xref: /linux/drivers/net/ethernet/fealnx.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2 	Written 1998-2000 by Donald Becker.
3 
4 	This software may be used and distributed according to the terms of
5 	the GNU General Public License (GPL), incorporated herein by reference.
6 	Drivers based on or derived from this code fall under the GPL and must
7 	retain the authorship, copyright and license notice.  This file is not
8 	a complete program and may only be used when the entire operating
9 	system is licensed under the GPL.
10 
11 	The author may be reached as becker@scyld.com, or C/O
12 	Scyld Computing Corporation
13 	410 Severn Ave., Suite 210
14 	Annapolis MD 21403
15 
16 	Support information and updates available at
17 	http://www.scyld.com/network/pci-skeleton.html
18 
19 	Linux kernel updates:
20 
21 	Version 2.51, Nov 17, 2001 (jgarzik):
22 	- Add ethtool support
23 	- Replace some MII-related magic numbers with constants
24 
25 */
26 
27 #define DRV_NAME	"fealnx"
28 #define DRV_VERSION	"2.52"
29 #define DRV_RELDATE	"Sep-11-2006"
30 
31 static int debug;		/* 1-> print debug message */
32 static int max_interrupt_work = 20;
33 
34 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). */
35 static int multicast_filter_limit = 32;
36 
37 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. */
38 /* Setting to > 1518 effectively disables this feature.          */
39 static int rx_copybreak;
40 
41 /* Used to pass the media type, etc.                            */
42 /* Both 'options[]' and 'full_duplex[]' should exist for driver */
43 /* interoperability.                                            */
44 /* The media type is usually passed in 'options[]'.             */
45 #define MAX_UNITS 8		/* More are supported, limit only on options */
46 static int options[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
47 static int full_duplex[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
48 
49 /* Operational parameters that are set at compile time.                 */
50 /* Keep the ring sizes a power of two for compile efficiency.           */
51 /* The compiler will convert <unsigned>'%'<2^N> into a bit mask.        */
52 /* Making the Tx ring too large decreases the effectiveness of channel  */
53 /* bonding and packet priority.                                         */
54 /* There are no ill effects from too-large receive rings.               */
55 // 88-12-9 modify,
56 // #define TX_RING_SIZE    16
57 // #define RX_RING_SIZE    32
58 #define TX_RING_SIZE    6
59 #define RX_RING_SIZE    12
60 #define TX_TOTAL_SIZE	TX_RING_SIZE*sizeof(struct fealnx_desc)
61 #define RX_TOTAL_SIZE	RX_RING_SIZE*sizeof(struct fealnx_desc)
62 
63 /* Operational parameters that usually are not changed. */
64 /* Time in jiffies before concluding the transmitter is hung. */
65 #define TX_TIMEOUT      (2*HZ)
66 
67 #define PKT_BUF_SZ      1536	/* Size of each temporary Rx buffer. */
68 
69 
70 /* Include files, designed to support most kernel versions 2.0.0 and later. */
71 #include <linux/module.h>
72 #include <linux/kernel.h>
73 #include <linux/string.h>
74 #include <linux/timer.h>
75 #include <linux/errno.h>
76 #include <linux/ioport.h>
77 #include <linux/interrupt.h>
78 #include <linux/pci.h>
79 #include <linux/netdevice.h>
80 #include <linux/etherdevice.h>
81 #include <linux/skbuff.h>
82 #include <linux/init.h>
83 #include <linux/mii.h>
84 #include <linux/ethtool.h>
85 #include <linux/crc32.h>
86 #include <linux/delay.h>
87 #include <linux/bitops.h>
88 
89 #include <asm/processor.h>	/* Processor type for cache alignment. */
90 #include <asm/io.h>
91 #include <asm/uaccess.h>
92 #include <asm/byteorder.h>
93 
94 /* These identify the driver base version and may not be removed. */
95 static const char version[] __devinitconst =
96 	KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE "\n";
97 
98 
99 /* This driver was written to use PCI memory space, however some x86 systems
100    work only with I/O space accesses. */
101 #ifndef __alpha__
102 #define USE_IO_OPS
103 #endif
104 
105 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package. */
106 /* This is only in the support-all-kernels source code. */
107 
108 #define RUN_AT(x) (jiffies + (x))
109 
110 MODULE_AUTHOR("Myson or whoever");
111 MODULE_DESCRIPTION("Myson MTD-8xx 100/10M Ethernet PCI Adapter Driver");
112 MODULE_LICENSE("GPL");
113 module_param(max_interrupt_work, int, 0);
114 module_param(debug, int, 0);
115 module_param(rx_copybreak, int, 0);
116 module_param(multicast_filter_limit, int, 0);
117 module_param_array(options, int, NULL, 0);
118 module_param_array(full_duplex, int, NULL, 0);
119 MODULE_PARM_DESC(max_interrupt_work, "fealnx maximum events handled per interrupt");
120 MODULE_PARM_DESC(debug, "fealnx enable debugging (0-1)");
121 MODULE_PARM_DESC(rx_copybreak, "fealnx copy breakpoint for copy-only-tiny-frames");
122 MODULE_PARM_DESC(multicast_filter_limit, "fealnx maximum number of filtered multicast addresses");
123 MODULE_PARM_DESC(options, "fealnx: Bits 0-3: media type, bit 17: full duplex");
124 MODULE_PARM_DESC(full_duplex, "fealnx full duplex setting(s) (1)");
125 
126 enum {
127 	MIN_REGION_SIZE		= 136,
128 };
129 
130 /* A chip capabilities table, matching the entries in pci_tbl[] above. */
131 enum chip_capability_flags {
132 	HAS_MII_XCVR,
133 	HAS_CHIP_XCVR,
134 };
135 
136 /* 89/6/13 add, */
137 /* for different PHY */
138 enum phy_type_flags {
139 	MysonPHY = 1,
140 	AhdocPHY = 2,
141 	SeeqPHY = 3,
142 	MarvellPHY = 4,
143 	Myson981 = 5,
144 	LevelOnePHY = 6,
145 	OtherPHY = 10,
146 };
147 
148 struct chip_info {
149 	char *chip_name;
150 	int flags;
151 };
152 
153 static const struct chip_info skel_netdrv_tbl[] __devinitdata = {
154  	{ "100/10M Ethernet PCI Adapter",	HAS_MII_XCVR },
155 	{ "100/10M Ethernet PCI Adapter",	HAS_CHIP_XCVR },
156 	{ "1000/100/10M Ethernet PCI Adapter",	HAS_MII_XCVR },
157 };
158 
159 /* Offsets to the Command and Status Registers. */
160 enum fealnx_offsets {
161 	PAR0 = 0x0,		/* physical address 0-3 */
162 	PAR1 = 0x04,		/* physical address 4-5 */
163 	MAR0 = 0x08,		/* multicast address 0-3 */
164 	MAR1 = 0x0C,		/* multicast address 4-7 */
165 	FAR0 = 0x10,		/* flow-control address 0-3 */
166 	FAR1 = 0x14,		/* flow-control address 4-5 */
167 	TCRRCR = 0x18,		/* receive & transmit configuration */
168 	BCR = 0x1C,		/* bus command */
169 	TXPDR = 0x20,		/* transmit polling demand */
170 	RXPDR = 0x24,		/* receive polling demand */
171 	RXCWP = 0x28,		/* receive current word pointer */
172 	TXLBA = 0x2C,		/* transmit list base address */
173 	RXLBA = 0x30,		/* receive list base address */
174 	ISR = 0x34,		/* interrupt status */
175 	IMR = 0x38,		/* interrupt mask */
176 	FTH = 0x3C,		/* flow control high/low threshold */
177 	MANAGEMENT = 0x40,	/* bootrom/eeprom and mii management */
178 	TALLY = 0x44,		/* tally counters for crc and mpa */
179 	TSR = 0x48,		/* tally counter for transmit status */
180 	BMCRSR = 0x4c,		/* basic mode control and status */
181 	PHYIDENTIFIER = 0x50,	/* phy identifier */
182 	ANARANLPAR = 0x54,	/* auto-negotiation advertisement and link
183 				   partner ability */
184 	ANEROCR = 0x58,		/* auto-negotiation expansion and pci conf. */
185 	BPREMRPSR = 0x5c,	/* bypass & receive error mask and phy status */
186 };
187 
188 /* Bits in the interrupt status/enable registers. */
189 /* The bits in the Intr Status/Enable registers, mostly interrupt sources. */
190 enum intr_status_bits {
191 	RFCON = 0x00020000,	/* receive flow control xon packet */
192 	RFCOFF = 0x00010000,	/* receive flow control xoff packet */
193 	LSCStatus = 0x00008000,	/* link status change */
194 	ANCStatus = 0x00004000,	/* autonegotiation completed */
195 	FBE = 0x00002000,	/* fatal bus error */
196 	FBEMask = 0x00001800,	/* mask bit12-11 */
197 	ParityErr = 0x00000000,	/* parity error */
198 	TargetErr = 0x00001000,	/* target abort */
199 	MasterErr = 0x00000800,	/* master error */
200 	TUNF = 0x00000400,	/* transmit underflow */
