1 /* 2 Written 1998-2000 by Donald Becker. 3 4 This software may be used and distributed according to the terms of 5 the GNU General Public License (GPL), incorporated herein by reference. 6 Drivers based on or derived from this code fall under the GPL and must 7 retain the authorship, copyright and license notice. This file is not 8 a complete program and may only be used when the entire operating 9 system is licensed under the GPL. 10 11 The author may be reached as becker@scyld.com, or C/O 12 Scyld Computing Corporation 13 410 Severn Ave., Suite 210 14 Annapolis MD 21403 15 16 Support information and updates available at 17 http://www.scyld.com/network/pci-skeleton.html 18 19 Linux kernel updates: 20 21 Version 2.51, Nov 17, 2001 (jgarzik): 22 - Add ethtool support 23 - Replace some MII-related magic numbers with constants 24 25 */ 26 27 #define DRV_NAME "fealnx" 28 #define DRV_VERSION "2.52" 29 #define DRV_RELDATE "Sep-11-2006" 30 31 static int debug; /* 1-> print debug message */ 32 static int max_interrupt_work = 20; 33 34 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). */ 35 static int multicast_filter_limit = 32; 36 37 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. */ 38 /* Setting to > 1518 effectively disables this feature. */ 39 static int rx_copybreak; 40 41 /* Used to pass the media type, etc. */ 42 /* Both 'options[]' and 'full_duplex[]' should exist for driver */ 43 /* interoperability. */ 44 /* The media type is usually passed in 'options[]'. */ 45 #define MAX_UNITS 8 /* More are supported, limit only on options */ 46 static int options[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 }; 47 static int full_duplex[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 }; 48 49 /* Operational parameters that are set at compile time. */ 50 /* Keep the ring sizes a power of two for compile efficiency. */ 51 /* The compiler will convert <unsigned>'%'<2^N> into a bit mask. */ 52 /* Making the Tx ring too large decreases the effectiveness of channel */ 53 /* bonding and packet priority. */ 54 /* There are no ill effects from too-large receive rings. */ 55 // 88-12-9 modify, 56 // #define TX_RING_SIZE 16 57 // #define RX_RING_SIZE 32 58 #define TX_RING_SIZE 6 59 #define RX_RING_SIZE 12 60 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct fealnx_desc) 61 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct fealnx_desc) 62 63 /* Operational parameters that usually are not changed. */ 64 /* Time in jiffies before concluding the transmitter is hung. */ 65 #define TX_TIMEOUT (2*HZ) 66 67 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer. */ 68 69 70 /* Include files, designed to support most kernel versions 2.0.0 and later. */ 71 #include <linux/module.h> 72 #include <linux/kernel.h> 73 #include <linux/string.h> 74 #include <linux/timer.h> 75 #include <linux/errno.h> 76 #include <linux/ioport.h> 77 #include <linux/interrupt.h> 78 #include <linux/pci.h> 79 #include <linux/netdevice.h> 80 #include <linux/etherdevice.h> 81 #include <linux/skbuff.h> 82 #include <linux/init.h> 83 #include <linux/mii.h> 84 #include <linux/ethtool.h> 85 #include <linux/crc32.h> 86 #include <linux/delay.h> 87 #include <linux/bitops.h> 88 89 #include <asm/processor.h> /* Processor type for cache alignment. */ 90 #include <asm/io.h> 91 #include <asm/uaccess.h> 92 #include <asm/byteorder.h> 93 94 /* These identify the driver base version and may not be removed. */ 95 static const char version[] __devinitconst = 96 KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE "\n"; 97 98 99 /* This driver was written to use PCI memory space, however some x86 systems 100 work only with I/O space accesses. */ 101 #ifndef __alpha__ 102 #define USE_IO_OPS 103 #endif 104 105 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package. */ 106 /* This is only in the support-all-kernels source code. */ 107 108 #define RUN_AT(x) (jiffies + (x)) 109 110 MODULE_AUTHOR("Myson or whoever"); 111 MODULE_DESCRIPTION("Myson MTD-8xx 100/10M Ethernet PCI Adapter Driver"); 112 MODULE_LICENSE("GPL"); 113 module_param(max_interrupt_work, int, 0); 114 module_param(debug, int, 0); 115 module_param(rx_copybreak, int, 0); 116 module_param(multicast_filter_limit, int, 0); 117 module_param_array(options, int, NULL, 0); 118 module_param_array(full_duplex, int, NULL, 0); 119 MODULE_PARM_DESC(max_interrupt_work, "fealnx maximum events handled per interrupt"); 120 MODULE_PARM_DESC(debug, "fealnx enable debugging (0-1)"); 121 MODULE_PARM_DESC(rx_copybreak, "fealnx copy breakpoint for copy-only-tiny-frames"); 122 MODULE_PARM_DESC(multicast_filter_limit, "fealnx maximum number of filtered multicast addresses"); 123 MODULE_PARM_DESC(options, "fealnx: Bits 0-3: media type, bit 17: full duplex"); 124 MODULE_PARM_DESC(full_duplex, "fealnx full duplex setting(s) (1)"); 125 126 enum { 127 MIN_REGION_SIZE = 136, 128 }; 129 130 /* A chip capabilities table, matching the entries in pci_tbl[] above. */ 131 enum chip_capability_flags { 132 HAS_MII_XCVR, 133 HAS_CHIP_XCVR, 134 }; 135 136 /* 89/6/13 add, */ 137 /* for different PHY */ 138 enum phy_type_flags { 139 MysonPHY = 1, 140 AhdocPHY = 2, 141 SeeqPHY = 3, 142 MarvellPHY = 4, 143 Myson981 = 5, 144 LevelOnePHY = 6, 145 OtherPHY = 10, 146 }; 147 148 struct chip_info { 149 char *chip_name; 150 int flags; 151 }; 152 153 static const struct chip_info skel_netdrv_tbl[] __devinitdata = { 154 { "100/10M Ethernet PCI Adapter", HAS_MII_XCVR }, 155 { "100/10M Ethernet PCI Adapter", HAS_CHIP_XCVR }, 156 { "1000/100/10M Ethernet PCI Adapter", HAS_MII_XCVR }, 157 }; 158 159 /* Offsets to the Command and Status Registers. */ 160 enum fealnx_offsets { 161 PAR0 = 0x0, /* physical address 0-3 */ 162 PAR1 = 0x04, /* physical address 4-5 */ 163 MAR0 = 0x08, /* multicast address 0-3 */ 164 MAR1 = 0x0C, /* multicast address 4-7 */ 165 FAR0 = 0x10, /* flow-control address 0-3 */ 166 FAR1 = 0x14, /* flow-control address 4-5 */ 167 TCRRCR = 0x18, /* receive & transmit configuration */ 168 BCR = 0x1C, /* bus command */ 169 TXPDR = 0x20, /* transmit polling demand */ 170 RXPDR = 0x24, /* receive polling demand */ 171 RXCWP = 0x28, /* receive current word pointer */ 172 TXLBA = 0x2C, /* transmit list base address */ 173 RXLBA = 0x30, /* receive list base address */ 174 ISR = 0x34, /* interrupt status */ 175 IMR = 0x38, /* interrupt mask */ 176 FTH = 0x3C, /* flow control high/low threshold */ 177 MANAGEMENT = 0x40, /* bootrom/eeprom and mii management */ 178 TALLY = 0x44, /* tally counters for crc and mpa */ 179 TSR = 0x48, /* tally counter for transmit status */ 180 BMCRSR = 0x4c, /* basic mode control and status */ 181 PHYIDENTIFIER = 0x50, /* phy identifier */ 182 ANARANLPAR = 0x54, /* auto-negotiation advertisement and link 183 partner ability */ 184 ANEROCR = 0x58, /* auto-negotiation expansion and pci conf. */ 185 BPREMRPSR = 0x5c, /* bypass & receive error mask and phy status */ 186 }; 187 188 /* Bits in the interrupt status/enable registers. */ 189 /* The bits in the Intr Status/Enable registers, mostly interrupt sources. */ 190 enum intr_status_bits { 191 RFCON = 0x00020000, /* receive flow control xon packet */ 192 RFCOFF = 0x00010000, /* receive flow control xoff packet */ 193 LSCStatus = 0x00008000, /* link status change */ 194 ANCStatus = 0x00004000, /* autonegotiation completed */ 195 FBE = 0x00002000, /* fatal bus error */ 196 FBEMask = 0x00001800, /* mask bit12-11 */ 197 ParityErr = 0x00000000, /* parity error */ 198 TargetErr = 0x00001000, /* target abort */ 199 MasterErr = 0x00000800, /* master error */ 200 TUNF = 0x00000400, /* transmit underflow */ 201 ROVF = 0x00000200, /* receive overflow */ 202 ETI = 0x00000100, /* transmit early int */ 203 ERI = 0x00000080, /* receive early int */ 204 CNTOVF = 0x00000040, /* counter overflow */ 205 RBU = 0x00000020, /* receive buffer unavailable */ 206 TBU = 0x00000010, /* transmit buffer unavilable */ 207 TI = 0x00000008, /* transmit interrupt */ 208 RI = 0x00000004, /* receive interrupt */ 209 RxErr = 0x00000002, /* receive error */ 210 }; 211 212 /* Bits in the NetworkConfig register, W for writing, R for reading */ 213 /* FIXME: some names are invented by me. Marked with (name?) */ 214 /* If you have docs and know bit names, please fix 'em */ 215 enum rx_mode_bits { 216 CR_W_ENH = 0x02000000, /* enhanced mode (name?) */ 217 CR_W_FD = 0x00100000, /* full duplex */ 218 CR_W_PS10 = 0x00080000, /* 10 mbit */ 219 CR_W_TXEN = 0x00040000, /* tx enable (name?) */ 220 CR_W_PS1000 = 0x00010000, /* 1000 mbit */ 221 /* CR_W_RXBURSTMASK= 0x00000e00, Im unsure about this */ 222 CR_W_RXMODEMASK = 0x000000e0, 223 CR_W_PROM = 0x00000080, /* promiscuous mode */ 224 CR_W_AB = 0x00000040, /* accept broadcast */ 225 CR_W_AM = 0x00000020, /* accept mutlicast */ 226 CR_W_ARP = 0x00000008, /* receive runt pkt */ 227 CR_W_ALP = 0x00000004, /* receive long pkt */ 228 CR_W_SEP = 0x00000002, /* receive error pkt */ 229 CR_W_RXEN = 0x00000001, /* rx enable (unicast?) (name?) */ 230 231 CR_R_TXSTOP = 0x04000000, /* tx stopped (name?) */ 232 CR_R_FD = 0x00100000, /* full duplex detected */ 233 CR_R_PS10 = 0x00080000, /* 10 mbit detected */ 234 CR_R_RXSTOP = 0x00008000, /* rx stopped (name?) */ 235 }; 236 237 /* The Tulip Rx and Tx buffer descriptors. */ 238 struct fealnx_desc { 239 s32 status; 240 s32 control; 241 u32 buffer; 242 u32 next_desc; 243 struct fealnx_desc *next_desc_logical; 244 struct sk_buff *skbuff; 245 u32 reserved1; 246 u32 reserved2; 247 }; 248 249 /* Bits in network_desc.status */ 250 enum rx_desc_status_bits { 251 RXOWN = 0x80000000, /* own bit */ 252 FLNGMASK = 0x0fff0000, /* frame length */ 253 FLNGShift = 16, 254 MARSTATUS = 0x00004000, /* multicast address received */ 255 BARSTATUS = 0x00002000, /* broadcast address received */ 256 PHYSTATUS = 0x00001000, /* physical address received */ 257 RXFSD = 0x00000800, /* first descriptor */ 258 RXLSD = 0x00000400, /* last descriptor */ 259 ErrorSummary = 0x80, /* error summary */ 260 RUNT = 0x40, /* runt packet received */ 261 LONG = 0x20, /* long packet received */ 262 FAE = 0x10, /* frame align error */ 263 CRC = 0x08, /* crc error */ 264 RXER = 0x04, /* receive error */ 265 }; 266 267 enum rx_desc_control_bits { 268 RXIC = 0x00800000, /* interrupt control */ 269 RBSShift = 0, 270 }; 271 272 enum tx_desc_status_bits { 273 TXOWN = 0x80000000, /* own bit */ 274 JABTO = 0x00004000, /* jabber timeout */ 275 CSL = 0x00002000, /* carrier sense lost */ 276 LC = 0x00001000, /* late collision */ 277 EC = 0x00000800, /* excessive collision */ 278 UDF = 0x00000400, /* fifo underflow */ 279 DFR = 0x00000200, /* deferred */ 280 HF = 0x00000100, /* heartbeat fail */ 281 NCRMask = 0x000000ff, /* collision retry count */ 282 NCRShift = 0, 283 }; 284 285 enum tx_desc_control_bits { 286 TXIC = 0x80000000, /* interrupt control */ 287 ETIControl = 0x40000000, /* early transmit interrupt */ 288 TXLD = 0x20000000, /* last descriptor */ 289 TXFD = 0x10000000, /* first descriptor */ 290 CRCEnable = 0x08000000, /* crc control */ 291 PADEnable = 0x04000000, /* padding control */ 292 RetryTxLC = 0x02000000, /* retry late collision */ 293 PKTSMask = 0x3ff800, /* packet size bit21-11 */ 294 PKTSShift = 11, 295 TBSMask = 0x000007ff, /* transmit buffer bit 10-0 */ 296 TBSShift = 0, 297 }; 298 299 /* BootROM/EEPROM/MII Management Register */ 300 #define MASK_MIIR_MII_READ 0x00000000 301 #define MASK_MIIR_MII_WRITE 0x00000008 302 #define MASK_MIIR_MII_MDO 0x00000004 303 #define MASK_MIIR_MII_MDI 0x00000002 304 #define MASK_MIIR_MII_MDC 0x00000001 305 306 /* ST+OP+PHYAD+REGAD+TA */ 307 #define OP_READ 0x6000 /* ST:01+OP:10+PHYAD+REGAD+TA:Z0 */ 308 #define OP_WRITE 0x5002 /* ST:01+OP:01+PHYAD+REGAD+TA:10 */ 309 310 /* ------------------------------------------------------------------------- */ 311 /* Constants for Myson PHY */ 312 /* ------------------------------------------------------------------------- */ 313 #define MysonPHYID 0xd0000302 314 /* 89-7-27 add, (begin) */ 315 #define MysonPHYID0 0x0302 316 #define StatusRegister 18 317 #define SPEED100 0x0400 // bit10 318 #define FULLMODE 0x0800 // bit11 319 /* 89-7-27 add, (end) */ 320 321 /* ------------------------------------------------------------------------- */ 322 /* Constants for Seeq 80225 PHY */ 323 /* ------------------------------------------------------------------------- */ 324 #define SeeqPHYID0 0x0016 325 326 #define MIIRegister18 18 327 #define SPD_DET_100 0x80 328 #define DPLX_DET_FULL 0x40 329 330 /* ------------------------------------------------------------------------- */ 331 /* Constants for Ahdoc 101 PHY */ 332 /* ------------------------------------------------------------------------- */ 333 #define AhdocPHYID0 0x0022 334 335 #define DiagnosticReg 18 336 #define DPLX_FULL 0x0800 337 #define Speed_100 0x0400 338 339 /* 89/6/13 add, */ 340 /* -------------------------------------------------------------------------- */ 341 /* Constants */ 342 /* -------------------------------------------------------------------------- */ 343 #define MarvellPHYID0 0x0141 344 #define LevelOnePHYID0 0x0013 345 346 #define MII1000BaseTControlReg 9 347 #define MII1000BaseTStatusReg 10 348 #define SpecificReg 17 349 350 /* for 1000BaseT Control Register */ 351 #define PHYAbletoPerform1000FullDuplex 0x0200 352 #define PHYAbletoPerform1000HalfDuplex 0x0100 353 #define PHY1000AbilityMask 0x300 354 355 // for phy specific status register, marvell phy. 356 #define SpeedMask 0x0c000 357 #define Speed_1000M 0x08000 358 #define Speed_100M 0x4000 359 #define Speed_10M 0 360 #define Full_Duplex 0x2000 361 362 // 89/12/29 add, for phy specific status register, levelone phy, (begin) 363 #define LXT1000_100M 0x08000 364 #define LXT1000_1000M 0x0c000 365 #define LXT1000_Full 0x200 366 // 89/12/29 add, for phy specific status register, levelone phy, (end) 367 368 /* for 3-in-1 case, BMCRSR register */ 369 #define LinkIsUp2 0x00040000 370 371 /* for PHY */ 372 #define LinkIsUp 0x0004 373 374 375 struct netdev_private { 376 /* Descriptor rings first for alignment. */ 377 struct fealnx_desc *rx_ring; 378 struct fealnx_desc *tx_ring; 379 380 dma_addr_t rx_ring_dma; 381 dma_addr_t tx_ring_dma; 382 383 spinlock_t lock; 384 385 /* Media monitoring timer. */ 386 struct timer_list timer; 387 388 /* Reset timer */ 389 struct timer_list reset_timer; 390 int reset_timer_armed; 391 unsigned long crvalue_sv; 392 unsigned long imrvalue_sv; 393 394 /* Frequently used values: keep some adjacent for cache effect. */ 395 int flags; 396 struct pci_dev *pci_dev; 397 unsigned long crvalue; 398 unsigned long bcrvalue; 399 unsigned long imrvalue; 400 struct fealnx_desc *cur_rx; 401 struct fealnx_desc *lack_rxbuf; 402 int really_rx_count; 403 struct fealnx_desc *cur_tx; 404 struct fealnx_desc *cur_tx_copy; 405 int really_tx_count; 406 int free_tx_count; 407 unsigned int rx_buf_sz; /* Based on MTU+slack. */ 408 409 /* These values are keep track of the transceiver/media in use. */ 410 unsigned int linkok; 411 unsigned int line_speed; 412 unsigned