xref: /linux/drivers/net/ethernet/fealnx.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2 	Written 1998-2000 by Donald Becker.
3 
4 	This software may be used and distributed according to the terms of
5 	the GNU General Public License (GPL), incorporated herein by reference.
6 	Drivers based on or derived from this code fall under the GPL and must
7 	retain the authorship, copyright and license notice.  This file is not
8 	a complete program and may only be used when the entire operating
9 	system is licensed under the GPL.
10 
11 	The author may be reached as becker@scyld.com, or C/O
12 	Scyld Computing Corporation
13 	410 Severn Ave., Suite 210
14 	Annapolis MD 21403
15 
16 	Support information and updates available at
17 	http://www.scyld.com/network/pci-skeleton.html
18 
19 	Linux kernel updates:
20 
21 	Version 2.51, Nov 17, 2001 (jgarzik):
22 	- Add ethtool support
23 	- Replace some MII-related magic numbers with constants
24 
25 */
26 
27 #define DRV_NAME	"fealnx"
28 #define DRV_VERSION	"2.52"
29 #define DRV_RELDATE	"Sep-11-2006"
30 
31 static int debug;		/* 1-> print debug message */
32 static int max_interrupt_work = 20;
33 
34 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). */
35 static int multicast_filter_limit = 32;
36 
37 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. */
38 /* Setting to > 1518 effectively disables this feature.          */
39 static int rx_copybreak;
40 
41 /* Used to pass the media type, etc.                            */
42 /* Both 'options[]' and 'full_duplex[]' should exist for driver */
43 /* interoperability.                                            */
44 /* The media type is usually passed in 'options[]'.             */
45 #define MAX_UNITS 8		/* More are supported, limit only on options */
46 static int options[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
47 static int full_duplex[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
48 
49 /* Operational parameters that are set at compile time.                 */
50 /* Keep the ring sizes a power of two for compile efficiency.           */
51 /* The compiler will convert <unsigned>'%'<2^N> into a bit mask.        */
52 /* Making the Tx ring too large decreases the effectiveness of channel  */
53 /* bonding and packet priority.                                         */
54 /* There are no ill effects from too-large receive rings.               */
55 // 88-12-9 modify,
56 // #define TX_RING_SIZE    16
57 // #define RX_RING_SIZE    32
58 #define TX_RING_SIZE    6
59 #define RX_RING_SIZE    12
60 #define TX_TOTAL_SIZE	TX_RING_SIZE*sizeof(struct fealnx_desc)
61 #define RX_TOTAL_SIZE	RX_RING_SIZE*sizeof(struct fealnx_desc)
62 
63 /* Operational parameters that usually are not changed. */
64 /* Time in jiffies before concluding the transmitter is hung. */
65 #define TX_TIMEOUT      (2*HZ)
66 
67 #define PKT_BUF_SZ      1536	/* Size of each temporary Rx buffer. */
68 
69 
70 /* Include files, designed to support most kernel versions 2.0.0 and later. */
71 #include <linux/module.h>
72 #include <linux/kernel.h>
73 #include <linux/string.h>
74 #include <linux/timer.h>
75 #include <linux/errno.h>
76 #include <linux/ioport.h>
77 #include <linux/interrupt.h>
78 #include <linux/pci.h>
79 #include <linux/netdevice.h>
80 #include <linux/etherdevice.h>
81 #include <linux/skbuff.h>
82 #include <linux/init.h>
83 #include <linux/mii.h>
84 #include <linux/ethtool.h>
85 #include <linux/crc32.h>
86 #include <linux/delay.h>
87 #include <linux/bitops.h>
88 
89 #include <asm/processor.h>	/* Processor type for cache alignment. */
90 #include <asm/io.h>
91 #include <linux/uaccess.h>
92 #include <asm/byteorder.h>
93 
94 /* These identify the driver base version and may not be removed. */
95 static const char version[] =
96 	KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE "\n";
97 
98 
99 /* This driver was written to use PCI memory space, however some x86 systems
100    work only with I/O space accesses. */
101 #ifndef __alpha__
102 #define USE_IO_OPS
103 #endif
104 
105 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package. */
106 /* This is only in the support-all-kernels source code. */
107 
108 #define RUN_AT(x) (jiffies + (x))
109 
110 MODULE_AUTHOR("Myson or whoever");
111 MODULE_DESCRIPTION("Myson MTD-8xx 100/10M Ethernet PCI Adapter Driver");
112 MODULE_LICENSE("GPL");
113 module_param(max_interrupt_work, int, 0);
114 module_param(debug, int, 0);
115 module_param(rx_copybreak, int, 0);
116 module_param(multicast_filter_limit, int, 0);
117 module_param_array(options, int, NULL, 0);
118 module_param_array(full_duplex, int, NULL, 0);
119 MODULE_PARM_DESC(max_interrupt_work, "fealnx maximum events handled per interrupt");
120 MODULE_PARM_DESC(debug, "fealnx enable debugging (0-1)");
121 MODULE_PARM_DESC(rx_copybreak, "fealnx copy breakpoint for copy-only-tiny-frames");
122 MODULE_PARM_DESC(multicast_filter_limit, "fealnx maximum number of filtered multicast addresses");
123 MODULE_PARM_DESC(options, "fealnx: Bits 0-3: media type, bit 17: full duplex");
124 MODULE_PARM_DESC(full_duplex, "fealnx full duplex setting(s) (1)");
125 
126 enum {
127 	MIN_REGION_SIZE		= 136,
128 };
129 
130 /* A chip capabilities table, matching the entries in pci_tbl[] above. */
131 enum chip_capability_flags {
132 	HAS_MII_XCVR,
133 	HAS_CHIP_XCVR,
134 };
135 
136 /* 89/6/13 add, */
137 /* for different PHY */
138 enum phy_type_flags {
139 	MysonPHY = 1,
140 	AhdocPHY = 2,
141 	SeeqPHY = 3,
142 	MarvellPHY = 4,
143 	Myson981 = 5,
144 	LevelOnePHY = 6,
145 	OtherPHY = 10,
146 };
147 
148 struct chip_info {
149 	char *chip_name;
150 	int flags;
151 };
152 
153 static const struct chip_info skel_netdrv_tbl[] = {
154  	{ "100/10M Ethernet PCI Adapter",	HAS_MII_XCVR },
155 	{ "100/10M Ethernet PCI Adapter",	HAS_CHIP_XCVR },
156 	{ "1000/100/10M Ethernet PCI Adapter",	HAS_MII_XCVR },
157 };
158 
159 /* Offsets to the Command and Status Registers. */
160 enum fealnx_offsets {
161 	PAR0 = 0x0,		/* physical address 0-3 */
162 	PAR1 = 0x04,		/* physical address 4-5 */
163 	MAR0 = 0x08,		/* multicast address 0-3 */
164 	MAR1 = 0x0C,		/* multicast address 4-7 */
165 	FAR0 = 0x10,		/* flow-control address 0-3 */
166 	FAR1 = 0x14,		/* flow-control address 4-5 */
167 	TCRRCR = 0x18,		/* receive & transmit configuration */
168 	BCR = 0x1C,		/* bus command */
169 	TXPDR = 0x20,		/* transmit polling demand */
170 	RXPDR = 0x24,		/* receive polling demand */
171 	RXCWP = 0x28,		/* receive current word pointer */
172 	TXLBA = 0x2C,		/* transmit list base address */
173 	RXLBA = 0x30,		/* receive list base address */
174 	ISR = 0x34,		/* interrupt status */
175 	IMR = 0x38,		/* interrupt mask */
176 	FTH = 0x3C,		/* flow control high/low threshold */
177 	MANAGEMENT = 0x40,	/* bootrom/eeprom and mii management */
178 	TALLY = 0x44,		/* tally counters for crc and mpa */
179 	TSR = 0x48,		/* tally counter for transmit status */
180 	BMCRSR = 0x4c,		/* basic mode control and status */
181 	PHYIDENTIFIER = 0x50,	/* phy identifier */
182 	ANARANLPAR = 0x54,	/* auto-negotiation advertisement and link
183 				   partner ability */
184 	ANEROCR = 0x58,		/* auto-negotiation expansion and pci conf. */
185 	BPREMRPSR = 0x5c,	/* bypass & receive error mask and phy status */
186 };
187 
188 /* Bits in the interrupt status/enable registers. */
189 /* The bits in the Intr Status/Enable registers, mostly interrupt sources. */
190 enum intr_status_bits {
191 	RFCON = 0x00020000,	/* receive flow control xon packet */
192 	RFCOFF = 0x00010000,	/* receive flow control xoff packet */
193 	LSCStatus = 0x00008000,	/* link status change */
194 	ANCStatus = 0x00004000,	/* autonegotiation completed */
195 	FBE = 0x00002000,	/* fatal bus error */
196 	FBEMask = 0x00001800,	/* mask bit12-11 */
197 	ParityErr = 0x00000000,	/* parity error */
198 	TargetErr = 0x00001000,	/* target abort */
199 	MasterErr = 0x00000800,	/* master error */
200 	TUNF = 0x00000400,	/* transmit underflow */
