1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Faraday FTGMAC100 Gigabit Ethernet 4 * 5 * (C) Copyright 2009-2011 Faraday Technology 6 * Po-Yu Chuang <ratbert@faraday-tech.com> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/clk.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/etherdevice.h> 14 #include <linux/ethtool.h> 15 #include <linux/interrupt.h> 16 #include <linux/io.h> 17 #include <linux/module.h> 18 #include <linux/netdevice.h> 19 #include <linux/of.h> 20 #include <linux/of_mdio.h> 21 #include <linux/phy.h> 22 #include <linux/platform_device.h> 23 #include <linux/property.h> 24 #include <linux/crc32.h> 25 #include <linux/if_vlan.h> 26 #include <linux/of_net.h> 27 #include <linux/phy_fixed.h> 28 #include <net/ip.h> 29 #include <net/ncsi.h> 30 31 #include "ftgmac100.h" 32 33 #define DRV_NAME "ftgmac100" 34 35 /* Arbitrary values, I am not sure the HW has limits */ 36 #define MAX_RX_QUEUE_ENTRIES 1024 37 #define MAX_TX_QUEUE_ENTRIES 1024 38 #define MIN_RX_QUEUE_ENTRIES 32 39 #define MIN_TX_QUEUE_ENTRIES 32 40 41 /* Defaults */ 42 #define DEF_RX_QUEUE_ENTRIES 128 43 #define DEF_TX_QUEUE_ENTRIES 128 44 45 #define MAX_PKT_SIZE 1536 46 #define RX_BUF_SIZE MAX_PKT_SIZE /* must be smaller than 0x3fff */ 47 48 /* Min number of tx ring entries before stopping queue */ 49 #define TX_THRESHOLD (MAX_SKB_FRAGS + 1) 50 51 #define FTGMAC_100MHZ 100000000 52 #define FTGMAC_25MHZ 25000000 53 54 /* For NC-SI to register a fixed-link phy device */ 55 static struct fixed_phy_status ncsi_phy_status = { 56 .link = 1, 57 .speed = SPEED_100, 58 .duplex = DUPLEX_FULL, 59 .pause = 0, 60 .asym_pause = 0 61 }; 62 63 struct ftgmac100 { 64 /* Registers */ 65 struct resource *res; 66 void __iomem *base; 67 68 /* Rx ring */ 69 unsigned int rx_q_entries; 70 struct ftgmac100_rxdes *rxdes; 71 dma_addr_t rxdes_dma; 72 struct sk_buff **rx_skbs; 73 unsigned int rx_pointer; 74 u32 rxdes0_edorr_mask; 75 76 /* Tx ring */ 77 unsigned int tx_q_entries; 78 struct ftgmac100_txdes *txdes; 79 dma_addr_t txdes_dma; 80 struct sk_buff **tx_skbs; 81 unsigned int tx_clean_pointer; 82 unsigned int tx_pointer; 83 u32 txdes0_edotr_mask; 84 85 /* Used to signal the reset task of ring change request */ 86 unsigned int new_rx_q_entries; 87 unsigned int new_tx_q_entries; 88 89 /* Scratch page to use when rx skb alloc fails */ 90 void *rx_scratch; 91 dma_addr_t rx_scratch_dma; 92 93 /* Component structures */ 94 struct net_device *netdev; 95 struct device *dev; 96 struct ncsi_dev *ndev; 97 struct napi_struct napi; 98 struct work_struct reset_task; 99 struct mii_bus *mii_bus; 100 struct clk *clk; 101 102 /* AST2500/AST2600 RMII ref clock gate */ 103 struct clk *rclk; 104 105 /* Link management */ 106 int cur_speed; 107 int cur_duplex; 108 bool use_ncsi; 109 110 /* Multicast filter settings */ 111 u32 maht0; 112 u32 maht1; 113 114 /* Flow control settings */ 115 bool tx_pause; 116 bool rx_pause; 117 bool aneg_pause; 118 119 /* Misc */ 120 bool need_mac_restart; 121 bool is_aspeed; 122 }; 123 124 static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr) 125 { 126 struct net_device *netdev = priv->netdev; 127 int i; 128 129 /* NOTE: reset clears all registers */ 130 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR); 131 iowrite32(maccr | FTGMAC100_MACCR_SW_RST, 132 priv->base + FTGMAC100_OFFSET_MACCR); 133 for (i = 0; i < 200; i++) { 134 unsigned int maccr; 135 136 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR); 137 if (!(maccr & FTGMAC100_MACCR_SW_RST)) 138 return 0; 139 140 udelay(1); 141 } 142 143 netdev_err(netdev, "Hardware reset failed\n"); 144 return -EIO; 145 } 146 147 static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv) 148 { 149 u32 maccr = 0; 150 151 switch (priv->cur_speed) { 152 case SPEED_10: 153 case 0: /* no link */ 154 break; 155 156 case SPEED_100: 157 maccr |= FTGMAC100_MACCR_FAST_MODE; 158 break; 159 160 case SPEED_1000: 161 maccr |= FTGMAC100_MACCR_GIGA_MODE; 162 break; 163 default: 164 netdev_err(priv->netdev, "Unknown speed %d !\n", 165 priv->cur_speed); 166 break; 167 } 168 169 /* (Re)initialize the queue pointers */ 170 priv->rx_pointer = 0; 171 priv->tx_clean_pointer = 0; 172 priv->tx_pointer = 0; 173 174 /* The doc says reset twice with 10us interval */ 175 if (ftgmac100_reset_mac(priv, maccr)) 176 return -EIO; 177 usleep_range(10, 1000); 178 return ftgmac100_reset_mac(priv, maccr); 179 } 180 181 static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac) 182 { 183 unsigned int maddr = mac[0] << 8 | mac[1]; 184 unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5]; 185 186 iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR); 187 iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR); 188 } 189 190 static int ftgmac100_initial_mac(struct ftgmac100 *priv) 191 { 192 u8 mac[ETH_ALEN]; 193 unsigned int m; 194 unsigned int l; 195 int err; 196 197 err = of_get_ethdev_address(priv->dev->of_node, priv->netdev); 198 if (err == -EPROBE_DEFER) 199 return err; 200 if (!err) { 201 dev_info(priv->dev, "Read MAC address %pM from device tree\n", 202 priv->netdev->dev_addr); 203 return 0; 204 } 205 206 m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR); 207 l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR); 208 209 mac[0] = (m >> 8) & 0xff; 210 mac[1] = m & 0xff; 211 mac[2] = (l >> 24) & 0xff; 212 mac[3] = (l >> 16) & 0xff; 213 mac[4] = (l >> 8) & 0xff; 214 mac[5] = l & 0xff; 215 216 if (is_valid_ether_addr(mac)) { 217 eth_hw_addr_set(priv->netdev, mac); 218 dev_info(priv->dev, "Read MAC address %pM from chip\n", mac); 219 } else { 220 eth_hw_addr_random(priv->netdev); 221 dev_info(priv->dev, "Generated random MAC address %pM\n", 222 priv->netdev->dev_addr); 223 } 224 225 return 0; 226 } 227 228 static int ftgmac100_set_mac_addr(struct net_device *dev, void *p) 229 { 230 int ret; 231 232 ret = eth_prepare_mac_addr_change(dev, p); 233 if (ret < 0) 234 return ret; 235 236 eth_commit_mac_addr_change(dev, p); 237 ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr); 238 239 return 0; 240 } 241 242 static void ftgmac100_config_pause(struct ftgmac100 *priv) 243 { 244 u32 fcr = FTGMAC100_FCR_PAUSE_TIME(16); 245 246 /* Throttle tx queue when receiving pause frames */ 247 if (priv->rx_pause) 248 fcr |= FTGMAC100_FCR_FC_EN; 249 250 /* Enables sending pause frames when the RX queue is past a 251 * certain threshold. 252 */ 253 if (priv->tx_pause) 254 fcr |= FTGMAC100_FCR_FCTHR_EN; 255 256 iowrite32(fcr, priv->base + FTGMAC100_OFFSET_FCR); 257 } 258 259 static void ftgmac100_init_hw(struct ftgmac100 *priv) 260 { 261 u32 reg, rfifo_sz, tfifo_sz; 262 263 /* Clear stale interrupts */ 264 reg = ioread32(priv->base + FTGMAC100_OFFSET_ISR); 265 iowrite32(reg, priv->base + FTGMAC100_OFFSET_ISR); 266 267 /* Setup RX ring buffer base */ 268 iowrite32(priv->rxdes_dma, priv->base + FTGMAC100_OFFSET_RXR_BADR); 269 270 /* Setup TX ring buffer base */ 271 iowrite32(priv->txdes_dma, priv->base + FTGMAC100_OFFSET_NPTXR_BADR); 272 273 /* Configure RX buffer size */ 274 iowrite32(FTGMAC100_RBSR_SIZE(RX_BUF_SIZE), 275 priv->base + FTGMAC100_OFFSET_RBSR); 276 277 /* Set RX descriptor autopoll */ 278 iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1), 279 priv->base + FTGMAC100_OFFSET_APTC); 280 281 /* Write MAC address */ 282 ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr); 283 284 /* Write multicast filter */ 285 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0); 286 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1); 287 288 /* Configure descriptor sizes and increase burst sizes according 289 * to values in Aspeed SDK. The FIFO arbitration is enabled and 290 * the thresholds set based on the recommended values in the 291 * AST2400 specification. 