201 	ROVF = 0x00000200,	/* receive overflow */
202 	ETI = 0x00000100,	/* transmit early int */
203 	ERI = 0x00000080,	/* receive early int */
204 	CNTOVF = 0x00000040,	/* counter overflow */
205 	RBU = 0x00000020,	/* receive buffer unavailable */
206 	TBU = 0x00000010,	/* transmit buffer unavilable */
207 	TI = 0x00000008,	/* transmit interrupt */
208 	RI = 0x00000004,	/* receive interrupt */
209 	RxErr = 0x00000002,	/* receive error */
210 };
211 
212 /* Bits in the NetworkConfig register, W for writing, R for reading */
213 /* FIXME: some names are invented by me. Marked with (name?) */
214 /* If you have docs and know bit names, please fix 'em */
215 enum rx_mode_bits {
216 	CR_W_ENH	= 0x02000000,	/* enhanced mode (name?) */
217 	CR_W_FD		= 0x00100000,	/* full duplex */
218 	CR_W_PS10	= 0x00080000,	/* 10 mbit */
219 	CR_W_TXEN	= 0x00040000,	/* tx enable (name?) */
220 	CR_W_PS1000	= 0x00010000,	/* 1000 mbit */
221      /* CR_W_RXBURSTMASK= 0x00000e00, Im unsure about this */
222 	CR_W_RXMODEMASK	= 0x000000e0,
223 	CR_W_PROM	= 0x00000080,	/* promiscuous mode */
224 	CR_W_AB		= 0x00000040,	/* accept broadcast */
225 	CR_W_AM		= 0x00000020,	/* accept mutlicast */
226 	CR_W_ARP	= 0x00000008,	/* receive runt pkt */
227 	CR_W_ALP	= 0x00000004,	/* receive long pkt */
228 	CR_W_SEP	= 0x00000002,	/* receive error pkt */
229 	CR_W_RXEN	= 0x00000001,	/* rx enable (unicast?) (name?) */
230 
231 	CR_R_TXSTOP	= 0x04000000,	/* tx stopped (name?) */
232 	CR_R_FD		= 0x00100000,	/* full duplex detected */
233 	CR_R_PS10	= 0x00080000,	/* 10 mbit detected */
234 	CR_R_RXSTOP	= 0x00008000,	/* rx stopped (name?) */
235 };
236 
237 /* The Tulip Rx and Tx buffer descriptors. */
238 struct fealnx_desc {
239 	s32 status;
240 	s32 control;
241 	u32 buffer;
242 	u32 next_desc;
243 	struct fealnx_desc *next_desc_logical;
244 	struct sk_buff *skbuff;
245 	u32 reserved1;
246 	u32 reserved2;
247 };
248 
249 /* Bits in network_desc.status */
250 enum rx_desc_status_bits {
251 	RXOWN = 0x80000000,	/* own bit */
252 	FLNGMASK = 0x0fff0000,	/* frame length */
253 	FLNGShift = 16,
254 	MARSTATUS = 0x00004000,	/* multicast address received */
255 	BARSTATUS = 0x00002000,	/* broadcast address received */
256 	PHYSTATUS = 0x00001000,	/* physical address received */
257 	RXFSD = 0x00000800,	/* first descriptor */
258 	RXLSD = 0x00000400,	/* last descriptor */
259 	ErrorSummary = 0x80,	/* error summary */
260 	RUNT = 0x40,		/* runt packet received */
261 	LONG = 0x20,		/* long packet received */
262 	FAE = 0x10,		/* frame align error */
263 	CRC = 0x08,		/* crc error */
264 	RXER = 0x04,		/* receive error */
265 };
266 
267 enum rx_desc_control_bits {
268 	RXIC = 0x00800000,	/* interrupt control */
269 	RBSShift = 0,
270 };
271 
272 enum tx_desc_status_bits {
273 	TXOWN = 0x80000000,	/* own bit */
274 	JABTO = 0x00004000,	/* jabber timeout */
275 	CSL = 0x00002000,	/* carrier sense lost */
276 	LC = 0x00001000,	/* late collision */
277 	EC = 0x00000800,	/* excessive collision */
278 	UDF = 0x00000400,	/* fifo underflow */
279 	DFR = 0x00000200,	/* deferred */
280 	HF = 0x00000100,	/* heartbeat fail */
281 	NCRMask = 0x000000ff,	/* collision retry count */
282 	NCRShift = 0,
283 };
284 
285 enum tx_desc_control_bits {
286 	TXIC = 0x80000000,	/* interrupt control */
287 	ETIControl = 0x40000000,	/* early transmit interrupt */
288 	TXLD = 0x20000000,	/* last descriptor */
289 	TXFD = 0x10000000,	/* first descriptor */
290 	CRCEnable = 0x08000000,	/* crc control */
291 	PADEnable = 0x04000000,	/* padding control */
292 	RetryTxLC = 0x02000000,	/* retry late collision */
293 	PKTSMask = 0x3ff800,	/* packet size bit21-11 */
294 	PKTSShift = 11,
295 	TBSMask = 0x000007ff,	/* transmit buffer bit 10-0 */
296 	TBSShift = 0,
297 };
298 
299 /* BootROM/EEPROM/MII Management Register */
300 #define MASK_MIIR_MII_READ       0x00000000
301 #define MASK_MIIR_MII_WRITE      0x00000008
302 #define MASK_MIIR_MII_MDO        0x00000004
303 #define MASK_MIIR_MII_MDI        0x00000002
304 #define MASK_MIIR_MII_MDC        0x00000001
305 
306 /* ST+OP+PHYAD+REGAD+TA */
307 #define OP_READ             0x6000	/* ST:01+OP:10+PHYAD+REGAD+TA:Z0 */
308 #define OP_WRITE            0x5002	/* ST:01+OP:01+PHYAD+REGAD+TA:10 */
309 
310 /* ------------------------------------------------------------------------- */
311 /*      Constants for Myson PHY                                              */
312 /* ------------------------------------------------------------------------- */
313 #define MysonPHYID      0xd0000302
314 /* 89-7-27 add, (begin) */
315 #define MysonPHYID0     0x0302
316 #define StatusRegister  18
317 #define SPEED100        0x0400	// bit10
318 #define FULLMODE        0x0800	// bit11
319 /* 89-7-27 add, (end) */
320 
321 /* ------------------------------------------------------------------------- */
322 /*      Constants for Seeq 80225 PHY                                         */
323 /* ------------------------------------------------------------------------- */
324 #define SeeqPHYID0      0x0016
325 
326 #define MIIRegister18   18
327 #define SPD_DET_100     0x80
328 #define DPLX_DET_FULL   0x40
329 
330 /* ------------------------------------------------------------------------- */
331 /*      Constants for Ahdoc 101 PHY                                          */
332 /* ------------------------------------------------------------------------- */
333 #define AhdocPHYID0     0x0022
334 
335 #define DiagnosticReg   18
336 #define DPLX_FULL       0x0800
337 #define Speed_100       0x0400
338 
339 /* 89/6/13 add, */
340 /* -------------------------------------------------------------------------- */
341 /*      Constants                                                             */
342 /* -------------------------------------------------------------------------- */
343 #define MarvellPHYID0           0x0141
344 #define LevelOnePHYID0		0x0013
345 
346 #define MII1000BaseTControlReg  9
347 #define MII1000BaseTStatusReg   10
348 #define SpecificReg		17
349 
350 /* for 1000BaseT Control Register */
351 #define PHYAbletoPerform1000FullDuplex  0x0200
352 #define PHYAbletoPerform1000HalfDuplex  0x0100
353 #define PHY1000AbilityMask              0x300
354 
355 // for phy specific status register, marvell phy.
356 #define SpeedMask       0x0c000
357 #define Speed_1000M     0x08000
358 #define Speed_100M      0x4000
359 #define Speed_10M       0
360 #define Full_Duplex     0x2000
361 
362 // 89/12/29 add, for phy specific status register, levelone phy, (begin)
363 #define LXT1000_100M    0x08000
364 #define LXT1000_1000M   0x0c000
365 #define LXT1000_Full    0x200
366 // 89/12/29 add, for phy specific status register, levelone phy, (end)
367 
368 /* for 3-in-1 case, BMCRSR register */
369 #define LinkIsUp2	0x00040000
370 
371 /* for PHY */
372 #define LinkIsUp        0x0004
373 
374 
375 struct netdev_private {
376 	/* Descriptor rings first for alignment. */
377 	struct fealnx_desc *rx_ring;
378 	struct fealnx_desc *tx_ring;
379 
380 	dma_addr_t rx_ring_dma;
381 	dma_addr_t tx_ring_dma;
382 
383 	spinlock_t lock;
384 
385 	/* Media monitoring timer. */
386 	struct timer_list timer;
387 
388 	/* Reset timer */
389 	struct timer_list reset_timer;
390 	int reset_timer_armed;
391 	unsigned long crvalue_sv;
392 	unsigned long imrvalue_sv;
393 
394 	/* Frequently used values: keep some adjacent for cache effect. */
395 	int flags;
396 	struct pci_dev *pci_dev;
397 	unsigned long crvalue;
398 	unsigned long bcrvalue;
399 	unsigned long imrvalue;
400 	struct fealnx_desc *cur_rx;
401 	struct fealnx_desc *lack_rxbuf;
402 	int really_rx_count;
403 	struct fealnx_desc *cur_tx;
404 	struct fealnx_desc *cur_tx_copy;
405 	int really_tx_count;
406 	int free_tx_count;
407 	unsigned int rx_buf_sz;	/* Based on MTU+slack. */
408 
409 	/* These values are keep track of the transceiver/media in use. */
410 	unsigned int linkok;
411 	unsigned int line_speed;
412 	unsigned int duplexmode;
413 	unsigned int default_port:4;	/* Last dev->if_port value. */