int duplexmode; 413 unsigned int default_port:4; /* Last dev->if_port value. */ 414 unsigned int PHYType; 415 416 /* MII transceiver section. */ 417 int mii_cnt; /* MII device addresses. */ 418 unsigned char phys[2]; /* MII device addresses. */ 419 struct mii_if_info mii; 420 void __iomem *mem; 421 }; 422 423 424 static int mdio_read(struct net_device *dev, int phy_id, int location); 425 static void mdio_write(struct net_device *dev, int phy_id, int location, int value); 426 static int netdev_open(struct net_device *dev); 427 static void getlinktype(struct net_device *dev); 428 static void getlinkstatus(struct net_device *dev); 429 static void netdev_timer(unsigned long data); 430 static void reset_timer(unsigned long data); 431 static void fealnx_tx_timeout(struct net_device *dev); 432 static void init_ring(struct net_device *dev); 433 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev); 434 static irqreturn_t intr_handler(int irq, void *dev_instance); 435 static int netdev_rx(struct net_device *dev); 436 static void set_rx_mode(struct net_device *dev); 437 static void __set_rx_mode(struct net_device *dev); 438 static struct net_device_stats *get_stats(struct net_device *dev); 439 static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 440 static const struct ethtool_ops netdev_ethtool_ops; 441 static int netdev_close(struct net_device *dev); 442 static void reset_rx_descriptors(struct net_device *dev); 443 static void reset_tx_descriptors(struct net_device *dev); 444 445 static void stop_nic_rx(void __iomem *ioaddr, long crvalue) 446 { 447 int delay = 0x1000; 448 iowrite32(crvalue & ~(CR_W_RXEN), ioaddr + TCRRCR); 449 while (--delay) { 450 if ( (ioread32(ioaddr + TCRRCR) & CR_R_RXSTOP) == CR_R_RXSTOP) 451 break; 452 } 453 } 454 455 456 static void stop_nic_rxtx(void __iomem *ioaddr, long crvalue) 457 { 458 int delay = 0x1000; 459 iowrite32(crvalue & ~(CR_W_RXEN+CR_W_TXEN), ioaddr + TCRRCR); 460 while (--delay) { 461 if ( (ioread32(ioaddr + TCRRCR) & (CR_R_RXSTOP+CR_R_TXSTOP)) 462 == (CR_R_RXSTOP+CR_R_TXSTOP) ) 463 break; 464 } 465 } 466 467 static const struct net_device_ops netdev_ops = { 468 .ndo_open = netdev_open, 469 .ndo_stop = netdev_close, 470 .ndo_start_xmit = start_tx, 471 .ndo_get_stats = get_stats, 472 .ndo_set_rx_mode = set_rx_mode, 473 .ndo_do_ioctl = mii_ioctl, 474 .ndo_tx_timeout = fealnx_tx_timeout, 475 .ndo_change_mtu = eth_change_mtu, 476 .ndo_set_mac_address = eth_mac_addr, 477 .ndo_validate_addr = eth_validate_addr, 478 }; 479 480 static int __devinit fealnx_init_one(struct pci_dev *pdev, 481 const struct pci_device_id *ent) 482 { 483 struct netdev_private *np; 484 int i, option, err, irq; 485 static int card_idx = -1; 486 char boardname[12]; 487 void __iomem *ioaddr; 488 unsigned long len; 489 unsigned int chip_id = ent->driver_data; 490 struct net_device *dev; 491 void *ring_space; 492 dma_addr_t ring_dma; 493 #ifdef USE_IO_OPS 494 int bar = 0; 495 #else 496 int bar = 1; 497 #endif 498 499 /* when built into the kernel, we only print version if device is found */ 500 #ifndef MODULE 501 static int printed_version; 502 if (!printed_version++) 503 printk(version); 504 #endif 505 506 card_idx++; 507 sprintf(boardname, "fealnx%d", card_idx); 508 509 option = card_idx < MAX_UNITS ? options[card_idx] : 0; 510 511 i = pci_enable_device(pdev); 512 if (i) return i; 513 pci_set_master(pdev); 514 515 len = pci_resource_len(pdev, bar); 516 if (len < MIN_REGION_SIZE) { 517 dev_err(&pdev->dev, 518 "region size %ld too small, aborting\n", len); 519 return -ENODEV; 520 } 521 522 i = pci_request_regions(pdev, boardname); 523 if (i) 524 return i; 525 526 irq = pdev->irq; 527 528 ioaddr = pci_iomap(pdev, bar, len); 529 if (!ioaddr) { 530 err = -ENOMEM; 531 goto err_out_res; 532 } 533 534 dev = alloc_etherdev(sizeof(struct netdev_private)); 535 if (!dev) { 536 err = -ENOMEM; 537 goto err_out_unmap; 538 } 539 SET_NETDEV_DEV(dev, &pdev->dev); 540 541 /* read ethernet id */ 542 for (i = 0; i < 6; ++i) 543 dev->dev_addr[i] = ioread8(ioaddr + PAR0 + i); 544 545 /* Reset the chip to erase previous misconfiguration. */ 546 iowrite32(0x00000001, ioaddr + BCR); 547 548 dev->base_addr = (unsigned long)ioaddr; 549 dev->irq = irq; 550 551 /* Make certain the descriptor lists are aligned. */ 552 np = netdev_priv(dev); 553 np->mem = ioaddr; 554 spin_lock_init(&np->lock); 555 np->pci_dev = pdev; 556 np->flags = skel_netdrv_tbl[chip_id].flags; 557 pci_set_drvdata(pdev, dev); 558 np->mii.dev = dev; 559 np->mii.mdio_read = mdio_read; 560 np->mii.mdio_write = mdio_write; 561 np->mii.phy_id_mask = 0x1f; 562 np->mii.reg_num_mask = 0x1f; 563 564 ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma); 565 if (!ring_space) { 566 err = -ENOMEM; 567 goto err_out_free_dev; 568 } 569 np->rx_ring = ring_space; 570 np->rx_ring_dma = ring_dma; 571 572 ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma); 573 if (!ring_space) { 574 err = -ENOMEM; 575 goto err_out_free_rx; 576 } 577 np->tx_ring = ring_space; 578 np->tx_ring_dma = ring_dma; 579 580 /* find the connected MII xcvrs */ 581 if (np->flags == HAS_MII_XCVR) { 582 int phy, phy_idx = 0; 583 584 for (phy = 1; phy < 32 && phy_idx < ARRAY_SIZE(np->phys); 585 phy++) { 586 int mii_status = mdio_read(dev, phy, 1); 587 588 if (mii_status != 0xffff && mii_status != 0x0000) { 589 np->phys[phy_idx++] = phy; 590 dev_info(&pdev->dev, 591 "MII PHY found at address %d, status " 592 "0x%4.4x.\n", phy, mii_status); 593 /* get phy type */ 594 { 595 unsigned int data; 596 597 data = mdio_read(dev, np->phys[0], 2); 598 if (data == SeeqPHYID0) 599 np->PHYType = SeeqPHY; 600 else if (data == AhdocPHYID0) 601 np->PHYType = AhdocPHY; 602 else if (data == MarvellPHYID0) 603 np->PHYType = MarvellPHY; 604 else if (data == MysonPHYID0) 605 np->PHYType = Myson981; 606 else if (data == LevelOnePHYID0) 607 np->PHYType = LevelOnePHY; 608 else 609 np->PHYType = OtherPHY; 610 } 611 } 612 } 613 614 np->mii_cnt = phy_idx; 615 if (phy_idx == 0) 616 dev_warn(&pdev->dev, 617 "MII PHY not found -- this device may " 618 "not operate correctly.\n"); 619 } else { 620 np->phys[0] = 32; 621 /* 89/6/23 add, (begin) */ 622 /* get phy type */ 623 if (ioread32(ioaddr + PHYIDENTIFIER) == MysonPHYID) 624 np->PHYType = MysonPHY; 625 else 626 np->PHYType = OtherPHY; 627 } 628 np->mii.phy_id = np->phys[0]; 629 630 if (dev->mem_start) 631 option = dev->mem_start; 632 633 /* The lower four bits are the media type. */ 634 if (option > 0) { 635 if (option & 0x200) 636 np->mii.full_duplex = 1; 637 np->default_port = option & 15; 638 } 639 640 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0) 641 np->mii.full_duplex = full_duplex[card_idx]; 642 643 if (np->mii.full_duplex) { 644 dev_info(&pdev->dev, "Media type forced to Full Duplex.