percpu_priv *percpu_priv, 2389 const struct qm_fd *fd, 2390 u32 fqid) 2391 { 2392 if (net_ratelimit()) 2393 netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n", 2394 be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS); 2395 2396 percpu_priv->stats.rx_errors++; 2397 2398 if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA) 2399 percpu_priv->rx_errors.dme++; 2400 if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL) 2401 percpu_priv->rx_errors.fpe++; 2402 if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE) 2403 percpu_priv->rx_errors.fse++; 2404 if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR) 2405 percpu_priv->rx_errors.phe++; 2406 2407 dpaa_fd_release(net_dev, fd); 2408 } 2409 2410 static void dpaa_tx_error(struct net_device *net_dev, 2411 const struct dpaa_priv *priv, 2412 struct dpaa_percpu_priv *percpu_priv, 2413 const struct qm_fd *fd, 2414 u32 fqid) 2415 { 2416 struct sk_buff *skb; 2417 2418 if (net_ratelimit()) 2419 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", 2420 be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS); 2421 2422 percpu_priv->stats.tx_errors++; 2423 2424 skb = dpaa_cleanup_tx_fd(priv, fd, false); 2425 dev_kfree_skb(skb); 2426 } 2427 2428 static int dpaa_eth_poll(struct napi_struct *napi, int budget) 2429 { 2430 struct dpaa_napi_portal *np = 2431 container_of(napi, struct dpaa_napi_portal, napi); 2432 int cleaned; 2433 2434 np->xdp_act = 0; 2435 2436 cleaned = qman_p_poll_dqrr(np->p, budget); 2437 2438 if (np->xdp_act & XDP_REDIRECT) 2439 xdp_do_flush(); 2440 2441 if (cleaned < budget) { 2442 napi_complete_done(napi, cleaned); 2443 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); 2444 } else if (np->down) { 2445 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); 2446 } 2447 2448 return cleaned; 2449 } 2450 2451 static void dpaa_tx_conf(struct net_device *net_dev, 2452 const struct dpaa_priv *priv, 2453 struct dpaa_percpu_priv *percpu_priv, 2454 const struct qm_fd *fd, 2455 u32 fqid) 2456 { 2457 struct sk_buff *skb; 2458 2459 if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) { 2460 if (net_ratelimit()) 2461 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", 2462 be32_to_cpu(fd->status) & 2463 FM_FD_STAT_TX_ERRORS); 2464 2465 percpu_priv->stats.tx_errors++; 2466 } 2467 2468 percpu_priv->tx_confirm++; 2469 2470 skb = dpaa_cleanup_tx_fd(priv, fd, true); 2471 2472 consume_skb(skb); 2473 } 2474 2475 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv, 2476 struct qman_portal *portal, bool sched_napi) 2477 { 2478 if (sched_napi) { 2479 /* Disable QMan IRQ and invoke NAPI */ 2480 qman_p_irqsource_remove(portal, QM_PIRQ_DQRI); 2481 2482 percpu_priv->np.p = portal; 2483 napi_schedule(&percpu_priv->np.napi); 2484 percpu_priv->in_interrupt++; 2485 return 1; 2486 } 2487 return 0; 2488 } 2489 2490 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal, 2491 struct qman_fq *fq, 2492 const struct qm_dqrr_entry *dq, 2493 bool sched_napi) 2494 { 2495 struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); 2496 struct dpaa_percpu_priv *percpu_priv; 2497 struct net_device *net_dev; 2498 struct dpaa_bp *dpaa_bp; 2499 struct dpaa_priv *priv; 2500 2501 net_dev = dpaa_fq->net_dev; 2502 priv = netdev_priv(net_dev); 2503 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid); 2504 if (!dpaa_bp) 2505 return qman_cb_dqrr_consume; 2506 2507 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2508 2509 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)) 2510 return qman_cb_dqrr_stop; 2511 2512 dpaa_eth_refill_bpools(priv); 2513 dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); 2514 2515 return qman_cb_dqrr_consume; 2516 } 2517 2518 static int dpaa_xdp_xmit_frame(struct net_device *net_dev, 2519 struct xdp_frame *xdpf) 2520 { 2521 struct dpaa_priv *priv = netdev_priv(net_dev); 2522 struct rtnl_link_stats64 *percpu_stats; 2523 struct dpaa_percpu_priv *percpu_priv; 2524 struct dpaa_eth_swbp *swbp; 2525 struct netdev_queue *txq; 2526 void *buff_start; 2527 struct qm_fd fd; 2528 dma_addr_t addr; 2529 int err; 2530 2531 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2532 percpu_stats = &percpu_priv->stats; 2533 2534 #ifdef CONFIG_DPAA_ERRATUM_A050385 2535 if (unlikely(fman_has_errata_a050385())) { 2536 if (dpaa_a050385_wa_xdpf(priv, &xdpf)) { 2537 err = -ENOMEM; 2538 goto out_error; 2539 } 2540 } 2541 #endif 2542 2543 if (xdpf->headroom < DPAA_TX_PRIV_DATA_SIZE) { 2544 err = -EINVAL; 2545 goto out_error; 2546 } 2547 2548 buff_start = xdpf->data - xdpf->headroom; 2549 2550 /* Leave empty the skb backpointer at the start of the buffer. 