414 	unsigned int PHYType;
415 
416 	/* MII transceiver section. */
417 	int mii_cnt;		/* MII device addresses. */
418 	unsigned char phys[2];	/* MII device addresses. */
419 	struct mii_if_info mii;
420 	void __iomem *mem;
421 };
422 
423 
424 static int mdio_read(struct net_device *dev, int phy_id, int location);
425 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
426 static int netdev_open(struct net_device *dev);
427 static void getlinktype(struct net_device *dev);
428 static void getlinkstatus(struct net_device *dev);
429 static void netdev_timer(unsigned long data);
430 static void reset_timer(unsigned long data);
431 static void fealnx_tx_timeout(struct net_device *dev);
432 static void init_ring(struct net_device *dev);
433 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
434 static irqreturn_t intr_handler(int irq, void *dev_instance);
435 static int netdev_rx(struct net_device *dev);
436 static void set_rx_mode(struct net_device *dev);
437 static void __set_rx_mode(struct net_device *dev);
438 static struct net_device_stats *get_stats(struct net_device *dev);
439 static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
440 static const struct ethtool_ops netdev_ethtool_ops;
441 static int netdev_close(struct net_device *dev);
442 static void reset_rx_descriptors(struct net_device *dev);
443 static void reset_tx_descriptors(struct net_device *dev);
444 
445 static void stop_nic_rx(void __iomem *ioaddr, long crvalue)
446 {
447 	int delay = 0x1000;
448 	iowrite32(crvalue & ~(CR_W_RXEN), ioaddr + TCRRCR);
449 	while (--delay) {
450 		if ( (ioread32(ioaddr + TCRRCR) & CR_R_RXSTOP) == CR_R_RXSTOP)
451 			break;
452 	}
453 }
454 
455 
456 static void stop_nic_rxtx(void __iomem *ioaddr, long crvalue)
457 {
458 	int delay = 0x1000;
459 	iowrite32(crvalue & ~(CR_W_RXEN+CR_W_TXEN), ioaddr + TCRRCR);
460 	while (--delay) {
461 		if ( (ioread32(ioaddr + TCRRCR) & (CR_R_RXSTOP+CR_R_TXSTOP))
462 					    == (CR_R_RXSTOP+CR_R_TXSTOP) )
463 			break;
464 	}
465 }
466 
467 static const struct net_device_ops netdev_ops = {
468 	.ndo_open		= netdev_open,
469 	.ndo_stop		= netdev_close,
470 	.ndo_start_xmit		= start_tx,
471 	.ndo_get_stats 		= get_stats,
472 	.ndo_set_rx_mode	= set_rx_mode,
473 	.ndo_do_ioctl		= mii_ioctl,
474 	.ndo_tx_timeout		= fealnx_tx_timeout,
475 	.ndo_change_mtu		= eth_change_mtu,
476 	.ndo_set_mac_address 	= eth_mac_addr,
477 	.ndo_validate_addr	= eth_validate_addr,
478 };
479 
480 static int __devinit fealnx_init_one(struct pci_dev *pdev,
481 				     const struct pci_device_id *ent)
482 {
483 	struct netdev_private *np;
484 	int i, option, err, irq;
485 	static int card_idx = -1;
486 	char boardname[12];
487 	void __iomem *ioaddr;
488 	unsigned long len;
489 	unsigned int chip_id = ent->driver_data;
490 	struct net_device *dev;
491 	void *ring_space;
492 	dma_addr_t ring_dma;
493 #ifdef USE_IO_OPS
494 	int bar = 0;
495 #else
496 	int bar = 1;
497 #endif
498 
499 /* when built into the kernel, we only print version if device is found */
500 #ifndef MODULE
501 	static int printed_version;
502 	if (!printed_version++)
503 		printk(version);
504 #endif
505 
506 	card_idx++;
507 	sprintf(boardname, "fealnx%d", card_idx);
508 
509 	option = card_idx < MAX_UNITS ? options[card_idx] : 0;
510 
511 	i = pci_enable_device(pdev);
512 	if (i) return i;
513 	pci_set_master(pdev);
514 
515 	len = pci_resource_len(pdev, bar);
516 	if (len < MIN_REGION_SIZE) {
517 		dev_err(&pdev->dev,
518 			   "region size %ld too small, aborting\n", len);
519 		return -ENODEV;
520 	}
521 
522 	i = pci_request_regions(pdev, boardname);
523 	if (i)
524 		return i;
525 
526 	irq = pdev->irq;
527 
528 	ioaddr = pci_iomap(pdev, bar, len);
529 	if (!ioaddr) {
530 		err = -ENOMEM;
531 		goto err_out_res;
532 	}
533 
534 	dev = alloc_etherdev(sizeof(struct netdev_private));
535 	if (!dev) {
536 		err = -ENOMEM;
537 		goto err_out_unmap;
538 	}
539 	SET_NETDEV_DEV(dev, &pdev->dev);
540 
541 	/* read ethernet id */
542 	for (i = 0; i < 6; ++i)
543 		dev->dev_addr[i] = ioread8(ioaddr + PAR0 + i);
544 
545 	/* Reset the chip to erase previous misconfiguration. */
546 	iowrite32(0x00000001, ioaddr + BCR);
547 
548 	dev->base_addr = (unsigned long)ioaddr;
549 	dev->irq = irq;
550 
551 	/* Make certain the descriptor lists are aligned. */
552 	np = netdev_priv(dev);
553 	np->mem = ioaddr;
554 	spin_lock_init(&np->lock);
555 	np->pci_dev = pdev;
556 	np->flags = skel_netdrv_tbl[chip_id].flags;
557 	pci_set_drvdata(pdev, dev);
558 	np->mii.dev = dev;
559 	np->mii.mdio_read = mdio_read;
560 	np->mii.mdio_write = mdio_write;
561 	np->mii.phy_id_mask = 0x1f;
562 	np->mii.reg_num_mask = 0x1f;
563 
564 	ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
565 	if (!ring_space) {
566 		err = -ENOMEM;
567 		goto err_out_free_dev;
568 	}
569 	np->rx_ring = ring_space;
570 	np->rx_ring_dma = ring_dma;
571 
572 	ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
573 	if (!ring_space) {
574 		err = -ENOMEM;
575 		goto err_out_free_rx;
576 	}
577 	np->tx_ring = ring_space;
578 	np->tx_ring_dma = ring_dma;
579 
580 	/* find the connected MII xcvrs */
581 	if (np->flags == HAS_MII_XCVR) {
582 		int phy, phy_idx = 0;
583 
584 		for (phy = 1; phy < 32 && phy_idx < ARRAY_SIZE(np->phys);
585 			       phy++) {
586 			int mii_status = mdio_read(dev, phy, 1);
587 
588 			if (mii_status != 0xffff && mii_status != 0x0000) {
589 				np->phys[phy_idx++] = phy;
590 				dev_info(&pdev->dev,
591 				       "MII PHY found at address %d, status "
592 				       "0x%4.4x.\n", phy, mii_status);
593 				/* get phy type */
594 				{
595 					unsigned int data;
596 
597 					data = mdio_read(dev, np->phys[0], 2);
598 					if (data == SeeqPHYID0)
599 						np->PHYType = SeeqPHY;
600 					else if (data == AhdocPHYID0)
601 						np->PHYType = AhdocPHY;
602 					else if (data == MarvellPHYID0)
603 						np->PHYType = MarvellPHY;
604 					else if (data == MysonPHYID0)
605 						np->PHYType = Myson981;
606 					else if (data == LevelOnePHYID0)
607 						np->PHYType = LevelOnePHY;
608 					else
609 						np->PHYType = OtherPHY;
610 				}
611 			}
612 		}
613 
614 		np->mii_cnt = phy_idx;
615 		if (phy_idx == 0)
616 			dev_warn(&pdev->dev,
617 				"MII PHY not found -- this device may "
618 			       "not operate correctly.\n");
619 	} else {
620 		np->phys[0] = 32;
621 /* 89/6/23 add, (begin) */
622 		/* get phy type */
623 		if (ioread32(ioaddr + PHYIDENTIFIER) == MysonPHYID)
624 			np->PHYType = MysonPHY;
625 		else
626 			np->PHYType = OtherPHY;
627 	}
628 	np->mii.phy_id = np->phys[0];
629 
630 	if (dev->mem_start)
631 		option = dev->mem_start;
632 
633 	/* The lower four bits are the media type. */
634 	if (option > 0) {
635 		if (option & 0x200)
636 			np->mii.full_duplex = 1;
637 		np->default_port = option & 15;
638 	}
639 
640 	if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
641 		np->mii.full_duplex = full_duplex[card_idx];
642 
643 	if (np->mii.full_duplex) {
644 		dev_info(&pdev->dev, "Media type forced to Full Duplex.\n");
645 /* 89/6/13 add, (begin) */
646 //      if (np->PHYType==MarvellPHY)
647 		if ((np->PHYType == MarvellPHY) || (np->PHYType == LevelOnePHY)) {
648 			unsigned int data;
649 
650 			data = mdio_read(dev, np->phys[0], 9);
651 			data = (data & 0xfcff) | 0x0200;
652 			mdio_write(dev, np->phys[0], 9, data);
653 		}
654 /* 89/6/13 add, (end) */
655 		if (np->flags == HAS_MII_XCVR)
656 			mdio_write(dev, np->phys[0], MII_ADVERTISE, ADVERTISE_FULL);
657 		else
658 			iowrite32(ADVERTISE_FULL, ioaddr + ANARANLPAR);
659 		np->mii.force_media = 1;
660 	}
661 
662 	dev->netdev_ops = &netdev_ops;
663 	dev->ethtool_ops = &netdev_ethtool_ops;
664 	dev->watchdog_timeo = TX_TIMEOUT;
665 
666 	err = register_netdev(dev);
667 	if (err)
668 		goto err_out_free_tx;
669 
670 	printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
671 	       dev->name, skel_netdrv_tbl[chip_id].chip_name, ioaddr,
672 	       dev->dev_addr, irq);
673 
674 	return 0;
675 
