1 /* 2 * linux/drivers/net/ethernet/ethoc.c 3 * 4 * Copyright (C) 2007-2008 Avionic Design Development GmbH 5 * Copyright (C) 2008-2009 Avionic Design GmbH 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * Written by Thierry Reding <thierry.reding@avionic-design.de> 12 */ 13 14 #include <linux/dma-mapping.h> 15 #include <linux/etherdevice.h> 16 #include <linux/clk.h> 17 #include <linux/crc32.h> 18 #include <linux/interrupt.h> 19 #include <linux/io.h> 20 #include <linux/mii.h> 21 #include <linux/phy.h> 22 #include <linux/platform_device.h> 23 #include <linux/sched.h> 24 #include <linux/slab.h> 25 #include <linux/of.h> 26 #include <linux/of_net.h> 27 #include <linux/module.h> 28 #include <net/ethoc.h> 29 30 static int buffer_size = 0x8000; /* 32 KBytes */ 31 module_param(buffer_size, int, 0); 32 MODULE_PARM_DESC(buffer_size, "DMA buffer allocation size"); 33 34 /* register offsets */ 35 #define MODER 0x00 36 #define INT_SOURCE 0x04 37 #define INT_MASK 0x08 38 #define IPGT 0x0c 39 #define IPGR1 0x10 40 #define IPGR2 0x14 41 #define PACKETLEN 0x18 42 #define COLLCONF 0x1c 43 #define TX_BD_NUM 0x20 44 #define CTRLMODER 0x24 45 #define MIIMODER 0x28 46 #define MIICOMMAND 0x2c 47 #define MIIADDRESS 0x30 48 #define MIITX_DATA 0x34 49 #define MIIRX_DATA 0x38 50 #define MIISTATUS 0x3c 51 #define MAC_ADDR0 0x40 52 #define MAC_ADDR1 0x44 53 #define ETH_HASH0 0x48 54 #define ETH_HASH1 0x4c 55 #define ETH_TXCTRL 0x50 56 #define ETH_END 0x54 57 58 /* mode register */ 59 #define MODER_RXEN (1 << 0) /* receive enable */ 60 #define MODER_TXEN (1 << 1) /* transmit enable */ 61 #define MODER_NOPRE (1 << 2) /* no preamble */ 62 #define MODER_BRO (1 << 3) /* broadcast address */ 63 #define MODER_IAM (1 << 4) /* individual address mode */ 64 #define MODER_PRO (1 << 5) /* promiscuous mode */ 65 #define MODER_IFG (1 << 6) /* interframe gap for incoming frames */ 66 #define MODER_LOOP (1 << 7) /* loopback */ 67 #define MODER_NBO (1 << 8) /* no back-off */ 68 #define MODER_EDE (1 << 9) /* excess defer enable */ 69 #define MODER_FULLD (1 << 10) /* full duplex */ 70 #define MODER_RESET (1 << 11) /* FIXME: reset (undocumented) */ 71 #define MODER_DCRC (1 << 12) /* delayed CRC enable */ 72 #define MODER_CRC (1 << 13) /* CRC enable */ 73 #define MODER_HUGE (1 << 14) /* huge packets enable */ 74 #define MODER_PAD (1 << 15) /* padding enabled */ 75 #define MODER_RSM (1 << 16) /* receive small packets */ 76 77 /* interrupt source and mask registers */ 78 #define INT_MASK_TXF (1 << 0) /* transmit frame */ 79 #define INT_MASK_TXE (1 << 1) /* transmit error */ 80 #define INT_MASK_RXF (1 << 2) /* receive frame */ 81 #define INT_MASK_RXE (1 << 3) /* receive error */ 82 #define INT_MASK_BUSY (1 << 4) 83 #define INT_MASK_TXC (1 << 5) /* transmit control frame */ 84 #define INT_MASK_RXC (1 << 6) /* receive control frame */ 85 86 #define INT_MASK_TX (INT_MASK_TXF | INT_MASK_TXE) 87 #define INT_MASK_RX (INT_MASK_RXF | INT_MASK_RXE) 88 89 #define INT_MASK_ALL ( \ 90 INT_MASK_TXF | INT_MASK_TXE | \ 91 INT_MASK_RXF | INT_MASK_RXE | \ 92 INT_MASK_TXC | INT_MASK_RXC | \ 93 INT_MASK_BUSY \ 94 ) 95 96 /* packet length register */ 97 #define PACKETLEN_MIN(min) (((min) & 0xffff) << 16) 98 #define PACKETLEN_MAX(max) (((max) & 0xffff) << 0) 99 #define PACKETLEN_MIN_MAX(min, max) (PACKETLEN_MIN(min) | \ 100 PACKETLEN_MAX(max)) 101 102 /* transmit buffer number register */ 103 #define TX_BD_NUM_VAL(x) (((x) <= 0x80) ? (x) : 0x80) 104 105 /* control module mode register */ 106 #define CTRLMODER_PASSALL (1 << 0) /* pass all receive frames */ 107 #define CTRLMODER_RXFLOW (1 << 1) /* receive control flow */ 108 #define CTRLMODER_TXFLOW (1 << 2) /* transmit control flow */ 109 110 /* MII mode register */ 111 #define MIIMODER_CLKDIV(x) ((x) & 0xfe) /* needs to be an even number */ 112 #define MIIMODER_NOPRE (1 << 8) /* no preamble */ 113 114 /* MII command register */ 115 #define MIICOMMAND_SCAN (1 << 0) /* scan status */ 116 #define MIICOMMAND_READ (1 << 1) /* read status */ 117 #define MIICOMMAND_WRITE (1 << 2) /* write control data */ 118 119 /* MII address register */ 120 #define MIIADDRESS_FIAD(x) (((x) & 0x1f) << 0) 121 #define MIIADDRESS_RGAD(x) (((x) & 0x1f) << 8) 122 #define MIIADDRESS_ADDR(phy, reg) (MIIADDRESS_FIAD(phy) | \ 123 MIIADDRESS_RGAD(reg)) 124 125 /* MII transmit data register */ 126 #define MIITX_DATA_VAL(x) ((x) & 0xffff) 127 128 /* MII receive data register */ 129 #define MIIRX_DATA_VAL(x) ((x) & 0xffff) 130 131 /* MII status register */ 132 #define MIISTATUS_LINKFAIL (1 << 0) 133 #define