\n"); 645 /* 89/6/13 add, (begin) */ 646 // if (np->PHYType==MarvellPHY) 647 if ((np->PHYType == MarvellPHY) || (np->PHYType == LevelOnePHY)) { 648 unsigned int data; 649 650 data = mdio_read(dev, np->phys[0], 9); 651 data = (data & 0xfcff) | 0x0200; 652 mdio_write(dev, np->phys[0], 9, data); 653 } 654 /* 89/6/13 add, (end) */ 655 if (np->flags == HAS_MII_XCVR) 656 mdio_write(dev, np->phys[0], MII_ADVERTISE, ADVERTISE_FULL); 657 else 658 iowrite32(ADVERTISE_FULL, ioaddr + ANARANLPAR); 659 np->mii.force_media = 1; 660 } 661 662 dev->netdev_ops = &netdev_ops; 663 dev->ethtool_ops = &netdev_ethtool_ops; 664 dev->watchdog_timeo = TX_TIMEOUT; 665 666 err = register_netdev(dev); 667 if (err) 668 goto err_out_free_tx; 669 670 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n", 671 dev->name, skel_netdrv_tbl[chip_id].chip_name, ioaddr, 672 dev->dev_addr, irq); 673 674 return 0; 675 676 err_out_free_tx: 677 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma); 678 err_out_free_rx: 679 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma); 680 err_out_free_dev: 681 free_netdev(dev); 682 err_out_unmap: 683 pci_iounmap(pdev, ioaddr); 684 err_out_res: 685 pci_release_regions(pdev); 686 return err; 687 } 688 689 690 static void __devexit fealnx_remove_one(struct pci_dev *pdev) 691 { 692 struct net_device *dev = pci_get_drvdata(pdev); 693 694 if (dev) { 695 struct netdev_private *np = netdev_priv(dev); 696 697 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, 698 np->tx_ring_dma); 699 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, 700 np->rx_ring_dma); 701 unregister_netdev(dev); 702 pci_iounmap(pdev, np->mem); 703 free_netdev(dev); 704 pci_release_regions(pdev); 705 pci_set_drvdata(pdev, NULL); 706 } else 707 printk(KERN_ERR "fealnx: remove for unknown device\n"); 708 } 709 710 711 static ulong m80x_send_cmd_to_phy(void __iomem *miiport, int opcode, int phyad, int regad) 712 { 713 ulong miir; 714 int i; 715 unsigned int mask, data; 716 717 /* enable MII output */ 718 miir = (ulong) ioread32(miiport); 719 miir &= 0xfffffff0; 720 721 miir |= MASK_MIIR_MII_WRITE + MASK_MIIR_MII_MDO; 722 723 /* send 32 1's preamble */ 724 for (i = 0; i < 32; i++) { 725 /* low MDC; MDO is already high (miir) */ 726 miir &= ~MASK_MIIR_MII_MDC; 727 iowrite32(miir, miiport); 728 729 /* high MDC */ 730 miir |= MASK_MIIR_MII_MDC; 731 iowrite32(miir, miiport); 732 } 733 734 /* calculate ST+OP+PHYAD+REGAD+TA */ 735 data = opcode | (phyad << 7) | (regad << 2); 736 737 /* sent out */ 738 mask = 0x8000; 739 while (mask) { 740 /* low MDC, prepare MDO */ 741 miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO); 742 if (mask & data) 743 miir |= MASK_MIIR_MII_MDO; 744 745 iowrite32(miir, miiport); 746 /* high MDC */ 747 miir |= MASK_MIIR_MII_MDC; 748 iowrite32(miir, miiport); 749 udelay(30); 750 751 /* next */ 752 mask >>= 1; 753 if (mask == 0x2 && opcode == OP_READ) 754 miir &= ~MASK_MIIR_MII_WRITE; 755 } 756 return miir; 757 } 758 759 760 static int mdio_read(struct net_device *dev, int phyad, int regad) 761 { 762 struct netdev_private *np = netdev_priv(dev); 763 void __iomem *miiport = np->mem + MANAGEMENT; 764 ulong miir; 765 unsigned int mask, data; 766 767 miir = m80x_send_cmd_to_phy(miiport, OP_READ, phyad, regad); 768 769 /* read data */ 770 mask = 0x8000; 771 data = 0; 772 while (mask) { 773 /* low MDC */ 774 miir &= ~MASK_MIIR_MII_MDC; 775 iowrite32(miir, miiport); 776 777 /* read MDI */ 778 miir = ioread32(miiport); 779 if (miir & MASK_MIIR_MII_MDI) 780 data |= mask; 781 782 /* high MDC, and wait */ 783 miir |= MASK_MIIR_MII_MDC; 784 iowrite32(miir, miiport); 785 udelay(30); 786 787 /* next */ 788 mask >>= 1; 789 } 790 791 /* low MDC */ 792 miir &= ~MASK_MIIR_MII_MDC; 793 iowrite32(miir, miiport); 794 795 return data & 0xffff; 796 } 797 798 799 static void mdio_write(struct net_device *dev, int phyad, int regad, int data) 800 { 801 struct netdev_private *np = netdev_priv(dev); 802 void __iomem *miiport = np->mem + MANAGEMENT; 803 ulong miir; 804 unsigned int mask; 805 806 miir = m80x_send_cmd_to_phy(miiport, OP_WRITE, phyad, regad); 807 808 /* write data */ 809 mask = 0x8000; 810 while (mask) { 811 /* low MDC, prepare MDO */ 812 miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO); 813 if (mask & data) 814 miir |= MASK_MIIR_MII_MDO; 815 iowrite32(miir, miiport); 816 817 /* high MDC */ 818 miir |= MASK_MIIR_MII_MDC; 819 iowrite32(miir, miiport); 820 821 /* next */ 822 mask >>= 1; 823 } 824 825 /* low MDC */ 826 miir &= ~MASK_MIIR_MII_MDC; 827 iowrite32(miir, miiport); 828 } 829 830 831 static int netdev_open(struct net_device *dev) 832 { 833 struct netdev_private *np = netdev_priv(dev); 834 void __iomem *ioaddr = np->mem; 835 int i; 836 837 iowrite32(0x00000001, ioaddr + BCR); /* Reset */ 838 839 if (request_irq(dev->irq, intr_handler, IRQF_SHARED, dev->name, dev)) 840 return -EAGAIN; 841 842 for (i = 0; i < 3; i++) 843 iowrite16(((unsigned short*)dev->dev_addr)[i], 844 ioaddr + PAR0 + i*2); 845 846 init_ring(dev); 847 848 iowrite32(np->rx_ring_dma, ioaddr + RXLBA); 849 iowrite32(np->tx_ring_dma, ioaddr + TXLBA); 850 851 /* Initialize other registers. */ 852 /* Configure the PCI bus bursts and FIFO thresholds. 853 486: Set 8 longword burst. 854 586: no burst limit. 855 Burst length 5:3 856 0 0 0 1 857 0 0 1 4 858 0 1 0 8 859 0 1 1 16 860 1 0 0 32 861 1 0 1 64 862 1 1 0 128 863 1 1 1 256 864 Wait the specified 50 PCI cycles after a reset by initializing 865 Tx and Rx queues and the address filter list. 866 FIXME (Ueimor): optimistic for alpha + posted writes ? */ 867 868 np->bcrvalue = 0x10; /* little-endian, 8 burst length */ 869 #ifdef __BIG_ENDIAN 870 np->bcrvalue |= 0x04; /* big-endian */ 871 #endif 872 873 #if defined(__i386__) && !defined(MODULE) 874 if (boot_cpu_data.x86 <= 4) 875 np->crvalue = 0xa00; 876 else 877 #endif 878 np->crvalue = 0xe00; /* rx 128 burst length */ 879 880 881 // 89/12/29 add, 882 // 90/1/16 modify, 883 // np->imrvalue=FBE|TUNF|CNTOVF|RBU|TI|RI; 884 np->imrvalue = TUNF | CNTOVF | RBU | TI | RI; 885 if (np->pci_dev->device == 0x891) { 886 np->bcrvalue |= 0x200; /* set PROG bit */ 887 np->crvalue |= CR_W_ENH; /* set enhanced bit */ 888 np->imrvalue |= ETI; 889 } 890 iowrite32(np->bcrvalue, ioaddr + BCR); 891 892 if (dev->if_port == 0) 893 dev->if_port = np->default_port; 894 895 iowrite32(0, ioaddr + RXPDR); 896 // 89/9/1 modify, 897 // np->crvalue = 0x00e40001; /* tx store and forward, tx/rx enable */ 898 np->crvalue |= 0x00e40001; /* tx store and forward, tx/rx enable */ 899 np->mii.full_duplex = np->mii.force_media; 900 getlinkstatus(dev); 901 if (np->linkok) 902 getlinktype(dev); 903 __set_rx_mode(dev); 904 905 netif_start_queue(dev); 906 907 /* Clear and Enable interrupts by setting the interrupt mask. */ 908 iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR); 909 iowrite32(np->imrvalue, ioaddr + IMR); 910 911 if (debug) 912 printk(KERN_DEBUG "%s: Done netdev_open().\n", dev->name); 913 914 /* Set the timer to check for link beat. */ 915 init_timer(&np->timer); 916 np->timer.expires = RUN_AT(3 * HZ); 917 np->timer.data = (unsigned long) dev; 918 np->timer.function = netdev_timer; 919 920 /* timer handler */ 921 add_timer(&np->timer); 922 923 init_timer(&np->reset_timer); 924 np->reset_timer.data = (unsigned long) dev; 925 np->reset_timer.function = reset_timer; 926 np->reset_timer_armed = 0; 927 928 return 0; 929 } 930 931 932 static void getlinkstatus(struct net_device *dev) 933 /* function: Routine will read MII Status Register to get link status. */ 934 /* input : dev... pointer to the adapter block. */ 935 /* output : none. */ 936 { 937 struct netdev_private *np = netdev_priv(dev); 938 unsigned int i, DelayTime = 0x1000; 939 940 np->linkok = 0; 941 942 if (np->PHYType == MysonPHY) { 943 for (i = 0; i < DelayTime; ++i) { 944 if (ioread32(np->mem + BMCRSR) & LinkIsUp2) { 945 np->linkok = 1; 946 return; 947 } 948 udelay(100); 949 } 950 } else { 951 for (i = 0; i < DelayTime; ++i) { 952 if (mdio_read(dev, np->phys[0], MII_BMSR) & BMSR_LSTATUS) { 953 np->linkok = 1; 954 return; 955 } 956 udelay(100); 957 } 958 } 959 } 960 961 962 static void getlinktype(struct net_device *dev) 963 { 964 struct netdev_private *np = netdev_priv(dev); 965 966 if (np->PHYType == MysonPHY) { /* 3-in-1 case */ 967 if (ioread32(np->mem + TCRRCR) & CR_R_FD) 968 np->duplexmode = 2; /* full duplex */ 969 else 970 np->duplexmode = 1; /* half duplex */ 971 if (ioread32(np->mem + TCRRCR) & CR_R_PS10) 972 np->line_speed = 1; /* 10M */ 973 else 974 np->line_speed = 2; /* 100M */ 975 } else { 976 if (np->PHYType == SeeqPHY) { /* this PHY is SEEQ 80225 */ 977 unsigned int data; 978 979 data = mdio_read(dev, np->phys[0], MIIRegister18); 980 if (data & SPD_DET_100) 981 np->line_speed = 2; /* 100M */ 982 else 983 np->line_speed = 1; /* 10M */ 984 if (data & DPLX_DET_FULL) 985 np->duplexmode = 2; /* full duplex mode */ 986 else 987 np->duplexmode = 1; /* half duplex mode */ 988 } else if (np->PHYType == AhdocPHY) { 989 unsigned int data; 990 991 data = mdio_read(dev, np->phys[0], DiagnosticReg); 992 if (data & Speed_100) 993 np->line_speed = 2; /* 100M */ 994 else 995 np->line_speed = 1; /* 10M */ 996 if (data & DPLX_FULL) 997 np->duplexmode = 2; /* full duplex mode */ 998 else 999 np->duplexmode = 1; /* half duplex mode */ 1000 } 1001 /* 89/6/13 add, (begin) */ 1002 else if (np->PHYType == MarvellPHY) { 1003 unsigned int data; 1004 1005 data = mdio_read(dev, np->phys[0], SpecificReg); 1006 if (data & Full_Duplex) 1007 np->duplexmode = 2; /* full duplex mode */ 1008 else 1009 np->duplexmode = 1; /* half duplex mode */ 1010 data &= SpeedMask; 1011 if (data == Speed_1000M) 1012 np->line_speed = 3; /* 1000M */ 1013 else if (data == Speed_100M) 1014 np->line_speed = 2; /* 100M */ 1015 else 1016 np->line_speed = 1; /* 10M */ 1017 } 1018 /* 89/6/13 add, (end) */ 1019 /* 89/7/27 add, (begin) */ 1020 else if (np->PHYType == Myson981) { 1021 unsigned int data; 1022 1023 data = mdio_read(dev, np->phys[0], StatusRegister); 1024 1025 if (data & SPEED100) 1026 np->line_speed = 2; 1027 else 1028 np->line_speed = 1; 1029 1030 if (data & FULLMODE) 1031 np->duplexmode = 2; 1032 else 1033 np->duplexmode = 1; 1034 } 1035 /* 89/7/27 add, (end) */ 1036 /* 89/12/29 add */ 1037 else if (np->PHYType == LevelOnePHY) { 1038 unsigned int data; 1039 1040 data = mdio_read(dev, np->phys[0], SpecificReg); 1041 if (data & LXT1000_Full) 1042 np->duplexmode = 2; /* full duplex mode */ 1043 else 1044 np->duplexmode = 1; /* half duplex mode */ 1045 data &= SpeedMask; 1046 if (data == LXT1000_1000M) 1047 np->line_speed = 3; /* 1000M */ 1048 else if (data == LXT1000_100M) 1049 np->line_speed = 2; /* 100M */ 1050 else 1051 np->line_speed = 1; /* 10M */ 1052 } 1053 np->crvalue &= (~CR_W_PS10) & (~CR_W_FD) & (~CR_W_PS1000); 1054 if (np->line_speed == 1) 1055 np->crvalue |= CR_W_PS10; 1056 else if (np->line_speed == 3) 1057 np->crvalue |= CR_W_PS1000; 1058 if (np->duplexmode == 2) 1059 np->crvalue |= CR_W_FD; 1060 } 1061 } 1062 1063 1064 /* Take lock before calling this */ 1065 static void allocate_rx_buffers(struct net_device *dev) 1066 { 1067 struct netdev_private *np = netdev_priv(dev); 1068 1069 /* allocate skb for rx buffers */ 1070 while (np->really_rx_count != RX_RING_SIZE) { 1071 struct sk_buff *skb; 1072 1073 skb = dev_alloc_skb(np->rx_buf_sz); 1074 if (skb == NULL) 1075 break; /* Better luck next round. */ 1076 1077 while (np->lack_rxbuf->skbuff) 1078 np->lack_rxbuf = np->lack_rxbuf->next_desc_logical; 1079 1080 skb->dev = dev; /* Mark as being used by this device. */ 1081 np->lack_rxbuf->skbuff = skb; 1082 np->lack_rxbuf->buffer = pci_map_single(np->pci_dev, skb->data, 1083 np->rx_buf_sz, PCI_DMA_FROMDEVICE); 1084 np->lack_rxbuf->status = RXOWN; 1085 ++np->really_rx_count; 1086 } 1087 } 1088 1089 1090 static void netdev_timer(unsigned long data) 1091 { 1092 struct net_device *dev = (struct net_device *) data; 1093 struct netdev_private *np = netdev_priv(dev); 1094 void __iomem *ioaddr = np->mem; 1095 int old_crvalue = np->crvalue; 1096 unsigned int old_linkok = np->linkok; 1097 unsigned long flags; 1098 1099 if (debug) 1100 printk(KERN_DEBUG "%s: Media selection timer tick, status %8.8x " 1101 "config %8.8x.\n", dev->name, ioread32(ioaddr + ISR), 1102 ioread32(ioaddr + TCRRCR)); 1103 1104 spin_lock_irqsave(&np->lock, flags); 1105 1106 if (np->flags == HAS_MII_XCVR) { 1107 getlinkstatus(dev); 1108 if ((old_linkok == 0) && (np->linkok == 1)) { /* we need to detect the media type again */ 1109 getlinktype(dev); 1110 if (np->crvalue != old_crvalue) { 1111 stop_nic_rxtx(ioaddr, np->crvalue); 1112 iowrite32(np->crvalue, ioaddr + TCRRCR); 1113 } 1114 } 1115 } 1116 1117 allocate_rx_buffers(dev); 1118 1119 spin_unlock_irqrestore(&np->lock, flags); 1120 1121 np->timer.expires = RUN_AT(10 * HZ); 1122 add_timer(&np->timer); 1123 } 1124 1125 1126 /* Take lock before calling */ 1127 /* Reset chip and disable rx, tx and interrupts */ 1128 static void reset_and_disable_rxtx(struct net_device *dev) 1129 { 1130 struct netdev_private *np = netdev_priv(dev); 1131 void __iomem *ioaddr = np->mem; 1132 int delay=51; 1133 1134 /* Reset the chip's Tx and Rx processes. */ 1135 stop_nic_rxtx(ioaddr, 0); 1136 1137 /* Disable interrupts by clearing the interrupt mask. */ 1138 iowrite32(0, ioaddr + IMR); 1139 1140 /* Reset the chip to erase previous misconfiguration. */ 1141 iowrite32(0x00000001, ioaddr + BCR); 1142 1143 /* Ueimor: wait for 50 PCI cycles (and flush posted writes btw). 1144 We surely wait too long (address+data phase). Who cares? */ 1145 while (--delay) { 1146 ioread32(ioaddr + BCR); 1147 rmb(); 1148 } 1149 } 1150 1151 1152 /* Take lock before calling */ 1153 /* Restore chip after reset */ 1154 static void enable_rxtx(struct net_device *dev) 1155 { 1156 struct netdev_private *np = netdev_priv(dev); 1157 void __iomem *ioaddr = np->mem; 1158 1159 reset_rx_descriptors(dev); 1160 1161 iowrite32(np->tx_ring_dma + ((char*)np->cur_tx - (char*)np->tx_ring), 1162 ioaddr + TXLBA); 1163 iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring), 1164 ioaddr + RXLBA); 1165 1166 iowrite32(np->bcrvalue, ioaddr + BCR); 1167 1168 iowrite32(0, ioaddr + RXPDR); 1169 __set_rx_mode(dev); /* changes np->crvalue, writes it into TCRRCR */ 1170 1171 /* Clear and Enable interrupts by setting the interrupt mask. */ 1172 iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR); 1173 iowrite32(np->imrvalue, ioaddr + IMR); 1174 1175 iowrite32(0, ioaddr + TXPDR); 1176 } 1177 1178 1179 static void reset_timer(unsigned long data) 1180 { 1181 struct net_device *dev = (struct net_device *) data; 1182 struct netdev_private *np = netdev_priv(dev); 1183 unsigned long flags; 1184 1185 printk(KERN_WARNING "%s: resetting tx and rx machinery\n", dev->name); 1186 1187 spin_lock_irqsave(&np->lock, flags); 1188 np->crvalue = np->crvalue_sv; 1189 np->imrvalue = np->imrvalue_sv; 1190 1191 reset_and_disable_rxtx(dev); 1192 /* works for me without this: 1193 reset_tx_descriptors(dev); */ 1194 enable_rxtx(dev); 1195 netif_start_queue(dev); /* FIXME: or netif_wake_queue(dev); ? */ 1196 1197 np->reset_timer_armed = 0; 1198 1199 spin_unlock_irqrestore(&np->lock, flags); 1200 } 1201 1202 1203 static void fealnx_tx_timeout(struct net_device *dev) 1204 { 1205 struct netdev_private *np = netdev_priv(dev); 1206 void __iomem *ioaddr = np->mem; 1207 unsigned long flags; 1208 int i; 1209 1210 printk(KERN_WARNING 1211 "%s: Transmit timed out, status %8.8x, resetting...