1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/net/ethernet/ethoc.c
4 *
5 * Copyright (C) 2007-2008 Avionic Design Development GmbH
6 * Copyright (C) 2008-2009 Avionic Design GmbH
7 *
8 * Written by Thierry Reding <thierry.reding@avionic-design.de>
9 */
10
11 #include <linux/dma-mapping.h>
12 #include <linux/etherdevice.h>
13 #include <linux/clk.h>
14 #include <linux/crc32.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mii.h>
18 #include <linux/phy.h>
19 #include <linux/platform_device.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/of.h>
23 #include <linux/of_net.h>
24 #include <linux/module.h>
25 #include <net/ethoc.h>
26
27 static int buffer_size = 0x8000; /* 32 KBytes */
28 module_param(buffer_size, int, 0);
29 MODULE_PARM_DESC(buffer_size, "DMA buffer allocation size");
30
31 /* register offsets */
32 #define MODER 0x00
33 #define INT_SOURCE 0x04
34 #define INT_MASK 0x08
35 #define IPGT 0x0c
36 #define IPGR1 0x10
37 #define IPGR2 0x14
38 #define PACKETLEN 0x18
39 #define COLLCONF 0x1c
40 #define TX_BD_NUM 0x20
41 #define CTRLMODER 0x24
42 #define MIIMODER 0x28
43 #define MIICOMMAND 0x2c
44 #define MIIADDRESS 0x30
45 #define MIITX_DATA 0x34
46 #define MIIRX_DATA 0x38
47 #define MIISTATUS 0x3c
48 #define MAC_ADDR0 0x40
49 #define MAC_ADDR1 0x44
50 #define ETH_HASH0 0x48
51 #define ETH_HASH1 0x4c
52 #define ETH_TXCTRL 0x50
53 #define ETH_END 0x54
54
55 /* mode register */
56 #define MODER_RXEN (1 << 0) /* receive enable */
57 #define MODER_TXEN (1 << 1) /* transmit enable */
58 #define MODER_NOPRE (1 << 2) /* no preamble */
59 #define MODER_BRO (1 << 3) /* broadcast address */
60 #define MODER_IAM (1 << 4) /* individual address mode */
61 #define MODER_PRO (1 << 5) /* promiscuous mode */
62 #define MODER_IFG (1 << 6) /* interframe gap for incoming frames */
63 #define MODER_LOOP (1 << 7) /* loopback */
64 #define MODER_NBO (1 << 8) /* no back-off */
65 #define MODER_EDE (1 << 9) /* excess defer enable */
66 #define MODER_FULLD (1 << 10) /* full duplex */
67 #define MODER_RESET (1 << 11) /* FIXME: reset (undocumented) */
68 #define MODER_DCRC (1 << 12) /* delayed CRC enable */
69 #define MODER_CRC (1 << 13) /* CRC enable */
70 #define MODER_HUGE (1 << 14) /* huge packets enable */
71 #define MODER_PAD (1 << 15) /* padding enabled */
72 #define MODER_RSM (1 << 16) /* receive small packets */
73
74 /* interrupt source and mask registers */
75 #define INT_MASK_TXF (1 << 0) /* transmit frame */
76 #define INT_MASK_TXE (1 << 1) /* transmit error */
77 #define INT_MASK_RXF (1 << 2) /* receive frame */
78 #define INT_MASK_RXE (1 << 3) /* receive error */
79 #define INT_MASK_BUSY (1 << 4)
80 #define INT_MASK_TXC (1 << 5) /* transmit control frame */
81 #define INT_MASK_RXC (1 << 6) /* receive control frame */
82
83 #define INT_MASK_TX (INT_MASK_TXF | INT_MASK_TXE)
84 #define INT_MASK_RX (INT_MASK_RXF | INT_MASK_RXE)
85
86 #define INT_MASK_ALL ( \
87 INT_MASK_TXF | INT_MASK_TXE | \
88 INT_MASK_RXF | INT_MASK_RXE | \
89 INT_MASK_TXC | INT_MASK_RXC | \
90 INT_MASK_BUSY \
91 )
92
93 /* packet length register */
94 #define PACKETLEN_MIN(min) (((min) & 0xffff) << 16)
95 #define PACKETLEN_MAX(max) (((max) & 0xffff) << 0)
96 #define PACKETLEN_MIN_MAX(min, max) (PACKETLEN_MIN(min) | \
97 PACKETLEN_MAX(max))
98
99 /* transmit buffer number register */
100 #define TX_BD_NUM_VAL(x) (((x) <= 0x80) ? (x) : 0x80)
101
102 /* control module mode register */
103 #define CTRLMODER_PASSALL (1 << 0) /* pass all receive frames */
104 #define CTRLMODER_RXFLOW (1 << 1) /* receive control flow */
105 #define CTRLMODER_TXFLOW (1 << 2) /* transmit control flow */
106
107 /* MII mode register */
108 #define MIIMODER_CLKDIV(x) ((x) & 0xfe) /* needs to be an even number */
109 #define MIIMODER_NOPRE (1 << 8) /* no preamble */
110
111 /* MII command register */
112 #define MIICOMMAND_SCAN (1 << 0) /* scan status */
113 #define MIICOMMAND_READ (1 << 1) /* read status */
114 #define MIICOMMAND_WRITE (1 << 2) /* write control data */
115
116 /* MII address register */
117 #define MIIADDRESS_FIAD(x) (((x) & 0x1f) << 0)
118 #define MIIADDRESS_RGAD(x) (((x) & 0x1f) << 8)
119 #define MIIADDRESS_ADDR(phy, reg) (MIIADDRESS_FIAD(phy) | \
120 MIIADDRESS_RGAD(reg))
121
122 /* MII transmit data register */
123 #define MIITX_DATA_VAL(x) ((x) & 0xffff)
124
125 /* MII receive data register */
126 #define MIIRX_DATA_VAL(x) ((x) & 0xffff)
127
128 /* MII status register */
129 #define MIISTATUS_LINKFAIL (1 << 0)
130 #define MIISTATUS_BUSY (1 << 1)
131 #define MIISTATUS_INVALID (1 << 2)
132
133 /* TX buffer descriptor */