2551 * Save the XDP frame for easy cleanup on confirmation. 2552 */ 2553 swbp = (struct dpaa_eth_swbp *)buff_start; 2554 swbp->skb = NULL; 2555 swbp->xdpf = xdpf; 2556 2557 qm_fd_clear_fd(&fd); 2558 fd.bpid = FSL_DPAA_BPID_INV; 2559 fd.cmd |= cpu_to_be32(FM_FD_CMD_FCO); 2560 qm_fd_set_contig(&fd, xdpf->headroom, xdpf->len); 2561 2562 addr = dma_map_single(priv->tx_dma_dev, buff_start, 2563 xdpf->headroom + xdpf->len, 2564 DMA_TO_DEVICE); 2565 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2566 err = -EINVAL; 2567 goto out_error; 2568 } 2569 2570 qm_fd_addr_set64(&fd, addr); 2571 2572 /* Bump the trans_start */ 2573 txq = netdev_get_tx_queue(net_dev, smp_processor_id()); 2574 txq_trans_cond_update(txq); 2575 2576 err = dpaa_xmit(priv, percpu_stats, smp_processor_id(), &fd); 2577 if (err) { 2578 dma_unmap_single(priv->tx_dma_dev, addr, 2579 qm_fd_get_offset(&fd) + qm_fd_get_length(&fd), 2580 DMA_TO_DEVICE); 2581 goto out_error; 2582 } 2583 2584 return 0; 2585 2586 out_error: 2587 percpu_stats->tx_errors++; 2588 return err; 2589 } 2590 2591 static u32 dpaa_run_xdp(struct dpaa_priv *priv, struct qm_fd *fd, void *vaddr, 2592 struct dpaa_fq *dpaa_fq, unsigned int *xdp_meta_len) 2593 { 2594 ssize_t fd_off = qm_fd_get_offset(fd); 2595 struct bpf_prog *xdp_prog; 2596 struct xdp_frame *xdpf; 2597 struct xdp_buff xdp; 2598 u32 xdp_act; 2599 int err; 2600 2601 xdp_prog = READ_ONCE(priv->xdp_prog); 2602 if (!xdp_prog) 2603 return XDP_PASS; 2604 2605 xdp_init_buff(&xdp, DPAA_BP_RAW_SIZE - DPAA_TX_PRIV_DATA_SIZE, 2606 &dpaa_fq->xdp_rxq); 2607 xdp_prepare_buff(&xdp, vaddr + fd_off - XDP_PACKET_HEADROOM, 2608 XDP_PACKET_HEADROOM, qm_fd_get_length(fd), true); 2609 2610 /* We reserve a fixed headroom of 256 bytes under the erratum and we 2611 * offer it all to XDP programs to use. If no room is left for the 2612 * xdpf backpointer on TX, we will need to copy the data. 2613 * Disable metadata support since data realignments might be required 2614 * and the information can be lost. 2615 */ 2616 #ifdef CONFIG_DPAA_ERRATUM_A050385 2617 if (unlikely(fman_has_errata_a050385())) { 2618 xdp_set_data_meta_invalid(&xdp); 2619 xdp.data_hard_start = vaddr; 2620 xdp.frame_sz = DPAA_BP_RAW_SIZE; 2621 } 2622 #endif 2623 2624 xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp); 2625 2626 /* Update the length and the offset of the FD */ 2627 qm_fd_set_contig(fd, xdp.data - vaddr, xdp.data_end - xdp.data); 2628 2629 switch (xdp_act) { 2630 case XDP_PASS: 2631 #ifdef CONFIG_DPAA_ERRATUM_A050385 2632 *xdp_meta_len = xdp_data_meta_unsupported(&xdp) ? 0 : 2633 xdp.data - xdp.data_meta; 2634 #else 2635 *xdp_meta_len = xdp.data - xdp.data_meta; 2636 #endif 2637 break; 2638 case XDP_TX: 2639 /* We can access the full headroom when sending the frame 2640 * back out 2641 */ 2642 xdp.data_hard_start = vaddr; 2643 xdp.frame_sz = DPAA_BP_RAW_SIZE; 2644 xdpf = xdp_convert_buff_to_frame(&xdp); 2645 if (unlikely(!xdpf)) { 2646 free_pages((unsigned long)vaddr, 0); 2647 break; 2648 } 2649 2650 if (dpaa_xdp_xmit_frame(priv->net_dev, xdpf)) 2651 xdp_return_frame_rx_napi(xdpf); 2652 2653 break; 2654 case XDP_REDIRECT: 2655 /* Allow redirect to use the full headroom */ 2656 xdp.data_hard_start = vaddr; 2657 xdp.frame_sz = DPAA_BP_RAW_SIZE; 2658 2659 err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog); 2660 if (err) { 2661 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 2662 free_pages((unsigned long)vaddr, 0); 2663 } 2664 break; 2665 default: 2666 bpf_warn_invalid_xdp_action(priv->net_dev, xdp_prog, xdp_act); 2667 fallthrough; 2668 case XDP_ABORTED: 2669 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 2670 fallthrough; 2671 case XDP_DROP: 2672 /* Free the buffer */ 2673 free_pages((unsigned long)vaddr, 0); 2674 break; 2675 } 2676 2677 return xdp_act; 2678 } 2679 2680 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal, 2681 struct qman_fq *fq, 2682 const struct qm_dqrr_entry *dq, 2683 bool sched_napi) 2684 { 2685 bool ts_valid = false, hash_valid = false; 2686 struct skb_shared_hwtstamps *shhwtstamps; 2687 unsigned int skb_len, xdp_meta_len = 0; 2688 struct rtnl_link_stats64 *percpu_stats; 2689 struct dpaa_percpu_priv *percpu_priv; 2690 const struct qm_fd *fd = &dq->fd; 2691 dma_addr_t addr = qm_fd_addr(fd); 2692 struct dpaa_napi_portal *np; 2693 enum qm_fd_format fd_format; 2694 struct net_device *net_dev; 2695 u32 fd_status, hash_offset; 2696 struct qm_sg_entry *sgt; 2697 struct dpaa_bp *dpaa_bp; 2698 struct dpaa_fq *dpaa_fq; 2699 struct dpaa_priv *priv; 2700 struct sk_buff *skb; 2701 int *count_ptr; 2702 u32 xdp_act; 2703 void *vaddr; 2704 u32 hash; 2705 u64 ns; 2706 2707 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); 2708 fd_status = be32_to_cpu(fd->status); 2709 fd_format = qm_fd_get_format(fd); 2710 net_dev = dpaa_fq->net_dev; 2711 priv = netdev_priv(net_dev); 2712 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid); 2713 if (!dpaa_bp) 2714 return qman_cb_dqrr_consume; 2715 2716 /* Trace the Rx fd */ 2717 trace_dpaa_rx_fd(net_dev, fq, &dq->fd); 2718 2719 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2720 percpu_stats = &percpu_priv->stats; 2721 np = &percpu_priv->np; 2722 2723 if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))) 2724 return qman_cb_dqrr_stop; 2725 2726 /* Make sure we didn't run out of buffers */ 2727 if (unlikely(dpaa_eth_refill_bpools(priv))) { 2728 /* Unable to refill the buffer pool due to insufficient 2729 * system memory. Just release the frame back into the pool, 2730 * otherwise we'll soon end up with an empty buffer pool. 2731 */ 2732 dpaa_fd_release(net_dev, &dq->fd); 2733 return qman_cb_dqrr_consume; 2734 } 2735 2736 if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) { 2737 if (net_ratelimit()) 2738 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", 2739 fd_status & FM_FD_STAT_RX_ERRORS); 2740 2741 percpu_stats->rx_errors++; 2742 dpaa_fd_release(net_dev, fd); 2743 return qman_cb_dqrr_consume; 2744 } 2745 2746 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE, 2747 DMA_FROM_DEVICE); 2748 2749 /* prefetch the first 64 bytes of the frame or the SGT start */ 2750 vaddr = phys_to_virt(addr); 2751 prefetch(vaddr + qm_fd_get_offset(fd)); 2752 2753 /* The only FD types that we may receive are contig and S/G */ 2754 WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg)); 2755 2756 /* Account for either the contig buffer or the SGT buffer (depending on 2757 * which case we were in) having been removed from the pool. 2758 */ 2759 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); 2760 (*count_ptr)--; 2761 2762 /* Extract the timestamp stored in the headroom before running XDP */ 2763 if (priv->rx_tstamp) { 2764 if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns)) 2765 ts_valid = true; 2766 else 2767 WARN_ONCE(1, "fman_port_get_tstamp failed!\n"); 2768 } 2769 2770 /* Extract the hash stored in the headroom before running XDP */ 2771 if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use && 2772 !fman_port_get_hash_result_offset(priv->mac_dev->port[RX], 2773 &hash_offset)) { 2774 hash = be32_to_cpu(*(__be32 *)(vaddr + hash_offset)); 2775 hash_valid = true; 2776 } 2777 2778 if (likely(fd_format == qm_fd_contig)) { 2779 xdp_act = dpaa_run_xdp(priv, (struct qm_fd *)fd, vaddr, 2780 dpaa_fq, &xdp_meta_len); 2781 np->xdp_act |= xdp_act; 2782 if (xdp_act != XDP_PASS) { 2783 percpu_stats->rx_packets++; 2784 percpu_stats->rx_bytes += qm_fd_get_length(fd); 2785 return qman_cb_dqrr_consume; 2786 } 2787 skb = contig_fd_to_skb(priv, fd); 2788 } else { 2789 /* XDP doesn't support S/G frames. Return the fragments to the 2790 * buffer pool and release the SGT. 2791 */ 2792 if (READ_ONCE(priv->xdp_prog)) { 2793 WARN_ONCE(1, "S/G frames not supported under XDP\n"); 2794 sgt = vaddr + qm_fd_get_offset(fd); 2795 dpaa_release_sgt_members(sgt); 2796 free_pages((unsigned long)vaddr, 0); 2797 return qman_cb_dqrr_consume; 2798 } 2799 skb = sg_fd_to_skb(priv, fd); 2800 } 2801 if (!skb) 2802 return qman_cb_dqrr_consume; 2803 2804 if (xdp_meta_len) 2805 skb_metadata_set(skb, xdp_meta_len); 2806 2807 /* Set the previously extracted timestamp */ 2808 if (ts_valid) { 2809 shhwtstamps = skb_hwtstamps(skb); 2810 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2811 shhwtstamps->hwtstamp = ns_to_ktime(ns); 2812 } 2813 2814 skb->protocol = eth_type_trans(skb, net_dev); 2815 2816 /* Set the previously extracted hash */ 2817 if (hash_valid) { 2818 enum pkt_hash_types type; 2819 2820 /* if L4 exists, it was used in the hash generation */ 2821 type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ? 