xref: /linux/drivers/net/ethernet/engleder/tsnep_main.c (revision 110d3047a3ec033de00322b1a8068b1215efa97a)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021 Gerhard Engleder <gerhard@engleder-embedded.com> */
3 
4 /* TSN endpoint Ethernet MAC driver
5  *
6  * The TSN endpoint Ethernet MAC is a FPGA based network device for real-time
7  * communication. It is designed for endpoints within TSN (Time Sensitive
8  * Networking) networks; e.g., for PLCs in the industrial automation case.
9  *
10  * It supports multiple TX/RX queue pairs. The first TX/RX queue pair is used
11  * by the driver.
12  *
13  * More information can be found here:
14  * - www.embedded-experts.at/tsn
15  * - www.engleder-embedded.com
16  */
17 
18 #include "tsnep.h"
19 #include "tsnep_hw.h"
20 
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_net.h>
24 #include <linux/of_mdio.h>
25 #include <linux/interrupt.h>
26 #include <linux/etherdevice.h>
27 #include <linux/phy.h>
28 #include <linux/iopoll.h>
29 #include <linux/bpf.h>
30 #include <linux/bpf_trace.h>
31 #include <net/page_pool/helpers.h>
32 #include <net/xdp_sock_drv.h>
33 
34 #define TSNEP_RX_OFFSET (max(NET_SKB_PAD, XDP_PACKET_HEADROOM) + NET_IP_ALIGN)
35 #define TSNEP_HEADROOM ALIGN(TSNEP_RX_OFFSET, 4)
36 #define TSNEP_MAX_RX_BUF_SIZE (PAGE_SIZE - TSNEP_HEADROOM - \
37 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
38 /* XSK buffer shall store at least Q-in-Q frame */
39 #define TSNEP_XSK_RX_BUF_SIZE (ALIGN(TSNEP_RX_INLINE_METADATA_SIZE + \
40 				     ETH_FRAME_LEN + ETH_FCS_LEN + \
41 				     VLAN_HLEN * 2, 4))
42 
43 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
44 #define DMA_ADDR_HIGH(dma_addr) ((u32)(((dma_addr) >> 32) & 0xFFFFFFFF))
45 #else
46 #define DMA_ADDR_HIGH(dma_addr) ((u32)(0))
47 #endif
48 #define DMA_ADDR_LOW(dma_addr) ((u32)((dma_addr) & 0xFFFFFFFF))
49 
50 #define TSNEP_COALESCE_USECS_DEFAULT 64
51 #define TSNEP_COALESCE_USECS_MAX     ((ECM_INT_DELAY_MASK >> ECM_INT_DELAY_SHIFT) * \
52 				      ECM_INT_DELAY_BASE_US + ECM_INT_DELAY_BASE_US - 1)
53 
54 /* mapping type */
55 #define TSNEP_TX_TYPE_MAP		BIT(0)
56 #define TSNEP_TX_TYPE_MAP_PAGE		BIT(1)
57 #define TSNEP_TX_TYPE_INLINE		BIT(2)
58 /* buffer type */
59 #define TSNEP_TX_TYPE_SKB		BIT(8)
60 #define TSNEP_TX_TYPE_SKB_MAP		(TSNEP_TX_TYPE_SKB | TSNEP_TX_TYPE_MAP)
61 #define TSNEP_TX_TYPE_SKB_INLINE	(TSNEP_TX_TYPE_SKB | TSNEP_TX_TYPE_INLINE)
62 #define TSNEP_TX_TYPE_SKB_FRAG		BIT(9)
63 #define TSNEP_TX_TYPE_SKB_FRAG_MAP_PAGE	(TSNEP_TX_TYPE_SKB_FRAG | TSNEP_TX_TYPE_MAP_PAGE)
64 #define TSNEP_TX_TYPE_SKB_FRAG_INLINE	(TSNEP_TX_TYPE_SKB_FRAG | TSNEP_TX_TYPE_INLINE)
65 #define TSNEP_TX_TYPE_XDP_TX		BIT(10)
66 #define TSNEP_TX_TYPE_XDP_NDO		BIT(11)
67 #define TSNEP_TX_TYPE_XDP_NDO_MAP_PAGE	(TSNEP_TX_TYPE_XDP_NDO | TSNEP_TX_TYPE_MAP_PAGE)
68 #define TSNEP_TX_TYPE_XDP		(TSNEP_TX_TYPE_XDP_TX | TSNEP_TX_TYPE_XDP_NDO)
69 #define TSNEP_TX_TYPE_XSK		BIT(12)
70 
71 #define TSNEP_XDP_TX		BIT(0)
72 #define TSNEP_XDP_REDIRECT	BIT(1)
73 
74 static void tsnep_enable_irq(struct tsnep_adapter *adapter, u32 mask)
75 {
76 	iowrite32(mask, adapter->addr + ECM_INT_ENABLE);
77 }
78 
79 static void tsnep_disable_irq(struct tsnep_adapter *adapter, u32 mask)
80 {
81 	mask |= ECM_INT_DISABLE;
82 	iowrite32(mask, adapter->addr + ECM_INT_ENABLE);
83 }
84 
85 static irqreturn_t tsnep_irq(int irq, void *arg)
86 {
87 	struct tsnep_adapter *adapter = arg;
88 	u32 active = ioread32(adapter->addr + ECM_INT_ACTIVE);
89 
90 	/* acknowledge interrupt */
91 	if (active != 0)
92 		iowrite32(active, adapter->addr + ECM_INT_ACKNOWLEDGE);
93 
94 	/* handle link interrupt */
95 	if ((active & ECM_INT_LINK) != 0)
96 		phy_mac_interrupt(adapter->netdev->phydev);
97 
98 	/* handle TX/RX queue 0 interrupt */
99 	if ((active & adapter->queue[0].irq_mask) != 0) {
100 		if (napi_schedule_prep(&adapter->queue[0].napi)) {
101 			tsnep_disable_irq(adapter, adapter->queue[0].irq_mask);
102 			/* schedule after masking to avoid races */
103 			__napi_schedule(&adapter->queue[0].napi);
104 		}
105 	}
106 
107 	return IRQ_HANDLED;
108 }
109 
110 static irqreturn_t tsnep_irq_txrx(int irq, void *arg)
111 {
112 	struct tsnep_queue *queue = arg;
113 
114 	/* handle TX/RX queue interrupt */
115 	if (napi_schedule_prep(&queue->napi)) {
116 		tsnep_disable_irq(queue->adapter, queue->irq_mask);
117 		/* schedule after masking to avoid races */
118 		__napi_schedule(&queue->napi);
119 	}
120 
121 	return IRQ_HANDLED;
122 }
123 
124 int tsnep_set_irq_coalesce(struct tsnep_queue *queue, u32 usecs)
125 {
126 	if (usecs > TSNEP_COALESCE_USECS_MAX)
127 		return -ERANGE;
128 
129 	usecs /= ECM_INT_DELAY_BASE_US;
130 	usecs <<= ECM_INT_DELAY_SHIFT;
131 	usecs &= ECM_INT_DELAY_MASK;
132 
133 	queue->irq_delay &= ~ECM_INT_DELAY_MASK;
134 	queue->irq_delay |= usecs;
135 	iowrite8(queue->irq_delay, queue->irq_delay_addr);
136 
137 	return 0;
138 }
139 
140 u32 tsnep_get_irq_coalesce(struct tsnep_queue *queue)
141 {
142 	u32 usecs;
143 
144 	usecs = (queue->irq_delay & ECM_INT_DELAY_MASK);
145 	usecs >>= ECM_INT_DELAY_SHIFT;
146 	usecs *= ECM_INT_DELAY_BASE_US;
147 
148 	return usecs;
149 }
150 
151 static int tsnep_mdiobus_read(struct mii_bus *bus, int addr, int regnum)
152 {
153 	struct tsnep_adapter *adapter = bus->priv;
154 	u32 md;
155 	int retval;
156 
157 	md = ECM_MD_READ;
158 	if (!adapter->suppress_preamble)
159 		md |= ECM_MD_PREAMBLE;
160 	md |= (regnum << ECM_MD_ADDR_SHIFT) & ECM_MD_ADDR_MASK;
161 	md |= (addr << ECM_MD_PHY_ADDR_SHIFT) & ECM_MD_PHY_ADDR_MASK;
162 	iowrite32(md, adapter->addr + ECM_MD_CONTROL);
163 	retval = readl_poll_timeout_atomic(adapter->addr + ECM_MD_STATUS, md,
164 					   !(md & ECM_MD_BUSY), 16, 1000);
165 	if (retval != 0)
166 		return retval;
167 
168 	return (md & ECM_MD_DATA_MASK) >> ECM_MD_DATA_SHIFT;
169 }
170 
171 static int tsnep_mdiobus_write(struct mii_bus *bus, int addr, int regnum,
172 			       u16 val)
173 {
174 	struct tsnep_adapter *adapter = bus->priv;
175 	u32 md;
176 	int retval;
177 
178 	md = ECM_MD_WRITE;
179 	if (!adapter->suppress_preamble)
180 		md |= ECM_MD_PREAMBLE;
181 	md |= (regnum << ECM_MD_ADDR_SHIFT) & ECM_MD_ADDR_MASK;
182 	md |= (addr << ECM_MD_PHY_ADDR_SHIFT) & ECM_MD_PHY_ADDR_MASK;
183 	md |= ((u32)val << ECM_MD_DATA_SHIFT) & ECM_MD_DATA_MASK;
184 	iowrite32(md, adapter->addr + ECM_MD_CONTROL);
185 	retval = readl_poll_timeout_atomic(adapter->addr + ECM_MD_STATUS, md,
186 					   !(md & ECM_MD_BUSY), 16, 1000);
187 	if (retval != 0)
188 		return retval;
189 
190 	return 0;
191 }
192 
193 static void tsnep_set_link_mode(struct tsnep_adapter *adapter)
194 {
195 	u32 mode;
196 
197 	switch (adapter->phydev->speed) {
198 	case SPEED_100:
199 		mode = ECM_LINK_MODE_100;
200 		break;
201 	case SPEED_1000:
202 		mode = ECM_LINK_MODE_1000;
203 		break;
204 	default:
205 		mode = ECM_LINK_MODE_OFF;
206 		break;
207 	}
208 	iowrite32(mode, adapter->addr + ECM_STATUS);
209 }
210 
211 static void tsnep_phy_link_status_change(struct net_device *netdev)
212 {
213 	struct tsnep_adapter *adapter = netdev_priv(netdev);
214 	struct phy_device *phydev = netdev->phydev;
215 
216 	if (phydev->link)
217 		tsnep_set_link_mode(adapter);
218 
219 	phy_print_status(netdev->phydev);
220 }
221 
222 static int tsnep_phy_loopback(struct tsnep_adapter *adapter, bool enable)
223 {
224 	int retval;
225 
226 	retval = phy_loopback(adapter->phydev, enable);
227 
228 	/* PHY link state change is not signaled if loopback is enabled, it
229 	 * would delay a working loopback anyway, let's ensure that loopback
230 	 * is working immediately by setting link mode directly
231 	 */
232 	if (!retval && enable) {
233 		netif_carrier_on(adapter->netdev);
234 		tsnep_set_link_mode(adapter);
235 	}
236 
237 	return retval;
238 }
239 
240 static int tsnep_phy_open(struct tsnep_adapter *adapter)
241 {
242 	struct phy_device *phydev;
243 	struct ethtool_keee ethtool_keee;
244 	int retval;
245 
246 	retval = phy_connect_direct(adapter->netdev, adapter->phydev,
247 				    tsnep_phy_link_status_change,
248 				    adapter->phy_mode);
249 	if (retval)
250 		return retval;
251 	phydev = adapter->netdev->phydev;
252 
253 	/* MAC supports only 100Mbps|1000Mbps full duplex
254 	 * SPE (Single Pair Ethernet) is also an option but not implemented yet
255 	 */
256 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
257 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
258 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
259 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
260 
261 	/* disable EEE autoneg, EEE not supported by TSNEP */
262 	memset(&ethtool_keee, 0, sizeof(ethtool_keee));
263 	phy_ethtool_set_eee(adapter->phydev, &ethtool_keee);
264 
265 	adapter->phydev->irq = PHY_MAC_INTERRUPT;
266 	phy_start(adapter->phydev);
267 
268 	return 0;
269 }
270 
271 static void tsnep_phy_close(struct tsnep_adapter *adapter)
272 {
273 	phy_stop(adapter->netdev->phydev);
274 	phy_disconnect(adapter->netdev->phydev);
275 }
276 
277 static void tsnep_tx_ring_cleanup(struct tsnep_tx *tx)
278 {
279 	struct device *dmadev = tx->adapter->dmadev;
280 	int i;
281 
282 	memset(tx->entry, 0, sizeof(tx->entry));
283 
284 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
285 		if (tx->page[i]) {
286 			dma_free_coherent(dmadev, PAGE_SIZE, tx->page[i],
287 					  tx->page_dma[i]);
288 			tx->page[i] = NULL;
289 			tx->page_dma[i] = 0;
290 		}
291 	}
292 }
293 
294 static int tsnep_tx_ring_create(struct tsnep_tx *tx)
295 {
296 	struct device *dmadev = tx->adapter->dmadev;
297 	struct tsnep_tx_entry *entry;
298 	struct tsnep_tx_entry *next_entry;
299 	int i, j;
300 	int retval;
301 
302 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
303 		tx->page[i] =
304 			dma_alloc_coherent(dmadev, PAGE_SIZE, &tx->page_dma[i],
305 					   GFP_KERNEL);
306 		if (!tx->page[i]) {
307 			retval = -ENOMEM;
308 			goto alloc_failed;
309 		}
310 		for (j = 0; j < TSNEP_RING_ENTRIES_PER_PAGE; j++) {
311 			entry = &tx->entry[TSNEP_RING_ENTRIES_PER_PAGE * i + j];
312 			entry->desc_wb = (struct tsnep_tx_desc_wb *)
313 				(((u8 *)tx->page[i]) + TSNEP_DESC_SIZE * j);
314 			entry->desc = (struct tsnep_tx_desc *)
315 				(((u8 *)entry->desc_wb) + TSNEP_DESC_OFFSET);
316 			entry->desc_dma = tx->page_dma[i] + TSNEP_DESC_SIZE * j;
317 			entry->owner_user_flag = false;
318 		}
319 	}
320 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
321 		entry = &tx->entry[i];
322 		next_entry = &tx->entry[(i + 1) & TSNEP_RING_MASK];
323 		entry->desc->next = __cpu_to_le64(next_entry->desc_dma);
324 	}
325 
326 	return 0;
327 
328 alloc_failed:
329 	tsnep_tx_ring_cleanup(tx);
330 	return retval;
331 }
332 
333 static void tsnep_tx_init(struct tsnep_tx *tx)
334 {
335 	dma_addr_t dma;
336 
337 	dma = tx->entry[0].desc_dma | TSNEP_RESET_OWNER_COUNTER;