134 #define TX_BD_CS (1 << 0) /* carrier sense lost */
135 #define TX_BD_DF (1 << 1) /* defer indication */
136 #define TX_BD_LC (1 << 2) /* late collision */
137 #define TX_BD_RL (1 << 3) /* retransmission limit */
138 #define TX_BD_RETRY_MASK (0x00f0)
139 #define TX_BD_RETRY(x) (((x) & 0x00f0) >> 4)
140 #define TX_BD_UR (1 << 8) /* transmitter underrun */
141 #define TX_BD_CRC (1 << 11) /* TX CRC enable */
142 #define TX_BD_PAD (1 << 12) /* pad enable for short packets */
143 #define TX_BD_WRAP (1 << 13)
144 #define TX_BD_IRQ (1 << 14) /* interrupt request enable */
145 #define TX_BD_READY (1 << 15) /* TX buffer ready */
146 #define TX_BD_LEN(x) (((x) & 0xffff) << 16)
147 #define TX_BD_LEN_MASK (0xffff << 16)
148
149 #define TX_BD_STATS (TX_BD_CS | TX_BD_DF | TX_BD_LC | \
150 TX_BD_RL | TX_BD_RETRY_MASK | TX_BD_UR)
151
152 /* RX buffer descriptor */
153 #define RX_BD_LC (1 << 0) /* late collision */
154 #define RX_BD_CRC (1 << 1) /* RX CRC error */
155 #define RX_BD_SF (1 << 2) /* short frame */
156 #define RX_BD_TL (1 << 3) /* too long */
157 #define RX_BD_DN (1 << 4) /* dribble nibble */
158 #define RX_BD_IS (1 << 5) /* invalid symbol */
159 #define RX_BD_OR (1 << 6) /* receiver overrun */
160 #define RX_BD_MISS (1 << 7)
161 #define RX_BD_CF (1 << 8) /* control frame */
162 #define RX_BD_WRAP (1 << 13)
163 #define RX_BD_IRQ (1 << 14) /* interrupt request enable */
164 #define RX_BD_EMPTY (1 << 15)
165 #define RX_BD_LEN(x) (((x) & 0xffff) << 16)
166
167 #define RX_BD_STATS (RX_BD_LC | RX_BD_CRC | RX_BD_SF | RX_BD_TL | \
168 RX_BD_DN | RX_BD_IS | RX_BD_OR | RX_BD_MISS)
169
170 #define ETHOC_BUFSIZ 1536
171 #define ETHOC_ZLEN 64
172 #define ETHOC_BD_BASE 0x400
173 #define ETHOC_TIMEOUT (HZ / 2)
174 #define ETHOC_MII_TIMEOUT (1 + (HZ / 5))
175
176 /**
177 * struct ethoc - driver-private device structure
178 * @iobase: pointer to I/O memory region
179 * @membase: pointer to buffer memory region
180 * @big_endian: just big or little (endian)
181 * @num_bd: number of buffer descriptors
182 * @num_tx: number of send buffers
183 * @cur_tx: last send buffer written
184 * @dty_tx: last buffer actually sent
185 * @num_rx: number of receive buffers
186 * @cur_rx: current receive buffer
187 * @vma: pointer to array of virtual memory addresses for buffers
188 * @netdev: pointer to network device structure
189 * @napi: NAPI structure
190 * @msg_enable: device state flags
191 * @lock: device lock
192 * @mdio: MDIO bus for PHY access
193 * @clk: clock
194 * @phy_id: address of attached PHY
195 * @old_link: previous link info
196 * @old_duplex: previous duplex info
197 */
198 struct ethoc {
199 void __iomem *iobase;
200 void __iomem *membase;
201 bool big_endian;
202
203 unsigned int num_bd;
204 unsigned int num_tx;
205 unsigned int cur_tx;
206 unsigned int dty_tx;
207
208 unsigned int num_rx;
209 unsigned int cur_rx;
210
211 void **vma;
212
213 struct net_device *netdev;
214 struct napi_struct napi;
215 u32 msg_enable;
216
217 spinlock_t lock;
218
219 struct mii_bus *mdio;
220 struct clk *clk;
221 s8 phy_id;
222
223 int old_link;
224 int old_duplex;
225 };
226
227 /**
228 * struct ethoc_bd - buffer descriptor
229 * @stat: buffer statistics
230 * @addr: physical memory address
231 */
232 struct ethoc_bd {
233 u32 stat;
234 u32 addr;
235 };
236
ethoc_read(struct ethoc * dev,loff_t offset)237 static inline u32 ethoc_read(struct ethoc *dev, loff_t offset)
238 {
239 if (dev->big_endian)
240 return ioread32be(dev->iobase + offset);
241 else
242 return ioread32(dev->iobase + offset);
243 }
244
ethoc_write(struct ethoc * dev,loff_t offset,u32 data)245 static inline void ethoc_write(struct ethoc *dev, loff_t offset, u32 data)
246 {
247 if (dev->big_endian)
248 iowrite32be(data, dev->iobase + offset);
249 else
250 iowrite32(data, dev->iobase + offset);
251 }
252
ethoc_read_bd(struct ethoc * dev,int index,struct ethoc_bd * bd)253 static inline void ethoc_read_bd(struct ethoc *dev, int index,
254 struct ethoc_bd *bd)
255 {
256 loff_t offset = ETHOC_BD_BASE + (index * sizeof(struct ethoc_bd));
257 bd->stat = ethoc_read(dev, offset + 0);
258 bd->addr = ethoc_read(dev, offset + 4);
259 }
260
ethoc_write_bd(struct ethoc * dev,int index,const struct ethoc_bd * bd)261 static inline void ethoc_write_bd(struct ethoc *dev, int index,
262 const struct ethoc_bd *bd)
263 {
264 loff_t offset = ETHOC_BD_BASE + (index * sizeof(struct ethoc_bd));
265 ethoc_write(dev, offset + 0, bd->stat);
266 ethoc_write(dev, offset + 4, bd->addr);
267 }
268
ethoc_enable_irq(struct ethoc * dev,u32 mask)269 static inline void ethoc_enable_irq(struct ethoc *dev, u32 mask)