\n", 1212 dev->name, ioread32(ioaddr + ISR)); 1213 1214 { 1215 printk(KERN_DEBUG " Rx ring %p: ", np->rx_ring); 1216 for (i = 0; i < RX_RING_SIZE; i++) 1217 printk(KERN_CONT " %8.8x", 1218 (unsigned int) np->rx_ring[i].status); 1219 printk(KERN_CONT "\n"); 1220 printk(KERN_DEBUG " Tx ring %p: ", np->tx_ring); 1221 for (i = 0; i < TX_RING_SIZE; i++) 1222 printk(KERN_CONT " %4.4x", np->tx_ring[i].status); 1223 printk(KERN_CONT "\n"); 1224 } 1225 1226 spin_lock_irqsave(&np->lock, flags); 1227 1228 reset_and_disable_rxtx(dev); 1229 reset_tx_descriptors(dev); 1230 enable_rxtx(dev); 1231 1232 spin_unlock_irqrestore(&np->lock, flags); 1233 1234 dev->trans_start = jiffies; /* prevent tx timeout */ 1235 dev->stats.tx_errors++; 1236 netif_wake_queue(dev); /* or .._start_.. ?? */ 1237 } 1238 1239 1240 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ 1241 static void init_ring(struct net_device *dev) 1242 { 1243 struct netdev_private *np = netdev_priv(dev); 1244 int i; 1245 1246 /* initialize rx variables */ 1247 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32); 1248 np->cur_rx = &np->rx_ring[0]; 1249 np->lack_rxbuf = np->rx_ring; 1250 np->really_rx_count = 0; 1251 1252 /* initial rx descriptors. */ 1253 for (i = 0; i < RX_RING_SIZE; i++) { 1254 np->rx_ring[i].status = 0; 1255 np->rx_ring[i].control = np->rx_buf_sz << RBSShift; 1256 np->rx_ring[i].next_desc = np->rx_ring_dma + 1257 (i + 1)*sizeof(struct fealnx_desc); 1258 np->rx_ring[i].next_desc_logical = &np->rx_ring[i + 1]; 1259 np->rx_ring[i].skbuff = NULL; 1260 } 1261 1262 /* for the last rx descriptor */ 1263 np->rx_ring[i - 1].next_desc = np->rx_ring_dma; 1264 np->rx_ring[i - 1].next_desc_logical = np->rx_ring; 1265 1266 /* allocate skb for rx buffers */ 1267 for (i = 0; i < RX_RING_SIZE; i++) { 1268 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz); 1269 1270 if (skb == NULL) { 1271 np->lack_rxbuf = &np->rx_ring[i]; 1272 break; 1273 } 1274 1275 ++np->really_rx_count; 1276 np->rx_ring[i].skbuff = skb; 1277 skb->dev = dev; /* Mark as being used by this device. */ 1278 np->rx_ring[i].buffer = pci_map_single(np->pci_dev, skb->data, 1279 np->rx_buf_sz, PCI_DMA_FROMDEVICE); 1280 np->rx_ring[i].status = RXOWN; 1281 np->rx_ring[i].control |= RXIC; 1282 } 1283 1284 /* initialize tx variables */ 1285 np->cur_tx = &np->tx_ring[0]; 1286 np->cur_tx_copy = &np->tx_ring[0]; 1287 np->really_tx_count = 0; 1288 np->free_tx_count = TX_RING_SIZE; 1289 1290 for (i = 0; i < TX_RING_SIZE; i++) { 1291 np->tx_ring[i].status = 0; 1292 /* do we need np->tx_ring[i].control = XXX; ?? */ 1293 np->tx_ring[i].next_desc = np->tx_ring_dma + 1294 (i + 1)*sizeof(struct fealnx_desc); 1295 np->tx_ring[i].next_desc_logical = &np->tx_ring[i + 1]; 1296 np->tx_ring[i].skbuff = NULL; 1297 } 1298 1299 /* for the last tx descriptor */ 1300 np->tx_ring[i - 1].next_desc = np->tx_ring_dma; 1301 np->tx_ring[i - 1].next_desc_logical = &np->tx_ring[0]; 1302 } 1303 1304 1305 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev) 1306 { 1307 struct netdev_private *np = netdev_priv(dev); 1308 unsigned long flags; 1309 1310 spin_lock_irqsave(&np->lock, flags); 1311 1312 np->cur_tx_copy->skbuff = skb; 1313 1314 #define one_buffer 1315 #define BPT 1022 1316 #if defined(one_buffer) 1317 np->cur_tx_copy->buffer = pci_map_single(np->pci_dev, skb->data, 1318 skb->len, PCI_DMA_TODEVICE); 1319 np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable; 1320 np->cur_tx_copy->control |= (skb->len << PKTSShift); /* pkt size */ 1321 np->cur_tx_copy->control |= (skb->len << TBSShift); /* buffer size */ 1322 // 89/12/29 add, 1323 if (np->pci_dev->device == 0x891) 1324 np->cur_tx_copy->control |= ETIControl | RetryTxLC; 1325 np->cur_tx_copy->status = TXOWN; 1326 np->cur_tx_copy = np->cur_tx_copy->next_desc_logical; 1327 --np->free_tx_count; 1328 #elif defined(two_buffer) 1329 if (skb->len > BPT) { 1330 struct fealnx_desc *next; 1331 1332 /* for the first descriptor */ 1333 np->cur_tx_copy->buffer = pci_map_single(np->pci_dev, skb->data, 1334 BPT, PCI_DMA_TODEVICE); 1335 np->cur_tx_copy->control = TXIC | TXFD | CRCEnable | PADEnable; 1336 np->cur_tx_copy->control |= (skb->len << PKTSShift); /* pkt size */ 1337 np->cur_tx_copy->control |= (BPT << TBSShift); /* buffer size */ 1338 1339 /* for the last descriptor */ 1340 next = np->cur_tx_copy->next_desc_logical; 1341 next->skbuff = skb; 1342 next->control = TXIC | TXLD | CRCEnable | PADEnable; 1343 next->control |= (skb->len << PKTSShift); /* pkt size */ 1344 next->control |= ((skb->len - BPT) << TBSShift); /* buf size */ 1345 // 89/12/29 add, 1346 if (np->pci_dev->device == 0x891) 1347 np->cur_tx_copy->control |= ETIControl | RetryTxLC; 1348 next->buffer = pci_map_single(ep->pci_dev, skb->data + BPT, 1349 skb->len - BPT, PCI_DMA_TODEVICE); 1350 1351 next->status = TXOWN; 1352 np->cur_tx_copy->status = TXOWN; 1353 1354 np->cur_tx_copy = next->next_desc_logical; 1355 np->free_tx_count -= 2; 1356 } else { 1357 np->cur_tx_copy->buffer = pci_map_single(np->pci_dev, skb->data, 1358 skb->len, PCI_DMA_TODEVICE); 1359 np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable; 1360 np->cur_tx_copy->control |= (skb->len << PKTSShift); /* pkt size */ 1361 np->cur_tx_copy->control |= (skb->len << TBSShift); /* buffer size */ 1362 // 89/12/29 add, 1363 if (np->pci_dev->device == 0x891) 1364 np->cur_tx_copy->control |= ETIControl | RetryTxLC; 1365 np->cur_tx_copy->status = TXOWN; 1366 np->cur_tx_copy = np->cur_tx_copy->next_desc_logical; 1367 --np->free_tx_count; 1368 } 1369 #endif 1370 1371 if (np->free_tx_count < 2) 1372 netif_stop_queue(dev); 1373 ++np->really_tx_count; 1374 iowrite32(0, np->mem + TXPDR); 1375 1376 spin_unlock_irqrestore(&np->lock, flags); 1377 return NETDEV_TX_OK; 1378 } 1379 1380 1381 /* Take lock before calling */ 1382 /* Chip probably hosed tx ring. Clean up. */ 1383 static void reset_tx_descriptors(struct net_device *dev) 1384 { 1385 struct netdev_private *np = netdev_priv(dev); 1386 struct fealnx_desc *cur; 1387 int i; 1388 1389 /* initialize tx variables */ 1390 np->cur_tx = &np->tx_ring[0]; 1391 np->cur_tx_copy = &np->tx_ring[0]; 1392 np->really_tx_count = 0; 1393 np->free_tx_count = TX_RING_SIZE; 1394 1395 for (i = 0; i < TX_RING_SIZE; i++) { 1396 cur = &np->tx_ring[i]; 1397 if (cur->skbuff) { 1398 pci_unmap_single(np->pci_dev, cur->buffer, 1399 cur->skbuff->len, PCI_DMA_TODEVICE); 1400 dev_kfree_skb_any(cur->skbuff); 1401 cur->skbuff = NULL; 1402 } 1403 cur->status = 0; 1404 cur->control = 0; /* needed? */ 1405 /* probably not needed. We do it for purely paranoid reasons */ 1406 cur->next_desc = np->tx_ring_dma + 1407 (i + 1)*sizeof(struct fealnx_desc); 1408 cur->next_desc_logical = &np->tx_ring[i + 1]; 1409 } 1410 /* for the last tx descriptor */ 1411 np->tx_ring[TX_RING_SIZE - 1].next_desc = np->tx_ring_dma; 1412 np->tx_ring[TX_RING_SIZE - 1].next_desc_logical = &np->tx_ring[0]; 1413 } 1414 1415 1416 /* Take lock and stop rx before calling this */ 1417 static void reset_rx_descriptors(struct net_device *dev) 1418 { 1419 struct netdev_private *np = netdev_priv(dev); 1420 struct fealnx_desc *cur = np->cur_rx; 1421 int i; 1422 1423 allocate_rx_buffers(dev); 1424 1425 for (i = 0; i < RX_RING_SIZE; i++) { 1426 if (cur->skbuff) 1427 cur->status = RXOWN; 1428 cur = cur->next_desc_logical; 1429 } 1430 1431 iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring), 1432 np->mem + RXLBA); 1433 } 1434 1435 1436 /* The interrupt handler does all of the Rx thread work and cleans up 1437 after the Tx thread. */ 1438 static irqreturn_t intr_handler(int irq, void *dev_instance) 1439 { 1440 struct net_device *dev = (struct net_device *) dev_instance; 1441 struct netdev_private *np = netdev_priv(dev); 1442 void __iomem *ioaddr = np->mem; 1443 long boguscnt = max_interrupt_work; 1444 unsigned int num_tx = 0; 1445 int handled = 0; 1446 1447 spin_lock(&np->lock); 1448 1449 iowrite32(0, ioaddr + IMR); 1450 1451 do { 1452 u32 intr_status = ioread32(ioaddr + ISR); 1453 1454 /* Acknowledge all of the current interrupt sources ASAP. */ 1455 iowrite32(intr_status, ioaddr + ISR); 1456 1457 if (debug) 1458 printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n", dev->name, 1459 intr_status); 1460 1461 if (!