2822 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3; 2823 skb_set_hash(skb, hash, type); 2824 } 2825 2826 skb_len = skb->len; 2827 2828 if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) { 2829 percpu_stats->rx_dropped++; 2830 return qman_cb_dqrr_consume; 2831 } 2832 2833 percpu_stats->rx_packets++; 2834 percpu_stats->rx_bytes += skb_len; 2835 2836 return qman_cb_dqrr_consume; 2837 } 2838 2839 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal, 2840 struct qman_fq *fq, 2841 const struct qm_dqrr_entry *dq, 2842 bool sched_napi) 2843 { 2844 struct dpaa_percpu_priv *percpu_priv; 2845 struct net_device *net_dev; 2846 struct dpaa_priv *priv; 2847 2848 net_dev = ((struct dpaa_fq *)fq)->net_dev; 2849 priv = netdev_priv(net_dev); 2850 2851 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2852 2853 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)) 2854 return qman_cb_dqrr_stop; 2855 2856 dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); 2857 2858 return qman_cb_dqrr_consume; 2859 } 2860 2861 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal, 2862 struct qman_fq *fq, 2863 const struct qm_dqrr_entry *dq, 2864 bool sched_napi) 2865 { 2866 struct dpaa_percpu_priv *percpu_priv; 2867 struct net_device *net_dev; 2868 struct dpaa_priv *priv; 2869 2870 net_dev = ((struct dpaa_fq *)fq)->net_dev; 2871 priv = netdev_priv(net_dev); 2872 2873 /* Trace the fd */ 2874 trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd); 2875 2876 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2877 2878 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)) 2879 return qman_cb_dqrr_stop; 2880 2881 dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); 2882 2883 return qman_cb_dqrr_consume; 2884 } 2885 2886 static void egress_ern(struct qman_portal *portal, 2887 struct qman_fq *fq, 2888 const union qm_mr_entry *msg) 2889 { 2890 const struct qm_fd *fd = &msg->ern.fd; 2891 struct dpaa_percpu_priv *percpu_priv; 2892 const struct dpaa_priv *priv; 2893 struct net_device *net_dev; 2894 struct sk_buff *skb; 2895 2896 net_dev = ((struct dpaa_fq *)fq)->net_dev; 2897 priv = netdev_priv(net_dev); 2898 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2899 2900 percpu_priv->stats.tx_dropped++; 2901 percpu_priv->stats.tx_fifo_errors++; 2902 count_ern(percpu_priv, msg); 2903 2904 skb = dpaa_cleanup_tx_fd(priv, fd, false); 2905 dev_kfree_skb_any(skb); 2906 } 2907 2908 static const struct dpaa_fq_cbs dpaa_fq_cbs = { 2909 .rx_defq = { .cb = { .dqrr = rx_default_dqrr } }, 2910 .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } }, 2911 .rx_errq = { .cb = { .dqrr = rx_error_dqrr } }, 2912 .tx_errq = { .cb = { .dqrr = conf_error_dqrr } }, 2913 .egress_ern = { .cb = { .ern = egress_ern } } 2914 }; 2915 2916 static void dpaa_eth_napi_enable(struct dpaa_priv *priv) 2917 { 2918 struct dpaa_percpu_priv *percpu_priv; 2919 int i; 2920 2921 for_each_online_cpu(i) { 2922 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 2923 2924 percpu_priv->np.down = false; 2925 napi_enable(&percpu_priv->np.napi); 2926 } 2927 } 2928 2929 static void dpaa_eth_napi_disable(struct dpaa_priv *priv) 2930 { 2931 struct dpaa_percpu_priv *percpu_priv; 2932 int i; 2933 2934 for_each_online_cpu(i) { 2935 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 2936 2937 percpu_priv->np.down = true; 2938 napi_disable(&percpu_priv->np.napi); 2939 } 2940 } 2941 2942 static int dpaa_open(struct net_device *net_dev) 2943 { 2944 struct mac_device *mac_dev; 2945 struct dpaa_priv *priv; 2946 int err, i; 2947 2948 priv = netdev_priv(net_dev); 2949 mac_dev = priv->mac_dev; 2950 dpaa_eth_napi_enable(priv); 2951 2952 err = phylink_of_phy_connect(mac_dev->phylink, 2953 mac_dev->dev->of_node, 0); 2954 if (err) 2955 goto phy_init_failed; 2956 2957 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) { 2958 err = fman_port_enable(mac_dev->port[i]); 2959 if (err) 2960 goto mac_start_failed; 2961 } 2962 2963 err = priv->mac_dev->enable(mac_dev->fman_mac); 2964 if (err < 0) { 2965 netif_err(priv, ifup, net_dev, "mac_dev->enable() = %d\n", err); 2966 goto mac_start_failed; 2967 } 2968 phylink_start(mac_dev->phylink); 2969 2970 netif_tx_start_all_queues(net_dev); 2971 2972 return 0; 2973 2974 mac_start_failed: 2975 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) 2976 fman_port_disable(mac_dev->port[i]); 2977 phylink_disconnect_phy(mac_dev->phylink); 2978 2979 phy_init_failed: 2980 dpaa_eth_napi_disable(priv); 2981 2982 return err; 2983 } 2984 2985 static int dpaa_eth_stop(struct net_device *net_dev) 2986 { 2987 struct dpaa_priv *priv; 2988 int err; 2989 2990 err = dpaa_stop(net_dev); 2991 2992 priv = netdev_priv(net_dev); 2993 dpaa_eth_napi_disable(priv); 2994 2995 return err; 2996 } 2997 2998 static bool xdp_validate_mtu(struct dpaa_priv *priv, int mtu) 2999 { 3000 int max_contig_data = priv->dpaa_bp->size - priv->rx_headroom; 3001 3002 /* We do not support S/G fragments when XDP is enabled. 