xref: /linux/drivers/net/ethernet/faraday/ftgmac100.c (revision 9e7c9b8eb719835638ee74d93dccc2173581324c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Faraday FTGMAC100 Gigabit Ethernet
4  *
5  * (C) Copyright 2009-2011 Faraday Technology
6  * Po-Yu Chuang <ratbert@faraday-tech.com>
7  */
8 
9 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
10 
11 #include <linux/clk.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/etherdevice.h>
14 #include <linux/ethtool.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/module.h>
18 #include <linux/netdevice.h>
19 #include <linux/of.h>
20 #include <linux/of_mdio.h>
21 #include <linux/phy.h>
22 #include <linux/platform_device.h>
23 #include <linux/property.h>
24 #include <linux/crc32.h>
25 #include <linux/if_vlan.h>
26 #include <linux/of_net.h>
27 #include <net/ip.h>
28 #include <net/ncsi.h>
29 
30 #include "ftgmac100.h"
31 
32 #define DRV_NAME	"ftgmac100"
33 
34 /* Arbitrary values, I am not sure the HW has limits */
35 #define MAX_RX_QUEUE_ENTRIES	1024
36 #define MAX_TX_QUEUE_ENTRIES	1024
37 #define MIN_RX_QUEUE_ENTRIES	32
38 #define MIN_TX_QUEUE_ENTRIES	32
39 
40 /* Defaults */
41 #define DEF_RX_QUEUE_ENTRIES	128
42 #define DEF_TX_QUEUE_ENTRIES	128
43 
44 #define MAX_PKT_SIZE		1536
45 #define RX_BUF_SIZE		MAX_PKT_SIZE	/* must be smaller than 0x3fff */
46 
47 /* Min number of tx ring entries before stopping queue */
48 #define TX_THRESHOLD		(MAX_SKB_FRAGS + 1)
49 
50 #define FTGMAC_100MHZ		100000000
51 #define FTGMAC_25MHZ		25000000
52 
53 struct ftgmac100 {
54 	/* Registers */
55 	struct resource *res;
56 	void __iomem *base;
57 
58 	/* Rx ring */
59 	unsigned int rx_q_entries;
60 	struct ftgmac100_rxdes *rxdes;
61 	dma_addr_t rxdes_dma;
62 	struct sk_buff **rx_skbs;
63 	unsigned int rx_pointer;
64 	u32 rxdes0_edorr_mask;
65 
66 	/* Tx ring */
67 	unsigned int tx_q_entries;
68 	struct ftgmac100_txdes *txdes;
69 	dma_addr_t txdes_dma;
70 	struct sk_buff **tx_skbs;
71 	unsigned int tx_clean_pointer;
72 	unsigned int tx_pointer;
73 	u32 txdes0_edotr_mask;
74 
75 	/* Used to signal the reset task of ring change request */
76 	unsigned int new_rx_q_entries;
77 	unsigned int new_tx_q_entries;
78 
79 	/* Scratch page to use when rx skb alloc fails */
80 	void *rx_scratch;
81 	dma_addr_t rx_scratch_dma;
82 
83 	/* Component structures */
84 	struct net_device *netdev;
85 	struct device *dev;
86 	struct ncsi_dev *ndev;
87 	struct napi_struct napi;
88 	struct work_struct reset_task;
89 	struct mii_bus *mii_bus;
90 	struct clk *clk;
91 
92 	/* AST2500/AST2600 RMII ref clock gate */
93 	struct clk *rclk;
94 
95 	/* Link management */
96 	int cur_speed;
97 	int cur_duplex;
98 	bool use_ncsi;
99 
100 	/* Multicast filter settings */
101 	u32 maht0;
102 	u32 maht1;
103 
104 	/* Flow control settings */
105 	bool tx_pause;
106 	bool rx_pause;
107 	bool aneg_pause;
108 
109 	/* Misc */
110 	bool need_mac_restart;
111 	bool is_aspeed;
112 };
113 
114 static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
115 {
116 	struct net_device *netdev = priv->netdev;
117 	int i;
118 
119 	/* NOTE: reset clears all registers */
120 	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
121 	iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
122 		  priv->base + FTGMAC100_OFFSET_MACCR);
123 	for (i = 0; i < 200; i++) {
124 		unsigned int maccr;
125 
126 		maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
127 		if (!(maccr & FTGMAC100_MACCR_SW_RST))
128 			return 0;
129 
130 		udelay(1);
131 	}
132 
133 	netdev_err(netdev, "Hardware reset failed\n");
134 	return -EIO;
135 }
136 
137 static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
138 {
139 	u32 maccr = 0;
140 
141 	switch (priv->cur_speed) {
142 	case SPEED_10:
143 	case 0: /* no link */
144 		break;
145 
146 	case SPEED_100:
147 		maccr |= FTGMAC100_MACCR_FAST_MODE;
148 		break;
149 
150 	case SPEED_1000:
151 		maccr |= FTGMAC100_MACCR_GIGA_MODE;
152 		break;
153 	default:
154 		netdev_err(priv->netdev, "Unknown speed %d !\n",
155 			   priv->cur_speed);
156 		break;
157 	}
158 
159 	/* (Re)initialize the queue pointers */
160 	priv->rx_pointer = 0;
161 	priv->tx_clean_pointer = 0;
162 	priv->tx_pointer = 0;
163 
164 	/* The doc says reset twice with 10us interval */
165 	if (ftgmac100_reset_mac(priv, maccr))
166 		return -EIO;
167 	usleep_range(10, 1000);
168 	return ftgmac100_reset_mac(priv, maccr);
169 }
170 
171 static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac)
172 {
173 	unsigned int maddr = mac[0] << 8 | mac[1];
174 	unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
175 
176 	iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
177 	iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
178 }
179 
180 static void ftgmac100_initial_mac(struct ftgmac100 *priv)
181 {
182 	u8 mac[ETH_ALEN];
183 	unsigned int m;
184 	unsigned int l;
185 
186 	if (!device_get_ethdev_address(priv->dev, priv->netdev)) {
187 		dev_info(priv->dev, "Read MAC address %pM from device tree\n",
188 			 priv->netdev->dev_addr);
189 		return;
190 	}
191 
192 	m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
193 	l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);
194 
195 	mac[0] = (m >> 8) & 0xff;
196 	mac[1] = m & 0xff;
197 	mac[2] = (l >> 24) & 0xff;
198 	mac[3] = (l >> 16) & 0xff;
199 	mac[4] = (l >> 8) & 0xff;
200 	mac[5] = l & 0xff;
201 
202 	if (is_valid_ether_addr(mac)) {
203 		eth_hw_addr_set(priv->netdev, mac);
204 		dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
205 	} else {
206 		eth_hw_addr_random(priv->netdev);
207 		dev_info(priv->dev, "Generated random MAC address %pM\n",
208 			 priv->netdev->dev_addr);
209 	}
210 }
211 
212 static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
213 {
214 	int ret;
215 
216 	ret = eth_prepare_mac_addr_change(dev, p);
217 	if (ret < 0)
218 		return ret;
219 
220 	eth_commit_mac_addr_change(dev, p);
221 	ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr);
222 
223 	return 0;
224 }
225 
226 static void ftgmac100_config_pause(struct ftgmac100 *priv)
227 {
228 	u32 fcr = FTGMAC100_FCR_PAUSE_TIME(16);
229 
230 	/* Throttle tx queue when receiving pause frames */
231 	if (priv->rx_pause)
232 		fcr |= FTGMAC100_FCR_FC_EN;
233 
234 	/* Enables sending pause frames when the RX queue is past a
235 	 * certain threshold.
236 	 */
237 	if (priv->tx_pause)
238 		fcr |= FTGMAC100_FCR_FCTHR_EN;
239 
240 	iowrite32(fcr, priv->base + FTGMAC100_OFFSET_FCR);
241 }
242 
243 static void ftgmac100_init_hw(struct ftgmac100 *priv)
244 {
245 	u32 reg, rfifo_sz, tfifo_sz;
246 
247 	/* Clear stale interrupts */
248 	reg = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
249 	iowrite32(reg, priv->base + FTGMAC100_OFFSET_ISR);
250 
251 	/* Setup RX ring buffer base */
252 	iowrite32(priv->rxdes_dma, priv->base + FTGMAC100_OFFSET_RXR_BADR);
253 
254 	/* Setup TX ring buffer base */
255 	iowrite32(priv->txdes_dma, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
256 
257 	/* Configure RX buffer size */
258 	iowrite32(FTGMAC100_RBSR_SIZE(RX_BUF_SIZE),
259 		  priv->base + FTGMAC100_OFFSET_RBSR);
260 
261 	/* Set RX descriptor autopoll */
262 	iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1),
263 		  priv->base + FTGMAC100_OFFSET_APTC);
264 
265 	/* Write MAC address */
266 	ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr);
267 
268 	/* Write multicast filter */
269 	iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
270 	iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
271 
272 	/* Configure descriptor sizes and increase burst sizes according
273 	 * to values in Aspeed SDK. The FIFO arbitration is enabled and
274 	 * the thresholds set based on the recommended values in the
275 	 * AST2400 specification.