MIISTATUS_BUSY (1 << 1) 134 #define MIISTATUS_INVALID (1 << 2) 135 136 /* TX buffer descriptor */ 137 #define TX_BD_CS (1 << 0) /* carrier sense lost */ 138 #define TX_BD_DF (1 << 1) /* defer indication */ 139 #define TX_BD_LC (1 << 2) /* late collision */ 140 #define TX_BD_RL (1 << 3) /* retransmission limit */ 141 #define TX_BD_RETRY_MASK (0x00f0) 142 #define TX_BD_RETRY(x) (((x) & 0x00f0) >> 4) 143 #define TX_BD_UR (1 << 8) /* transmitter underrun */ 144 #define TX_BD_CRC (1 << 11) /* TX CRC enable */ 145 #define TX_BD_PAD (1 << 12) /* pad enable for short packets */ 146 #define TX_BD_WRAP (1 << 13) 147 #define TX_BD_IRQ (1 << 14) /* interrupt request enable */ 148 #define TX_BD_READY (1 << 15) /* TX buffer ready */ 149 #define TX_BD_LEN(x) (((x) & 0xffff) << 16) 150 #define TX_BD_LEN_MASK (0xffff << 16) 151 152 #define TX_BD_STATS (TX_BD_CS | TX_BD_DF | TX_BD_LC | \ 153 TX_BD_RL | TX_BD_RETRY_MASK | TX_BD_UR) 154 155 /* RX buffer descriptor */ 156 #define RX_BD_LC (1 << 0) /* late collision */ 157 #define RX_BD_CRC (1 << 1) /* RX CRC error */ 158 #define RX_BD_SF (1 << 2) /* short frame */ 159 #define RX_BD_TL (1 << 3) /* too long */ 160 #define RX_BD_DN (1 << 4) /* dribble nibble */ 161 #define RX_BD_IS (1 << 5) /* invalid symbol */ 162 #define RX_BD_OR (1 << 6) /* receiver overrun */ 163 #define RX_BD_MISS (1 << 7) 164 #define RX_BD_CF (1 << 8) /* control frame */ 165 #define RX_BD_WRAP (1 << 13) 166 #define RX_BD_IRQ (1 << 14) /* interrupt request enable */ 167 #define RX_BD_EMPTY (1 << 15) 168 #define RX_BD_LEN(x) (((x) & 0xffff) << 16) 169 170 #define RX_BD_STATS (RX_BD_LC | RX_BD_CRC | RX_BD_SF | RX_BD_TL | \ 171 RX_BD_DN | RX_BD_IS | RX_BD_OR | RX_BD_MISS) 172 173 #define ETHOC_BUFSIZ 1536 174 #define ETHOC_ZLEN 64 175 #define ETHOC_BD_BASE 0x400 176 #define ETHOC_TIMEOUT (HZ / 2) 177 #define ETHOC_MII_TIMEOUT (1 + (HZ / 5)) 178 179 /** 180 * struct ethoc - driver-private device structure 181 * @iobase: pointer to I/O memory region 182 * @membase: pointer to buffer memory region 183 * @num_bd: number of buffer descriptors 184 * @num_tx: number of send buffers 185 * @cur_tx: last send buffer written 186 * @dty_tx: last buffer actually sent 187 * @num_rx: number of receive buffers 188 * @cur_rx: current receive buffer 189 * @vma: pointer to array of virtual memory addresses for buffers 190 * @netdev: pointer to network device structure 191 * @napi: NAPI structure 192 * @msg_enable: device state flags 193 * @lock: device lock 194 * @mdio: MDIO bus for PHY access 195 * @phy_id: address of attached PHY 196 */ 197 struct ethoc { 198 void __iomem *iobase; 199 void __iomem *membase; 200 bool big_endian; 201 202 unsigned int num_bd; 203 unsigned int num_tx; 204 unsigned int cur_tx; 205 unsigned int dty_tx; 206 207 unsigned int num_rx; 208 unsigned int cur_rx; 209 210 void **vma; 211 212 struct net_device *netdev; 213 struct napi_struct napi; 214 u32 msg_enable; 215 216 spinlock_t lock; 217 218 struct mii_bus *mdio; 219 struct clk *clk; 220 s8 phy_id; 221 222 int old_link; 223 int old_duplex; 224 }; 225 226 /** 227 * struct ethoc_bd - buffer descriptor 228 * @stat: buffer statistics 229 * @addr: physical memory address 230 */ 231 struct ethoc_bd { 232 u32 stat; 233 u32 addr; 234 }; 235 236 static inline u32 ethoc_read(struct ethoc *dev, loff_t offset) 237 { 238 if (dev->big_endian) 239 return ioread32be(dev->iobase + offset); 240 else 241 return ioread32(dev->iobase + offset); 242 } 243 244 static inline void ethoc_write(struct ethoc *dev, loff_t offset, u32 data) 245 { 246 if (dev->big_endian) 247 iowrite32be(data, dev->iobase + offset); 248 else 249 iowrite32(data, dev->iobase + offset); 250 } 251 252 static inline void ethoc_read_bd(struct ethoc *dev, int index, 253 struct ethoc_bd *bd) 254 { 255 loff_t offset = ETHOC_BD_BASE + (index * sizeof(struct ethoc_bd)); 256 bd->stat = ethoc_read(dev, offset + 0); 257 bd->addr = ethoc_read(dev, offset + 4); 258 } 259 260 static inline void ethoc_write_bd(struct ethoc *dev, int index, 261 const struct ethoc_bd *bd) 262 { 263 loff_t offset = ETHOC_BD_BASE + (index * sizeof(struct ethoc_bd)); 264 ethoc_write(dev, offset + 0, bd->stat); 265 ethoc_write(dev, offset + 4, bd->addr); 266 } 267 268 static inline void ethoc_enable_irq(struct ethoc *dev, u32 mask) 269 { 270 u32 imask = ethoc_read(dev, INT_MASK); 271 imask |= mask; 272 ethoc_write(dev, INT_MASK, imask); 273 } 274 275 static inline void ethoc_disable_irq(struct ethoc *dev, u32 mask) 276 { 277 u32 imask = ethoc_read(dev, INT_MASK); 278 imask &= ~mask; 279 