1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/net/ethernet/ethoc.c 4 * 5 * Copyright (C) 2007-2008 Avionic Design Development GmbH 6 * Copyright (C) 2008-2009 Avionic Design GmbH 7 * 8 * Written by Thierry Reding <thierry.reding@avionic-design.de> 9 */ 10 11 #include <linux/dma-mapping.h> 12 #include <linux/etherdevice.h> 13 #include <linux/clk.h> 14 #include <linux/crc32.h> 15 #include <linux/interrupt.h> 16 #include <linux/io.h> 17 #include <linux/mii.h> 18 #include <linux/phy.h> 19 #include <linux/platform_device.h> 20 #include <linux/sched.h> 21 #include <linux/slab.h> 22 #include <linux/of.h> 23 #include <linux/of_net.h> 24 #include <linux/module.h> 25 #include <net/ethoc.h> 26 27 static int buffer_size = 0x8000; /* 32 KBytes */ 28 module_param(buffer_size, int, 0); 29 MODULE_PARM_DESC(buffer_size, "DMA buffer allocation size"); 30 31 /* register offsets */ 32 #define MODER 0x00 33 #define INT_SOURCE 0x04 34 #define INT_MASK 0x08 35 #define IPGT 0x0c 36 #define IPGR1 0x10 37 #define IPGR2 0x14 38 #define PACKETLEN 0x18 39 #define COLLCONF 0x1c 40 #define TX_BD_NUM 0x20 41 #define CTRLMODER 0x24 42 #define MIIMODER 0x28 43 #define MIICOMMAND 0x2c 44 #define MIIADDRESS 0x30 45 #define MIITX_DATA 0x34 46 #define MIIRX_DATA 0x38 47 #define MIISTATUS 0x3c 48 #define MAC_ADDR0 0x40 49 #define MAC_ADDR1 0x44 50 #define ETH_HASH0 0x48 51 #define ETH_HASH1 0x4c 52 #define ETH_TXCTRL 0x50 53 #define ETH_END 0x54 54 55 /* mode register */ 56 #define MODER_RXEN (1 << 0) /* receive enable */ 57 #define MODER_TXEN (1 << 1) /* transmit enable */ 58 #define MODER_NOPRE (1 << 2) /* no preamble */ 59 #define MODER_BRO (1 << 3) /* broadcast address */ 60 #define MODER_IAM (1 << 4) /* individual address mode */ 61 #define MODER_PRO (1 << 5) /* promiscuous mode */ 62 #define MODER_IFG (1 << 6) /* interframe gap for incoming frames */ 63 #define MODER_LOOP (1 << 7) /* loopback */ 64 #define MODER_NBO (1 << 8) /* no back-off */ 65 #define MODER_EDE (1 << 9) /* excess defer enable */ 66 #define MODER_FULLD (1 << 10) /* full duplex */ 67 #define MODER_RESET (1 << 11) /* FIXME: reset (undocumented) */ 68 #define MODER_DCRC (1 << 12) /* delayed CRC enable */ 69 #define MODER_CRC (1 << 13) /* CRC enable */ 70 #define MODER_HUGE (1 << 14) /* huge packets enable */ 71 #define MODER_PAD (1 << 15) /* padding enabled */ 72 #define MODER_RSM (1 << 16) /* receive small packets */ 73 74 /* interrupt source and mask registers */ 75 #define INT_MASK_TXF (1 << 0) /* transmit frame */ 76 #define INT_MASK_TXE (1 << 1) /* transmit error */ 77 #define INT_MASK_RXF (1 << 2) /* receive frame */ 78 #define INT_MASK_RXE (1 << 3) /* receive error */ 79 #define INT_MASK_BUSY (1 << 4) 80 #define INT_MASK_TXC (1 << 5) /* transmit control frame */ 81 #define INT_MASK_RXC (1 << 6) /* receive control frame */ 82 83 #define INT_MASK_TX (INT_MASK_TXF | INT_MASK_TXE) 84 #define INT_MASK_RX (INT_MASK_RXF | INT_MASK_RXE) 85 86 #define INT_MASK_ALL ( \ 87 INT_MASK_TXF | INT_MASK_TXE | \ 88 INT_MASK_RXF | INT_MASK_RXE | \ 89 INT_MASK_TXC | INT_MASK_RXC | \ 90 INT_MASK_BUSY \ 91 ) 92 93 /* packet length register */ 94 #define PACKETLEN_MIN(min) (((min) & 0xffff) << 16) 95 #define PACKETLEN_MAX(max) (((max) & 0xffff) << 0) 96 #define PACKETLEN_MIN_MAX(min, max) (PACKETLEN_MIN(min) | \ 97 PACKETLEN_MAX(max)) 98 99 /* transmit buffer number register */ 100 #define TX_BD_NUM_VAL(x) (((x) <= 0x80) ? (x) : 0x80) 101 102 /* control module mode register */ 103 #define CTRLMODER_PASSALL (1 << 0) /* pass all receive frames */ 104 #define CTRLMODER_RXFLOW (1 << 1) /* receive control flow */ 105 #define CTRLMODER_TXFLOW (1 << 2) /* transmit control flow */ 106 107 /* MII mode register */ 108 #define MIIMODER_CLKDIV(x) ((x) & 0xfe) /* needs to be an even number */ 109 #define MIIMODER_NOPRE (1 << 8) /* no preamble */ 110 111 /* MII command register */ 112 #define MIICOMMAND_SCAN (1 << 0) /* scan status */ 113 #define MIICOMMAND_READ (1 << 1) /* read status */ 114 #define MIICOMMAND_WRITE (1 << 2) /* write control data */ 115 116 /* MII address register */ 117 #define MIIADDRESS_FIAD(x) (((x) & 0x1f) << 0) 118 #define MIIADDRESS_RGAD(x) (((x) & 0x1f) << 8) 119 #define MIIADDRESS_ADDR(phy, reg) (MIIADDRESS_FIAD(phy) | \ 120 MIIADDRESS_RGAD(reg)) 121 122 /* MII transmit data register */ 123 #define MIITX_DATA_VAL(x) ((x) & 0xffff) 124 125 /* MII receive data register */ 126 #define MIIRX_DATA_VAL(x) ((x) & 0xffff) 127 128 /* MII status register */ 129 #define MIISTATUS_LINKFAIL (1 << 0) 130 #define