270 {
271 u32 imask = ethoc_read(dev, INT_MASK);
272 imask |= mask;
273 ethoc_write(dev, INT_MASK, imask);
274 }
275
ethoc_disable_irq(struct ethoc * dev,u32 mask)276 static inline void ethoc_disable_irq(struct ethoc *dev, u32 mask)
277 {
278 u32 imask = ethoc_read(dev, INT_MASK);
279 imask &= ~mask;
280 ethoc_write(dev, INT_MASK, imask);
281 }
282
ethoc_ack_irq(struct ethoc * dev,u32 mask)283 static inline void ethoc_ack_irq(struct ethoc *dev, u32 mask)
284 {
285 ethoc_write(dev, INT_SOURCE, mask);
286 }
287
ethoc_enable_rx_and_tx(struct ethoc * dev)288 static inline void ethoc_enable_rx_and_tx(struct ethoc *dev)
289 {
290 u32 mode = ethoc_read(dev, MODER);
291 mode |= MODER_RXEN | MODER_TXEN;
292 ethoc_write(dev, MODER, mode);
293 }
294
ethoc_disable_rx_and_tx(struct ethoc * dev)295 static inline void ethoc_disable_rx_and_tx(struct ethoc *dev)
296 {
297 u32 mode = ethoc_read(dev, MODER);
298 mode &= ~(MODER_RXEN | MODER_TXEN);
299 ethoc_write(dev, MODER, mode);
300 }
301
ethoc_init_ring(struct ethoc * dev,unsigned long mem_start)302 static int ethoc_init_ring(struct ethoc *dev, unsigned long mem_start)
303 {
304 struct ethoc_bd bd;
305 int i;
306 void *vma;
307
308 dev->cur_tx = 0;
309 dev->dty_tx = 0;
310 dev->cur_rx = 0;
311
312 ethoc_write(dev, TX_BD_NUM, dev->num_tx);
313
314 /* setup transmission buffers */
315 bd.addr = mem_start;
316 bd.stat = TX_BD_IRQ | TX_BD_CRC;
317 vma = dev->membase;
318
319 for (i = 0; i < dev->num_tx; i++) {
320 if (i == dev->num_tx - 1)
321 bd.stat |= TX_BD_WRAP;
322
323 ethoc_write_bd(dev, i, &bd);
324 bd.addr += ETHOC_BUFSIZ;
325
326 dev->vma[i] = vma;
327 vma += ETHOC_BUFSIZ;
328 }
329
330 bd.stat = RX_BD_EMPTY | RX_BD_IRQ;
331
332 for (i = 0; i < dev->num_rx; i++) {
333 if (i == dev->num_rx - 1)
334 bd.stat |= RX_BD_WRAP;
335
336 ethoc_write_bd(dev, dev->num_tx + i, &bd);
337 bd.addr += ETHOC_BUFSIZ;
338
339 dev->vma[dev->num_tx + i] = vma;
340 vma += ETHOC_BUFSIZ;
341 }
342
343 return 0;
344 }
345
ethoc_reset(struct ethoc * dev)346 static int ethoc_reset(struct ethoc *dev)
347 {
348 u32 mode;
349
350 /* TODO: reset controller? */
351
352 ethoc_disable_rx_and_tx(dev);
353
354 /* TODO: setup registers */
355
356 /* enable FCS generation and automatic padding */
357 mode = ethoc_read(dev, MODER);
358 mode |= MODER_CRC | MODER_PAD;
359 ethoc_write(dev, MODER, mode);
360
361 /* set full-duplex mode */
362 mode = ethoc_read(dev, MODER);
363 mode |= MODER_FULLD;
364 ethoc_write(dev, MODER, mode);
365 ethoc_write(dev, IPGT, 0x15);
366
367 ethoc_ack_irq(dev, INT_MASK_ALL);
368 ethoc_enable_irq(dev, INT_MASK_ALL);
369 ethoc_enable_rx_and_tx(dev);
370 return 0;
371 }
372
ethoc_update_rx_stats(struct ethoc * dev,struct ethoc_bd * bd)373 static unsigned int ethoc_update_rx_stats(struct ethoc *dev,
374 struct ethoc_bd *bd)
375 {
376 struct net_device *netdev = dev->netdev;
377 unsigned int ret = 0;
378
379 if (bd->stat & RX_BD_TL) {
380 dev_err(&netdev->dev, "RX: frame too long\n");
381 netdev->stats.rx_length_errors++;
382 ret++;
383 }
384
385 if (bd->stat & RX_BD_SF) {
386 dev_err(&netdev->dev, "RX: frame too short\n");
387 netdev->stats.rx_length_errors++;
388 ret++;
389 }
390
391 if (bd->stat & RX_BD_DN) {
392 dev_err(&netdev->dev, "RX: dribble nibble\n");
393 netdev->stats.rx_frame_errors++;
394 }
395
396 if (bd->stat & RX_BD_CRC) {
397 dev_err(&netdev->dev, "RX: wrong CRC\n");
398 netdev->stats.rx_crc_errors++;
399 ret++;
400 }
401
402 if (bd->stat & RX_BD_OR) {
403 dev_err(&netdev->dev, "RX: overrun\n");
404 netdev->stats.rx_over_errors++;
405 ret++;
406 }
407
408 if (bd->stat & RX_BD_MISS)
409 netdev->stats.rx_missed_errors++;
410
411 if (bd->stat & RX_BD_LC) {
412 dev_err(&netdev->dev, "RX: late collision\n");
413 netdev->stats.collisions++;
414 ret++;
415 }
416
417 return ret;
418 }
419
ethoc_rx(struct net_device * dev,int limit)420 static int ethoc_rx(struct net_device *dev, int limit)
421 {
422 struct ethoc *priv = netdev_priv(dev);
423 int count;
424
425 for (count = 0; count < limit; ++count) {
426 unsigned int entry;
427 struct ethoc_bd bd;
428
429 entry = priv->num_tx + priv->cur_rx;
430 ethoc_read_bd(priv, entry, &bd);
431 if (bd.stat & RX_BD_EMPTY) {
432 ethoc_ack_irq(priv, INT_MASK_RX);
433 /* If packet (interrupt) came in between checking
434 * BD_EMTPY and clearing the interrupt source, then we
435 * risk missing the packet as the RX interrupt won't
436 * trigger right away when we reenable it; hence, check
437 * BD_EMTPY here again to make sure there isn't such a
438 * packet waiting for us...