ethoc_write(dev, INT_MASK, imask); 280 } 281 282 static inline void ethoc_ack_irq(struct ethoc *dev, u32 mask) 283 { 284 ethoc_write(dev, INT_SOURCE, mask); 285 } 286 287 static inline void ethoc_enable_rx_and_tx(struct ethoc *dev) 288 { 289 u32 mode = ethoc_read(dev, MODER); 290 mode |= MODER_RXEN | MODER_TXEN; 291 ethoc_write(dev, MODER, mode); 292 } 293 294 static inline void ethoc_disable_rx_and_tx(struct ethoc *dev) 295 { 296 u32 mode = ethoc_read(dev, MODER); 297 mode &= ~(MODER_RXEN | MODER_TXEN); 298 ethoc_write(dev, MODER, mode); 299 } 300 301 static int ethoc_init_ring(struct ethoc *dev, unsigned long mem_start) 302 { 303 struct ethoc_bd bd; 304 int i; 305 void *vma; 306 307 dev->cur_tx = 0; 308 dev->dty_tx = 0; 309 dev->cur_rx = 0; 310 311 ethoc_write(dev, TX_BD_NUM, dev->num_tx); 312 313 /* setup transmission buffers */ 314 bd.addr = mem_start; 315 bd.stat = TX_BD_IRQ | TX_BD_CRC; 316 vma = dev->membase; 317 318 for (i = 0; i < dev->num_tx; i++) { 319 if (i == dev->num_tx - 1) 320 bd.stat |= TX_BD_WRAP; 321 322 ethoc_write_bd(dev, i, &bd); 323 bd.addr += ETHOC_BUFSIZ; 324 325 dev->vma[i] = vma; 326 vma += ETHOC_BUFSIZ; 327 } 328 329 bd.stat = RX_BD_EMPTY | RX_BD_IRQ; 330 331 for (i = 0; i < dev->num_rx; i++) { 332 if (i == dev->num_rx - 1) 333 bd.stat |= RX_BD_WRAP; 334 335 ethoc_write_bd(dev, dev->num_tx + i, &bd); 336 bd.addr += ETHOC_BUFSIZ; 337 338 dev->vma[dev->num_tx + i] = vma; 339 vma += ETHOC_BUFSIZ; 340 } 341 342 return 0; 343 } 344 345 static int ethoc_reset(struct ethoc *dev) 346 { 347 u32 mode; 348 349 /* TODO: reset controller? */ 350 351 ethoc_disable_rx_and_tx(dev); 352 353 /* TODO: setup registers */ 354 355 /* enable FCS generation and automatic padding */ 356 mode = ethoc_read(dev, MODER); 357 mode |= MODER_CRC | MODER_PAD; 358 ethoc_write(dev, MODER, mode); 359 360 /* set full-duplex mode */ 361 mode = ethoc_read(dev, MODER); 362 mode |= MODER_FULLD; 363 ethoc_write(dev, MODER, mode); 364 ethoc_write(dev, IPGT, 0x15); 365 366 ethoc_ack_irq(dev, INT_MASK_ALL); 367 ethoc_enable_irq(dev, INT_MASK_ALL); 368 ethoc_enable_rx_and_tx(dev); 369 return 0; 370 } 371 372 static unsigned int ethoc_update_rx_stats(struct ethoc *dev, 373 struct ethoc_bd *bd) 374 { 375 struct net_device *netdev = dev->netdev; 376 unsigned int ret = 0; 377 378 if (bd->stat & RX_BD_TL) { 379 dev_err(&netdev->dev, "RX: frame too long\n"); 380 netdev->stats.rx_length_errors++; 381 ret++; 382 } 383 384 if (bd->stat & RX_BD_SF) { 385 dev_err(&netdev->dev, "RX: frame too short\n"); 386 netdev->stats.rx_length_errors++; 387 ret++; 388 } 389 390 if (bd->stat & RX_BD_DN) { 391 dev_err(&netdev->dev, "RX: dribble nibble\n"); 392 netdev->stats.rx_frame_errors++; 393 } 394 395 if (bd->stat & RX_BD_CRC) { 396 dev_err(&netdev->dev, "RX: wrong CRC\n"); 397 netdev->stats.rx_crc_errors++; 398 ret++; 399 } 400 401 if (bd->stat & RX_BD_OR) { 402 dev_err(&netdev->dev, "RX: overrun\n"); 403 netdev->stats.rx_over_errors++; 404 ret++; 405 } 406 407 if (bd->stat & RX_BD_MISS) 408 netdev->stats.rx_missed_errors++; 409 410 if (bd->stat & RX_BD_LC) { 411 dev_err(&netdev->dev, "RX: late collision\n"); 412 netdev->stats.collisions++; 413 ret++; 414 } 415 416 return ret; 417 } 418 419 static int ethoc_rx(struct net_device *dev, int limit) 420 { 421 struct ethoc *priv = netdev_priv(dev); 422 int count; 423 424 for (count = 0; count < limit; ++count) { 425 unsigned int entry; 426 struct ethoc_bd bd; 427 428 entry = priv->num_tx + priv->cur_rx; 429 ethoc_read_bd(priv, entry, &bd); 430 if (bd.stat & RX_BD_EMPTY) { 431 ethoc_ack_irq(priv, INT_MASK_RX); 432 /* If packet (interrupt) came in between checking 433 * BD_EMTPY and clearing the interrupt source, then we 434 * risk missing the packet as the RX interrupt won't 435 * trigger right away when we reenable it; hence, check 436 * BD_EMTPY here again to make sure there isn't such a 437 * packet waiting for us... 438 */ 439 ethoc_read_bd(priv, entry, &bd); 440 if (bd.stat & RX_BD_EMPTY) 441 break; 442 } 443 444 if (ethoc_update_rx_stats(priv, &bd) == 0) { 445 int size = bd.stat >> 16; 446 struct sk_buff *skb; 447 448 size -= 4; /* strip the CRC */ 449 skb = netdev_alloc_skb_ip_align(dev, size); 450 451 if (likely(skb)) { 452 void *src = priv->vma[entry]; 453 memcpy_fromio(skb_put(skb, size), src, size); 454 skb->protocol = eth_type_trans(skb, dev); 455 dev->stats.rx_packets++; 456 dev->stats.rx_bytes += size; 457 netif_receive_skb(skb); 458 } else { 459 if (net_ratelimit()) 460 dev_warn(&dev->dev, 461 "low on memory - packet dropped\n"); 462 