201 	ROVF = 0x00000200,	/* receive overflow */
202 	ETI = 0x00000100,	/* transmit early int */
203 	ERI = 0x00000080,	/* receive early int */
204 	CNTOVF = 0x00000040,	/* counter overflow */
205 	RBU = 0x00000020,	/* receive buffer unavailable */
206 	TBU = 0x00000010,	/* transmit buffer unavilable */
207 	TI = 0x00000008,	/* transmit interrupt */
208 	RI = 0x00000004,	/* receive interrupt */
209 	RxErr = 0x00000002,	/* receive error */
210 };
211 
212 /* Bits in the NetworkConfig register, W for writing, R for reading */
213 /* FIXME: some names are invented by me. Marked with (name?) */
214 /* If you have docs and know bit names, please fix 'em */
215 enum rx_mode_bits {
216 	CR_W_ENH	= 0x02000000,	/* enhanced mode (name?) */
217 	CR_W_FD		= 0x00100000,	/* full duplex */
218 	CR_W_PS10	= 0x00080000,	/* 10 mbit */
219 	CR_W_TXEN	= 0x00040000,	/* tx enable (name?) */
220 	CR_W_PS1000	= 0x00010000,	/* 1000 mbit */
221      /* CR_W_RXBURSTMASK= 0x00000e00, Im unsure about this */
222 	CR_W_RXMODEMASK	= 0x000000e0,
223 	CR_W_PROM	= 0x00000080,	/* promiscuous mode */
224 	CR_W_AB		= 0x00000040,	/* accept broadcast */
225 	CR_W_AM		= 0x00000020,	/* accept mutlicast */
226 	CR_W_ARP	= 0x00000008,	/* receive runt pkt */
227 	CR_W_ALP	= 0x00000004,	/* receive long pkt */
228 	CR_W_SEP	= 0x00000002,	/* receive error pkt */
229 	CR_W_RXEN	= 0x00000001,	/* rx enable (unicast?) (name?) */
230 
231 	CR_R_TXSTOP	= 0x04000000,	/* tx stopped (name?) */
232 	CR_R_FD		= 0x00100000,	/* full duplex detected */
233 	CR_R_PS10	= 0x00080000,	/* 10 mbit detected */
234 	CR_R_RXSTOP	= 0x00008000,	/* rx stopped (name?) */
235 };
236 
237 /* The Tulip Rx and Tx buffer descriptors. */
238 struct fealnx_desc {
239 	s32 status;
240 	s32 control;
241 	u32 buffer;
242 	u32 next_desc;
243 	struct fealnx_desc *next_desc_logical;
244 	struct sk_buff *skbuff;
245 	u32 reserved1;
246 	u32 reserved2;
247 };
248 
249 /* Bits in network_desc.status */
250 enum rx_desc_status_bits {
251 	RXOWN = 0x80000000,	/* own bit */
252 	FLNGMASK = 0x0fff0000,	/* frame length */
253 	FLNGShift = 16,
254 	MARSTATUS = 0x00004000,	/* multicast address received */
255 	BARSTATUS = 0x00002000,	/* broadcast address received */
256 	PHYSTATUS = 0x00001000,	/* physical address received */
257 	RXFSD = 0x00000800,	/* first descriptor */
258 	RXLSD = 0x00000400,	/* last descriptor */
259 	ErrorSummary = 0x80,	/* error summary */
260 	RUNT = 0x40,		/* runt packet received */
261 	LONG = 0x20,		/* long packet received */
262 	FAE = 0x10,		/* frame align error */
263 	CRC = 0x08,		/* crc error */
264 	RXER = 0x04,		/* receive error */
265 };
266 
267 enum rx_desc_control_bits {
268 	RXIC = 0x00800000,	/* interrupt control */
269 	RBSShift = 0,
270 };
271 
272 enum tx_desc_status_bits {
273 	TXOWN = 0x80000000,	/* own bit */
274 	JABTO = 0x00004000,	/* jabber timeout */
275 	CSL = 0x00002000,	/* carrier sense lost */
276 	LC = 0x00001000,	/* late collision */
277 	EC = 0x00000800,	/* excessive collision */
278 	UDF = 0x00000400,	/* fifo underflow */
279 	DFR = 0x00000200,	/* deferred */
280 	HF = 0x00000100,	/* heartbeat fail */
281 	NCRMask = 0x000000ff,	/* collision retry count */
282 	NCRShift = 0,
283 };
284 
285 enum tx_desc_control_bits {
286 	TXIC = 0x80000000,	/* interrupt control */
287 	ETIControl = 0x40000000,	/* early transmit interrupt */
288 	TXLD = 0x20000000,	/* last descriptor */
289 	TXFD = 0x10000000,	/* first descriptor */
290 	CRCEnable = 0x08000000,	/* crc control */
291 	PADEnable = 0x04000000,	/* padding control */
292 	RetryTxLC = 0x02000000,	/* retry late collision */
293 	PKTSMask = 0x3ff800,	/* packet size bit21-11 */
294 	PKTSShift = 11,
295 	TBSMask = 0x000007ff,	/* transmit buffer bit 10-0 */
296 	TBSShift = 0,
297 };
298 
299 /* BootROM/EEPROM/MII Management Register */
300 #define MASK_MIIR_MII_READ       0x00000000
301 #define MASK_MIIR_MII_WRITE      0x00000008
302 #define MASK_MIIR_MII_MDO        0x00000004
303 #define MASK_MIIR_MII_MDI        0x00000002
304 #define MASK_MIIR_MII_MDC        0x00000001
305 
306 /* ST+OP+PHYAD+REGAD+TA */
307 #define OP_READ             0x6000	/* ST:01+OP:10+PHYAD+REGAD+TA:Z0 */
308 #define OP_WRITE            0x5002	/* ST:01+OP:01+PHYAD+REGAD+TA:10 */
309 
310 /* ------------------------------------------------------------------------- */
311 /*      Constants for Myson PHY                                              */
312 /* ------------------------------------------------------------------------- */
313 #define MysonPHYID      0xd0000302
314 /* 89-7-27 add, (begin) */
315 #define MysonPHYID0     0x0302
316 #define StatusRegister  18
317 #define SPEED100        0x0400	// bit10
318 #define FULLMODE        0x0800	// bit11
319 /* 89-7-27 add, (end) */
320 
321 /* ------------------------------------------------------------------------- */
322 /*      Constants for Seeq 80225 PHY                                         */
323 /* ------------------------------------------------------------------------- */
324 #define SeeqPHYID0      0x0016
325 
326 #define MIIRegister18   18
327 #define SPD_DET_100     0x80
328 #define DPLX_DET_FULL   0x40
329 
330 /* ------------------------------------------------------------------------- */
331 /*      Constants for Ahdoc 101 PHY                                          */
332 /* ------------------------------------------------------------------------- */
333 #define AhdocPHYID0     0x0022
334 
335 #define DiagnosticReg   18
336 #define DPLX_FULL       0x0800
337 #define Speed_100       0x0400
338 
339 /* 89/6/13 add, */
340 /* -------------------------------------------------------------------------- */
341 /*      Constants                                                             */
342 /* -------------------------------------------------------------------------- */
343 #define MarvellPHYID0           0x0141
344 #define LevelOnePHYID0		0x0013
345 
346 #define MII1000BaseTControlReg  9
347 #define MII1000BaseTStatusReg   10
348 #define SpecificReg		17
349 
350 /* for 1000BaseT Control Register */
351 #define PHYAbletoPerform1000FullDuplex  0x0200
352 #define PHYAbletoPerform1000HalfDuplex  0x0100
353 #define PHY1000AbilityMask              0x300
354 
355 // for phy specific status register, marvell phy.
356 #define SpeedMask       0x0c000
357 #define Speed_1000M     0x08000
358 #define Speed_100M      0x4000
359 #define Speed_10M       0
360 #define Full_Duplex     0x2000
361 
362 // 89/12/29 add, for phy specific status register, levelone phy, (begin)
363 #define LXT1000_100M    0x08000
364 #define LXT1000_1000M   0x0c000
365 #define LXT1000_Full    0x200
366 // 89/12/29 add, for phy specific status register, levelone phy, (end)
367 
368 /* for 3-in-1 case, BMCRSR register */
369 #define LinkIsUp2	0x00040000
370 
371 /* for PHY */
372 #define LinkIsUp        0x0004
373 
374 
375 struct netdev_private {
376 	/* Descriptor rings first for alignment. */
377 	struct fealnx_desc *rx_ring;
378 	struct fealnx_desc *tx_ring;
379 
380 	dma_addr_t rx_ring_dma;
381 	dma_addr_t tx_ring_dma;
382 
383 	spinlock_t lock;
384 
385 	/* Media monitoring timer. */
386 	struct timer_list timer;
387 
388 	/* Reset timer */
389 	struct timer_list reset_timer;
390 	int reset_timer_armed;
391 	unsigned long crvalue_sv;
392 	unsigned long imrvalue_sv;
393 
394 	/* Frequently used values: keep some adjacent for cache effect. */
395 	int flags;
396 	struct pci_dev *pci_dev;
397 	unsigned long crvalue;
398 	unsigned long bcrvalue;
399 	unsigned long imrvalue;
400 	struct fealnx_desc *cur_rx;
401 	struct fealnx_desc *lack_rxbuf;
402 	int really_rx_count;
403 	struct fealnx_desc *cur_tx;
404 	struct fealnx_desc *cur_tx_copy;
405 	int really_tx_count;
406 	int free_tx_count;
407 	unsigned int rx_buf_sz;	/* Based on MTU+slack. */
408 
409 	/* These values are keep track of the transceiver/media in use. */
410 	unsigned int linkok;
411 	unsigned int line_speed;
412 	unsigned int duplexmode;
413 	unsigned int default_port:4;	/* Last dev->if_port value. */