439 */
440 ethoc_read_bd(priv, entry, &bd);
441 if (bd.stat & RX_BD_EMPTY)
442 break;
443 }
444
445 if (ethoc_update_rx_stats(priv, &bd) == 0) {
446 int size = bd.stat >> 16;
447 struct sk_buff *skb;
448
449 size -= 4; /* strip the CRC */
450 skb = netdev_alloc_skb_ip_align(dev, size);
451
452 if (likely(skb)) {
453 void *src = priv->vma[entry];
454 memcpy_fromio(skb_put(skb, size), src, size);
455 skb->protocol = eth_type_trans(skb, dev);
456 dev->stats.rx_packets++;
457 dev->stats.rx_bytes += size;
458 netif_receive_skb(skb);
459 } else {
460 if (net_ratelimit())
461 dev_warn(&dev->dev,
462 "low on memory - packet dropped\n");
463
464 dev->stats.rx_dropped++;
465 break;
466 }
467 }
468
469 /* clear the buffer descriptor so it can be reused */
470 bd.stat &= ~RX_BD_STATS;
471 bd.stat |= RX_BD_EMPTY;
472 ethoc_write_bd(priv, entry, &bd);
473 if (++priv->cur_rx == priv->num_rx)
474 priv->cur_rx = 0;
475 }
476
477 return count;
478 }
479
ethoc_update_tx_stats(struct ethoc * dev,struct ethoc_bd * bd)480 static void ethoc_update_tx_stats(struct ethoc *dev, struct ethoc_bd *bd)
481 {
482 struct net_device *netdev = dev->netdev;
483
484 if (bd->stat & TX_BD_LC) {
485 dev_err(&netdev->dev, "TX: late collision\n");
486 netdev->stats.tx_window_errors++;
487 }
488
489 if (bd->stat & TX_BD_RL) {
490 dev_err(&netdev->dev, "TX: retransmit limit\n");
491 netdev->stats.tx_aborted_errors++;
492 }
493
494 if (bd->stat & TX_BD_UR) {
495 dev_err(&netdev->dev, "TX: underrun\n");
496 netdev->stats.tx_fifo_errors++;
497 }
498
499 if (bd->stat & TX_BD_CS) {
500 dev_err(&netdev->dev, "TX: carrier sense lost\n");
501 netdev->stats.tx_carrier_errors++;
502 }
503
504 if (bd->stat & TX_BD_STATS)
505 netdev->stats.tx_errors++;
506
507 netdev->stats.collisions += (bd->stat >> 4) & 0xf;
508 netdev->stats.tx_bytes += bd->stat >> 16;
509 netdev->stats.tx_packets++;
510 }
511
ethoc_tx(struct net_device * dev,int limit)512 static int ethoc_tx(struct net_device *dev, int limit)
513 {
514 struct ethoc *priv = netdev_priv(dev);
515 int count;
516 struct ethoc_bd bd;
517
518 for (count = 0; count < limit; ++count) {
519 unsigned int entry;
520
521 entry = priv->dty_tx & (priv->num_tx-1);
522
523 ethoc_read_bd(priv, entry, &bd);
524
525 if (bd.stat & TX_BD_READY || (priv->dty_tx == priv->cur_tx)) {
526 ethoc_ack_irq(priv, INT_MASK_TX);
527 /* If interrupt came in between reading in the BD
528 * and clearing the interrupt source, then we risk
529 * missing the event as the TX interrupt won't trigger
530 * right away when we reenable it; hence, check
531 * BD_EMPTY here again to make sure there isn't such an
532 * event pending...
533 */
534 ethoc_read_bd(priv, entry, &bd);
535 if (bd.stat & TX_BD_READY ||
536 (priv->dty_tx == priv->cur_tx))
537 break;
538 }
539
540 ethoc_update_tx_stats(priv, &bd);
541 priv->dty_tx++;
542 }
543
544 if ((priv->cur_tx - priv->dty_tx) <= (priv->num_tx / 2))
545 netif_wake_queue(dev);
546
547 return count;
548 }
549
ethoc_interrupt(int irq,void * dev_id)550 static irqreturn_t ethoc_interrupt(int irq, void *dev_id)
551 {
552 struct net_device *dev = dev_id;
553 struct ethoc *priv = netdev_priv(dev);
554 u32 pending;
555 u32 mask;
556
557 /* Figure out what triggered the interrupt...
558 * The tricky bit here is that the interrupt source bits get
559 * set in INT_SOURCE for an event regardless of whether that
560 * event is masked or not. Thus, in order to figure out what
561 * triggered the interrupt, we need to remove the sources
562 * for all events that are currently masked. This behaviour
563 * is not particularly well documented but reasonable...
564 */
565 mask = ethoc_read(priv, INT_MASK);
566 pending = ethoc_read(priv, INT_SOURCE);
567 pending &= mask;
568
569 if (unlikely(pending == 0))
570 return IRQ_NONE;
571
572 ethoc_ack_irq(priv, pending);
573
574 /* We always handle the dropped packet interrupt */
575 if (pending & INT_MASK_BUSY) {
576 dev_dbg(&dev->dev, "packet dropped\n");
577 dev->stats.rx_dropped++;
578 }
579
580 /* Handle receive/transmit event by switching to polling */
581 if (pending & (INT_MASK_TX | INT_MASK_RX)) {
582 ethoc_disable_irq(priv, INT_MASK_TX | INT_MASK_RX);
583 napi_schedule(&priv->napi);
584 }
585
586 return IRQ_HANDLED;
587 }
588
ethoc_get_mac_address(struct net_device * dev,void * addr)589 static int ethoc_get_mac_address(struct net_device *dev, void *addr)
590 {
591 struct ethoc *priv = netdev_priv(dev);
592 u8 *mac = (u8 *)addr;
593 u32 reg;
594
595 reg = ethoc_read(priv, MAC_ADDR0);
596 mac[2] = (reg >> 24) & 0xff;
597 mac[3] = (reg >> 16) & 0xff;
598 mac[4] = (reg >> 8) & 0xff;
599 mac[5] = (reg >> 0) & 0xff;
600
601 reg = ethoc_read(priv, MAC_ADDR1);
602 mac[0] = (reg >> 8) & 0xff;
603 mac[1] = (reg >> 0) & 0xff;
604
605 return 0;
606 }
607
ethoc_poll(struct napi_struct * napi,int budget)608 static int ethoc_poll(struct napi_struct *napi, int budget)
609 {
610 struct ethoc *priv = container_of(napi, struct ethoc, napi);
611 int rx_work_done = 0;
612 int tx_work_done = 0;
613
614 rx_work_done = ethoc_rx(priv->netdev, budget);
615 tx_work_done = ethoc_tx(priv->netdev, budget);
616