463 dev->stats.rx_dropped++; 464 break; 465 } 466 } 467 468 /* clear the buffer descriptor so it can be reused */ 469 bd.stat &= ~RX_BD_STATS; 470 bd.stat |= RX_BD_EMPTY; 471 ethoc_write_bd(priv, entry, &bd); 472 if (++priv->cur_rx == priv->num_rx) 473 priv->cur_rx = 0; 474 } 475 476 return count; 477 } 478 479 static void ethoc_update_tx_stats(struct ethoc *dev, struct ethoc_bd *bd) 480 { 481 struct net_device *netdev = dev->netdev; 482 483 if (bd->stat & TX_BD_LC) { 484 dev_err(&netdev->dev, "TX: late collision\n"); 485 netdev->stats.tx_window_errors++; 486 } 487 488 if (bd->stat & TX_BD_RL) { 489 dev_err(&netdev->dev, "TX: retransmit limit\n"); 490 netdev->stats.tx_aborted_errors++; 491 } 492 493 if (bd->stat & TX_BD_UR) { 494 dev_err(&netdev->dev, "TX: underrun\n"); 495 netdev->stats.tx_fifo_errors++; 496 } 497 498 if (bd->stat & TX_BD_CS) { 499 dev_err(&netdev->dev, "TX: carrier sense lost\n"); 500 netdev->stats.tx_carrier_errors++; 501 } 502 503 if (bd->stat & TX_BD_STATS) 504 netdev->stats.tx_errors++; 505 506 netdev->stats.collisions += (bd->stat >> 4) & 0xf; 507 netdev->stats.tx_bytes += bd->stat >> 16; 508 netdev->stats.tx_packets++; 509 } 510 511 static int ethoc_tx(struct net_device *dev, int limit) 512 { 513 struct ethoc *priv = netdev_priv(dev); 514 int count; 515 struct ethoc_bd bd; 516 517 for (count = 0; count < limit; ++count) { 518 unsigned int entry; 519 520 entry = priv->dty_tx & (priv->num_tx-1); 521 522 ethoc_read_bd(priv, entry, &bd); 523 524 if (bd.stat & TX_BD_READY || (priv->dty_tx == priv->cur_tx)) { 525 ethoc_ack_irq(priv, INT_MASK_TX); 526 /* If interrupt came in between reading in the BD 527 * and clearing the interrupt source, then we risk 528 * missing the event as the TX interrupt won't trigger 529 * right away when we reenable it; hence, check 530 * BD_EMPTY here again to make sure there isn't such an 531 * event pending... 532 */ 533 ethoc_read_bd(priv, entry, &bd); 534 if (bd.stat & TX_BD_READY || 535 (priv->dty_tx == priv->cur_tx)) 536 break; 537 } 538 539 ethoc_update_tx_stats(priv, &bd); 540 priv->dty_tx++; 541 } 542 543 if ((priv->cur_tx - priv->dty_tx) <= (priv->num_tx / 2)) 544 netif_wake_queue(dev); 545 546 return count; 547 } 548 549 static irqreturn_t ethoc_interrupt(int irq, void *dev_id) 550 { 551 struct net_device *dev = dev_id; 552 struct ethoc *priv = netdev_priv(dev); 553 u32 pending; 554 u32 mask; 555 556 /* Figure out what triggered the interrupt... 557 * The tricky bit here is that the interrupt source bits get 558 * set in INT_SOURCE for an event regardless of whether that 559 * event is masked or not. Thus, in order to figure out what 560 * triggered the interrupt, we need to remove the sources 561 * for all events that are currently masked. This behaviour 562 * is not particularly well documented but reasonable... 563 */ 564 mask = ethoc_read(priv, INT_MASK); 565 pending = ethoc_read(priv, INT_SOURCE); 566 pending &= mask; 567 568 if (unlikely(pending == 0)) 569 return IRQ_NONE; 570 571 ethoc_ack_irq(priv, pending); 572 573 /* We always handle the dropped packet interrupt */ 574 if (pending & INT_MASK_BUSY) { 575 dev_dbg(&dev->dev, "packet dropped\n"); 576 dev->stats.rx_dropped++; 577 } 578 579 /* Handle receive/transmit event by switching to polling */ 580 if (pending & (INT_MASK_TX | INT_MASK_RX)) { 581 ethoc_disable_irq(priv, INT_MASK_TX | INT_MASK_RX); 582 napi_schedule(&priv->napi); 583 } 584 585 return IRQ_HANDLED; 586 } 587 588 static int ethoc_get_mac_address(struct net_device *dev, void *addr) 589 { 590 struct ethoc *priv = netdev_priv(dev); 591 u8 *mac = (u8 *)addr; 592 u32 reg; 593 594 reg = ethoc_read(priv, MAC_ADDR0); 595 mac[2] = (reg >> 24) & 0xff; 596 mac[3] = (reg >> 16) & 0xff; 597 mac[4] = (reg >> 8) & 0xff; 598 mac[5] = (reg >> 0) & 0xff; 599 600 reg = ethoc_read(priv, MAC_ADDR1); 601 mac[0] = (reg >> 8) & 0xff; 602 mac[1] = (reg >> 0) & 0xff; 603 604 return 0; 605 } 606 607 static int ethoc_poll(struct napi_struct *napi, int budget) 608 { 609 struct ethoc *priv = container_of(napi, struct ethoc, napi); 610 int rx_work_done = 0; 611 int tx_work_done = 0; 612 613 rx_work_done = ethoc_rx(priv->netdev, budget); 614 tx_work_done = ethoc_tx(priv->netdev, budget); 615 616 if (rx_work_done < budget && tx_work_done < budget) { 617 napi_complete_done(napi, rx_work_done); 618 ethoc_enable_irq(priv, INT_MASK_TX | INT_MASK_RX); 619 } 620 621 return rx_work_done; 622 } 623 624 static int ethoc_mdio_read(struct mii_bus *bus, int phy, int reg) 625 { 626 struct ethoc *priv = bus->priv; 627 int i; 628 629 ethoc_write(priv, MIIADDRESS, MIIADDRESS_ADDR(phy, reg)); 630 ethoc_write(priv, MIICOMMAND, MIICOMMAND_READ); 631 632 for (i = 0; i < 5; i++) { 633 u32 status = ethoc_read(priv, MIISTATUS); 634 if (!