276 	 */
277 	iowrite32(FTGMAC100_DBLAC_RXDES_SIZE(2) |   /* 2*8 bytes RX descs */
278 		  FTGMAC100_DBLAC_TXDES_SIZE(2) |   /* 2*8 bytes TX descs */
279 		  FTGMAC100_DBLAC_RXBURST_SIZE(3) | /* 512 bytes max RX bursts */
280 		  FTGMAC100_DBLAC_TXBURST_SIZE(3) | /* 512 bytes max TX bursts */
281 		  FTGMAC100_DBLAC_RX_THR_EN |       /* Enable fifo threshold arb */
282 		  FTGMAC100_DBLAC_RXFIFO_HTHR(6) |  /* 6/8 of FIFO high threshold */
283 		  FTGMAC100_DBLAC_RXFIFO_LTHR(2),   /* 2/8 of FIFO low threshold */
284 		  priv->base + FTGMAC100_OFFSET_DBLAC);
285 
286 	/* Interrupt mitigation configured for 1 interrupt/packet. HW interrupt
287 	 * mitigation doesn't seem to provide any benefit with NAPI so leave
288 	 * it at that.
289 	 */
290 	iowrite32(FTGMAC100_ITC_RXINT_THR(1) |
291 		  FTGMAC100_ITC_TXINT_THR(1),
292 		  priv->base + FTGMAC100_OFFSET_ITC);
293 
294 	/* Configure FIFO sizes in the TPAFCR register */
295 	reg = ioread32(priv->base + FTGMAC100_OFFSET_FEAR);
296 	rfifo_sz = reg & 0x00000007;
297 	tfifo_sz = (reg >> 3) & 0x00000007;
298 	reg = ioread32(priv->base + FTGMAC100_OFFSET_TPAFCR);
299 	reg &= ~0x3f000000;
300 	reg |= (tfifo_sz << 27);
301 	reg |= (rfifo_sz << 24);
302 	iowrite32(reg, priv->base + FTGMAC100_OFFSET_TPAFCR);
303 }
304 
305 static void ftgmac100_start_hw(struct ftgmac100 *priv)
306 {
307 	u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
308 
309 	/* Keep the original GMAC and FAST bits */
310 	maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
311 
312 	/* Add all the main enable bits */
313 	maccr |= FTGMAC100_MACCR_TXDMA_EN	|
314 		 FTGMAC100_MACCR_RXDMA_EN	|
315 		 FTGMAC100_MACCR_TXMAC_EN	|
316 		 FTGMAC100_MACCR_RXMAC_EN	|
317 		 FTGMAC100_MACCR_CRC_APD	|
318 		 FTGMAC100_MACCR_PHY_LINK_LEVEL	|
319 		 FTGMAC100_MACCR_RX_RUNT	|
320 		 FTGMAC100_MACCR_RX_BROADPKT;
321 
322 	/* Add other bits as needed */
323 	if (priv->cur_duplex == DUPLEX_FULL)
324 		maccr |= FTGMAC100_MACCR_FULLDUP;
325 	if (priv->netdev->flags & IFF_PROMISC)
326 		maccr |= FTGMAC100_MACCR_RX_ALL;
327 	if (priv->netdev->flags & IFF_ALLMULTI)
328 		maccr |= FTGMAC100_MACCR_RX_MULTIPKT;
329 	else if (netdev_mc_count(priv->netdev))
330 		maccr |= FTGMAC100_MACCR_HT_MULTI_EN;
331 
332 	/* Vlan filtering enabled */
333 	if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
334 		maccr |= FTGMAC100_MACCR_RM_VLAN;
335 
336 	/* Hit the HW */
337 	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
338 }
339 
340 static void ftgmac100_stop_hw(struct ftgmac100 *priv)
341 {
342 	iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
343 }
344 
345 static void ftgmac100_calc_mc_hash(struct ftgmac100 *priv)
346 {
347 	struct netdev_hw_addr *ha;
348 
349 	priv->maht1 = 0;
350 	priv->maht0 = 0;
351 	netdev_for_each_mc_addr(ha, priv->netdev) {
352 		u32 crc_val = ether_crc_le(ETH_ALEN, ha->addr);
353 
354 		crc_val = (~(crc_val >> 2)) & 0x3f;
355 		if (crc_val >= 32)
356 			priv->maht1 |= 1ul << (crc_val - 32);
357 		else
358 			priv->maht0 |= 1ul << (crc_val);
359 	}
360 }
361 
362 static void ftgmac100_set_rx_mode(struct net_device *netdev)
363 {
364 	struct ftgmac100 *priv = netdev_priv(netdev);
365 
366 	/* Setup the hash filter */
367 	ftgmac100_calc_mc_hash(priv);
368 
369 	/* Interface down ? that's all there is to do */
370 	if (!netif_running(netdev))
371 		return;
372 
373 	/* Update the HW */
374 	iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
375 	iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
376 
377 	/* Reconfigure MACCR */
378 	ftgmac100_start_hw(priv);
379 }
380 
381 static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
382 				  struct ftgmac100_rxdes *rxdes, gfp_t gfp)
383 {
384 	struct net_device *netdev = priv->netdev;
385 	struct sk_buff *skb;
386 	dma_addr_t map;
387 	int err = 0;
388 
389 	skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
390 	if (unlikely(!skb)) {
391 		if (net_ratelimit())
392 			netdev_warn(netdev, "failed to allocate rx skb\n");
393 		err = -ENOMEM;
394 		map = priv->rx_scratch_dma;
395 	} else {
396 		map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
397 				     DMA_FROM_DEVICE);
398 		if (unlikely(dma_mapping_error(priv->dev, map))) {
399 			if (net_ratelimit())
400 				netdev_err(netdev, "failed to map rx page\n");
401 			dev_kfree_skb_any(skb);
402 			map = priv->rx_scratch_dma;
403 			skb = NULL;
404 			err = -ENOMEM;
405 		}
406 	}
407 
408 	/* Store skb */
409 	priv->rx_skbs[entry] = skb;
410 
411 	/* Store DMA address into RX desc */
412 	rxdes->rxdes3 = cpu_to_le32(map);
413 
414 	/* Ensure the above is ordered vs clearing the OWN bit */
415 	dma_wmb();
416 
417 	/* Clean status (which resets own bit) */
418 	if (entry == (priv->rx_q_entries - 1))
419 		rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
420 	else
421 		rxdes->rxdes0 = 0;
422 
423 	return err;
424 }
425 
426 static unsigned int ftgmac100_next_rx_pointer(struct ftgmac100 *priv,
427 					      unsigned int pointer)
428 {
429 	return (pointer + 1) & (priv->rx_q_entries - 1);
430 }
431 
432 static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
433 {
434 	struct net_device *netdev = priv->netdev;
435 
436 	if (status & FTGMAC100_RXDES0_RX_ERR)
437 		netdev->stats.rx_errors++;
438 
439 	if (status & FTGMAC100_RXDES0_CRC_ERR)
440 		netdev->stats.rx_crc_errors++;
441 
442 	if (status & (FTGMAC100_RXDES0_FTL |
443 		      FTGMAC100_RXDES0_RUNT |
444 		      FTGMAC100_RXDES0_RX_ODD_NB))
445 		netdev->stats.rx_length_errors++;
446 }
447 
448 static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
449 {
450 	struct net_device *netdev = priv->netdev;
451 	struct ftgmac100_rxdes *rxdes;
452 	struct sk_buff *skb;
453 	unsigned int pointer, size;
454 	u32 status, csum_vlan;
455 	dma_addr_t map;
456 
457 	/* Grab next RX descriptor */
458 	pointer = priv->rx_pointer;
459 	rxdes = &priv->rxdes[pointer];
460 
461 	/* Grab descriptor status */
462 	status = le32_to_cpu(rxdes->rxdes0);
463 
464 	/* Do we have a packet ? */
465 	if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
466 		return false;
467 
468 	/* Order subsequent reads with the test for the ready bit */
469 	dma_rmb();
470 
471 	/* We don't cope with fragmented RX packets */
472 	if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
473 		     !(status & FTGMAC100_RXDES0_LRS)))
474 		goto drop;
475 
476 	/* Grab received size and csum vlan field in the descriptor */
477 	size = status & FTGMAC100_RXDES0_VDBC;
478 	csum_vlan = le32_to_cpu(rxdes->rxdes1);
479 
480 	/* Any error (other than csum offload) flagged ? */
481 	if (unlikely(status & RXDES0_ANY_ERROR)) {
482 		/* Correct for incorrect flagging of runt packets
483 		 * with vlan tags... Just accept a runt packet that
484 		 * has been flagged as vlan and whose size is at
485 		 * least 60 bytes.
486 		 */
487 		if ((status & FTGMAC100_RXDES0_RUNT) &&
488 		    (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
489 		    (size >= 60))
490 			status &= ~FTGMAC100_RXDES0_RUNT;
491 
492 		/* Any error still in there ? */
493 		if (status & RXDES0_ANY_ERROR) {
494 			ftgmac100_rx_packet_error(priv, status);
495 			goto drop;
496 		}
497 	}
498 
499 	/* If the packet had no skb (failed to allocate earlier)
500 	 * then try to allocate one and skip
501 	 */
502 	skb = priv->rx_skbs[pointer];
503 	if (!unlikely(skb)) {
504 		ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
505 		goto drop;
506 	}
507 
508 	if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
509 		netdev->stats.multicast++;
510 
511 	/* If the HW found checksum errors, bounce it to software.