617 if (rx_work_done < budget && tx_work_done < budget) {
618 napi_complete_done(napi, rx_work_done);
619 ethoc_enable_irq(priv, INT_MASK_TX | INT_MASK_RX);
620 }
621
622 return rx_work_done;
623 }
624
ethoc_mdio_read(struct mii_bus * bus,int phy,int reg)625 static int ethoc_mdio_read(struct mii_bus *bus, int phy, int reg)
626 {
627 struct ethoc *priv = bus->priv;
628 int i;
629
630 ethoc_write(priv, MIIADDRESS, MIIADDRESS_ADDR(phy, reg));
631 ethoc_write(priv, MIICOMMAND, MIICOMMAND_READ);
632
633 for (i = 0; i < 5; i++) {
634 u32 status = ethoc_read(priv, MIISTATUS);
635 if (!(status & MIISTATUS_BUSY)) {
636 u32 data = ethoc_read(priv, MIIRX_DATA);
637 /* reset MII command register */
638 ethoc_write(priv, MIICOMMAND, 0);
639 return data;
640 }
641 usleep_range(100, 200);
642 }
643
644 return -EBUSY;
645 }
646
ethoc_mdio_write(struct mii_bus * bus,int phy,int reg,u16 val)647 static int ethoc_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
648 {
649 struct ethoc *priv = bus->priv;
650 int i;
651
652 ethoc_write(priv, MIIADDRESS, MIIADDRESS_ADDR(phy, reg));
653 ethoc_write(priv, MIITX_DATA, val);
654 ethoc_write(priv, MIICOMMAND, MIICOMMAND_WRITE);
655
656 for (i = 0; i < 5; i++) {
657 u32 stat = ethoc_read(priv, MIISTATUS);
658 if (!(stat & MIISTATUS_BUSY)) {
659 /* reset MII command register */
660 ethoc_write(priv, MIICOMMAND, 0);
661 return 0;
662 }
663 usleep_range(100, 200);
664 }
665
666 return -EBUSY;
667 }
668
ethoc_mdio_poll(struct net_device * dev)669 static void ethoc_mdio_poll(struct net_device *dev)
670 {
671 struct ethoc *priv = netdev_priv(dev);
672 struct phy_device *phydev = dev->phydev;
673 bool changed = false;
674 u32 mode;
675
676 if (priv->old_link != phydev->link) {
677 changed = true;
678 priv->old_link = phydev->link;
679 }
680
681 if (priv->old_duplex != phydev->duplex) {
682 changed = true;
683 priv->old_duplex = phydev->duplex;
684 }
685
686 if (!changed)
687 return;
688
689 mode = ethoc_read(priv, MODER);
690 if (phydev->duplex == DUPLEX_FULL)
691 mode |= MODER_FULLD;
692 else
693 mode &= ~MODER_FULLD;
694 ethoc_write(priv, MODER, mode);
695
696 phy_print_status(phydev);
697 }
698
ethoc_mdio_probe(struct net_device * dev)699 static int ethoc_mdio_probe(struct net_device *dev)
700 {
701 struct ethoc *priv = netdev_priv(dev);
702 struct phy_device *phy;
703 int err;
704
705 if (priv->phy_id != -1)
706 phy = mdiobus_get_phy(priv->mdio, priv->phy_id);
707 else
708 phy = phy_find_first(priv->mdio);
709
710 if (!phy)
711 return dev_err_probe(&dev->dev, -ENXIO, "no PHY found\n");
712
713 priv->old_duplex = -1;
714 priv->old_link = -1;
715
716 err = phy_connect_direct(dev, phy, ethoc_mdio_poll,
717 PHY_INTERFACE_MODE_GMII);
718 if (err)
719 return dev_err_probe(&dev->dev, err, "could not attach to PHY\n");
720
721 phy_set_max_speed(phy, SPEED_100);
722
723 return 0;
724 }
725
ethoc_open(struct net_device * dev)726 static int ethoc_open(struct net_device *dev)
727 {
728 struct ethoc *priv = netdev_priv(dev);
729 int ret;
730
731 ret = request_irq(dev->irq, ethoc_interrupt, IRQF_SHARED,
732 dev->name, dev);
733 if (ret)
734 return ret;
735
736 napi_enable(&priv->napi);
737
738 ethoc_init_ring(priv, dev->mem_start);
739 ethoc_reset(priv);
740
741 if (netif_queue_stopped(dev)) {
742 dev_dbg(&dev->dev, " resuming queue\n");
743 netif_wake_queue(dev);
744 } else {
745 dev_dbg(&dev->dev, " starting queue\n");
746 netif_start_queue(dev);
747 }
748
749 priv->old_link = -1;
750 priv->old_duplex = -1;
751
752 phy_start(dev->phydev);
753
754 if (netif_msg_ifup(priv)) {
755 dev_info(&dev->dev, "I/O: %08lx Memory: %08lx-%08lx\n",
756 dev->base_addr, dev->mem_start, dev->mem_end);
757 }
758
759 return 0;
760 }
761
ethoc_stop(struct net_device * dev)762 static int ethoc_stop(struct net_device *dev)
763 {
764 struct ethoc *priv = netdev_priv(dev);
765
766 napi_disable(&priv->napi);
767
768 if (dev->phydev)
769 phy_stop(dev->phydev);
770
771 ethoc_disable_rx_and_tx(priv);
772 free_irq(dev->irq, dev);
773
774 if (!netif_queue_stopped(dev))
775 netif_stop_queue(dev);
776
777 return 0;
778 }
779
ethoc_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)780 static int ethoc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
781 {
782 struct ethoc *priv = netdev_priv(dev);
783 struct mii_ioctl_data *mdio = if_mii(ifr);
784 struct phy_device *phy = NULL;
785
786 if (!netif_running(dev))
787 return -EINVAL;
788
789 if (cmd != SIOCGMIIPHY) {
790 if (mdio->phy_id >= PHY_MAX_ADDR)
791 return -ERANGE;
792
793 phy = mdiobus_get_phy(priv->mdio, mdio->phy_id);
794 if (!phy)
795 return -ENODEV;
796 } else {
797 phy = dev->phydev;
798 }
799
800 return phy_mii_ioctl(phy, ifr, cmd);
801 }
802
ethoc_do_set_mac_address(struct net_device * dev)803 static void ethoc_do_set_mac_address(struct net_device *dev)
804 {
805 const unsigned char *mac = dev->dev_addr;
806 struct ethoc *priv = netdev_priv(dev);
807
808 ethoc_write(priv, MAC_ADDR0, (mac[2] << 24) | (mac[3] << 16) |
809 (mac[4] << 8) | (mac[5] << 0));
810 ethoc_write(priv, MAC_ADDR1, (mac[0] << 8) | (mac[1] << 0));
811 }
812