(status & MIISTATUS_BUSY)) { 635 u32 data = ethoc_read(priv, MIIRX_DATA); 636 /* reset MII command register */ 637 ethoc_write(priv, MIICOMMAND, 0); 638 return data; 639 } 640 usleep_range(100, 200); 641 } 642 643 return -EBUSY; 644 } 645 646 static int ethoc_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val) 647 { 648 struct ethoc *priv = bus->priv; 649 int i; 650 651 ethoc_write(priv, MIIADDRESS, MIIADDRESS_ADDR(phy, reg)); 652 ethoc_write(priv, MIITX_DATA, val); 653 ethoc_write(priv, MIICOMMAND, MIICOMMAND_WRITE); 654 655 for (i = 0; i < 5; i++) { 656 u32 stat = ethoc_read(priv, MIISTATUS); 657 if (!(stat & MIISTATUS_BUSY)) { 658 /* reset MII command register */ 659 ethoc_write(priv, MIICOMMAND, 0); 660 return 0; 661 } 662 usleep_range(100, 200); 663 } 664 665 return -EBUSY; 666 } 667 668 static void ethoc_mdio_poll(struct net_device *dev) 669 { 670 struct ethoc *priv = netdev_priv(dev); 671 struct phy_device *phydev = dev->phydev; 672 bool changed = false; 673 u32 mode; 674 675 if (priv->old_link != phydev->link) { 676 changed = true; 677 priv->old_link = phydev->link; 678 } 679 680 if (priv->old_duplex != phydev->duplex) { 681 changed = true; 682 priv->old_duplex = phydev->duplex; 683 } 684 685 if (!changed) 686 return; 687 688 mode = ethoc_read(priv, MODER); 689 if (phydev->duplex == DUPLEX_FULL) 690 mode |= MODER_FULLD; 691 else 692 mode &= ~MODER_FULLD; 693 ethoc_write(priv, MODER, mode); 694 695 phy_print_status(phydev); 696 } 697 698 static int ethoc_mdio_probe(struct net_device *dev) 699 { 700 struct ethoc *priv = netdev_priv(dev); 701 struct phy_device *phy; 702 int err; 703 704 if (priv->phy_id != -1) 705 phy = mdiobus_get_phy(priv->mdio, priv->phy_id); 706 else 707 phy = phy_find_first(priv->mdio); 708 709 if (!phy) { 710 dev_err(&dev->dev, "no PHY found\n"); 711 return -ENXIO; 712 } 713 714 priv->old_duplex = -1; 715 priv->old_link = -1; 716 717 err = phy_connect_direct(dev, phy, ethoc_mdio_poll, 718 PHY_INTERFACE_MODE_GMII); 719 if (err) { 720 dev_err(&dev->dev, "could not attach to PHY\n"); 721 return err; 722 } 723 724 phy->advertising &= ~(ADVERTISED_1000baseT_Full | 725 ADVERTISED_1000baseT_Half); 726 phy->supported &= ~(SUPPORTED_1000baseT_Full | 727 SUPPORTED_1000baseT_Half); 728 729 return 0; 730 } 731 732 static int ethoc_open(struct net_device *dev) 733 { 734 struct ethoc *priv = netdev_priv(dev); 735 int ret; 736 737 ret = request_irq(dev->irq, ethoc_interrupt, IRQF_SHARED, 738 dev->name, dev); 739 if (ret) 740 return ret; 741 742 ethoc_init_ring(priv, dev->mem_start); 743 ethoc_reset(priv); 744 745 if (netif_queue_stopped(dev)) { 746 dev_dbg(&dev->dev, " resuming queue\n"); 747 netif_wake_queue(dev); 748 } else { 749 dev_dbg(&dev->dev, " starting queue\n"); 750 netif_start_queue(dev); 751 } 752 753 priv->old_link = -1; 754 priv->old_duplex = -1; 755 756 phy_start(dev->phydev); 757 napi_enable(&priv->napi); 758 759 if (netif_msg_ifup(priv)) { 760 dev_info(&dev->dev, "I/O: %08lx Memory: %08lx-%08lx\n", 761 dev->base_addr, dev->mem_start, dev->mem_end); 762 } 763 764 return 0; 765 } 766 767 static int ethoc_stop(struct net_device *dev) 768 { 769 struct ethoc *priv = netdev_priv(dev); 770 771 napi_disable(&priv->napi); 772 773 if (dev->phydev) 774 phy_stop(dev->phydev); 775 776 ethoc_disable_rx_and_tx(priv); 777 free_irq(dev->irq, dev); 778 779 if (!netif_queue_stopped(dev)) 780 netif_stop_queue(dev); 781 782 return 0; 783 } 784 785 static int ethoc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 786 { 787 struct ethoc *priv = netdev_priv(dev); 788 struct mii_ioctl_data *mdio = if_mii(ifr); 789 struct phy_device *phy = NULL; 790 791 if (!netif_running(dev)) 792 return -EINVAL; 793 794 if (cmd != SIOCGMIIPHY) { 795 if (mdio->phy_id >= PHY_MAX_ADDR) 796 return -ERANGE; 797 798 phy = mdiobus_get_phy(priv->mdio, mdio->phy_id); 799 if (!phy) 800 return -ENODEV; 801 } else { 802 phy = dev->phydev; 803 } 804 805 return phy_mii_ioctl(phy, ifr, cmd); 806 } 807 808 static void ethoc_do_set_mac_address(struct net_device *dev) 809 { 810 struct ethoc *priv = netdev_priv(dev); 811 unsigned char *mac = dev->dev_addr; 812 813 ethoc_write(priv, MAC_ADDR0, (mac[2] << 24) | (mac[3] << 16) | 814 (mac[4] << 8) | (mac[5] << 0)); 815 ethoc_write(priv, MAC_ADDR1, (mac[0] << 8) | (mac[1] << 0)); 816 } 817 818 static int ethoc_set_mac_address(struct