1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright(c) 2015 EZchip Technologies. 4 */ 5 6 #include <linux/module.h> 7 #include <linux/etherdevice.h> 8 #include <linux/interrupt.h> 9 #include <linux/mod_devicetable.h> 10 #include <linux/of_net.h> 11 #include <linux/platform_device.h> 12 #include "nps_enet.h" 13 14 #define DRV_NAME "nps_mgt_enet" 15 16 static inline bool nps_enet_is_tx_pending(struct nps_enet_priv *priv) 17 { 18 u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL); 19 u32 tx_ctrl_ct = (tx_ctrl_value & TX_CTL_CT_MASK) >> TX_CTL_CT_SHIFT; 20 21 return (!tx_ctrl_ct && priv->tx_skb); 22 } 23 24 static void nps_enet_clean_rx_fifo(struct net_device *ndev, u32 frame_len) 25 { 26 struct nps_enet_priv *priv = netdev_priv(ndev); 27 u32 i, len = DIV_ROUND_UP(frame_len, sizeof(u32)); 28 29 /* Empty Rx FIFO buffer by reading all words */ 30 for (i = 0; i < len; i++) 31 nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF); 32 } 33 34 static void nps_enet_read_rx_fifo(struct net_device *ndev, 35 unsigned char *dst, u32 length) 36 { 37 struct nps_enet_priv *priv = netdev_priv(ndev); 38 s32 i, last = length & (sizeof(u32) - 1); 39 u32 *reg = (u32 *)dst, len = length / sizeof(u32); 40 bool dst_is_aligned = IS_ALIGNED((unsigned long)dst, sizeof(u32)); 41 42 /* In case dst is not aligned we need an intermediate buffer */ 43 if (dst_is_aligned) { 44 ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, reg, len); 45 reg += len; 46 } else { /* !dst_is_aligned */ 47 for (i = 0; i < len; i++, reg++) { 48 u32 buf = nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF); 49 50 put_unaligned_be32(buf, reg); 51 } 52 } 53 /* copy last bytes (if any) */ 54 if (last) { 55 u32 buf; 56 57 ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, &buf, 1); 58 memcpy((u8 *)reg, &buf, last); 59 } 60 } 61 62 static u32 nps_enet_rx_handler(struct net_device *ndev) 63 { 64 u32 frame_len, err = 0; 65 u32 work_done = 0; 66 struct nps_enet_priv *priv = netdev_priv(ndev); 67 struct sk_buff *skb; 68 u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL); 69 u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT; 70 u32 rx_ctrl_er = (rx_ctrl_value & RX_CTL_ER_MASK) >> RX_CTL_ER_SHIFT; 71 u32 rx_ctrl_crc = (rx_ctrl_value & RX_CTL_CRC_MASK) >> RX_CTL_CRC_SHIFT; 72 73 frame_len = (rx_ctrl_value & RX_CTL_NR_MASK) >> RX_CTL_NR_SHIFT; 74 75 /* Check if we got RX */ 76 if (!rx_ctrl_cr) 77 return work_done; 78 79 /* If we got here there is a work for us */ 80 work_done++; 81 82 /* Check Rx error */ 83 if (rx_ctrl_er) { 84 ndev->stats.rx_errors++; 85 err = 1; 86 } 87 88 /* Check Rx CRC error */ 89 if (rx_ctrl_crc) { 90 ndev->stats.rx_crc_errors++; 91 ndev->stats.rx_dropped++; 92 err = 1; 93 } 94 95 /* Check Frame length Min 64b */ 96 if (unlikely(frame_len < ETH_ZLEN)) { 97 ndev->stats.rx_length_errors++; 98 ndev->stats.rx_dropped++; 99 err = 1; 100 } 101 102 if (err) 103 goto rx_irq_clean; 104 105 /* Skb allocation */ 106 skb = netdev_alloc_skb_ip_align(ndev, frame_len); 107 if (unlikely(!skb)) { 108 ndev->stats.rx_errors++; 109 ndev->stats.rx_dropped++; 110 goto rx_irq_clean; 111 } 112 113 /* Copy frame from Rx fifo into the skb */ 114 nps_enet_read_rx_fifo(ndev, skb->data, frame_len); 115 116 skb_put(skb, frame_len); 117 skb->protocol = eth_type_trans(skb, ndev); 118 skb->ip_summed = CHECKSUM_UNNECESSARY; 119 120 ndev->stats.rx_packets++; 121 ndev->stats.rx_bytes += frame_len; 122 netif_receive_skb(skb); 123 124 