414 	unsigned int PHYType;
415 
416 	/* MII transceiver section. */
417 	int mii_cnt;		/* MII device addresses. */
418 	unsigned char phys[2];	/* MII device addresses. */
419 	struct mii_if_info mii;
420 	void __iomem *mem;
421 };
422 
423 
424 static int mdio_read(struct net_device *dev, int phy_id, int location);
425 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
426 static int netdev_open(struct net_device *dev);
427 static void getlinktype(struct net_device *dev);
428 static void getlinkstatus(struct net_device *dev);
429 static void netdev_timer(unsigned long data);
430 static void reset_timer(unsigned long data);
431 static void fealnx_tx_timeout(struct net_device *dev);
432 static void init_ring(struct net_device *dev);
433 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
434 static irqreturn_t intr_handler(int irq, void *dev_instance);
435 static int netdev_rx(struct net_device *dev);
436 static void set_rx_mode(struct net_device *dev);
437 static void __set_rx_mode(struct net_device *dev);
438 static struct net_device_stats *get_stats(struct net_device *dev);
439 static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
440 static const struct ethtool_ops netdev_ethtool_ops;
441 static int netdev_close(struct net_device *dev);
442 static void reset_rx_descriptors(struct net_device *dev);
443 static void reset_tx_descriptors(struct net_device *dev);
444 
445 static void stop_nic_rx(void __iomem *ioaddr, long crvalue)
446 {
447 	int delay = 0x1000;
448 	iowrite32(crvalue & ~(CR_W_RXEN), ioaddr + TCRRCR);
449 	while (--delay) {
450 		if ( (ioread32(ioaddr + TCRRCR) & CR_R_RXSTOP) == CR_R_RXSTOP)
451 			break;
452 	}
453 }
454 
455 
456 static void stop_nic_rxtx(void __iomem *ioaddr, long crvalue)
457 {
458 	int delay = 0x1000;
459 	iowrite32(crvalue & ~(CR_W_RXEN+CR_W_TXEN), ioaddr + TCRRCR);
460 	while (--delay) {
461 		if ( (ioread32(ioaddr + TCRRCR) & (CR_R_RXSTOP+CR_R_TXSTOP))
462 					    == (CR_R_RXSTOP+CR_R_TXSTOP) )
463 			break;
464 	}
465 }
466 
467 static const struct net_device_ops netdev_ops = {
468 	.ndo_open		= netdev_open,
469 	.ndo_stop		= netdev_close,
470 	.ndo_start_xmit		= start_tx,
471 	.ndo_get_stats 		= get_stats,
472 	.ndo_set_rx_mode	= set_rx_mode,
473 	.ndo_do_ioctl		= mii_ioctl,
474 	.ndo_tx_timeout		= fealnx_tx_timeout,
475 	.ndo_set_mac_address 	= eth_mac_addr,
476 	.ndo_validate_addr	= eth_validate_addr,
477 };
478 
479 static int fealnx_init_one(struct pci_dev *pdev,
480 			   const struct pci_device_id *ent)
481 {
482 	struct netdev_private *np;
483 	int i, option, err, irq;
484 	static int card_idx = -1;
485 	char boardname[12];
486 	void __iomem *ioaddr;
487 	unsigned long len;
488 	unsigned int chip_id = ent->driver_data;
489 	struct net_device *dev;
490 	void *ring_space;
491 	dma_addr_t ring_dma;
492 #ifdef USE_IO_OPS
493 	int bar = 0;
494 #else
495 	int bar = 1;
496 #endif
497 
498 /* when built into the kernel, we only print version if device is found */
499 #ifndef MODULE
500 	static int printed_version;
501 	if (!printed_version++)
502 		printk(version);
503 #endif
504 
505 	card_idx++;
506 	sprintf(boardname, "fealnx%d", card_idx);
507 
508 	option = card_idx < MAX_UNITS ? options[card_idx] : 0;
509 
510 	i = pci_enable_device(pdev);
511 	if (i) return i;
512 	pci_set_master(pdev);
513 
514 	len = pci_resource_len(pdev, bar);
515 	if (len < MIN_REGION_SIZE) {
516 		dev_err(&pdev->dev,
517 			   "region size %ld too small, aborting\n", len);
518 		return -ENODEV;
519 	}
520 
521 	i = pci_request_regions(pdev, boardname);
522 	if (i)
523 		return i;
524 
525 	irq = pdev->irq;
526 
527 	ioaddr = pci_iomap(pdev, bar, len);
528 	if (!ioaddr) {
529 		err = -ENOMEM;
530 		goto err_out_res;
531 	}
532 
533 	dev = alloc_etherdev(sizeof(struct netdev_private));
534 	if (!dev) {
535 		err = -ENOMEM;
536 		goto err_out_unmap;
537 	}
538 	SET_NETDEV_DEV(dev, &pdev->dev);
539 
540 	/* read ethernet id */
541 	for (i = 0; i < 6; ++i)
542 		dev->dev_addr[i] = ioread8(ioaddr + PAR0 + i);
543 
544 	/* Reset the chip to erase previous misconfiguration. */
545 	iowrite32(0x00000001, ioaddr + BCR);
546 
547 	/* Make certain the descriptor lists are aligned. */
548 	np = netdev_priv(dev);
549 	np->mem = ioaddr;
550 	spin_lock_init(&np->lock);
551 	np->pci_dev = pdev;
552 	np->flags = skel_netdrv_tbl[chip_id].flags;
553 	pci_set_drvdata(pdev, dev);
554 	np->mii.dev = dev;
555 	np->mii.mdio_read = mdio_read;
556 	np->mii.mdio_write = mdio_write;
557 	np->mii.phy_id_mask = 0x1f;
558 	np->mii.reg_num_mask = 0x1f;
559 
560 	ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
561 	if (!ring_space) {
562 		err = -ENOMEM;
563 		goto err_out_free_dev;
564 	}
565 	np->rx_ring = ring_space;
566 	np->rx_ring_dma = ring_dma;
567 
568 	ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
569 	if (!ring_space) {
570 		err = -ENOMEM;
571 		goto err_out_free_rx;
572 	}
573 	np->tx_ring = ring_space;
574 	np->tx_ring_dma = ring_dma;
575 
576 	/* find the connected MII xcvrs */
577 	if (np->flags == HAS_MII_XCVR) {
578 		int phy, phy_idx = 0;
579 
580 		for (phy = 1; phy < 32 && phy_idx < ARRAY_SIZE(np->phys);
581 			       phy++) {
582 			int mii_status = mdio_read(dev, phy, 1);
583 
584 			if (mii_status != 0xffff && mii_status != 0x0000) {
585 				np->phys[phy_idx++] = phy;
586 				dev_info(&pdev->dev,
587 				       "MII PHY found at address %d, status "
588 				       "0x%4.4x.\n", phy, mii_status);
589 				/* get phy type */
590 				{
591 					unsigned int data;
592 
593 					data = mdio_read(dev, np->phys[0], 2);
594 					if (data == SeeqPHYID0)
595 						np->PHYType = SeeqPHY;
596 					else if (data == AhdocPHYID0)
597 						np->PHYType = AhdocPHY;
598 					else if (data == MarvellPHYID0)
599 						np->PHYType = MarvellPHY;
600 					else if (data == MysonPHYID0)
601 						np->PHYType = Myson981;
602 					else if (data == LevelOnePHYID0)
603 						np->PHYType = LevelOnePHY;
604 					else
605 						np->PHYType = OtherPHY;
606 				}
607 			}
608 		}
609 
610 		np->mii_cnt = phy_idx;
611 		if (phy_idx == 0)
612 			dev_warn(&pdev->dev,
613 				"MII PHY not found -- this device may "
614 			       "not operate correctly.\n");
615 	} else {
616 		np->phys[0] = 32;
617 /* 89/6/23 add, (begin) */
618 		/* get phy type */
619 		if (ioread32(ioaddr + PHYIDENTIFIER) == MysonPHYID)
620 			np->PHYType = MysonPHY;
621 		else
622 			np->PHYType = OtherPHY;
623 	}
624 	np->mii.phy_id = np->phys[0];
625 
626 	if (dev->mem_start)
627 		option = dev->mem_start;
628 
629 	/* The lower four bits are the media type. */
630 	if (option > 0) {
631 		if (option & 0x200)
632 			np->mii.full_duplex = 1;
633 		np->default_port = option & 15;
634 	}
635 
636 	if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
637 		np->mii.full_duplex = full_duplex[card_idx];
638 
639 	if (np->mii.full_duplex) {
640 		dev_info(&pdev->dev, "Media type forced to Full Duplex.\n");
641 /* 89/6/13 add, (begin) */
642 //      if (np->PHYType==MarvellPHY)
643 		if ((np->PHYType == MarvellPHY) || (np->PHYType == LevelOnePHY)) {
644 			unsigned int data;
645 
646 			data = mdio_read(dev, np->phys[0], 9);
647 			data = (data & 0xfcff) | 0x0200;
648 			mdio_write(dev, np->phys[0], 9, data);
649 		}
650 /* 89/6/13 add, (end) */
651 		if (np->flags == HAS_MII_XCVR)
652 			mdio_write(dev, np->phys[0], MII_ADVERTISE, ADVERTISE_FULL);
653 		else
654 			iowrite32(ADVERTISE_FULL, ioaddr + ANARANLPAR);
655 		np->mii.force_media = 1;
656 	}
657 
658 	dev->netdev_ops = &netdev_ops;
659 	dev->ethtool_ops = &netdev_ethtool_ops;
660 	dev->watchdog_timeo = TX_TIMEOUT;
661 
662 	err = register_netdev(dev);
663 	if (err)
664 		goto err_out_free_tx;
665 
666 	printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
667 	       dev->name, skel_netdrv_tbl[chip_id].chip_name, ioaddr,
668 	       dev->dev_addr, irq);
669 
670 	return 0;
671 
672 err_out_free_tx:
673 	pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
674 err_out_free_rx:
675 	pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
676 err_out_free_dev:
677 	free_netdev(dev);
678 err_out_unmap:
679 	pci_iounmap(pdev, ioaddr);
680 err_out_res:
681 	pci_release_regions(pdev);
682 	return err;
683 }
684 
685 
686 static void fealnx_remove_one(struct pci_dev *pdev)
687 {
688 	struct net_device *dev = pci_get_drvdata(pdev);
689 
690 	if (dev) {
691 		struct netdev_private *np = netdev_priv(dev);
692 
693 		pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring,
694 			np->tx_ring_dma);
695 		pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring,
696 			np->rx_ring_dma);
697 		unregister_netdev(dev);
698 		pci_iounmap(pdev, np->mem);
699 		free_netdev(dev);
700 		pci_release_regions(pdev);
701 	} else
702 		printk(KERN_ERR "fealnx: remove for unknown device\n");
703 }
704 
705 
706 static ulong m80x_send_cmd_to_phy(void __iomem *miiport, int opcode, int phyad, int regad)
707 {
708 	ulong miir;
709 	int i;
710 	unsigned int mask, data;
711 
712 	/* enable MII output */
713 	miir = (ulong) ioread32(miiport);
714 	miir &= 0xfffffff0;
715 
716 	miir |= MASK_MIIR_MII_WRITE + MASK_MIIR_MII_MDO;
717 
718 	/* send 32 1's preamble */
719 	for (i = 0; i < 32; i++) {
720 		/* low MDC; MDO is already high (miir) */
721 		miir &= ~MASK_MIIR_MII_MDC;
722 		iowrite32(miir, miiport);
723 
724 		/* high MDC */
725 		miir |= MASK_MIIR_MII_MDC;
726 		iowrite32(miir, miiport);
727 	}
728 
729 	/* calculate ST+OP+PHYAD+REGAD+TA */
730 	data = opcode | (phyad << 7) | (regad << 2);
731 
732 	/* sent out */
733 	mask = 0x8000;
734 	while (mask) {
735 		/* low MDC, prepare MDO */
736 		miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO);
737 		if (mask & data)
738 			miir |= MASK_MIIR_MII_MDO;
739 
740 		iowrite32(miir, miiport);
741 		/* high MDC */
742 		miir |= MASK_MIIR_MII_MDC;
743 		iowrite32(miir, miiport);
744 		udelay(30);
745 
746 		/* next */
747 		mask >>= 1;
748 		if (mask == 0x2 && opcode == OP_READ)
749 			miir &= ~MASK_MIIR_MII_WRITE;
750 	}
751 	return miir;
752 }
753 
754 
755 static int mdio_read(struct net_device *dev, int phyad, int regad)
756 {
757 	struct netdev_private *np = netdev_priv(dev);
758 	void __iomem *miiport = np->mem + MANAGEMENT;
759 	ulong miir;
760 	unsigned int mask, data;
761 
762 	miir = m80x_send_cmd_to_phy(miiport, OP_READ, phyad, regad);
763 
764 	/* read data */
765 	mask = 0x8000;
766 	data = 0;
767 	while (mask) {
768 		/* low MDC */
769 		miir &= ~MASK_MIIR_MII_MDC;
770 		iowrite32(miir, miiport);
771 
772 		/* read MDI */
773 		miir = ioread32(miiport);
774 		if (miir & MASK_MIIR_MII_MDI)
775 			data |= mask;
776 
777 		/* high MDC, and wait */
778 		miir |= MASK_MIIR_MII_MDC;
779 		iowrite32(miir, miiport);
780 		udelay(30);
781 
782 		/* next */
783 		mask >>= 1;
784 	}
785 
786 	/* low MDC */
787 	miir &= ~MASK_MIIR_MII_MDC;
788 	iowrite32(miir, miiport);
789 
790 	return data & 0xffff;
791 }
792 
793 
794 static void mdio_write(struct net_device *dev, int phyad, int regad, int data)
795 {
796 	struct netdev_private *np = netdev_priv(dev);
797 	void __iomem *miiport = np->mem + MANAGEMENT;
798 	ulong miir;
799 	unsigned int mask;
800 
801 	miir = m80x_send_cmd_to_phy(miiport, OP_WRITE, phyad, regad);
802 
803 	/* write data */
804 	mask = 0x8000;
805 	while (mask) {
806 		/* low MDC, prepare MDO */
807 		miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO);
808 		if (mask & data)
809 			miir |= MASK_MIIR_MII_MDO;
810 		iowrite32(miir, miiport);
811 
812 		/* high MDC */
813 		miir |= MASK_MIIR_MII_MDC;
814 		iowrite32(miir, miiport);
815 
816 		/* next */
817 		mask >>= 1;
818 	}
819 
820 	/* low MDC */
821 	miir &= ~MASK_MIIR_MII_MDC;
822 	iowrite32(miir, miiport);
823 }
824 
825 
826 static int netdev_open(struct net_device *dev)
827 {
828 	struct netdev_private *np = netdev_priv(dev);
829 	void __iomem *ioaddr = np->mem;
830 	const int irq = np->pci_dev->irq;
831 	int rc, i;
832 
833 	iowrite32(0x00000001, ioaddr + BCR);	/* Reset */
834 
835 	rc = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
836 	if (rc)
837 		return -EAGAIN;
838 
839 	for (i = 0; i < 3; i++)
840 		iowrite16(((unsigned short*)dev->dev_addr)[i],
841 				ioaddr + PAR0 + i*2);
842 
843 	init_ring(dev);
844 
845 	iowrite32(np->rx_ring_dma, ioaddr + RXLBA);
846 	iowrite32(np->tx_ring_dma, ioaddr + TXLBA);
847 
848 	/* Initialize other registers. */
849 	/* Configure the PCI bus bursts and FIFO thresholds.
850 	   486: Set 8 longword burst.
851 	   586: no burst limit.
852 	   Burst length 5:3
853 	   0 0 0   1
854 	   0 0 1   4
855 	   0 1 0   8
856 	   0 1 1   16
857 	   1 0 0   32
858 	   1 0 1   64
859 	   1 1 0   128
860 	   1 1 1   256
861 	   Wait the specified 50 PCI cycles after a reset by initializing
862 	   Tx and Rx queues and the address filter list.
863 	   FIXME (Ueimor): optimistic for alpha + posted writes ? */
864 
865 	np->bcrvalue = 0x10;	/* little-endian, 8 burst length */
866 #ifdef __BIG_ENDIAN
867 	np->bcrvalue |= 0x04;	/* big-endian */
868 #endif
869 
870 #if defined(__i386__) && !defined(MODULE)
871 	if (boot_cpu_data.x86 <= 4)
872 		np->crvalue = 0xa00;
873 	else
874 #endif
875 		np->crvalue = 0xe00;	/* rx 128 burst length */
876 
877 
878 // 89/12/29 add,
879 // 90/1/16 modify,
880 //   np->imrvalue=FBE|TUNF|CNTOVF|RBU|TI|RI;
881 	np->imrvalue = TUNF | CNTOVF | RBU | TI | RI;
882 	if (np->pci_dev->device == 0x891) {
883 		np->bcrvalue |= 0x200;	/* set PROG bit */
884 		np->crvalue |= CR_W_ENH;	/* set enhanced bit */
885 		np->imrvalue |= ETI;
886 	}
887 	iowrite32(np->bcrvalue, ioaddr + BCR);
888 
889 	if (dev->if_port == 0)
890 		dev->if_port = np->default_port;
891 
892 	iowrite32(0, ioaddr + RXPDR);
893 // 89/9/1 modify,
894 //   np->crvalue = 0x00e40001;    /* tx store and forward, tx/rx enable */
895 	np->crvalue |= 0x00e40001;	/* tx store and forward, tx/rx enable */
896 	np->mii.full_duplex = np->mii.force_media;
897 	getlinkstatus(dev);
898 	if (np->linkok)
899 		getlinktype(dev);
900 	__set_rx_mode(dev);
901 
902 	netif_start_queue(dev);
903 
904 	/* Clear and Enable interrupts by setting the interrupt mask. */
905 	iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR);
906 	iowrite32(np->imrvalue, ioaddr + IMR);
907 
908 	if (debug)
909 		printk(KERN_DEBUG "%s: Done netdev_open().\n", dev->name);
910 
911 	/* Set the timer to check for link beat. */
912 	init_timer(&np->timer);
913 	np->timer.expires = RUN_AT(3 * HZ);
914 	np->timer.data = (unsigned long) dev;
915 	np->timer.function = netdev_timer;
916 
917 	/* timer handler */
918 	add_timer(&np->timer);
919 
920 	init_timer(&np->reset_timer);
921 	np->reset_timer.data = (unsigned long) dev;
922 	np->reset_timer.function = reset_timer;
923 	np->reset_timer_armed = 0;
924 	return rc;
925 }
926 
927 
928 static void getlinkstatus(struct net_device *dev)
929 /* function: Routine will read MII Status Register to get link status.       */
930 /* input   : dev... pointer to the adapter block.                            */
931 /* output  : none.                                                           */
932 {
933 	struct netdev_private *np = netdev_priv(dev);
934 	unsigned int i, DelayTime = 0x1000;
935 
936 	np->linkok = 0;
937 
938 	if (np->PHYType == MysonPHY) {
939 		for (i = 0; i < DelayTime; ++i) {
940 			if (ioread32(np->mem + BMCRSR) & LinkIsUp2) {
941 				np->linkok = 1;
942 				return;
943 			}
944 			udelay(100);
945 		}
946 	} else {
947 		for (i = 0; i < DelayTime; ++i) {
948 			if (mdio_read(dev, np->phys[0], MII_BMSR) & BMSR_LSTATUS) {
949 				np->linkok = 1;
950 				return;
951 			}
952 			udelay(100);
953 		}
954 	}
955 }
956 
957 
958 static void getlinktype(struct net_device *dev)
959 {
960 	struct netdev_private *np = netdev_priv(dev);
961 
962 	if (np->PHYType == MysonPHY) {	/* 3-in-1 case */
963 		if (ioread32(np->mem + TCRRCR) & CR_R_FD)
964 			np->duplexmode = 2;	/* full duplex */
965 		else
966 			np->duplexmode = 1;	/* half duplex */
967 		if (ioread32(np->mem + TCRRCR) & CR_R_PS10)