512 	 *
513 	 * If we didn't, we need to see if the packet was recognized
514 	 * by HW as one of the supported checksummed protocols before
515 	 * we accept the HW test results.
516 	 */
517 	if (netdev->features & NETIF_F_RXCSUM) {
518 		u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
519 			FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
520 			FTGMAC100_RXDES1_IP_CHKSUM_ERR;
521 		if ((csum_vlan & err_bits) ||
522 		    !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
523 			skb->ip_summed = CHECKSUM_NONE;
524 		else
525 			skb->ip_summed = CHECKSUM_UNNECESSARY;
526 	}
527 
528 	/* Transfer received size to skb */
529 	skb_put(skb, size);
530 
531 	/* Extract vlan tag */
532 	if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
533 	    (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL))
534 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
535 				       csum_vlan & 0xffff);
536 
537 	/* Tear down DMA mapping, do necessary cache management */
538 	map = le32_to_cpu(rxdes->rxdes3);
539 
540 #if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
541 	/* When we don't have an iommu, we can save cycles by not
542 	 * invalidating the cache for the part of the packet that
543 	 * wasn't received.
544 	 */
545 	dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
546 #else
547 	dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
548 #endif
549 
550 
551 	/* Resplenish rx ring */
552 	ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
553 	priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
554 
555 	skb->protocol = eth_type_trans(skb, netdev);
556 
557 	netdev->stats.rx_packets++;
558 	netdev->stats.rx_bytes += size;
559 
560 	/* push packet to protocol stack */
561 	if (skb->ip_summed == CHECKSUM_NONE)
562 		netif_receive_skb(skb);
563 	else
564 		napi_gro_receive(&priv->napi, skb);
565 
566 	(*processed)++;
567 	return true;
568 
569  drop:
570 	/* Clean rxdes0 (which resets own bit) */
571 	rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
572 	priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
573 	netdev->stats.rx_dropped++;
574 	return true;
575 }
576 
577 static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv,
578 				     unsigned int index)
579 {
580 	if (index == (priv->tx_q_entries - 1))
581 		return priv->txdes0_edotr_mask;
582 	else
583 		return 0;
584 }
585 
586 static unsigned int ftgmac100_next_tx_pointer(struct ftgmac100 *priv,
587 					      unsigned int pointer)
588 {
589 	return (pointer + 1) & (priv->tx_q_entries - 1);
590 }
591 
592 static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
593 {
594 	/* Returns the number of available slots in the TX queue
595 	 *
596 	 * This always leaves one free slot so we don't have to
597 	 * worry about empty vs. full, and this simplifies the
598 	 * test for ftgmac100_tx_buf_cleanable() below
599 	 */
600 	return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
601 		(priv->tx_q_entries - 1);
602 }
603 
604 static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
605 {
606 	return priv->tx_pointer != priv->tx_clean_pointer;
607 }
608 
609 static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
610 				     unsigned int pointer,
611 				     struct sk_buff *skb,
612 				     struct ftgmac100_txdes *txdes,
613 				     u32 ctl_stat)
614 {
615 	dma_addr_t map = le32_to_cpu(txdes->txdes3);
616 	size_t len;
617 
618 	if (ctl_stat & FTGMAC100_TXDES0_FTS) {
619 		len = skb_headlen(skb);
620 		dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE);
621 	} else {
622 		len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat);
623 		dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE);
624 	}
625 
626 	/* Free SKB on last segment */
627 	if (ctl_stat & FTGMAC100_TXDES0_LTS)
628 		dev_kfree_skb(skb);
629 	priv->tx_skbs[pointer] = NULL;
630 }
631 
632 static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
633 {
634 	struct net_device *netdev = priv->netdev;
635 	struct ftgmac100_txdes *txdes;
636 	struct sk_buff *skb;
637 	unsigned int pointer;
638 	u32 ctl_stat;
639 
640 	pointer = priv->tx_clean_pointer;
641 	txdes = &priv->txdes[pointer];
642 
643 	ctl_stat = le32_to_cpu(txdes->txdes0);
644 	if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN)
645 		return false;
646 
647 	skb = priv->tx_skbs[pointer];
648 	netdev->stats.tx_packets++;
649 	netdev->stats.tx_bytes += skb->len;
650 	ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
651 	txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
652 
653 	priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv, pointer);
654 
655 	return true;
656 }
657 
658 static void ftgmac100_tx_complete(struct ftgmac100 *priv)
659 {
660 	struct net_device *netdev = priv->netdev;
661 
662 	/* Process all completed packets */
663 	while (ftgmac100_tx_buf_cleanable(priv) &&
664 	       ftgmac100_tx_complete_packet(priv))
665 		;
666 
667 	/* Restart queue if needed */
668 	smp_mb();
669 	if (unlikely(netif_queue_stopped(netdev) &&
670 		     ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
671 		struct netdev_queue *txq;
672 
673 		txq = netdev_get_tx_queue(netdev, 0);
674 		__netif_tx_lock(txq, smp_processor_id());
675 		if (netif_queue_stopped(netdev) &&
676 		    ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
677 			netif_wake_queue(netdev);
678 		__netif_tx_unlock(txq);
679 	}
680 }
681 
682 static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan)
683 {
684 	if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
685 		u8 ip_proto = ip_hdr(skb)->protocol;
686 
687 		*csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM;
688 		switch(ip_proto) {
689 		case IPPROTO_TCP:
690 			*csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM;
691 			return true;
692 		case IPPROTO_UDP:
693 			*csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM;
694 			return true;
695 		case IPPROTO_IP:
696 			return true;
697 		}
698 	}
699 	return skb_checksum_help(skb) == 0;
700 }
701 
702 static netdev_tx_t ftgmac100_hard_start_xmit(struct sk_buff *skb,
703 					     struct net_device *netdev)
704 {
705 	struct ftgmac100 *priv = netdev_priv(netdev);
706 	struct ftgmac100_txdes *txdes, *first;
707 	unsigned int pointer, nfrags, len, i, j;
708 	u32 f_ctl_stat, ctl_stat, csum_vlan;
709 	dma_addr_t map;
710 
711 	/* The HW doesn't pad small frames */
712 	if (eth_skb_pad(skb)) {
713 		netdev->stats.tx_dropped++;
714 		return NETDEV_TX_OK;
715 	}
716 
717 	/* Reject oversize packets */
718 	if (unlikely(skb->len > MAX_PKT_SIZE)) {
719 		if (net_ratelimit())
720 			netdev_dbg(netdev, "tx packet too big\n");
721 		goto drop;
722 	}
723 
724 	/* Do we have a limit on #fragments ? I yet have to get a reply
725 	 * from Aspeed. If there's one I haven't hit it.
726 	 */
727 	nfrags = skb_shinfo(skb)->nr_frags;
728 
729 	/* Setup HW checksumming */
730 	csum_vlan = 0;
731 	if (skb->ip_summed == CHECKSUM_PARTIAL &&
732 	    !ftgmac100_prep_tx_csum(skb, &csum_vlan))
733 		goto drop;
734 
735 	/* Add VLAN tag */
736 	if (skb_vlan_tag_present(skb)) {
737 		csum_vlan |= FTGMAC100_TXDES1_INS_VLANTAG;
738 		csum_vlan |= skb_vlan_tag_get(skb) & 0xffff;
739 	}
740 
741 	/* Get header len */
742 	len = skb_headlen(skb);
743 
744 	/* Map the packet head */
745 	map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE);
746 	if (dma_mapping_error(priv->dev, map)) {
747 		if (net_ratelimit())
748 			netdev_err(netdev, "map tx packet head failed\n");
749 		goto drop;
750 	}
751 
752 	/* Grab the next free tx descriptor */
753 	pointer = priv->tx_pointer;
754 	txdes = first = &priv->txdes[pointer];
755 
756 	/* Setup it up with the packet head. Don't write the head to the
757 	 * ring just yet
758 	 */
759 	priv->tx_skbs[pointer] = skb;
760 	f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
761 	f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
762 	f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
763 	f_ctl_stat |= FTGMAC100_TXDES0_FTS;
764 	if (nfrags == 0)
765 		f_ctl_stat |= FTGMAC100_TXDES0_LTS;
766 	txdes->txdes3 = cpu_to_le32(map);
767 	txdes->txdes1 = cpu_to_le32(csum_vlan);
768 
769 	/* Next descriptor */
770 	pointer = ftgmac100_next_tx_pointer(priv, pointer);
771 
772 	/* Add the fragments */
773 	for (i = 0; i < nfrags; i++) {
774 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
775 
776 		len = skb_frag_size(frag);
777 
778 		/* Map it */
779 		map = skb_frag_dma_map(priv->dev, frag, 0, len,
780 				       DMA_TO_DEVICE);
781 		if (dma_mapping_error(priv->dev, map))
782 			goto dma_err;
783 
784 		/* Setup descriptor */
785 		priv->tx_skbs[pointer] = skb;
786 		txdes = &priv->txdes[pointer];
787 		ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
788 		ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
789 		ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
790 		if (i == (nfrags - 1))
791 			ctl_stat |= FTGMAC100_TXDES0_LTS;
792 		txdes->txdes0 = cpu_to_le32(ctl_stat);
793 		txdes->txdes1 = 0;
794 		txdes->txdes3 = cpu_to_le32(map);
795 
796 		/* Next one */
797 		pointer = ftgmac100_next_tx_pointer(priv, pointer);
798 	}
799 
800 	/* Order the previous packet and descriptor udpates
801 	 * before setting the OWN bit on the first descriptor.