338 	iowrite32(DMA_ADDR_LOW(dma), tx->addr + TSNEP_TX_DESC_ADDR_LOW);
339 	iowrite32(DMA_ADDR_HIGH(dma), tx->addr + TSNEP_TX_DESC_ADDR_HIGH);
340 	tx->write = 0;
341 	tx->read = 0;
342 	tx->owner_counter = 1;
343 	tx->increment_owner_counter = TSNEP_RING_SIZE - 1;
344 }
345 
346 static void tsnep_tx_enable(struct tsnep_tx *tx)
347 {
348 	struct netdev_queue *nq;
349 
350 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
351 
352 	__netif_tx_lock_bh(nq);
353 	netif_tx_wake_queue(nq);
354 	__netif_tx_unlock_bh(nq);
355 }
356 
357 static void tsnep_tx_disable(struct tsnep_tx *tx, struct napi_struct *napi)
358 {
359 	struct netdev_queue *nq;
360 	u32 val;
361 
362 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
363 
364 	__netif_tx_lock_bh(nq);
365 	netif_tx_stop_queue(nq);
366 	__netif_tx_unlock_bh(nq);
367 
368 	/* wait until TX is done in hardware */
369 	readx_poll_timeout(ioread32, tx->addr + TSNEP_CONTROL, val,
370 			   ((val & TSNEP_CONTROL_TX_ENABLE) == 0), 10000,
371 			   1000000);
372 
373 	/* wait until TX is also done in software */
374 	while (READ_ONCE(tx->read) != tx->write) {
375 		napi_schedule(napi);
376 		napi_synchronize(napi);
377 	}
378 }
379 
380 static void tsnep_tx_activate(struct tsnep_tx *tx, int index, int length,
381 			      bool last)
382 {
383 	struct tsnep_tx_entry *entry = &tx->entry[index];
384 
385 	entry->properties = 0;
386 	/* xdpf and zc are union with skb */
387 	if (entry->skb) {
388 		entry->properties = length & TSNEP_DESC_LENGTH_MASK;
389 		entry->properties |= TSNEP_DESC_INTERRUPT_FLAG;
390 		if ((entry->type & TSNEP_TX_TYPE_SKB) &&
391 		    (skb_shinfo(entry->skb)->tx_flags & SKBTX_IN_PROGRESS))
392 			entry->properties |= TSNEP_DESC_EXTENDED_WRITEBACK_FLAG;
393 
394 		/* toggle user flag to prevent false acknowledge
395 		 *
396 		 * Only the first fragment is acknowledged. For all other
397 		 * fragments no acknowledge is done and the last written owner
398 		 * counter stays in the writeback descriptor. Therefore, it is
399 		 * possible that the last written owner counter is identical to
400 		 * the new incremented owner counter and a false acknowledge is
401 		 * detected before the real acknowledge has been done by
402 		 * hardware.
403 		 *
404 		 * The user flag is used to prevent this situation. The user
405 		 * flag is copied to the writeback descriptor by the hardware
406 		 * and is used as additional acknowledge data. By toggeling the
407 		 * user flag only for the first fragment (which is
408 		 * acknowledged), it is guaranteed that the last acknowledge
409 		 * done for this descriptor has used a different user flag and
410 		 * cannot be detected as false acknowledge.
411 		 */
412 		entry->owner_user_flag = !entry->owner_user_flag;
413 	}
414 	if (last)
415 		entry->properties |= TSNEP_TX_DESC_LAST_FRAGMENT_FLAG;
416 	if (index == tx->increment_owner_counter) {
417 		tx->owner_counter++;
418 		if (tx->owner_counter == 4)
419 			tx->owner_counter = 1;
420 		tx->increment_owner_counter--;
421 		if (tx->increment_owner_counter < 0)
422 			tx->increment_owner_counter = TSNEP_RING_SIZE - 1;
423 	}
424 	entry->properties |=
425 		(tx->owner_counter << TSNEP_DESC_OWNER_COUNTER_SHIFT) &
426 		TSNEP_DESC_OWNER_COUNTER_MASK;
427 	if (entry->owner_user_flag)
428 		entry->properties |= TSNEP_TX_DESC_OWNER_USER_FLAG;
429 	entry->desc->more_properties =
430 		__cpu_to_le32(entry->len & TSNEP_DESC_LENGTH_MASK);
431 	if (entry->type & TSNEP_TX_TYPE_INLINE)
432 		entry->properties |= TSNEP_TX_DESC_DATA_AFTER_DESC_FLAG;
433 
434 	/* descriptor properties shall be written last, because valid data is
435 	 * signaled there
436 	 */
437 	dma_wmb();
438 
439 	entry->desc->properties = __cpu_to_le32(entry->properties);
440 }
441 
442 static int tsnep_tx_desc_available(struct tsnep_tx *tx)
443 {
444 	if (tx->read <= tx->write)
445 		return TSNEP_RING_SIZE - tx->write + tx->read - 1;
446 	else
447 		return tx->read - tx->write - 1;
448 }
449 
450 static int tsnep_tx_map_frag(skb_frag_t *frag, struct tsnep_tx_entry *entry,
451 			     struct device *dmadev, dma_addr_t *dma)
452 {
453 	unsigned int len;
454 	int mapped;
455 
456 	len = skb_frag_size(frag);
457 	if (likely(len > TSNEP_DESC_SIZE_DATA_AFTER_INLINE)) {
458 		*dma = skb_frag_dma_map(dmadev, frag, 0, len, DMA_TO_DEVICE);
459 		if (dma_mapping_error(dmadev, *dma))
460 			return -ENOMEM;
461 		entry->type = TSNEP_TX_TYPE_SKB_FRAG_MAP_PAGE;
462 		mapped = 1;
463 	} else {
464 		void *fragdata = skb_frag_address_safe(frag);
465 
466 		if (likely(fragdata)) {
467 			memcpy(&entry->desc->tx, fragdata, len);
468 		} else {
469 			struct page *page = skb_frag_page(frag);
470 
471 			fragdata = kmap_local_page(page);
472 			memcpy(&entry->desc->tx, fragdata + skb_frag_off(frag),
473 			       len);
474 			kunmap_local(fragdata);
475 		}
476 		entry->type = TSNEP_TX_TYPE_SKB_FRAG_INLINE;
477 		mapped = 0;
478 	}
479 
480 	return mapped;
481 }
482 
483 static int tsnep_tx_map(struct sk_buff *skb, struct tsnep_tx *tx, int count)
484 {
485 	struct device *dmadev = tx->adapter->dmadev;
486 	struct tsnep_tx_entry *entry;
487 	unsigned int len;
488 	int map_len = 0;
489 	dma_addr_t dma;
490 	int i, mapped;
491 
492 	for (i = 0; i < count; i++) {
493 		entry = &tx->entry[(tx->write + i) & TSNEP_RING_MASK];
494 
495 		if (!i) {
496 			len = skb_headlen(skb);
497 			if (likely(len > TSNEP_DESC_SIZE_DATA_AFTER_INLINE)) {
498 				dma = dma_map_single(dmadev, skb->data, len,
499 						     DMA_TO_DEVICE);
500 				if (dma_mapping_error(dmadev, dma))
501 					return -ENOMEM;
502 				entry->type = TSNEP_TX_TYPE_SKB_MAP;
503 				mapped = 1;
504 			} else {
505 				memcpy(&entry->desc->tx, skb->data, len);
506 				entry->type = TSNEP_TX_TYPE_SKB_INLINE;
507 				mapped = 0;
508 			}
509 		} else {
510 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
511 
512 			len = skb_frag_size(frag);
513 			mapped = tsnep_tx_map_frag(frag, entry, dmadev, &dma);
514 			if (mapped < 0)
515 				return mapped;
516 		}
517 
518 		entry->len = len;
519 		if (likely(mapped)) {
520 			dma_unmap_addr_set(entry, dma, dma);
521 			entry->desc->tx = __cpu_to_le64(dma);
522 		}
523 
524 		map_len += len;
525 	}
526 
527 	return map_len;
528 }
529 
530 static int tsnep_tx_unmap(struct tsnep_tx *tx, int index, int count)
531 {
532 	struct device *dmadev = tx->adapter->dmadev;
533 	struct tsnep_tx_entry *entry;
534 	int map_len = 0;
535 	int i;
536 
537 	for (i = 0; i < count; i++) {
538 		entry = &tx->entry[(index + i) & TSNEP_RING_MASK];
539 
540 		if (entry->len) {
541 			if (entry->type & TSNEP_TX_TYPE_MAP)
542 				dma_unmap_single(dmadev,
543 						 dma_unmap_addr(entry, dma),
544 						 dma_unmap_len(entry, len),
545 						 DMA_TO_DEVICE);
546 			else if (entry->type & TSNEP_TX_TYPE_MAP_PAGE)
547 				dma_unmap_page(dmadev,
548 					       dma_unmap_addr(entry, dma),
549 					       dma_unmap_len(entry, len),
550 					       DMA_TO_DEVICE);
551 			map_len += entry->len;
552 			entry->len = 0;
553 		}
554 	}
555 
556 	return map_len;
557 }
558 
559 static netdev_tx_t tsnep_xmit_frame_ring(struct sk_buff *skb,
560 					 struct tsnep_tx *tx)
561 {
562 	int count = 1;
563 	struct tsnep_tx_entry *entry;
564 	int length;
565 	int i;
566 	int retval;
567 
568 	if (skb_shinfo(skb)->nr_frags > 0)
569 		count += skb_shinfo(skb)->nr_frags;
570 
571 	if (tsnep_tx_desc_available(tx) < count) {
572 		/* ring full, shall not happen because queue is stopped if full
573 		 * below
574 		 */
575 		netif_stop_subqueue(tx->adapter->netdev, tx->queue_index);
576 
577 		return NETDEV_TX_BUSY;
578 	}
579 
580 	entry = &tx->entry[tx->write];
581 	entry->skb = skb;
582 
583 	retval = tsnep_tx_map(skb, tx, count);
584 	if (retval < 0) {
585 		tsnep_tx_unmap(tx, tx->write, count);
586 		dev_kfree_skb_any(entry->skb);
587 		entry->skb = NULL;
588 
589 		tx->dropped++;
590 
591 		return NETDEV_TX_OK;
592 	}
593 	length = retval;
594 
595 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)
596 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
597 
598 	for (i = 0; i < count; i++)
599 		tsnep_tx_activate(tx, (tx->write + i) & TSNEP_RING_MASK, length,
600 				  i == count - 1);
601 	tx->write = (tx->write + count) & TSNEP_RING_MASK;
602 
603 	skb_tx_timestamp(skb);
604 
605 	/* descriptor properties shall be valid before hardware is notified */
606 	dma_wmb();
607 
608 	iowrite32(TSNEP_CONTROL_TX_ENABLE, tx->addr + TSNEP_CONTROL);
609 
610 	if (tsnep_tx_desc_available(tx) < (MAX_SKB_FRAGS + 1)) {
611 		/* ring can get full with next frame */
612 		netif_stop_subqueue(tx->adapter->netdev, tx->queue_index);
613 	}
614 
615 	return NETDEV_TX_OK;
616 }
617 
618 static int tsnep_xdp_tx_map(struct xdp_frame *xdpf, struct tsnep_tx *tx,
619 			    struct skb_shared_info *shinfo, int count, u32 type)
620 {
621 	struct device *dmadev = tx->adapter->dmadev;
622 	struct tsnep_tx_entry *entry;
623 	struct page *page;
624 	skb_frag_t *frag;
625 	unsigned int len;
626 	int map_len = 0;
627 	dma_addr_t dma;
628 	void *data;
629 	int i;
630 
631 	frag = NULL;
632 	len = xdpf->len;
633 	for (i = 0; i < count; i++) {
634 		entry = &tx->entry[(tx->write + i) & TSNEP_RING_MASK];
635 		if (type & TSNEP_TX_TYPE_XDP_NDO) {
636 			data = unlikely(frag) ? skb_frag_address(frag) :
637 						xdpf->data;
638 			dma = dma_map_single(dmadev, data, len, DMA_TO_DEVICE);
639 			if (dma_mapping_error(dmadev, dma))
640 				return -ENOMEM;
641 
642 			entry->type = TSNEP_TX_TYPE_XDP_NDO_MAP_PAGE;
643 		} else {
644 			page = unlikely(frag) ? skb_frag_page(frag) :
645 						virt_to_page(xdpf->data);
646 			dma = page_pool_get_dma_addr(page);
647 			if (unlikely(frag))
648 				dma += skb_frag_off(frag);
649 			else
650 				dma += sizeof(*xdpf) + xdpf->headroom;
651 			dma_sync_single_for_device(dmadev, dma, len,
652 						   DMA_BIDIRECTIONAL);
653 
654 			entry->type = TSNEP_TX_TYPE_XDP_TX;
655 		}
656 
657 		entry->len = len;
658 		dma_unmap_addr_set(entry, dma, dma);
659 
660 		entry->desc->tx = __cpu_to_le64(dma);
661 
662 		map_len += len;
663 
664 		if (i + 1 < count) {
665 			frag = &shinfo->frags[i];
666 			len = skb_frag_size(frag);
667 		}
668 	}
669 
670 	return map_len;
671 }
672 
673 /* This function requires __netif_tx_lock is held by the caller. */
674 static bool tsnep_xdp_xmit_frame_ring(struct xdp_frame *xdpf,
675 				      struct tsnep_tx *tx, u32 type)
676 {
677 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_frame(xdpf);
678 	struct tsnep_tx_entry *entry;
679 	int count, length, retval, i;
680 
681 	count = 1;
682 	if (unlikely(xdp_frame_has_frags(xdpf)))
683 		count += shinfo->nr_frags;
684 
685 	/* ensure that TX ring is not filled up by XDP, always MAX_SKB_FRAGS
686 	 * will be available for normal TX path and queue is stopped there if