676 err_out_free_tx:
677 	pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
678 err_out_free_rx:
679 	pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
680 err_out_free_dev:
681 	free_netdev(dev);
682 err_out_unmap:
683 	pci_iounmap(pdev, ioaddr);
684 err_out_res:
685 	pci_release_regions(pdev);
686 	return err;
687 }
688 
689 
690 static void __devexit fealnx_remove_one(struct pci_dev *pdev)
691 {
692 	struct net_device *dev = pci_get_drvdata(pdev);
693 
694 	if (dev) {
695 		struct netdev_private *np = netdev_priv(dev);
696 
697 		pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring,
698 			np->tx_ring_dma);
699 		pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring,
700 			np->rx_ring_dma);
701 		unregister_netdev(dev);
702 		pci_iounmap(pdev, np->mem);
703 		free_netdev(dev);
704 		pci_release_regions(pdev);
705 		pci_set_drvdata(pdev, NULL);
706 	} else
707 		printk(KERN_ERR "fealnx: remove for unknown device\n");
708 }
709 
710 
711 static ulong m80x_send_cmd_to_phy(void __iomem *miiport, int opcode, int phyad, int regad)
712 {
713 	ulong miir;
714 	int i;
715 	unsigned int mask, data;
716 
717 	/* enable MII output */
718 	miir = (ulong) ioread32(miiport);
719 	miir &= 0xfffffff0;
720 
721 	miir |= MASK_MIIR_MII_WRITE + MASK_MIIR_MII_MDO;
722 
723 	/* send 32 1's preamble */
724 	for (i = 0; i < 32; i++) {
725 		/* low MDC; MDO is already high (miir) */
726 		miir &= ~MASK_MIIR_MII_MDC;
727 		iowrite32(miir, miiport);
728 
729 		/* high MDC */
730 		miir |= MASK_MIIR_MII_MDC;
731 		iowrite32(miir, miiport);
732 	}
733 
734 	/* calculate ST+OP+PHYAD+REGAD+TA */
735 	data = opcode | (phyad << 7) | (regad << 2);
736 
737 	/* sent out */
738 	mask = 0x8000;
739 	while (mask) {
740 		/* low MDC, prepare MDO */
741 		miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO);
742 		if (mask & data)
743 			miir |= MASK_MIIR_MII_MDO;
744 
745 		iowrite32(miir, miiport);
746 		/* high MDC */
747 		miir |= MASK_MIIR_MII_MDC;
748 		iowrite32(miir, miiport);
749 		udelay(30);
750 
751 		/* next */
752 		mask >>= 1;
753 		if (mask == 0x2 && opcode == OP_READ)
754 			miir &= ~MASK_MIIR_MII_WRITE;
755 	}
756 	return miir;
757 }
758 
759 
760 static int mdio_read(struct net_device *dev, int phyad, int regad)
761 {
762 	struct netdev_private *np = netdev_priv(dev);
763 	void __iomem *miiport = np->mem + MANAGEMENT;
764 	ulong miir;
765 	unsigned int mask, data;
766 
767 	miir = m80x_send_cmd_to_phy(miiport, OP_READ, phyad, regad);
768 
769 	/* read data */
770 	mask = 0x8000;
771 	data = 0;
772 	while (mask) {
773 		/* low MDC */
774 		miir &= ~MASK_MIIR_MII_MDC;
775 		iowrite32(miir, miiport);
776 
777 		/* read MDI */
778 		miir = ioread32(miiport);
779 		if (miir & MASK_MIIR_MII_MDI)
780 			data |= mask;
781 
782 		/* high MDC, and wait */
783 		miir |= MASK_MIIR_MII_MDC;
784 		iowrite32(miir, miiport);
785 		udelay(30);
786 
787 		/* next */
788 		mask >>= 1;
789 	}
790 
791 	/* low MDC */
792 	miir &= ~MASK_MIIR_MII_MDC;
793 	iowrite32(miir, miiport);
794 
795 	return data & 0xffff;
796 }
797 
798 
799 static void mdio_write(struct net_device *dev, int phyad, int regad, int data)
800 {
801 	struct netdev_private *np = netdev_priv(dev);
802 	void __iomem *miiport = np->mem + MANAGEMENT;
803 	ulong miir;
804 	unsigned int mask;
805 
806 	miir = m80x_send_cmd_to_phy(miiport, OP_WRITE, phyad, regad);
807 
808 	/* write data */
809 	mask = 0x8000;
810 	while (mask) {
811 		/* low MDC, prepare MDO */
812 		miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO);
813 		if (mask & data)
814 			miir |= MASK_MIIR_MII_MDO;
815 		iowrite32(miir, miiport);
816 
817 		/* high MDC */
818 		miir |= MASK_MIIR_MII_MDC;
819 		iowrite32(miir, miiport);
820 
821 		/* next */
822 		mask >>= 1;
823 	}
824 
825 	/* low MDC */
826 	miir &= ~MASK_MIIR_MII_MDC;
827 	iowrite32(miir, miiport);
828 }
829 
830 
831 static int netdev_open(struct net_device *dev)
832 {
833 	struct netdev_private *np = netdev_priv(dev);
834 	void __iomem *ioaddr = np->mem;
835 	int i;
836 
837 	iowrite32(0x00000001, ioaddr + BCR);	/* Reset */
838 
839 	if (request_irq(dev->irq, intr_handler, IRQF_SHARED, dev->name, dev))
840 		return -EAGAIN;
841 
842 	for (i = 0; i < 3; i++)
843 		iowrite16(((unsigned short*)dev->dev_addr)[i],
844 				ioaddr + PAR0 + i*2);
845 
846 	init_ring(dev);
847 
848 	iowrite32(np->rx_ring_dma, ioaddr + RXLBA);
849 	iowrite32(np->tx_ring_dma, ioaddr + TXLBA);
850 
851 	/* Initialize other registers. */
852 	/* Configure the PCI bus bursts and FIFO thresholds.
853 	   486: Set 8 longword burst.
854 	   586: no burst limit.
855 	   Burst length 5:3
856 	   0 0 0   1
857 	   0 0 1   4
858 	   0 1 0   8
859 	   0 1 1   16
860 	   1 0 0   32
861 	   1 0 1   64
862 	   1 1 0   128
863 	   1 1 1   256
864 	   Wait the specified 50 PCI cycles after a reset by initializing
865 	   Tx and Rx queues and the address filter list.
866 	   FIXME (Ueimor): optimistic for alpha + posted writes ? */
867 
868 	np->bcrvalue = 0x10;	/* little-endian, 8 burst length */
869 #ifdef __BIG_ENDIAN
870 	np->bcrvalue |= 0x04;	/* big-endian */
871 #endif
872 
873 #if defined(__i386__) && !defined(MODULE)
874 	if (boot_cpu_data.x86 <= 4)
875 		np->crvalue = 0xa00;
876 	else
877 #endif
878 		np->crvalue = 0xe00;	/* rx 128 burst length */
879 
880 
881 // 89/12/29 add,
882 // 90/1/16 modify,
883 //   np->imrvalue=FBE|TUNF|CNTOVF|RBU|TI|RI;
884 	np->imrvalue = TUNF | CNTOVF | RBU | TI | RI;
885 	if (np->pci_dev->device == 0x891) {
886 		np->bcrvalue |= 0x200;	/* set PROG bit */
887 		np->crvalue |= CR_W_ENH;	/* set enhanced bit */
888 		np->imrvalue |= ETI;
889 	}
890 	iowrite32(np->bcrvalue, ioaddr + BCR);
891 
892 	if (dev->if_port == 0)
893 		dev->if_port = np->default_port;
894 
895 	iowrite32(0, ioaddr + RXPDR);
896 // 89/9/1 modify,
897 //   np->crvalue = 0x00e40001;    /* tx store and forward, tx/rx enable */
898 	np->crvalue |= 0x00e40001;	/* tx store and forward, tx/rx enable */
899 	np->mii.full_duplex = np->mii.force_media;
900 	getlinkstatus(dev);
901 	if (np->linkok)
902 		getlinktype(dev);
903 	__set_rx_mode(dev);
904 
905 	netif_start_queue(dev);
906 
907 	/* Clear and Enable interrupts by setting the interrupt mask. */
908 	iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR);
909 	iowrite32(np->imrvalue, ioaddr + IMR);
910 
911 	if (debug)
912 		printk(KERN_DEBUG "%s: Done netdev_open().\n", dev->name);
913 
914 	/* Set the timer to check for link beat. */
915 	init_timer(&np->timer);
916 	np->timer.expires = RUN_AT(3 * HZ);
917 	np->timer.data = (unsigned long) dev;
918 	np->timer.function = netdev_timer;
919 
920 	/* timer handler */
921 	add_timer(&np->timer);
922 
923 	init_timer(&np->reset_timer);
924 	np->reset_timer.data = (unsigned long) dev;
925 	np->reset_timer.function = reset_timer;
926 	np->reset_timer_armed = 0;
927 
928 	return 0;
929 }
930 
931 
932 static void getlinkstatus(struct net_device *dev)
933 /* function: Routine will read MII Status Register to get link status.       */
934 /* input   : dev... pointer to the adapter block.                            */
935 /* output  : none.                                                           */
936 {
937 	struct netdev_private *np = netdev_priv(dev);
938 	unsigned int i, DelayTime = 0x1000;
939 
940 	np->linkok = 0;
941 
942 	if (np->PHYType == MysonPHY) {
943 		for (i = 0; i < DelayTime; ++i) {
944 			if (ioread32(np->mem + BMCRSR) & LinkIsUp2) {
945 				np->linkok = 1;
946 				return;
947 			}
948 			udelay(100);
949 		}
950 	} else {
951 		for (i = 0; i < DelayTime; ++i) {
952 			if (mdio_read(dev, np->phys[0], MII_BMSR) & BMSR_LSTATUS) {
953 				np->linkok = 1;
954 				return;
955 			}
956 			udelay(100);
957 		}
958 	}
959 }
960 
961 
962 static void getlinktype(struct net_device *dev)
963 {
964 	struct netdev_private *np = netdev_priv(dev);
965 
966 	if (np->PHYType == MysonPHY) {	/* 3-in-1 case */
967 		if (ioread32(np->mem + TCRRCR) & CR_R_FD)
968 			np->duplexmode = 2;	/* full duplex */