968 			np->line_speed = 1;	/* 10M */
969 		else
970 			np->line_speed = 2;	/* 100M */
971 	} else {
972 		if (np->PHYType == SeeqPHY) {	/* this PHY is SEEQ 80225 */
973 			unsigned int data;
974 
975 			data = mdio_read(dev, np->phys[0], MIIRegister18);
976 			if (data & SPD_DET_100)
977 				np->line_speed = 2;	/* 100M */
978 			else
979 				np->line_speed = 1;	/* 10M */
980 			if (data & DPLX_DET_FULL)
981 				np->duplexmode = 2;	/* full duplex mode */
982 			else
983 				np->duplexmode = 1;	/* half duplex mode */
984 		} else if (np->PHYType == AhdocPHY) {
985 			unsigned int data;
986 
987 			data = mdio_read(dev, np->phys[0], DiagnosticReg);
988 			if (data & Speed_100)
989 				np->line_speed = 2;	/* 100M */
990 			else
991 				np->line_speed = 1;	/* 10M */
992 			if (data & DPLX_FULL)
993 				np->duplexmode = 2;	/* full duplex mode */
994 			else
995 				np->duplexmode = 1;	/* half duplex mode */
996 		}
997 /* 89/6/13 add, (begin) */
998 		else if (np->PHYType == MarvellPHY) {
999 			unsigned int data;
1000 
1001 			data = mdio_read(dev, np->phys[0], SpecificReg);
1002 			if (data & Full_Duplex)
1003 				np->duplexmode = 2;	/* full duplex mode */
1004 			else
1005 				np->duplexmode = 1;	/* half duplex mode */
1006 			data &= SpeedMask;
1007 			if (data == Speed_1000M)
1008 				np->line_speed = 3;	/* 1000M */
1009 			else if (data == Speed_100M)
1010 				np->line_speed = 2;	/* 100M */
1011 			else
1012 				np->line_speed = 1;	/* 10M */
1013 		}
1014 /* 89/6/13 add, (end) */
1015 /* 89/7/27 add, (begin) */
1016 		else if (np->PHYType == Myson981) {
1017 			unsigned int data;
1018 
1019 			data = mdio_read(dev, np->phys[0], StatusRegister);
1020 
1021 			if (data & SPEED100)
1022 				np->line_speed = 2;
1023 			else
1024 				np->line_speed = 1;
1025 
1026 			if (data & FULLMODE)
1027 				np->duplexmode = 2;
1028 			else
1029 				np->duplexmode = 1;
1030 		}
1031 /* 89/7/27 add, (end) */
1032 /* 89/12/29 add */
1033 		else if (np->PHYType == LevelOnePHY) {
1034 			unsigned int data;
1035 
1036 			data = mdio_read(dev, np->phys[0], SpecificReg);
1037 			if (data & LXT1000_Full)
1038 				np->duplexmode = 2;	/* full duplex mode */
1039 			else
1040 				np->duplexmode = 1;	/* half duplex mode */
1041 			data &= SpeedMask;
1042 			if (data == LXT1000_1000M)
1043 				np->line_speed = 3;	/* 1000M */
1044 			else if (data == LXT1000_100M)
1045 				np->line_speed = 2;	/* 100M */
1046 			else
1047 				np->line_speed = 1;	/* 10M */
1048 		}
1049 		np->crvalue &= (~CR_W_PS10) & (~CR_W_FD) & (~CR_W_PS1000);
1050 		if (np->line_speed == 1)
1051 			np->crvalue |= CR_W_PS10;
1052 		else if (np->line_speed == 3)
1053 			np->crvalue |= CR_W_PS1000;
1054 		if (np->duplexmode == 2)
1055 			np->crvalue |= CR_W_FD;
1056 	}
1057 }
1058 
1059 
1060 /* Take lock before calling this */
1061 static void allocate_rx_buffers(struct net_device *dev)
1062 {
1063 	struct netdev_private *np = netdev_priv(dev);
1064 
1065 	/*  allocate skb for rx buffers */
1066 	while (np->really_rx_count != RX_RING_SIZE) {
1067 		struct sk_buff *skb;
1068 
1069 		skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1070 		if (skb == NULL)
1071 			break;	/* Better luck next round. */
1072 
1073 		while (np->lack_rxbuf->skbuff)
1074 			np->lack_rxbuf = np->lack_rxbuf->next_desc_logical;
1075 
1076 		np->lack_rxbuf->skbuff = skb;
1077 		np->lack_rxbuf->buffer = pci_map_single(np->pci_dev, skb->data,
1078 			np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1079 		np->lack_rxbuf->status = RXOWN;
1080 		++np->really_rx_count;
1081 	}
1082 }
1083 
1084 
1085 static void netdev_timer(unsigned long data)
1086 {
1087 	struct net_device *dev = (struct net_device *) data;
1088 	struct netdev_private *np = netdev_priv(dev);
1089 	void __iomem *ioaddr = np->mem;
1090 	int old_crvalue = np->crvalue;
1091 	unsigned int old_linkok = np->linkok;
1092 	unsigned long flags;
1093 
1094 	if (debug)
1095 		printk(KERN_DEBUG "%s: Media selection timer tick, status %8.8x "
1096 		       "config %8.8x.\n", dev->name, ioread32(ioaddr + ISR),
1097 		       ioread32(ioaddr + TCRRCR));
1098 
1099 	spin_lock_irqsave(&np->lock, flags);
1100 
1101 	if (np->flags == HAS_MII_XCVR) {
1102 		getlinkstatus(dev);
1103 		if ((old_linkok == 0) && (np->linkok == 1)) {	/* we need to detect the media type again */
1104 			getlinktype(dev);
1105 			if (np->crvalue != old_crvalue) {
1106 				stop_nic_rxtx(ioaddr, np->crvalue);
1107 				iowrite32(np->crvalue, ioaddr + TCRRCR);
1108 			}
1109 		}
1110 	}
1111 
1112 	allocate_rx_buffers(dev);
1113 
1114 	spin_unlock_irqrestore(&np->lock, flags);
1115 
1116 	np->timer.expires = RUN_AT(10 * HZ);
1117 	add_timer(&np->timer);
1118 }
1119 
1120 
1121 /* Take lock before calling */
1122 /* Reset chip and disable rx, tx and interrupts */
1123 static void reset_and_disable_rxtx(struct net_device *dev)
1124 {
1125 	struct netdev_private *np = netdev_priv(dev);
1126 	void __iomem *ioaddr = np->mem;
1127 	int delay=51;
1128 
1129 	/* Reset the chip's Tx and Rx processes. */
1130 	stop_nic_rxtx(ioaddr, 0);
1131 
1132 	/* Disable interrupts by clearing the interrupt mask. */
1133 	iowrite32(0, ioaddr + IMR);
1134 
1135 	/* Reset the chip to erase previous misconfiguration. */
1136 	iowrite32(0x00000001, ioaddr + BCR);
1137 
1138 	/* Ueimor: wait for 50 PCI cycles (and flush posted writes btw).
1139 	   We surely wait too long (address+data phase). Who cares? */
1140 	while (--delay) {
1141 		ioread32(ioaddr + BCR);
1142 		rmb();
1143 	}
1144 }
1145 
1146 
1147 /* Take lock before calling */
1148 /* Restore chip after reset */
1149 static void enable_rxtx(struct net_device *dev)
1150 {
1151 	struct netdev_private *np = netdev_priv(dev);
1152 	void __iomem *ioaddr = np->mem;
1153 
1154 	reset_rx_descriptors(dev);
1155 
1156 	iowrite32(np->tx_ring_dma + ((char*)np->cur_tx - (char*)np->tx_ring),
1157 		ioaddr + TXLBA);
1158 	iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring),
1159 		ioaddr + RXLBA);
1160 
1161 	iowrite32(np->bcrvalue, ioaddr + BCR);
1162 
1163 	iowrite32(0, ioaddr + RXPDR);
1164 	__set_rx_mode(dev); /* changes np->crvalue, writes it into TCRRCR */
1165 
1166 	/* Clear and Enable interrupts by setting the interrupt mask. */
1167 	iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR);
1168 	iowrite32(np->imrvalue, ioaddr + IMR);
1169 
1170 	iowrite32(0, ioaddr + TXPDR);
1171 }
1172 
1173 
1174 static void reset_timer(unsigned long data)
1175 {
1176 	struct net_device *dev = (struct net_device *) data;
1177 	struct netdev_private *np = netdev_priv(dev);
1178 	unsigned long flags;
1179 
1180 	printk(KERN_WARNING "%s: resetting tx and rx machinery\n", dev->name);
1181 
1182 	spin_lock_irqsave(&np->lock, flags);
1183 	np->crvalue = np->crvalue_sv;
1184 	np->imrvalue = np->imrvalue_sv;
1185 
1186 	reset_and_disable_rxtx(dev);
1187 	/* works for me without this:
1188 	reset_tx_descriptors(dev); */
1189 	enable_rxtx(dev);
1190 	netif_start_queue(dev); /* FIXME: or netif_wake_queue(dev); ? */
1191 
1192 	np->reset_timer_armed = 0;
1193 
1194 	spin_unlock_irqrestore(&np->lock, flags);
1195 }
1196 
1197 
1198 static void fealnx_tx_timeout(struct net_device *dev)
1199 {
1200 	struct netdev_private *np = netdev_priv(dev);
1201 	void __iomem *ioaddr = np->mem;
1202 	unsigned long flags;
1203 	int i;
1204 
1205 	printk(KERN_WARNING
1206 	       "%s: Transmit timed out, status %8.8x, resetting...\n",
1207 	       dev->name, ioread32(ioaddr + ISR));
1208 
1209 	{
1210 		printk(KERN_DEBUG "  Rx ring %p: ", np->rx_ring);
1211 		for (i = 0; i < RX_RING_SIZE; i++)
1212 			printk(KERN_CONT " %8.8x",
1213 			       (unsigned int) np->rx_ring[i].status);
1214 		printk(KERN_CONT "\n");
1215 		printk(KERN_DEBUG "  Tx ring %p: ", np->tx_ring);
1216 		for (i = 0; i < TX_RING_SIZE; i++)
1217 			printk(KERN_CONT " %4.4x", np->tx_ring[i].status);
1218 		printk(KERN_CONT "\n");
1219 	}
1220 
1221 	spin_lock_irqsave(&np->lock, flags);
1222 
1223 	reset_and_disable_rxtx(dev);