687 	 * necessary
688 	 */
689 	if (tsnep_tx_desc_available(tx) < (MAX_SKB_FRAGS + 1 + count))
690 		return false;
691 
692 	entry = &tx->entry[tx->write];
693 	entry->xdpf = xdpf;
694 
695 	retval = tsnep_xdp_tx_map(xdpf, tx, shinfo, count, type);
696 	if (retval < 0) {
697 		tsnep_tx_unmap(tx, tx->write, count);
698 		entry->xdpf = NULL;
699 
700 		tx->dropped++;
701 
702 		return false;
703 	}
704 	length = retval;
705 
706 	for (i = 0; i < count; i++)
707 		tsnep_tx_activate(tx, (tx->write + i) & TSNEP_RING_MASK, length,
708 				  i == count - 1);
709 	tx->write = (tx->write + count) & TSNEP_RING_MASK;
710 
711 	/* descriptor properties shall be valid before hardware is notified */
712 	dma_wmb();
713 
714 	return true;
715 }
716 
717 static void tsnep_xdp_xmit_flush(struct tsnep_tx *tx)
718 {
719 	iowrite32(TSNEP_CONTROL_TX_ENABLE, tx->addr + TSNEP_CONTROL);
720 }
721 
722 static bool tsnep_xdp_xmit_back(struct tsnep_adapter *adapter,
723 				struct xdp_buff *xdp,
724 				struct netdev_queue *tx_nq, struct tsnep_tx *tx)
725 {
726 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
727 	bool xmit;
728 
729 	if (unlikely(!xdpf))
730 		return false;
731 
732 	__netif_tx_lock(tx_nq, smp_processor_id());
733 
734 	xmit = tsnep_xdp_xmit_frame_ring(xdpf, tx, TSNEP_TX_TYPE_XDP_TX);
735 
736 	/* Avoid transmit queue timeout since we share it with the slow path */
737 	if (xmit)
738 		txq_trans_cond_update(tx_nq);
739 
740 	__netif_tx_unlock(tx_nq);
741 
742 	return xmit;
743 }
744 
745 static int tsnep_xdp_tx_map_zc(struct xdp_desc *xdpd, struct tsnep_tx *tx)
746 {
747 	struct tsnep_tx_entry *entry;
748 	dma_addr_t dma;
749 
750 	entry = &tx->entry[tx->write];
751 	entry->zc = true;
752 
753 	dma = xsk_buff_raw_get_dma(tx->xsk_pool, xdpd->addr);
754 	xsk_buff_raw_dma_sync_for_device(tx->xsk_pool, dma, xdpd->len);
755 
756 	entry->type = TSNEP_TX_TYPE_XSK;
757 	entry->len = xdpd->len;
758 
759 	entry->desc->tx = __cpu_to_le64(dma);
760 
761 	return xdpd->len;
762 }
763 
764 static void tsnep_xdp_xmit_frame_ring_zc(struct xdp_desc *xdpd,
765 					 struct tsnep_tx *tx)
766 {
767 	int length;
768 
769 	length = tsnep_xdp_tx_map_zc(xdpd, tx);
770 
771 	tsnep_tx_activate(tx, tx->write, length, true);
772 	tx->write = (tx->write + 1) & TSNEP_RING_MASK;
773 }
774 
775 static void tsnep_xdp_xmit_zc(struct tsnep_tx *tx)
776 {
777 	int desc_available = tsnep_tx_desc_available(tx);
778 	struct xdp_desc *descs = tx->xsk_pool->tx_descs;
779 	int batch, i;
780 
781 	/* ensure that TX ring is not filled up by XDP, always MAX_SKB_FRAGS
782 	 * will be available for normal TX path and queue is stopped there if
783 	 * necessary
784 	 */
785 	if (desc_available <= (MAX_SKB_FRAGS + 1))
786 		return;
787 	desc_available -= MAX_SKB_FRAGS + 1;
788 
789 	batch = xsk_tx_peek_release_desc_batch(tx->xsk_pool, desc_available);
790 	for (i = 0; i < batch; i++)
791 		tsnep_xdp_xmit_frame_ring_zc(&descs[i], tx);
792 
793 	if (batch) {
794 		/* descriptor properties shall be valid before hardware is
795 		 * notified
796 		 */
797 		dma_wmb();
798 
799 		tsnep_xdp_xmit_flush(tx);
800 	}
801 }
802 
803 static bool tsnep_tx_poll(struct tsnep_tx *tx, int napi_budget)
804 {
805 	struct tsnep_tx_entry *entry;
806 	struct netdev_queue *nq;
807 	int xsk_frames = 0;
808 	int budget = 128;
809 	int length;
810 	int count;
811 
812 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
813 	__netif_tx_lock(nq, smp_processor_id());
814 
815 	do {
816 		if (tx->read == tx->write)
817 			break;
818 
819 		entry = &tx->entry[tx->read];
820 		if ((__le32_to_cpu(entry->desc_wb->properties) &
821 		     TSNEP_TX_DESC_OWNER_MASK) !=
822 		    (entry->properties & TSNEP_TX_DESC_OWNER_MASK))
823 			break;
824 
825 		/* descriptor properties shall be read first, because valid data
826 		 * is signaled there
827 		 */
828 		dma_rmb();
829 
830 		count = 1;
831 		if ((entry->type & TSNEP_TX_TYPE_SKB) &&
832 		    skb_shinfo(entry->skb)->nr_frags > 0)
833 			count += skb_shinfo(entry->skb)->nr_frags;
834 		else if ((entry->type & TSNEP_TX_TYPE_XDP) &&
835 			 xdp_frame_has_frags(entry->xdpf))
836 			count += xdp_get_shared_info_from_frame(entry->xdpf)->nr_frags;
837 
838 		length = tsnep_tx_unmap(tx, tx->read, count);
839 
840 		if ((entry->type & TSNEP_TX_TYPE_SKB) &&
841 		    (skb_shinfo(entry->skb)->tx_flags & SKBTX_IN_PROGRESS) &&
842 		    (__le32_to_cpu(entry->desc_wb->properties) &
843 		     TSNEP_DESC_EXTENDED_WRITEBACK_FLAG)) {
844 			struct skb_shared_hwtstamps hwtstamps;
845 			u64 timestamp;
846 
847 			if (skb_shinfo(entry->skb)->tx_flags &
848 			    SKBTX_HW_TSTAMP_USE_CYCLES)
849 				timestamp =
850 					__le64_to_cpu(entry->desc_wb->counter);
851 			else
852 				timestamp =
853 					__le64_to_cpu(entry->desc_wb->timestamp);
854 
855 			memset(&hwtstamps, 0, sizeof(hwtstamps));
856 			hwtstamps.hwtstamp = ns_to_ktime(timestamp);
857 
858 			skb_tstamp_tx(entry->skb, &hwtstamps);
859 		}
860 
861 		if (entry->type & TSNEP_TX_TYPE_SKB)
862 			napi_consume_skb(entry->skb, napi_budget);
863 		else if (entry->type & TSNEP_TX_TYPE_XDP)
864 			xdp_return_frame_rx_napi(entry->xdpf);
865 		else
866 			xsk_frames++;
867 		/* xdpf and zc are union with skb */
868 		entry->skb = NULL;
869 
870 		tx->read = (tx->read + count) & TSNEP_RING_MASK;
871 
872 		tx->packets++;
873 		tx->bytes += length + ETH_FCS_LEN;
874 
875 		budget--;
876 	} while (likely(budget));
877 
878 	if (tx->xsk_pool) {
879 		if (xsk_frames)
880 			xsk_tx_completed(tx->xsk_pool, xsk_frames);
881 		if (xsk_uses_need_wakeup(tx->xsk_pool))
882 			xsk_set_tx_need_wakeup(tx->xsk_pool);
883 		tsnep_xdp_xmit_zc(tx);
884 	}
885 
886 	if ((tsnep_tx_desc_available(tx) >= ((MAX_SKB_FRAGS + 1) * 2)) &&
887 	    netif_tx_queue_stopped(nq)) {
888 		netif_tx_wake_queue(nq);
889 	}
890 
891 	__netif_tx_unlock(nq);
892 
893 	return budget != 0;
894 }
895 
896 static bool tsnep_tx_pending(struct tsnep_tx *tx)
897 {
898 	struct tsnep_tx_entry *entry;
899 	struct netdev_queue *nq;
900 	bool pending = false;
901 
902 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
903 	__netif_tx_lock(nq, smp_processor_id());
904 
905 	if (tx->read != tx->write) {
906 		entry = &tx->entry[tx->read];
907 		if ((__le32_to_cpu(entry->desc_wb->properties) &
908 		     TSNEP_TX_DESC_OWNER_MASK) ==
909 		    (entry->properties & TSNEP_TX_DESC_OWNER_MASK))
910 			pending = true;
911 	}
912 
913 	__netif_tx_unlock(nq);
914 
915 	return pending;
916 }
917 
918 static int tsnep_tx_open(struct tsnep_tx *tx)
919 {
920 	int retval;
921 
922 	retval = tsnep_tx_ring_create(tx);
923 	if (retval)
924 		return retval;
925 
926 	tsnep_tx_init(tx);
927 
928 	return 0;
929 }
930 
931 static void tsnep_tx_close(struct tsnep_tx *tx)
932 {
933 	tsnep_tx_ring_cleanup(tx);
934 }
935 
936 static void tsnep_rx_ring_cleanup(struct tsnep_rx *rx)
937 {
938 	struct device *dmadev = rx->adapter->dmadev;
939 	struct tsnep_rx_entry *entry;
940 	int i;
941 
942 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
943 		entry = &rx->entry[i];
944 		if (!rx->xsk_pool && entry->page)
945 			page_pool_put_full_page(rx->page_pool, entry->page,
946 						false);
947 		if (rx->xsk_pool && entry->xdp)
948 			xsk_buff_free(entry->xdp);
949 		/* xdp is union with page */
950 		entry->page = NULL;
951 	}
952 
953 	if (rx->page_pool)
954 		page_pool_destroy(rx->page_pool);
955 
956 	memset(rx->entry, 0, sizeof(rx->entry));
957 
958 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
959 		if (rx->page[i]) {
960 			dma_free_coherent(dmadev, PAGE_SIZE, rx->page[i],
961 					  rx->page_dma[i]);
962 			rx->page[i] = NULL;
963 			rx->page_dma[i] = 0;
964 		}
965 	}
966 }
967 
968 static int tsnep_rx_ring_create(struct tsnep_rx *rx)
969 {
970 	struct device *dmadev = rx->adapter->dmadev;
971 	struct tsnep_rx_entry *entry;
972 	struct page_pool_params pp_params = { 0 };
973 	struct tsnep_rx_entry *next_entry;
974 	int i, j;
975 	int retval;
976 
977 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
978 		rx->page[i] =
979 			dma_alloc_coherent(dmadev, PAGE_SIZE, &rx->page_dma[i],
980 					   GFP_KERNEL);
981 		if (!rx->page[i]) {
982 			retval = -ENOMEM;
983 			goto failed;
984 		}
985 		for (j = 0; j < TSNEP_RING_ENTRIES_PER_PAGE; j++) {
986 			entry = &rx->entry[TSNEP_RING_ENTRIES_PER_PAGE * i + j];
987 			entry->desc_wb = (struct tsnep_rx_desc_wb *)
988 				(((u8 *)rx->page[i]) + TSNEP_DESC_SIZE * j);
989 			entry->desc = (struct tsnep_rx_desc *)
990 				(((u8 *)entry->desc_wb) + TSNEP_DESC_OFFSET);
991 			entry->desc_dma = rx->page_dma[i] + TSNEP_DESC_SIZE * j;
992 		}
993 	}
994 
995 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
996 	pp_params.order = 0;
997 	pp_params.pool_size = TSNEP_RING_SIZE;
998 	pp_params.nid = dev_to_node(dmadev);
999 	pp_params.dev = dmadev;
1000 	pp_params.dma_dir = DMA_BIDIRECTIONAL;
1001 	pp_params.max_len = TSNEP_MAX_RX_BUF_SIZE;
1002 	pp_params.offset = TSNEP_RX_OFFSET;
1003 	rx->page_pool = page_pool_create(&pp_params);
1004 	if (IS_ERR(rx->page_pool)) {
1005 		retval = PTR_ERR(rx->page_pool);
1006 		rx->page_pool = NULL;
1007 		goto failed;
1008 	}
1009 
1010 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
1011 		entry = &rx->entry[i];
1012 		next_entry = &rx->entry[(i + 1) & TSNEP_RING_MASK];
1013 		entry->desc->next = __cpu_to_le64(next_entry->desc_dma);
1014 	}
1015 
1016 	return 0;
1017 
1018 failed:
1019 	tsnep_rx_ring_cleanup(rx);
1020 	return retval;
1021 }
1022 
1023 static void tsnep_rx_init(struct tsnep_rx *rx)
1024 {
1025 	dma_addr_t dma;
1026 
1027 	dma = rx->entry[0].desc_dma | TSNEP_RESET_OWNER_COUNTER;
1028 	iowrite32(DMA_ADDR_LOW(dma), rx->addr + TSNEP_RX_DESC_ADDR_LOW);
1029 	iowrite32(DMA_ADDR_HIGH(dma), rx->addr + TSNEP_RX_DESC_ADDR_HIGH);
1030 	rx->write = 0;
1031 	rx->read = 0;
1032 	rx->owner_counter = 1;
1033 	rx->increment_owner_counter = TSNEP_RING_SIZE - 1;
1034 }
1035 
1036 static void tsnep_rx_enable(struct tsnep_rx *rx)
1037 {
1038 	/* descriptor properties shall be valid before hardware is notified */
1039 	dma_wmb();
1040 
1041 	iowrite32(TSNEP_CONTROL_RX_ENABLE, rx->addr + TSNEP_CONTROL);
1042 }
1043 
1044 static void tsnep_rx_disable(struct tsnep_rx *rx)
1045 {
1046 	u32 val;
1047 
1048 	iowrite32(TSNEP_CONTROL_RX_DISABLE, rx->addr + TSNEP_CONTROL);
1049 	readx_poll_timeout(ioread32, rx->addr + TSNEP_CONTROL, val,
1050 			   ((val & TSNEP_CONTROL_RX_ENABLE) == 0), 10000,
1051 			   1000000);
1052 }
1053 
1054 static int tsnep_rx_desc_available(struct tsnep_rx *rx)
1055 {
1056 	if (rx->read <= rx->write)
1057 		return TSNEP_RING_SIZE - rx->write + rx->read - 1;
1058 	else
1059 		return rx->read - rx->write - 1;
1060 }
1061 
1062 static void tsnep_rx_free_page_buffer(struct tsnep_rx *rx)
1063 {
1064 	struct page **page;
1065 