(intr_status & np->imrvalue)) 1462 break; 1463 1464 handled = 1; 1465 1466 // 90/1/16 delete, 1467 // 1468 // if (intr_status & FBE) 1469 // { /* fatal error */ 1470 // stop_nic_tx(ioaddr, 0); 1471 // stop_nic_rx(ioaddr, 0); 1472 // break; 1473 // }; 1474 1475 if (intr_status & TUNF) 1476 iowrite32(0, ioaddr + TXPDR); 1477 1478 if (intr_status & CNTOVF) { 1479 /* missed pkts */ 1480 dev->stats.rx_missed_errors += 1481 ioread32(ioaddr + TALLY) & 0x7fff; 1482 1483 /* crc error */ 1484 dev->stats.rx_crc_errors += 1485 (ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16; 1486 } 1487 1488 if (intr_status & (RI | RBU)) { 1489 if (intr_status & RI) 1490 netdev_rx(dev); 1491 else { 1492 stop_nic_rx(ioaddr, np->crvalue); 1493 reset_rx_descriptors(dev); 1494 iowrite32(np->crvalue, ioaddr + TCRRCR); 1495 } 1496 } 1497 1498 while (np->really_tx_count) { 1499 long tx_status = np->cur_tx->status; 1500 long tx_control = np->cur_tx->control; 1501 1502 if (!(tx_control & TXLD)) { /* this pkt is combined by two tx descriptors */ 1503 struct fealnx_desc *next; 1504 1505 next = np->cur_tx->next_desc_logical; 1506 tx_status = next->status; 1507 tx_control = next->control; 1508 } 1509 1510 if (tx_status & TXOWN) 1511 break; 1512 1513 if (!(np->crvalue & CR_W_ENH)) { 1514 if (tx_status & (CSL | LC | EC | UDF | HF)) { 1515 dev->stats.tx_errors++; 1516 if (tx_status & EC) 1517 dev->stats.tx_aborted_errors++; 1518 if (tx_status & CSL) 1519 dev->stats.tx_carrier_errors++; 1520 if (tx_status & LC) 1521 dev->stats.tx_window_errors++; 1522 if (tx_status & UDF) 1523 dev->stats.tx_fifo_errors++; 1524 if ((tx_status & HF) && np->mii.full_duplex == 0) 1525 dev->stats.tx_heartbeat_errors++; 1526 1527 } else { 1528 dev->stats.tx_bytes += 1529 ((tx_control & PKTSMask) >> PKTSShift); 1530 1531 dev->stats.collisions += 1532 ((tx_status & NCRMask) >> NCRShift); 1533 dev->stats.tx_packets++; 1534 } 1535 } else { 1536 dev->stats.tx_bytes += 1537 ((tx_control & PKTSMask) >> PKTSShift); 1538 dev->stats.tx_packets++; 1539 } 1540 1541 /* Free the original skb. */ 1542 pci_unmap_single(np->pci_dev, np->cur_tx->buffer, 1543 np->cur_tx->skbuff->len, PCI_DMA_TODEVICE); 1544 dev_kfree_skb_irq(np->cur_tx->skbuff); 1545 np->cur_tx->skbuff = NULL; 1546 --np->really_tx_count; 1547 if (np->cur_tx->control & TXLD) { 1548 np->cur_tx = np->cur_tx->next_desc_logical; 1549 ++np->free_tx_count; 1550 } else { 1551 np->cur_tx = np->cur_tx->next_desc_logical; 1552 np->cur_tx = np->cur_tx->next_desc_logical; 1553 np->free_tx_count += 2; 1554 } 1555 num_tx++; 1556 } /* end of for loop */ 1557 1558 if (num_tx && np->free_tx_count >= 2) 1559 netif_wake_queue(dev); 1560 1561 /* read transmit status for enhanced mode only */ 1562 if (np->crvalue & CR_W_ENH) { 1563 long data; 1564 1565 data = ioread32(ioaddr + TSR); 1566 dev->stats.tx_errors += (data & 0xff000000) >> 24; 1567 dev->stats.tx_aborted_errors += 1568 (data & 0xff000000) >> 24; 1569 dev->stats.tx_window_errors += 1570 (data & 0x00ff0000) >> 16; 1571 dev->stats.collisions += (data & 0x0000ffff); 1572 } 1573 1574 if (--boguscnt < 0) { 1575 printk(KERN_WARNING "%s: Too much work at interrupt, " 1576 "status=0x%4.4x.\n", dev->name, intr_status); 1577 if (!np->reset_timer_armed) { 1578 np->reset_timer_armed = 1; 1579 np->reset_timer.expires = RUN_AT(HZ/2); 1580 add_timer(&np->reset_timer); 1581 stop_nic_rxtx(ioaddr, 0); 1582 netif_stop_queue(dev); 1583 /* or netif_tx_disable(dev); ?? */ 1584 /* Prevent other paths from enabling tx,rx,intrs */ 1585 np->crvalue_sv = np->crvalue; 1586 np->imrvalue_sv = np->imrvalue; 1587 np->crvalue &= ~(CR_W_TXEN | CR_W_RXEN); /* or simply = 0? */ 1588 np->imrvalue = 0; 1589 } 1590 1591 break; 1592 } 1593 } while (1); 1594 1595 /* read the tally counters */ 1596 /* missed pkts */ 1597 dev->stats.rx_missed_errors += ioread32(ioaddr + TALLY) & 0x7fff; 1598 1599 /* crc error */ 1600 dev->stats.rx_crc_errors += 1601 (ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16; 1602 1603 if (debug) 1604 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n", 1605 dev->name, ioread32(ioaddr + ISR)); 1606 1607 iowrite32(np->imrvalue, ioaddr + IMR); 1608 1609 spin_unlock(&np->lock); 1610 1611 return IRQ_RETVAL(handled); 1612 } 1613 1614 1615 /* This routine is logically part of the interrupt handler, but separated 1616 for clarity and better register allocation. */ 1617 static int netdev_rx(struct net_device *dev) 1618 { 1619 struct netdev_private *np = netdev_priv(dev); 1620 void __iomem *ioaddr = np->mem; 1621 1622 /* If EOP is set on the next entry, it's a new packet. Send it up. */ 1623 while (!(np->cur_rx->status & RXOWN) && np->cur_rx->skbuff) { 1624 s32 rx_status = np->cur_rx->status; 1625 1626 if (np->really_rx_count == 0) 1627 break; 1628 1629 if (debug) 1630 printk(KERN_DEBUG " netdev_rx() status was %8.8x.\n", rx_status); 1631 1632 if ((!((rx_status & RXFSD) && (rx_status & RXLSD))) || 1633 (rx_status & ErrorSummary)) { 1634 if (rx_status & ErrorSummary) { /* there was a fatal error */ 1635 if (debug) 1636 printk(KERN_DEBUG 1637 "%s: Receive error, Rx status %8.8x.\n", 1638 dev->name, rx_status); 1639 1640 dev->stats.rx_errors++; /* end of a packet. */ 1641 if (rx_status & (LONG | RUNT)) 1642 dev->stats.rx_length_errors++; 1643 if (rx_status & RXER) 1644 dev->stats.rx_frame_errors++; 1645 if (rx_status & CRC) 1646 dev->stats.rx_crc_errors++; 1647 } else { 1648 int need_to_reset = 0; 1649 int desno = 0; 1650 1651 if (rx_status & RXFSD) { /* this pkt is too long, over one rx buffer */ 1652 struct fealnx_desc *cur; 1653 1654 /* check this packet is received completely? */ 1655 cur = np->cur_rx; 1656 while (desno <= np->really_rx_count) { 1657 ++desno; 1658 if ((!(cur->status & RXOWN)) && 1659 (cur->status & RXLSD)) 1660 break; 1661 /* goto next rx descriptor */ 1662 cur = cur->next_desc_logical; 1663 } 1664 if (desno > np->really_rx_count) 1665 need_to_reset = 1; 1666 } else /* RXLSD did not find, something error */ 1667 need_to_reset = 1; 1668 1669 if (need_to_reset == 0) { 1670 int i; 1671 1672 dev->stats.rx_length_errors++; 1673 1674 /* free all rx descriptors related this long pkt */ 1675 for (i = 0; i < desno; ++i) { 1676 if (!np->cur_rx->skbuff) { 1677 printk(KERN_DEBUG 1678 "%s: I'm scared\n", dev->name); 1679 break; 1680 } 1681 np->cur_rx->status = RXOWN; 1682 np->cur_rx = np->cur_rx->next_desc_logical; 1683 } 1684 continue; 1685 } else { /* rx error, need to reset this chip */ 1686 stop_nic_rx(ioaddr, np->crvalue); 1687 reset_rx_descriptors(dev); 1688 iowrite32(np->crvalue, ioaddr + TCRRCR); 1689 } 1690 break; /* exit the while loop */ 1691 } 1692 } else { /* this received pkt is ok */ 1693 1694 struct sk_buff *skb; 1695 /* Omit the four octet CRC from the length. */ 1696 short pkt_len = ((rx_status & FLNGMASK) >> FLNGShift) - 4; 1697 1698 #ifndef final_version 1699 if (debug) 1700 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d" 1701 " status %x.