goto rx_irq_frame_done; 125 126 rx_irq_clean: 127 /* Clean Rx fifo */ 128 nps_enet_clean_rx_fifo(ndev, frame_len); 129 130 rx_irq_frame_done: 131 /* Ack Rx ctrl register */ 132 nps_enet_reg_set(priv, NPS_ENET_REG_RX_CTL, 0); 133 134 return work_done; 135 } 136 137 static void nps_enet_tx_handler(struct net_device *ndev) 138 { 139 struct nps_enet_priv *priv = netdev_priv(ndev); 140 u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL); 141 u32 tx_ctrl_et = (tx_ctrl_value & TX_CTL_ET_MASK) >> TX_CTL_ET_SHIFT; 142 u32 tx_ctrl_nt = (tx_ctrl_value & TX_CTL_NT_MASK) >> TX_CTL_NT_SHIFT; 143 144 /* Check if we got TX */ 145 if (!nps_enet_is_tx_pending(priv)) 146 return; 147 148 /* Ack Tx ctrl register */ 149 nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, 0); 150 151 /* Check Tx transmit error */ 152 if (unlikely(tx_ctrl_et)) { 153 ndev->stats.tx_errors++; 154 } else { 155 ndev->stats.tx_packets++; 156 ndev->stats.tx_bytes += tx_ctrl_nt; 157 } 158 159 dev_kfree_skb(priv->tx_skb); 160 priv->tx_skb = NULL; 161 162 if (netif_queue_stopped(ndev)) 163 netif_wake_queue(ndev); 164 } 165 166 /** 167 * nps_enet_poll - NAPI poll handler. 168 * @napi: Pointer to napi_struct structure. 169 * @budget: How many frames to process on one call. 170 * 171 * returns: Number of processed frames 172 */ 173 static int nps_enet_poll(struct napi_struct *napi, int budget) 174 { 175 struct net_device *ndev = napi->dev; 176 struct nps_enet_priv *priv = netdev_priv(ndev); 177 u32 work_done; 178 179 nps_enet_tx_handler(ndev); 180 work_done = nps_enet_rx_handler(ndev); 181 if ((work_done < budget) && napi_complete_done(napi, work_done)) { 182 u32 buf_int_enable_value = 0; 183 184 /* set tx_done and rx_rdy bits */ 185 buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT; 186 buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT; 187 188 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 189 buf_int_enable_value); 190 191 /* in case we will get a tx interrupt while interrupts 192 * are masked, we will lose it since the tx is edge interrupt. 193 * specifically, while executing the code section above, 194 * between nps_enet_tx_handler and the interrupts enable, all 195 * tx requests will be stuck until we will get an rx interrupt. 196 * the two code lines below will solve this situation by 197 * re-adding ourselves to the poll list. 198 */ 199 if (nps_enet_is_tx_pending(priv)) { 200 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0); 201 napi_schedule(napi); 202 } 203 } 204 205 return work_done; 206 } 207 208 /** 209 * nps_enet_irq_handler - Global interrupt handler for ENET. 210 * @irq: irq number. 211 * @dev_instance: device instance. 212 * 213 * returns: IRQ_HANDLED for all cases. 214 * 215 * EZchip ENET has 2 interrupt causes, and depending on bits raised in 216 * CTRL registers we may tell what is a reason for interrupt to fire up. 217 * We got one for RX and the other for TX (completion). 218 */ 219 static irqreturn_t nps_enet_irq_handler(s32 irq, void *dev_instance) 220 { 221 struct net_device *ndev = dev_instance; 222 struct nps_enet_priv *priv = netdev_priv(ndev); 223 u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL); 224 u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT; 225 226 if (nps_enet_is_tx_pending(priv) || rx_ctrl_cr) 227 if (likely(napi_schedule_prep(&priv->napi))) { 228 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0); 229 __napi_schedule(&priv->napi); 230 } 231 232 return