1066 	/* last entry of page_buffer is always zero, because ring cannot be
1067 	 * filled completely
1068 	 */
1069 	page = rx->page_buffer;
1070 	while (*page) {
1071 		page_pool_put_full_page(rx->page_pool, *page, false);
1072 		*page = NULL;
1073 		page++;
1074 	}
1075 }
1076 
1077 static int tsnep_rx_alloc_page_buffer(struct tsnep_rx *rx)
1078 {
1079 	int i;
1080 
1081 	/* alloc for all ring entries except the last one, because ring cannot
1082 	 * be filled completely
1083 	 */
1084 	for (i = 0; i < TSNEP_RING_SIZE - 1; i++) {
1085 		rx->page_buffer[i] = page_pool_dev_alloc_pages(rx->page_pool);
1086 		if (!rx->page_buffer[i]) {
1087 			tsnep_rx_free_page_buffer(rx);
1088 
1089 			return -ENOMEM;
1090 		}
1091 	}
1092 
1093 	return 0;
1094 }
1095 
1096 static void tsnep_rx_set_page(struct tsnep_rx *rx, struct tsnep_rx_entry *entry,
1097 			      struct page *page)
1098 {
1099 	entry->page = page;
1100 	entry->len = TSNEP_MAX_RX_BUF_SIZE;
1101 	entry->dma = page_pool_get_dma_addr(entry->page);
1102 	entry->desc->rx = __cpu_to_le64(entry->dma + TSNEP_RX_OFFSET);
1103 }
1104 
1105 static int tsnep_rx_alloc_buffer(struct tsnep_rx *rx, int index)
1106 {
1107 	struct tsnep_rx_entry *entry = &rx->entry[index];
1108 	struct page *page;
1109 
1110 	page = page_pool_dev_alloc_pages(rx->page_pool);
1111 	if (unlikely(!page))
1112 		return -ENOMEM;
1113 	tsnep_rx_set_page(rx, entry, page);
1114 
1115 	return 0;
1116 }
1117 
1118 static void tsnep_rx_reuse_buffer(struct tsnep_rx *rx, int index)
1119 {
1120 	struct tsnep_rx_entry *entry = &rx->entry[index];
1121 	struct tsnep_rx_entry *read = &rx->entry[rx->read];
1122 
1123 	tsnep_rx_set_page(rx, entry, read->page);
1124 	read->page = NULL;
1125 }
1126 
1127 static void tsnep_rx_activate(struct tsnep_rx *rx, int index)
1128 {
1129 	struct tsnep_rx_entry *entry = &rx->entry[index];
1130 
1131 	/* TSNEP_MAX_RX_BUF_SIZE and TSNEP_XSK_RX_BUF_SIZE are multiple of 4 */
1132 	entry->properties = entry->len & TSNEP_DESC_LENGTH_MASK;
1133 	entry->properties |= TSNEP_DESC_INTERRUPT_FLAG;
1134 	if (index == rx->increment_owner_counter) {
1135 		rx->owner_counter++;
1136 		if (rx->owner_counter == 4)
1137 			rx->owner_counter = 1;
1138 		rx->increment_owner_counter--;
1139 		if (rx->increment_owner_counter < 0)
1140 			rx->increment_owner_counter = TSNEP_RING_SIZE - 1;
1141 	}
1142 	entry->properties |=
1143 		(rx->owner_counter << TSNEP_DESC_OWNER_COUNTER_SHIFT) &
1144 		TSNEP_DESC_OWNER_COUNTER_MASK;
1145 
1146 	/* descriptor properties shall be written last, because valid data is
1147 	 * signaled there
1148 	 */
1149 	dma_wmb();
1150 
1151 	entry->desc->properties = __cpu_to_le32(entry->properties);
1152 }
1153 
1154 static int tsnep_rx_alloc(struct tsnep_rx *rx, int count, bool reuse)
1155 {
1156 	bool alloc_failed = false;
1157 	int i, index;
1158 
1159 	for (i = 0; i < count && !alloc_failed; i++) {
1160 		index = (rx->write + i) & TSNEP_RING_MASK;
1161 
1162 		if (unlikely(tsnep_rx_alloc_buffer(rx, index))) {
1163 			rx->alloc_failed++;
1164 			alloc_failed = true;
1165 
1166 			/* reuse only if no other allocation was successful */
1167 			if (i == 0 && reuse)
1168 				tsnep_rx_reuse_buffer(rx, index);
1169 			else
1170 				break;
1171 		}
1172 
1173 		tsnep_rx_activate(rx, index);
1174 	}
1175 
1176 	if (i)
1177 		rx->write = (rx->write + i) & TSNEP_RING_MASK;
1178 
1179 	return i;
1180 }
1181 
1182 static int tsnep_rx_refill(struct tsnep_rx *rx, int count, bool reuse)
1183 {
1184 	int desc_refilled;
1185 
1186 	desc_refilled = tsnep_rx_alloc(rx, count, reuse);
1187 	if (desc_refilled)
1188 		tsnep_rx_enable(rx);
1189 
1190 	return desc_refilled;
1191 }
1192 
1193 static void tsnep_rx_set_xdp(struct tsnep_rx *rx, struct tsnep_rx_entry *entry,
1194 			     struct xdp_buff *xdp)
1195 {
1196 	entry->xdp = xdp;
1197 	entry->len = TSNEP_XSK_RX_BUF_SIZE;
1198 	entry->dma = xsk_buff_xdp_get_dma(entry->xdp);
1199 	entry->desc->rx = __cpu_to_le64(entry->dma);
1200 }
1201 
1202 static void tsnep_rx_reuse_buffer_zc(struct tsnep_rx *rx, int index)
1203 {
1204 	struct tsnep_rx_entry *entry = &rx->entry[index];
1205 	struct tsnep_rx_entry *read = &rx->entry[rx->read];
1206 
1207 	tsnep_rx_set_xdp(rx, entry, read->xdp);
1208 	read->xdp = NULL;
1209 }
1210 
1211 static int tsnep_rx_alloc_zc(struct tsnep_rx *rx, int count, bool reuse)
1212 {
1213 	u32 allocated;
1214 	int i;
1215 
1216 	allocated = xsk_buff_alloc_batch(rx->xsk_pool, rx->xdp_batch, count);
1217 	for (i = 0; i < allocated; i++) {
1218 		int index = (rx->write + i) & TSNEP_RING_MASK;
1219 		struct tsnep_rx_entry *entry = &rx->entry[index];
1220 
1221 		tsnep_rx_set_xdp(rx, entry, rx->xdp_batch[i]);
1222 		tsnep_rx_activate(rx, index);
1223 	}
1224 	if (i == 0) {
1225 		rx->alloc_failed++;
1226 
1227 		if (reuse) {
1228 			tsnep_rx_reuse_buffer_zc(rx, rx->write);
1229 			tsnep_rx_activate(rx, rx->write);
1230 		}
1231 	}
1232 
1233 	if (i)
1234 		rx->write = (rx->write + i) & TSNEP_RING_MASK;
1235 
1236 	return i;
1237 }
1238 
1239 static void tsnep_rx_free_zc(struct tsnep_rx *rx)
1240 {
1241 	int i;
1242 
1243 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
1244 		struct tsnep_rx_entry *entry = &rx->entry[i];
1245 
1246 		if (entry->xdp)
1247 			xsk_buff_free(entry->xdp);
1248 		entry->xdp = NULL;
1249 	}
1250 }
1251 
1252 static int tsnep_rx_refill_zc(struct tsnep_rx *rx, int count, bool reuse)
1253 {
1254 	int desc_refilled;
1255 
1256 	desc_refilled = tsnep_rx_alloc_zc(rx, count, reuse);
1257 	if (desc_refilled)
1258 		tsnep_rx_enable(rx);
1259 
1260 	return desc_refilled;
1261 }
1262 
1263 static void tsnep_xsk_rx_need_wakeup(struct tsnep_rx *rx, int desc_available)
1264 {
1265 	if (desc_available)
1266 		xsk_set_rx_need_wakeup(rx->xsk_pool);
1267 	else
1268 		xsk_clear_rx_need_wakeup(rx->xsk_pool);
1269 }
1270 
1271 static bool tsnep_xdp_run_prog(struct tsnep_rx *rx, struct bpf_prog *prog,
1272 			       struct xdp_buff *xdp, int *status,
1273 			       struct netdev_queue *tx_nq, struct tsnep_tx *tx)
1274 {
1275 	unsigned int length;
1276 	unsigned int sync;
1277 	u32 act;
1278 
1279 	length = xdp->data_end - xdp->data_hard_start - XDP_PACKET_HEADROOM;
1280 
1281 	act = bpf_prog_run_xdp(prog, xdp);
1282 	switch (act) {
1283 	case XDP_PASS:
1284 		return false;
1285 	case XDP_TX:
1286 		if (!tsnep_xdp_xmit_back(rx->adapter, xdp, tx_nq, tx))
1287 			goto out_failure;
1288 		*status |= TSNEP_XDP_TX;
1289 		return true;
1290 	case XDP_REDIRECT:
1291 		if (xdp_do_redirect(rx->adapter->netdev, xdp, prog) < 0)
1292 			goto out_failure;
1293 		*status |= TSNEP_XDP_REDIRECT;
1294 		return true;
1295 	default:
1296 		bpf_warn_invalid_xdp_action(rx->adapter->netdev, prog, act);
1297 		fallthrough;
1298 	case XDP_ABORTED:
1299 out_failure:
1300 		trace_xdp_exception(rx->adapter->netdev, prog, act);
1301 		fallthrough;
1302 	case XDP_DROP:
1303 		/* Due xdp_adjust_tail: DMA sync for_device cover max len CPU
1304 		 * touch
1305 		 */
1306 		sync = xdp->data_end - xdp->data_hard_start -
1307 		       XDP_PACKET_HEADROOM;
1308 		sync = max(sync, length);
1309 		page_pool_put_page(rx->page_pool, virt_to_head_page(xdp->data),
1310 				   sync, true);
1311 		return true;
1312 	}
1313 }
1314 
1315 static bool tsnep_xdp_run_prog_zc(struct tsnep_rx *rx, struct bpf_prog *prog,
1316 				  struct xdp_buff *xdp, int *status,
1317 				  struct netdev_queue *tx_nq,
1318 				  struct tsnep_tx *tx)
1319 {
1320 	u32 act;
1321 
1322 	act = bpf_prog_run_xdp(prog, xdp);
1323 
1324 	/* XDP_REDIRECT is the main action for zero-copy */
1325 	if (likely(act == XDP_REDIRECT)) {
1326 		if (xdp_do_redirect(rx->adapter->netdev, xdp, prog) < 0)
1327 			goto out_failure;
1328 		*status |= TSNEP_XDP_REDIRECT;
1329 		return true;
1330 	}
1331 
1332 	switch (act) {
1333 	case XDP_PASS:
1334 		return false;
1335 	case XDP_TX:
1336 		if (!tsnep_xdp_xmit_back(rx->adapter, xdp, tx_nq, tx))
1337 			goto out_failure;
1338 		*status |= TSNEP_XDP_TX;
1339 		return true;
1340 	default:
1341 		bpf_warn_invalid_xdp_action(rx->adapter->netdev, prog, act);
1342 		fallthrough;
1343 	case XDP_ABORTED:
1344 out_failure:
1345 		trace_xdp_exception(rx->adapter->netdev, prog, act);
1346 		fallthrough;
1347 	case XDP_DROP:
1348 		xsk_buff_free(xdp);
1349 		return true;
1350 	}
1351 }
1352 
1353 static void tsnep_finalize_xdp(struct tsnep_adapter *adapter, int status,
1354 			       struct netdev_queue *tx_nq, struct tsnep_tx *tx)
1355 {
1356 	if (status & TSNEP_XDP_TX) {
1357 		__netif_tx_lock(tx_nq, smp_processor_id());
1358 		tsnep_xdp_xmit_flush(tx);
1359 		__netif_tx_unlock(tx_nq);
1360 	}
1361 
1362 	if (status & TSNEP_XDP_REDIRECT)
1363 		xdp_do_flush();
1364 }
1365 
1366 static struct sk_buff *tsnep_build_skb(struct tsnep_rx *rx, struct page *page,
1367 				       int length)
1368 {
1369 	struct sk_buff *skb;
1370 
1371 	skb = napi_build_skb(page_address(page), PAGE_SIZE);
1372 	if (unlikely(!skb))
1373 		return NULL;
1374 
1375 	/* update pointers within the skb to store the data */
1376 	skb_reserve(skb, TSNEP_RX_OFFSET + TSNEP_RX_INLINE_METADATA_SIZE);
1377 	__skb_put(skb, length - ETH_FCS_LEN);
1378 
1379 	if (rx->adapter->hwtstamp_config.rx_filter == HWTSTAMP_FILTER_ALL) {
1380 		struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1381 		struct tsnep_rx_inline *rx_inline =
1382 			(struct tsnep_rx_inline *)(page_address(page) +
1383 						   TSNEP_RX_OFFSET);
1384 
1385 		skb_shinfo(skb)->tx_flags |=
1386 			SKBTX_HW_TSTAMP_NETDEV;
1387 		memset(hwtstamps, 0, sizeof(*hwtstamps));
1388 		hwtstamps->netdev_data = rx_inline;
1389 	}
1390 
1391 	skb_record_rx_queue(skb, rx->queue_index);
1392 	skb->protocol = eth_type_trans(skb, rx->adapter->netdev);
1393 
1394 	return skb;
1395 }
1396 
1397 static void tsnep_rx_page(struct tsnep_rx *rx, struct napi_struct *napi,
1398 			  struct page *page, int length)
1399 {
1400 	struct sk_buff *skb;
1401 
1402 	skb = tsnep_build_skb(rx, page, length);
1403 	if (skb) {
1404 		skb_mark_for_recycle(skb);
1405 
1406 		rx->packets++;
1407 		rx->bytes += length;
1408 		if (skb->pkt_type == PACKET_MULTICAST)
1409 			rx->multicast++;
1410 
1411 		napi_gro_receive(napi, skb);
1412 	} else {
1413 		page_pool_recycle_direct(rx->page_pool, page);
1414 
1415 		rx->dropped++;
1416 	}
1417 }
1418 
1419 static int tsnep_rx_poll(struct tsnep_rx *rx, struct napi_struct *napi,
1420 			 int budget)
1421 {
1422 	struct device *dmadev = rx->adapter->dmadev;
1423 	enum dma_data_direction dma_dir;
1424 	struct tsnep_rx_entry *entry;
1425 	struct netdev_queue *tx_nq;
1426 	struct bpf_prog *prog;
1427 	struct xdp_buff xdp;
1428 	struct tsnep_tx *tx;
1429 	int desc_available;
1430 	int xdp_status = 0;
1431 	int done = 0;
1432 	int length;
1433 
1434 	desc_available = tsnep_rx_desc_available(rx);