1224 	reset_tx_descriptors(dev);
1225 	enable_rxtx(dev);
1226 
1227 	spin_unlock_irqrestore(&np->lock, flags);
1228 
1229 	netif_trans_update(dev); /* prevent tx timeout */
1230 	dev->stats.tx_errors++;
1231 	netif_wake_queue(dev); /* or .._start_.. ?? */
1232 }
1233 
1234 
1235 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1236 static void init_ring(struct net_device *dev)
1237 {
1238 	struct netdev_private *np = netdev_priv(dev);
1239 	int i;
1240 
1241 	/* initialize rx variables */
1242 	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1243 	np->cur_rx = &np->rx_ring[0];
1244 	np->lack_rxbuf = np->rx_ring;
1245 	np->really_rx_count = 0;
1246 
1247 	/* initial rx descriptors. */
1248 	for (i = 0; i < RX_RING_SIZE; i++) {
1249 		np->rx_ring[i].status = 0;
1250 		np->rx_ring[i].control = np->rx_buf_sz << RBSShift;
1251 		np->rx_ring[i].next_desc = np->rx_ring_dma +
1252 			(i + 1)*sizeof(struct fealnx_desc);
1253 		np->rx_ring[i].next_desc_logical = &np->rx_ring[i + 1];
1254 		np->rx_ring[i].skbuff = NULL;
1255 	}
1256 
1257 	/* for the last rx descriptor */
1258 	np->rx_ring[i - 1].next_desc = np->rx_ring_dma;
1259 	np->rx_ring[i - 1].next_desc_logical = np->rx_ring;
1260 
1261 	/* allocate skb for rx buffers */
1262 	for (i = 0; i < RX_RING_SIZE; i++) {
1263 		struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1264 
1265 		if (skb == NULL) {
1266 			np->lack_rxbuf = &np->rx_ring[i];
1267 			break;
1268 		}
1269 
1270 		++np->really_rx_count;
1271 		np->rx_ring[i].skbuff = skb;
1272 		np->rx_ring[i].buffer = pci_map_single(np->pci_dev, skb->data,
1273 			np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1274 		np->rx_ring[i].status = RXOWN;
1275 		np->rx_ring[i].control |= RXIC;
1276 	}
1277 
1278 	/* initialize tx variables */
1279 	np->cur_tx = &np->tx_ring[0];
1280 	np->cur_tx_copy = &np->tx_ring[0];
1281 	np->really_tx_count = 0;
1282 	np->free_tx_count = TX_RING_SIZE;
1283 
1284 	for (i = 0; i < TX_RING_SIZE; i++) {
1285 		np->tx_ring[i].status = 0;
1286 		/* do we need np->tx_ring[i].control = XXX; ?? */
1287 		np->tx_ring[i].next_desc = np->tx_ring_dma +
1288 			(i + 1)*sizeof(struct fealnx_desc);
1289 		np->tx_ring[i].next_desc_logical = &np->tx_ring[i + 1];
1290 		np->tx_ring[i].skbuff = NULL;
1291 	}
1292 
1293 	/* for the last tx descriptor */
1294 	np->tx_ring[i - 1].next_desc = np->tx_ring_dma;
1295 	np->tx_ring[i - 1].next_desc_logical = &np->tx_ring[0];
1296 }
1297 
1298 
1299 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1300 {
1301 	struct netdev_private *np = netdev_priv(dev);
1302 	unsigned long flags;
1303 
1304 	spin_lock_irqsave(&np->lock, flags);
1305 
1306 	np->cur_tx_copy->skbuff = skb;
1307 
1308 #define one_buffer
1309 #define BPT 1022
1310 #if defined(one_buffer)
1311 	np->cur_tx_copy->buffer = pci_map_single(np->pci_dev, skb->data,
1312 		skb->len, PCI_DMA_TODEVICE);
1313 	np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable;
1314 	np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1315 	np->cur_tx_copy->control |= (skb->len << TBSShift);	/* buffer size */
1316 // 89/12/29 add,
1317 	if (np->pci_dev->device == 0x891)
1318 		np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1319 	np->cur_tx_copy->status = TXOWN;
1320 	np->cur_tx_copy = np->cur_tx_copy->next_desc_logical;
1321 	--np->free_tx_count;
1322 #elif defined(two_buffer)
1323 	if (skb->len > BPT) {
1324 		struct fealnx_desc *next;
1325 
1326 		/* for the first descriptor */
1327 		np->cur_tx_copy->buffer = pci_map_single(np->pci_dev, skb->data,
1328 			BPT, PCI_DMA_TODEVICE);
1329 		np->cur_tx_copy->control = TXIC | TXFD | CRCEnable | PADEnable;
1330 		np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1331 		np->cur_tx_copy->control |= (BPT << TBSShift);	/* buffer size */
1332 
1333 		/* for the last descriptor */
1334 		next = np->cur_tx_copy->next_desc_logical;
1335 		next->skbuff = skb;
1336 		next->control = TXIC | TXLD | CRCEnable | PADEnable;
1337 		next->control |= (skb->len << PKTSShift);	/* pkt size */
1338 		next->control |= ((skb->len - BPT) << TBSShift);	/* buf size */
1339 // 89/12/29 add,
1340 		if (np->pci_dev->device == 0x891)
1341 			np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1342 		next->buffer = pci_map_single(ep->pci_dev, skb->data + BPT,
1343                                 skb->len - BPT, PCI_DMA_TODEVICE);
1344 
1345 		next->status = TXOWN;
1346 		np->cur_tx_copy->status = TXOWN;
1347 
1348 		np->cur_tx_copy = next->next_desc_logical;
1349 		np->free_tx_count -= 2;
1350 	} else {
1351 		np->cur_tx_copy->buffer = pci_map_single(np->pci_dev, skb->data,
1352 			skb->len, PCI_DMA_TODEVICE);
1353 		np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable;
1354 		np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1355 		np->cur_tx_copy->control |= (skb->len << TBSShift);	/* buffer size */
1356 // 89/12/29 add,
1357 		if (np->pci_dev->device == 0x891)
1358 			np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1359 		np->cur_tx_copy->status = TXOWN;
1360 		np->cur_tx_copy = np->cur_tx_copy->next_desc_logical;
1361 		--np->free_tx_count;
1362 	}
1363 #endif
1364 
1365 	if (np->free_tx_count < 2)
1366 		netif_stop_queue(dev);
1367 	++np->really_tx_count;
1368 	iowrite32(0, np->mem + TXPDR);
1369 
1370 	spin_unlock_irqrestore(&np->lock, flags);
1371 	return NETDEV_TX_OK;
1372 }
1373 
1374 
1375 /* Take lock before calling */
1376 /* Chip probably hosed tx ring. Clean up. */
1377 static void reset_tx_descriptors(struct net_device *dev)
1378 {
1379 	struct netdev_private *np = netdev_priv(dev);
1380 	struct fealnx_desc *cur;
1381 	int i;
1382 
1383 	/* initialize tx variables */
1384 	np->cur_tx = &np->tx_ring[0];
1385 	np->cur_tx_copy = &np->tx_ring[0];
1386 	np->really_tx_count = 0;
1387 	np->free_tx_count = TX_RING_SIZE;
1388 
1389 	for (i = 0; i < TX_RING_SIZE; i++) {
1390 		cur = &np->tx_ring[i];
1391 		if (cur->skbuff) {
1392 			pci_unmap_single(np->pci_dev, cur->buffer,
1393 				cur->skbuff->len, PCI_DMA_TODEVICE);
1394 			dev_kfree_skb_any(cur->skbuff);
1395 			cur->skbuff = NULL;
1396 		}
1397 		cur->status = 0;
1398 		cur->control = 0;	/* needed? */
1399 		/* probably not needed. We do it for purely paranoid reasons */
1400 		cur->next_desc = np->tx_ring_dma +
1401 			(i + 1)*sizeof(struct fealnx_desc);
1402 		cur->next_desc_logical = &np->tx_ring[i + 1];
1403 	}
1404 	/* for the last tx descriptor */
1405 	np->tx_ring[TX_RING_SIZE - 1].next_desc = np->tx_ring_dma;
1406 	np->tx_ring[TX_RING_SIZE - 1].next_desc_logical = &np->tx_ring[0];
1407 }
1408 
1409 
1410 /* Take lock and stop rx before calling this */
1411 static void reset_rx_descriptors(struct net_device *dev)
1412 {
1413 	struct netdev_private *np = netdev_priv(dev);
1414 	struct fealnx_desc *cur = np->cur_rx;
1415 	int i;
1416 
1417 	allocate_rx_buffers(dev);
1418 
1419 	for (i = 0; i < RX_RING_SIZE; i++) {
1420 		if (cur->skbuff)
1421 			cur->status = RXOWN;
1422 		cur = cur->next_desc_logical;
1423 	}
1424 
1425 	iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring),
1426 		np->mem + RXLBA);
1427 }
1428 
1429 
1430 /* The interrupt handler does all of the Rx thread work and cleans up
1431    after the Tx thread. */
1432 static irqreturn_t intr_handler(int irq, void *dev_instance)
1433 {
1434 	struct net_device *dev = (struct net_device *) dev_instance;
1435 	struct netdev_private *np = netdev_priv(dev);
1436 	void __iomem *ioaddr = np->mem;
1437 	long boguscnt = max_interrupt_work;
1438 	unsigned int num_tx = 0;
1439 	int handled = 0;
1440 
1441 	spin_lock(&np->lock);
1442 
1443 	iowrite32(0, ioaddr + IMR);
1444 
1445 	do {
1446 		u32 intr_status = ioread32(ioaddr + ISR);
1447 
1448 		/* Acknowledge all of the current interrupt sources ASAP. */
1449 		iowrite32(intr_status, ioaddr + ISR);
1450 
1451 		if (debug)
1452 			printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n", dev->name,
1453 			       intr_status);
1454 
1455 		if (!(intr_status & np->imrvalue))
1456 			break;
1457 
1458 		handled = 1;