802 	 */
803 	dma_wmb();
804 	first->txdes0 = cpu_to_le32(f_ctl_stat);
805 
806 	/* Update next TX pointer */
807 	priv->tx_pointer = pointer;
808 
809 	/* If there isn't enough room for all the fragments of a new packet
810 	 * in the TX ring, stop the queue. The sequence below is race free
811 	 * vs. a concurrent restart in ftgmac100_poll()
812 	 */
813 	if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
814 		netif_stop_queue(netdev);
815 		/* Order the queue stop with the test below */
816 		smp_mb();
817 		if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
818 			netif_wake_queue(netdev);
819 	}
820 
821 	/* Poke transmitter to read the updated TX descriptors */
822 	iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
823 
824 	return NETDEV_TX_OK;
825 
826  dma_err:
827 	if (net_ratelimit())
828 		netdev_err(netdev, "map tx fragment failed\n");
829 
830 	/* Free head */
831 	pointer = priv->tx_pointer;
832 	ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat);
833 	first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask);
834 
835 	/* Then all fragments */
836 	for (j = 0; j < i; j++) {
837 		pointer = ftgmac100_next_tx_pointer(priv, pointer);
838 		txdes = &priv->txdes[pointer];
839 		ctl_stat = le32_to_cpu(txdes->txdes0);
840 		ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
841 		txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
842 	}
843 
844 	/* This cannot be reached if we successfully mapped the
845 	 * last fragment, so we know ftgmac100_free_tx_packet()
846 	 * hasn't freed the skb yet.
847 	 */
848  drop:
849 	/* Drop the packet */
850 	dev_kfree_skb_any(skb);
851 	netdev->stats.tx_dropped++;
852 
853 	return NETDEV_TX_OK;
854 }
855 
856 static void ftgmac100_free_buffers(struct ftgmac100 *priv)
857 {
858 	int i;
859 
860 	/* Free all RX buffers */
861 	for (i = 0; i < priv->rx_q_entries; i++) {
862 		struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
863 		struct sk_buff *skb = priv->rx_skbs[i];
864 		dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
865 
866 		if (!skb)
867 			continue;
868 
869 		priv->rx_skbs[i] = NULL;
870 		dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
871 		dev_kfree_skb_any(skb);
872 	}
873 
874 	/* Free all TX buffers */
875 	for (i = 0; i < priv->tx_q_entries; i++) {
876 		struct ftgmac100_txdes *txdes = &priv->txdes[i];
877 		struct sk_buff *skb = priv->tx_skbs[i];
878 
879 		if (!skb)
880 			continue;
881 		ftgmac100_free_tx_packet(priv, i, skb, txdes,
882 					 le32_to_cpu(txdes->txdes0));
883 	}
884 }
885 
886 static void ftgmac100_free_rings(struct ftgmac100 *priv)
887 {
888 	/* Free skb arrays */
889 	kfree(priv->rx_skbs);
890 	kfree(priv->tx_skbs);
891 
892 	/* Free descriptors */
893 	if (priv->rxdes)
894 		dma_free_coherent(priv->dev, MAX_RX_QUEUE_ENTRIES *
895 				  sizeof(struct ftgmac100_rxdes),
896 				  priv->rxdes, priv->rxdes_dma);
897 	priv->rxdes = NULL;
898 
899 	if (priv->txdes)
900 		dma_free_coherent(priv->dev, MAX_TX_QUEUE_ENTRIES *
901 				  sizeof(struct ftgmac100_txdes),
902 				  priv->txdes, priv->txdes_dma);
903 	priv->txdes = NULL;
904 
905 	/* Free scratch packet buffer */
906 	if (priv->rx_scratch)
907 		dma_free_coherent(priv->dev, RX_BUF_SIZE,
908 				  priv->rx_scratch, priv->rx_scratch_dma);
909 }
910 
911 static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
912 {
913 	/* Allocate skb arrays */
914 	priv->rx_skbs = kcalloc(MAX_RX_QUEUE_ENTRIES, sizeof(void *),
915 				GFP_KERNEL);
916 	if (!priv->rx_skbs)
917 		return -ENOMEM;
918 	priv->tx_skbs = kcalloc(MAX_TX_QUEUE_ENTRIES, sizeof(void *),
919 				GFP_KERNEL);
920 	if (!priv->tx_skbs)
921 		return -ENOMEM;
922 
923 	/* Allocate descriptors */
924 	priv->rxdes = dma_alloc_coherent(priv->dev,
925 					 MAX_RX_QUEUE_ENTRIES * sizeof(struct ftgmac100_rxdes),
926 					 &priv->rxdes_dma, GFP_KERNEL);
927 	if (!priv->rxdes)
928 		return -ENOMEM;
929 	priv->txdes = dma_alloc_coherent(priv->dev,
930 					 MAX_TX_QUEUE_ENTRIES * sizeof(struct ftgmac100_txdes),
931 					 &priv->txdes_dma, GFP_KERNEL);
932 	if (!priv->txdes)
933 		return -ENOMEM;
934 
935 	/* Allocate scratch packet buffer */
936 	priv->rx_scratch = dma_alloc_coherent(priv->dev,
937 					      RX_BUF_SIZE,
938 					      &priv->rx_scratch_dma,
939 					      GFP_KERNEL);
940 	if (!priv->rx_scratch)
941 		return -ENOMEM;
942 
943 	return 0;
944 }
945 
946 static void ftgmac100_init_rings(struct ftgmac100 *priv)
947 {
948 	struct ftgmac100_rxdes *rxdes = NULL;
949 	struct ftgmac100_txdes *txdes = NULL;
950 	int i;
951 
952 	/* Update entries counts */
953 	priv->rx_q_entries = priv->new_rx_q_entries;
954 	priv->tx_q_entries = priv->new_tx_q_entries;
955 
956 	if (WARN_ON(priv->rx_q_entries < MIN_RX_QUEUE_ENTRIES))
957 		return;
958 
959 	/* Initialize RX ring */
960 	for (i = 0; i < priv->rx_q_entries; i++) {
961 		rxdes = &priv->rxdes[i];
962 		rxdes->rxdes0 = 0;
963 		rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
964 	}
965 	/* Mark the end of the ring */
966 	rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
967 
968 	if (WARN_ON(priv->tx_q_entries < MIN_RX_QUEUE_ENTRIES))
969 		return;
970 
971 	/* Initialize TX ring */
972 	for (i = 0; i < priv->tx_q_entries; i++) {
973 		txdes = &priv->txdes[i];
974 		txdes->txdes0 = 0;
975 	}
976 	txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
977 }
978 
979 static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
980 {
981 	int i;
982 
983 	for (i = 0; i < priv->rx_q_entries; i++) {
984 		struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
985 
986 		if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
987 			return -ENOMEM;
988 	}
989 	return 0;
990 }
991 
992 static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
993 {
994 	struct net_device *netdev = bus->priv;
995 	struct ftgmac100 *priv = netdev_priv(netdev);
996 	unsigned int phycr;
997 	int i;
998 
999 	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1000 
1001 	/* preserve MDC cycle threshold */
1002 	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1003 
1004 	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1005 		 FTGMAC100_PHYCR_REGAD(regnum) |
1006 		 FTGMAC100_PHYCR_MIIRD;
1007 
1008 	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1009 
1010 	for (i = 0; i < 10; i++) {
1011 		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1012 
1013 		if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
1014 			int data;
1015 
1016 			data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
1017 			return FTGMAC100_PHYDATA_MIIRDATA(data);
1018 		}
1019 
1020 		udelay(100);
1021 	}
1022 
1023 	netdev_err(netdev, "mdio read timed out\n");
1024 	return -EIO;
1025 }
1026 
1027 static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
1028 				   int regnum, u16 value)
1029 {
1030 	struct net_device *netdev = bus->priv;
1031 	struct ftgmac100 *priv = netdev_priv(netdev);
1032 	unsigned int phycr;
1033 	int data;
1034 	int i;
1035 
1036 	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1037 
1038 	/* preserve MDC cycle threshold */
1039 	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1040 