MIISTATUS_BUSY (1 << 1) 131 #define MIISTATUS_INVALID (1 << 2) 132 133 /* TX buffer descriptor */ 134 #define TX_BD_CS (1 << 0) /* carrier sense lost */ 135 #define TX_BD_DF (1 << 1) /* defer indication */ 136 #define TX_BD_LC (1 << 2) /* late collision */ 137 #define TX_BD_RL (1 << 3) /* retransmission limit */ 138 #define TX_BD_RETRY_MASK (0x00f0) 139 #define TX_BD_RETRY(x) (((x) & 0x00f0) >> 4) 140 #define TX_BD_UR (1 << 8) /* transmitter underrun */ 141 #define TX_BD_CRC (1 << 11) /* TX CRC enable */ 142 #define TX_BD_PAD (1 << 12) /* pad enable for short packets */ 143 #define TX_BD_WRAP (1 << 13) 144 #define TX_BD_IRQ (1 << 14) /* interrupt request enable */ 145 #define TX_BD_READY (1 << 15) /* TX buffer ready */ 146 #define TX_BD_LEN(x) (((x) & 0xffff) << 16) 147 #define TX_BD_LEN_MASK (0xffff << 16) 148 149 #define TX_BD_STATS (TX_BD_CS | TX_BD_DF | TX_BD_LC | \ 150 TX_BD_RL | TX_BD_RETRY_MASK | TX_BD_UR) 151 152 /* RX buffer descriptor */ 153 #define RX_BD_LC (1 << 0) /* late collision */ 154 #define RX_BD_CRC (1 << 1) /* RX CRC error */ 155 #define RX_BD_SF (1 << 2) /* short frame */ 156 #define RX_BD_TL (1 << 3) /* too long */ 157 #define RX_BD_DN (1 << 4) /* dribble nibble */ 158 #define RX_BD_IS (1 << 5) /* invalid symbol */ 159 #define RX_BD_OR (1 << 6) /* receiver overrun */ 160 #define RX_BD_MISS (1 << 7) 161 #define RX_BD_CF (1 << 8) /* control frame */ 162 #define RX_BD_WRAP (1 << 13) 163 #define RX_BD_IRQ (1 << 14) /* interrupt request enable */ 164 #define RX_BD_EMPTY (1 << 15) 165 #define RX_BD_LEN(x) (((x) & 0xffff) << 16) 166 167 #define RX_BD_STATS (RX_BD_LC | RX_BD_CRC | RX_BD_SF | RX_BD_TL | \ 168 RX_BD_DN | RX_BD_IS | RX_BD_OR | RX_BD_MISS) 169 170 #define ETHOC_BUFSIZ 1536 171 #define ETHOC_ZLEN 64 172 #define ETHOC_BD_BASE 0x400 173 #define ETHOC_TIMEOUT (HZ / 2) 174 #define ETHOC_MII_TIMEOUT (1 + (HZ / 5)) 175 176 /** 177 * struct ethoc - driver-private device structure 178 * @iobase: pointer to I/O memory region 179 * @membase: pointer to buffer memory region 180 * @num_bd: number of buffer descriptors 181 * @num_tx: number of send buffers 182 * @cur_tx: last send buffer written 183 * @dty_tx: last buffer actually sent 184 * @num_rx: number of receive buffers 185 * @cur_rx: current receive buffer 186 * @vma: pointer to array of virtual memory addresses for buffers 187 * @netdev: pointer to network device structure 188 * @napi: NAPI structure 189 * @msg_enable: device state flags 190 * @lock: device lock 191 * @mdio: MDIO bus for PHY access 192 * @phy_id: address of attached PHY 193 */ 194 struct ethoc { 195 void __iomem *iobase; 196 void __iomem *membase; 197 bool big_endian; 198 199 unsigned int num_bd; 200 unsigned int num_tx; 201 unsigned int cur_tx; 202 unsigned int dty_tx; 203 204 unsigned int num_rx; 205 unsigned int cur_rx; 206 207 void **vma; 208 209 struct net_device *netdev; 210 struct napi_struct napi; 211 u32 msg_enable; 212 213 spinlock_t lock; 214 215 struct mii_bus *mdio; 216 struct clk *clk; 217 s8 phy_id; 218 219 int old_link; 220 int old_duplex; 221 }; 222 223 /** 224 * struct ethoc_bd - buffer descriptor 225 * @stat: buffer statistics 226 * @addr: physical memory address 227 */ 228 struct ethoc_bd { 229 u32 stat; 230 u32 addr; 231 }; 232 233 static inline u32 ethoc_read(struct ethoc *dev, loff_t offset) 234 { 235 if (dev->big_endian) 236 return ioread32be(dev->iobase + offset); 237 else 238 return ioread32(dev->iobase + offset); 239 } 240 241 static inline void ethoc_write(struct ethoc *dev, loff_t offset, u32 data) 242 { 243 if (dev->big_endian) 244 iowrite32be(data, dev->iobase + offset); 245 else 246 iowrite32(data, dev->iobase + offset); 247 } 248 249 static inline void ethoc_read_bd(struct ethoc *dev, int index, 250 struct ethoc_bd *bd) 251 { 252 loff_t offset = ETHOC_BD_BASE + (index * sizeof(struct ethoc_bd)); 253 bd->stat = ethoc_read(dev, offset + 0); 254 bd->addr = ethoc_read(dev, offset + 4); 255 } 256 257 static inline void ethoc_write_bd(struct ethoc *dev, int index, 258 const struct ethoc_bd *bd) 259 { 260 loff_t offset = ETHOC_BD_BASE + (index * sizeof(struct ethoc_bd)); 261 ethoc_write(dev, offset + 0, bd->stat); 262 ethoc_write(dev, offset + 4, bd->addr); 263 } 264 265 static inline void ethoc_enable_irq(struct ethoc *dev, u32 mask) 266 { 267 u32 imask = ethoc_read(dev, INT_MASK); 268 imask |= mask; 269 ethoc_write(dev, INT_MASK, imask); 270 } 271 272 static inline void ethoc_disable_irq(struct ethoc *dev, u32 mask) 273 { 274 u32 imask = ethoc_read(dev, INT_MASK); 