969 		else
970 			np->duplexmode = 1;	/* half duplex */
971 		if (ioread32(np->mem + TCRRCR) & CR_R_PS10)
972 			np->line_speed = 1;	/* 10M */
973 		else
974 			np->line_speed = 2;	/* 100M */
975 	} else {
976 		if (np->PHYType == SeeqPHY) {	/* this PHY is SEEQ 80225 */
977 			unsigned int data;
978 
979 			data = mdio_read(dev, np->phys[0], MIIRegister18);
980 			if (data & SPD_DET_100)
981 				np->line_speed = 2;	/* 100M */
982 			else
983 				np->line_speed = 1;	/* 10M */
984 			if (data & DPLX_DET_FULL)
985 				np->duplexmode = 2;	/* full duplex mode */
986 			else
987 				np->duplexmode = 1;	/* half duplex mode */
988 		} else if (np->PHYType == AhdocPHY) {
989 			unsigned int data;
990 
991 			data = mdio_read(dev, np->phys[0], DiagnosticReg);
992 			if (data & Speed_100)
993 				np->line_speed = 2;	/* 100M */
994 			else
995 				np->line_speed = 1;	/* 10M */
996 			if (data & DPLX_FULL)
997 				np->duplexmode = 2;	/* full duplex mode */
998 			else
999 				np->duplexmode = 1;	/* half duplex mode */
1000 		}
1001 /* 89/6/13 add, (begin) */
1002 		else if (np->PHYType == MarvellPHY) {
1003 			unsigned int data;
1004 
1005 			data = mdio_read(dev, np->phys[0], SpecificReg);
1006 			if (data & Full_Duplex)
1007 				np->duplexmode = 2;	/* full duplex mode */
1008 			else
1009 				np->duplexmode = 1;	/* half duplex mode */
1010 			data &= SpeedMask;
1011 			if (data == Speed_1000M)
1012 				np->line_speed = 3;	/* 1000M */
1013 			else if (data == Speed_100M)
1014 				np->line_speed = 2;	/* 100M */
1015 			else
1016 				np->line_speed = 1;	/* 10M */
1017 		}
1018 /* 89/6/13 add, (end) */
1019 /* 89/7/27 add, (begin) */
1020 		else if (np->PHYType == Myson981) {
1021 			unsigned int data;
1022 
1023 			data = mdio_read(dev, np->phys[0], StatusRegister);
1024 
1025 			if (data & SPEED100)
1026 				np->line_speed = 2;
1027 			else
1028 				np->line_speed = 1;
1029 
1030 			if (data & FULLMODE)
1031 				np->duplexmode = 2;
1032 			else
1033 				np->duplexmode = 1;
1034 		}
1035 /* 89/7/27 add, (end) */
1036 /* 89/12/29 add */
1037 		else if (np->PHYType == LevelOnePHY) {
1038 			unsigned int data;
1039 
1040 			data = mdio_read(dev, np->phys[0], SpecificReg);
1041 			if (data & LXT1000_Full)
1042 				np->duplexmode = 2;	/* full duplex mode */
1043 			else
1044 				np->duplexmode = 1;	/* half duplex mode */
1045 			data &= SpeedMask;
1046 			if (data == LXT1000_1000M)
1047 				np->line_speed = 3;	/* 1000M */
1048 			else if (data == LXT1000_100M)
1049 				np->line_speed = 2;	/* 100M */
1050 			else
1051 				np->line_speed = 1;	/* 10M */
1052 		}
1053 		np->crvalue &= (~CR_W_PS10) & (~CR_W_FD) & (~CR_W_PS1000);
1054 		if (np->line_speed == 1)
1055 			np->crvalue |= CR_W_PS10;
1056 		else if (np->line_speed == 3)
1057 			np->crvalue |= CR_W_PS1000;
1058 		if (np->duplexmode == 2)
1059 			np->crvalue |= CR_W_FD;
1060 	}
1061 }
1062 
1063 
1064 /* Take lock before calling this */
1065 static void allocate_rx_buffers(struct net_device *dev)
1066 {
1067 	struct netdev_private *np = netdev_priv(dev);
1068 
1069 	/*  allocate skb for rx buffers */
1070 	while (np->really_rx_count != RX_RING_SIZE) {
1071 		struct sk_buff *skb;
1072 
1073 		skb = dev_alloc_skb(np->rx_buf_sz);
1074 		if (skb == NULL)
1075 			break;	/* Better luck next round. */
1076 
1077 		while (np->lack_rxbuf->skbuff)
1078 			np->lack_rxbuf = np->lack_rxbuf->next_desc_logical;
1079 
1080 		skb->dev = dev;	/* Mark as being used by this device. */
1081 		np->lack_rxbuf->skbuff = skb;
1082 		np->lack_rxbuf->buffer = pci_map_single(np->pci_dev, skb->data,
1083 			np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1084 		np->lack_rxbuf->status = RXOWN;
1085 		++np->really_rx_count;
1086 	}
1087 }
1088 
1089 
1090 static void netdev_timer(unsigned long data)
1091 {
1092 	struct net_device *dev = (struct net_device *) data;
1093 	struct netdev_private *np = netdev_priv(dev);
1094 	void __iomem *ioaddr = np->mem;
1095 	int old_crvalue = np->crvalue;
1096 	unsigned int old_linkok = np->linkok;
1097 	unsigned long flags;
1098 
1099 	if (debug)
1100 		printk(KERN_DEBUG "%s: Media selection timer tick, status %8.8x "
1101 		       "config %8.8x.\n", dev->name, ioread32(ioaddr + ISR),
1102 		       ioread32(ioaddr + TCRRCR));
1103 
1104 	spin_lock_irqsave(&np->lock, flags);
1105 
1106 	if (np->flags == HAS_MII_XCVR) {
1107 		getlinkstatus(dev);
1108 		if ((old_linkok == 0) && (np->linkok == 1)) {	/* we need to detect the media type again */
1109 			getlinktype(dev);
1110 			if (np->crvalue != old_crvalue) {
1111 				stop_nic_rxtx(ioaddr, np->crvalue);
1112 				iowrite32(np->crvalue, ioaddr + TCRRCR);
1113 			}
1114 		}
1115 	}
1116 
1117 	allocate_rx_buffers(dev);
1118 
1119 	spin_unlock_irqrestore(&np->lock, flags);
1120 
1121 	np->timer.expires = RUN_AT(10 * HZ);
1122 	add_timer(&np->timer);
1123 }
1124 
1125 
1126 /* Take lock before calling */
1127 /* Reset chip and disable rx, tx and interrupts */
1128 static void reset_and_disable_rxtx(struct net_device *dev)
1129 {
1130 	struct netdev_private *np = netdev_priv(dev);
1131 	void __iomem *ioaddr = np->mem;
1132 	int delay=51;
1133 
1134 	/* Reset the chip's Tx and Rx processes. */
1135 	stop_nic_rxtx(ioaddr, 0);
1136 
1137 	/* Disable interrupts by clearing the interrupt mask. */
1138 	iowrite32(0, ioaddr + IMR);
1139 
1140 	/* Reset the chip to erase previous misconfiguration. */
1141 	iowrite32(0x00000001, ioaddr + BCR);
1142 
1143 	/* Ueimor: wait for 50 PCI cycles (and flush posted writes btw).
1144 	   We surely wait too long (address+data phase). Who cares? */
1145 	while (--delay) {
1146 		ioread32(ioaddr + BCR);
1147 		rmb();
1148 	}
1149 }
1150 
1151 
1152 /* Take lock before calling */
1153 /* Restore chip after reset */
1154 static void enable_rxtx(struct net_device *dev)
1155 {
1156 	struct netdev_private *np = netdev_priv(dev);
1157 	void __iomem *ioaddr = np->mem;
1158 
1159 	reset_rx_descriptors(dev);
1160 
1161 	iowrite32(np->tx_ring_dma + ((char*)np->cur_tx - (char*)np->tx_ring),
1162 		ioaddr + TXLBA);
1163 	iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring),
1164 		ioaddr + RXLBA);
1165 
1166 	iowrite32(np->bcrvalue, ioaddr + BCR);
1167 
1168 	iowrite32(0, ioaddr + RXPDR);
1169 	__set_rx_mode(dev); /* changes np->crvalue, writes it into TCRRCR */
1170 
1171 	/* Clear and Enable interrupts by setting the interrupt mask. */
1172 	iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR);
1173 	iowrite32(np->imrvalue, ioaddr + IMR);
1174 
1175 	iowrite32(0, ioaddr + TXPDR);
1176 }
1177 
1178 
1179 static void reset_timer(unsigned long data)
1180 {
1181 	struct net_device *dev = (struct net_device *) data;
1182 	struct netdev_private *np = netdev_priv(dev);
1183 	unsigned long flags;
1184 
1185 	printk(KERN_WARNING "%s: resetting tx and rx machinery\n", dev->name);
1186 
1187 	spin_lock_irqsave(&np->lock, flags);
1188 	np->crvalue = np->crvalue_sv;
1189 	np->imrvalue = np->imrvalue_sv;
1190 
1191 	reset_and_disable_rxtx(dev);
1192 	/* works for me without this:
1193 	reset_tx_descriptors(dev); */
1194 	enable_rxtx(dev);
1195 	netif_start_queue(dev); /* FIXME: or netif_wake_queue(dev); ? */
1196 
1197 	np->reset_timer_armed = 0;
1198 
1199 	spin_unlock_irqrestore(&np->lock, flags);
1200 }
1201 
1202 
1203 static void fealnx_tx_timeout(struct net_device *dev)
1204 {
1205 	struct netdev_private *np = netdev_priv(dev);
1206 	void __iomem *ioaddr = np->mem;
1207 	unsigned long flags;
1208 	int i;
1209 
1210 	printk(KERN_WARNING
1211 	       "%s: Transmit timed out, status %8.8x, resetting...\n",
1212 	       dev->name, ioread32(ioaddr + ISR));
1213 
1214 	{
1215 		printk(KERN_DEBUG "  Rx ring %p: ", np->rx_ring);
1216 		for (i = 0; i < RX_RING_SIZE; i++)
1217 			printk(KERN_CONT " %8.8x",
1218 			       (unsigned int) np->rx_ring[i].status);
1219 		printk(KERN_CONT "\n");
1220 		printk(KERN_DEBUG "  Tx ring %p: ", np->tx_ring);
1221 		for (i = 0; i < TX_RING_SIZE; i++)
1222 			printk(KERN_CONT " %4.4x", np->tx_ring[i].status);