1041 	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1042 		 FTGMAC100_PHYCR_REGAD(regnum) |
1043 		 FTGMAC100_PHYCR_MIIWR;
1044 
1045 	data = FTGMAC100_PHYDATA_MIIWDATA(value);
1046 
1047 	iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
1048 	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1049 
1050 	for (i = 0; i < 10; i++) {
1051 		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1052 
1053 		if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
1054 			return 0;
1055 
1056 		udelay(100);
1057 	}
1058 
1059 	netdev_err(netdev, "mdio write timed out\n");
1060 	return -EIO;
1061 }
1062 
1063 static void ftgmac100_get_drvinfo(struct net_device *netdev,
1064 				  struct ethtool_drvinfo *info)
1065 {
1066 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1067 	strlcpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
1068 }
1069 
1070 static void
1071 ftgmac100_get_ringparam(struct net_device *netdev,
1072 			struct ethtool_ringparam *ering,
1073 			struct kernel_ethtool_ringparam *kernel_ering,
1074 			struct netlink_ext_ack *extack)
1075 {
1076 	struct ftgmac100 *priv = netdev_priv(netdev);
1077 
1078 	memset(ering, 0, sizeof(*ering));
1079 	ering->rx_max_pending = MAX_RX_QUEUE_ENTRIES;
1080 	ering->tx_max_pending = MAX_TX_QUEUE_ENTRIES;
1081 	ering->rx_pending = priv->rx_q_entries;
1082 	ering->tx_pending = priv->tx_q_entries;
1083 }
1084 
1085 static int
1086 ftgmac100_set_ringparam(struct net_device *netdev,
1087 			struct ethtool_ringparam *ering,
1088 			struct kernel_ethtool_ringparam *kernel_ering,
1089 			struct netlink_ext_ack *extack)
1090 {
1091 	struct ftgmac100 *priv = netdev_priv(netdev);
1092 
1093 	if (ering->rx_pending > MAX_RX_QUEUE_ENTRIES ||
1094 	    ering->tx_pending > MAX_TX_QUEUE_ENTRIES ||
1095 	    ering->rx_pending < MIN_RX_QUEUE_ENTRIES ||
1096 	    ering->tx_pending < MIN_TX_QUEUE_ENTRIES ||
1097 	    !is_power_of_2(ering->rx_pending) ||
1098 	    !is_power_of_2(ering->tx_pending))
1099 		return -EINVAL;
1100 
1101 	priv->new_rx_q_entries = ering->rx_pending;
1102 	priv->new_tx_q_entries = ering->tx_pending;
1103 	if (netif_running(netdev))
1104 		schedule_work(&priv->reset_task);
1105 
1106 	return 0;
1107 }
1108 
1109 static void ftgmac100_get_pauseparam(struct net_device *netdev,
1110 				     struct ethtool_pauseparam *pause)
1111 {
1112 	struct ftgmac100 *priv = netdev_priv(netdev);
1113 
1114 	pause->autoneg = priv->aneg_pause;
1115 	pause->tx_pause = priv->tx_pause;
1116 	pause->rx_pause = priv->rx_pause;
1117 }
1118 
1119 static int ftgmac100_set_pauseparam(struct net_device *netdev,
1120 				    struct ethtool_pauseparam *pause)
1121 {
1122 	struct ftgmac100 *priv = netdev_priv(netdev);
1123 	struct phy_device *phydev = netdev->phydev;
1124 
1125 	priv->aneg_pause = pause->autoneg;
1126 	priv->tx_pause = pause->tx_pause;
1127 	priv->rx_pause = pause->rx_pause;
1128 
1129 	if (phydev)
1130 		phy_set_asym_pause(phydev, pause->rx_pause, pause->tx_pause);
1131 
1132 	if (netif_running(netdev)) {
1133 		if (!(phydev && priv->aneg_pause))
1134 			ftgmac100_config_pause(priv);
1135 	}
1136 
1137 	return 0;
1138 }
1139 
1140 static const struct ethtool_ops ftgmac100_ethtool_ops = {
1141 	.get_drvinfo		= ftgmac100_get_drvinfo,
1142 	.get_link		= ethtool_op_get_link,
1143 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1144 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1145 	.nway_reset		= phy_ethtool_nway_reset,
1146 	.get_ringparam		= ftgmac100_get_ringparam,
1147 	.set_ringparam		= ftgmac100_set_ringparam,
1148 	.get_pauseparam		= ftgmac100_get_pauseparam,
1149 	.set_pauseparam		= ftgmac100_set_pauseparam,
1150 };
1151 
1152 static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
1153 {
1154 	struct net_device *netdev = dev_id;
1155 	struct ftgmac100 *priv = netdev_priv(netdev);
1156 	unsigned int status, new_mask = FTGMAC100_INT_BAD;
1157 
1158 	/* Fetch and clear interrupt bits, process abnormal ones */
1159 	status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1160 	iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
1161 	if (unlikely(status & FTGMAC100_INT_BAD)) {
1162 
1163 		/* RX buffer unavailable */
1164 		if (status & FTGMAC100_INT_NO_RXBUF)
1165 			netdev->stats.rx_over_errors++;
1166 
1167 		/* received packet lost due to RX FIFO full */
1168 		if (status & FTGMAC100_INT_RPKT_LOST)
1169 			netdev->stats.rx_fifo_errors++;
1170 
1171 		/* sent packet lost due to excessive TX collision */
1172 		if (status & FTGMAC100_INT_XPKT_LOST)
1173 			netdev->stats.tx_fifo_errors++;
1174 
1175 		/* AHB error -> Reset the chip */
1176 		if (status & FTGMAC100_INT_AHB_ERR) {
1177 			if (net_ratelimit())
1178 				netdev_warn(netdev,
1179 					   "AHB bus error ! Resetting chip.\n");
1180 			iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1181 			schedule_work(&priv->reset_task);
1182 			return IRQ_HANDLED;
1183 		}
1184 
1185 		/* We may need to restart the MAC after such errors, delay
1186 		 * this until after we have freed some Rx buffers though
1187 		 */
1188 		priv->need_mac_restart = true;
1189 
1190 		/* Disable those errors until we restart */
1191 		new_mask &= ~status;
1192 	}
1193 
1194 	/* Only enable "bad" interrupts while NAPI is on */
1195 	iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);
1196 
1197 	/* Schedule NAPI bh */
1198 	napi_schedule_irqoff(&priv->napi);
1199 
1200 	return IRQ_HANDLED;
1201 }
1202 
1203 static bool ftgmac100_check_rx(struct ftgmac100 *priv)
1204 {
1205 	struct ftgmac100_rxdes *rxdes = &priv->rxdes[priv->rx_pointer];
1206 
1207 	/* Do we have a packet ? */
1208 	return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
1209 }
1210 
1211 static int ftgmac100_poll(struct napi_struct *napi, int budget)
1212 {
1213 	struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1214 	int work_done = 0;
1215 	bool more;
1216 
1217 	/* Handle TX completions */
1218 	if (ftgmac100_tx_buf_cleanable(priv))
1219 		ftgmac100_tx_complete(priv);
1220 
1221 	/* Handle RX packets */
1222 	do {
1223 		more = ftgmac100_rx_packet(priv, &work_done);
1224 	} while (more && work_done < budget);
1225 
1226 
1227 	/* The interrupt is telling us to kick the MAC back to life
1228 	 * after an RX overflow
1229 	 */
1230 	if (unlikely(priv->need_mac_restart)) {
1231 		ftgmac100_start_hw(priv);
1232 		priv->need_mac_restart = false;
1233 
1234 		/* Re-enable "bad" interrupts */
1235 		iowrite32(FTGMAC100_INT_BAD,
1236 			  priv->base + FTGMAC100_OFFSET_IER);
1237 	}
1238 
1239 	/* As long as we are waiting for transmit packets to be
1240 	 * completed we keep NAPI going
1241 	 */
1242 	if (ftgmac100_tx_buf_cleanable(priv))
1243 		work_done = budget;
1244 
1245 	if (work_done < budget) {
1246 		/* We are about to re-enable all interrupts. However
1247 		 * the HW has been latching RX/TX packet interrupts while
1248 		 * they were masked. So we clear them first, then we need
1249 		 * to re-check if there's something to process
1250 		 */
1251 		iowrite32(FTGMAC100_INT_RXTX,
1252 			  priv->base + FTGMAC100_OFFSET_ISR);
1253 
1254 		/* Push the above (and provides a barrier vs. subsequent
1255 		 * reads of the descriptor).