IRQ_HANDLED; 233 } 234 235 static void nps_enet_set_hw_mac_address(struct net_device *ndev) 236 { 237 struct nps_enet_priv *priv = netdev_priv(ndev); 238 u32 ge_mac_cfg_1_value = 0; 239 u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value; 240 241 /* set MAC address in HW */ 242 ge_mac_cfg_1_value |= ndev->dev_addr[0] << CFG_1_OCTET_0_SHIFT; 243 ge_mac_cfg_1_value |= ndev->dev_addr[1] << CFG_1_OCTET_1_SHIFT; 244 ge_mac_cfg_1_value |= ndev->dev_addr[2] << CFG_1_OCTET_2_SHIFT; 245 ge_mac_cfg_1_value |= ndev->dev_addr[3] << CFG_1_OCTET_3_SHIFT; 246 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_4_MASK) 247 | ndev->dev_addr[4] << CFG_2_OCTET_4_SHIFT; 248 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_5_MASK) 249 | ndev->dev_addr[5] << CFG_2_OCTET_5_SHIFT; 250 251 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_1, 252 ge_mac_cfg_1_value); 253 254 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2, 255 *ge_mac_cfg_2_value); 256 } 257 258 /** 259 * nps_enet_hw_reset - Reset the network device. 260 * @ndev: Pointer to the network device. 261 * 262 * This function reset the PCS and TX fifo. 263 * The programming model is to set the relevant reset bits 264 * wait for some time for this to propagate and then unset 265 * the reset bits. This way we ensure that reset procedure 266 * is done successfully by device. 267 */ 268 static void nps_enet_hw_reset(struct net_device *ndev) 269 { 270 struct nps_enet_priv *priv = netdev_priv(ndev); 271 u32 ge_rst_value = 0, phase_fifo_ctl_value = 0; 272 273 /* Pcs reset sequence*/ 274 ge_rst_value |= NPS_ENET_ENABLE << RST_GMAC_0_SHIFT; 275 nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value); 276 usleep_range(10, 20); 277 ge_rst_value = 0; 278 nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value); 279 280 /* Tx fifo reset sequence */ 281 phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_RST_SHIFT; 282 phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_INIT_SHIFT; 283 nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL, 284 phase_fifo_ctl_value); 285 usleep_range(10, 20); 286 phase_fifo_ctl_value = 0; 287 nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL, 288 phase_fifo_ctl_value); 289 } 290 291 static void nps_enet_hw_enable_control(struct net_device *ndev) 292 { 293 struct nps_enet_priv *priv = netdev_priv(ndev); 294 u32 ge_mac_cfg_0_value = 0, buf_int_enable_value = 0; 295 u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value; 296 u32 *ge_mac_cfg_3_value = &priv->ge_mac_cfg_3_value; 297 s32 max_frame_length; 298 299 /* Enable Rx and Tx statistics */ 300 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_STAT_EN_MASK) 301 | NPS_ENET_GE_MAC_CFG_2_STAT_EN << CFG_2_STAT_EN_SHIFT; 302 303 /* Discard packets with different MAC address */ 304 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK) 305 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT; 306 307 /* Discard multicast packets */ 308 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK) 309 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT; 310 311 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2, 312 *ge_mac_cfg_2_value); 313 314 /* Discard Packets bigger than max frame length */ 315 max_frame_length = ETH_HLEN + ndev->mtu + ETH_FCS_LEN; 316 if (max_frame_length <= NPS_ENET_MAX_FRAME_LENGTH) { 317 *ge_mac_cfg_3_value = 318 (*ge_mac_cfg_3_value & ~CFG_3_MAX_LEN_MASK) 319 | max_frame_length << CFG_3_MAX_LEN_SHIFT; 320 } 321 322 /* Enable interrupts */ 323 buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT; 324 buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT; 325 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 326 buf_int_enable_value); 327 328 /* Write device MAC address to HW */ 329 nps_enet_set_hw_mac_address(ndev); 330 331 /* Rx and Tx HW features */ 332 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_PAD_EN_SHIFT; 333 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_CRC_EN_SHIFT; 334 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_CRC_STRIP_SHIFT; 335 336 /* IFG configuration */ 337 ge_mac_cfg_0_value |= 338 NPS_ENET_GE_MAC_CFG_0_RX_IFG << CFG_0_RX_IFG_SHIFT; 339 ge_mac_cfg_0_value |= 340 NPS_ENET_GE_MAC_CFG_0_TX_IFG << CFG_0_TX_IFG_SHIFT; 341 342 /* preamble configuration */ 343 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_PR_CHECK_EN_SHIFT; 344 ge_mac_cfg_0_value |= 345 NPS_ENET_GE_MAC_CFG_0_TX_PR_LEN << CFG_0_TX_PR_LEN_SHIFT; 346 347 /* enable flow control frames */ 348 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_FC_EN_SHIFT; 349 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_FC_EN_SHIFT; 350 ge_mac_cfg_0_value |= 351 NPS_ENET_GE_MAC_CFG_0_TX_FC_RETR << CFG_0_TX_FC_RETR_SHIFT; 352 *ge_mac_cfg_3_value = (*ge_mac_cfg_3_value & ~CFG_3_CF_DROP_MASK) 353 | NPS_ENET_ENABLE << CFG_3_CF_DROP_SHIFT; 354 355 /* Enable Rx and Tx */ 356 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_EN_SHIFT; 357 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_EN_SHIFT; 358 359 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_3, 360 *ge_mac_cfg_3_value); 361 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0, 362 ge_mac_cfg_0_value); 363 } 364 365 static void nps_enet_hw_disable_control(struct net_device *ndev) 366 { 367 struct nps_enet_priv *priv = netdev_priv(ndev); 368 369 /* Disable interrupts */ 370 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0); 371 372 /* Disable Rx and Tx */ 373 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0, 0); 374 } 375 376 static void nps_enet_send_frame(struct net_device *ndev, 377 struct sk_buff *skb) 378 { 379 struct nps_enet_priv *priv = netdev_priv(ndev); 380 u32 tx_ctrl_value = 0; 381 short length = skb->len; 382 u32 i, len = DIV_ROUND_UP(length, sizeof(u32)); 383 u32 *src = (void *)skb->data; 384 bool src_is_aligned = IS_ALIGNED((unsigned long)src, sizeof(u32)); 385 386 /* In case src is not aligned we need an intermediate buffer */ 387 if (src_is_aligned) 388 iowrite32_rep(priv->regs_base + NPS_ENET_REG_TX_BUF, src, len); 389 else /* !src_is_aligned */ 390 for (i = 0; i < len; i++, src++) 391 nps_enet_reg_set(priv, NPS_ENET_REG_TX_BUF, 392 get_unaligned_be32(src)); 393 394 /* Write the length of the Frame */ 395 tx_ctrl_value |= length << TX_CTL_NT_SHIFT; 396 397 tx_ctrl_value |= NPS_ENET_ENABLE << TX_CTL_CT_SHIFT; 398 /* Send Frame */ 399 nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, tx_ctrl_value); 400 } 401 402 /** 403 * nps_enet_set_mac_address - Set the MAC address for this device. 404 * @ndev: Pointer to net_device structure. 405 * @p: 6 byte Address to be written as MAC address. 406 * 407 * This function copies the HW address from the sockaddr structure to the 408 * net_device structure and updates the address in HW. 409 * 410 * returns: -EBUSY if the net device is busy or 0 if the address is set 411 * successfully. 