net_device *dev, void *p) 819 { 820 const struct sockaddr *addr = p; 821 822 if (!is_valid_ether_addr(addr->sa_data)) 823 return -EADDRNOTAVAIL; 824 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); 825 ethoc_do_set_mac_address(dev); 826 return 0; 827 } 828 829 static void ethoc_set_multicast_list(struct net_device *dev) 830 { 831 struct ethoc *priv = netdev_priv(dev); 832 u32 mode = ethoc_read(priv, MODER); 833 struct netdev_hw_addr *ha; 834 u32 hash[2] = { 0, 0 }; 835 836 /* set loopback mode if requested */ 837 if (dev->flags & IFF_LOOPBACK) 838 mode |= MODER_LOOP; 839 else 840 mode &= ~MODER_LOOP; 841 842 /* receive broadcast frames if requested */ 843 if (dev->flags & IFF_BROADCAST) 844 mode &= ~MODER_BRO; 845 else 846 mode |= MODER_BRO; 847 848 /* enable promiscuous mode if requested */ 849 if (dev->flags & IFF_PROMISC) 850 mode |= MODER_PRO; 851 else 852 mode &= ~MODER_PRO; 853 854 ethoc_write(priv, MODER, mode); 855 856 /* receive multicast frames */ 857 if (dev->flags & IFF_ALLMULTI) { 858 hash[0] = 0xffffffff; 859 hash[1] = 0xffffffff; 860 } else { 861 netdev_for_each_mc_addr(ha, dev) { 862 u32 crc = ether_crc(ETH_ALEN, ha->addr); 863 int bit = (crc >> 26) & 0x3f; 864 hash[bit >> 5] |= 1 << (bit & 0x1f); 865 } 866 } 867 868 ethoc_write(priv, ETH_HASH0, hash[0]); 869 ethoc_write(priv, ETH_HASH1, hash[1]); 870 } 871 872 static int ethoc_change_mtu(struct net_device *dev, int new_mtu) 873 { 874 return -ENOSYS; 875 } 876 877 static void ethoc_tx_timeout(struct net_device *dev) 878 { 879 struct ethoc *priv = netdev_priv(dev); 880 u32 pending = ethoc_read(priv, INT_SOURCE); 881 if (likely(pending)) 882 ethoc_interrupt(dev->irq, dev); 883 } 884 885 static netdev_tx_t ethoc_start_xmit(struct sk_buff *skb, struct net_device *dev) 886 { 887 struct ethoc *priv = netdev_priv(dev); 888 struct ethoc_bd bd; 889 unsigned int entry; 890 void *dest; 891 892 if (skb_put_padto(skb, ETHOC_ZLEN)) { 893 dev->stats.tx_errors++; 894 goto out_no_free; 895 } 896 897 if (unlikely(skb->len > ETHOC_BUFSIZ)) { 898 dev->stats.tx_errors++; 899 goto out; 900 } 901 902 entry = priv->cur_tx % priv->num_tx; 903 spin_lock_irq(&priv->lock); 904 priv->cur_tx++; 905 906 ethoc_read_bd(priv, entry, &bd); 907 if (unlikely(skb->len < ETHOC_ZLEN)) 908 bd.stat |= TX_BD_PAD; 909 else 910 bd.stat &= ~TX_BD_PAD; 911 912 dest = priv->vma[entry]; 913 memcpy_toio(dest, skb->data, skb->len); 914 915 bd.stat &= ~(TX_BD_STATS | TX_BD_LEN_MASK); 916 bd.stat |= TX_BD_LEN(skb->len); 917 ethoc_write_bd(priv, entry, &bd); 918 919 bd.stat |= TX_BD_READY; 920 ethoc_write_bd(priv, entry, &bd); 921 922 if (priv->cur_tx == (priv->dty_tx + priv->num_tx)) { 923 dev_dbg(&dev->dev, "stopping queue\n"); 924 netif_stop_queue(dev); 925 } 926 927 spin_unlock_irq(&priv->lock); 928 skb_tx_timestamp(skb); 929 out: 930 dev_kfree_skb(skb); 931 out_no_free: 932 return NETDEV_TX_OK; 933 } 934 935 static int ethoc_get_regs_len(struct net_device *netdev) 936 { 937 return ETH_END; 938 } 939 940 static void ethoc_get_regs(struct net_device *dev, struct ethtool_regs *regs, 941 void *p) 942 { 943 struct ethoc *priv = netdev_priv(dev); 944 u32 *regs_buff = p; 945 unsigned i; 946 947 regs->version = 0; 948 for (i = 0; i < ETH_END / sizeof(u32); ++i) 949 regs_buff[i] = ethoc_read(priv, i * sizeof(u32)); 950 } 951 952 static void ethoc_get_ringparam(struct net_device *dev, 953 struct ethtool_ringparam *ring) 954 { 955 struct ethoc *priv = netdev_priv(dev); 956 957 ring->rx_max_pending = priv->num_bd - 1; 958 ring->rx_mini_max_pending = 0; 959 ring->rx_jumbo_max_pending = 0; 960 ring->tx_max_pending = priv->num_bd - 1; 961 962 ring->rx_pending = priv->num_rx; 963 ring->rx_mini_pending = 0; 964 ring->rx_jumbo_pending = 0; 965 ring->tx_pending = priv->num_tx; 966 } 967 968 static int ethoc_set_ringparam(struct net_device *dev, 969 struct ethtool_ringparam *ring) 970 { 971 struct ethoc *priv = netdev_priv(dev); 972 973 if (ring->tx_pending < 1 || ring->rx_pending < 1 || 974 ring->tx_pending + ring->rx_pending > priv->num_bd) 975 return -EINVAL; 976 if (ring->rx_mini_pending || ring->rx_jumbo_pending) 977 return -EINVAL; 978 979 if (netif_running(dev)) { 980 netif_tx_disable(dev); 981 ethoc_disable_rx_and_tx(priv); 982 ethoc_disable_irq(priv, INT_MASK_TX | INT_MASK_RX); 983 synchronize_irq(dev->irq); 984 } 985 986 priv->num_tx = rounddown_pow_of_two(ring->tx_pending); 987 priv->num_rx = ring->rx_pending; 988 ethoc_init_ring(priv, dev->mem_start); 989 990 if (netif_running(dev)) { 991 ethoc_enable_irq(priv, INT_MASK_TX | INT_MASK_RX); 992 ethoc_enable_rx_and_tx(priv); 993 netif_wake_queue(dev); 994 } 995 return 0; 996 } 997 998 static const struct ethtool_ops ethoc_ethtool_ops = { 999 .get_regs_len = ethoc_get_regs_len, 1000 .get_regs = ethoc_get_regs, 1001 .nway_reset = phy_ethtool_nway_reset, 1002 .get_link = ethtool_op_get_link, 1003 .get_ringparam = ethoc_get_ringparam, 1004 .set_ringparam = ethoc_set_ringparam, 1005 .get_ts_info = ethtool_op_get_ts_info, 1006 .get_link_ksettings = phy_ethtool_get_link_ksettings, 1007 .set_link_ksettings = phy_ethtool_set_link_ksettings, 1008 }; 1009 1010 static const struct net_device_ops ethoc_netdev_ops = { 1011 .ndo_open = ethoc_open, 1012 .ndo_stop = ethoc_stop, 1013 .ndo_do_ioctl = ethoc_ioctl, 1014 .ndo_set_mac_address = ethoc_set_mac_address, 1015 .ndo_set_rx_mode = ethoc_set_multicast_list, 1016 .ndo_change_mtu = ethoc_change_mtu, 1017 .ndo_tx_timeout = ethoc_tx_timeout, 1018 .ndo_start_xmit = ethoc_start_xmit, 1019 }; 1020 1021 /** 1022 * ethoc_probe - initialize OpenCores ethernet MAC 1023 * pdev: platform device 1024 */ 1025 static int ethoc_probe(struct platform_device *pdev) 1026 { 1027 struct net_device *netdev = NULL; 1028 struct resource *res = NULL; 1029 struct resource *mmio = NULL; 1030 struct resource *mem = NULL; 1031 struct ethoc *priv = NULL; 1032 int num_bd; 1033 int ret = 0; 1034 struct ethoc_platform_data *pdata = dev_get_platdata(&pdev->dev); 1035 u32 eth_clkfreq = pdata ? pdata->eth_clkfreq : 0; 1036 1037 /* allocate networking device */ 1038 netdev = alloc_etherdev(sizeof(struct ethoc)); 1039 if (!netdev) { 1040 ret = -ENOMEM; 1041 goto out; 1042 } 1043 1044 SET_NETDEV_DEV(netdev, &pdev->dev); 1045 platform_set_drvdata(pdev, netdev); 1046 1047 /* obtain I/O memory space */ 1048 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1049 if (!res) { 1050 dev_err(&pdev->dev, "cannot obtain I/O memory space\n"); 1051 ret = -ENXIO; 1052 goto free; 1053 } 1054 1055 mmio = devm_request_mem_region(&pdev->dev, res->start, 1056 resource_size(res), res->name); 1057 if (!mmio) { 1058 dev_err(&pdev->dev, "cannot request I/O memory space\n"); 1059 ret = -ENXIO; 1060 goto free; 1061 } 1062 1063 netdev->base_addr = mmio->start; 1064 1065 /* obtain buffer memory space */ 1066 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1067 if (res) { 1068 mem = devm_request_mem_region(&pdev->dev, res->start, 1069 resource_size(res), res->name); 1070 if (!mem) { 1071 dev_err(&pdev->dev, "cannot request memory space\n"); 1072 ret = -ENXIO; 1073 goto free; 1074 } 1075 1076 netdev->mem_start = mem->start; 1077 netdev->mem_end = mem->end; 1078 } 1079 1080 1081 /* obtain device IRQ number */ 1082 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 1083 if (!res) { 1084 dev_err(&pdev->dev, "cannot obtain IRQ\n"); 1085 ret = -ENXIO; 1086 goto free; 1087 } 1088 1089 netdev->irq = res->start; 1090 1091 /* setup driver-private data */ 1092 priv = netdev_priv(netdev); 1093 priv->netdev = netdev; 1094 1095 priv->iobase = devm_ioremap_nocache(&pdev->dev, netdev->base_addr, 1096 resource_size(mmio)); 1097 if (!priv->iobase) { 1098 dev_err(&pdev->dev, "cannot remap I/O memory space\n"); 1099 ret = -ENXIO; 1100 goto free; 1101 } 1102 1103 if (netdev->mem_end) { 1104 priv->membase = devm_ioremap_nocache(&pdev->dev, 1105 netdev->mem_start, resource_size(mem)); 1106 if (!priv->membase) { 1107 dev_err(&pdev->dev, "cannot remap memory space\n"); 1108 ret = -ENXIO; 1109 goto free; 1110 } 1111 } else { 1112 /* Allocate buffer memory */ 1113 priv->membase = dmam_alloc_coherent(&pdev->dev, 1114 buffer_size, (void *)&netdev->mem_start, 1115 GFP_KERNEL); 1116 if (!priv->membase) { 1117 dev_err(&pdev->dev, "cannot allocate %dB buffer\n", 1118 buffer_size); 1119 ret = -ENOMEM; 1120 goto free; 1121 } 1122 netdev->mem_end = netdev->mem_start + buffer_size; 1123 } 1124 1125 priv->big_endian = pdata ? pdata->big_endian : 1126 of_device_is_big_endian(pdev->dev.of_node); 1127 1128 /* calculate the number of TX/RX buffers, maximum 128 supported */ 1129 num_bd = min_t(unsigned int, 1130 128, (netdev->mem_end - netdev->mem_start + 1) / ETHOC_BUFSIZ); 1131 if (num_bd < 4) { 1132 ret = -ENODEV; 1133 goto free; 1134 } 1135 priv->num_bd = num_bd; 1136 /* num_tx must be a power of two */ 1137 priv->num_tx = rounddown_pow_of_two(num_bd >> 1); 1138 priv->num_rx = num_bd - priv->num_tx; 1139 1140 dev_dbg(&pdev->dev, "ethoc: num_tx: %d num_rx: %d\n", 1141 priv->num_tx, priv->num_rx); 1142 1143 priv->vma = devm_kzalloc(&pdev->dev, num_bd*sizeof(void *), GFP_KERNEL); 1144 if (!priv->vma) { 1145 ret = -ENOMEM; 1146 goto free; 1147 } 1148 1149 /* Allow the platform setup code to pass in a MAC address. */ 1150 if (pdata) { 1151 memcpy(netdev->dev_addr, pdata->hwaddr, IFHWADDRLEN); 1152 priv->phy_id = pdata->phy_id; 1153 } else { 1154 const void *mac; 1155 1156 mac = of_get_mac_address(pdev->dev.of_node); 1157 if (mac) 1158 memcpy(netdev->dev_addr, mac, IFHWADDRLEN); 1159 priv->phy_id = -1; 1160 } 1161 1162 /* Check that the given MAC address is valid. If it isn't, read the 1163 * current MAC from the controller. 