ethoc_set_mac_address(struct net_device * dev,void * p)813 static int ethoc_set_mac_address(struct net_device *dev, void *p)
814 {
815 const struct sockaddr *addr = p;
816
817 if (!is_valid_ether_addr(addr->sa_data))
818 return -EADDRNOTAVAIL;
819 eth_hw_addr_set(dev, addr->sa_data);
820 ethoc_do_set_mac_address(dev);
821 return 0;
822 }
823
ethoc_set_multicast_list(struct net_device * dev)824 static void ethoc_set_multicast_list(struct net_device *dev)
825 {
826 struct ethoc *priv = netdev_priv(dev);
827 u32 mode = ethoc_read(priv, MODER);
828 struct netdev_hw_addr *ha;
829 u32 hash[2] = { 0, 0 };
830
831 /* set loopback mode if requested */
832 if (dev->flags & IFF_LOOPBACK)
833 mode |= MODER_LOOP;
834 else
835 mode &= ~MODER_LOOP;
836
837 /* receive broadcast frames if requested */
838 if (dev->flags & IFF_BROADCAST)
839 mode &= ~MODER_BRO;
840 else
841 mode |= MODER_BRO;
842
843 /* enable promiscuous mode if requested */
844 if (dev->flags & IFF_PROMISC)
845 mode |= MODER_PRO;
846 else
847 mode &= ~MODER_PRO;
848
849 ethoc_write(priv, MODER, mode);
850
851 /* receive multicast frames */
852 if (dev->flags & IFF_ALLMULTI) {
853 hash[0] = 0xffffffff;
854 hash[1] = 0xffffffff;
855 } else {
856 netdev_for_each_mc_addr(ha, dev) {
857 u32 crc = ether_crc(ETH_ALEN, ha->addr);
858 int bit = (crc >> 26) & 0x3f;
859 hash[bit >> 5] |= 1 << (bit & 0x1f);
860 }
861 }
862
863 ethoc_write(priv, ETH_HASH0, hash[0]);
864 ethoc_write(priv, ETH_HASH1, hash[1]);
865 }
866
ethoc_change_mtu(struct net_device * dev,int new_mtu)867 static int ethoc_change_mtu(struct net_device *dev, int new_mtu)
868 {
869 return -ENOSYS;
870 }
871
ethoc_tx_timeout(struct net_device * dev,unsigned int txqueue)872 static void ethoc_tx_timeout(struct net_device *dev, unsigned int txqueue)
873 {
874 struct ethoc *priv = netdev_priv(dev);
875 u32 pending = ethoc_read(priv, INT_SOURCE);
876 if (likely(pending))
877 ethoc_interrupt(dev->irq, dev);
878 }
879
ethoc_start_xmit(struct sk_buff * skb,struct net_device * dev)880 static netdev_tx_t ethoc_start_xmit(struct sk_buff *skb, struct net_device *dev)
881 {
882 struct ethoc *priv = netdev_priv(dev);
883 struct ethoc_bd bd;
884 unsigned int entry;
885 void *dest;
886
887 if (skb_put_padto(skb, ETHOC_ZLEN)) {
888 dev->stats.tx_errors++;
889 goto out_no_free;
890 }
891
892 if (unlikely(skb->len > ETHOC_BUFSIZ)) {
893 dev->stats.tx_errors++;
894 goto out;
895 }
896
897 entry = priv->cur_tx % priv->num_tx;
898 spin_lock_irq(&priv->lock);
899 priv->cur_tx++;
900
901 ethoc_read_bd(priv, entry, &bd);
902 if (unlikely(skb->len < ETHOC_ZLEN))
903 bd.stat |= TX_BD_PAD;
904 else
905 bd.stat &= ~TX_BD_PAD;
906
907 dest = priv->vma[entry];
908 memcpy_toio(dest, skb->data, skb->len);
909
910 bd.stat &= ~(TX_BD_STATS | TX_BD_LEN_MASK);
911 bd.stat |= TX_BD_LEN(skb->len);
912 ethoc_write_bd(priv, entry, &bd);
913
914 bd.stat |= TX_BD_READY;
915 ethoc_write_bd(priv, entry, &bd);
916
917 if (priv->cur_tx == (priv->dty_tx + priv->num_tx)) {
918 dev_dbg(&dev->dev, "stopping queue\n");
919 netif_stop_queue(dev);
920 }
921
922 spin_unlock_irq(&priv->lock);
923 skb_tx_timestamp(skb);
924 out:
925 dev_kfree_skb(skb);
926 out_no_free:
927 return NETDEV_TX_OK;
928 }
929
ethoc_get_regs_len(struct net_device * netdev)930 static int ethoc_get_regs_len(struct net_device *netdev)
931 {
932 return ETH_END;
933 }
934
ethoc_get_regs(struct net_device * dev,struct ethtool_regs * regs,void * p)935 static void ethoc_get_regs(struct net_device *dev, struct ethtool_regs *regs,
936 void *p)
937 {
938 struct ethoc *priv = netdev_priv(dev);
939 u32 *regs_buff = p;
940 unsigned i;
941
942 regs->version = 0;
943 for (i = 0; i < ETH_END / sizeof(u32); ++i)
944 regs_buff[i] = ethoc_read(priv, i * sizeof(u32));
945 }
946
ethoc_get_ringparam(struct net_device * dev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)947 static void ethoc_get_ringparam(struct net_device *dev,
948 struct ethtool_ringparam *ring,
949 struct kernel_ethtool_ringparam *kernel_ring,
950 struct netlink_ext_ack *extack)
951 {
952 struct ethoc *priv = netdev_priv(dev);
953
954 ring->rx_max_pending = priv->num_bd - 1;
955 ring->rx_mini_max_pending = 0;
956 ring->rx_jumbo_max_pending = 0;
957 ring->tx_max_pending = priv->num_bd - 1;
958
959 ring->rx_pending = priv->num_rx;
960 ring->rx_mini_pending = 0;
961 ring->rx_jumbo_pending = 0;
962 ring->tx_pending = priv->num_tx;
963 }
964
ethoc_set_ringparam(struct net_device * dev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)965 static int ethoc_set_ringparam(struct net_device *dev,
966 struct ethtool_ringparam *ring,
967 struct kernel_ethtool_ringparam *kernel_ring,
968 struct netlink_ext_ack *extack)
969 {
970 struct ethoc *priv = netdev_priv(dev);
971
972 if (ring->tx_pending < 1 || ring->rx_pending < 1 ||
973 ring->tx_pending + ring->rx_pending > priv->num_bd)
974 return -EINVAL;
975 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
976 return -EINVAL;
977
978 if (netif_running(dev)) {
979 netif_tx_disable(dev);
980 ethoc_disable_rx_and_tx(priv);
981 ethoc_disable_irq(priv, INT_MASK_TX | INT_MASK_RX);
982 synchronize_irq(dev->irq);
983 }
984