1459 
1460 // 90/1/16 delete,
1461 //
1462 //      if (intr_status & FBE)
1463 //      {   /* fatal error */
1464 //          stop_nic_tx(ioaddr, 0);
1465 //          stop_nic_rx(ioaddr, 0);
1466 //          break;
1467 //      };
1468 
1469 		if (intr_status & TUNF)
1470 			iowrite32(0, ioaddr + TXPDR);
1471 
1472 		if (intr_status & CNTOVF) {
1473 			/* missed pkts */
1474 			dev->stats.rx_missed_errors +=
1475 				ioread32(ioaddr + TALLY) & 0x7fff;
1476 
1477 			/* crc error */
1478 			dev->stats.rx_crc_errors +=
1479 			    (ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1480 		}
1481 
1482 		if (intr_status & (RI | RBU)) {
1483 			if (intr_status & RI)
1484 				netdev_rx(dev);
1485 			else {
1486 				stop_nic_rx(ioaddr, np->crvalue);
1487 				reset_rx_descriptors(dev);
1488 				iowrite32(np->crvalue, ioaddr + TCRRCR);
1489 			}
1490 		}
1491 
1492 		while (np->really_tx_count) {
1493 			long tx_status = np->cur_tx->status;
1494 			long tx_control = np->cur_tx->control;
1495 
1496 			if (!(tx_control & TXLD)) {	/* this pkt is combined by two tx descriptors */
1497 				struct fealnx_desc *next;
1498 
1499 				next = np->cur_tx->next_desc_logical;
1500 				tx_status = next->status;
1501 				tx_control = next->control;
1502 			}
1503 
1504 			if (tx_status & TXOWN)
1505 				break;
1506 
1507 			if (!(np->crvalue & CR_W_ENH)) {
1508 				if (tx_status & (CSL | LC | EC | UDF | HF)) {
1509 					dev->stats.tx_errors++;
1510 					if (tx_status & EC)
1511 						dev->stats.tx_aborted_errors++;
1512 					if (tx_status & CSL)
1513 						dev->stats.tx_carrier_errors++;
1514 					if (tx_status & LC)
1515 						dev->stats.tx_window_errors++;
1516 					if (tx_status & UDF)
1517 						dev->stats.tx_fifo_errors++;
1518 					if ((tx_status & HF) && np->mii.full_duplex == 0)
1519 						dev->stats.tx_heartbeat_errors++;
1520 
1521 				} else {
1522 					dev->stats.tx_bytes +=
1523 					    ((tx_control & PKTSMask) >> PKTSShift);
1524 
1525 					dev->stats.collisions +=
1526 					    ((tx_status & NCRMask) >> NCRShift);
1527 					dev->stats.tx_packets++;
1528 				}
1529 			} else {
1530 				dev->stats.tx_bytes +=
1531 				    ((tx_control & PKTSMask) >> PKTSShift);
1532 				dev->stats.tx_packets++;
1533 			}
1534 
1535 			/* Free the original skb. */
1536 			pci_unmap_single(np->pci_dev, np->cur_tx->buffer,
1537 				np->cur_tx->skbuff->len, PCI_DMA_TODEVICE);
1538 			dev_kfree_skb_irq(np->cur_tx->skbuff);
1539 			np->cur_tx->skbuff = NULL;
1540 			--np->really_tx_count;
1541 			if (np->cur_tx->control & TXLD) {
1542 				np->cur_tx = np->cur_tx->next_desc_logical;
1543 				++np->free_tx_count;
1544 			} else {
1545 				np->cur_tx = np->cur_tx->next_desc_logical;
1546 				np->cur_tx = np->cur_tx->next_desc_logical;
1547 				np->free_tx_count += 2;
1548 			}
1549 			num_tx++;
1550 		}		/* end of for loop */
1551 
1552 		if (num_tx && np->free_tx_count >= 2)
1553 			netif_wake_queue(dev);
1554 
1555 		/* read transmit status for enhanced mode only */
1556 		if (np->crvalue & CR_W_ENH) {
1557 			long data;
1558 
1559 			data = ioread32(ioaddr + TSR);
1560 			dev->stats.tx_errors += (data & 0xff000000) >> 24;
1561 			dev->stats.tx_aborted_errors +=
1562 				(data & 0xff000000) >> 24;
1563 			dev->stats.tx_window_errors +=
1564 				(data & 0x00ff0000) >> 16;
1565 			dev->stats.collisions += (data & 0x0000ffff);
1566 		}
1567 
1568 		if (--boguscnt < 0) {
1569 			printk(KERN_WARNING "%s: Too much work at interrupt, "
1570 			       "status=0x%4.4x.\n", dev->name, intr_status);
1571 			if (!np->reset_timer_armed) {
1572 				np->reset_timer_armed = 1;
1573 				np->reset_timer.expires = RUN_AT(HZ/2);
1574 				add_timer(&np->reset_timer);
1575 				stop_nic_rxtx(ioaddr, 0);
1576 				netif_stop_queue(dev);
1577 				/* or netif_tx_disable(dev); ?? */
1578 				/* Prevent other paths from enabling tx,rx,intrs */
1579 				np->crvalue_sv = np->crvalue;
1580 				np->imrvalue_sv = np->imrvalue;
1581 				np->crvalue &= ~(CR_W_TXEN | CR_W_RXEN); /* or simply = 0? */
1582 				np->imrvalue = 0;
1583 			}
1584 
1585 			break;
1586 		}
1587 	} while (1);
1588 
1589 	/* read the tally counters */
1590 	/* missed pkts */
1591 	dev->stats.rx_missed_errors += ioread32(ioaddr + TALLY) & 0x7fff;
1592 
1593 	/* crc error */
1594 	dev->stats.rx_crc_errors +=
1595 		(ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1596 
1597 	if (debug)
1598 		printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1599 		       dev->name, ioread32(ioaddr + ISR));
1600 
1601 	iowrite32(np->imrvalue, ioaddr + IMR);
1602 
1603 	spin_unlock(&np->lock);
1604 
1605 	return IRQ_RETVAL(handled);
1606 }
1607 
1608 
1609 /* This routine is logically part of the interrupt handler, but separated
1610    for clarity and better register allocation. */
1611 static int netdev_rx(struct net_device *dev)
1612 {
1613 	struct netdev_private *np = netdev_priv(dev);
1614 	void __iomem *ioaddr = np->mem;
1615 
1616 	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1617 	while (!(np->cur_rx->status & RXOWN) && np->cur_rx->skbuff) {
1618 		s32 rx_status = np->cur_rx->status;
1619 
1620 		if (np->really_rx_count == 0)
1621 			break;
1622 
1623 		if (debug)
1624 			printk(KERN_DEBUG "  netdev_rx() status was %8.8x.\n", rx_status);
1625 
1626 		if ((!((rx_status & RXFSD) && (rx_status & RXLSD))) ||
1627 		    (rx_status & ErrorSummary)) {
1628 			if (rx_status & ErrorSummary) {	/* there was a fatal error */
1629 				if (debug)
1630 					printk(KERN_DEBUG
1631 					       "%s: Receive error, Rx status %8.8x.\n",
1632 					       dev->name, rx_status);
1633 
1634 				dev->stats.rx_errors++;	/* end of a packet. */
1635 				if (rx_status & (LONG | RUNT))
1636 					dev->stats.rx_length_errors++;
1637 				if (rx_status & RXER)
1638 					dev->stats.rx_frame_errors++;
1639 				if (rx_status & CRC)
1640 					dev->stats.rx_crc_errors++;
1641 			} else {
1642 				int need_to_reset = 0;
1643 				int desno = 0;
1644 
1645 				if (rx_status & RXFSD) {	/* this pkt is too long, over one rx buffer */
1646 					struct fealnx_desc *cur;
1647 
1648 					/* check this packet is received completely? */
1649 					cur = np->cur_rx;
1650 					while (desno <= np->really_rx_count) {
1651 						++desno;
1652 						if ((!(cur->status & RXOWN)) &&
1653 						    (cur->status & RXLSD))
1654 							break;
1655 						/* goto next rx descriptor */
1656 						cur = cur->next_desc_logical;
1657 					}
1658 					if (desno > np->really_rx_count)
1659 						need_to_reset = 1;
1660 				} else	/* RXLSD did not find, something error */
1661 					need_to_reset = 1;
1662 
1663 				if (need_to_reset == 0) {
1664 					int i;
1665 
1666 					dev->stats.rx_length_errors++;
1667 
1668 					/* free all rx descriptors related this long pkt */
1669 					for (i = 0; i < desno; ++i) {
1670 						if (!np->cur_rx->skbuff) {
1671 							printk(KERN_DEBUG
1672 								"%s: I'm scared\n", dev->name);
1673 							break;
1674 						}
1675 						np->cur_rx->status = RXOWN;
1676 						np->cur_rx = np->cur_rx->next_desc_logical;
1677 					}
1678 					continue;
1679 				} else {        /* rx error, need to reset this chip */
1680 					stop_nic_rx(ioaddr, np->crvalue);
1681 					reset_rx_descriptors(dev);
1682 					iowrite32(np->crvalue, ioaddr + TCRRCR);
1683 				}
1684 				break;	/* exit the while loop */
1685 			}
1686 		} else {	/* this received pkt is ok */
1687 
1688 			struct sk_buff *skb;
1689 			/* Omit the four octet CRC from the length. */
1690 			short pkt_len = ((rx_status & FLNGMASK) >> FLNGShift) - 4;
1691 
1692 #ifndef final_version
1693 			if (debug)
1694 				printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d"
1695 				       " status %x.\n", pkt_len, rx_status);
1696 #endif
1697 
1698 			/* Check if the packet is long enough to accept without copying
1699 			   to a minimally-sized skbuff. */
1700 			if (pkt_len < rx_copybreak &&
1701 			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1702 				skb_reserve(skb, 2);	/* 16 byte align the IP header */