1256 		 */
1257 		ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1258 
1259 		/* Check RX and TX descriptors for more work to do */
1260 		if (ftgmac100_check_rx(priv) ||
1261 		    ftgmac100_tx_buf_cleanable(priv))
1262 			return budget;
1263 
1264 		/* deschedule NAPI */
1265 		napi_complete(napi);
1266 
1267 		/* enable all interrupts */
1268 		iowrite32(FTGMAC100_INT_ALL,
1269 			  priv->base + FTGMAC100_OFFSET_IER);
1270 	}
1271 
1272 	return work_done;
1273 }
1274 
1275 static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
1276 {
1277 	int err = 0;
1278 
1279 	/* Re-init descriptors (adjust queue sizes) */
1280 	ftgmac100_init_rings(priv);
1281 
1282 	/* Realloc rx descriptors */
1283 	err = ftgmac100_alloc_rx_buffers(priv);
1284 	if (err && !ignore_alloc_err)
1285 		return err;
1286 
1287 	/* Reinit and restart HW */
1288 	ftgmac100_init_hw(priv);
1289 	ftgmac100_config_pause(priv);
1290 	ftgmac100_start_hw(priv);
1291 
1292 	/* Re-enable the device */
1293 	napi_enable(&priv->napi);
1294 	netif_start_queue(priv->netdev);
1295 
1296 	/* Enable all interrupts */
1297 	iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1298 
1299 	return err;
1300 }
1301 
1302 static void ftgmac100_reset(struct ftgmac100 *priv)
1303 {
1304 	struct net_device *netdev = priv->netdev;
1305 	int err;
1306 
1307 	netdev_dbg(netdev, "Resetting NIC...\n");
1308 
1309 	/* Lock the world */
1310 	rtnl_lock();
1311 	if (netdev->phydev)
1312 		mutex_lock(&netdev->phydev->lock);
1313 	if (priv->mii_bus)
1314 		mutex_lock(&priv->mii_bus->mdio_lock);
1315 
1316 
1317 	/* Check if the interface is still up */
1318 	if (!netif_running(netdev))
1319 		goto bail;
1320 
1321 	/* Stop the network stack */
1322 	netif_trans_update(netdev);
1323 	napi_disable(&priv->napi);
1324 	netif_tx_disable(netdev);
1325 
1326 	/* Stop and reset the MAC */
1327 	ftgmac100_stop_hw(priv);
1328 	err = ftgmac100_reset_and_config_mac(priv);
1329 	if (err) {
1330 		/* Not much we can do ... it might come back... */
1331 		netdev_err(netdev, "attempting to continue...\n");
1332 	}
1333 
1334 	/* Free all rx and tx buffers */
1335 	ftgmac100_free_buffers(priv);
1336 
1337 	/* Setup everything again and restart chip */
1338 	ftgmac100_init_all(priv, true);
1339 
1340 	netdev_dbg(netdev, "Reset done !\n");
1341  bail:
1342 	if (priv->mii_bus)
1343 		mutex_unlock(&priv->mii_bus->mdio_lock);
1344 	if (netdev->phydev)
1345 		mutex_unlock(&netdev->phydev->lock);
1346 	rtnl_unlock();
1347 }
1348 
1349 static void ftgmac100_reset_task(struct work_struct *work)
1350 {
1351 	struct ftgmac100 *priv = container_of(work, struct ftgmac100,
1352 					      reset_task);
1353 
1354 	ftgmac100_reset(priv);
1355 }
1356 
1357 static void ftgmac100_adjust_link(struct net_device *netdev)
1358 {
1359 	struct ftgmac100 *priv = netdev_priv(netdev);
1360 	struct phy_device *phydev = netdev->phydev;
1361 	bool tx_pause, rx_pause;
1362 	int new_speed;
1363 
1364 	/* We store "no link" as speed 0 */
1365 	if (!phydev->link)
1366 		new_speed = 0;
1367 	else
1368 		new_speed = phydev->speed;
1369 
1370 	/* Grab pause settings from PHY if configured to do so */
1371 	if (priv->aneg_pause) {
1372 		rx_pause = tx_pause = phydev->pause;
1373 		if (phydev->asym_pause)
1374 			tx_pause = !rx_pause;
1375 	} else {
1376 		rx_pause = priv->rx_pause;
1377 		tx_pause = priv->tx_pause;
1378 	}
1379 
1380 	/* Link hasn't changed, do nothing */
1381 	if (phydev->speed == priv->cur_speed &&
1382 	    phydev->duplex == priv->cur_duplex &&
1383 	    rx_pause == priv->rx_pause &&
1384 	    tx_pause == priv->tx_pause)
1385 		return;
1386 
1387 	/* Print status if we have a link or we had one and just lost it,
1388 	 * don't print otherwise.
1389 	 */
1390 	if (new_speed || priv->cur_speed)
1391 		phy_print_status(phydev);
1392 
1393 	priv->cur_speed = new_speed;
1394 	priv->cur_duplex = phydev->duplex;
1395 	priv->rx_pause = rx_pause;
1396 	priv->tx_pause = tx_pause;
1397 
1398 	/* Link is down, do nothing else */
1399 	if (!new_speed)
1400 		return;
1401 
1402 	/* Disable all interrupts */
1403 	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1404 
1405 	/* Release phy lock to allow ftgmac100_reset to aquire it, keeping lock
1406 	 * order consistent to prevent dead lock.
1407 	 */
1408 	if (netdev->phydev)
1409 		mutex_unlock(&netdev->phydev->lock);
1410 
1411 	ftgmac100_reset(priv);
1412 
1413 	if (netdev->phydev)
1414 		mutex_lock(&netdev->phydev->lock);
1415 
1416 }
1417 
1418 static int ftgmac100_mii_probe(struct net_device *netdev)
1419 {
1420 	struct ftgmac100 *priv = netdev_priv(netdev);
1421 	struct platform_device *pdev = to_platform_device(priv->dev);
1422 	struct device_node *np = pdev->dev.of_node;
1423 	struct phy_device *phydev;
1424 	phy_interface_t phy_intf;
1425 	int err;
1426 
1427 	/* Default to RGMII. It's a gigabit part after all */
1428 	err = of_get_phy_mode(np, &phy_intf);
1429 	if (err)
1430 		phy_intf = PHY_INTERFACE_MODE_RGMII;
1431 
1432 	/* Aspeed only supports these. I don't know about other IP
1433 	 * block vendors so I'm going to just let them through for
1434 	 * now. Note that this is only a warning if for some obscure
1435 	 * reason the DT really means to lie about it or it's a newer
1436 	 * part we don't know about.
1437 	 *
1438 	 * On the Aspeed SoC there are additionally straps and SCU
1439 	 * control bits that could tell us what the interface is
1440 	 * (or allow us to configure it while the IP block is held
1441 	 * in reset). For now I chose to keep this driver away from
1442 	 * those SoC specific bits and assume the device-tree is
1443 	 * right and the SCU has been configured properly by pinmux
1444 	 * or the firmware.
1445 	 */
1446 	if (priv->is_aspeed && !(phy_interface_mode_is_rgmii(phy_intf))) {
1447 		netdev_warn(netdev,
1448 			    "Unsupported PHY mode %s !\n",
1449 			    phy_modes(phy_intf));
1450 	}
1451 
1452 	phydev = phy_find_first(priv->mii_bus);
1453 	if (!phydev) {
1454 		netdev_info(netdev, "%s: no PHY found\n", netdev->name);
1455 		return -ENODEV;
1456 	}
1457 
1458 	phydev = phy_connect(netdev, phydev_name(phydev),
1459 			     &ftgmac100_adjust_link, phy_intf);
1460 
1461 	if (IS_ERR(phydev)) {
1462 		netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
1463 		return PTR_ERR(phydev);
1464 	}
1465 
1466 	/* Indicate that we support PAUSE frames (see comment in
1467 	 * Documentation/networking/phy.rst)
1468 	 */
1469 	phy_support_asym_pause(phydev);
1470 
1471 	/* Display what we found */
1472 	phy_attached_info(phydev);
1473 
1474 	return 0;
1475 }
1476 
1477 static int ftgmac100_open(struct net_device *netdev)
1478 {
1479 	struct ftgmac100 *priv = netdev_priv(netdev);
1480 	int err;
1481 
1482 	/* Allocate ring buffers  */
1483 	err = ftgmac100_alloc_rings(priv);
1484 	if (err) {
1485 		netdev_err(netdev, "Failed to allocate descriptors\n");
1486 		return err;
1487 	}
1488 
1489 	/* When using NC-SI we force the speed to 100Mbit/s full duplex,
1490 	 *
1491 	 * Otherwise we leave it set to 0 (no link), the link
1492 	 * message from the PHY layer will handle setting it up to
1493 	 * something else if needed.
1494 	 */
1495 	if (priv->use_ncsi) {
1496 		priv->cur_duplex = DUPLEX_FULL;
1497 		priv->cur_speed = SPEED_100;
1498 	} else {
1499 		priv->cur_duplex = 0;
1500 		priv->cur_speed = 0;
1501 	}
1502 
1503 	/* Reset the hardware */
1504 	err = ftgmac100_reset_and_config_mac(priv);
1505 	if (err)
1506 		goto err_hw;
1507 
1508 	/* Initialize NAPI */
1509 	netif_napi_add(netdev, &priv->napi, ftgmac100_poll, 64);
1510 
1511 	/* Grab our interrupt */
1512 	err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
1513 	if (err) {
1514 		netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
1515 		goto err_irq;
1516 	}
1517 
1518 	/* Start things up */
1519 	err = ftgmac100_init_all(priv, false);
1520 	if (err) {
1521 		netdev_err(netdev, "Failed to allocate packet buffers\n");
1522 		goto err_alloc;
1523 	}
1524 
1525 	if (netdev->phydev) {
1526 		/* If we have a PHY, start polling */
1527 		phy_start(netdev->phydev);
1528 	} else if (priv->use_ncsi) {
1529 		/* If using NC-SI, set our carrier on and start the stack */
1530 		netif_carrier_on(netdev);
1531 
1532 		/* Start the NCSI device */
1533 		err = ncsi_start_dev(priv->ndev);
1534 		if (err)
1535 			goto err_ncsi;
1536 	}
1537 
1538 	return 0;
1539 
1540  err_ncsi:
1541 	napi_disable(&priv->napi);
1542 	netif_stop_queue(netdev);
1543  err_alloc:
1544 	ftgmac100_free_buffers(priv);
1545 	free_irq(netdev->irq, netdev);
1546  err_irq:
1547 	netif_napi_del(&priv->napi);
1548  err_hw:
1549 	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1550 	ftgmac100_free_rings(priv);
1551 	return err;
1552 }
1553 
1554 static int ftgmac100_stop(struct net_device *netdev)
1555 {
1556 	struct ftgmac100 *priv = netdev_priv(netdev);
1557 
1558 	/* Note about the reset task: We are called with the rtnl lock
1559 	 * held, so we are synchronized against the core of the reset
1560 	 * task. We must not try to synchronously cancel it otherwise
1561 	 * we can deadlock. But since it will test for netif_running()
1562 	 * which has already been cleared by the net core, we don't
1563 	 * anything special to do.