275 imask &= ~mask; 276 ethoc_write(dev, INT_MASK, imask); 277 } 278 279 static inline void ethoc_ack_irq(struct ethoc *dev, u32 mask) 280 { 281 ethoc_write(dev, INT_SOURCE, mask); 282 } 283 284 static inline void ethoc_enable_rx_and_tx(struct ethoc *dev) 285 { 286 u32 mode = ethoc_read(dev, MODER); 287 mode |= MODER_RXEN | MODER_TXEN; 288 ethoc_write(dev, MODER, mode); 289 } 290 291 static inline void ethoc_disable_rx_and_tx(struct ethoc *dev) 292 { 293 u32 mode = ethoc_read(dev, MODER); 294 mode &= ~(MODER_RXEN | MODER_TXEN); 295 ethoc_write(dev, MODER, mode); 296 } 297 298 static int ethoc_init_ring(struct ethoc *dev, unsigned long mem_start) 299 { 300 struct ethoc_bd bd; 301 int i; 302 void *vma; 303 304 dev->cur_tx = 0; 305 dev->dty_tx = 0; 306 dev->cur_rx = 0; 307 308 ethoc_write(dev, TX_BD_NUM, dev->num_tx); 309 310 /* setup transmission buffers */ 311 bd.addr = mem_start; 312 bd.stat = TX_BD_IRQ | TX_BD_CRC; 313 vma = dev->membase; 314 315 for (i = 0; i < dev->num_tx; i++) { 316 if (i == dev->num_tx - 1) 317 bd.stat |= TX_BD_WRAP; 318 319 ethoc_write_bd(dev, i, &bd); 320 bd.addr += ETHOC_BUFSIZ; 321 322 dev->vma[i] = vma; 323 vma += ETHOC_BUFSIZ; 324 } 325 326 bd.stat = RX_BD_EMPTY | RX_BD_IRQ; 327 328 for (i = 0; i < dev->num_rx; i++) { 329 if (i == dev->num_rx - 1) 330 bd.stat |= RX_BD_WRAP; 331 332 ethoc_write_bd(dev, dev->num_tx + i, &bd); 333 bd.addr += ETHOC_BUFSIZ; 334 335 dev->vma[dev->num_tx + i] = vma; 336 vma += ETHOC_BUFSIZ; 337 } 338 339 return 0; 340 } 341 342 static int ethoc_reset(struct ethoc *dev) 343 { 344 u32 mode; 345 346 /* TODO: reset controller? */ 347 348 ethoc_disable_rx_and_tx(dev); 349 350 /* TODO: setup registers */ 351 352 /* enable FCS generation and automatic padding */ 353 mode = ethoc_read(dev, MODER); 354 mode |= MODER_CRC | MODER_PAD; 355 ethoc_write(dev, MODER, mode); 356 357 /* set full-duplex mode */ 358 mode = ethoc_read(dev, MODER); 359 mode |= MODER_FULLD; 360 ethoc_write(dev, MODER, mode); 361 ethoc_write(dev, IPGT, 0x15); 362 363 ethoc_ack_irq(dev, INT_MASK_ALL); 364 ethoc_enable_irq(dev, INT_MASK_ALL); 365 ethoc_enable_rx_and_tx(dev); 366 return 0; 367 } 368 369 static unsigned int ethoc_update_rx_stats(struct ethoc *dev, 370 struct ethoc_bd *bd) 371 { 372 struct net_device *netdev = dev->netdev; 373 unsigned int ret = 0; 374 375 if (bd->stat & RX_BD_TL) { 376 dev_err(&netdev->dev, "RX: frame too long\n"); 377 netdev->stats.rx_length_errors++; 378 ret++; 379 } 380 381 if (bd->stat & RX_BD_SF) { 382 dev_err(&netdev->dev, "RX: frame too short\n"); 383 netdev->stats.rx_length_errors++; 384 ret++; 385 } 386 387 if (bd->stat & RX_BD_DN) { 388 dev_err(&netdev->dev, "RX: dribble nibble\n"); 389 netdev->stats.rx_frame_errors++; 390 } 391 392 if (bd->stat & RX_BD_CRC) { 393 dev_err(&netdev->dev, "RX: wrong CRC\n"); 394 netdev->stats.rx_crc_errors++; 395 ret++; 396 } 397 398 if (bd->stat & RX_BD_OR) { 399 dev_err(&netdev->dev, "RX: overrun\n"); 400 netdev->stats.rx_over_errors++; 401 ret++; 402 } 403 404 if (bd->stat & RX_BD_MISS) 405 netdev->stats.rx_missed_errors++; 406 407 if (bd->stat & RX_BD_LC) { 408 dev_err(&netdev->dev, "RX: late collision\n"); 409 netdev->stats.collisions++; 410 ret++; 411 } 412 413 return ret; 414 } 415 416 static int ethoc_rx(struct net_device *dev, int limit) 417 { 418 struct ethoc *priv = netdev_priv(dev); 419 int count; 420 421 for (count = 0; count < limit; ++count) { 422 unsigned int entry; 423 struct ethoc_bd bd; 424 425 entry = priv->num_tx + priv->cur_rx; 426 ethoc_read_bd(priv, entry, &bd); 427 if (bd.stat & RX_BD_EMPTY) { 428 ethoc_ack_irq(priv, INT_MASK_RX); 429 /* If packet (interrupt) came in between checking 430 * BD_EMTPY and clearing the interrupt source, then we 431 * risk missing the packet as the RX interrupt won't 432 * trigger right away when we reenable it; hence, check 433 * BD_EMTPY here again to make sure there isn't such a 434 * packet waiting for us... 435 */ 436 ethoc_read_bd(priv, entry, &bd); 437 if (bd.stat & RX_BD_EMPTY) 438 break; 439 } 440 441 if (ethoc_update_rx_stats(priv, &bd) == 0) { 442 int size = bd.stat >> 16; 443 struct sk_buff *skb; 444 445 size -= 4; /* strip the CRC */ 446 skb = netdev_alloc_skb_ip_align(dev, size); 447 448 if (likely(skb)) { 449 void *src = priv->vma[entry]; 450 memcpy_fromio(skb_put(skb, size), src, size); 451 skb->protocol = eth_type_trans(skb, dev); 452 dev->stats.rx_packets++; 453 dev->stats.rx_bytes += size; 454 netif_receive_skb(skb); 455 } else { 456 if (net_ratelimit()) 457 dev_warn(&dev->dev, 