xref: /linux/drivers/net/ethernet/dlink/dl2k.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
2 /*
3     Copyright (c) 2001, 2002 by D-Link Corporation
4     Written by Edward Peng.<edward_peng@dlink.com.tw>
5     Created 03-May-2001, base on Linux' sundance.c.
6 
7     This program is free software; you can redistribute it and/or modify
8     it under the terms of the GNU General Public License as published by
9     the Free Software Foundation; either version 2 of the License, or
10     (at your option) any later version.
11 */
12 
13 #define DRV_NAME	"DL2000/TC902x-based linux driver"
14 #define DRV_VERSION	"v1.19"
15 #define DRV_RELDATE	"2007/08/12"
16 #include "dl2k.h"
17 #include <linux/dma-mapping.h>
18 
19 static char version[] __devinitdata =
20       KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
21 #define MAX_UNITS 8
22 static int mtu[MAX_UNITS];
23 static int vlan[MAX_UNITS];
24 static int jumbo[MAX_UNITS];
25 static char *media[MAX_UNITS];
26 static int tx_flow=-1;
27 static int rx_flow=-1;
28 static int copy_thresh;
29 static int rx_coalesce=10;	/* Rx frame count each interrupt */
30 static int rx_timeout=200;	/* Rx DMA wait time in 640ns increments */
31 static int tx_coalesce=16;	/* HW xmit count each TxDMAComplete */
32 
33 
34 MODULE_AUTHOR ("Edward Peng");
35 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
36 MODULE_LICENSE("GPL");
37 module_param_array(mtu, int, NULL, 0);
38 module_param_array(media, charp, NULL, 0);
39 module_param_array(vlan, int, NULL, 0);
40 module_param_array(jumbo, int, NULL, 0);
41 module_param(tx_flow, int, 0);
42 module_param(rx_flow, int, 0);
43 module_param(copy_thresh, int, 0);
44 module_param(rx_coalesce, int, 0);	/* Rx frame count each interrupt */
45 module_param(rx_timeout, int, 0);	/* Rx DMA wait time in 64ns increments */
46 module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
47 
48 
49 /* Enable the default interrupts */
50 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
51        UpdateStats | LinkEvent)
52 #define EnableInt() \
53 writew(DEFAULT_INTR, ioaddr + IntEnable)
54 
55 static const int max_intrloop = 50;
56 static const int multicast_filter_limit = 0x40;
57 
58 static int rio_open (struct net_device *dev);
59 static void rio_timer (unsigned long data);
60 static void rio_tx_timeout (struct net_device *dev);
61 static void alloc_list (struct net_device *dev);
62 static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
63 static irqreturn_t rio_interrupt (int irq, void *dev_instance);
64 static void rio_free_tx (struct net_device *dev, int irq);
65 static void tx_error (struct net_device *dev, int tx_status);
66 static int receive_packet (struct net_device *dev);
67 static void rio_error (struct net_device *dev, int int_status);
68 static int change_mtu (struct net_device *dev, int new_mtu);
69 static void set_multicast (struct net_device *dev);
70 static struct net_device_stats *get_stats (struct net_device *dev);
71 static int clear_stats (struct net_device *dev);
72 static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
73 static int rio_close (struct net_device *dev);
74 static int find_miiphy (struct net_device *dev);
75 static int parse_eeprom (struct net_device *dev);
76 static int read_eeprom (long ioaddr, int eep_addr);
77 static int mii_wait_link (struct net_device *dev, int wait);
78 static int mii_set_media (struct net_device *dev);
79 static int mii_get_media (struct net_device *dev);
80 static int mii_set_media_pcs (struct net_device *dev);