3003 * Limit the MTU in relation to the buffer size. 3004 */ 3005 if (mtu + VLAN_ETH_HLEN + ETH_FCS_LEN > max_contig_data) { 3006 dev_warn(priv->net_dev->dev.parent, 3007 "The maximum MTU for XDP is %d\n", 3008 max_contig_data - VLAN_ETH_HLEN - ETH_FCS_LEN); 3009 return false; 3010 } 3011 3012 return true; 3013 } 3014 3015 static int dpaa_change_mtu(struct net_device *net_dev, int new_mtu) 3016 { 3017 struct dpaa_priv *priv = netdev_priv(net_dev); 3018 3019 if (priv->xdp_prog && !xdp_validate_mtu(priv, new_mtu)) 3020 return -EINVAL; 3021 3022 WRITE_ONCE(net_dev->mtu, new_mtu); 3023 return 0; 3024 } 3025 3026 static int dpaa_setup_xdp(struct net_device *net_dev, struct netdev_bpf *bpf) 3027 { 3028 struct dpaa_priv *priv = netdev_priv(net_dev); 3029 struct bpf_prog *old_prog; 3030 int err; 3031 bool up; 3032 3033 /* S/G fragments are not supported in XDP-mode */ 3034 if (bpf->prog && !xdp_validate_mtu(priv, net_dev->mtu)) { 3035 NL_SET_ERR_MSG_MOD(bpf->extack, "MTU too large for XDP"); 3036 return -EINVAL; 3037 } 3038 3039 up = netif_running(net_dev); 3040 3041 if (up) 3042 dpaa_eth_stop(net_dev); 3043 3044 old_prog = xchg(&priv->xdp_prog, bpf->prog); 3045 if (old_prog) 3046 bpf_prog_put(old_prog); 3047 3048 if (up) { 3049 err = dpaa_open(net_dev); 3050 if (err) { 3051 NL_SET_ERR_MSG_MOD(bpf->extack, "dpaa_open() failed"); 3052 return err; 3053 } 3054 } 3055 3056 return 0; 3057 } 3058 3059 static int dpaa_xdp(struct net_device *net_dev, struct netdev_bpf *xdp) 3060 { 3061 switch (xdp->command) { 3062 case XDP_SETUP_PROG: 3063 return dpaa_setup_xdp(net_dev, xdp); 3064 default: 3065 return -EINVAL; 3066 } 3067 } 3068 3069 static int dpaa_xdp_xmit(struct net_device *net_dev, int n, 3070 struct xdp_frame **frames, u32 flags) 3071 { 3072 struct xdp_frame *xdpf; 3073 int i, nxmit = 0; 3074 3075 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 3076 return -EINVAL; 3077 3078 if (!netif_running(net_dev)) 3079 return -ENETDOWN; 3080 3081 for (i = 0; i < n; i++) { 3082 xdpf = frames[i]; 3083 if (dpaa_xdp_xmit_frame(net_dev, xdpf)) 3084 break; 3085 nxmit++; 3086 } 3087 3088 return nxmit; 3089 } 3090 3091 static int dpaa_hwtstamp_get(struct net_device *dev, 3092 struct kernel_hwtstamp_config *config) 3093 { 3094 struct dpaa_priv *priv = netdev_priv(dev); 3095 3096 config->tx_type = priv->tx_tstamp ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 3097 config->rx_filter = priv->rx_tstamp ? HWTSTAMP_FILTER_ALL : 3098 HWTSTAMP_FILTER_NONE; 3099 3100 return 0; 3101 } 3102 3103 static int dpaa_hwtstamp_set(struct net_device *dev, 3104 struct kernel_hwtstamp_config *config, 3105 struct netlink_ext_ack *extack) 3106 { 3107 struct dpaa_priv *priv = netdev_priv(dev); 3108 3109 switch (config->tx_type) { 3110 case HWTSTAMP_TX_OFF: 3111 /* Couldn't disable rx/tx timestamping separately. 3112 * Do nothing here. 3113 */ 3114 priv->tx_tstamp = false; 3115 break; 3116 case HWTSTAMP_TX_ON: 3117 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true); 3118 priv->tx_tstamp = true; 3119 break; 3120 default: 3121 return -ERANGE; 3122 } 3123 3124 if (config->rx_filter == HWTSTAMP_FILTER_NONE) { 3125 /* Couldn't disable rx/tx timestamping separately. 3126 * Do nothing here. 3127 */ 3128 priv->rx_tstamp = false; 3129 } else { 3130 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true); 3131 priv->rx_tstamp = true; 3132 /* TS is set for all frame types, not only those requested */ 3133 config->rx_filter = HWTSTAMP_FILTER_ALL; 3134 } 3135 3136 return 0; 3137 } 3138 3139 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd) 3140 { 3141 struct dpaa_priv *priv = netdev_priv(net_dev); 3142 3143 return phylink_mii_ioctl(priv->mac_dev->phylink, rq, cmd); 3144 } 3145 3146 static const struct net_device_ops dpaa_ops = { 3147 .ndo_open = dpaa_open, 3148 .ndo_start_xmit = dpaa_start_xmit, 3149 .ndo_stop = dpaa_eth_stop, 3150 .ndo_tx_timeout = dpaa_tx_timeout, 3151 .ndo_get_stats64 = dpaa_get_stats64, 3152 .ndo_set_mac_address = dpaa_set_mac_address, 3153 .ndo_validate_addr = eth_validate_addr, 3154 .ndo_set_rx_mode = dpaa_set_rx_mode, 3155 .ndo_eth_ioctl = dpaa_ioctl, 3156 .ndo_setup_tc = dpaa_setup_tc, 3157 .ndo_change_mtu = dpaa_change_mtu, 3158 .ndo_bpf = dpaa_xdp, 3159 .ndo_xdp_xmit = dpaa_xdp_xmit, 3160 .ndo_hwtstamp_get = dpaa_hwtstamp_get, 3161 .ndo_hwtstamp_set = dpaa_hwtstamp_set, 3162 }; 3163 3164 static int dpaa_napi_add(struct net_device *net_dev) 3165 { 3166 struct dpaa_priv *priv = netdev_priv(net_dev); 3167 struct dpaa_percpu_priv *percpu_priv; 3168 int cpu; 3169 3170 for_each_possible_cpu(cpu) { 3171 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu); 3172 3173 netif_napi_add(net_dev, &percpu_priv->np.napi, dpaa_eth_poll); 3174 } 3175 3176 return 0; 3177 } 3178 3179 static void dpaa_napi_del(struct net_device *net_dev) 3180 { 3181 struct dpaa_priv *priv = netdev_priv(net_dev); 3182 struct dpaa_percpu_priv *percpu_priv; 3183 int cpu; 3184 3185 for_each_possible_cpu(cpu) { 3186 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu); 3187 3188 __netif_napi_del(&percpu_priv->np.napi); 3189 } 3190 synchronize_net(); 3191 } 3192 3193 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp, 3194 struct bm_buffer *bmb) 3195 { 3196 dma_addr_t addr = bm_buf_addr(bmb); 3197 3198 dma_unmap_page(bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE, 3199 DMA_FROM_DEVICE); 3200 3201 skb_free_frag(phys_to_virt(addr)); 3202 } 3203 3204 /* Alloc the dpaa_bp struct and configure default values */ 3205 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev) 3206 { 3207 struct dpaa_bp *dpaa_bp; 3208 3209 dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL); 3210 if (!dpaa_bp) 3211 return ERR_PTR(-ENOMEM); 3212 3213 dpaa_bp->bpid = FSL_DPAA_BPID_INV; 3214 dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count); 3215 if (!dpaa_bp->percpu_count) 3216 return ERR_PTR(-ENOMEM); 3217 3218 dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT; 3219 3220 dpaa_bp->seed_cb = dpaa_bp_seed; 3221 dpaa_bp->free_buf_cb = dpaa_bp_free_pf; 3222 3223 return dpaa_bp; 3224 } 3225 3226 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR. 3227 * We won't be sending congestion notifications to FMan; for now, we just use 3228 * this CGR to generate enqueue rejections to FMan in order to drop the frames 3229 * before they reach our ingress queues and eat up memory. 3230 */ 3231 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv) 3232 { 3233 struct qm_mcc_initcgr initcgr; 3234 u32 cs_th; 3235 int err; 3236 3237 err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid); 3238 if (err < 0) { 3239 if (netif_msg_drv(priv)) 3240 pr_err("Error %d allocating CGR ID\n", err); 3241 goto out_error; 3242 } 3243 3244 /* Enable CS TD, but disable Congestion State Change Notifications. */ 3245 memset(&initcgr, 0, sizeof(initcgr)); 3246 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES); 3247 initcgr.cgr.cscn_en = QM_CGR_EN; 3248 cs_th = DPAA_INGRESS_CS_THRESHOLD; 3249 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1); 3250 3251 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN); 3252 initcgr.cgr.cstd_en = QM_CGR_EN; 3253 3254 /* This CGR will be associated with the SWP affined to the current CPU. 3255 * However, we'll place all our ingress FQs in it. 3256 */ 3257 err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT, 3258 &initcgr); 3259 if (err < 0) { 3260 if (netif_msg_drv(priv)) 3261 pr_err("Error %d creating ingress CGR with ID %d\n", 3262 err, priv->ingress_cgr.cgrid); 3263 qman_release_cgrid(priv->ingress_cgr.cgrid); 3264 goto out_error; 3265 } 3266 if (netif_msg_drv(priv)) 3267 pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n", 3268 priv->ingress_cgr.cgrid, priv->mac_dev->addr); 3269 3270 priv->use_ingress_cgr = true; 3271 3272 out_error: 3273 return err; 3274 } 3275 3276 static u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl, 3277 enum port_type port) 3278 { 3279 u16 headroom; 3280 3281 /* The frame headroom must accommodate: 3282 * - the driver private data area 3283 * - parse results, hash results, timestamp if selected 3284 * If either hash results or time stamp are selected, both will 3285 * be copied to/from the frame headroom, as TS is located between PR and 3286 * HR in the IC and IC copy size has a granularity of 16bytes 3287 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM) 3288 * 3289 * Also make sure the headroom is a multiple of data_align bytes 3290 */ 3291 headroom = (u16)(bl[port].priv_data_size + DPAA_HWA_SIZE); 3292 3293 if (port == RX) { 3294 #ifdef CONFIG_DPAA_ERRATUM_A050385 3295 if (unlikely(fman_has_errata_a050385())) 3296 headroom = XDP_PACKET_HEADROOM; 3297 #endif 3298 3299 return ALIGN(headroom, DPAA_FD_RX_DATA_ALIGNMENT); 3300 } else { 3301 return ALIGN(headroom, DPAA_FD_DATA_ALIGNMENT); 3302 } 3303 } 3304 3305 static int dpaa_eth_probe(struct platform_device *pdev) 3306 { 3307 struct net_device *net_dev = NULL; 3308 struct dpaa_bp *dpaa_bp = NULL; 3309 struct