292 */ 293 iowrite32(FTGMAC100_DBLAC_RXDES_SIZE(2) | /* 2*8 bytes RX descs */ 294 FTGMAC100_DBLAC_TXDES_SIZE(2) | /* 2*8 bytes TX descs */ 295 FTGMAC100_DBLAC_RXBURST_SIZE(3) | /* 512 bytes max RX bursts */ 296 FTGMAC100_DBLAC_TXBURST_SIZE(3) | /* 512 bytes max TX bursts */ 297 FTGMAC100_DBLAC_RX_THR_EN | /* Enable fifo threshold arb */ 298 FTGMAC100_DBLAC_RXFIFO_HTHR(6) | /* 6/8 of FIFO high threshold */ 299 FTGMAC100_DBLAC_RXFIFO_LTHR(2), /* 2/8 of FIFO low threshold */ 300 priv->base + FTGMAC100_OFFSET_DBLAC); 301 302 /* Interrupt mitigation configured for 1 interrupt/packet. HW interrupt 303 * mitigation doesn't seem to provide any benefit with NAPI so leave 304 * it at that. 305 */ 306 iowrite32(FTGMAC100_ITC_RXINT_THR(1) | 307 FTGMAC100_ITC_TXINT_THR(1), 308 priv->base + FTGMAC100_OFFSET_ITC); 309 310 /* Configure FIFO sizes in the TPAFCR register */ 311 reg = ioread32(priv->base + FTGMAC100_OFFSET_FEAR); 312 rfifo_sz = reg & 0x00000007; 313 tfifo_sz = (reg >> 3) & 0x00000007; 314 reg = ioread32(priv->base + FTGMAC100_OFFSET_TPAFCR); 315 reg &= ~0x3f000000; 316 reg |= (tfifo_sz << 27); 317 reg |= (rfifo_sz << 24); 318 iowrite32(reg, priv->base + FTGMAC100_OFFSET_TPAFCR); 319 } 320 321 static void ftgmac100_start_hw(struct ftgmac100 *priv) 322 { 323 u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR); 324 325 /* Keep the original GMAC and FAST bits */ 326 maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE); 327 328 /* Add all the main enable bits */ 329 maccr |= FTGMAC100_MACCR_TXDMA_EN | 330 FTGMAC100_MACCR_RXDMA_EN | 331 FTGMAC100_MACCR_TXMAC_EN | 332 FTGMAC100_MACCR_RXMAC_EN | 333 FTGMAC100_MACCR_CRC_APD | 334 FTGMAC100_MACCR_PHY_LINK_LEVEL | 335 FTGMAC100_MACCR_RX_RUNT | 336 FTGMAC100_MACCR_RX_BROADPKT; 337 338 /* Add other bits as needed */ 339 if (priv->cur_duplex == DUPLEX_FULL) 340 maccr |= FTGMAC100_MACCR_FULLDUP; 341 if (priv->netdev->flags & IFF_PROMISC) 342 maccr |= FTGMAC100_MACCR_RX_ALL; 343 if (priv->netdev->flags & IFF_ALLMULTI) 344 maccr |= FTGMAC100_MACCR_RX_MULTIPKT; 345 else if (netdev_mc_count(priv->netdev)) 346 maccr |= FTGMAC100_MACCR_HT_MULTI_EN; 347 348 /* Vlan filtering enabled */ 349 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 350 maccr |= FTGMAC100_MACCR_RM_VLAN; 351 352 /* Hit the HW */ 353 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR); 354 } 355 356 static void ftgmac100_stop_hw(struct ftgmac100 *priv) 357 { 358 iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR); 359 } 360 361 static void ftgmac100_calc_mc_hash(struct ftgmac100 *priv) 362 { 363 struct netdev_hw_addr *ha; 364 365 priv->maht1 = 0; 366 priv->maht0 = 0; 367 netdev_for_each_mc_addr(ha, priv->netdev) { 368 u32 crc_val = ether_crc_le(ETH_ALEN, ha->addr); 369 370 crc_val = (~(crc_val >> 2)) & 0x3f; 371 if (crc_val >= 32) 372 priv->maht1 |= 1ul << (crc_val - 32); 373 else 374 priv->maht0 |= 1ul << (crc_val); 375 } 376 } 377 378 static void ftgmac100_set_rx_mode(struct net_device *netdev) 379 { 380 struct ftgmac100 *priv = netdev_priv(netdev); 381 382 /* Setup the hash filter */ 383 ftgmac100_calc_mc_hash(priv); 384 385 /* Interface down ? that's all there is to do */ 386 if (!netif_running(netdev)) 387 return; 388 389 /* Update the HW */ 390 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0); 391 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1); 392 393 /* Reconfigure MACCR */ 394 ftgmac100_start_hw(priv); 395 } 396 397 static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry, 398 struct ftgmac100_rxdes *rxdes, gfp_t gfp) 399 { 400 struct net_device *netdev = priv->netdev; 401 struct sk_buff *skb; 402 dma_addr_t map; 403 int err = 0; 404 405 skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE); 406 if (unlikely(!skb)) { 407 if (net_ratelimit()) 408 netdev_warn(netdev, "failed to allocate rx skb\n"); 409 err = -ENOMEM; 410 map = priv->rx_scratch_dma; 411 } else { 412 map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE, 413 DMA_FROM_DEVICE); 414 if (unlikely(dma_mapping_error(priv->dev, map))) { 415 if (net_ratelimit()) 416 netdev_err(netdev, "failed to map rx page\n"); 417 dev_kfree_skb_any(skb); 418 map = priv->rx_scratch_dma; 419 skb = NULL; 420 err = -ENOMEM; 421 } 422 } 423 424 /* Store skb */ 425 priv->rx_skbs[entry] = skb; 426 427 /* Store DMA address into RX desc */ 428 rxdes->rxdes3 = cpu_to_le32(map); 429 430 /* Ensure the above is ordered vs clearing the OWN bit */ 431 dma_wmb(); 432 433 /* Clean status (which resets own bit) */ 434 if (entry == (priv->rx_q_entries - 1)) 435 rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask); 436 else 437 rxdes->rxdes0 = 0; 438 439 return err; 440 } 441 442 static unsigned int ftgmac100_next_rx_pointer(struct ftgmac100 *priv, 443 unsigned int pointer) 444 { 445 return (pointer + 1) & (priv->rx_q_entries - 1); 446 } 447 448 static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status) 449 { 450 struct net_device *netdev = priv->netdev; 451 452 if (status & FTGMAC100_RXDES0_RX_ERR) 453 netdev->stats.rx_errors++; 454 455 if (status & FTGMAC100_RXDES0_CRC_ERR) 456 netdev->stats.rx_crc_errors++; 457 458 if (status & (FTGMAC100_RXDES0_FTL | 459 FTGMAC100_RXDES0_RUNT | 460 FTGMAC100_RXDES0_RX_ODD_NB)) 461 netdev->stats.rx_length_errors++; 462 } 463 464 static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed) 465 { 466 struct net_device *netdev = priv->netdev; 467 struct ftgmac100_rxdes *rxdes; 468 struct sk_buff *skb; 469 unsigned int pointer, size; 470 u32 status, csum_vlan; 471 dma_addr_t map; 472 473 /* Grab next RX descriptor */ 474 pointer = priv->rx_pointer; 475 rxdes = &priv->rxdes[pointer]; 476 477 /* Grab descriptor status */ 478 status = le32_to_cpu(rxdes->rxdes0); 479 480 /* Do we have a packet ? */ 481 if (!(status & FTGMAC100_RXDES0_RXPKT_RDY)) 482 return false; 483 484 /* Order subsequent reads with the test for the ready bit */ 485 dma_rmb(); 486 487 /* We don't cope with fragmented RX packets */ 488 if (unlikely(!(status & FTGMAC100_RXDES0_FRS) || 489 !(status & FTGMAC100_RXDES0_LRS))) 490 goto drop; 491 492 /* Grab received size and csum vlan field in the descriptor */ 493 size = status & FTGMAC100_RXDES0_VDBC; 494 csum_vlan = le32_to_cpu(rxdes->rxdes1); 495 496 /* Any error (other than csum offload) flagged ? */ 497 if (unlikely(status & RXDES0_ANY_ERROR)) { 498 /* Correct for incorrect flagging of runt packets 499 * with vlan tags... Just accept a runt packet that 500 * has been flagged as vlan and whose size is at 501 * least 60 bytes. 502 */ 503 if ((status & FTGMAC100_RXDES0_RUNT) && 504 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) && 505 (size >= 60)) 506 status &= ~FTGMAC100_RXDES0_RUNT; 507 508 /* Any error still in there ? */ 509 if (status & RXDES0_ANY_ERROR) { 510 ftgmac100_rx_packet_error(priv, status); 511 goto drop; 512 } 513 } 514 515 /* If the packet had no skb (failed to allocate earlier) 516 * then try to allocate one and skip 517 */ 518 skb = priv->rx_skbs[pointer]; 519 if (!unlikely(skb)) { 520 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC); 521 goto drop; 522 } 523 524 if (unlikely(status & FTGMAC100_RXDES0_MULTICAST)) 525 netdev->stats.multicast++; 526 527 /* If the HW found checksum errors, bounce it to software. 528 * 529 * If we didn't, we need to see if the packet was recognized 530 * by HW as one of the supported checksummed protocols before 531 * we accept the HW test results. 532 */ 533 if (netdev->features & NETIF_F_RXCSUM) { 534 u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR | 535 FTGMAC100_RXDES1_UDP_CHKSUM_ERR | 536 FTGMAC100_RXDES1_IP_CHKSUM_ERR; 537 if ((csum_vlan & err_bits) || 538 !