1223 		printk(KERN_CONT "\n");
1224 	}
1225 
1226 	spin_lock_irqsave(&np->lock, flags);
1227 
1228 	reset_and_disable_rxtx(dev);
1229 	reset_tx_descriptors(dev);
1230 	enable_rxtx(dev);
1231 
1232 	spin_unlock_irqrestore(&np->lock, flags);
1233 
1234 	dev->trans_start = jiffies; /* prevent tx timeout */
1235 	dev->stats.tx_errors++;
1236 	netif_wake_queue(dev); /* or .._start_.. ?? */
1237 }
1238 
1239 
1240 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1241 static void init_ring(struct net_device *dev)
1242 {
1243 	struct netdev_private *np = netdev_priv(dev);
1244 	int i;
1245 
1246 	/* initialize rx variables */
1247 	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1248 	np->cur_rx = &np->rx_ring[0];
1249 	np->lack_rxbuf = np->rx_ring;
1250 	np->really_rx_count = 0;
1251 
1252 	/* initial rx descriptors. */
1253 	for (i = 0; i < RX_RING_SIZE; i++) {
1254 		np->rx_ring[i].status = 0;
1255 		np->rx_ring[i].control = np->rx_buf_sz << RBSShift;
1256 		np->rx_ring[i].next_desc = np->rx_ring_dma +
1257 			(i + 1)*sizeof(struct fealnx_desc);
1258 		np->rx_ring[i].next_desc_logical = &np->rx_ring[i + 1];
1259 		np->rx_ring[i].skbuff = NULL;
1260 	}
1261 
1262 	/* for the last rx descriptor */
1263 	np->rx_ring[i - 1].next_desc = np->rx_ring_dma;
1264 	np->rx_ring[i - 1].next_desc_logical = np->rx_ring;
1265 
1266 	/* allocate skb for rx buffers */
1267 	for (i = 0; i < RX_RING_SIZE; i++) {
1268 		struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
1269 
1270 		if (skb == NULL) {
1271 			np->lack_rxbuf = &np->rx_ring[i];
1272 			break;
1273 		}
1274 
1275 		++np->really_rx_count;
1276 		np->rx_ring[i].skbuff = skb;
1277 		skb->dev = dev;	/* Mark as being used by this device. */
1278 		np->rx_ring[i].buffer = pci_map_single(np->pci_dev, skb->data,
1279 			np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1280 		np->rx_ring[i].status = RXOWN;
1281 		np->rx_ring[i].control |= RXIC;
1282 	}
1283 
1284 	/* initialize tx variables */
1285 	np->cur_tx = &np->tx_ring[0];
1286 	np->cur_tx_copy = &np->tx_ring[0];
1287 	np->really_tx_count = 0;
1288 	np->free_tx_count = TX_RING_SIZE;
1289 
1290 	for (i = 0; i < TX_RING_SIZE; i++) {
1291 		np->tx_ring[i].status = 0;
1292 		/* do we need np->tx_ring[i].control = XXX; ?? */
1293 		np->tx_ring[i].next_desc = np->tx_ring_dma +
1294 			(i + 1)*sizeof(struct fealnx_desc);
1295 		np->tx_ring[i].next_desc_logical = &np->tx_ring[i + 1];
1296 		np->tx_ring[i].skbuff = NULL;
1297 	}
1298 
1299 	/* for the last tx descriptor */
1300 	np->tx_ring[i - 1].next_desc = np->tx_ring_dma;
1301 	np->tx_ring[i - 1].next_desc_logical = &np->tx_ring[0];
1302 }
1303 
1304 
1305 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1306 {
1307 	struct netdev_private *np = netdev_priv(dev);
1308 	unsigned long flags;
1309 
1310 	spin_lock_irqsave(&np->lock, flags);
1311 
1312 	np->cur_tx_copy->skbuff = skb;
1313 
1314 #define one_buffer
1315 #define BPT 1022
1316 #if defined(one_buffer)
1317 	np->cur_tx_copy->buffer = pci_map_single(np->pci_dev, skb->data,
1318 		skb->len, PCI_DMA_TODEVICE);
1319 	np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable;
1320 	np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1321 	np->cur_tx_copy->control |= (skb->len << TBSShift);	/* buffer size */
1322 // 89/12/29 add,
1323 	if (np->pci_dev->device == 0x891)
1324 		np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1325 	np->cur_tx_copy->status = TXOWN;
1326 	np->cur_tx_copy = np->cur_tx_copy->next_desc_logical;
1327 	--np->free_tx_count;
1328 #elif defined(two_buffer)
1329 	if (skb->len > BPT) {
1330 		struct fealnx_desc *next;
1331 
1332 		/* for the first descriptor */
1333 		np->cur_tx_copy->buffer = pci_map_single(np->pci_dev, skb->data,
1334 			BPT, PCI_DMA_TODEVICE);
1335 		np->cur_tx_copy->control = TXIC | TXFD | CRCEnable | PADEnable;
1336 		np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1337 		np->cur_tx_copy->control |= (BPT << TBSShift);	/* buffer size */
1338 
1339 		/* for the last descriptor */
1340 		next = np->cur_tx_copy->next_desc_logical;
1341 		next->skbuff = skb;
1342 		next->control = TXIC | TXLD | CRCEnable | PADEnable;
1343 		next->control |= (skb->len << PKTSShift);	/* pkt size */
1344 		next->control |= ((skb->len - BPT) << TBSShift);	/* buf size */
1345 // 89/12/29 add,
1346 		if (np->pci_dev->device == 0x891)
1347 			np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1348 		next->buffer = pci_map_single(ep->pci_dev, skb->data + BPT,
1349                                 skb->len - BPT, PCI_DMA_TODEVICE);
1350 
1351 		next->status = TXOWN;
1352 		np->cur_tx_copy->status = TXOWN;
1353 
1354 		np->cur_tx_copy = next->next_desc_logical;
1355 		np->free_tx_count -= 2;
1356 	} else {
1357 		np->cur_tx_copy->buffer = pci_map_single(np->pci_dev, skb->data,
1358 			skb->len, PCI_DMA_TODEVICE);
1359 		np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable;
1360 		np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1361 		np->cur_tx_copy->control |= (skb->len << TBSShift);	/* buffer size */
1362 // 89/12/29 add,
1363 		if (np->pci_dev->device == 0x891)
1364 			np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1365 		np->cur_tx_copy->status = TXOWN;
1366 		np->cur_tx_copy = np->cur_tx_copy->next_desc_logical;
1367 		--np->free_tx_count;
1368 	}
1369 #endif
1370 
1371 	if (np->free_tx_count < 2)
1372 		netif_stop_queue(dev);
1373 	++np->really_tx_count;
1374 	iowrite32(0, np->mem + TXPDR);
1375 
1376 	spin_unlock_irqrestore(&np->lock, flags);
1377 	return NETDEV_TX_OK;
1378 }
1379 
1380 
1381 /* Take lock before calling */
1382 /* Chip probably hosed tx ring. Clean up. */
1383 static void reset_tx_descriptors(struct net_device *dev)
1384 {
1385 	struct netdev_private *np = netdev_priv(dev);
1386 	struct fealnx_desc *cur;
1387 	int i;
1388 
1389 	/* initialize tx variables */
1390 	np->cur_tx = &np->tx_ring[0];
1391 	np->cur_tx_copy = &np->tx_ring[0];
1392 	np->really_tx_count = 0;
1393 	np->free_tx_count = TX_RING_SIZE;
1394 
1395 	for (i = 0; i < TX_RING_SIZE; i++) {
1396 		cur = &np->tx_ring[i];
1397 		if (cur->skbuff) {
1398 			pci_unmap_single(np->pci_dev, cur->buffer,
1399 				cur->skbuff->len, PCI_DMA_TODEVICE);
1400 			dev_kfree_skb_any(cur->skbuff);
1401 			cur->skbuff = NULL;
1402 		}
1403 		cur->status = 0;
1404 		cur->control = 0;	/* needed? */
1405 		/* probably not needed. We do it for purely paranoid reasons */
1406 		cur->next_desc = np->tx_ring_dma +
1407 			(i + 1)*sizeof(struct fealnx_desc);
1408 		cur->next_desc_logical = &np->tx_ring[i + 1];
1409 	}
1410 	/* for the last tx descriptor */
1411 	np->tx_ring[TX_RING_SIZE - 1].next_desc = np->tx_ring_dma;
1412 	np->tx_ring[TX_RING_SIZE - 1].next_desc_logical = &np->tx_ring[0];
1413 }
1414 
1415 
1416 /* Take lock and stop rx before calling this */
1417 static void reset_rx_descriptors(struct net_device *dev)
1418 {
1419 	struct netdev_private *np = netdev_priv(dev);
1420 	struct fealnx_desc *cur = np->cur_rx;
1421 	int i;
1422 
1423 	allocate_rx_buffers(dev);
1424 
1425 	for (i = 0; i < RX_RING_SIZE; i++) {
1426 		if (cur->skbuff)
1427 			cur->status = RXOWN;
1428 		cur = cur->next_desc_logical;
1429 	}
1430 
1431 	iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring),
1432 		np->mem + RXLBA);
1433 }
1434 
1435 
1436 /* The interrupt handler does all of the Rx thread work and cleans up
1437    after the Tx thread. */
1438 static irqreturn_t intr_handler(int irq, void *dev_instance)
1439 {
1440 	struct net_device *dev = (struct net_device *) dev_instance;
1441 	struct netdev_private *np = netdev_priv(dev);
1442 	void __iomem *ioaddr = np->mem;
1443 	long boguscnt = max_interrupt_work;
1444 	unsigned int num_tx = 0;
1445 	int handled = 0;
1446 
1447 	spin_lock(&np->lock);
1448 
1449 	iowrite32(0, ioaddr + IMR);
1450 
1451 	do {
1452 		u32 intr_status = ioread32(ioaddr + ISR);
1453 
1454 		/* Acknowledge all of the current interrupt sources ASAP. */
1455 		iowrite32(intr_status, ioaddr + ISR);
1456 
1457 		if (debug)