1435 	dma_dir = page_pool_get_dma_dir(rx->page_pool);
1436 	prog = READ_ONCE(rx->adapter->xdp_prog);
1437 	if (prog) {
1438 		tx_nq = netdev_get_tx_queue(rx->adapter->netdev,
1439 					    rx->tx_queue_index);
1440 		tx = &rx->adapter->tx[rx->tx_queue_index];
1441 
1442 		xdp_init_buff(&xdp, PAGE_SIZE, &rx->xdp_rxq);
1443 	}
1444 
1445 	while (likely(done < budget) && (rx->read != rx->write)) {
1446 		entry = &rx->entry[rx->read];
1447 		if ((__le32_to_cpu(entry->desc_wb->properties) &
1448 		     TSNEP_DESC_OWNER_COUNTER_MASK) !=
1449 		    (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
1450 			break;
1451 		done++;
1452 
1453 		if (desc_available >= TSNEP_RING_RX_REFILL) {
1454 			bool reuse = desc_available >= TSNEP_RING_RX_REUSE;
1455 
1456 			desc_available -= tsnep_rx_refill(rx, desc_available,
1457 							  reuse);
1458 			if (!entry->page) {
1459 				/* buffer has been reused for refill to prevent
1460 				 * empty RX ring, thus buffer cannot be used for
1461 				 * RX processing
1462 				 */
1463 				rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1464 				desc_available++;
1465 
1466 				rx->dropped++;
1467 
1468 				continue;
1469 			}
1470 		}
1471 
1472 		/* descriptor properties shall be read first, because valid data
1473 		 * is signaled there
1474 		 */
1475 		dma_rmb();
1476 
1477 		prefetch(page_address(entry->page) + TSNEP_RX_OFFSET);
1478 		length = __le32_to_cpu(entry->desc_wb->properties) &
1479 			 TSNEP_DESC_LENGTH_MASK;
1480 		dma_sync_single_range_for_cpu(dmadev, entry->dma,
1481 					      TSNEP_RX_OFFSET, length, dma_dir);
1482 
1483 		/* RX metadata with timestamps is in front of actual data,
1484 		 * subtract metadata size to get length of actual data and
1485 		 * consider metadata size as offset of actual data during RX
1486 		 * processing
1487 		 */
1488 		length -= TSNEP_RX_INLINE_METADATA_SIZE;
1489 
1490 		rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1491 		desc_available++;
1492 
1493 		if (prog) {
1494 			bool consume;
1495 
1496 			xdp_prepare_buff(&xdp, page_address(entry->page),
1497 					 XDP_PACKET_HEADROOM + TSNEP_RX_INLINE_METADATA_SIZE,
1498 					 length - ETH_FCS_LEN, false);
1499 
1500 			consume = tsnep_xdp_run_prog(rx, prog, &xdp,
1501 						     &xdp_status, tx_nq, tx);
1502 			if (consume) {
1503 				rx->packets++;
1504 				rx->bytes += length;
1505 
1506 				entry->page = NULL;
1507 
1508 				continue;
1509 			}
1510 		}
1511 
1512 		tsnep_rx_page(rx, napi, entry->page, length);
1513 		entry->page = NULL;
1514 	}
1515 
1516 	if (xdp_status)
1517 		tsnep_finalize_xdp(rx->adapter, xdp_status, tx_nq, tx);
1518 
1519 	if (desc_available)
1520 		tsnep_rx_refill(rx, desc_available, false);
1521 
1522 	return done;
1523 }
1524 
1525 static int tsnep_rx_poll_zc(struct tsnep_rx *rx, struct napi_struct *napi,
1526 			    int budget)
1527 {
1528 	struct tsnep_rx_entry *entry;
1529 	struct netdev_queue *tx_nq;
1530 	struct bpf_prog *prog;
1531 	struct tsnep_tx *tx;
1532 	int desc_available;
1533 	int xdp_status = 0;
1534 	struct page *page;
1535 	int done = 0;
1536 	int length;
1537 
1538 	desc_available = tsnep_rx_desc_available(rx);
1539 	prog = READ_ONCE(rx->adapter->xdp_prog);
1540 	if (prog) {
1541 		tx_nq = netdev_get_tx_queue(rx->adapter->netdev,
1542 					    rx->tx_queue_index);
1543 		tx = &rx->adapter->tx[rx->tx_queue_index];
1544 	}
1545 
1546 	while (likely(done < budget) && (rx->read != rx->write)) {
1547 		entry = &rx->entry[rx->read];
1548 		if ((__le32_to_cpu(entry->desc_wb->properties) &
1549 		     TSNEP_DESC_OWNER_COUNTER_MASK) !=
1550 		    (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
1551 			break;
1552 		done++;
1553 
1554 		if (desc_available >= TSNEP_RING_RX_REFILL) {
1555 			bool reuse = desc_available >= TSNEP_RING_RX_REUSE;
1556 
1557 			desc_available -= tsnep_rx_refill_zc(rx, desc_available,
1558 							     reuse);
1559 			if (!entry->xdp) {
1560 				/* buffer has been reused for refill to prevent
1561 				 * empty RX ring, thus buffer cannot be used for
1562 				 * RX processing
1563 				 */
1564 				rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1565 				desc_available++;
1566 
1567 				rx->dropped++;
1568 
1569 				continue;
1570 			}
1571 		}
1572 
1573 		/* descriptor properties shall be read first, because valid data
1574 		 * is signaled there
1575 		 */
1576 		dma_rmb();
1577 
1578 		prefetch(entry->xdp->data);
1579 		length = __le32_to_cpu(entry->desc_wb->properties) &
1580 			 TSNEP_DESC_LENGTH_MASK;
1581 		xsk_buff_set_size(entry->xdp, length - ETH_FCS_LEN);
1582 		xsk_buff_dma_sync_for_cpu(entry->xdp, rx->xsk_pool);
1583 
1584 		/* RX metadata with timestamps is in front of actual data,
1585 		 * subtract metadata size to get length of actual data and
1586 		 * consider metadata size as offset of actual data during RX
1587 		 * processing
1588 		 */
1589 		length -= TSNEP_RX_INLINE_METADATA_SIZE;
1590 
1591 		rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1592 		desc_available++;
1593 
1594 		if (prog) {
1595 			bool consume;
1596 
1597 			entry->xdp->data += TSNEP_RX_INLINE_METADATA_SIZE;
1598 			entry->xdp->data_meta += TSNEP_RX_INLINE_METADATA_SIZE;
1599 
1600 			consume = tsnep_xdp_run_prog_zc(rx, prog, entry->xdp,
1601 							&xdp_status, tx_nq, tx);
1602 			if (consume) {
1603 				rx->packets++;
1604 				rx->bytes += length;
1605 
1606 				entry->xdp = NULL;
1607 
1608 				continue;
1609 			}
1610 		}
1611 
1612 		page = page_pool_dev_alloc_pages(rx->page_pool);
1613 		if (page) {
1614 			memcpy(page_address(page) + TSNEP_RX_OFFSET,
1615 			       entry->xdp->data - TSNEP_RX_INLINE_METADATA_SIZE,
1616 			       length + TSNEP_RX_INLINE_METADATA_SIZE);
1617 			tsnep_rx_page(rx, napi, page, length);
1618 		} else {
1619 			rx->dropped++;
1620 		}
1621 		xsk_buff_free(entry->xdp);
1622 		entry->xdp = NULL;
1623 	}
1624 
1625 	if (xdp_status)
1626 		tsnep_finalize_xdp(rx->adapter, xdp_status, tx_nq, tx);
1627 
1628 	if (desc_available)
1629 		desc_available -= tsnep_rx_refill_zc(rx, desc_available, false);
1630 
1631 	if (xsk_uses_need_wakeup(rx->xsk_pool)) {
1632 		tsnep_xsk_rx_need_wakeup(rx, desc_available);
1633 
1634 		return done;
1635 	}
1636 
1637 	return desc_available ? budget : done;
1638 }
1639 
1640 static bool tsnep_rx_pending(struct tsnep_rx *rx)
1641 {
1642 	struct tsnep_rx_entry *entry;
1643 
1644 	if (rx->read != rx->write) {
1645 		entry = &rx->entry[rx->read];
1646 		if ((__le32_to_cpu(entry->desc_wb->properties) &
1647 		     TSNEP_DESC_OWNER_COUNTER_MASK) ==
1648 		    (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
1649 			return true;
1650 	}
1651 
1652 	return false;
1653 }
1654 
1655 static int tsnep_rx_open(struct tsnep_rx *rx)
1656 {
1657 	int desc_available;
1658 	int retval;
1659 
1660 	retval = tsnep_rx_ring_create(rx);
1661 	if (retval)
1662 		return retval;
1663 
1664 	tsnep_rx_init(rx);
1665 
1666 	desc_available = tsnep_rx_desc_available(rx);
1667 	if (rx->xsk_pool)
1668 		retval = tsnep_rx_alloc_zc(rx, desc_available, false);
1669 	else
1670 		retval = tsnep_rx_alloc(rx, desc_available, false);
1671 	if (retval != desc_available) {
1672 		retval = -ENOMEM;
1673 
1674 		goto alloc_failed;
1675 	}
1676 
1677 	/* prealloc pages to prevent allocation failures when XSK pool is
1678 	 * disabled at runtime
1679 	 */
1680 	if (rx->xsk_pool) {
1681 		retval = tsnep_rx_alloc_page_buffer(rx);
1682 		if (retval)
1683 			goto alloc_failed;
1684 	}
1685 
1686 	return 0;
1687 
1688 alloc_failed:
1689 	tsnep_rx_ring_cleanup(rx);
1690 	return retval;
1691 }
1692 
1693 static void tsnep_rx_close(struct tsnep_rx *rx)
1694 {
1695 	if (rx->xsk_pool)
1696 		tsnep_rx_free_page_buffer(rx);
1697 
1698 	tsnep_rx_ring_cleanup(rx);
1699 }
1700 
1701 static void tsnep_rx_reopen(struct tsnep_rx *rx)
1702 {
1703 	struct page **page = rx->page_buffer;
1704 	int i;
1705 
1706 	tsnep_rx_init(rx);
1707 
1708 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
1709 		struct tsnep_rx_entry *entry = &rx->entry[i];
1710 
1711 		/* defined initial values for properties are required for
1712 		 * correct owner counter checking
1713 		 */
1714 		entry->desc->properties = 0;
1715 		entry->desc_wb->properties = 0;
1716 
1717 		/* prevent allocation failures by reusing kept pages */
1718 		if (*page) {
1719 			tsnep_rx_set_page(rx, entry, *page);
1720 			tsnep_rx_activate(rx, rx->write);
1721 			rx->write++;
1722 
1723 			*page = NULL;
1724 			page++;
1725 		}
1726 	}
1727 }
1728 
1729 static void tsnep_rx_reopen_xsk(struct tsnep_rx *rx)
1730 {
1731 	struct page **page = rx->page_buffer;
1732 	u32 allocated;
1733 	int i;
1734 
1735 	tsnep_rx_init(rx);
1736 
1737 	/* alloc all ring entries except the last one, because ring cannot be
1738 	 * filled completely, as many buffers as possible is enough as wakeup is
1739 	 * done if new buffers are available
1740 	 */
1741 	allocated = xsk_buff_alloc_batch(rx->xsk_pool, rx->xdp_batch,
1742 					 TSNEP_RING_SIZE - 1);
1743 
1744 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
1745 		struct tsnep_rx_entry *entry = &rx->entry[i];
1746 
1747 		/* keep pages to prevent allocation failures when xsk is
1748 		 * disabled
1749 		 */
1750 		if (entry->page) {
1751 			*page = entry->page;
1752 			entry->page = NULL;
1753 
1754 			page++;
1755 		}
1756 
1757 		/* defined initial values for properties are required for
1758 		 * correct owner counter checking
1759 		 */
1760 		entry->desc->properties = 0;
1761 		entry->desc_wb->properties = 0;
1762 
1763 		if (allocated) {
1764 			tsnep_rx_set_xdp(rx, entry,
1765 					 rx->xdp_batch[allocated - 1]);
1766 			tsnep_rx_activate(rx, rx->write);
1767 			rx->write++;
1768 
1769 			allocated--;
1770 		}
1771 	}
1772 
1773 	/* set need wakeup flag immediately if ring is not filled completely,
1774 	 * first polling would be too late as need wakeup signalisation would
1775 	 * be delayed for an indefinite time
1776 	 */
1777 	if (xsk_uses_need_wakeup(rx->xsk_pool))
1778 		tsnep_xsk_rx_need_wakeup(rx, tsnep_rx_desc_available(rx));
1779 }
1780 
1781 static bool tsnep_pending(struct tsnep_queue *queue)
1782 {
1783 	if (queue->tx && tsnep_tx_pending(queue->tx))
1784 		return true;
1785 
1786 	if (queue->rx && tsnep_rx_pending(queue->rx))
1787 		return true;
1788 
1789 	return false;
1790 }
1791 
1792 static int tsnep_poll(struct napi_struct *napi, int budget)
1793 {
1794 	struct tsnep_queue *queue = container_of(napi, struct tsnep_queue,
1795 						 napi);
1796 	bool complete = true;
1797 	int done = 0;
1798 
1799 	if (queue->tx)
1800 		complete = tsnep_tx_poll(queue->tx, budget);
1801 
1802 	/* handle case where we are called by netpoll with a budget of 0 */
1803 	if (unlikely(budget <= 0))
1804 		return budget;
1805 
1806 	if (queue->rx) {
1807 		done = queue->rx->xsk_pool ?