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK)) 539 skb->ip_summed = CHECKSUM_NONE; 540 else 541 skb->ip_summed = CHECKSUM_UNNECESSARY; 542 } 543 544 /* Transfer received size to skb */ 545 skb_put(skb, size); 546 547 /* Extract vlan tag */ 548 if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) && 549 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL)) 550 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 551 csum_vlan & 0xffff); 552 553 /* Tear down DMA mapping, do necessary cache management */ 554 map = le32_to_cpu(rxdes->rxdes3); 555 556 #if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU) 557 /* When we don't have an iommu, we can save cycles by not 558 * invalidating the cache for the part of the packet that 559 * wasn't received. 560 */ 561 dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE); 562 #else 563 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE); 564 #endif 565 566 567 /* Resplenish rx ring */ 568 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC); 569 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer); 570 571 skb->protocol = eth_type_trans(skb, netdev); 572 573 netdev->stats.rx_packets++; 574 netdev->stats.rx_bytes += size; 575 576 /* push packet to protocol stack */ 577 if (skb->ip_summed == CHECKSUM_NONE) 578 netif_receive_skb(skb); 579 else 580 napi_gro_receive(&priv->napi, skb); 581 582 (*processed)++; 583 return true; 584 585 drop: 586 /* Clean rxdes0 (which resets own bit) */ 587 rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask); 588 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer); 589 netdev->stats.rx_dropped++; 590 return true; 591 } 592 593 static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv, 594 unsigned int index) 595 { 596 if (index == (priv->tx_q_entries - 1)) 597 return priv->txdes0_edotr_mask; 598 else 599 return 0; 600 } 601 602 static unsigned int ftgmac100_next_tx_pointer(struct ftgmac100 *priv, 603 unsigned int pointer) 604 { 605 return (pointer + 1) & (priv->tx_q_entries - 1); 606 } 607 608 static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv) 609 { 610 /* Returns the number of available slots in the TX queue 611 * 612 * This always leaves one free slot so we don't have to 613 * worry about empty vs. full, and this simplifies the 614 * test for ftgmac100_tx_buf_cleanable() below 615 */ 616 return (priv->tx_clean_pointer - priv->tx_pointer - 1) & 617 (priv->tx_q_entries - 1); 618 } 619 620 static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv) 621 { 622 return priv->tx_pointer != priv->tx_clean_pointer; 623 } 624 625 static void ftgmac100_free_tx_packet(struct ftgmac100 *priv, 626 unsigned int pointer, 627 struct sk_buff *skb, 628 struct ftgmac100_txdes *txdes, 629 u32 ctl_stat) 630 { 631 dma_addr_t map = le32_to_cpu(txdes->txdes3); 632 size_t len; 633 634 if (ctl_stat & FTGMAC100_TXDES0_FTS) { 635 len = skb_headlen(skb); 636 dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE); 637 } else { 638 len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat); 639 dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE); 640 } 641 642 /* Free SKB on last segment */ 643 if (ctl_stat & FTGMAC100_TXDES0_LTS) 644 dev_kfree_skb(skb); 645 priv->tx_skbs[pointer] = NULL; 646 } 647 648 static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv) 649 { 650 struct net_device *netdev = priv->netdev; 651 struct ftgmac100_txdes *txdes; 652 struct sk_buff *skb; 653 unsigned int pointer; 654 u32 ctl_stat; 655 656 pointer = priv->tx_clean_pointer; 657 txdes = &priv->txdes[pointer]; 658 659 ctl_stat = le32_to_cpu(txdes->txdes0); 660 if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN) 661 return false; 662 663 skb = priv->tx_skbs[pointer]; 664 netdev->stats.tx_packets++; 665 netdev->stats.tx_bytes += skb->len; 666 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat); 667 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask); 668 669 /* Ensure the descriptor config is visible before setting the tx 670 * pointer. 671 */ 672 smp_wmb(); 673 674 priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv, pointer); 675 676 return true; 677 } 678 679 static void ftgmac100_tx_complete(struct ftgmac100 *priv) 680 { 681 struct net_device *netdev = priv->netdev; 682 683 /* Process all completed packets */ 684 while (ftgmac100_tx_buf_cleanable(priv) && 685 ftgmac100_tx_complete_packet(priv)) 686 ; 687 688 /* Restart queue if needed */ 689 smp_mb(); 690 if (unlikely(netif_queue_stopped(netdev) && 691 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) { 692 struct netdev_queue *txq; 693 694 txq = netdev_get_tx_queue(netdev, 0); 695 __netif_tx_lock(txq, smp_processor_id()); 696 if (netif_queue_stopped(netdev) && 697 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD) 698 netif_wake_queue(netdev); 699 __netif_tx_unlock(txq); 700 } 701 } 702 703 static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan) 704 { 705 if (skb->protocol == cpu_to_be16(ETH_P_IP)) { 706 u8 ip_proto = ip_hdr(skb)->protocol; 707 708 *csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM; 709 switch(ip_proto) { 710 case IPPROTO_TCP: 711 *csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM; 712 return true; 713 case IPPROTO_UDP: 714 *csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM; 715 return true; 716 case IPPROTO_IP: 717 return true; 718 } 719 } 720 return skb_checksum_help(skb) == 0; 721 } 722 723 static netdev_tx_t ftgmac100_hard_start_xmit(struct sk_buff *skb, 724 struct net_device *netdev) 725 { 726 struct ftgmac100 *priv = netdev_priv(netdev); 727 struct ftgmac100_txdes *txdes, *first; 728 unsigned int pointer, nfrags, len, i, j; 729 u32 f_ctl_stat, ctl_stat, csum_vlan; 730 dma_addr_t map; 731 732 /* The HW doesn't pad small frames */ 733 if (eth_skb_pad(skb)) { 734 netdev->stats.tx_dropped++; 735 return NETDEV_TX_OK; 736 } 737 738 /* Reject oversize packets */ 739 if (unlikely(skb->len > MAX_PKT_SIZE)) { 740 if (net_ratelimit()) 741 netdev_dbg(netdev, "tx packet too big\n"); 742 goto drop; 743 } 744 745 /* Do we have a limit on #fragments ? I yet have to get a reply 746 * from Aspeed. If there's one I haven't hit it. 747 */ 748 nfrags = skb_shinfo(skb)->nr_frags; 749 750 /* Setup HW checksumming */ 751 csum_vlan = 0; 752 if (skb->ip_summed == CHECKSUM_PARTIAL && 753 !ftgmac100_prep_tx_csum(skb, &csum_vlan)) 754 goto drop; 755 756 /* Add VLAN tag */ 757 if (skb_vlan_tag_present(skb)) { 758 csum_vlan |= FTGMAC100_TXDES1_INS_VLANTAG; 759 csum_vlan |= skb_vlan_tag_get(skb) & 0xffff; 760 } 761 762 /* Get header len */ 763 len = skb_headlen(skb); 764 765 /* Map the packet head */ 766 map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE); 767 if (dma_mapping_error(priv->dev, map)) { 768 if (net_ratelimit()) 769 netdev_err(netdev, "map tx packet head failed\n"); 770 goto drop; 771 } 772 773 /* Grab the next free tx descriptor */ 774 pointer = priv->tx_pointer; 775 txdes = first = &priv->txdes[pointer]; 776 777 /* Setup it up with the packet head. Don't write the head to the 778 * ring just yet 779 */ 780 priv->tx_skbs[pointer] = skb; 781 f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer); 782 f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN; 783 f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len); 784 f_ctl_stat |= FTGMAC100_TXDES0_FTS; 785 if (nfrags == 0) 786 f_ctl_stat |= FTGMAC100_TXDES0_LTS; 787 txdes->txdes3 = cpu_to_le32(map); 788 txdes->txdes1 = cpu_to_le32(csum_vlan); 789 790 /* Next descriptor */ 791 pointer = ftgmac100_next_tx_pointer(priv, pointer); 792 793 /* Add the fragments */ 794 for (i = 0; i < nfrags; i++) { 795 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 796 797 len = skb_frag_size(frag); 798 799 /* Map it */ 800 map = skb_frag_dma_map(priv->dev, frag, 0, len, 801 DMA_TO_DEVICE); 802 if (dma_mapping_error(priv->dev, map)) 803 goto dma_err; 804 805 /* Setup descriptor */ 806 priv->tx_skbs[pointer] = skb; 807 txdes = &priv->txdes[pointer]; 808 ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer); 809 ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN; 810 ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len); 811 if (i == (nfrags - 1)) 812 ctl_stat |= FTGMAC100_TXDES0_LTS; 813 txdes->txdes0 = cpu_to_le32(ctl_stat); 814 txdes->txdes1 = 0; 815 txdes->txdes3 = cpu_to_le32(map); 816 817 /* Next one */ 818 pointer = ftgmac100_next_tx_pointer(priv, pointer); 819 } 820 821 /* Order the previous packet and descriptor udpates 822 * before setting the OWN bit on the first descriptor. 