1458 			printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n", dev->name,
1459 			       intr_status);
1460 
1461 		if (!(intr_status & np->imrvalue))
1462 			break;
1463 
1464 		handled = 1;
1465 
1466 // 90/1/16 delete,
1467 //
1468 //      if (intr_status & FBE)
1469 //      {   /* fatal error */
1470 //          stop_nic_tx(ioaddr, 0);
1471 //          stop_nic_rx(ioaddr, 0);
1472 //          break;
1473 //      };
1474 
1475 		if (intr_status & TUNF)
1476 			iowrite32(0, ioaddr + TXPDR);
1477 
1478 		if (intr_status & CNTOVF) {
1479 			/* missed pkts */
1480 			dev->stats.rx_missed_errors +=
1481 				ioread32(ioaddr + TALLY) & 0x7fff;
1482 
1483 			/* crc error */
1484 			dev->stats.rx_crc_errors +=
1485 			    (ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1486 		}
1487 
1488 		if (intr_status & (RI | RBU)) {
1489 			if (intr_status & RI)
1490 				netdev_rx(dev);
1491 			else {
1492 				stop_nic_rx(ioaddr, np->crvalue);
1493 				reset_rx_descriptors(dev);
1494 				iowrite32(np->crvalue, ioaddr + TCRRCR);
1495 			}
1496 		}
1497 
1498 		while (np->really_tx_count) {
1499 			long tx_status = np->cur_tx->status;
1500 			long tx_control = np->cur_tx->control;
1501 
1502 			if (!(tx_control & TXLD)) {	/* this pkt is combined by two tx descriptors */
1503 				struct fealnx_desc *next;
1504 
1505 				next = np->cur_tx->next_desc_logical;
1506 				tx_status = next->status;
1507 				tx_control = next->control;
1508 			}
1509 
1510 			if (tx_status & TXOWN)
1511 				break;
1512 
1513 			if (!(np->crvalue & CR_W_ENH)) {
1514 				if (tx_status & (CSL | LC | EC | UDF | HF)) {
1515 					dev->stats.tx_errors++;
1516 					if (tx_status & EC)
1517 						dev->stats.tx_aborted_errors++;
1518 					if (tx_status & CSL)
1519 						dev->stats.tx_carrier_errors++;
1520 					if (tx_status & LC)
1521 						dev->stats.tx_window_errors++;
1522 					if (tx_status & UDF)
1523 						dev->stats.tx_fifo_errors++;
1524 					if ((tx_status & HF) && np->mii.full_duplex == 0)
1525 						dev->stats.tx_heartbeat_errors++;
1526 
1527 				} else {
1528 					dev->stats.tx_bytes +=
1529 					    ((tx_control & PKTSMask) >> PKTSShift);
1530 
1531 					dev->stats.collisions +=
1532 					    ((tx_status & NCRMask) >> NCRShift);
1533 					dev->stats.tx_packets++;
1534 				}
1535 			} else {
1536 				dev->stats.tx_bytes +=
1537 				    ((tx_control & PKTSMask) >> PKTSShift);
1538 				dev->stats.tx_packets++;
1539 			}
1540 
1541 			/* Free the original skb. */
1542 			pci_unmap_single(np->pci_dev, np->cur_tx->buffer,
1543 				np->cur_tx->skbuff->len, PCI_DMA_TODEVICE);
1544 			dev_kfree_skb_irq(np->cur_tx->skbuff);
1545 			np->cur_tx->skbuff = NULL;
1546 			--np->really_tx_count;
1547 			if (np->cur_tx->control & TXLD) {
1548 				np->cur_tx = np->cur_tx->next_desc_logical;
1549 				++np->free_tx_count;
1550 			} else {
1551 				np->cur_tx = np->cur_tx->next_desc_logical;
1552 				np->cur_tx = np->cur_tx->next_desc_logical;
1553 				np->free_tx_count += 2;
1554 			}
1555 			num_tx++;
1556 		}		/* end of for loop */
1557 
1558 		if (num_tx && np->free_tx_count >= 2)
1559 			netif_wake_queue(dev);
1560 
1561 		/* read transmit status for enhanced mode only */
1562 		if (np->crvalue & CR_W_ENH) {
1563 			long data;
1564 
1565 			data = ioread32(ioaddr + TSR);
1566 			dev->stats.tx_errors += (data & 0xff000000) >> 24;
1567 			dev->stats.tx_aborted_errors +=
1568 				(data & 0xff000000) >> 24;
1569 			dev->stats.tx_window_errors +=
1570 				(data & 0x00ff0000) >> 16;
1571 			dev->stats.collisions += (data & 0x0000ffff);
1572 		}
1573 
1574 		if (--boguscnt < 0) {
1575 			printk(KERN_WARNING "%s: Too much work at interrupt, "
1576 			       "status=0x%4.4x.\n", dev->name, intr_status);
1577 			if (!np->reset_timer_armed) {
1578 				np->reset_timer_armed = 1;
1579 				np->reset_timer.expires = RUN_AT(HZ/2);
1580 				add_timer(&np->reset_timer);
1581 				stop_nic_rxtx(ioaddr, 0);
1582 				netif_stop_queue(dev);
1583 				/* or netif_tx_disable(dev); ?? */
1584 				/* Prevent other paths from enabling tx,rx,intrs */
1585 				np->crvalue_sv = np->crvalue;
1586 				np->imrvalue_sv = np->imrvalue;
1587 				np->crvalue &= ~(CR_W_TXEN | CR_W_RXEN); /* or simply = 0? */
1588 				np->imrvalue = 0;
1589 			}
1590 
1591 			break;
1592 		}
1593 	} while (1);
1594 
1595 	/* read the tally counters */
1596 	/* missed pkts */
1597 	dev->stats.rx_missed_errors += ioread32(ioaddr + TALLY) & 0x7fff;
1598 
1599 	/* crc error */
1600 	dev->stats.rx_crc_errors +=
1601 		(ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1602 
1603 	if (debug)
1604 		printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1605 		       dev->name, ioread32(ioaddr + ISR));
1606 
1607 	iowrite32(np->imrvalue, ioaddr + IMR);
1608 
1609 	spin_unlock(&np->lock);
1610 
1611 	return IRQ_RETVAL(handled);
1612 }
1613 
1614 
1615 /* This routine is logically part of the interrupt handler, but separated
1616    for clarity and better register allocation. */
1617 static int netdev_rx(struct net_device *dev)
1618 {
1619 	struct netdev_private *np = netdev_priv(dev);
1620 	void __iomem *ioaddr = np->mem;
1621 
1622 	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1623 	while (!(np->cur_rx->status & RXOWN) && np->cur_rx->skbuff) {
1624 		s32 rx_status = np->cur_rx->status;
1625 
1626 		if (np->really_rx_count == 0)
1627 			break;
1628 
1629 		if (debug)
1630 			printk(KERN_DEBUG "  netdev_rx() status was %8.8x.\n", rx_status);
1631 
1632 		if ((!((rx_status & RXFSD) && (rx_status & RXLSD))) ||
1633 		    (rx_status & ErrorSummary)) {
1634 			if (rx_status & ErrorSummary) {	/* there was a fatal error */
1635 				if (debug)
1636 					printk(KERN_DEBUG
1637 					       "%s: Receive error, Rx status %8.8x.\n",
1638 					       dev->name, rx_status);
1639 
1640 				dev->stats.rx_errors++;	/* end of a packet. */
1641 				if (rx_status & (LONG | RUNT))
1642 					dev->stats.rx_length_errors++;
1643 				if (rx_status & RXER)
1644 					dev->stats.rx_frame_errors++;
1645 				if (rx_status & CRC)
1646 					dev->stats.rx_crc_errors++;
1647 			} else {
1648 				int need_to_reset = 0;
1649 				int desno = 0;
1650 
1651 				if (rx_status & RXFSD) {	/* this pkt is too long, over one rx buffer */
1652 					struct fealnx_desc *cur;
1653 
1654 					/* check this packet is received completely? */
1655 					cur = np->cur_rx;
1656 					while (desno <= np->really_rx_count) {
1657 						++desno;
1658 						if ((!(cur->status & RXOWN)) &&
1659 						    (cur->status & RXLSD))
1660 							break;
1661 						/* goto next rx descriptor */
1662 						cur = cur->next_desc_logical;
1663 					}
1664 					if (desno > np->really_rx_count)
1665 						need_to_reset = 1;
1666 				} else	/* RXLSD did not find, something error */
1667 					need_to_reset = 1;
1668 
1669 				if (need_to_reset == 0) {
1670 					int i;
1671 
1672 					dev->stats.rx_length_errors++;
1673 
1674 					/* free all rx descriptors related this long pkt */
1675 					for (i = 0; i < desno; ++i) {
1676 						if (!np->cur_rx->skbuff) {
1677 							printk(KERN_DEBUG
1678 								"%s: I'm scared\n", dev->name);
1679 							break;
1680 						}
1681 						np->cur_rx->status = RXOWN;
1682 						np->cur_rx = np->cur_rx->next_desc_logical;
1683 					}
1684 					continue;
1685 				} else {        /* rx error, need to reset this chip */
1686 					stop_nic_rx(ioaddr, np->crvalue);
1687 					reset_rx_descriptors(dev);
1688 					iowrite32(np->crvalue, ioaddr + TCRRCR);
1689 				}
1690 				break;	/* exit the while loop */
1691 			}
1692 		} else {	/* this received pkt is ok */
1693 
1694 			struct sk_buff *skb;
1695 			/* Omit the four octet CRC from the length. */
1696 			short pkt_len = ((rx_status & FLNGMASK) >> FLNGShift) - 4;
1697 
1698 #ifndef final_version
1699 			if (debug)
1700 				printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d"
1701 				       " status %x.\n", pkt_len, rx_status);
1702 #endif
1703 
1704 			/* Check if the packet is long enough to accept without copying