81 static int mii_get_media_pcs (struct net_device *dev);
82 static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
83 static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
84 		      u16 data);
85 
86 static const struct ethtool_ops ethtool_ops;
87 
88 static const struct net_device_ops netdev_ops = {
89 	.ndo_open		= rio_open,
90 	.ndo_start_xmit	= start_xmit,
91 	.ndo_stop		= rio_close,
92 	.ndo_get_stats		= get_stats,
93 	.ndo_validate_addr	= eth_validate_addr,
94 	.ndo_set_mac_address 	= eth_mac_addr,
95 	.ndo_set_rx_mode	= set_multicast,
96 	.ndo_do_ioctl		= rio_ioctl,
97 	.ndo_tx_timeout		= rio_tx_timeout,
98 	.ndo_change_mtu		= change_mtu,
99 };
100 
101 static int __devinit
102 rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
103 {
104 	struct net_device *dev;
105 	struct netdev_private *np;
106 	static int card_idx;
107 	int chip_idx = ent->driver_data;
108 	int err, irq;
109 	long ioaddr;
110 	static int version_printed;
111 	void *ring_space;
112 	dma_addr_t ring_dma;
113 
114 	if (!version_printed++)
115 		printk ("%s", version);
116 
117 	err = pci_enable_device (pdev);
118 	if (err)
119 		return err;
120 
121 	irq = pdev->irq;
122 	err = pci_request_regions (pdev, "dl2k");
123 	if (err)
124 		goto err_out_disable;
125 
126 	pci_set_master (pdev);
127 	dev = alloc_etherdev (sizeof (*np));
128 	if (!dev) {
129 		err = -ENOMEM;
130 		goto err_out_res;
131 	}
132 	SET_NETDEV_DEV(dev, &pdev->dev);
133 
134 #ifdef MEM_MAPPING
135 	ioaddr = pci_resource_start (pdev, 1);
136 	ioaddr = (long) ioremap (ioaddr, RIO_IO_SIZE);
137 	if (!ioaddr) {
138 		err = -ENOMEM;
139 		goto err_out_dev;
140 	}
141 #else
142 	ioaddr = pci_resource_start (pdev, 0);
143 #endif
144 	dev->base_addr = ioaddr;
145 	dev->irq = irq;
146 	np = netdev_priv(dev);
147 	np->chip_id = chip_idx;
148 	np->pdev = pdev;
149 	spin_lock_init (&np->tx_lock);
150 	spin_lock_init (&np->rx_lock);
151 
152 	/* Parse manual configuration */
153 	np->an_enable = 1;
154 	np->tx_coalesce = 1;
155 	if (card_idx < MAX_UNITS) {
156 		if (media[card_idx] != NULL) {
157 			np->an_enable = 0;
158 			if (strcmp (media[card_idx], "auto") == 0 ||
159 			    strcmp (media[card_idx], "autosense") == 0 ||
160 			    strcmp (media[card_idx], "0") == 0 ) {
161 				np->an_enable = 2;
162 			} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
163 			    strcmp (media[card_idx], "4") == 0) {
164 				np->speed = 100;
165 				np->full_duplex = 1;
166 			} else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
167 				   strcmp (media[card_idx], "3") == 0) {
168 				np->speed = 100;
169 				np->full_duplex = 0;
170 			} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
171 				   strcmp (media[card_idx], "2") == 0) {
172 				np->speed = 10;
173 				np->full_duplex = 1;
174 			} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
175 				   strcmp (media[card_idx], "1") == 0) {
176 				np->speed = 10;
177 				np->full_duplex = 0;
178 			} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
179 				 strcmp (media[card_idx], "6") == 0) {
180 				np->speed=1000;
181 				np->full_duplex=1;
182 			} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
183 				 strcmp (media[card_idx], "5") == 0) {
184 				np->speed = 1000;
185 				np->full_duplex = 0;
186 			} else {
187 				np->an_enable = 1;
188 			}
189 		}
190 		if (jumbo[card_idx] != 0) {
191 			np->jumbo = 1;
192 			dev->mtu = MAX_JUMBO;
193 		} else {
194 			np->jumbo = 0;
195 			if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