1808 		       tsnep_rx_poll_zc(queue->rx, napi, budget) :
1809 		       tsnep_rx_poll(queue->rx, napi, budget);
1810 		if (done >= budget)
1811 			complete = false;
1812 	}
1813 
1814 	/* if all work not completed, return budget and keep polling */
1815 	if (!complete)
1816 		return budget;
1817 
1818 	if (likely(napi_complete_done(napi, done))) {
1819 		tsnep_enable_irq(queue->adapter, queue->irq_mask);
1820 
1821 		/* reschedule if work is already pending, prevent rotten packets
1822 		 * which are transmitted or received after polling but before
1823 		 * interrupt enable
1824 		 */
1825 		if (tsnep_pending(queue)) {
1826 			tsnep_disable_irq(queue->adapter, queue->irq_mask);
1827 			napi_schedule(napi);
1828 		}
1829 	}
1830 
1831 	return min(done, budget - 1);
1832 }
1833 
1834 static int tsnep_request_irq(struct tsnep_queue *queue, bool first)
1835 {
1836 	const char *name = netdev_name(queue->adapter->netdev);
1837 	irq_handler_t handler;
1838 	void *dev;
1839 	int retval;
1840 
1841 	if (first) {
1842 		sprintf(queue->name, "%s-mac", name);
1843 		handler = tsnep_irq;
1844 		dev = queue->adapter;
1845 	} else {
1846 		if (queue->tx && queue->rx)
1847 			snprintf(queue->name, sizeof(queue->name), "%s-txrx-%d",
1848 				 name, queue->rx->queue_index);
1849 		else if (queue->tx)
1850 			snprintf(queue->name, sizeof(queue->name), "%s-tx-%d",
1851 				 name, queue->tx->queue_index);
1852 		else
1853 			snprintf(queue->name, sizeof(queue->name), "%s-rx-%d",
1854 				 name, queue->rx->queue_index);
1855 		handler = tsnep_irq_txrx;
1856 		dev = queue;
1857 	}
1858 
1859 	retval = request_irq(queue->irq, handler, 0, queue->name, dev);
1860 	if (retval) {
1861 		/* if name is empty, then interrupt won't be freed */
1862 		memset(queue->name, 0, sizeof(queue->name));
1863 	}
1864 
1865 	return retval;
1866 }
1867 
1868 static void tsnep_free_irq(struct tsnep_queue *queue, bool first)
1869 {
1870 	void *dev;
1871 
1872 	if (!strlen(queue->name))
1873 		return;
1874 
1875 	if (first)
1876 		dev = queue->adapter;
1877 	else
1878 		dev = queue;
1879 
1880 	free_irq(queue->irq, dev);
1881 	memset(queue->name, 0, sizeof(queue->name));
1882 }
1883 
1884 static void tsnep_queue_close(struct tsnep_queue *queue, bool first)
1885 {
1886 	struct tsnep_rx *rx = queue->rx;
1887 
1888 	tsnep_free_irq(queue, first);
1889 
1890 	if (rx) {
1891 		if (xdp_rxq_info_is_reg(&rx->xdp_rxq))
1892 			xdp_rxq_info_unreg(&rx->xdp_rxq);
1893 		if (xdp_rxq_info_is_reg(&rx->xdp_rxq_zc))
1894 			xdp_rxq_info_unreg(&rx->xdp_rxq_zc);
1895 	}
1896 
1897 	netif_napi_del(&queue->napi);
1898 }
1899 
1900 static int tsnep_queue_open(struct tsnep_adapter *adapter,
1901 			    struct tsnep_queue *queue, bool first)
1902 {
1903 	struct tsnep_rx *rx = queue->rx;
1904 	struct tsnep_tx *tx = queue->tx;
1905 	int retval;
1906 
1907 	netif_napi_add(adapter->netdev, &queue->napi, tsnep_poll);
1908 
1909 	if (rx) {
1910 		/* choose TX queue for XDP_TX */
1911 		if (tx)
1912 			rx->tx_queue_index = tx->queue_index;
1913 		else if (rx->queue_index < adapter->num_tx_queues)
1914 			rx->tx_queue_index = rx->queue_index;
1915 		else
1916 			rx->tx_queue_index = 0;
1917 
1918 		/* prepare both memory models to eliminate possible registration
1919 		 * errors when memory model is switched between page pool and
1920 		 * XSK pool during runtime
1921 		 */
1922 		retval = xdp_rxq_info_reg(&rx->xdp_rxq, adapter->netdev,
1923 					  rx->queue_index, queue->napi.napi_id);
1924 		if (retval)
1925 			goto failed;
1926 		retval = xdp_rxq_info_reg_mem_model(&rx->xdp_rxq,
1927 						    MEM_TYPE_PAGE_POOL,
1928 						    rx->page_pool);
1929 		if (retval)
1930 			goto failed;
1931 		retval = xdp_rxq_info_reg(&rx->xdp_rxq_zc, adapter->netdev,
1932 					  rx->queue_index, queue->napi.napi_id);
1933 		if (retval)
1934 			goto failed;
1935 		retval = xdp_rxq_info_reg_mem_model(&rx->xdp_rxq_zc,
1936 						    MEM_TYPE_XSK_BUFF_POOL,
1937 						    NULL);
1938 		if (retval)
1939 			goto failed;
1940 		if (rx->xsk_pool)
1941 			xsk_pool_set_rxq_info(rx->xsk_pool, &rx->xdp_rxq_zc);
1942 	}
1943 
1944 	retval = tsnep_request_irq(queue, first);
1945 	if (retval) {
1946 		netif_err(adapter, drv, adapter->netdev,
1947 			  "can't get assigned irq %d.\n", queue->irq);
1948 		goto failed;
1949 	}
1950 
1951 	return 0;
1952 
1953 failed:
1954 	tsnep_queue_close(queue, first);
1955 
1956 	return retval;
1957 }
1958 
1959 static void tsnep_queue_enable(struct tsnep_queue *queue)
1960 {
1961 	napi_enable(&queue->napi);
1962 	tsnep_enable_irq(queue->adapter, queue->irq_mask);
1963 
1964 	if (queue->tx)
1965 		tsnep_tx_enable(queue->tx);
1966 
1967 	if (queue->rx)
1968 		tsnep_rx_enable(queue->rx);
1969 }
1970 
1971 static void tsnep_queue_disable(struct tsnep_queue *queue)
1972 {
1973 	if (queue->tx)
1974 		tsnep_tx_disable(queue->tx, &queue->napi);
1975 
1976 	napi_disable(&queue->napi);
1977 	tsnep_disable_irq(queue->adapter, queue->irq_mask);
1978 
1979 	/* disable RX after NAPI polling has been disabled, because RX can be
1980 	 * enabled during NAPI polling
1981 	 */
1982 	if (queue->rx)
1983 		tsnep_rx_disable(queue->rx);
1984 }
1985 
1986 static int tsnep_netdev_open(struct net_device *netdev)
1987 {
1988 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1989 	int i, retval;
1990 
1991 	for (i = 0; i < adapter->num_queues; i++) {
1992 		if (adapter->queue[i].tx) {
1993 			retval = tsnep_tx_open(adapter->queue[i].tx);
1994 			if (retval)
1995 				goto failed;
1996 		}
1997 		if (adapter->queue[i].rx) {
1998 			retval = tsnep_rx_open(adapter->queue[i].rx);
1999 			if (retval)
2000 				goto failed;
2001 		}
2002 
2003 		retval = tsnep_queue_open(adapter, &adapter->queue[i], i == 0);
2004 		if (retval)
2005 			goto failed;
2006 	}
2007 
2008 	retval = netif_set_real_num_tx_queues(adapter->netdev,
2009 					      adapter->num_tx_queues);
2010 	if (retval)
2011 		goto failed;
2012 	retval = netif_set_real_num_rx_queues(adapter->netdev,
2013 					      adapter->num_rx_queues);
2014 	if (retval)
2015 		goto failed;
2016 
2017 	tsnep_enable_irq(adapter, ECM_INT_LINK);
2018 	retval = tsnep_phy_open(adapter);
2019 	if (retval)
2020 		goto phy_failed;
2021 
2022 	for (i = 0; i < adapter->num_queues; i++)
2023 		tsnep_queue_enable(&adapter->queue[i]);
2024 
2025 	return 0;
2026 
2027 phy_failed:
2028 	tsnep_disable_irq(adapter, ECM_INT_LINK);
2029 failed:
2030 	for (i = 0; i < adapter->num_queues; i++) {
2031 		tsnep_queue_close(&adapter->queue[i], i == 0);
2032 
2033 		if (adapter->queue[i].rx)
2034 			tsnep_rx_close(adapter->queue[i].rx);
2035 		if (adapter->queue[i].tx)
2036 			tsnep_tx_close(adapter->queue[i].tx);
2037 	}
2038 	return retval;
2039 }
2040 
2041 static int tsnep_netdev_close(struct net_device *netdev)
2042 {
2043 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2044 	int i;
2045 
2046 	tsnep_disable_irq(adapter, ECM_INT_LINK);
2047 	tsnep_phy_close(adapter);
2048 
2049 	for (i = 0; i < adapter->num_queues; i++) {
2050 		tsnep_queue_disable(&adapter->queue[i]);
2051 
2052 		tsnep_queue_close(&adapter->queue[i], i == 0);
2053 
2054 		if (adapter->queue[i].rx)
2055 			tsnep_rx_close(adapter->queue[i].rx);
2056 		if (adapter->queue[i].tx)
2057 			tsnep_tx_close(adapter->queue[i].tx);
2058 	}
2059 
2060 	return 0;
2061 }
2062 
2063 int tsnep_enable_xsk(struct tsnep_queue *queue, struct xsk_buff_pool *pool)
2064 {
2065 	bool running = netif_running(queue->adapter->netdev);
2066 	u32 frame_size;
2067 
2068 	frame_size = xsk_pool_get_rx_frame_size(pool);
2069 	if (frame_size < TSNEP_XSK_RX_BUF_SIZE)
2070 		return -EOPNOTSUPP;
2071 
2072 	queue->rx->page_buffer = kcalloc(TSNEP_RING_SIZE,
2073 					 sizeof(*queue->rx->page_buffer),
2074 					 GFP_KERNEL);
2075 	if (!queue->rx->page_buffer)
2076 		return -ENOMEM;
2077 	queue->rx->xdp_batch = kcalloc(TSNEP_RING_SIZE,
2078 				       sizeof(*queue->rx->xdp_batch),
2079 				       GFP_KERNEL);
2080 	if (!queue->rx->xdp_batch) {
2081 		kfree(queue->rx->page_buffer);
2082 		queue->rx->page_buffer = NULL;
2083 
2084 		return -ENOMEM;
2085 	}
2086 
2087 	xsk_pool_set_rxq_info(pool, &queue->rx->xdp_rxq_zc);
2088 
2089 	if (running)
2090 		tsnep_queue_disable(queue);
2091 
2092 	queue->tx->xsk_pool = pool;
2093 	queue->rx->xsk_pool = pool;
2094 
2095 	if (running) {
2096 		tsnep_rx_reopen_xsk(queue->rx);
2097 		tsnep_queue_enable(queue);
2098 	}
2099 
2100 	return 0;
2101 }
2102 
2103 void tsnep_disable_xsk(struct tsnep_queue *queue)
2104 {
2105 	bool running = netif_running(queue->adapter->netdev);
2106 
2107 	if (running)
2108 		tsnep_queue_disable(queue);
2109 
2110 	tsnep_rx_free_zc(queue->rx);
2111 
2112 	queue->rx->xsk_pool = NULL;
2113 	queue->tx->xsk_pool = NULL;
2114 
2115 	if (running) {
2116 		tsnep_rx_reopen(queue->rx);
2117 		tsnep_queue_enable(queue);
2118 	}
2119 
2120 	kfree(queue->rx->xdp_batch);
2121 	queue->rx->xdp_batch = NULL;
2122 	kfree(queue->rx->page_buffer);
2123 	queue->rx->page_buffer = NULL;
2124 }
2125 
2126 static netdev_tx_t tsnep_netdev_xmit_frame(struct sk_buff *skb,
2127 					   struct net_device *netdev)
2128 {