823 */ 824 dma_wmb(); 825 first->txdes0 = cpu_to_le32(f_ctl_stat); 826 827 /* Ensure the descriptor config is visible before setting the tx 828 * pointer. 829 */ 830 smp_wmb(); 831 832 /* Update next TX pointer */ 833 priv->tx_pointer = pointer; 834 835 /* If there isn't enough room for all the fragments of a new packet 836 * in the TX ring, stop the queue. The sequence below is race free 837 * vs. a concurrent restart in ftgmac100_poll() 838 */ 839 if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) { 840 netif_stop_queue(netdev); 841 /* Order the queue stop with the test below */ 842 smp_mb(); 843 if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD) 844 netif_wake_queue(netdev); 845 } 846 847 /* Poke transmitter to read the updated TX descriptors */ 848 iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD); 849 850 return NETDEV_TX_OK; 851 852 dma_err: 853 if (net_ratelimit()) 854 netdev_err(netdev, "map tx fragment failed\n"); 855 856 /* Free head */ 857 pointer = priv->tx_pointer; 858 ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat); 859 first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask); 860 861 /* Then all fragments */ 862 for (j = 0; j < i; j++) { 863 pointer = ftgmac100_next_tx_pointer(priv, pointer); 864 txdes = &priv->txdes[pointer]; 865 ctl_stat = le32_to_cpu(txdes->txdes0); 866 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat); 867 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask); 868 } 869 870 /* This cannot be reached if we successfully mapped the 871 * last fragment, so we know ftgmac100_free_tx_packet() 872 * hasn't freed the skb yet. 873 */ 874 drop: 875 /* Drop the packet */ 876 dev_kfree_skb_any(skb); 877 netdev->stats.tx_dropped++; 878 879 return NETDEV_TX_OK; 880 } 881 882 static void ftgmac100_free_buffers(struct ftgmac100 *priv) 883 { 884 int i; 885 886 /* Free all RX buffers */ 887 for (i = 0; i < priv->rx_q_entries; i++) { 888 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i]; 889 struct sk_buff *skb = priv->rx_skbs[i]; 890 dma_addr_t map = le32_to_cpu(rxdes->rxdes3); 891 892 if (!skb) 893 continue; 894 895 priv->rx_skbs[i] = NULL; 896 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE); 897 dev_kfree_skb_any(skb); 898 } 899 900 /* Free all TX buffers */ 901 for (i = 0; i < priv->tx_q_entries; i++) { 902 struct ftgmac100_txdes *txdes = &priv->txdes[i]; 903 struct sk_buff *skb = priv->tx_skbs[i]; 904 905 if (!skb) 906 continue; 907 ftgmac100_free_tx_packet(priv, i, skb, txdes, 908 le32_to_cpu(txdes->txdes0)); 909 } 910 } 911 912 static void ftgmac100_free_rings(struct ftgmac100 *priv) 913 { 914 /* Free skb arrays */ 915 kfree(priv->rx_skbs); 916 kfree(priv->tx_skbs); 917 918 /* Free descriptors */ 919 if (priv->rxdes) 920 dma_free_coherent(priv->dev, MAX_RX_QUEUE_ENTRIES * 921 sizeof(struct ftgmac100_rxdes), 922 priv->rxdes, priv->rxdes_dma); 923 priv->rxdes = NULL; 924 925 if (priv->txdes) 926 dma_free_coherent(priv->dev, MAX_TX_QUEUE_ENTRIES * 927 sizeof(struct ftgmac100_txdes), 928 priv->txdes, priv->txdes_dma); 929 priv->txdes = NULL; 930 931 /* Free scratch packet buffer */ 932 if (priv->rx_scratch) 933 dma_free_coherent(priv->dev, RX_BUF_SIZE, 934 priv->rx_scratch, priv->rx_scratch_dma); 935 } 936 937 static int ftgmac100_alloc_rings(struct ftgmac100 *priv) 938 { 939 /* Allocate skb arrays */ 940 priv->rx_skbs = kcalloc(MAX_RX_QUEUE_ENTRIES, sizeof(void *), 941 GFP_KERNEL); 942 if (!priv->rx_skbs) 943 return -ENOMEM; 944 priv->tx_skbs = kcalloc(MAX_TX_QUEUE_ENTRIES, sizeof(void *), 945 GFP_KERNEL); 946 if (!priv->tx_skbs) 947 return -ENOMEM; 948 949 /* Allocate descriptors */ 950 priv->rxdes = dma_alloc_coherent(priv->dev, 951 MAX_RX_QUEUE_ENTRIES * sizeof(struct ftgmac100_rxdes), 952 &priv->rxdes_dma, GFP_KERNEL); 953 if (!priv->rxdes) 954 return -ENOMEM; 955 priv->txdes = dma_alloc_coherent(priv->dev, 956 MAX_TX_QUEUE_ENTRIES * sizeof(struct ftgmac100_txdes), 957 &priv->txdes_dma, GFP_KERNEL); 958 if (!priv->txdes) 959 return -ENOMEM; 960 961 /* Allocate scratch packet buffer */ 962 priv->rx_scratch = dma_alloc_coherent(priv->dev, 963 RX_BUF_SIZE, 964 &priv->rx_scratch_dma, 965 GFP_KERNEL); 966 if (!priv->rx_scratch) 967 return -ENOMEM; 968 969 return 0; 970 } 971 972 static void ftgmac100_init_rings(struct ftgmac100 *priv) 973 { 974 struct ftgmac100_rxdes *rxdes = NULL; 975 struct ftgmac100_txdes *txdes = NULL; 976 int i; 977 978 /* Update entries counts */ 979 priv->rx_q_entries = priv->new_rx_q_entries; 980 priv->tx_q_entries = priv->new_tx_q_entries; 981 982 if (WARN_ON(priv->rx_q_entries < MIN_RX_QUEUE_ENTRIES)) 983 return; 984 985 /* Initialize RX ring */ 986 for (i = 0; i < priv->rx_q_entries; i++) { 987 rxdes = &priv->rxdes[i]; 988 rxdes->rxdes0 = 0; 989 rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma); 990 } 991 /* Mark the end of the ring */ 992 rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask); 993 994 if (WARN_ON(priv->tx_q_entries < MIN_RX_QUEUE_ENTRIES)) 995 return; 996 997 /* Initialize TX ring */ 998 for (i = 0; i < priv->tx_q_entries; i++) { 999 txdes = &priv->txdes[i]; 1000 txdes->txdes0 = 0; 1001 } 1002 txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask); 1003 } 1004 1005 static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv) 1006 { 1007 int i; 1008 1009 for (i = 0; i < priv->rx_q_entries; i++) { 1010 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i]; 1011 1012 if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL)) 1013 return -ENOMEM; 1014 } 1015 return 0; 1016 } 1017 1018 static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum) 1019 { 1020 struct net_device *netdev = bus->priv; 1021 struct ftgmac100 *priv = netdev_priv(netdev); 1022 unsigned int phycr; 1023 int i; 1024 1025 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR); 1026 1027 /* preserve MDC cycle threshold */ 1028 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK; 1029 1030 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) | 1031 FTGMAC100_PHYCR_REGAD(regnum) | 1032 FTGMAC100_PHYCR_MIIRD; 1033 1034 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR); 1035 1036 for (i = 0; i < 10; i++) { 1037 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR); 1038 1039 if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) { 1040 int data; 1041 1042 data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA); 1043 return FTGMAC100_PHYDATA_MIIRDATA(data); 1044 } 1045 1046 udelay(100); 1047 } 1048 1049 netdev_err(netdev, "mdio read timed out\n"); 1050 return -EIO; 1051 } 1052 1053 static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr, 1054 int regnum, u16 value) 1055 { 1056 struct net_device *netdev = bus->priv; 1057 struct ftgmac100 *priv = netdev_priv(netdev); 1058 unsigned int phycr; 1059 int data; 1060 int i; 1061 1062 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR); 1063 1064 /* preserve MDC cycle threshold */ 1065 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK; 1066 1067 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) | 1068 FTGMAC100_PHYCR_REGAD(regnum) | 1069 FTGMAC100_PHYCR_MIIWR; 1070 1071 data = FTGMAC100_PHYDATA_MIIWDATA(value); 1072 1073 iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA); 1074 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR); 1075 1076 for (i = 0; i < 10; i++) { 1077 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR); 1078 1079 if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0) 1080 return 0; 1081 1082 udelay(100); 1083 } 1084 1085 netdev_err(netdev, "mdio write timed out\n"); 1086 return -EIO; 1087 } 1088 1089 static void ftgmac100_get_drvinfo(struct net_device *netdev, 1090 struct ethtool_drvinfo *info) 1091 { 1092 strscpy(info->driver, DRV_NAME, sizeof(info->driver)); 1093 strscpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info)); 1094 } 1095 1096 static void 1097 ftgmac100_get_ringparam(struct net_device *netdev, 1098 struct ethtool_ringparam *ering, 1099 struct kernel_ethtool_ringparam *kernel_ering, 1100 struct netlink_ext_ack *extack) 1101 { 1102 struct ftgmac100 *priv = netdev_priv(netdev); 1103 1104 memset(ering, 0, sizeof(*ering)); 1105 ering->rx_max_pending = MAX_RX_QUEUE_ENTRIES; 1106 ering->tx_max_pending = MAX_TX_QUEUE_ENTRIES; 1107 ering->rx_pending = priv->rx_q_entries; 1108 ering->tx_pending = priv->tx_q_entries; 1109 } 1110 1111 static int 1112 ftgmac100_set_ringparam(struct net_device *netdev, 1113 struct ethtool_ringparam *ering, 1114 struct kernel_ethtool_ringparam *kernel_ering, 1115 struct netlink_ext_ack *extack) 1116 { 1117 struct ftgmac100 *priv = netdev_priv(netdev); 1118 1119 if (ering->rx_pending > MAX_RX_QUEUE_ENTRIES || 1120 ering->tx_pending > MAX_TX_QUEUE_ENTRIES || 1121 ering->rx_pending < MIN_RX_QUEUE_ENTRIES || 1122 ering->tx_pending < MIN_TX_QUEUE_ENTRIES || 1123 !is_power_of_2(ering->rx_pending) || 1124 !is_power_of_2(ering->tx_pending)) 1125 return -EINVAL; 1126 1127 priv->new_rx_q_entries = ering->rx_pending; 1128 priv->new_tx_q_entries = ering->tx_pending; 1129 if (netif_running(netdev)) 1130 schedule_work(&priv->reset_task); 1131 1132 return 0; 1133 } 1134 1135 static void ftgmac100_get_pauseparam(struct net_device *netdev, 1136 struct ethtool_pauseparam *pause) 1137 { 1138 struct ftgmac100 *priv = netdev_priv(netdev); 1139 1140 pause->autoneg = priv->aneg_pause; 1141 pause->tx_pause = priv->tx_pause; 1142 pause->rx_pause = priv->rx_pause; 1143 } 1144 1145 static int ftgmac100_set_pauseparam(struct net_device *netdev, 1146 struct ethtool_pauseparam *pause) 1147 { 1148 struct ftgmac100 *priv = netdev_priv(netdev); 1149 struct phy_device *phydev = netdev->phydev; 1150 1151 priv->aneg_pause = pause->autoneg; 1152 priv->tx_pause = pause->tx_pause; 1153 priv->rx_pause = pause->rx_pause; 1154 1155 if (phydev) 1156 phy_set_asym_pause(phydev, pause->rx_pause, pause->tx_pause); 1157 1158 if (netif_running(netdev)) { 1159 if (!(phydev && priv->aneg_pause)) 1160 ftgmac100_config_pause(priv); 1161 } 1162 1163 return 0; 1164 } 1165 1166 static const struct ethtool_ops ftgmac100_ethtool_ops = { 1167 .get_drvinfo = ftgmac100_get_drvinfo, 1168 .get_link = ethtool_op_get_link, 1169 .get_link_ksettings = phy_ethtool_get_link_ksettings, 1170 .set_link_ksettings = phy_ethtool_set_link_ksettings, 1171 .nway_reset = phy_ethtool_nway_reset, 1172 .get_ringparam = ftgmac100_get_ringparam, 1173 .set_ringparam = ftgmac100_set_ringparam, 1174 .get_pauseparam = ftgmac100_get_pauseparam, 1175 .set_pauseparam = ftgmac100_set_pauseparam, 1176 }; 1177 1178 static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id) 1179 { 1180 struct net_device *netdev = dev_id; 1181 struct ftgmac100 *priv = netdev_priv(netdev); 1182 unsigned int status, new_mask = FTGMAC100_INT_BAD; 1183 1184 /* Fetch and clear interrupt bits, process abnormal ones */ 1185 status = ioread32(priv->base + FTGMAC100_OFFSET_ISR); 1186 iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR); 1187 if (unlikely(status & FTGMAC100_INT_BAD)) { 1188 1189 /* RX buffer unavailable */ 1190 if (status & FTGMAC100_INT_NO_RXBUF) 1191 netdev->stats.rx_over_errors++; 1192 1193 /* received packet lost due to RX FIFO full */ 1194 if (status & FTGMAC100_INT_RPKT_LOST) 1195 netdev->stats.rx_fifo_errors++; 1196 1197 /* sent packet lost due to excessive TX collision */ 1198 if (status & FTGMAC100_INT_XPKT_LOST) 1199 netdev->stats.tx_fifo_errors++; 1200 1201 /* AHB error -> Reset the chip */ 1202 if (status & FTGMAC100_INT_AHB_ERR) { 1203 if (net_ratelimit()) 1204 netdev_warn(netdev, 1205 "AHB bus error ! Resetting chip.\n"); 1206 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER); 1207 schedule_work(&priv->reset_task); 1208 return IRQ_HANDLED; 1209 } 1210 1211 /* We may need to restart the MAC after such errors, delay 1212 * this until after we have freed some Rx buffers though 1213 */ 1214 priv->need_mac_restart = true; 1215 1216 /* Disable those errors until we restart */ 1217 new_mask &= ~status; 1218 } 1219 1220 /* Only enable "bad" interrupts while NAPI is on */ 1221 iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER); 1222 1223 /* Schedule NAPI bh */ 1224 napi_schedule_irqoff(&priv->napi); 1225 1226 return IRQ_HANDLED; 1227 } 1228 1229 static bool ftgmac100_check_rx(struct ftgmac100 *priv) 1230 { 1231 struct ftgmac100_rxdes *rxdes = &priv->rxdes[priv->rx_pointer]; 1232 1233 /* Do we have a packet ? */ 1234 return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY)); 1235 } 1236 1237 static int ftgmac100_poll(struct napi_struct *napi, int budget) 1238 { 1239 struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi); 1240 int work_done = 0; 1241 bool more; 1242 1243 /* Handle TX completions */ 1244 if (ftgmac100_tx_buf_cleanable(priv)) 1245 ftgmac100_tx_complete(priv); 1246 1247 /* Handle RX packets */ 1248 do { 1249 more = ftgmac100_rx_packet(priv, &work_done); 1250 } while (more && work_done < budget); 1251 1252 1253 /* The interrupt is telling us to kick the MAC back to life 1254 * after an RX overflow 1255 */ 1256 if (unlikely(priv->need_mac_restart)) { 1257 ftgmac100_start_hw(priv); 1258 priv->need_mac_restart = false; 1259 1260 /* Re-enable "bad" interrupts */ 1261 iowrite32(FTGMAC100_INT_BAD, 1262 priv->base + FTGMAC100_OFFSET_IER); 1263 } 1264 1265 /* As long as we are waiting for transmit packets to be 1266 * completed we keep NAPI going 1267 */ 1268 if (ftgmac100_tx_buf_cleanable(priv)) 1269 work_done = budget; 1270 1271 if (work_done < budget) { 1272 /* We are about to re-enable all interrupts. However 1273 * the HW has been latching RX/TX packet interrupts while 1274 * they were masked. So we clear them first, then we need 1275 * to re-check if there's something to process 1276 */ 1277 iowrite32(FTGMAC100_INT_RXTX, 1278 priv->base + FTGMAC100_OFFSET_ISR); 1279 1280 /* Push the above (and provides a barrier vs. subsequent 1281 * reads of the descriptor). 