196 				dev->mtu = mtu[card_idx];
197 		}
198 		np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
199 		    vlan[card_idx] : 0;
200 		if (rx_coalesce > 0 && rx_timeout > 0) {
201 			np->rx_coalesce = rx_coalesce;
202 			np->rx_timeout = rx_timeout;
203 			np->coalesce = 1;
204 		}
205 		np->tx_flow = (tx_flow == 0) ? 0 : 1;
206 		np->rx_flow = (rx_flow == 0) ? 0 : 1;
207 
208 		if (tx_coalesce < 1)
209 			tx_coalesce = 1;
210 		else if (tx_coalesce > TX_RING_SIZE-1)
211 			tx_coalesce = TX_RING_SIZE - 1;
212 	}
213 	dev->netdev_ops = &netdev_ops;
214 	dev->watchdog_timeo = TX_TIMEOUT;
215 	SET_ETHTOOL_OPS(dev, &ethtool_ops);
216 #if 0
217 	dev->features = NETIF_F_IP_CSUM;
218 #endif
219 	pci_set_drvdata (pdev, dev);
220 
221 	ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
222 	if (!ring_space)
223 		goto err_out_iounmap;
224 	np->tx_ring = ring_space;
225 	np->tx_ring_dma = ring_dma;
226 
227 	ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
228 	if (!ring_space)
229 		goto err_out_unmap_tx;
230 	np->rx_ring = ring_space;
231 	np->rx_ring_dma = ring_dma;
232 
233 	/* Parse eeprom data */
234 	parse_eeprom (dev);
235 
236 	/* Find PHY address */
237 	err = find_miiphy (dev);
238 	if (err)
239 		goto err_out_unmap_rx;
240 
241 	/* Fiber device? */
242 	np->phy_media = (readw(ioaddr + ASICCtrl) & PhyMedia) ? 1 : 0;
243 	np->link_status = 0;
244 	/* Set media and reset PHY */
245 	if (np->phy_media) {
246 		/* default Auto-Negotiation for fiber deivices */
247 	 	if (np->an_enable == 2) {
248 			np->an_enable = 1;
249 		}
250 		mii_set_media_pcs (dev);
251 	} else {
252 		/* Auto-Negotiation is mandatory for 1000BASE-T,
253 		   IEEE 802.3ab Annex 28D page 14 */
254 		if (np->speed == 1000)
255 			np->an_enable = 1;
256 		mii_set_media (dev);
257 	}
258 
259 	err = register_netdev (dev);
260 	if (err)
261 		goto err_out_unmap_rx;
262 
263 	card_idx++;
264 
265 	printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
266 		dev->name, np->name, dev->dev_addr, irq);
267 	if (tx_coalesce > 1)
268 		printk(KERN_INFO "tx_coalesce:\t%d packets\n",
269 				tx_coalesce);
270 	if (np->coalesce)
271 		printk(KERN_INFO
272 		       "rx_coalesce:\t%d packets\n"
273 		       "rx_timeout: \t%d ns\n",
274 				np->rx_coalesce, np->rx_timeout*640);
275 	if (np->vlan)
276 		printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
277 	return 0;
278 
279       err_out_unmap_rx:
280 	pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
281       err_out_unmap_tx:
282 	pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
283       err_out_iounmap:
284 #ifdef MEM_MAPPING
285 	iounmap ((void *) ioaddr);
286 
287       err_out_dev:
288 #endif
289 	free_netdev (dev);
290 
291       err_out_res:
292 	pci_release_regions (pdev);
293 
294       err_out_disable:
295 	pci_disable_device (pdev);
296 	return err;
297 }
298 
299 static int
300 find_miiphy (struct net_device *dev)
301 {
302 	int i, phy_found = 0;
303 	struct netdev_private *np;
304 	long ioaddr;
305 	np = netdev_priv(dev);
306 	ioaddr = dev->base_addr;
307 	np->phy_addr = 1;
308 
309 	for (i = 31; i >= 0; i--) {
310 		int mii_status = mii_read (dev, i, 1);
311 		if (mii_status != 0xffff && mii_status != 0x0000) {
312 			np->phy_addr = i;
313 			phy_found++;
314 		}
315 	}
316 	if (!phy_found) {
317 		printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
318 		return -ENODEV;
319 	}
320 	return 0;
321 }
322 
323 static int
324 parse_eeprom (struct net_device *dev)
325 {