412 */ 413 static s32 nps_enet_set_mac_address(struct net_device *ndev, void *p) 414 { 415 struct sockaddr *addr = p; 416 s32 res; 417 418 if (netif_running(ndev)) 419 return -EBUSY; 420 421 res = eth_mac_addr(ndev, p); 422 if (!res) { 423 eth_hw_addr_set(ndev, addr->sa_data); 424 nps_enet_set_hw_mac_address(ndev); 425 } 426 427 return res; 428 } 429 430 /** 431 * nps_enet_set_rx_mode - Change the receive filtering mode. 432 * @ndev: Pointer to the network device. 433 * 434 * This function enables/disables promiscuous mode 435 */ 436 static void nps_enet_set_rx_mode(struct net_device *ndev) 437 { 438 struct nps_enet_priv *priv = netdev_priv(ndev); 439 u32 ge_mac_cfg_2_value = priv->ge_mac_cfg_2_value; 440 441 if (ndev->flags & IFF_PROMISC) { 442 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK) 443 | NPS_ENET_DISABLE << CFG_2_DISK_DA_SHIFT; 444 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK) 445 | NPS_ENET_DISABLE << CFG_2_DISK_MC_SHIFT; 446 447 } else { 448 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK) 449 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT; 450 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK) 451 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT; 452 } 453 454 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2, ge_mac_cfg_2_value); 455 } 456 457 /** 458 * nps_enet_open - Open the network device. 459 * @ndev: Pointer to the network device. 460 * 461 * returns: 0, on success or non-zero error value on failure. 462 * 463 * This function sets the MAC address, requests and enables an IRQ 464 * for the ENET device and starts the Tx queue. 465 */ 466 static s32 nps_enet_open(struct net_device *ndev) 467 { 468 struct nps_enet_priv *priv = netdev_priv(ndev); 469 s32 err; 470 471 /* Reset private variables */ 472 priv->tx_skb = NULL; 473 priv->ge_mac_cfg_2_value = 0; 474 priv->ge_mac_cfg_3_value = 0; 475 476 /* ge_mac_cfg_3 default values */ 477 priv->ge_mac_cfg_3_value |= 478 NPS_ENET_GE_MAC_CFG_3_RX_IFG_TH << CFG_3_RX_IFG_TH_SHIFT; 479 480 priv->ge_mac_cfg_3_value |= 481 NPS_ENET_GE_MAC_CFG_3_MAX_LEN << CFG_3_MAX_LEN_SHIFT; 482 483 /* Disable HW device */ 484 nps_enet_hw_disable_control(ndev); 485 486 /* irq Rx allocation */ 487 err = request_irq(priv->irq, nps_enet_irq_handler, 488 0, "enet-rx-tx", ndev); 489 if (err) 490 return err; 491 492 napi_enable(&priv->napi); 493 494 /* Enable HW device */ 495 nps_enet_hw_reset(ndev); 496 nps_enet_hw_enable_control(ndev); 497 498 netif_start_queue(ndev); 499 500 return 0; 501 } 502 503 /** 504 * nps_enet_stop - Close the network device. 505 * @ndev: Pointer to the network device. 506 * 507 * This function stops the Tx queue, disables interrupts for the ENET device. 508 */ 509 static s32 nps_enet_stop(struct net_device *ndev) 510 { 511 struct nps_enet_priv *priv = netdev_priv(ndev); 512 513 napi_disable(&priv->napi); 514 netif_stop_queue(ndev); 515 nps_enet_hw_disable_control(ndev); 516 free_irq(priv->irq, ndev); 517 518 return 0; 519 } 520 521 /** 522 * nps_enet_start_xmit - Starts the data transmission. 523 * @skb: sk_buff pointer that contains data to be Transmitted. 524 * @ndev: Pointer to net_device structure. 525 * 526 * returns: NETDEV_TX_OK, on success 527 * NETDEV_TX_BUSY, if any of the descriptors are not free. 528 * 529 * This function is invoked from upper layers to initiate transmission. 