985 priv->num_tx = rounddown_pow_of_two(ring->tx_pending);
986 priv->num_rx = ring->rx_pending;
987 ethoc_init_ring(priv, dev->mem_start);
988
989 if (netif_running(dev)) {
990 ethoc_enable_irq(priv, INT_MASK_TX | INT_MASK_RX);
991 ethoc_enable_rx_and_tx(priv);
992 netif_wake_queue(dev);
993 }
994 return 0;
995 }
996
997 static const struct ethtool_ops ethoc_ethtool_ops = {
998 .get_regs_len = ethoc_get_regs_len,
999 .get_regs = ethoc_get_regs,
1000 .nway_reset = phy_ethtool_nway_reset,
1001 .get_link = ethtool_op_get_link,
1002 .get_ringparam = ethoc_get_ringparam,
1003 .set_ringparam = ethoc_set_ringparam,
1004 .get_ts_info = ethtool_op_get_ts_info,
1005 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1006 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1007 };
1008
1009 static const struct net_device_ops ethoc_netdev_ops = {
1010 .ndo_open = ethoc_open,
1011 .ndo_stop = ethoc_stop,
1012 .ndo_eth_ioctl = ethoc_ioctl,
1013 .ndo_set_mac_address = ethoc_set_mac_address,
1014 .ndo_set_rx_mode = ethoc_set_multicast_list,
1015 .ndo_change_mtu = ethoc_change_mtu,
1016 .ndo_tx_timeout = ethoc_tx_timeout,
1017 .ndo_start_xmit = ethoc_start_xmit,
1018 };
1019
1020 /**
1021 * ethoc_probe - initialize OpenCores ethernet MAC
1022 * @pdev: platform device
1023 */
ethoc_probe(struct platform_device * pdev)1024 static int ethoc_probe(struct platform_device *pdev)
1025 {
1026 struct net_device *netdev = NULL;
1027 struct resource *res = NULL;
1028 struct resource *mmio = NULL;
1029 struct resource *mem = NULL;
1030 struct ethoc *priv = NULL;
1031 int num_bd;
1032 int ret = 0;
1033 struct ethoc_platform_data *pdata = dev_get_platdata(&pdev->dev);
1034 u32 eth_clkfreq = pdata ? pdata->eth_clkfreq : 0;
1035
1036 /* allocate networking device */
1037 netdev = alloc_etherdev(sizeof(struct ethoc));
1038 if (!netdev) {
1039 ret = -ENOMEM;
1040 goto out;
1041 }
1042
1043 SET_NETDEV_DEV(netdev, &pdev->dev);
1044 platform_set_drvdata(pdev, netdev);
1045
1046 /* obtain I/O memory space */
1047 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1048 if (!res) {
1049 dev_err(&pdev->dev, "cannot obtain I/O memory space\n");
1050 ret = -ENXIO;
1051 goto free;
1052 }
1053
1054 mmio = devm_request_mem_region(&pdev->dev, res->start,
1055 resource_size(res), res->name);
1056 if (!mmio) {
1057 dev_err(&pdev->dev, "cannot request I/O memory space\n");
1058 ret = -ENXIO;
1059 goto free;
1060 }
1061
1062 netdev->base_addr = mmio->start;
1063
1064 /* obtain buffer memory space */
1065 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1066 if (res) {
1067 mem = devm_request_mem_region(&pdev->dev, res->start,
1068 resource_size(res), res->name);
1069 if (!mem) {
1070 dev_err(&pdev->dev, "cannot request memory space\n");
1071 ret = -ENXIO;
1072 goto free;
1073 }
1074
1075 netdev->mem_start = mem->start;
1076 netdev->mem_end = mem->end;
1077 }
1078
1079
1080 /* obtain device IRQ number */
1081 ret = platform_get_irq(pdev, 0);
1082 if (ret < 0)
1083 goto free;
1084
1085 netdev->irq = ret;
1086
1087 /* setup driver-private data */
1088 priv = netdev_priv(netdev);
1089 priv->netdev = netdev;
1090
1091 priv->iobase = devm_ioremap(&pdev->dev, netdev->base_addr,
1092 resource_size(mmio));
1093 if (!priv->iobase) {
1094 dev_err(&pdev->dev, "cannot remap I/O memory space\n");
1095 ret = -ENXIO;
1096 goto free;
1097 }
1098
1099 if (netdev->mem_end) {
1100 priv->membase = devm_ioremap(&pdev->dev,
1101 netdev->mem_start, resource_size(mem));
1102 if (!priv->membase) {
1103 dev_err(&pdev->dev, "cannot remap memory space\n");
1104 ret = -ENXIO;
1105 goto free;
1106 }
1107 } else {
1108 /* Allocate buffer memory */
1109 priv->membase = dmam_alloc_coherent(&pdev->dev,
1110 buffer_size, (void *)&netdev->mem_start,
1111 GFP_KERNEL);
1112 if (!priv->membase) {
1113 dev_err(&pdev->dev, "cannot allocate %dB buffer\n",
1114 buffer_size);
1115 ret = -ENOMEM;
1116 goto free;
1117 }
1118 netdev->mem_end = netdev->mem_start + buffer_size;
1119 }
1120
1121 priv->big_endian = pdata ? pdata->big_endian :
1122 of_device_is_big_endian(pdev->dev.of_node);
1123
1124 /* calculate the number of TX/RX buffers, maximum 128 supported */
1125 num_bd = min_t(unsigned int,
1126 128, (netdev->mem_end - netdev->mem_start + 1) / ETHOC_BUFSIZ);
1127 if (num_bd < 4) {
1128 ret = -ENODEV;
1129 goto free;
1130 }
1131 priv->num_bd = num_bd;
1132 /* num_tx must be a power of two */
1133 priv->num_tx = rounddown_pow_of_two(num_bd >> 1);
1134 priv->num_rx = num_bd - priv->num_tx;
1135
1136 dev_dbg(&pdev->dev, "ethoc: num_tx: %d num_rx: %d\n",
1137 priv->num_tx, priv->num_rx);
1138
1139 priv->vma = devm_kcalloc(&pdev->dev, num_bd, sizeof(void *),
1140 GFP_KERNEL);
1141 if (!priv->vma) {
1142 ret = -ENOMEM;
1143 goto free;
1144 }
1145
1146 /* Allow the platform setup code to pass in a MAC address. */
1147 if (pdata) {
1148 eth_hw_addr_set(netdev, pdata->hwaddr);
1149 priv->phy_id = pdata->phy_id;
1150 } else {
1151 of_get_ethdev_address(pdev->dev.of_node, netdev);
1152 priv->phy_id = -1;
1153 }
1154
1155 /* Check that the given MAC address is valid. If it isn't, read the
1156 * current MAC from the controller.