458 "low on memory - packet dropped\n"); 459 460 dev->stats.rx_dropped++; 461 break; 462 } 463 } 464 465 /* clear the buffer descriptor so it can be reused */ 466 bd.stat &= ~RX_BD_STATS; 467 bd.stat |= RX_BD_EMPTY; 468 ethoc_write_bd(priv, entry, &bd); 469 if (++priv->cur_rx == priv->num_rx) 470 priv->cur_rx = 0; 471 } 472 473 return count; 474 } 475 476 static void ethoc_update_tx_stats(struct ethoc *dev, struct ethoc_bd *bd) 477 { 478 struct net_device *netdev = dev->netdev; 479 480 if (bd->stat & TX_BD_LC) { 481 dev_err(&netdev->dev, "TX: late collision\n"); 482 netdev->stats.tx_window_errors++; 483 } 484 485 if (bd->stat & TX_BD_RL) { 486 dev_err(&netdev->dev, "TX: retransmit limit\n"); 487 netdev->stats.tx_aborted_errors++; 488 } 489 490 if (bd->stat & TX_BD_UR) { 491 dev_err(&netdev->dev, "TX: underrun\n"); 492 netdev->stats.tx_fifo_errors++; 493 } 494 495 if (bd->stat & TX_BD_CS) { 496 dev_err(&netdev->dev, "TX: carrier sense lost\n"); 497 netdev->stats.tx_carrier_errors++; 498 } 499 500 if (bd->stat & TX_BD_STATS) 501 netdev->stats.tx_errors++; 502 503 netdev->stats.collisions += (bd->stat >> 4) & 0xf; 504 netdev->stats.tx_bytes += bd->stat >> 16; 505 netdev->stats.tx_packets++; 506 } 507 508 static int ethoc_tx(struct net_device *dev, int limit) 509 { 510 struct ethoc *priv = netdev_priv(dev); 511 int count; 512 struct ethoc_bd bd; 513 514 for (count = 0; count < limit; ++count) { 515 unsigned int entry; 516 517 entry = priv->dty_tx & (priv->num_tx-1); 518 519 ethoc_read_bd(priv, entry, &bd); 520 521 if (bd.stat & TX_BD_READY || (priv->dty_tx == priv->cur_tx)) { 522 ethoc_ack_irq(priv, INT_MASK_TX); 523 /* If interrupt came in between reading in the BD 524 * and clearing the interrupt source, then we risk 525 * missing the event as the TX interrupt won't trigger 526 * right away when we reenable it; hence, check 527 * BD_EMPTY here again to make sure there isn't such an 528 * event pending... 529 */ 530 ethoc_read_bd(priv, entry, &bd); 531 if (bd.stat & TX_BD_READY || 532 (priv->dty_tx == priv->cur_tx)) 533 break; 534 } 535 536 ethoc_update_tx_stats(priv, &bd); 537 priv->dty_tx++; 538 } 539 540 if ((priv->cur_tx - priv->dty_tx) <= (priv->num_tx / 2)) 541 netif_wake_queue(dev); 542 543 return count; 544 } 545 546 static irqreturn_t ethoc_interrupt(int irq, void *dev_id) 547 { 548 struct net_device *dev = dev_id; 549 struct ethoc *priv = netdev_priv(dev); 550 u32 pending; 551 u32 mask; 552 553 /* Figure out what triggered the interrupt... 554 * The tricky bit here is that the interrupt source bits get 555 * set in INT_SOURCE for an event regardless of whether that 556 * event is masked or not. Thus, in order to figure out what 557 * triggered the interrupt, we need to remove the sources 558 * for all events that are currently masked. This behaviour 559 * is not particularly well documented but reasonable... 560 */ 561 mask = ethoc_read(priv, INT_MASK); 562 pending = ethoc_read(priv, INT_SOURCE); 563 pending &= mask; 564 565 if (unlikely(pending == 0)) 566 return IRQ_NONE; 567 568 ethoc_ack_irq(priv, pending); 569 570 /* We always handle the dropped packet interrupt */ 571 if (pending & INT_MASK_BUSY) { 572 dev_dbg(&dev->dev, "packet dropped\n"); 573 dev->stats.rx_dropped++; 574 } 575 576 /* Handle receive/transmit event by switching to polling */ 577 if (pending & (INT_MASK_TX | INT_MASK_RX)) { 578 ethoc_disable_irq(priv, INT_MASK_TX | INT_MASK_RX); 579 napi_schedule(&priv->napi); 580 } 581 582 return IRQ_HANDLED; 583 } 584 585 static int ethoc_get_mac_address(struct net_device *dev, void *addr) 586 { 587 struct ethoc *priv = netdev_priv(dev); 588 u8 *mac = (u8 *)addr; 589 u32 reg; 590 591 reg = ethoc_read(priv, MAC_ADDR0); 592 mac[2] = (reg >> 24) & 0xff; 593 mac[3] = (reg >> 16) & 0xff; 594 mac[4] = (reg >> 8) & 0xff; 595 mac[5] = (reg >> 0) & 0xff; 596 597 reg = ethoc_read(priv, MAC_ADDR1); 598 mac[0] = (reg >> 8) & 0xff; 599 mac[1] = (reg >> 0) & 0xff; 600 601 return 0; 602 } 603 604 static int ethoc_poll(struct napi_struct *napi, int budget) 605 { 606 struct ethoc *priv = container_of(napi, struct ethoc, napi); 607 int rx_work_done = 0; 608 int tx_work_done = 0; 609 610 rx_work_done = ethoc_rx(priv->netdev, budget); 611 tx_work_done = ethoc_tx(priv->netdev, budget); 612 613 if (rx_work_done < budget && tx_work_done < budget) { 614 napi_complete_done(napi, rx_work_done); 615 ethoc_enable_irq(priv, INT_MASK_TX | INT_MASK_RX); 616 } 617 618 return rx_work_done; 619 } 620 621 static int ethoc_mdio_read(struct mii_bus *bus, int phy, int reg) 622 { 623 struct ethoc *priv = bus->priv; 624 int i; 625 626 ethoc_write(priv, MIIADDRESS, MIIADDRESS_ADDR(phy, reg)); 627 ethoc_write(priv, MIICOMMAND, MIICOMMAND_READ); 628 629 for (i = 0; i < 5; i++) { 630 u32 status = ethoc_read(priv, MIISTATUS); 631 if (!