dpaa_fq *dpaa_fq, *tmp; 3310 struct dpaa_priv *priv = NULL; 3311 struct fm_port_fqs port_fqs; 3312 struct mac_device *mac_dev; 3313 int err = 0, channel; 3314 struct device *dev; 3315 3316 dev = &pdev->dev; 3317 3318 err = bman_is_probed(); 3319 if (!err) 3320 return -EPROBE_DEFER; 3321 if (err < 0) { 3322 dev_err(dev, "failing probe due to bman probe error\n"); 3323 return -ENODEV; 3324 } 3325 err = qman_is_probed(); 3326 if (!err) 3327 return -EPROBE_DEFER; 3328 if (err < 0) { 3329 dev_err(dev, "failing probe due to qman probe error\n"); 3330 return -ENODEV; 3331 } 3332 err = bman_portals_probed(); 3333 if (!err) 3334 return -EPROBE_DEFER; 3335 if (err < 0) { 3336 dev_err(dev, 3337 "failing probe due to bman portals probe error\n"); 3338 return -ENODEV; 3339 } 3340 err = qman_portals_probed(); 3341 if (!err) 3342 return -EPROBE_DEFER; 3343 if (err < 0) { 3344 dev_err(dev, 3345 "failing probe due to qman portals probe error\n"); 3346 return -ENODEV; 3347 } 3348 3349 /* Allocate this early, so we can store relevant information in 3350 * the private area 3351 */ 3352 net_dev = alloc_etherdev_mq(sizeof(*priv), dpaa_max_num_txqs()); 3353 if (!net_dev) { 3354 dev_err(dev, "alloc_etherdev_mq() failed\n"); 3355 return -ENOMEM; 3356 } 3357 3358 /* Do this here, so we can be verbose early */ 3359 SET_NETDEV_DEV(net_dev, dev->parent); 3360 dev_set_drvdata(dev, net_dev); 3361 3362 priv = netdev_priv(net_dev); 3363 priv->net_dev = net_dev; 3364 3365 priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT); 3366 3367 priv->egress_fqs = devm_kcalloc(dev, dpaa_max_num_txqs(), 3368 sizeof(*priv->egress_fqs), 3369 GFP_KERNEL); 3370 if (!priv->egress_fqs) { 3371 err = -ENOMEM; 3372 goto free_netdev; 3373 } 3374 3375 priv->conf_fqs = devm_kcalloc(dev, dpaa_max_num_txqs(), 3376 sizeof(*priv->conf_fqs), 3377 GFP_KERNEL); 3378 if (!priv->conf_fqs) { 3379 err = -ENOMEM; 3380 goto free_netdev; 3381 } 3382 3383 mac_dev = dpaa_mac_dev_get(pdev); 3384 if (IS_ERR(mac_dev)) { 3385 netdev_err(net_dev, "dpaa_mac_dev_get() failed\n"); 3386 err = PTR_ERR(mac_dev); 3387 goto free_netdev; 3388 } 3389 3390 /* Devices used for DMA mapping */ 3391 priv->rx_dma_dev = fman_port_get_device(mac_dev->port[RX]); 3392 priv->tx_dma_dev = fman_port_get_device(mac_dev->port[TX]); 3393 err = dma_coerce_mask_and_coherent(priv->rx_dma_dev, DMA_BIT_MASK(40)); 3394 if (!err) 3395 err = dma_coerce_mask_and_coherent(priv->tx_dma_dev, 3396 DMA_BIT_MASK(40)); 3397 if (err) { 3398 netdev_err(net_dev, "dma_coerce_mask_and_coherent() failed\n"); 3399 goto free_netdev; 3400 } 3401 3402 /* If fsl_fm_max_frm is set to a higher value than the all-common 1500, 3403 * we choose conservatively and let the user explicitly set a higher 3404 * MTU via ifconfig. Otherwise, the user may end up with different MTUs 3405 * in the same LAN. 3406 * If on the other hand fsl_fm_max_frm has been chosen below 1500, 3407 * start with the maximum allowed. 3408 */ 3409 net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN); 3410 3411 netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n", 3412 net_dev->mtu); 3413 3414 priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */ 3415 priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */ 3416 3417 /* bp init */ 3418 dpaa_bp = dpaa_bp_alloc(dev); 3419 if (IS_ERR(dpaa_bp)) { 3420 err = PTR_ERR(dpaa_bp); 3421 goto free_dpaa_bps; 3422 } 3423 /* the raw size of the buffers used for reception */ 3424 dpaa_bp->raw_size = DPAA_BP_RAW_SIZE; 3425 /* avoid runtime computations by keeping the usable size here */ 3426 dpaa_bp->size = dpaa_bp_size(dpaa_bp->raw_size); 3427 dpaa_bp->priv = priv; 3428 3429 err = dpaa_bp_alloc_pool(dpaa_bp); 3430 if (err < 0) 3431 goto free_dpaa_bps; 3432 priv->dpaa_bp = dpaa_bp; 3433 3434 INIT_LIST_HEAD(&priv->dpaa_fq_list); 3435 3436 memset(&port_fqs, 0, sizeof(port_fqs)); 3437 3438 err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs); 3439 if (err < 0) { 3440 dev_err(dev, "dpaa_alloc_all_fqs() failed\n"); 3441 goto free_dpaa_bps; 3442 } 3443 3444 priv->mac_dev = mac_dev; 3445 3446 channel = dpaa_get_channel(); 3447 if (channel < 0) { 3448 dev_err(dev, "dpaa_get_channel() failed\n"); 3449 err = channel; 3450 goto free_dpaa_bps; 3451 } 3452 3453 priv->channel = (u16)channel; 3454 3455 /* Walk the CPUs with affine portals 3456 * and add this pool channel to each's dequeue mask. 3457 */ 3458 dpaa_eth_add_channel(priv->channel, &pdev->dev); 3459 3460 err = dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]); 3461 if (err) 3462 goto