1282 */ 1283 ioread32(priv->base + FTGMAC100_OFFSET_ISR); 1284 1285 /* Check RX and TX descriptors for more work to do */ 1286 if (ftgmac100_check_rx(priv) || 1287 ftgmac100_tx_buf_cleanable(priv)) 1288 return budget; 1289 1290 /* deschedule NAPI */ 1291 napi_complete(napi); 1292 1293 /* enable all interrupts */ 1294 iowrite32(FTGMAC100_INT_ALL, 1295 priv->base + FTGMAC100_OFFSET_IER); 1296 } 1297 1298 return work_done; 1299 } 1300 1301 static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err) 1302 { 1303 int err = 0; 1304 1305 /* Re-init descriptors (adjust queue sizes) */ 1306 ftgmac100_init_rings(priv); 1307 1308 /* Realloc rx descriptors */ 1309 err = ftgmac100_alloc_rx_buffers(priv); 1310 if (err && !ignore_alloc_err) 1311 return err; 1312 1313 /* Reinit and restart HW */ 1314 ftgmac100_init_hw(priv); 1315 ftgmac100_config_pause(priv); 1316 ftgmac100_start_hw(priv); 1317 1318 /* Re-enable the device */ 1319 napi_enable(&priv->napi); 1320 netif_start_queue(priv->netdev); 1321 1322 /* Enable all interrupts */ 1323 iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER); 1324 1325 return err; 1326 } 1327 1328 static void ftgmac100_reset(struct ftgmac100 *priv) 1329 { 1330 struct net_device *netdev = priv->netdev; 1331 int err; 1332 1333 netdev_dbg(netdev, "Resetting NIC...\n"); 1334 1335 /* Lock the world */ 1336 rtnl_lock(); 1337 if (netdev->phydev) 1338 mutex_lock(&netdev->phydev->lock); 1339 if (priv->mii_bus) 1340 mutex_lock(&priv->mii_bus->mdio_lock); 1341 1342 1343 /* Check if the interface is still up */ 1344 if (!netif_running(netdev)) 1345 goto bail; 1346 1347 /* Stop the network stack */ 1348 netif_trans_update(netdev); 1349 napi_disable(&priv->napi); 1350 netif_tx_disable(netdev); 1351 1352 /* Stop and reset the MAC */ 1353 ftgmac100_stop_hw(priv); 1354 err = ftgmac100_reset_and_config_mac(priv); 1355 if (err) { 1356 /* Not much we can do ... it might come back... */ 1357 netdev_err(netdev, "attempting to continue...\n"); 1358 } 1359 1360 /* Free all rx and tx buffers */ 1361 ftgmac100_free_buffers(priv); 1362 1363 /* Setup everything again and restart chip */ 1364 ftgmac100_init_all(priv, true); 1365 1366 netdev_dbg(netdev, "Reset done !\n"); 1367 bail: 1368 if (priv->mii_bus) 1369 mutex_unlock(&priv->mii_bus->mdio_lock); 1370 if (netdev->phydev) 1371 mutex_unlock(&netdev->phydev->lock); 1372 rtnl_unlock(); 1373 } 1374 1375 static void ftgmac100_reset_task(struct work_struct *work) 1376 { 1377 struct ftgmac100 *priv = container_of(work, struct ftgmac100, 1378 reset_task); 1379 1380 ftgmac100_reset(priv); 1381 } 1382 1383 static void ftgmac100_adjust_link(struct net_device *netdev) 1384 { 1385 struct ftgmac100 *priv = netdev_priv(netdev); 1386 struct phy_device *phydev = netdev->phydev; 1387 bool tx_pause, rx_pause; 1388 int new_speed; 1389 1390 /* We store "no link" as speed 0 */ 1391 if (!phydev->link) 1392 new_speed = 0; 1393 else 1394 new_speed = phydev->speed; 1395 1396 /* Grab pause settings from PHY if configured to do so */ 1397 if (priv->aneg_pause) { 1398 rx_pause = tx_pause = phydev->pause; 1399 if (phydev->asym_pause) 1400 tx_pause = !rx_pause; 1401 } else { 1402 rx_pause = priv->rx_pause; 1403 tx_pause = priv->tx_pause; 1404 } 1405 1406 /* Link hasn't changed, do nothing */ 1407 if (phydev->speed == priv->cur_speed && 1408 phydev->duplex == priv->cur_duplex && 1409 rx_pause == priv->rx_pause && 1410 tx_pause == priv->tx_pause) 1411 return; 1412 1413 /* Print status if we have a link or we had one and just lost it, 1414 * don't print otherwise. 1415 */ 1416 if (new_speed || priv->cur_speed) 1417 phy_print_status(phydev); 1418 1419 priv->cur_speed = new_speed; 1420 priv->cur_duplex = phydev->duplex; 1421 priv->rx_pause = rx_pause; 1422 priv->tx_pause = tx_pause; 1423 1424 /* Link is down, do nothing else */ 1425 if (!new_speed) 1426 return; 1427 1428 /* Disable all interrupts */ 1429 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER); 1430 1431 /* Release phy lock to allow ftgmac100_reset to aquire it, keeping lock 1432 * order consistent to prevent dead lock. 1433 */ 1434 if (netdev->phydev) 1435 mutex_unlock(&netdev->phydev->lock); 1436 1437 ftgmac100_reset(priv); 1438 1439 if (netdev->phydev) 1440 mutex_lock(&netdev->phydev->lock); 1441 1442 } 1443 1444 static int ftgmac100_mii_probe(struct net_device *netdev) 1445 { 1446 struct ftgmac100 *priv = netdev_priv(netdev); 1447 struct platform_device *pdev = to_platform_device(priv->dev); 1448 struct device_node *np = pdev->dev.of_node; 1449 struct phy_device *phydev; 1450 phy_interface_t phy_intf; 1451 int err; 1452 1453 /* Default to RGMII. It's a gigabit part after all */ 1454 err = of_get_phy_mode(np, &phy_intf); 1455 if (err) 1456 phy_intf = PHY_INTERFACE_MODE_RGMII; 1457 1458 /* Aspeed only supports these. I don't know about other IP 1459 * block vendors so I'm going to just let them through for 1460 * now. Note that this is only a warning if for some obscure 1461 * reason the DT really means to lie about it or it's a newer 1462 * part we don't know about. 1463 * 1464 * On the Aspeed SoC there are additionally straps and SCU 1465 * control bits that could tell us what the interface is 1466 * (or allow us to configure it while the IP block is held 1467 * in reset). For now I chose to keep this driver away from 1468 * those SoC specific bits and assume the device-tree is 1469 * right and the SCU has been configured properly by pinmux 1470 * or the firmware. 1471 */ 1472 if (priv->is_aspeed && !(phy_interface_mode_is_rgmii(phy_intf))) { 1473 netdev_warn(netdev, 1474 "Unsupported PHY mode %s !\n", 1475 phy_modes(phy_intf)); 1476 } 1477 1478 phydev = phy_find_first(priv->mii_bus); 1479 if (!phydev) { 1480 netdev_info(netdev, "%s: no PHY found\n", netdev->name); 1481 return -ENODEV; 1482 } 1483 1484 phydev = phy_connect(netdev, phydev_name(phydev), 1485 &ftgmac100_adjust_link, phy_intf); 1486 1487 if (IS_ERR(phydev)) { 1488 netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name); 1489 return PTR_ERR(phydev); 1490 } 1491 1492 /* Indicate that we support PAUSE frames (see comment in 1493 * Documentation/networking/phy.rst) 1494 */ 1495 phy_support_asym_pause(phydev); 1496 1497 /* Display what we found */ 1498 phy_attached_info(phydev); 1499 1500 return 0; 1501 } 1502 1503 static int ftgmac100_open(struct net_device *netdev) 1504 { 1505 struct ftgmac100 *priv = netdev_priv(netdev); 1506 int err; 1507 1508 /* Allocate ring buffers */ 1509 err = ftgmac100_alloc_rings(priv); 1510 if (err) { 1511 netdev_err(netdev, "Failed to allocate descriptors\n"); 1512 return err; 1513 } 1514 1515 /* When using NC-SI we force the speed to 100Mbit/s full duplex, 1516 * 1517 * Otherwise we leave it set to 0 (no link), the link 1518 * message from the PHY layer will handle setting it up to 1519 * something else if needed. 1520 */ 1521 if (priv->use_ncsi) { 1522 priv->cur_duplex = DUPLEX_FULL; 1523 priv->cur_speed = SPEED_100; 1524 } else { 1525 priv->cur_duplex = 0; 1526 priv->cur_speed = 0; 1527 } 1528 1529 /* Reset the hardware */ 1530 err = ftgmac100_reset_and_config_mac(priv); 1531 if (err) 1532 goto err_hw; 1533 1534 /* Initialize NAPI */ 1535 netif_napi_add(netdev, &priv->napi, ftgmac100_poll); 1536 1537 /* Grab our interrupt */ 1538 err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev); 1539 if (err) { 1540 netdev_err(netdev, "failed to request irq %d\n", netdev->irq); 1541 goto err_irq; 1542 } 1543 1544 /* Start things up */ 1545 err = ftgmac100_init_all(priv, false); 1546 if (err) { 1547 netdev_err(netdev, "Failed to allocate packet buffers\n"); 1548 goto err_alloc; 1549 } 1550 1551 if (netdev->phydev) { 1552 /* If we have a PHY, start polling */ 1553 phy_start(netdev->phydev); 1554 } 1555 if (priv->use_ncsi) { 1556 /* If using NC-SI, set our carrier on and start the stack */ 1557 netif_carrier_on(netdev); 1558 1559 /* Start the NCSI device */ 1560 err = ncsi_start_dev(priv->ndev); 1561 if (err) 1562 goto err_ncsi; 1563 } 1564 1565 return 0; 1566 1567 err_ncsi: 1568 phy_stop(netdev->phydev); 1569 napi_disable(&priv->napi); 1570 