1157 */
1158 if (!is_valid_ether_addr(netdev->dev_addr)) {
1159 u8 addr[ETH_ALEN];
1160
1161 ethoc_get_mac_address(netdev, addr);
1162 eth_hw_addr_set(netdev, addr);
1163 }
1164
1165 /* Check the MAC again for validity, if it still isn't choose and
1166 * program a random one.
1167 */
1168 if (!is_valid_ether_addr(netdev->dev_addr))
1169 eth_hw_addr_random(netdev);
1170
1171 ethoc_do_set_mac_address(netdev);
1172
1173 /* Allow the platform setup code to adjust MII management bus clock. */
1174 if (!eth_clkfreq) {
1175 struct clk *clk = devm_clk_get(&pdev->dev, NULL);
1176
1177 if (!IS_ERR(clk)) {
1178 priv->clk = clk;
1179 clk_prepare_enable(clk);
1180 eth_clkfreq = clk_get_rate(clk);
1181 }
1182 }
1183 if (eth_clkfreq) {
1184 u32 clkdiv = MIIMODER_CLKDIV(eth_clkfreq / 2500000 + 1);
1185
1186 if (!clkdiv)
1187 clkdiv = 2;
1188 dev_dbg(&pdev->dev, "setting MII clkdiv to %u\n", clkdiv);
1189 ethoc_write(priv, MIIMODER,
1190 (ethoc_read(priv, MIIMODER) & MIIMODER_NOPRE) |
1191 clkdiv);
1192 }
1193
1194 /* register MII bus */
1195 priv->mdio = mdiobus_alloc();
1196 if (!priv->mdio) {
1197 ret = -ENOMEM;
1198 goto free2;
1199 }
1200
1201 priv->mdio->name = "ethoc-mdio";
1202 snprintf(priv->mdio->id, MII_BUS_ID_SIZE, "%s-%d",
1203 priv->mdio->name, pdev->id);
1204 priv->mdio->read = ethoc_mdio_read;
1205 priv->mdio->write = ethoc_mdio_write;
1206 priv->mdio->priv = priv;
1207
1208 ret = mdiobus_register(priv->mdio);
1209 if (ret) {
1210 dev_err(&netdev->dev, "failed to register MDIO bus\n");
1211 goto free3;
1212 }
1213
1214 ret = ethoc_mdio_probe(netdev);
1215 if (ret) {
1216 dev_err(&netdev->dev, "failed to probe MDIO bus\n");
1217 goto error;
1218 }
1219
1220 /* setup the net_device structure */
1221 netdev->netdev_ops = ðoc_netdev_ops;
1222 netdev->watchdog_timeo = ETHOC_TIMEOUT;
1223 netdev->features |= 0;
1224 netdev->ethtool_ops = ðoc_ethtool_ops;
1225
1226 /* setup NAPI */
1227 netif_napi_add(netdev, &priv->napi, ethoc_poll);
1228
1229 spin_lock_init(&priv->lock);
1230
1231 ret = register_netdev(netdev);
1232 if (ret < 0) {
1233 dev_err(&netdev->dev, "failed to register interface\n");
1234 goto error2;
1235 }
1236
1237 goto out;
1238
1239 error2:
1240 netif_napi_del(&priv->napi);
1241 error:
1242 mdiobus_unregister(priv->mdio);
1243 free3:
1244 mdiobus_free(priv->mdio);
1245 free2:
1246 clk_disable_unprepare(priv->clk);
1247 free:
1248 free_netdev(netdev);
1249 out:
1250 return ret;
1251 }
1252
1253 /**
1254 * ethoc_remove - shutdown OpenCores ethernet MAC
1255 * @pdev: platform device
1256 */
ethoc_remove(struct platform_device * pdev)1257 static void ethoc_remove(struct platform_device *pdev)
1258 {
1259 struct net_device *netdev = platform_get_drvdata(pdev);
1260 struct ethoc *priv = netdev_priv(netdev);
1261
1262 if (netdev) {
1263 netif_napi_del(&priv->napi);
1264 phy_disconnect(netdev->phydev);
1265
1266 if (priv->mdio) {
1267 mdiobus_unregister(priv->mdio);
1268 mdiobus_free(priv->mdio);
1269 }
1270 clk_disable_unprepare(priv->clk);
1271 unregister_netdev(netdev);
1272 free_netdev(netdev);
1273 }
1274 }
1275
1276 #ifdef CONFIG_PM
ethoc_suspend(struct platform_device * pdev,pm_message_t state)1277 static int ethoc_suspend(struct platform_device *pdev, pm_message_t state)
1278 {
1279 return -ENOSYS;
1280 }
1281
ethoc_resume(struct platform_device * pdev)1282 static int ethoc_resume(struct platform_device *pdev)
1283 {
1284 return -ENOSYS;
1285 }
1286 #else
1287 # define ethoc_suspend NULL
1288 # define ethoc_resume NULL
1289 #endif
1290
1291 static const struct of_device_id ethoc_match[] = {
1292 { .compatible = "opencores,ethoc", },
1293 {},
1294 };
1295 MODULE_DEVICE_TABLE(of, ethoc_match);
1296
1297 static struct platform_driver ethoc_driver = {
1298 .probe = ethoc_probe,
1299 .remove_new = ethoc_remove,
1300 .suspend = ethoc_suspend,
1301 .resume = ethoc_resume,
1302 .driver = {
1303 .name = "ethoc",
1304 .of_match_table = ethoc_match,
1305 },
1306 };
1307
1308 module_platform_driver(ethoc_driver);
1309
1310 MODULE_AUTHOR("Thierry Reding <thierry.reding@avionic-design.de>");
1311 MODULE_DESCRIPTION("OpenCores Ethernet MAC driver");
1312 MODULE_LICENSE("GPL v2");
1313
1314