(status & MIISTATUS_BUSY)) { 632 u32 data = ethoc_read(priv, MIIRX_DATA); 633 /* reset MII command register */ 634 ethoc_write(priv, MIICOMMAND, 0); 635 return data; 636 } 637 usleep_range(100, 200); 638 } 639 640 return -EBUSY; 641 } 642 643 static int ethoc_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val) 644 { 645 struct ethoc *priv = bus->priv; 646 int i; 647 648 ethoc_write(priv, MIIADDRESS, MIIADDRESS_ADDR(phy, reg)); 649 ethoc_write(priv, MIITX_DATA, val); 650 ethoc_write(priv, MIICOMMAND, MIICOMMAND_WRITE); 651 652 for (i = 0; i < 5; i++) { 653 u32 stat = ethoc_read(priv, MIISTATUS); 654 if (!(stat & MIISTATUS_BUSY)) { 655 /* reset MII command register */ 656 ethoc_write(priv, MIICOMMAND, 0); 657 return 0; 658 } 659 usleep_range(100, 200); 660 } 661 662 return -EBUSY; 663 } 664 665 static void ethoc_mdio_poll(struct net_device *dev) 666 { 667 struct ethoc *priv = netdev_priv(dev); 668 struct phy_device *phydev = dev->phydev; 669 bool changed = false; 670 u32 mode; 671 672 if (priv->old_link != phydev->link) { 673 changed = true; 674 priv->old_link = phydev->link; 675 } 676 677 if (priv->old_duplex != phydev->duplex) { 678 changed = true; 679 priv->old_duplex = phydev->duplex; 680 } 681 682 if (!changed) 683 return; 684 685 mode = ethoc_read(priv, MODER); 686 if (phydev->duplex == DUPLEX_FULL) 687 mode |= MODER_FULLD; 688 else 689 mode &= ~MODER_FULLD; 690 ethoc_write(priv, MODER, mode); 691 692 phy_print_status(phydev); 693 } 694 695 static int ethoc_mdio_probe(struct net_device *dev) 696 { 697 struct ethoc *priv = netdev_priv(dev); 698 struct phy_device *phy; 699 int err; 700 701 if (priv->phy_id != -1) 702 phy = mdiobus_get_phy(priv->mdio, priv->phy_id); 703 else 704 phy = phy_find_first(priv->mdio); 705 706 if (!phy) { 707 dev_err(&dev->dev, "no PHY found\n"); 708 return -ENXIO; 709 } 710 711 priv->old_duplex = -1; 712 priv->old_link = -1; 713 714 err = phy_connect_direct(dev, phy, ethoc_mdio_poll, 715 PHY_INTERFACE_MODE_GMII); 716 if (err) { 717 dev_err(&dev->dev, "could not attach to PHY\n"); 718 return err; 719 } 720 721 phy_set_max_speed(phy, SPEED_100); 722 723 return 0; 724 } 725 726 static int ethoc_open(struct net_device *dev) 727 { 728 struct ethoc *priv = netdev_priv(dev); 729 int ret; 730 731 ret = request_irq(dev->irq, ethoc_interrupt, IRQF_SHARED, 732 dev->name, dev); 733 if (ret) 734 return ret; 735 736 napi_enable(&priv->napi); 737 738 ethoc_init_ring(priv, dev->mem_start); 739 ethoc_reset(priv); 740 741 if (netif_queue_stopped(dev)) { 742 dev_dbg(&dev->dev, " resuming queue\n"); 743 netif_wake_queue(dev); 744 } else { 745 dev_dbg(&dev->dev, " starting queue\n"); 746 netif_start_queue(dev); 747 } 748 749 priv->old_link = -1; 750 priv->old_duplex = -1; 751 752 phy_start(dev->phydev); 753 754 if (netif_msg_ifup(priv)) { 755 dev_info(&dev->dev, "I/O: %08lx Memory: %08lx-%08lx\n", 756 dev->base_addr, dev->mem_start, dev->mem_end); 757 } 758 759 return 0; 760 } 761 762 static int ethoc_stop(struct net_device *dev) 763 { 764 struct ethoc *priv = netdev_priv(dev); 765 766 napi_disable(&priv->napi); 767 768 if (dev->phydev) 769 phy_stop(dev->phydev); 770 771 ethoc_disable_rx_and_tx(priv); 772 free_irq(dev->irq, dev); 773 774 if (!netif_queue_stopped(dev)) 775 netif_stop_queue(dev); 776 777 return 0; 778 } 779 780 static int ethoc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 781 { 782 struct ethoc *priv = netdev_priv(dev); 783 struct mii_ioctl_data *mdio = if_mii(ifr); 784 struct phy_device *phy = NULL; 785 786 if (!netif_running(dev)) 787 return -EINVAL; 788 789 if (cmd != SIOCGMIIPHY) { 790 if (mdio->phy_id >= PHY_MAX_ADDR) 791 return -ERANGE; 792 793 phy = mdiobus_get_phy(priv->mdio, mdio->phy_id); 794 if (!phy) 795 return -ENODEV; 796 } else { 797 phy = dev->phydev; 798 } 799 800 return phy_mii_ioctl(phy, ifr, cmd); 801 } 802 803 static void ethoc_do_set_mac_address(struct net_device *dev) 804 { 805 struct ethoc *priv = netdev_priv(dev); 806 unsigned char *mac = dev->dev_addr; 807 808 ethoc_write(priv, MAC_ADDR0, (mac[2] << 24) | (mac[3] << 16) | 809 (mac[4] << 8) | (mac[5] << 0)); 810 ethoc_write(priv, MAC_ADDR1, (mac[0] << 8) | (mac[1] << 0)); 811 } 812 813 static int ethoc_set_mac_address(struct net_device *dev, void *p) 814 { 815 const struct sockaddr *addr = p; 816 817 if (!is_valid_ether_addr(addr->sa_data)) 818 return -EADDRNOTAVAIL; 819 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); 820 ethoc_do_set_mac_address(dev); 821 return 0; 822 } 823 824 static void ethoc_set_multicast_list(struct net_device *dev) 825 { 826 struct ethoc *priv = netdev_priv(dev); 827 u32 mode = ethoc_read(priv, MODER); 828 struct netdev_hw_addr *ha; 829 u32 hash[2] = { 0, 0 }; 830 831 /* set loopback mode if requested */ 832 if (dev->flags & IFF_LOOPBACK) 833 mode |= MODER_LOOP; 834 else 835 mode &= ~MODER_LOOP; 836 837 /* receive broadcast frames if requested */ 838 if (dev->flags & IFF_BROADCAST) 839 mode &= ~MODER_BRO; 840 else 841 mode |= MODER_BRO; 842 843 /* enable promiscuous mode if requested */ 844 if (dev->flags & IFF_PROMISC) 845 mode |= MODER_PRO; 846 else 847 mode &= ~MODER_PRO; 848 849 ethoc_write(priv, MODER, mode); 850 851 /* receive multicast frames */ 852 if (dev->flags & IFF_ALLMULTI) { 853 hash[0] = 0xffffffff; 854 hash[1] = 0xffffffff; 855 } else { 856 netdev_for_each_mc_addr(ha, dev) { 857 u32 crc = ether_crc(ETH_ALEN, ha->addr); 858 int bit = (crc >> 26) & 0x3f; 859 hash[bit >> 5] |= 1 << (bit & 0x1f); 860 } 861 } 862 863 ethoc_write(priv, ETH_HASH0, hash[0]); 864 ethoc_write(priv, ETH_HASH1, hash[1]); 865 } 866 867 static int ethoc_change_mtu(struct net_device *dev, int new_mtu) 868 { 869 return -ENOSYS; 870 } 871 872 static void ethoc_tx_timeout(struct net_device *dev, unsigned int txqueue) 873 { 874 struct ethoc *priv = netdev_priv(dev); 875 u32 pending = ethoc_read(priv, INT_SOURCE); 876 if (likely(pending)) 877 ethoc_interrupt(dev->irq, dev); 878 } 879 880 static netdev_tx_t ethoc_start_xmit(struct sk_buff *skb, struct net_device *dev) 881 { 882 struct ethoc *priv = netdev_priv(dev); 883 struct ethoc_bd bd; 884 unsigned int entry; 885 void *dest; 886 887 if (skb_put_padto(skb, ETHOC_ZLEN)) { 888 dev->stats.tx_errors++; 889 goto out_no_free; 890 } 891 892 if (unlikely(skb->len > ETHOC_BUFSIZ)) { 893 dev->stats.tx_errors++; 894 goto out; 895 } 896 897 entry = priv->cur_tx % priv->num_tx; 898 spin_lock_irq(&priv->lock); 899 priv->cur_tx++; 900 901 ethoc_read_bd(priv, entry, &bd); 902 if (unlikely(skb->len < ETHOC_ZLEN)) 903 bd.stat |= TX_BD_PAD; 904 else 905 bd.stat &= ~TX_BD_PAD; 906 907 dest = priv->vma[entry]; 908 memcpy_toio(dest, skb->data, skb->len); 909 910 bd.stat &= ~(TX_BD_STATS | TX_BD_LEN_MASK); 911 bd.stat |= TX_BD_LEN(skb->len); 912 ethoc_write_bd(priv, entry, &bd); 913 914 bd.stat |= TX_BD_READY; 915 ethoc_write_bd(priv, entry, &bd); 916 917 if (priv->cur_tx == (priv->dty_tx + priv->num_tx)) { 918 dev_dbg(&dev->dev, "stopping queue\n"); 919 netif_stop_queue(dev); 920 } 921 922 spin_unlock_irq(&priv->lock); 923 skb_tx_timestamp(skb); 924 out: 925 dev_kfree_skb(skb); 926 out_no_free: 927 return NETDEV_TX_OK; 928 } 929 930 static int ethoc_get_regs_len(struct net_device *netdev) 931 { 932 return ETH_END; 933 } 934 935 static void ethoc_get_regs(struct net_device *dev, struct ethtool_regs *regs, 936 void *p) 937 { 938 struct ethoc *priv = netdev_priv(dev); 939 u32 *regs_buff = p; 940 unsigned i; 941 942 regs->version = 0; 943 for (i = 0; i < ETH_END / sizeof(u32); ++i) 944 regs_buff[i] = ethoc_read(priv, i * sizeof(u32)); 945 } 946 947 static void ethoc_get_ringparam(struct net_device *dev, 948 struct ethtool_ringparam *ring) 949 { 950 struct ethoc *priv = netdev_priv(dev); 951 952 ring->rx_max_pending = priv->num_bd - 1; 953 ring->rx_mini_max_pending = 0; 954 ring->rx_jumbo_max_pending = 0; 955 ring->tx_max_pending = priv->num_bd - 1; 956 957 ring->rx_pending = priv->num_rx; 958 ring->rx_mini_pending = 0; 959 ring->rx_jumbo_pending = 0; 960 ring->tx_pending = priv->num_tx; 961 } 962 963 static int ethoc_set_ringparam(struct net_device *dev, 964 struct ethtool_ringparam *ring) 965 { 966 struct ethoc *priv = netdev_priv(dev); 967 968 if (ring->tx_pending < 1 || ring->rx_pending < 1 || 969 ring->tx_pending + ring->rx_pending > priv->num_bd) 970 return -EINVAL; 971 if (ring->rx_mini_pending || ring->rx_jumbo_pending) 972 return -EINVAL; 973 974 if (netif_running(dev)) { 975 netif_tx_disable(dev); 976 ethoc_disable_rx_and_tx(priv); 977 ethoc_disable_irq(priv, INT_MASK_TX | INT_MASK_RX); 978 synchronize_irq(dev->irq); 979 } 980 981 priv->num_tx = rounddown_pow_of_two(ring->tx_pending); 982 priv->num_rx = ring->rx_pending; 983 ethoc_init_ring(priv, dev->mem_start); 984 985 if (netif_running(dev)) { 986 ethoc_enable_irq(priv, INT_MASK_TX | INT_MASK_RX); 987 ethoc_enable_rx_and_tx(priv); 988 netif_wake_queue(dev); 989 } 990 return 0; 991 } 992 993 static const struct ethtool_ops ethoc_ethtool_ops = { 994 .get_regs_len = ethoc_get_regs_len, 995 .get_regs = ethoc_get_regs, 996 .nway_reset = phy_ethtool_nway_reset, 997 .get_link = ethtool_op_get_link, 998 .get_ringparam = ethoc_get_ringparam, 999 .set_ringparam = ethoc_set_ringparam, 1000 .get_ts_info = ethtool_op_get_ts_info, 1001 .get_link_ksettings = phy_ethtool_get_link_ksettings, 1002 .set_link_ksettings = phy_ethtool_set_link_ksettings, 1003 }; 1004 1005 static const struct net_device_ops ethoc_netdev_ops = { 1006 .ndo_open = ethoc_open, 1007 .ndo_stop = ethoc_stop, 1008 .ndo_do_ioctl = ethoc_ioctl, 1009 .ndo_set_mac_address = ethoc_set_mac_address, 1010 .ndo_set_rx_mode = ethoc_set_multicast_list, 1011 .ndo_change_mtu = ethoc_change_mtu, 1012 .ndo_tx_timeout = ethoc_tx_timeout, 1013 .ndo_start_xmit = ethoc_start_xmit, 1014 }; 1015 1016 /** 1017 * ethoc_probe - initialize OpenCores ethernet MAC 1018 * pdev: platform device 1019 */ 1020 static int ethoc_probe(struct platform_device *pdev) 1021 { 1022 struct net_device *netdev = NULL; 1023 struct resource *res = NULL; 1024 struct resource *mmio = NULL; 1025 struct resource *mem = NULL; 1026 struct ethoc *priv = NULL; 1027 int num_bd; 1028 int ret = 0; 1029 struct ethoc_platform_data *pdata = dev_get_platdata(&pdev->dev); 1030 u32 eth_clkfreq = pdata ? pdata->eth_clkfreq : 0; 1031 1032 /* allocate networking device */ 1033 netdev = alloc_etherdev(sizeof(struct ethoc)); 1034 if (!netdev) { 1035 ret = -ENOMEM; 1036 goto out; 1037 } 1038 1039 SET_NETDEV_DEV(netdev, &pdev->dev); 1040 platform_set_drvdata(pdev, netdev); 1041 1042 /* obtain I/O memory space */ 1043 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1044 if (!res) { 1045 dev_err(&pdev->dev, "cannot obtain I/O memory space\n"); 1046 ret = -ENXIO; 1047 goto free; 1048 } 1049 1050 mmio = devm_request_mem_region(&pdev->dev, res->start, 1051 resource_size(res), res->name); 1052 if (!mmio) { 1053 dev_err(&pdev->dev, "cannot request I/O memory space\n"); 1054 ret = -ENXIO; 1055 goto free; 1056 } 1057 1058 netdev->base_addr = mmio->start; 1059 1060 /* obtain buffer memory space */ 1061 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1062 if (res) { 1063 mem = devm_request_mem_region(&pdev->dev, res->start, 1064 resource_size(res), res->name); 1065 if (!mem) { 1066 dev_err(&pdev->dev, "cannot request memory space\n"); 1067 ret = -ENXIO; 1068 goto free; 1069 } 1070 1071 netdev->mem_start = mem->start; 1072 netdev->mem_end = mem->end; 1073 } 1074 1075 1076 /* obtain device IRQ number */ 1077 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 1078 if (!res) { 1079 dev_err(&pdev->dev, "cannot obtain IRQ\n"); 1080 ret = -ENXIO; 1081 goto free; 1082 } 1083 1084 netdev->irq = res->start; 1085 1086 /* setup driver-private data */ 1087 priv = netdev_priv(netdev); 1088 priv->netdev = netdev; 1089 1090 priv->iobase = devm_ioremap(&pdev->dev, netdev->base_addr, 1091 resource_size(mmio)); 1092 if (!priv->iobase) { 1093 dev_err(&pdev->dev, "cannot remap I/O memory space\n"); 1094 ret = -ENXIO; 1095 goto free; 1096 } 1097 1098 if (netdev->mem_end) { 1099 priv->membase = devm_ioremap(&pdev->dev, 1100 netdev->mem_start, resource_size(mem)); 1101 if (!priv->membase) { 1102 dev_err(&pdev->dev, "cannot remap memory space\n"); 1103 ret = -ENXIO; 1104 goto free; 1105 } 1106 } else { 1107 /* Allocate buffer memory */ 1108 priv->membase = dmam_alloc_coherent(&pdev->dev, 1109 buffer_size, (void *)&netdev->mem_start, 1110 GFP_KERNEL); 1111 if (!priv->membase) { 1112 dev_err(&pdev->dev, "cannot allocate %dB buffer\n", 1113 buffer_size); 1114 ret = -ENOMEM; 1115 goto free; 1116 } 1117 netdev->mem_end = netdev->mem_start + buffer_size; 1118 } 1119 1120 priv->big_endian = pdata ? pdata->big_endian : 1121 of_device_is_big_endian(pdev->dev.of_node); 1122 1123 /* calculate the number of TX/RX buffers, maximum 128 supported */ 1124 num_bd = min_t(unsigned int, 1125 128, (netdev->mem_end - netdev->mem_start + 1) / ETHOC_BUFSIZ); 1126 if (num_bd < 4) { 1127 ret = -ENODEV; 1128 goto free; 1129 } 1130 priv->num_bd = num_bd; 1131 /* num_tx must be a power of two */ 1132 priv->num_tx = rounddown_pow_of_two(num_bd >> 1); 1133 priv->num_rx = num_bd - priv->num_tx; 1134 1135 dev_dbg(&pdev->dev, "ethoc: num_tx: %d num_rx: %d\n", 1136 priv->num_tx, priv->num_rx); 1137 1138 priv->vma = devm_kcalloc(&pdev->dev, num_bd, sizeof(void *), 1139 GFP_KERNEL); 1140 if (!priv->vma) { 1141 ret = -ENOMEM; 1142 goto free; 1143 } 1144 1145 /* Allow the platform setup code to pass in a MAC address. */ 1146 if (pdata) { 1147 ether_addr_copy(netdev->dev_addr, pdata->hwaddr); 1148 priv->phy_id = pdata->phy_id; 1149 } else { 1150 const void *mac; 1151 1152 mac = of_get_mac_address(pdev->dev.of_node); 1153 if (!IS_ERR(mac)) 1154 ether_addr_copy(netdev->dev_addr, mac); 1155 priv->phy_id = -1; 1156 } 1157 1158 /* Check that the given MAC address is valid. If it isn't, read the 1159 * current MAC from the controller. 