netif_stop_queue(netdev); 1571 err_alloc: 1572 ftgmac100_free_buffers(priv); 1573 free_irq(netdev->irq, netdev); 1574 err_irq: 1575 netif_napi_del(&priv->napi); 1576 err_hw: 1577 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER); 1578 ftgmac100_free_rings(priv); 1579 return err; 1580 } 1581 1582 static int ftgmac100_stop(struct net_device *netdev) 1583 { 1584 struct ftgmac100 *priv = netdev_priv(netdev); 1585 1586 /* Note about the reset task: We are called with the rtnl lock 1587 * held, so we are synchronized against the core of the reset 1588 * task. We must not try to synchronously cancel it otherwise 1589 * we can deadlock. But since it will test for netif_running() 1590 * which has already been cleared by the net core, we don't 1591 * anything special to do. 1592 */ 1593 1594 /* disable all interrupts */ 1595 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER); 1596 1597 netif_stop_queue(netdev); 1598 napi_disable(&priv->napi); 1599 netif_napi_del(&priv->napi); 1600 if (netdev->phydev) 1601 phy_stop(netdev->phydev); 1602 if (priv->use_ncsi) 1603 ncsi_stop_dev(priv->ndev); 1604 1605 ftgmac100_stop_hw(priv); 1606 free_irq(netdev->irq, netdev); 1607 ftgmac100_free_buffers(priv); 1608 ftgmac100_free_rings(priv); 1609 1610 return 0; 1611 } 1612 1613 static void ftgmac100_tx_timeout(struct net_device *netdev, unsigned int txqueue) 1614 { 1615 struct ftgmac100 *priv = netdev_priv(netdev); 1616 1617 /* Disable all interrupts */ 1618 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER); 1619 1620 /* Do the reset outside of interrupt context */ 1621 schedule_work(&priv->reset_task); 1622 } 1623 1624 static int ftgmac100_set_features(struct net_device *netdev, 1625 netdev_features_t features) 1626 { 1627 struct ftgmac100 *priv = netdev_priv(netdev); 1628 netdev_features_t changed = netdev->features ^ features; 1629 1630 if (!netif_running(netdev)) 1631 return 0; 1632 1633 /* Update the vlan filtering bit */ 1634 if (changed & NETIF_F_HW_VLAN_CTAG_RX) { 1635 u32 maccr; 1636 1637 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR); 1638 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 1639 maccr |= FTGMAC100_MACCR_RM_VLAN; 1640 else 1641 maccr &= ~FTGMAC100_MACCR_RM_VLAN; 1642 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR); 1643 } 1644 1645 return 0; 1646 } 1647 1648 #ifdef CONFIG_NET_POLL_CONTROLLER 1649 static void ftgmac100_poll_controller(struct net_device *netdev) 1650 { 1651 unsigned long flags; 1652 1653 local_irq_save(flags); 1654 ftgmac100_interrupt(netdev->irq, netdev); 1655 local_irq_restore(flags); 1656 } 1657 #endif 1658 1659 static const struct net_device_ops ftgmac100_netdev_ops = { 1660 .ndo_open = ftgmac100_open, 1661 .ndo_stop = ftgmac100_stop, 1662 .ndo_start_xmit = ftgmac100_hard_start_xmit, 1663 .ndo_set_mac_address = ftgmac100_set_mac_addr, 1664 .ndo_validate_addr = eth_validate_addr, 1665 .ndo_eth_ioctl = phy_do_ioctl, 1666 .ndo_tx_timeout = ftgmac100_tx_timeout, 1667 .ndo_set_rx_mode = ftgmac100_set_rx_mode, 1668 .ndo_set_features = ftgmac100_set_features, 1669 #ifdef CONFIG_NET_POLL_CONTROLLER 1670 .ndo_poll_controller = ftgmac100_poll_controller, 1671 #endif 1672 .ndo_vlan_rx_add_vid = ncsi_vlan_rx_add_vid, 1673 .ndo_vlan_rx_kill_vid = ncsi_vlan_rx_kill_vid, 1674 }; 1675 1676 static int ftgmac100_setup_mdio(struct net_device *netdev) 1677 { 1678 struct ftgmac100 *priv = netdev_priv(netdev); 1679 struct platform_device *pdev = to_platform_device(priv->dev); 1680 struct device_node *np = pdev->dev.of_node; 1681 struct device_node *mdio_np; 1682 int i, err = 0; 1683 u32 reg; 1684 1685 /* initialize mdio bus */ 1686 priv->mii_bus = mdiobus_alloc(); 1687 if (!priv->mii_bus) 1688 return -EIO; 1689 1690 if (of_device_is_compatible(np, "aspeed,ast2400-mac") || 1691 of_device_is_compatible(np, "aspeed,ast2500-mac")) { 1692 /* The AST2600 has a separate MDIO controller */ 1693 1694 /* For the AST2400 and AST2500 this driver only supports the 1695 * old MDIO interface 1696 */ 1697 reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR); 1698 reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE; 1699 iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR); 1700 } 1701 1702 priv->mii_bus->name = "ftgmac100_mdio"; 1703 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d", 1704 pdev->name, pdev->id); 1705 priv->mii_bus->parent = priv->dev; 1706 priv->mii_bus->priv = priv->netdev; 1707 priv->mii_bus->read = ftgmac100_mdiobus_read; 1708 priv->mii_bus->write = ftgmac100_mdiobus_write; 1709 1710 for (i = 0; i < PHY_MAX_ADDR; i++) 1711 priv->mii_bus->irq[i] = PHY_POLL; 1712 1713 mdio_np = of_get_child_by_name(np, "mdio"); 1714 1715 err = of_mdiobus_register(priv->mii_bus, mdio_np); 1716 if (err) { 1717 dev_err(priv->dev, "Cannot register MDIO bus!\n"); 1718 goto err_register_mdiobus; 1719 } 1720 1721 of_node_put(mdio_np); 1722 1723 return 0; 1724 1725 err_register_mdiobus: 1726 mdiobus_free(priv->mii_bus); 1727 return err; 1728 } 1729 1730 static void ftgmac100_phy_disconnect(struct net_device *netdev) 1731 { 1732 struct ftgmac100 *priv = netdev_priv(netdev); 1733 1734 if (!netdev->phydev) 1735 return; 1736 1737 phy_disconnect(netdev->phydev); 1738 if (of_phy_is_fixed_link(priv->dev->of_node)) 1739 of_phy_deregister_fixed_link(priv->dev->of_node); 1740 1741 if (priv->use_ncsi) 1742 fixed_phy_unregister(netdev->phydev); 1743 } 1744 1745 static void ftgmac100_destroy_mdio(struct net_device *netdev) 1746 { 1747 struct ftgmac100 *priv = netdev_priv(netdev); 1748 1749 if (!priv->mii_bus) 1750 return; 1751 1752 mdiobus_unregister(priv->mii_bus); 1753 mdiobus_free(priv->mii_bus); 1754 } 1755 1756 static void ftgmac100_ncsi_handler(struct ncsi_dev *nd) 1757 { 1758 if (unlikely(nd->state != ncsi_dev_state_functional)) 1759 return; 1760 1761 netdev_dbg(nd->dev, "NCSI interface %s\n", 1762 nd->link_up ? "up" : "down"); 1763 } 1764 1765 static int ftgmac100_setup_clk(struct ftgmac100 *priv) 1766 { 1767 struct clk *clk; 1768 int rc; 1769 1770 clk = devm_clk_get(priv->dev, NULL /* MACCLK */); 1771 if (IS_ERR(clk)) 1772 return PTR_ERR(clk); 1773 priv->clk = clk; 1774 rc = clk_prepare_enable(priv->clk); 1775 if (rc) 1776 return rc; 1777 1778 /* Aspeed specifies a 100MHz clock is required for up to 1779 * 1000Mbit link speeds. As NCSI is limited to 100Mbit, 25MHz 1780 * is sufficient 1781 */ 1782 rc = clk_set_rate(priv->clk, priv->use_ncsi ? FTGMAC_25MHZ : 1783 FTGMAC_100MHZ); 1784 if (rc) 1785 goto cleanup_clk; 1786 1787 /* RCLK is for RMII, typically used for NCSI. Optional because it's not 1788 * necessary if it's the AST2400 MAC, or the MAC is configured for 1789 * RGMII, or the controller is not an ASPEED-based controller. 