326 	int i, j;
327 	long ioaddr = dev->base_addr;
328 	u8 sromdata[256];
329 	u8 *psib;
330 	u32 crc;
331 	PSROM_t psrom = (PSROM_t) sromdata;
332 	struct netdev_private *np = netdev_priv(dev);
333 
334 	int cid, next;
335 
336 #ifdef	MEM_MAPPING
337 	ioaddr = pci_resource_start (np->pdev, 0);
338 #endif
339 	/* Read eeprom */
340 	for (i = 0; i < 128; i++) {
341 		((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom (ioaddr, i));
342 	}
343 #ifdef	MEM_MAPPING
344 	ioaddr = dev->base_addr;
345 #endif
346 	if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {	/* D-Link Only */
347 		/* Check CRC */
348 		crc = ~ether_crc_le (256 - 4, sromdata);
349 		if (psrom->crc != cpu_to_le32(crc)) {
350 			printk (KERN_ERR "%s: EEPROM data CRC error.\n",
351 					dev->name);
352 			return -1;
353 		}
354 	}
355 
356 	/* Set MAC address */
357 	for (i = 0; i < 6; i++)
358 		dev->dev_addr[i] = psrom->mac_addr[i];
359 
360 	if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
361 		return 0;
362 	}
363 
364 	/* Parse Software Information Block */
365 	i = 0x30;
366 	psib = (u8 *) sromdata;
367 	do {
368 		cid = psib[i++];
369 		next = psib[i++];
370 		if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
371 			printk (KERN_ERR "Cell data error\n");
372 			return -1;
373 		}
374 		switch (cid) {
375 		case 0:	/* Format version */
376 			break;
377 		case 1:	/* End of cell */
378 			return 0;
379 		case 2:	/* Duplex Polarity */
380 			np->duplex_polarity = psib[i];
381 			writeb (readb (ioaddr + PhyCtrl) | psib[i],
382 				ioaddr + PhyCtrl);
383 			break;
384 		case 3:	/* Wake Polarity */
385 			np->wake_polarity = psib[i];
386 			break;
387 		case 9:	/* Adapter description */
388 			j = (next - i > 255) ? 255 : next - i;
389 			memcpy (np->name, &(psib[i]), j);
390 			break;
391 		case 4:
392 		case 5:
393 		case 6:
394 		case 7:
395 		case 8:	/* Reversed */
396 			break;
397 		default:	/* Unknown cell */
398 			return -1;
399 		}
400 		i = next;
401 	} while (1);
402 
403 	return 0;
404 }
405 
406 static int
407 rio_open (struct net_device *dev)
408 {
409 	struct netdev_private *np = netdev_priv(dev);
410 	long ioaddr = dev->base_addr;
411 	int i;
412 	u16 macctrl;
413 
414 	i = request_irq (dev->irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
415 	if (i)
416 		return i;
417 
418 	/* Reset all logic functions */
419 	writew (GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset,
420 		ioaddr + ASICCtrl + 2);
421 	mdelay(10);
422 
423 	/* DebugCtrl bit 4, 5, 9 must set */
424 	writel (readl (ioaddr + DebugCtrl) | 0x0230, ioaddr + DebugCtrl);
425 
426 	/* Jumbo frame */
427 	if (np->jumbo != 0)
428 		writew (MAX_JUMBO+14, ioaddr + MaxFrameSize);
429 
430 	alloc_list (dev);
431 
432 	/* Get station address */
433 	for (i = 0; i < 6; i++)
434 		writeb (dev->dev_addr[i], ioaddr + StationAddr0 + i);
435 
436 	set_multicast (dev);
437 	if (np->coalesce) {
438 		writel (np->rx_coalesce | np->rx_timeout << 16,
439 			ioaddr + RxDMAIntCtrl);
440 	}
441 	/* Set RIO to poll every N*320nsec. */
442 	writeb (0x20, ioaddr + RxDMAPollPeriod);
443 	writeb (0xff, ioaddr + TxDMAPollPeriod);
444 	writeb (0x30, ioaddr + RxDMABurstThresh);
445 	writeb (0x30, ioaddr + RxDMAUrgentThresh);
446 	writel (0x0007ffff, ioaddr + RmonStatMask);
447 	/* clear statistics */
448 	clear_stats (dev);
449 
450 	/* VLAN supported */
451 	if (np->vlan) {
452 		/* priority field in RxDMAIntCtrl  */
453 		writel (readl(ioaddr + RxDMAIntCtrl) | 0x7 << 10,
454 			ioaddr + RxDMAIntCtrl);