free_dpaa_bps; 3463 3464 /* Create a congestion group for this netdev, with 3465 * dynamically-allocated CGR ID. 3466 * Must be executed after probing the MAC, but before 3467 * assigning the egress FQs to the CGRs. 3468 */ 3469 err = dpaa_eth_cgr_init(priv); 3470 if (err < 0) { 3471 dev_err(dev, "Error initializing CGR\n"); 3472 goto free_dpaa_bps; 3473 } 3474 3475 err = dpaa_ingress_cgr_init(priv); 3476 if (err < 0) { 3477 dev_err(dev, "Error initializing ingress CGR\n"); 3478 goto delete_egress_cgr; 3479 } 3480 3481 /* Add the FQs to the interface, and make them active */ 3482 list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) { 3483 err = dpaa_fq_init(dpaa_fq, false); 3484 if (err < 0) 3485 goto free_dpaa_fqs; 3486 } 3487 3488 priv->tx_headroom = dpaa_get_headroom(priv->buf_layout, TX); 3489 priv->rx_headroom = dpaa_get_headroom(priv->buf_layout, RX); 3490 3491 /* All real interfaces need their ports initialized */ 3492 err = dpaa_eth_init_ports(mac_dev, dpaa_bp, &port_fqs, 3493 &priv->buf_layout[0], dev); 3494 if (err) 3495 goto free_dpaa_fqs; 3496 3497 /* Rx traffic distribution based on keygen hashing defaults to on */ 3498 priv->keygen_in_use = true; 3499 3500 priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv); 3501 if (!priv->percpu_priv) { 3502 dev_err(dev, "devm_alloc_percpu() failed\n"); 3503 err = -ENOMEM; 3504 goto free_dpaa_fqs; 3505 } 3506 3507 priv->num_tc = 1; 3508 netif_set_real_num_tx_queues(net_dev, 3509 priv->num_tc * dpaa_num_txqs_per_tc()); 3510 3511 /* Initialize NAPI */ 3512 err = dpaa_napi_add(net_dev); 3513 if (err < 0) 3514 goto delete_dpaa_napi; 3515 3516 err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout); 3517 if (err < 0) 3518 goto delete_dpaa_napi; 3519 3520 dpaa_eth_sysfs_init(&net_dev->dev); 3521 3522 netif_info(priv, probe, net_dev, "Probed interface %s\n", 3523 net_dev->name); 3524 3525 return 0; 3526 3527 delete_dpaa_napi: 3528 dpaa_napi_del(net_dev); 3529 free_dpaa_fqs: 3530 dpaa_fq_free(dev, &priv->dpaa_fq_list); 3531 qman_delete_cgr_safe(&priv->ingress_cgr); 3532 qman_release_cgrid(priv->ingress_cgr.cgrid); 3533 delete_egress_cgr: 3534 qman_delete_cgr_safe(&priv->cgr_data.cgr); 3535 qman_release_cgrid(priv->cgr_data.cgr.cgrid); 3536 free_dpaa_bps: 3537 dpaa_bps_free(priv); 3538 free_netdev: 3539 dev_set_drvdata(dev, NULL); 3540 free_netdev(net_dev); 3541 3542 return err; 3543 } 3544 3545 static void dpaa_remove(struct platform_device *pdev) 3546 { 3547 struct net_device *net_dev; 3548 struct dpaa_priv *priv; 3549 struct device *dev; 3550 int err; 3551 3552 dev = &pdev->dev; 3553 net_dev = dev_get_drvdata(dev); 3554 3555 priv = netdev_priv(net_dev); 3556 3557 dpaa_eth_sysfs_remove(dev); 3558 3559 dev_set_drvdata(dev, NULL); 3560 unregister_netdev(net_dev); 3561 phylink_destroy(priv->mac_dev->phylink); 3562 3563 err = dpaa_fq_free(dev, &priv->dpaa_fq_list); 3564 if (err) 3565 dev_err(dev, "Failed to free FQs on remove (%pE)\n", 3566 ERR_PTR(err)); 3567 3568 qman_delete_cgr_safe(&priv->ingress_cgr); 3569 qman_release_cgrid(priv->ingress_cgr.cgrid); 3570 qman_delete_cgr_safe(&priv->cgr_data.cgr); 3571 qman_release_cgrid(priv->cgr_data.cgr.cgrid); 3572 3573 dpaa_napi_del(net_dev); 3574 3575 dpaa_bps_free(priv); 3576 3577 free_netdev(net_dev); 3578 } 3579 3580 static const struct platform_device_id dpaa_devtype[] = { 3581 { 3582 .name = "dpaa-ethernet", 3583 .driver_data = 0, 3584 }, { 3585 } 3586 }; 3587 MODULE_DEVICE_TABLE(platform, dpaa_devtype); 3588 3589 static struct platform_driver dpaa_driver = { 3590 .driver = { 3591 .name = KBUILD_MODNAME, 3592 }, 3593 .id_table = dpaa_devtype, 3594 .probe = dpaa_eth_probe, 3595 .remove = dpaa_remove 3596 }; 3597 3598 static int __init dpaa_load(void) 3599 { 3600 int err; 3601 3602 pr_debug("FSL DPAA Ethernet driver\n"); 3603 3604 /* initialize dpaa_eth mirror values */ 3605 dpaa_rx_extra_headroom = fman_get_rx_extra_headroom(); 3606 dpaa_max_frm = fman_get_max_frm(); 3607 3608 err = platform_driver_register(&dpaa_driver); 3609 if (err < 0) 3610 pr_err("Error, platform_driver_register() = %d\n", err); 3611 3612 return err; 3613 } 3614 module_init(dpaa_load); 3615 3616 static void __exit dpaa_unload(void) 3617 { 3618 platform_driver_unregister(&dpaa_driver); 3619 3620 /* Only one channel is used and needs to be released after all 3621 * interfaces are removed 3622 */ 3623 dpaa_release_channel(); 3624 } 3625 module_exit(dpaa_unload); 3626 3627 MODULE_LICENSE("Dual BSD/GPL"); 3628 MODULE_DESCRIPTION("FSL DPAA Ethernet driver"); 3629