530 */ 531 static netdev_tx_t nps_enet_start_xmit(struct sk_buff *skb, 532 struct net_device *ndev) 533 { 534 struct nps_enet_priv *priv = netdev_priv(ndev); 535 536 /* This driver handles one frame at a time */ 537 netif_stop_queue(ndev); 538 539 priv->tx_skb = skb; 540 541 /* make sure tx_skb is actually written to the memory 542 * before the HW is informed and the IRQ is fired. 543 */ 544 wmb(); 545 546 nps_enet_send_frame(ndev, skb); 547 548 return NETDEV_TX_OK; 549 } 550 551 #ifdef CONFIG_NET_POLL_CONTROLLER 552 static void nps_enet_poll_controller(struct net_device *ndev) 553 { 554 disable_irq(ndev->irq); 555 nps_enet_irq_handler(ndev->irq, ndev); 556 enable_irq(ndev->irq); 557 } 558 #endif 559 560 static const struct net_device_ops nps_netdev_ops = { 561 .ndo_open = nps_enet_open, 562 .ndo_stop = nps_enet_stop, 563 .ndo_start_xmit = nps_enet_start_xmit, 564 .ndo_set_mac_address = nps_enet_set_mac_address, 565 .ndo_set_rx_mode = nps_enet_set_rx_mode, 566 #ifdef CONFIG_NET_POLL_CONTROLLER 567 .ndo_poll_controller = nps_enet_poll_controller, 568 #endif 569 }; 570 571 static s32 nps_enet_probe(struct platform_device *pdev) 572 { 573 struct device *dev = &pdev->dev; 574 struct net_device *ndev; 575 struct nps_enet_priv *priv; 576 s32 err = 0; 577 578 if (!dev->of_node) 579 return -ENODEV; 580 581 ndev = alloc_etherdev(sizeof(struct nps_enet_priv)); 582 if (!ndev) 583 return -ENOMEM; 584 585 platform_set_drvdata(pdev, ndev); 586 SET_NETDEV_DEV(ndev, dev); 587 priv = netdev_priv(ndev); 588 589 /* The EZ NET specific entries in the device structure. */ 590 ndev->netdev_ops = &nps_netdev_ops; 591 ndev->watchdog_timeo = (400 * HZ / 1000); 592 /* FIXME :: no multicast support yet */ 593 ndev->flags &= ~IFF_MULTICAST; 594 595 priv->regs_base = devm_platform_ioremap_resource(pdev, 0); 596 if (IS_ERR(priv->regs_base)) { 597 err = PTR_ERR(priv->regs_base); 598 goto out_netdev; 599 } 600 dev_dbg(dev, "Registers base address is 0x%p\n", priv->regs_base); 601 602 /* set kernel MAC address to dev */ 603 err = of_get_ethdev_address(dev->of_node, ndev); 604 if (err) 605 eth_hw_addr_random(ndev); 606 607 /* Get IRQ number */ 608 priv->irq = platform_get_irq(pdev, 0); 609 if (priv->irq < 0) { 610 err = -ENODEV; 611 goto out_netdev; 612 } 613 614 netif_napi_add_weight(ndev, &priv->napi, nps_enet_poll, 615 NPS_ENET_NAPI_POLL_WEIGHT); 616 617 /* Register the driver. Should be the last thing in probe */ 618 err = register_netdev(ndev); 619 if (err) { 620 dev_err(dev, "Failed to register ndev for %s, err = 0x%08x\n", 621 ndev->name, (s32)err); 622 goto out_netif_api; 623 } 624 625 dev_info(dev, "(rx/tx=%d)\n", priv->irq); 626 return 0; 627 628 out_netif_api: 629 netif_napi_del(&priv->napi); 630 out_netdev: 631 free_netdev(ndev); 632 633 return err; 634 } 635 636 static void nps_enet_remove(struct platform_device *pdev) 637 { 638 struct net_device *ndev = platform_get_drvdata(pdev); 639 struct nps_enet_priv *priv = netdev_priv(ndev); 640 641 unregister_netdev(ndev); 642 netif_napi_del(&priv->napi); 643 free_netdev(ndev); 644 } 645 646 static const struct of_device_id nps_enet_dt_ids[] = { 647 { .compatible = "ezchip,nps-mgt-enet" }, 648 { /* Sentinel */ } 649 }; 650 MODULE_DEVICE_TABLE(of, nps_enet_dt_ids); 651 652 static struct platform_driver nps_enet_driver = { 653 .probe = nps_enet_probe, 654 .remove = nps_enet_remove, 655 .driver = { 656 .name = DRV_NAME, 657 .of_match_table = nps_enet_dt_ids, 658 }, 659 }; 660 661 module_platform_driver(nps_enet_driver); 662 663 MODULE_AUTHOR("EZchip Semiconductor"); 664 MODULE_DESCRIPTION("EZchip NPS Ethernet driver"); 665 MODULE_LICENSE("GPL v2"); 666