1160 */ 1161 if (!is_valid_ether_addr(netdev->dev_addr)) 1162 ethoc_get_mac_address(netdev, netdev->dev_addr); 1163 1164 /* Check the MAC again for validity, if it still isn't choose and 1165 * program a random one. 1166 */ 1167 if (!is_valid_ether_addr(netdev->dev_addr)) 1168 eth_hw_addr_random(netdev); 1169 1170 ethoc_do_set_mac_address(netdev); 1171 1172 /* Allow the platform setup code to adjust MII management bus clock. */ 1173 if (!eth_clkfreq) { 1174 struct clk *clk = devm_clk_get(&pdev->dev, NULL); 1175 1176 if (!IS_ERR(clk)) { 1177 priv->clk = clk; 1178 clk_prepare_enable(clk); 1179 eth_clkfreq = clk_get_rate(clk); 1180 } 1181 } 1182 if (eth_clkfreq) { 1183 u32 clkdiv = MIIMODER_CLKDIV(eth_clkfreq / 2500000 + 1); 1184 1185 if (!clkdiv) 1186 clkdiv = 2; 1187 dev_dbg(&pdev->dev, "setting MII clkdiv to %u\n", clkdiv); 1188 ethoc_write(priv, MIIMODER, 1189 (ethoc_read(priv, MIIMODER) & MIIMODER_NOPRE) | 1190 clkdiv); 1191 } 1192 1193 /* register MII bus */ 1194 priv->mdio = mdiobus_alloc(); 1195 if (!priv->mdio) { 1196 ret = -ENOMEM; 1197 goto free2; 1198 } 1199 1200 priv->mdio->name = "ethoc-mdio"; 1201 snprintf(priv->mdio->id, MII_BUS_ID_SIZE, "%s-%d", 1202 priv->mdio->name, pdev->id); 1203 priv->mdio->read = ethoc_mdio_read; 1204 priv->mdio->write = ethoc_mdio_write; 1205 priv->mdio->priv = priv; 1206 1207 ret = mdiobus_register(priv->mdio); 1208 if (ret) { 1209 dev_err(&netdev->dev, "failed to register MDIO bus\n"); 1210 goto free2; 1211 } 1212 1213 ret = ethoc_mdio_probe(netdev); 1214 if (ret) { 1215 dev_err(&netdev->dev, "failed to probe MDIO bus\n"); 1216 goto error; 1217 } 1218 1219 /* setup the net_device structure */ 1220 netdev->netdev_ops = ðoc_netdev_ops; 1221 netdev->watchdog_timeo = ETHOC_TIMEOUT; 1222 netdev->features |= 0; 1223 netdev->ethtool_ops = ðoc_ethtool_ops; 1224 1225 /* setup NAPI */ 1226 netif_napi_add(netdev, &priv->napi, ethoc_poll, 64); 1227 1228 spin_lock_init(&priv->lock); 1229 1230 ret = register_netdev(netdev); 1231 if (ret < 0) { 1232 dev_err(&netdev->dev, "failed to register interface\n"); 1233 goto error2; 1234 } 1235 1236 goto out; 1237 1238 error2: 1239 netif_napi_del(&priv->napi); 1240 error: 1241 mdiobus_unregister(priv->mdio); 1242 mdiobus_free(priv->mdio); 1243 free2: 1244 clk_disable_unprepare(priv->clk); 1245 free: 1246 free_netdev(netdev); 1247 out: 1248 return ret; 1249 } 1250 1251 /** 1252 * ethoc_remove - shutdown OpenCores ethernet MAC 1253 * @pdev: platform device 1254 */ 1255 static int ethoc_remove(struct platform_device *pdev) 1256 { 1257 struct net_device *netdev = platform_get_drvdata(pdev); 1258 struct ethoc *priv = netdev_priv(netdev); 1259 1260 if (netdev) { 1261 netif_napi_del(&priv->napi); 1262 phy_disconnect(netdev->phydev); 1263 1264 if (priv->mdio) { 1265 mdiobus_unregister(priv->mdio); 1266 mdiobus_free(priv->mdio); 1267 } 1268 clk_disable_unprepare(priv->clk); 1269 unregister_netdev(netdev); 1270 free_netdev(netdev); 1271 } 1272 1273 return 0; 1274 } 1275 1276 #ifdef CONFIG_PM 1277 static int ethoc_suspend(struct platform_device *pdev, pm_message_t state) 1278 { 1279 return -ENOSYS; 1280 } 1281 1282 static int ethoc_resume(struct platform_device *pdev) 1283 { 1284 return -ENOSYS; 1285 } 1286 #else 1287 # define ethoc_suspend NULL 1288 # define ethoc_resume NULL 1289 #endif 1290 1291 static const struct of_device_id ethoc_match[] = { 1292 { .compatible = "opencores,ethoc", }, 1293 {}, 1294 }; 1295 MODULE_DEVICE_TABLE(of, ethoc_match); 1296 1297 static struct platform_driver ethoc_driver = { 1298 .probe = ethoc_probe, 1299 .remove = ethoc_remove, 1300 .suspend = ethoc_suspend, 1301 .resume = ethoc_resume, 1302 .driver = { 1303 .name = "ethoc", 1304 .of_match_table = ethoc_match, 1305 }, 1306 }; 1307 1308 module_platform_driver(ethoc_driver); 1309 1310 MODULE_AUTHOR("Thierry Reding <thierry.reding@avionic-design.de>"); 1311 MODULE_DESCRIPTION("OpenCores Ethernet MAC driver"); 1312 MODULE_LICENSE("GPL v2"); 1313 1314