1564 	 */
1565 
1566 	/* disable all interrupts */
1567 	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1568 
1569 	netif_stop_queue(netdev);
1570 	napi_disable(&priv->napi);
1571 	netif_napi_del(&priv->napi);
1572 	if (netdev->phydev)
1573 		phy_stop(netdev->phydev);
1574 	else if (priv->use_ncsi)
1575 		ncsi_stop_dev(priv->ndev);
1576 
1577 	ftgmac100_stop_hw(priv);
1578 	free_irq(netdev->irq, netdev);
1579 	ftgmac100_free_buffers(priv);
1580 	ftgmac100_free_rings(priv);
1581 
1582 	return 0;
1583 }
1584 
1585 static void ftgmac100_tx_timeout(struct net_device *netdev, unsigned int txqueue)
1586 {
1587 	struct ftgmac100 *priv = netdev_priv(netdev);
1588 
1589 	/* Disable all interrupts */
1590 	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1591 
1592 	/* Do the reset outside of interrupt context */
1593 	schedule_work(&priv->reset_task);
1594 }
1595 
1596 static int ftgmac100_set_features(struct net_device *netdev,
1597 				  netdev_features_t features)
1598 {
1599 	struct ftgmac100 *priv = netdev_priv(netdev);
1600 	netdev_features_t changed = netdev->features ^ features;
1601 
1602 	if (!netif_running(netdev))
1603 		return 0;
1604 
1605 	/* Update the vlan filtering bit */
1606 	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
1607 		u32 maccr;
1608 
1609 		maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
1610 		if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
1611 			maccr |= FTGMAC100_MACCR_RM_VLAN;
1612 		else
1613 			maccr &= ~FTGMAC100_MACCR_RM_VLAN;
1614 		iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
1615 	}
1616 
1617 	return 0;
1618 }
1619 
1620 #ifdef CONFIG_NET_POLL_CONTROLLER
1621 static void ftgmac100_poll_controller(struct net_device *netdev)
1622 {
1623 	unsigned long flags;
1624 
1625 	local_irq_save(flags);
1626 	ftgmac100_interrupt(netdev->irq, netdev);
1627 	local_irq_restore(flags);
1628 }
1629 #endif
1630 
1631 static const struct net_device_ops ftgmac100_netdev_ops = {
1632 	.ndo_open		= ftgmac100_open,
1633 	.ndo_stop		= ftgmac100_stop,
1634 	.ndo_start_xmit		= ftgmac100_hard_start_xmit,
1635 	.ndo_set_mac_address	= ftgmac100_set_mac_addr,
1636 	.ndo_validate_addr	= eth_validate_addr,
1637 	.ndo_eth_ioctl		= phy_do_ioctl,
1638 	.ndo_tx_timeout		= ftgmac100_tx_timeout,
1639 	.ndo_set_rx_mode	= ftgmac100_set_rx_mode,
1640 	.ndo_set_features	= ftgmac100_set_features,
1641 #ifdef CONFIG_NET_POLL_CONTROLLER
1642 	.ndo_poll_controller	= ftgmac100_poll_controller,
1643 #endif
1644 	.ndo_vlan_rx_add_vid	= ncsi_vlan_rx_add_vid,
1645 	.ndo_vlan_rx_kill_vid	= ncsi_vlan_rx_kill_vid,
1646 };
1647 
1648 static int ftgmac100_setup_mdio(struct net_device *netdev)
1649 {
1650 	struct ftgmac100 *priv = netdev_priv(netdev);
1651 	struct platform_device *pdev = to_platform_device(priv->dev);
1652 	struct device_node *np = pdev->dev.of_node;
1653 	struct device_node *mdio_np;
1654 	int i, err = 0;
1655 	u32 reg;
1656 
1657 	/* initialize mdio bus */
1658 	priv->mii_bus = mdiobus_alloc();
1659 	if (!priv->mii_bus)
1660 		return -EIO;
1661 
1662 	if (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1663 	    of_device_is_compatible(np, "aspeed,ast2500-mac")) {
1664 		/* The AST2600 has a separate MDIO controller */
1665 
1666 		/* For the AST2400 and AST2500 this driver only supports the
1667 		 * old MDIO interface
1668 		 */
1669 		reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
1670 		reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
1671 		iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
1672 	}
1673 
1674 	priv->mii_bus->name = "ftgmac100_mdio";
1675 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1676 		 pdev->name, pdev->id);
1677 	priv->mii_bus->parent = priv->dev;
1678 	priv->mii_bus->priv = priv->netdev;
1679 	priv->mii_bus->read = ftgmac100_mdiobus_read;
1680 	priv->mii_bus->write = ftgmac100_mdiobus_write;
1681 
1682 	for (i = 0; i < PHY_MAX_ADDR; i++)
1683 		priv->mii_bus->irq[i] = PHY_POLL;
1684 
1685 	mdio_np = of_get_child_by_name(np, "mdio");
1686 
1687 	err = of_mdiobus_register(priv->mii_bus, mdio_np);
1688 	if (err) {
1689 		dev_err(priv->dev, "Cannot register MDIO bus!\n");
1690 		goto err_register_mdiobus;
1691 	}
1692 
1693 	of_node_put(mdio_np);
1694 
1695 	return 0;
1696 
1697 err_register_mdiobus:
1698 	mdiobus_free(priv->mii_bus);
1699 	return err;
1700 }
1701 
1702 static void ftgmac100_phy_disconnect(struct net_device *netdev)
1703 {
1704 	if (!netdev->phydev)
1705 		return;
1706 
1707 	phy_disconnect(netdev->phydev);
1708 }
1709 
1710 static void ftgmac100_destroy_mdio(struct net_device *netdev)
1711 {
1712 	struct ftgmac100 *priv = netdev_priv(netdev);
1713 
1714 	if (!priv->mii_bus)
1715 		return;
1716 
1717 	mdiobus_unregister(priv->mii_bus);
1718 	mdiobus_free(priv->mii_bus);
1719 }
1720 
1721 static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
1722 {
1723 	if (unlikely(nd->state != ncsi_dev_state_functional))
1724 		return;
1725 
1726 	netdev_dbg(nd->dev, "NCSI interface %s\n",
1727 		   nd->link_up ? "up" : "down");
1728 }
1729 
1730 static int ftgmac100_setup_clk(struct ftgmac100 *priv)
1731 {
1732 	struct clk *clk;
1733 	int rc;
1734 
1735 	clk = devm_clk_get(priv->dev, NULL /* MACCLK */);
1736 	if (IS_ERR(clk))
1737 		return PTR_ERR(clk);
1738 	priv->clk = clk;
1739 	rc = clk_prepare_enable(priv->clk);
1740 	if (rc)
1741 		return rc;
1742 
1743 	/* Aspeed specifies a 100MHz clock is required for up to
1744 	 * 1000Mbit link speeds. As NCSI is limited to 100Mbit, 25MHz
1745 	 * is sufficient
1746 	 */
1747 	rc = clk_set_rate(priv->clk, priv->use_ncsi ? FTGMAC_25MHZ :
1748 			  FTGMAC_100MHZ);
1749 	if (rc)
1750 		goto cleanup_clk;
1751 
1752 	/* RCLK is for RMII, typically used for NCSI. Optional because it's not
1753 	 * necessary if it's the AST2400 MAC, or the MAC is configured for
1754 	 * RGMII, or the controller is not an ASPEED-based controller.