2129 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2130 	u16 queue_mapping = skb_get_queue_mapping(skb);
2131 
2132 	if (queue_mapping >= adapter->num_tx_queues)
2133 		queue_mapping = 0;
2134 
2135 	return tsnep_xmit_frame_ring(skb, &adapter->tx[queue_mapping]);
2136 }
2137 
2138 static int tsnep_netdev_ioctl(struct net_device *netdev, struct ifreq *ifr,
2139 			      int cmd)
2140 {
2141 	if (!netif_running(netdev))
2142 		return -EINVAL;
2143 	if (cmd == SIOCSHWTSTAMP || cmd == SIOCGHWTSTAMP)
2144 		return tsnep_ptp_ioctl(netdev, ifr, cmd);
2145 	return phy_mii_ioctl(netdev->phydev, ifr, cmd);
2146 }
2147 
2148 static void tsnep_netdev_set_multicast(struct net_device *netdev)
2149 {
2150 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2151 
2152 	u16 rx_filter = 0;
2153 
2154 	/* configured MAC address and broadcasts are never filtered */
2155 	if (netdev->flags & IFF_PROMISC) {
2156 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_MULTICASTS;
2157 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_UNICASTS;
2158 	} else if (!netdev_mc_empty(netdev) || (netdev->flags & IFF_ALLMULTI)) {
2159 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_MULTICASTS;
2160 	}
2161 	iowrite16(rx_filter, adapter->addr + TSNEP_RX_FILTER);
2162 }
2163 
2164 static void tsnep_netdev_get_stats64(struct net_device *netdev,
2165 				     struct rtnl_link_stats64 *stats)
2166 {
2167 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2168 	u32 reg;
2169 	u32 val;
2170 	int i;
2171 
2172 	for (i = 0; i < adapter->num_tx_queues; i++) {
2173 		stats->tx_packets += adapter->tx[i].packets;
2174 		stats->tx_bytes += adapter->tx[i].bytes;
2175 		stats->tx_dropped += adapter->tx[i].dropped;
2176 	}
2177 	for (i = 0; i < adapter->num_rx_queues; i++) {
2178 		stats->rx_packets += adapter->rx[i].packets;
2179 		stats->rx_bytes += adapter->rx[i].bytes;
2180 		stats->rx_dropped += adapter->rx[i].dropped;
2181 		stats->multicast += adapter->rx[i].multicast;
2182 
2183 		reg = ioread32(adapter->addr + TSNEP_QUEUE(i) +
2184 			       TSNEP_RX_STATISTIC);
2185 		val = (reg & TSNEP_RX_STATISTIC_NO_DESC_MASK) >>
2186 		      TSNEP_RX_STATISTIC_NO_DESC_SHIFT;
2187 		stats->rx_dropped += val;
2188 		val = (reg & TSNEP_RX_STATISTIC_BUFFER_TOO_SMALL_MASK) >>
2189 		      TSNEP_RX_STATISTIC_BUFFER_TOO_SMALL_SHIFT;
2190 		stats->rx_dropped += val;
2191 		val = (reg & TSNEP_RX_STATISTIC_FIFO_OVERFLOW_MASK) >>
2192 		      TSNEP_RX_STATISTIC_FIFO_OVERFLOW_SHIFT;
2193 		stats->rx_errors += val;
2194 		stats->rx_fifo_errors += val;
2195 		val = (reg & TSNEP_RX_STATISTIC_INVALID_FRAME_MASK) >>
2196 		      TSNEP_RX_STATISTIC_INVALID_FRAME_SHIFT;
2197 		stats->rx_errors += val;
2198 		stats->rx_frame_errors += val;
2199 	}
2200 
2201 	reg = ioread32(adapter->addr + ECM_STAT);
2202 	val = (reg & ECM_STAT_RX_ERR_MASK) >> ECM_STAT_RX_ERR_SHIFT;
2203 	stats->rx_errors += val;
2204 	val = (reg & ECM_STAT_INV_FRM_MASK) >> ECM_STAT_INV_FRM_SHIFT;
2205 	stats->rx_errors += val;
2206 	stats->rx_crc_errors += val;
2207 	val = (reg & ECM_STAT_FWD_RX_ERR_MASK) >> ECM_STAT_FWD_RX_ERR_SHIFT;
2208 	stats->rx_errors += val;
2209 }
2210 
2211 static void tsnep_mac_set_address(struct tsnep_adapter *adapter, u8 *addr)
2212 {
2213 	iowrite32(*(u32 *)addr, adapter->addr + TSNEP_MAC_ADDRESS_LOW);
2214 	iowrite16(*(u16 *)(addr + sizeof(u32)),
2215 		  adapter->addr + TSNEP_MAC_ADDRESS_HIGH);
2216 
2217 	ether_addr_copy(adapter->mac_address, addr);
2218 	netif_info(adapter, drv, adapter->netdev, "MAC address set to %pM\n",
2219 		   addr);
2220 }
2221 
2222 static int tsnep_netdev_set_mac_address(struct net_device *netdev, void *addr)
2223 {
2224 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2225 	struct sockaddr *sock_addr = addr;
2226 	int retval;
2227 
2228 	retval = eth_prepare_mac_addr_change(netdev, sock_addr);
2229 	if (retval)
2230 		return retval;
2231 	eth_hw_addr_set(netdev, sock_addr->sa_data);
2232 	tsnep_mac_set_address(adapter, sock_addr->sa_data);
2233 
2234 	return 0;
2235 }
2236 
2237 static int tsnep_netdev_set_features(struct net_device *netdev,
2238 				     netdev_features_t features)
2239 {
2240 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2241 	netdev_features_t changed = netdev->features ^ features;
2242 	bool enable;
2243 	int retval = 0;
2244 
2245 	if (changed & NETIF_F_LOOPBACK) {
2246 		enable = !!(features & NETIF_F_LOOPBACK);
2247 		retval = tsnep_phy_loopback(adapter, enable);
2248 	}
2249 
2250 	return retval;
2251 }
2252 
2253 static ktime_t tsnep_netdev_get_tstamp(struct net_device *netdev,
2254 				       const struct skb_shared_hwtstamps *hwtstamps,
2255 				       bool cycles)
2256 {
2257 	struct tsnep_rx_inline *rx_inline = hwtstamps->netdev_data;
2258 	u64 timestamp;
2259 
2260 	if (cycles)
2261 		timestamp = __le64_to_cpu(rx_inline->counter);
2262 	else
2263 		timestamp = __le64_to_cpu(rx_inline->timestamp);
2264 
2265 	return ns_to_ktime(timestamp);
2266 }
2267 
2268 static int tsnep_netdev_bpf(struct net_device *dev, struct netdev_bpf *bpf)
2269 {
2270 	struct tsnep_adapter *adapter = netdev_priv(dev);
2271 
2272 	switch (bpf->command) {
2273 	case XDP_SETUP_PROG:
2274 		return tsnep_xdp_setup_prog(adapter, bpf->prog, bpf->extack);
2275 	case XDP_SETUP_XSK_POOL:
2276 		return tsnep_xdp_setup_pool(adapter, bpf->xsk.pool,
2277 					    bpf->xsk.queue_id);
2278 	default:
2279 		return -EOPNOTSUPP;
2280 	}
2281 }
2282 
2283 static struct tsnep_tx *tsnep_xdp_get_tx(struct tsnep_adapter *adapter, u32 cpu)
2284 {
2285 	if (cpu >= TSNEP_MAX_QUEUES)
2286 		cpu &= TSNEP_MAX_QUEUES - 1;
2287 
2288 	while (cpu >= adapter->num_tx_queues)
2289 		cpu -= adapter->num_tx_queues;
2290 
2291 	return &adapter->tx[cpu];
2292 }
2293 
2294 static int tsnep_netdev_xdp_xmit(struct net_device *dev, int n,
2295 				 struct xdp_frame **xdp, u32 flags)
2296 {
2297 	struct tsnep_adapter *adapter = netdev_priv(dev);
2298 	u32 cpu = smp_processor_id();
2299 	struct netdev_queue *nq;
2300 	struct tsnep_tx *tx;
2301 	int nxmit;
2302 	bool xmit;
2303 
2304 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2305 		return -EINVAL;
2306 
2307 	tx = tsnep_xdp_get_tx(adapter, cpu);
2308 	nq = netdev_get_tx_queue(adapter->netdev, tx->queue_index);
2309 
2310 	__netif_tx_lock(nq, cpu);
2311 
2312 	for (nxmit = 0; nxmit < n; nxmit++) {
2313 		xmit = tsnep_xdp_xmit_frame_ring(xdp[nxmit], tx,
2314 						 TSNEP_TX_TYPE_XDP_NDO);
2315 		if (!xmit)
2316 			break;
2317 
2318 		/* avoid transmit queue timeout since we share it with the slow
2319 		 * path
2320 		 */
2321 		txq_trans_cond_update(nq);
2322 	}
2323 
2324 	if (flags & XDP_XMIT_FLUSH)
2325 		tsnep_xdp_xmit_flush(tx);
2326 
2327 	__netif_tx_unlock(nq);
2328 
2329 	return nxmit;
2330 }
2331 
2332 static int tsnep_netdev_xsk_wakeup(struct net_device *dev, u32 queue_id,
2333 				   u32 flags)
2334 {
2335 	struct tsnep_adapter *adapter = netdev_priv(dev);
2336 	struct tsnep_queue *queue;
2337 
2338 	if (queue_id >= adapter->num_rx_queues ||
2339 	    queue_id >= adapter->num_tx_queues)
2340 		return -EINVAL;
2341 
2342 	queue = &adapter->queue[queue_id];
2343 
2344 	if (!napi_if_scheduled_mark_missed(&queue->napi))
2345 		napi_schedule(&queue->napi);
2346 
2347 	return 0;
2348 }
2349 
2350 static const struct net_device_ops tsnep_netdev_ops = {
2351 	.ndo_open = tsnep_netdev_open,
2352 	.ndo_stop = tsnep_netdev_close,
2353 	.ndo_start_xmit = tsnep_netdev_xmit_frame,
2354 	.ndo_eth_ioctl = tsnep_netdev_ioctl,
2355 	.ndo_set_rx_mode = tsnep_netdev_set_multicast,
2356 	.ndo_get_stats64 = tsnep_netdev_get_stats64,
2357 	.ndo_set_mac_address = tsnep_netdev_set_mac_address,
2358 	.ndo_set_features = tsnep_netdev_set_features,
2359 	.ndo_get_tstamp = tsnep_netdev_get_tstamp,
2360 	.ndo_setup_tc = tsnep_tc_setup,
2361 	.ndo_bpf = tsnep_netdev_bpf,
2362 	.ndo_xdp_xmit = tsnep_netdev_xdp_xmit,
2363 	.ndo_xsk_wakeup = tsnep_netdev_xsk_wakeup,
2364 };
2365 
2366 static int tsnep_mac_init(struct tsnep_adapter *adapter)
2367 {
2368 	int retval;
2369 
2370 	/* initialize RX filtering, at least configured MAC address and
2371 	 * broadcast are not filtered
2372 	 */
2373 	iowrite16(0, adapter->addr + TSNEP_RX_FILTER);
2374 
2375 	/* try to get MAC address in the following order:
2376 	 * - device tree
2377 	 * - valid MAC address already set
2378 	 * - MAC address register if valid
2379 	 * - random MAC address
2380 	 */
2381 	retval = of_get_mac_address(adapter->pdev->dev.of_node,
2382 				    adapter->mac_address);
2383 	if (retval == -EPROBE_DEFER)
2384 		return retval;
2385 	if (retval && !is_valid_ether_addr(adapter->mac_address)) {
2386 		*(u32 *)adapter->mac_address =
2387 			ioread32(adapter->addr + TSNEP_MAC_ADDRESS_LOW);
2388 		*(u16 *)(adapter->mac_address + sizeof(u32)) =
2389 			ioread16(adapter->addr + TSNEP_MAC_ADDRESS_HIGH);
2390 		if (!is_valid_ether_addr(adapter->mac_address))
2391 			eth_random_addr(adapter->mac_address);
2392 	}
2393 
2394 	tsnep_mac_set_address(adapter, adapter->mac_address);
2395 	eth_hw_addr_set(adapter->netdev, adapter->mac_address);
2396 
2397 	return 0;
2398 }
2399 
2400 static int tsnep_mdio_init(struct tsnep_adapter *adapter)
2401 {