1703 				pci_dma_sync_single_for_cpu(np->pci_dev,
1704 							    np->cur_rx->buffer,
1705 							    np->rx_buf_sz,
1706 							    PCI_DMA_FROMDEVICE);
1707 				/* Call copy + cksum if available. */
1708 
1709 #if ! defined(__alpha__)
1710 				skb_copy_to_linear_data(skb,
1711 					np->cur_rx->skbuff->data, pkt_len);
1712 				skb_put(skb, pkt_len);
1713 #else
1714 				memcpy(skb_put(skb, pkt_len),
1715 					np->cur_rx->skbuff->data, pkt_len);
1716 #endif
1717 				pci_dma_sync_single_for_device(np->pci_dev,
1718 							       np->cur_rx->buffer,
1719 							       np->rx_buf_sz,
1720 							       PCI_DMA_FROMDEVICE);
1721 			} else {
1722 				pci_unmap_single(np->pci_dev,
1723 						 np->cur_rx->buffer,
1724 						 np->rx_buf_sz,
1725 						 PCI_DMA_FROMDEVICE);
1726 				skb_put(skb = np->cur_rx->skbuff, pkt_len);
1727 				np->cur_rx->skbuff = NULL;
1728 				--np->really_rx_count;
1729 			}
1730 			skb->protocol = eth_type_trans(skb, dev);
1731 			netif_rx(skb);
1732 			dev->stats.rx_packets++;
1733 			dev->stats.rx_bytes += pkt_len;
1734 		}
1735 
1736 		np->cur_rx = np->cur_rx->next_desc_logical;
1737 	}			/* end of while loop */
1738 
1739 	/*  allocate skb for rx buffers */
1740 	allocate_rx_buffers(dev);
1741 
1742 	return 0;
1743 }
1744 
1745 
1746 static struct net_device_stats *get_stats(struct net_device *dev)
1747 {
1748 	struct netdev_private *np = netdev_priv(dev);
1749 	void __iomem *ioaddr = np->mem;
1750 
1751 	/* The chip only need report frame silently dropped. */
1752 	if (netif_running(dev)) {
1753 		dev->stats.rx_missed_errors +=
1754 			ioread32(ioaddr + TALLY) & 0x7fff;
1755 		dev->stats.rx_crc_errors +=
1756 			(ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1757 	}
1758 
1759 	return &dev->stats;
1760 }
1761 
1762 
1763 /* for dev->set_multicast_list */
1764 static void set_rx_mode(struct net_device *dev)
1765 {
1766 	spinlock_t *lp = &((struct netdev_private *)netdev_priv(dev))->lock;
1767 	unsigned long flags;
1768 	spin_lock_irqsave(lp, flags);
1769 	__set_rx_mode(dev);
1770 	spin_unlock_irqrestore(lp, flags);
1771 }
1772 
1773 
1774 /* Take lock before calling */
1775 static void __set_rx_mode(struct net_device *dev)
1776 {
1777 	struct netdev_private *np = netdev_priv(dev);
1778 	void __iomem *ioaddr = np->mem;
1779 	u32 mc_filter[2];	/* Multicast hash filter */
1780 	u32 rx_mode;
1781 
1782 	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1783 		memset(mc_filter, 0xff, sizeof(mc_filter));
1784 		rx_mode = CR_W_PROM | CR_W_AB | CR_W_AM;
1785 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1786 		   (dev->flags & IFF_ALLMULTI)) {
1787 		/* Too many to match, or accept all multicasts. */
1788 		memset(mc_filter, 0xff, sizeof(mc_filter));
1789 		rx_mode = CR_W_AB | CR_W_AM;
1790 	} else {
1791 		struct netdev_hw_addr *ha;
1792 
1793 		memset(mc_filter, 0, sizeof(mc_filter));
1794 		netdev_for_each_mc_addr(ha, dev) {
1795 			unsigned int bit;
1796 			bit = (ether_crc(ETH_ALEN, ha->addr) >> 26) ^ 0x3F;
1797 			mc_filter[bit >> 5] |= (1 << bit);
1798 		}
1799 		rx_mode = CR_W_AB | CR_W_AM;
1800 	}
1801 
1802 	stop_nic_rxtx(ioaddr, np->crvalue);
1803 
1804 	iowrite32(mc_filter[0], ioaddr + MAR0);
1805 	iowrite32(mc_filter[1], ioaddr + MAR1);
1806 	np->crvalue &= ~CR_W_RXMODEMASK;
1807 	np->crvalue |= rx_mode;
1808 	iowrite32(np->crvalue, ioaddr + TCRRCR);
1809 }
1810 
1811 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1812 {
1813 	struct netdev_private *np = netdev_priv(dev);
1814 
1815 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1816 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1817 	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1818 }
1819 
1820 static int netdev_get_link_ksettings(struct net_device *dev,
1821 				     struct ethtool_link_ksettings *cmd)
1822 {
1823 	struct netdev_private *np = netdev_priv(dev);
1824 	int rc;
1825 
1826 	spin_lock_irq(&np->lock);
1827 	rc = mii_ethtool_get_link_ksettings(&np->mii, cmd);
1828 	spin_unlock_irq(&np->lock);
1829 
1830 	return rc;
1831 }
1832 
1833 static int netdev_set_link_ksettings(struct net_device *dev,
1834 				     const struct ethtool_link_ksettings *cmd)
1835 {
1836 	struct netdev_private *np = netdev_priv(dev);
1837 	int rc;
1838 
1839 	spin_lock_irq(&np->lock);
1840 	rc = mii_ethtool_set_link_ksettings(&np->mii, cmd);
1841 	spin_unlock_irq(&np->lock);
1842 
1843 	return rc;
1844 }
1845 
1846 static int netdev_nway_reset(struct net_device *dev)
1847 {
1848 	struct netdev_private *np = netdev_priv(dev);
1849 	return mii_nway_restart(&np->mii);
1850 }
1851 
1852 static u32 netdev_get_link(struct net_device *dev)
1853 {
1854 	struct netdev_private *np = netdev_priv(dev);
1855 	return mii_link_ok(&np->mii);
1856 }
1857 
1858 static u32 netdev_get_msglevel(struct net_device *dev)
1859 {
1860 	return debug;
1861 }
1862 
1863 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1864 {
1865 	debug = value;
1866 }
1867 
1868 static const struct ethtool_ops netdev_ethtool_ops = {
1869 	.get_drvinfo		= netdev_get_drvinfo,
1870 	.nway_reset		= netdev_nway_reset,
1871 	.get_link		= netdev_get_link,
1872 	.get_msglevel		= netdev_get_msglevel,
1873 	.set_msglevel		= netdev_set_msglevel,
1874 	.get_link_ksettings	= netdev_get_link_ksettings,
1875 	.set_link_ksettings	= netdev_set_link_ksettings,
1876 };
1877 
1878 static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1879 {
1880 	struct netdev_private *np = netdev_priv(dev);
1881 	int rc;
1882 
1883 	if (!netif_running(dev))
1884 		return -EINVAL;
1885 
1886 	spin_lock_irq(&np->lock);
1887 	rc = generic_mii_ioctl(&np->mii, if_mii(rq), cmd, NULL);
1888 	spin_unlock_irq(&np->lock);
1889 
1890 	return rc;
1891 }
1892 
1893 
1894 static int netdev_close(struct net_device *dev)
1895 {
1896 	struct netdev_private *np = netdev_priv(dev);
1897 	void __iomem *ioaddr = np->mem;
1898 	int i;
1899 
1900 	netif_stop_queue(dev);
1901 
1902 	/* Disable interrupts by clearing the interrupt mask. */
1903 	iowrite32(0x0000, ioaddr + IMR);
1904 
1905 	/* Stop the chip's Tx and Rx processes. */
1906 	stop_nic_rxtx(ioaddr, 0);
1907 
1908 	del_timer_sync(&np->timer);
1909 	del_timer_sync(&np->reset_timer);
1910 
1911 	free_irq(np->pci_dev->irq, dev);
1912 
1913 	/* Free all the skbuffs in the Rx queue. */
1914 	for (i = 0; i < RX_RING_SIZE; i++) {
1915 		struct sk_buff *skb = np->rx_ring[i].skbuff;
1916 
1917 		np->rx_ring[i].status = 0;
1918 		if (skb) {
1919 			pci_unmap_single(np->pci_dev, np->rx_ring[i].buffer,
1920 				np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1921 			dev_kfree_skb(skb);
1922 			np->rx_ring[i].skbuff = NULL;
1923 		}
1924 	}
1925 
1926 	for (i = 0; i < TX_RING_SIZE; i++) {
1927 		struct sk_buff *skb = np->tx_ring[i].skbuff;
1928 
1929 		if (skb) {
1930 			pci_unmap_single(np->pci_dev, np->tx_ring[i].buffer,
1931 				skb->len, PCI_DMA_TODEVICE);
1932 			dev_kfree_skb(skb);
1933 			np->tx_ring[i].skbuff = NULL;
1934 		}
1935 	}
1936 
1937 	return 0;
1938 }
1939 
1940 static const struct pci_device_id fealnx_pci_tbl[] = {
1941 	{0x1516, 0x0800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1942 	{0x1516, 0x0803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1},
1943 	{0x1516, 0x0891, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2},
1944 	{} /* terminate list */
1945 };
1946 MODULE_DEVICE_TABLE(pci, fealnx_pci_tbl);
1947 
1948 
1949 static struct pci_driver fealnx_driver = {
1950 	.name		= "fealnx",
1951 	.id_table	= fealnx_pci_tbl,
1952 	.probe		= fealnx_init_one,
1953 	.remove		= fealnx_remove_one,
1954 };
1955 
1956 static int __init fealnx_init(void)
1957 {
1958 /* when a module, this is printed whether or not devices are found in probe */
1959 #ifdef MODULE
1960 	printk(version);
1961 #endif
1962 
1963 	return pci_register_driver(&fealnx_driver);
1964 }
1965 
1966 static void __exit fealnx_exit(void)
1967 {
1968 	pci_unregister_driver(&fealnx_driver);
1969 }
1970 
1971 module_init(fealnx_init);
1972 module_exit(fealnx_exit);
1973