1164 */ 1165 if (!is_valid_ether_addr(netdev->dev_addr)) 1166 ethoc_get_mac_address(netdev, netdev->dev_addr); 1167 1168 /* Check the MAC again for validity, if it still isn't choose and 1169 * program a random one. 1170 */ 1171 if (!is_valid_ether_addr(netdev->dev_addr)) 1172 eth_hw_addr_random(netdev); 1173 1174 ethoc_do_set_mac_address(netdev); 1175 1176 /* Allow the platform setup code to adjust MII management bus clock. */ 1177 if (!eth_clkfreq) { 1178 struct clk *clk = devm_clk_get(&pdev->dev, NULL); 1179 1180 if (!IS_ERR(clk)) { 1181 priv->clk = clk; 1182 clk_prepare_enable(clk); 1183 eth_clkfreq = clk_get_rate(clk); 1184 } 1185 } 1186 if (eth_clkfreq) { 1187 u32 clkdiv = MIIMODER_CLKDIV(eth_clkfreq / 2500000 + 1); 1188 1189 if (!clkdiv) 1190 clkdiv = 2; 1191 dev_dbg(&pdev->dev, "setting MII clkdiv to %u\n", clkdiv); 1192 ethoc_write(priv, MIIMODER, 1193 (ethoc_read(priv, MIIMODER) & MIIMODER_NOPRE) | 1194 clkdiv); 1195 } 1196 1197 /* register MII bus */ 1198 priv->mdio = mdiobus_alloc(); 1199 if (!priv->mdio) { 1200 ret = -ENOMEM; 1201 goto free2; 1202 } 1203 1204 priv->mdio->name = "ethoc-mdio"; 1205 snprintf(priv->mdio->id, MII_BUS_ID_SIZE, "%s-%d", 1206 priv->mdio->name, pdev->id); 1207 priv->mdio->read = ethoc_mdio_read; 1208 priv->mdio->write = ethoc_mdio_write; 1209 priv->mdio->priv = priv; 1210 1211 ret = mdiobus_register(priv->mdio); 1212 if (ret) { 1213 dev_err(&netdev->dev, "failed to register MDIO bus\n"); 1214 goto free2; 1215 } 1216 1217 ret = ethoc_mdio_probe(netdev); 1218 if (ret) { 1219 dev_err(&netdev->dev, "failed to probe MDIO bus\n"); 1220 goto error; 1221 } 1222 1223 /* setup the net_device structure */ 1224 netdev->netdev_ops = ðoc_netdev_ops; 1225 netdev->watchdog_timeo = ETHOC_TIMEOUT; 1226 netdev->features |= 0; 1227 netdev->ethtool_ops = ðoc_ethtool_ops; 1228 1229 /* setup NAPI */ 1230 netif_napi_add(netdev, &priv->napi, ethoc_poll, 64); 1231 1232 spin_lock_init(&priv->lock); 1233 1234 ret = register_netdev(netdev); 1235 if (ret < 0) { 1236 dev_err(&netdev->dev, "failed to register interface\n"); 1237 goto error2; 1238 } 1239 1240 goto out; 1241 1242 error2: 1243 netif_napi_del(&priv->napi); 1244 error: 1245 mdiobus_unregister(priv->mdio); 1246 mdiobus_free(priv->mdio); 1247 free2: 1248 if (priv->clk) 1249 clk_disable_unprepare(priv->clk); 1250 free: 1251 free_netdev(netdev); 1252 out: 1253 return ret; 1254 } 1255 1256 /** 1257 * ethoc_remove - shutdown OpenCores ethernet MAC 1258 * @pdev: platform device 1259 */ 1260 static int ethoc_remove(struct platform_device *pdev) 1261 { 1262 struct net_device *netdev = platform_get_drvdata(pdev); 1263 struct ethoc *priv = netdev_priv(netdev); 1264 1265 if (netdev) { 1266 netif_napi_del(&priv->napi); 1267 phy_disconnect(netdev->phydev); 1268 1269 if (priv->mdio) { 1270 mdiobus_unregister(priv->mdio); 1271 mdiobus_free(priv->mdio); 1272 } 1273 if (priv->clk) 1274 clk_disable_unprepare(priv->clk); 1275 unregister_netdev(netdev); 1276 free_netdev(netdev); 1277 } 1278 1279 return 0; 1280 } 1281 1282 #ifdef CONFIG_PM 1283 static int ethoc_suspend(struct platform_device *pdev, pm_message_t state) 1284 { 1285 return -ENOSYS; 1286 } 1287 1288 static int ethoc_resume(struct platform_device *pdev) 1289 { 1290 return -ENOSYS; 1291 } 1292 #else 1293 # define ethoc_suspend NULL 1294 # define ethoc_resume NULL 1295 #endif 1296 1297 static const struct of_device_id ethoc_match[] = { 1298 { .compatible = "opencores,ethoc", }, 1299 {}, 1300 }; 1301 MODULE_DEVICE_TABLE(of, ethoc_match); 1302 1303 static struct platform_driver ethoc_driver = { 1304 .probe = ethoc_probe, 1305 .remove = ethoc_remove, 1306 .suspend = ethoc_suspend, 1307 .resume = ethoc_resume, 1308 .driver = { 1309 .name = "ethoc", 1310 .of_match_table = ethoc_match, 1311 }, 1312 }; 1313 1314 module_platform_driver(ethoc_driver); 1315 1316 MODULE_AUTHOR("Thierry Reding <thierry.reding@avionic-design.de>"); 1317 MODULE_DESCRIPTION("OpenCores Ethernet MAC driver"); 1318 MODULE_LICENSE("GPL v2"); 1319 1320