1790 */ 1791 priv->rclk = devm_clk_get_optional(priv->dev, "RCLK"); 1792 rc = clk_prepare_enable(priv->rclk); 1793 if (!rc) 1794 return 0; 1795 1796 cleanup_clk: 1797 clk_disable_unprepare(priv->clk); 1798 1799 return rc; 1800 } 1801 1802 static bool ftgmac100_has_child_node(struct device_node *np, const char *name) 1803 { 1804 struct device_node *child_np = of_get_child_by_name(np, name); 1805 bool ret = false; 1806 1807 if (child_np) { 1808 ret = true; 1809 of_node_put(child_np); 1810 } 1811 1812 return ret; 1813 } 1814 1815 static int ftgmac100_probe(struct platform_device *pdev) 1816 { 1817 struct resource *res; 1818 int irq; 1819 struct net_device *netdev; 1820 struct phy_device *phydev; 1821 struct ftgmac100 *priv; 1822 struct device_node *np; 1823 int err = 0; 1824 1825 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1826 if (!res) 1827 return -ENXIO; 1828 1829 irq = platform_get_irq(pdev, 0); 1830 if (irq < 0) 1831 return irq; 1832 1833 /* setup net_device */ 1834 netdev = alloc_etherdev(sizeof(*priv)); 1835 if (!netdev) { 1836 err = -ENOMEM; 1837 goto err_alloc_etherdev; 1838 } 1839 1840 SET_NETDEV_DEV(netdev, &pdev->dev); 1841 1842 netdev->ethtool_ops = &ftgmac100_ethtool_ops; 1843 netdev->netdev_ops = &ftgmac100_netdev_ops; 1844 netdev->watchdog_timeo = 5 * HZ; 1845 1846 platform_set_drvdata(pdev, netdev); 1847 1848 /* setup private data */ 1849 priv = netdev_priv(netdev); 1850 priv->netdev = netdev; 1851 priv->dev = &pdev->dev; 1852 INIT_WORK(&priv->reset_task, ftgmac100_reset_task); 1853 1854 /* map io memory */ 1855 priv->res = request_mem_region(res->start, resource_size(res), 1856 dev_name(&pdev->dev)); 1857 if (!priv->res) { 1858 dev_err(&pdev->dev, "Could not reserve memory region\n"); 1859 err = -ENOMEM; 1860 goto err_req_mem; 1861 } 1862 1863 priv->base = ioremap(res->start, resource_size(res)); 1864 if (!priv->base) { 1865 dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n"); 1866 err = -EIO; 1867 goto err_ioremap; 1868 } 1869 1870 netdev->irq = irq; 1871 1872 /* Enable pause */ 1873 priv->tx_pause = true; 1874 priv->rx_pause = true; 1875 priv->aneg_pause = true; 1876 1877 /* MAC address from chip or random one */ 1878 err = ftgmac100_initial_mac(priv); 1879 if (err) 1880 goto err_phy_connect; 1881 1882 np = pdev->dev.of_node; 1883 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") || 1884 of_device_is_compatible(np, "aspeed,ast2500-mac") || 1885 of_device_is_compatible(np, "aspeed,ast2600-mac"))) { 1886 priv->rxdes0_edorr_mask = BIT(30); 1887 priv->txdes0_edotr_mask = BIT(30); 1888 priv->is_aspeed = true; 1889 } else { 1890 priv->rxdes0_edorr_mask = BIT(15); 1891 priv->txdes0_edotr_mask = BIT(15); 1892 } 1893 1894 if (np && of_get_property(np, "use-ncsi", NULL)) { 1895 if (!IS_ENABLED(CONFIG_NET_NCSI)) { 1896 dev_err(&pdev->dev, "NCSI stack not enabled\n"); 1897 err = -EINVAL; 1898 goto err_phy_connect; 1899 } 1900 1901 dev_info(&pdev->dev, "Using NCSI interface\n"); 1902 priv->use_ncsi = true; 1903 priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler); 1904 if (!priv->ndev) { 1905 err = -EINVAL; 1906 goto err_phy_connect; 1907 } 1908 1909 phydev = fixed_phy_register(PHY_POLL, &ncsi_phy_status, np); 1910 if (IS_ERR(phydev)) { 1911 dev_err(&pdev->dev, "failed to register fixed PHY device\n"); 1912 err = PTR_ERR(phydev); 1913 goto err_phy_connect; 1914 } 1915 err = phy_connect_direct(netdev, phydev, ftgmac100_adjust_link, 1916 PHY_INTERFACE_MODE_RMII); 1917 if (err) { 1918 dev_err(&pdev->dev, "Connecting PHY failed\n"); 1919 goto err_phy_connect; 1920 } 1921 } else if (np && (of_phy_is_fixed_link(np) || 1922 of_get_property(np, "phy-handle", NULL))) { 1923 struct phy_device *phy; 1924 1925 /* Support "mdio"/"phy" child nodes for ast2400/2500 with 1926 * an embedded MDIO controller. Automatically scan the DTS for 1927 * available PHYs and register them. 1928 */ 1929 if (of_get_property(np, "phy-handle", NULL) && 1930 (of_device_is_compatible(np, "aspeed,ast2400-mac") || 1931 of_device_is_compatible(np, "aspeed,ast2500-mac"))) { 1932 err = ftgmac100_setup_mdio(netdev); 1933 if (err) 1934 goto err_setup_mdio; 1935 } 1936 1937 phy = of_phy_get_and_connect(priv->netdev, np, 1938 &ftgmac100_adjust_link); 1939 if (!phy) { 1940 dev_err(&pdev->dev, "Failed to connect to phy\n"); 1941 err = -EINVAL; 1942 goto err_phy_connect; 1943 } 1944 1945 /* Indicate that we support PAUSE frames (see comment in 1946 * Documentation/networking/phy.rst) 1947 */ 1948 phy_support_asym_pause(phy); 1949 1950 /* Display what we found */ 1951 phy_attached_info(phy); 1952 } else if (np && !ftgmac100_has_child_node(np, "mdio")) { 1953 /* Support legacy ASPEED devicetree descriptions that decribe a 1954 * MAC with an embedded MDIO controller but have no "mdio" 1955 * child node. Automatically scan the MDIO bus for available 1956 * PHYs. 1957 */ 1958 priv->use_ncsi = false; 1959 err = ftgmac100_setup_mdio(netdev); 1960 if (err) 1961 goto err_setup_mdio; 1962 1963 err = ftgmac100_mii_probe(netdev); 1964 if (err) { 1965 dev_err(priv->dev, "MII probe failed!\n"); 1966 goto err_ncsi_dev; 1967 } 1968 1969 } 1970 1971 if (priv->is_aspeed) { 1972 err = ftgmac100_setup_clk(priv); 1973 if (err) 1974 goto err_phy_connect; 1975 1976 /* Disable ast2600 problematic HW arbitration */ 1977 if (of_device_is_compatible(np, "aspeed,ast2600-mac")) 1978 iowrite32(FTGMAC100_TM_DEFAULT, 1979 priv->base + FTGMAC100_OFFSET_TM); 1980 } 1981 1982 /* Default ring sizes */ 1983 priv->rx_q_entries = priv->new_rx_q_entries = DEF_RX_QUEUE_ENTRIES; 1984 priv->tx_q_entries = priv->new_tx_q_entries = DEF_TX_QUEUE_ENTRIES; 1985 1986 /* Base feature set */ 1987 netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM | 1988 NETIF_F_GRO | NETIF_F_SG | NETIF_F_HW_VLAN_CTAG_RX | 1989 NETIF_F_HW_VLAN_CTAG_TX; 1990 1991 if (priv->use_ncsi) 1992 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 1993 1994 /* AST2400 doesn't have working HW checksum generation */ 1995 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac"))) 1996 netdev->hw_features &= ~NETIF_F_HW_CSUM; 1997 1998 /* AST2600 tx checksum with NCSI is broken */ 1999 if (priv->use_ncsi && of_device_is_compatible(np, "aspeed,ast2600-mac")) 2000 netdev->hw_features &= ~NETIF_F_HW_CSUM; 2001 2002 if (np && of_get_property(np, "no-hw-checksum", NULL)) 2003 netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM); 2004 netdev->features |= netdev->hw_features; 2005 2006 /* register network device */ 2007 err = register_netdev(netdev); 2008 if (err) { 2009 dev_err(&pdev->dev, "Failed to register netdev\n"); 2010 goto err_register_netdev; 2011 } 2012 2013 netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base); 2014 2015 return 0; 2016 2017 err_register_netdev: 2018 clk_disable_unprepare(priv->rclk); 2019 clk_disable_unprepare(priv->clk); 2020 err_phy_connect: 2021 ftgmac100_phy_disconnect(netdev); 2022 err_ncsi_dev: 2023 if (priv->ndev) 2024 ncsi_unregister_dev(priv->ndev); 2025 ftgmac100_destroy_mdio(netdev); 2026 err_setup_mdio: 2027 iounmap(priv->base); 2028 err_ioremap: 2029 release_resource(priv->res); 2030 err_req_mem: 2031 free_netdev(netdev); 2032 err_alloc_etherdev: 2033 return err; 2034 } 2035 2036 static void ftgmac100_remove(struct platform_device *pdev) 2037 { 2038 struct net_device *netdev; 2039 struct ftgmac100 *priv; 2040 2041 netdev = platform_get_drvdata(pdev); 2042 priv = netdev_priv(netdev); 2043 2044 if (priv->ndev) 2045 ncsi_unregister_dev(priv->ndev); 2046 unregister_netdev(netdev); 2047 2048 clk_disable_unprepare(priv->rclk); 2049 clk_disable_unprepare(priv->clk); 2050 2051 /* There's a small chance the reset task will have been re-queued, 2052 * during stop, make sure it's gone before we free the structure. 2053 */ 2054 cancel_work_sync(&priv->reset_task); 2055 2056 ftgmac100_phy_disconnect(netdev); 2057 ftgmac100_destroy_mdio(netdev); 2058 2059 iounmap(priv->base); 2060 release_resource(priv->res); 2061 2062 netif_napi_del(&priv->napi); 2063 free_netdev(netdev); 2064 } 2065 2066 static const struct of_device_id ftgmac100_of_match[] = { 2067 { .compatible = "faraday,ftgmac100" }, 2068 { } 2069 }; 2070 MODULE_DEVICE_TABLE(of, ftgmac100_of_match); 2071 2072 static struct platform_driver ftgmac100_driver = { 2073 .probe = ftgmac100_probe, 2074 .remove = ftgmac100_remove, 2075 .driver = { 2076 .name = DRV_NAME, 2077 .of_match_table = ftgmac100_of_match, 2078 }, 2079 }; 2080 module_platform_driver(ftgmac100_driver); 2081 2082 MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>"); 2083 MODULE_DESCRIPTION("FTGMAC100 driver"); 2084 MODULE_LICENSE("GPL"); 2085