1755 	 */
1756 	priv->rclk = devm_clk_get_optional(priv->dev, "RCLK");
1757 	rc = clk_prepare_enable(priv->rclk);
1758 	if (!rc)
1759 		return 0;
1760 
1761 cleanup_clk:
1762 	clk_disable_unprepare(priv->clk);
1763 
1764 	return rc;
1765 }
1766 
1767 static bool ftgmac100_has_child_node(struct device_node *np, const char *name)
1768 {
1769 	struct device_node *child_np = of_get_child_by_name(np, name);
1770 	bool ret = false;
1771 
1772 	if (child_np) {
1773 		ret = true;
1774 		of_node_put(child_np);
1775 	}
1776 
1777 	return ret;
1778 }
1779 
1780 static int ftgmac100_probe(struct platform_device *pdev)
1781 {
1782 	struct resource *res;
1783 	int irq;
1784 	struct net_device *netdev;
1785 	struct ftgmac100 *priv;
1786 	struct device_node *np;
1787 	int err = 0;
1788 
1789 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1790 	if (!res)
1791 		return -ENXIO;
1792 
1793 	irq = platform_get_irq(pdev, 0);
1794 	if (irq < 0)
1795 		return irq;
1796 
1797 	/* setup net_device */
1798 	netdev = alloc_etherdev(sizeof(*priv));
1799 	if (!netdev) {
1800 		err = -ENOMEM;
1801 		goto err_alloc_etherdev;
1802 	}
1803 
1804 	SET_NETDEV_DEV(netdev, &pdev->dev);
1805 
1806 	netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1807 	netdev->netdev_ops = &ftgmac100_netdev_ops;
1808 	netdev->watchdog_timeo = 5 * HZ;
1809 
1810 	platform_set_drvdata(pdev, netdev);
1811 
1812 	/* setup private data */
1813 	priv = netdev_priv(netdev);
1814 	priv->netdev = netdev;
1815 	priv->dev = &pdev->dev;
1816 	INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1817 
1818 	/* map io memory */
1819 	priv->res = request_mem_region(res->start, resource_size(res),
1820 				       dev_name(&pdev->dev));
1821 	if (!priv->res) {
1822 		dev_err(&pdev->dev, "Could not reserve memory region\n");
1823 		err = -ENOMEM;
1824 		goto err_req_mem;
1825 	}
1826 
1827 	priv->base = ioremap(res->start, resource_size(res));
1828 	if (!priv->base) {
1829 		dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
1830 		err = -EIO;
1831 		goto err_ioremap;
1832 	}
1833 
1834 	netdev->irq = irq;
1835 
1836 	/* Enable pause */
1837 	priv->tx_pause = true;
1838 	priv->rx_pause = true;
1839 	priv->aneg_pause = true;
1840 
1841 	/* MAC address from chip or random one */
1842 	ftgmac100_initial_mac(priv);
1843 
1844 	np = pdev->dev.of_node;
1845 	if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1846 		   of_device_is_compatible(np, "aspeed,ast2500-mac") ||
1847 		   of_device_is_compatible(np, "aspeed,ast2600-mac"))) {
1848 		priv->rxdes0_edorr_mask = BIT(30);
1849 		priv->txdes0_edotr_mask = BIT(30);
1850 		priv->is_aspeed = true;
1851 	} else {
1852 		priv->rxdes0_edorr_mask = BIT(15);
1853 		priv->txdes0_edotr_mask = BIT(15);
1854 	}
1855 
1856 	if (np && of_get_property(np, "use-ncsi", NULL)) {
1857 		if (!IS_ENABLED(CONFIG_NET_NCSI)) {
1858 			dev_err(&pdev->dev, "NCSI stack not enabled\n");
1859 			err = -EINVAL;
1860 			goto err_phy_connect;
1861 		}
1862 
1863 		dev_info(&pdev->dev, "Using NCSI interface\n");
1864 		priv->use_ncsi = true;
1865 		priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
1866 		if (!priv->ndev) {
1867 			err = -EINVAL;
1868 			goto err_phy_connect;
1869 		}
1870 	} else if (np && of_get_property(np, "phy-handle", NULL)) {
1871 		struct phy_device *phy;
1872 
1873 		/* Support "mdio"/"phy" child nodes for ast2400/2500 with
1874 		 * an embedded MDIO controller. Automatically scan the DTS for
1875 		 * available PHYs and register them.
1876 		 */
1877 		if (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1878 		    of_device_is_compatible(np, "aspeed,ast2500-mac")) {
1879 			err = ftgmac100_setup_mdio(netdev);
1880 			if (err)
1881 				goto err_setup_mdio;
1882 		}
1883 
1884 		phy = of_phy_get_and_connect(priv->netdev, np,
1885 					     &ftgmac100_adjust_link);
1886 		if (!phy) {
1887 			dev_err(&pdev->dev, "Failed to connect to phy\n");
1888 			err = -EINVAL;
1889 			goto err_phy_connect;
1890 		}
1891 
1892 		/* Indicate that we support PAUSE frames (see comment in
1893 		 * Documentation/networking/phy.rst)
1894 		 */
1895 		phy_support_asym_pause(phy);
1896 
1897 		/* Display what we found */
1898 		phy_attached_info(phy);
1899 	} else if (np && !ftgmac100_has_child_node(np, "mdio")) {
1900 		/* Support legacy ASPEED devicetree descriptions that decribe a
1901 		 * MAC with an embedded MDIO controller but have no "mdio"
1902 		 * child node. Automatically scan the MDIO bus for available
1903 		 * PHYs.
1904 		 */
1905 		priv->use_ncsi = false;
1906 		err = ftgmac100_setup_mdio(netdev);
1907 		if (err)
1908 			goto err_setup_mdio;
1909 
1910 		err = ftgmac100_mii_probe(netdev);
1911 		if (err) {
1912 			dev_err(priv->dev, "MII probe failed!\n");
1913 			goto err_ncsi_dev;
1914 		}
1915 
1916 	}
1917 
1918 	if (priv->is_aspeed) {
1919 		err = ftgmac100_setup_clk(priv);
1920 		if (err)
1921 			goto err_phy_connect;
1922 
1923 		/* Disable ast2600 problematic HW arbitration */
1924 		if (of_device_is_compatible(np, "aspeed,ast2600-mac"))
1925 			iowrite32(FTGMAC100_TM_DEFAULT,
1926 				  priv->base + FTGMAC100_OFFSET_TM);
1927 	}
1928 
1929 	/* Default ring sizes */
1930 	priv->rx_q_entries = priv->new_rx_q_entries = DEF_RX_QUEUE_ENTRIES;
1931 	priv->tx_q_entries = priv->new_tx_q_entries = DEF_TX_QUEUE_ENTRIES;
1932 
1933 	/* Base feature set */
1934 	netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
1935 		NETIF_F_GRO | NETIF_F_SG | NETIF_F_HW_VLAN_CTAG_RX |
1936 		NETIF_F_HW_VLAN_CTAG_TX;
1937 
1938 	if (priv->use_ncsi)
1939 		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1940 
1941 	/* AST2400  doesn't have working HW checksum generation */
1942 	if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac")))
1943 		netdev->hw_features &= ~NETIF_F_HW_CSUM;
1944 
1945 	/* AST2600 tx checksum with NCSI is broken */
1946 	if (priv->use_ncsi && of_device_is_compatible(np, "aspeed,ast2600-mac"))
1947 		netdev->hw_features &= ~NETIF_F_HW_CSUM;
1948 
1949 	if (np && of_get_property(np, "no-hw-checksum", NULL))
1950 		netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM);
1951 	netdev->features |= netdev->hw_features;
1952 
1953 	/* register network device */
1954 	err = register_netdev(netdev);
1955 	if (err) {
1956 		dev_err(&pdev->dev, "Failed to register netdev\n");
1957 		goto err_register_netdev;
1958 	}
1959 
1960 	netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
1961 
1962 	return 0;
1963 
1964 err_register_netdev:
1965 	clk_disable_unprepare(priv->rclk);
1966 	clk_disable_unprepare(priv->clk);
1967 err_phy_connect:
1968 	ftgmac100_phy_disconnect(netdev);
1969 err_ncsi_dev:
1970 	if (priv->ndev)
1971 		ncsi_unregister_dev(priv->ndev);
1972 	ftgmac100_destroy_mdio(netdev);
1973 err_setup_mdio:
1974 	iounmap(priv->base);
1975 err_ioremap:
1976 	release_resource(priv->res);
1977 err_req_mem:
1978 	free_netdev(netdev);
1979 err_alloc_etherdev:
1980 	return err;
1981 }
1982 
1983 static int ftgmac100_remove(struct platform_device *pdev)
1984 {
1985 	struct net_device *netdev;
1986 	struct ftgmac100 *priv;
1987 
1988 	netdev = platform_get_drvdata(pdev);
1989 	priv = netdev_priv(netdev);
1990 
1991 	if (priv->ndev)
1992 		ncsi_unregister_dev(priv->ndev);
1993 	unregister_netdev(netdev);
1994 
1995 	clk_disable_unprepare(priv->rclk);
1996 	clk_disable_unprepare(priv->clk);
1997 
1998 	/* There's a small chance the reset task will have been re-queued,
1999 	 * during stop, make sure it's gone before we free the structure.
2000 	 */
2001 	cancel_work_sync(&priv->reset_task);
2002 
2003 	ftgmac100_phy_disconnect(netdev);
2004 	ftgmac100_destroy_mdio(netdev);
2005 
2006 	iounmap(priv->base);
2007 	release_resource(priv->res);
2008 
2009 	netif_napi_del(&priv->napi);
2010 	free_netdev(netdev);
2011 	return 0;
2012 }
2013 
2014 static const struct of_device_id ftgmac100_of_match[] = {
2015 	{ .compatible = "faraday,ftgmac100" },
2016 	{ }
2017 };
2018 MODULE_DEVICE_TABLE(of, ftgmac100_of_match);
2019 
2020 static struct platform_driver ftgmac100_driver = {
2021 	.probe	= ftgmac100_probe,
2022 	.remove	= ftgmac100_remove,
2023 	.driver	= {
2024 		.name		= DRV_NAME,
2025 		.of_match_table	= ftgmac100_of_match,
2026 	},
2027 };
2028 module_platform_driver(ftgmac100_driver);
2029 
2030 MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
2031 MODULE_DESCRIPTION("FTGMAC100 driver");
2032 MODULE_LICENSE("GPL");
2033