1705 			   to a minimally-sized skbuff. */
1706 			if (pkt_len < rx_copybreak &&
1707 			    (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1708 				skb_reserve(skb, 2);	/* 16 byte align the IP header */
1709 				pci_dma_sync_single_for_cpu(np->pci_dev,
1710 							    np->cur_rx->buffer,
1711 							    np->rx_buf_sz,
1712 							    PCI_DMA_FROMDEVICE);
1713 				/* Call copy + cksum if available. */
1714 
1715 #if ! defined(__alpha__)
1716 				skb_copy_to_linear_data(skb,
1717 					np->cur_rx->skbuff->data, pkt_len);
1718 				skb_put(skb, pkt_len);
1719 #else
1720 				memcpy(skb_put(skb, pkt_len),
1721 					np->cur_rx->skbuff->data, pkt_len);
1722 #endif
1723 				pci_dma_sync_single_for_device(np->pci_dev,
1724 							       np->cur_rx->buffer,
1725 							       np->rx_buf_sz,
1726 							       PCI_DMA_FROMDEVICE);
1727 			} else {
1728 				pci_unmap_single(np->pci_dev,
1729 						 np->cur_rx->buffer,
1730 						 np->rx_buf_sz,
1731 						 PCI_DMA_FROMDEVICE);
1732 				skb_put(skb = np->cur_rx->skbuff, pkt_len);
1733 				np->cur_rx->skbuff = NULL;
1734 				--np->really_rx_count;
1735 			}
1736 			skb->protocol = eth_type_trans(skb, dev);
1737 			netif_rx(skb);
1738 			dev->stats.rx_packets++;
1739 			dev->stats.rx_bytes += pkt_len;
1740 		}
1741 
1742 		np->cur_rx = np->cur_rx->next_desc_logical;
1743 	}			/* end of while loop */
1744 
1745 	/*  allocate skb for rx buffers */
1746 	allocate_rx_buffers(dev);
1747 
1748 	return 0;
1749 }
1750 
1751 
1752 static struct net_device_stats *get_stats(struct net_device *dev)
1753 {
1754 	struct netdev_private *np = netdev_priv(dev);
1755 	void __iomem *ioaddr = np->mem;
1756 
1757 	/* The chip only need report frame silently dropped. */
1758 	if (netif_running(dev)) {
1759 		dev->stats.rx_missed_errors +=
1760 			ioread32(ioaddr + TALLY) & 0x7fff;
1761 		dev->stats.rx_crc_errors +=
1762 			(ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1763 	}
1764 
1765 	return &dev->stats;
1766 }
1767 
1768 
1769 /* for dev->set_multicast_list */
1770 static void set_rx_mode(struct net_device *dev)
1771 {
1772 	spinlock_t *lp = &((struct netdev_private *)netdev_priv(dev))->lock;
1773 	unsigned long flags;
1774 	spin_lock_irqsave(lp, flags);
1775 	__set_rx_mode(dev);
1776 	spin_unlock_irqrestore(lp, flags);
1777 }
1778 
1779 
1780 /* Take lock before calling */
1781 static void __set_rx_mode(struct net_device *dev)
1782 {
1783 	struct netdev_private *np = netdev_priv(dev);
1784 	void __iomem *ioaddr = np->mem;
1785 	u32 mc_filter[2];	/* Multicast hash filter */
1786 	u32 rx_mode;
1787 
1788 	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1789 		memset(mc_filter, 0xff, sizeof(mc_filter));
1790 		rx_mode = CR_W_PROM | CR_W_AB | CR_W_AM;
1791 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1792 		   (dev->flags & IFF_ALLMULTI)) {
1793 		/* Too many to match, or accept all multicasts. */
1794 		memset(mc_filter, 0xff, sizeof(mc_filter));
1795 		rx_mode = CR_W_AB | CR_W_AM;
1796 	} else {
1797 		struct netdev_hw_addr *ha;
1798 
1799 		memset(mc_filter, 0, sizeof(mc_filter));
1800 		netdev_for_each_mc_addr(ha, dev) {
1801 			unsigned int bit;
1802 			bit = (ether_crc(ETH_ALEN, ha->addr) >> 26) ^ 0x3F;
1803 			mc_filter[bit >> 5] |= (1 << bit);
1804 		}
1805 		rx_mode = CR_W_AB | CR_W_AM;
1806 	}
1807 
1808 	stop_nic_rxtx(ioaddr, np->crvalue);
1809 
1810 	iowrite32(mc_filter[0], ioaddr + MAR0);
1811 	iowrite32(mc_filter[1], ioaddr + MAR1);
1812 	np->crvalue &= ~CR_W_RXMODEMASK;
1813 	np->crvalue |= rx_mode;
1814 	iowrite32(np->crvalue, ioaddr + TCRRCR);
1815 }
1816 
1817 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1818 {
1819 	struct netdev_private *np = netdev_priv(dev);
1820 
1821 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1822 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1823 	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1824 }
1825 
1826 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1827 {
1828 	struct netdev_private *np = netdev_priv(dev);
1829 	int rc;
1830 
1831 	spin_lock_irq(&np->lock);
1832 	rc = mii_ethtool_gset(&np->mii, cmd);
1833 	spin_unlock_irq(&np->lock);
1834 
1835 	return rc;
1836 }
1837 
1838 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1839 {
1840 	struct netdev_private *np = netdev_priv(dev);
1841 	int rc;
1842 
1843 	spin_lock_irq(&np->lock);
1844 	rc = mii_ethtool_sset(&np->mii, cmd);
1845 	spin_unlock_irq(&np->lock);
1846 
1847 	return rc;
1848 }
1849 
1850 static int netdev_nway_reset(struct net_device *dev)
1851 {
1852 	struct netdev_private *np = netdev_priv(dev);
1853 	return mii_nway_restart(&np->mii);
1854 }
1855 
1856 static u32 netdev_get_link(struct net_device *dev)
1857 {
1858 	struct netdev_private *np = netdev_priv(dev);
1859 	return mii_link_ok(&np->mii);
1860 }
1861 
1862 static u32 netdev_get_msglevel(struct net_device *dev)
1863 {
1864 	return debug;
1865 }
1866 
1867 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1868 {
1869 	debug = value;
1870 }
1871 
1872 static const struct ethtool_ops netdev_ethtool_ops = {
1873 	.get_drvinfo		= netdev_get_drvinfo,
1874 	.get_settings		= netdev_get_settings,
1875 	.set_settings		= netdev_set_settings,
1876 	.nway_reset		= netdev_nway_reset,
1877 	.get_link		= netdev_get_link,
1878 	.get_msglevel		= netdev_get_msglevel,
1879 	.set_msglevel		= netdev_set_msglevel,
1880 };
1881 
1882 static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1883 {
1884 	struct netdev_private *np = netdev_priv(dev);
1885 	int rc;
1886 
1887 	if (!netif_running(dev))
1888 		return -EINVAL;
1889 
1890 	spin_lock_irq(&np->lock);
1891 	rc = generic_mii_ioctl(&np->mii, if_mii(rq), cmd, NULL);
1892 	spin_unlock_irq(&np->lock);
1893 
1894 	return rc;
1895 }
1896 
1897 
1898 static int netdev_close(struct net_device *dev)
1899 {
1900 	struct netdev_private *np = netdev_priv(dev);
1901 	void __iomem *ioaddr = np->mem;
1902 	int i;
1903 
1904 	netif_stop_queue(dev);
1905 
1906 	/* Disable interrupts by clearing the interrupt mask. */
1907 	iowrite32(0x0000, ioaddr + IMR);
1908 
1909 	/* Stop the chip's Tx and Rx processes. */
1910 	stop_nic_rxtx(ioaddr, 0);
1911 
1912 	del_timer_sync(&np->timer);
1913 	del_timer_sync(&np->reset_timer);
1914 
1915 	free_irq(dev->irq, dev);
1916 
1917 	/* Free all the skbuffs in the Rx queue. */
1918 	for (i = 0; i < RX_RING_SIZE; i++) {
1919 		struct sk_buff *skb = np->rx_ring[i].skbuff;
1920 
1921 		np->rx_ring[i].status = 0;
1922 		if (skb) {
1923 			pci_unmap_single(np->pci_dev, np->rx_ring[i].buffer,
1924 				np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1925 			dev_kfree_skb(skb);
1926 			np->rx_ring[i].skbuff = NULL;
1927 		}
1928 	}
1929 
1930 	for (i = 0; i < TX_RING_SIZE; i++) {
1931 		struct sk_buff *skb = np->tx_ring[i].skbuff;
1932 
1933 		if (skb) {
1934 			pci_unmap_single(np->pci_dev, np->tx_ring[i].buffer,
1935 				skb->len, PCI_DMA_TODEVICE);
1936 			dev_kfree_skb(skb);
1937 			np->tx_ring[i].skbuff = NULL;
1938 		}
1939 	}
1940 
1941 	return 0;
1942 }
1943 
1944 static DEFINE_PCI_DEVICE_TABLE(fealnx_pci_tbl) = {
1945 	{0x1516, 0x0800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1946 	{0x1516, 0x0803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1},
1947 	{0x1516, 0x0891, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2},
1948 	{} /* terminate list */
1949 };
1950 MODULE_DEVICE_TABLE(pci, fealnx_pci_tbl);
1951 
1952 
1953 static struct pci_driver fealnx_driver = {
1954 	.name		= "fealnx",
1955 	.id_table	= fealnx_pci_tbl,
1956 	.probe		= fealnx_init_one,
1957 	.remove		= __devexit_p(fealnx_remove_one),
1958 };
1959 
1960 static int __init fealnx_init(void)
1961 {
1962 /* when a module, this is printed whether or not devices are found in probe */
1963 #ifdef MODULE
1964 	printk(version);
1965 #endif
1966 
1967 	return pci_register_driver(&fealnx_driver);
1968 }
1969 
1970 static void __exit fealnx_exit(void)
1971 {
1972 	pci_unregister_driver(&fealnx_driver);
1973 }
1974 
1975 module_init(fealnx_init);
1976 module_exit(fealnx_exit);
1977