2402 	struct device_node *np = adapter->pdev->dev.of_node;
2403 	int retval;
2404 
2405 	if (np) {
2406 		np = of_get_child_by_name(np, "mdio");
2407 		if (!np)
2408 			return 0;
2409 
2410 		adapter->suppress_preamble =
2411 			of_property_read_bool(np, "suppress-preamble");
2412 	}
2413 
2414 	adapter->mdiobus = devm_mdiobus_alloc(&adapter->pdev->dev);
2415 	if (!adapter->mdiobus) {
2416 		retval = -ENOMEM;
2417 
2418 		goto out;
2419 	}
2420 
2421 	adapter->mdiobus->priv = (void *)adapter;
2422 	adapter->mdiobus->parent = &adapter->pdev->dev;
2423 	adapter->mdiobus->read = tsnep_mdiobus_read;
2424 	adapter->mdiobus->write = tsnep_mdiobus_write;
2425 	adapter->mdiobus->name = TSNEP "-mdiobus";
2426 	snprintf(adapter->mdiobus->id, MII_BUS_ID_SIZE, "%s",
2427 		 adapter->pdev->name);
2428 
2429 	/* do not scan broadcast address */
2430 	adapter->mdiobus->phy_mask = 0x0000001;
2431 
2432 	retval = of_mdiobus_register(adapter->mdiobus, np);
2433 
2434 out:
2435 	of_node_put(np);
2436 
2437 	return retval;
2438 }
2439 
2440 static int tsnep_phy_init(struct tsnep_adapter *adapter)
2441 {
2442 	struct device_node *phy_node;
2443 	int retval;
2444 
2445 	retval = of_get_phy_mode(adapter->pdev->dev.of_node,
2446 				 &adapter->phy_mode);
2447 	if (retval)
2448 		adapter->phy_mode = PHY_INTERFACE_MODE_GMII;
2449 
2450 	phy_node = of_parse_phandle(adapter->pdev->dev.of_node, "phy-handle",
2451 				    0);
2452 	adapter->phydev = of_phy_find_device(phy_node);
2453 	of_node_put(phy_node);
2454 	if (!adapter->phydev && adapter->mdiobus)
2455 		adapter->phydev = phy_find_first(adapter->mdiobus);
2456 	if (!adapter->phydev)
2457 		return -EIO;
2458 
2459 	return 0;
2460 }
2461 
2462 static int tsnep_queue_init(struct tsnep_adapter *adapter, int queue_count)
2463 {
2464 	u32 irq_mask = ECM_INT_TX_0 | ECM_INT_RX_0;
2465 	char name[8];
2466 	int i;
2467 	int retval;
2468 
2469 	/* one TX/RX queue pair for netdev is mandatory */
2470 	if (platform_irq_count(adapter->pdev) == 1)
2471 		retval = platform_get_irq(adapter->pdev, 0);
2472 	else
2473 		retval = platform_get_irq_byname(adapter->pdev, "mac");
2474 	if (retval < 0)
2475 		return retval;
2476 	adapter->num_tx_queues = 1;
2477 	adapter->num_rx_queues = 1;
2478 	adapter->num_queues = 1;
2479 	adapter->queue[0].adapter = adapter;
2480 	adapter->queue[0].irq = retval;
2481 	adapter->queue[0].tx = &adapter->tx[0];
2482 	adapter->queue[0].tx->adapter = adapter;
2483 	adapter->queue[0].tx->addr = adapter->addr + TSNEP_QUEUE(0);
2484 	adapter->queue[0].tx->queue_index = 0;
2485 	adapter->queue[0].rx = &adapter->rx[0];
2486 	adapter->queue[0].rx->adapter = adapter;
2487 	adapter->queue[0].rx->addr = adapter->addr + TSNEP_QUEUE(0);
2488 	adapter->queue[0].rx->queue_index = 0;
2489 	adapter->queue[0].irq_mask = irq_mask;
2490 	adapter->queue[0].irq_delay_addr = adapter->addr + ECM_INT_DELAY;
2491 	retval = tsnep_set_irq_coalesce(&adapter->queue[0],
2492 					TSNEP_COALESCE_USECS_DEFAULT);
2493 	if (retval < 0)
2494 		return retval;
2495 
2496 	adapter->netdev->irq = adapter->queue[0].irq;
2497 
2498 	/* add additional TX/RX queue pairs only if dedicated interrupt is
2499 	 * available
2500 	 */
2501 	for (i = 1; i < queue_count; i++) {
2502 		sprintf(name, "txrx-%d", i);
2503 		retval = platform_get_irq_byname_optional(adapter->pdev, name);
2504 		if (retval < 0)
2505 			break;
2506 
2507 		adapter->num_tx_queues++;
2508 		adapter->num_rx_queues++;
2509 		adapter->num_queues++;
2510 		adapter->queue[i].adapter = adapter;
2511 		adapter->queue[i].irq = retval;
2512 		adapter->queue[i].tx = &adapter->tx[i];
2513 		adapter->queue[i].tx->adapter = adapter;
2514 		adapter->queue[i].tx->addr = adapter->addr + TSNEP_QUEUE(i);
2515 		adapter->queue[i].tx->queue_index = i;
2516 		adapter->queue[i].rx = &adapter->rx[i];
2517 		adapter->queue[i].rx->adapter = adapter;
2518 		adapter->queue[i].rx->addr = adapter->addr + TSNEP_QUEUE(i);
2519 		adapter->queue[i].rx->queue_index = i;
2520 		adapter->queue[i].irq_mask =
2521 			irq_mask << (ECM_INT_TXRX_SHIFT * i);
2522 		adapter->queue[i].irq_delay_addr =
2523 			adapter->addr + ECM_INT_DELAY + ECM_INT_DELAY_OFFSET * i;
2524 		retval = tsnep_set_irq_coalesce(&adapter->queue[i],
2525 						TSNEP_COALESCE_USECS_DEFAULT);
2526 		if (retval < 0)
2527 			return retval;
2528 	}
2529 
2530 	return 0;
2531 }
2532 
2533 static int tsnep_probe(struct platform_device *pdev)
2534 {
2535 	struct tsnep_adapter *adapter;
2536 	struct net_device *netdev;
2537 	struct resource *io;
2538 	u32 type;
2539 	int revision;
2540 	int version;
2541 	int queue_count;
2542 	int retval;
2543 
2544 	netdev = devm_alloc_etherdev_mqs(&pdev->dev,
2545 					 sizeof(struct tsnep_adapter),
2546 					 TSNEP_MAX_QUEUES, TSNEP_MAX_QUEUES);
2547 	if (!netdev)
2548 		return -ENODEV;
2549 	SET_NETDEV_DEV(netdev, &pdev->dev);
2550 	adapter = netdev_priv(netdev);
2551 	platform_set_drvdata(pdev, adapter);
2552 	adapter->pdev = pdev;
2553 	adapter->dmadev = &pdev->dev;
2554 	adapter->netdev = netdev;
2555 	adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE |
2556 			      NETIF_MSG_LINK | NETIF_MSG_IFUP |
2557 			      NETIF_MSG_IFDOWN | NETIF_MSG_TX_QUEUED;
2558 
2559 	netdev->min_mtu = ETH_MIN_MTU;
2560 	netdev->max_mtu = TSNEP_MAX_FRAME_SIZE;
2561 
2562 	mutex_init(&adapter->gate_control_lock);
2563 	mutex_init(&adapter->rxnfc_lock);
2564 	INIT_LIST_HEAD(&adapter->rxnfc_rules);
2565 
2566 	adapter->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &io);
2567 	if (IS_ERR(adapter->addr))
2568 		return PTR_ERR(adapter->addr);
2569 	netdev->mem_start = io->start;
2570 	netdev->mem_end = io->end;
2571 
2572 	type = ioread32(adapter->addr + ECM_TYPE);
2573 	revision = (type & ECM_REVISION_MASK) >> ECM_REVISION_SHIFT;
2574 	version = (type & ECM_VERSION_MASK) >> ECM_VERSION_SHIFT;
2575 	queue_count = (type & ECM_QUEUE_COUNT_MASK) >> ECM_QUEUE_COUNT_SHIFT;
2576 	adapter->gate_control = type & ECM_GATE_CONTROL;
2577 	adapter->rxnfc_max = TSNEP_RX_ASSIGN_ETHER_TYPE_COUNT;
2578 
2579 	tsnep_disable_irq(adapter, ECM_INT_ALL);
2580 
2581 	retval = tsnep_queue_init(adapter, queue_count);
2582 	if (retval)
2583 		return retval;
2584 
2585 	retval = dma_set_mask_and_coherent(&adapter->pdev->dev,
2586 					   DMA_BIT_MASK(64));
2587 	if (retval) {
2588 		dev_err(&adapter->pdev->dev, "no usable DMA configuration.\n");
2589 		return retval;
2590 	}
2591 
2592 	retval = tsnep_mac_init(adapter);
2593 	if (retval)
2594 		return retval;
2595 
2596 	retval = tsnep_mdio_init(adapter);
2597 	if (retval)
2598 		goto mdio_init_failed;
2599 
2600 	retval = tsnep_phy_init(adapter);
2601 	if (retval)
2602 		goto phy_init_failed;
2603 
2604 	retval = tsnep_ptp_init(adapter);
2605 	if (retval)
2606 		goto ptp_init_failed;
2607 
2608 	retval = tsnep_tc_init(adapter);
2609 	if (retval)
2610 		goto tc_init_failed;
2611 
2612 	retval = tsnep_rxnfc_init(adapter);
2613 	if (retval)
2614 		goto rxnfc_init_failed;
2615 
2616 	netdev->netdev_ops = &tsnep_netdev_ops;
2617 	netdev->ethtool_ops = &tsnep_ethtool_ops;
2618 	netdev->features = NETIF_F_SG;
2619 	netdev->hw_features = netdev->features | NETIF_F_LOOPBACK;
2620 
2621 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
2622 			       NETDEV_XDP_ACT_NDO_XMIT |
2623 			       NETDEV_XDP_ACT_NDO_XMIT_SG |
2624 			       NETDEV_XDP_ACT_XSK_ZEROCOPY;
2625 
2626 	/* carrier off reporting is important to ethtool even BEFORE open */
2627 	netif_carrier_off(netdev);
2628 
2629 	retval = register_netdev(netdev);
2630 	if (retval)
2631 		goto register_failed;
2632 
2633 	dev_info(&adapter->pdev->dev, "device version %d.%02d\n", version,
2634 		 revision);
2635 	if (adapter->gate_control)
2636 		dev_info(&adapter->pdev->dev, "gate control detected\n");
2637 
2638 	return 0;
2639 
2640 register_failed:
2641 	tsnep_rxnfc_cleanup(adapter);
2642 rxnfc_init_failed:
2643 	tsnep_tc_cleanup(adapter);
2644 tc_init_failed:
2645 	tsnep_ptp_cleanup(adapter);
2646 ptp_init_failed:
2647 phy_init_failed:
2648 	if (adapter->mdiobus)
2649 		mdiobus_unregister(adapter->mdiobus);
2650 mdio_init_failed:
2651 	return retval;
2652 }
2653 
2654 static void tsnep_remove(struct platform_device *pdev)
2655 {
2656 	struct tsnep_adapter *adapter = platform_get_drvdata(pdev);
2657 
2658 	unregister_netdev(adapter->netdev);
2659 
2660 	tsnep_rxnfc_cleanup(adapter);
2661 
2662 	tsnep_tc_cleanup(adapter);
2663 
2664 	tsnep_ptp_cleanup(adapter);
2665 
2666 	if (adapter->mdiobus)
2667 		mdiobus_unregister(adapter->mdiobus);
2668 
2669 	tsnep_disable_irq(adapter, ECM_INT_ALL);
2670 }
2671 
2672 static const struct of_device_id tsnep_of_match[] = {
2673 	{ .compatible = "engleder,tsnep", },
2674 { },
2675 };
2676 MODULE_DEVICE_TABLE(of, tsnep_of_match);
2677 
2678 static struct platform_driver tsnep_driver = {
2679 	.driver = {
2680 		.name = TSNEP,
2681 		.of_match_table = tsnep_of_match,
2682 	},
2683 	.probe = tsnep_probe,
2684 	.remove_new = tsnep_remove,
2685 };
2686 module_platform_driver(tsnep_driver);
2687 
2688 MODULE_AUTHOR("Gerhard Engleder <gerhard@engleder-embedded.com>");
2689 MODULE_DESCRIPTION("TSN endpoint Ethernet MAC driver");
2690 MODULE_LICENSE("GPL");
2691