\n", pkt_len, rx_status); 1702 #endif 1703 1704 /* Check if the packet is long enough to accept without copying 1705 to a minimally-sized skbuff. */ 1706 if (pkt_len < rx_copybreak && 1707 (skb = dev_alloc_skb(pkt_len + 2)) != NULL) { 1708 skb_reserve(skb, 2); /* 16 byte align the IP header */ 1709 pci_dma_sync_single_for_cpu(np->pci_dev, 1710 np->cur_rx->buffer, 1711 np->rx_buf_sz, 1712 PCI_DMA_FROMDEVICE); 1713 /* Call copy + cksum if available. */ 1714 1715 #if ! defined(__alpha__) 1716 skb_copy_to_linear_data(skb, 1717 np->cur_rx->skbuff->data, pkt_len); 1718 skb_put(skb, pkt_len); 1719 #else 1720 memcpy(skb_put(skb, pkt_len), 1721 np->cur_rx->skbuff->data, pkt_len); 1722 #endif 1723 pci_dma_sync_single_for_device(np->pci_dev, 1724 np->cur_rx->buffer, 1725 np->rx_buf_sz, 1726 PCI_DMA_FROMDEVICE); 1727 } else { 1728 pci_unmap_single(np->pci_dev, 1729 np->cur_rx->buffer, 1730 np->rx_buf_sz, 1731 PCI_DMA_FROMDEVICE); 1732 skb_put(skb = np->cur_rx->skbuff, pkt_len); 1733 np->cur_rx->skbuff = NULL; 1734 --np->really_rx_count; 1735 } 1736 skb->protocol = eth_type_trans(skb, dev); 1737 netif_rx(skb); 1738 dev->stats.rx_packets++; 1739 dev->stats.rx_bytes += pkt_len; 1740 } 1741 1742 np->cur_rx = np->cur_rx->next_desc_logical; 1743 } /* end of while loop */ 1744 1745 /* allocate skb for rx buffers */ 1746 allocate_rx_buffers(dev); 1747 1748 return 0; 1749 } 1750 1751 1752 static struct net_device_stats *get_stats(struct net_device *dev) 1753 { 1754 struct netdev_private *np = netdev_priv(dev); 1755 void __iomem *ioaddr = np->mem; 1756 1757 /* The chip only need report frame silently dropped. */ 1758 if (netif_running(dev)) { 1759 dev->stats.rx_missed_errors += 1760 ioread32(ioaddr + TALLY) & 0x7fff; 1761 dev->stats.rx_crc_errors += 1762 (ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16; 1763 } 1764 1765 return &dev->stats; 1766 } 1767 1768 1769 /* for dev->set_multicast_list */ 1770 static void set_rx_mode(struct net_device *dev) 1771 { 1772 spinlock_t *lp = &((struct netdev_private *)netdev_priv(dev))->lock; 1773 unsigned long flags; 1774 spin_lock_irqsave(lp, flags); 1775 __set_rx_mode(dev); 1776 spin_unlock_irqrestore(lp, flags); 1777 } 1778 1779 1780 /* Take lock before calling */ 1781 static void __set_rx_mode(struct net_device *dev) 1782 { 1783 struct netdev_private *np = netdev_priv(dev); 1784 void __iomem *ioaddr = np->mem; 1785 u32 mc_filter[2]; /* Multicast hash filter */ 1786 u32 rx_mode; 1787 1788 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1789 memset(mc_filter, 0xff, sizeof(mc_filter)); 1790 rx_mode = CR_W_PROM | CR_W_AB | CR_W_AM; 1791 } else if ((netdev_mc_count(dev) > multicast_filter_limit) || 1792 (dev->flags & IFF_ALLMULTI)) { 1793 /* Too many to match, or accept all multicasts. */ 1794 memset(mc_filter, 0xff, sizeof(mc_filter)); 1795 rx_mode = CR_W_AB | CR_W_AM; 1796 } else { 1797 struct netdev_hw_addr *ha; 1798 1799 memset(mc_filter, 0, sizeof(mc_filter)); 1800 netdev_for_each_mc_addr(ha, dev) { 1801 unsigned int bit; 1802 bit = (ether_crc(ETH_ALEN, ha->addr) >> 26) ^ 0x3F; 1803 mc_filter[bit >> 5] |= (1 << bit); 1804 } 1805 rx_mode = CR_W_AB | CR_W_AM; 1806 } 1807 1808 stop_nic_rxtx(ioaddr, np->crvalue); 1809 1810 iowrite32(mc_filter[0], ioaddr + MAR0); 1811 iowrite32(mc_filter[1], ioaddr + MAR1); 1812 np->crvalue &= ~CR_W_RXMODEMASK; 1813 np->crvalue |= rx_mode; 1814 iowrite32(np->crvalue, ioaddr + TCRRCR); 1815 } 1816 1817 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1818 { 1819 struct netdev_private *np = netdev_priv(dev); 1820 1821 strcpy(info->driver, DRV_NAME); 1822 strcpy(info->version, DRV_VERSION); 1823 strcpy(info->bus_info, pci_name(np->pci_dev)); 1824 } 1825 1826 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1827 { 1828 struct netdev_private *np = netdev_priv(dev); 1829 int rc; 1830 1831 spin_lock_irq(&np->lock); 1832 rc = mii_ethtool_gset(&np->mii, cmd); 1833 spin_unlock_irq(&np->lock); 1834 1835 return rc; 1836 } 1837 1838 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1839 { 1840 struct netdev_private *np = netdev_priv(dev); 1841 int rc; 1842 1843 spin_lock_irq(&np->lock); 1844 rc = mii_ethtool_sset(&np->mii, cmd); 1845 spin_unlock_irq(&np->lock); 1846 1847 return rc; 1848 } 1849 1850 static int netdev_nway_reset(struct net_device *dev) 1851 { 1852 struct netdev_private *np = netdev_priv(dev); 1853 return mii_nway_restart(&np->mii); 1854 } 1855 1856 static u32 netdev_get_link(struct net_device *dev) 1857 { 1858 struct netdev_private *np = netdev_priv(dev); 1859 return mii_link_ok(&np->mii); 1860 } 1861 1862 static u32 netdev_get_msglevel(struct net_device *dev) 1863 { 1864 return debug; 1865 } 1866 1867 static void netdev_set_msglevel(struct net_device *dev, u32 value) 1868 { 1869 debug = value; 1870 } 1871 1872 static const struct ethtool_ops netdev_ethtool_ops = { 1873 .get_drvinfo = netdev_get_drvinfo, 1874 .get_settings = netdev_get_settings, 1875 .set_settings = netdev_set_settings, 1876 .nway_reset = netdev_nway_reset, 1877 .get_link = netdev_get_link, 1878 .get_msglevel = netdev_get_msglevel, 1879 .set_msglevel = netdev_set_msglevel, 1880 }; 1881 1882 static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1883 { 1884 struct netdev_private *np = netdev_priv(dev); 1885 int rc; 1886 1887 if (!netif_running(dev)) 1888 return -EINVAL; 1889 1890 spin_lock_irq(&np->lock); 1891 rc = generic_mii_ioctl(&np->mii, if_mii(rq), cmd, NULL); 1892 spin_unlock_irq(&np->lock); 1893 1894 return rc; 1895 } 1896 1897 1898 static int netdev_close(struct net_device *dev) 1899 { 1900 struct netdev_private *np = netdev_priv(dev); 1901 void __iomem *ioaddr = np->mem; 1902 int i; 1903 1904 netif_stop_queue(dev); 1905 1906 /* Disable interrupts by clearing the interrupt mask. */ 1907 iowrite32(0x0000, ioaddr + IMR); 1908 1909 /* Stop the chip's Tx and Rx processes. */ 1910 stop_nic_rxtx(ioaddr, 0); 1911 1912 del_timer_sync(&np->timer); 1913 del_timer_sync(&np->reset_timer); 1914 1915 free_irq(dev->irq, dev); 1916 1917 /* Free all the skbuffs in the Rx queue. */ 1918 for (i = 0; i < RX_RING_SIZE; i++) { 1919 struct sk_buff *skb = np->rx_ring[i].skbuff; 1920 1921 np->rx_ring[i].status = 0; 1922 if (skb) { 1923 pci_unmap_single(np->pci_dev, np->rx_ring[i].buffer, 1924 np->rx_buf_sz, PCI_DMA_FROMDEVICE); 1925 dev_kfree_skb(skb); 1926 np->rx_ring[i].skbuff = NULL; 1927 } 1928 } 1929 1930 for (i = 0; i < TX_RING_SIZE; i++) { 1931 struct sk_buff *skb = np->tx_ring[i].skbuff; 1932 1933 if (skb) { 1934 pci_unmap_single(np->pci_dev, np->tx_ring[i].buffer, 1935 skb->len, PCI_DMA_TODEVICE); 1936 dev_kfree_skb(skb); 1937 np->tx_ring[i].skbuff = NULL; 1938 } 1939 } 1940 1941 return 0; 1942 } 1943 1944 static DEFINE_PCI_DEVICE_TABLE(fealnx_pci_tbl) = { 1945 {0x1516, 0x0800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 1946 {0x1516, 0x0803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1}, 1947 {0x1516, 0x0891, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2}, 1948 {} /* terminate list */ 1949 }; 1950 MODULE_DEVICE_TABLE(pci, fealnx_pci_tbl); 1951 1952 1953 static struct pci_driver fealnx_driver = { 1954 .name = "fealnx", 1955 .id_table = fealnx_pci_tbl, 1956 .probe = fealnx_init_one, 1957 .remove = __devexit_p(fealnx_remove_one), 1958 }; 1959 1960 static int __init fealnx_init(void) 1961 { 1962 /* when a module, this is printed whether or not devices are found in probe */ 1963 #ifdef MODULE 1964 printk(version); 1965 #endif 1966 1967 return pci_register_driver(&fealnx_driver); 1968 } 1969 1970 static void __exit fealnx_exit(void) 1971 { 1972 pci_unregister_driver(&fealnx_driver); 1973 } 1974 1975 module_init(fealnx_init); 1976 module_exit(fealnx_exit); 1977