455 		/* VLANId */
456 		writew (np->vlan, ioaddr + VLANId);
457 		/* Length/Type should be 0x8100 */
458 		writel (0x8100 << 16 | np->vlan, ioaddr + VLANTag);
459 		/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
460 		   VLAN information tagged by TFC' VID, CFI fields. */
461 		writel (readl (ioaddr + MACCtrl) | AutoVLANuntagging,
462 			ioaddr + MACCtrl);
463 	}
464 
465 	init_timer (&np->timer);
466 	np->timer.expires = jiffies + 1*HZ;
467 	np->timer.data = (unsigned long) dev;
468 	np->timer.function = rio_timer;
469 	add_timer (&np->timer);
470 
471 	/* Start Tx/Rx */
472 	writel (readl (ioaddr + MACCtrl) | StatsEnable | RxEnable | TxEnable,
473 			ioaddr + MACCtrl);
474 
475 	macctrl = 0;
476 	macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
477 	macctrl |= (np->full_duplex) ? DuplexSelect : 0;
478 	macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
479 	macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
480 	writew(macctrl,	ioaddr + MACCtrl);
481 
482 	netif_start_queue (dev);
483 
484 	/* Enable default interrupts */
485 	EnableInt ();
486 	return 0;
487 }
488 
489 static void
490 rio_timer (unsigned long data)
491 {
492 	struct net_device *dev = (struct net_device *)data;
493 	struct netdev_private *np = netdev_priv(dev);
494 	unsigned int entry;
495 	int next_tick = 1*HZ;
496 	unsigned long flags;
497 
498 	spin_lock_irqsave(&np->rx_lock, flags);
499 	/* Recover rx ring exhausted error */
500 	if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
501 		printk(KERN_INFO "Try to recover rx ring exhausted...\n");
502 		/* Re-allocate skbuffs to fill the descriptor ring */
503 		for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
504 			struct sk_buff *skb;
505 			entry = np->old_rx % RX_RING_SIZE;
506 			/* Dropped packets don't need to re-allocate */
507 			if (np->rx_skbuff[entry] == NULL) {
508 				skb = netdev_alloc_skb_ip_align(dev,
509 								np->rx_buf_sz);
510 				if (skb == NULL) {
511 					np->rx_ring[entry].fraginfo = 0;
512 					printk (KERN_INFO
513 						"%s: Still unable to re-allocate Rx skbuff.#%d\n",
514 						dev->name, entry);
515 					break;
516 				}
517 				np->rx_skbuff[entry] = skb;
518 				np->rx_ring[entry].fraginfo =
519 				    cpu_to_le64 (pci_map_single
520 					 (np->pdev, skb->data, np->rx_buf_sz,
521 					  PCI_DMA_FROMDEVICE));
522 			}
523 			np->rx_ring[entry].fraginfo |=
524 			    cpu_to_le64((u64)np->rx_buf_sz << 48);
525 			np->rx_ring[entry].status = 0;
526 		} /* end for */
527 	} /* end if */
528 	spin_unlock_irqrestore (&np->rx_lock, flags);
529 	np->timer.expires = jiffies + next_tick;
530 	add_timer(&np->timer);
531 }
532 
533 static void
534 rio_tx_timeout (struct net_device *dev)
535 {
536 	long ioaddr = dev->base_addr;
537 
538 	printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
539 		dev->name, readl (ioaddr + TxStatus));
540 	rio_free_tx(dev, 0);
541 	dev->if_port = 0;
542 	dev->trans_start = jiffies; /* prevent tx timeout */
543 }
544 
545  /* allocate and initialize Tx and Rx descriptors */
546 static void
547 alloc_list (struct net_device *dev)
548 {
549 	struct netdev_private *np = netdev_priv(dev);
550 	int i;
551 
552 	np->cur_rx = np->cur_tx = 0;
553 	np->old_rx = np->old_tx = 0;
554 	np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
555 
556 	/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
557 	for (i = 0; i < TX_RING_SIZE; i++) {
558 		np->tx_skbuff[i] = NULL;
559 		np->tx_ring[i].status = cpu_to_le64 (TFDDone);
560 		np->tx_ring[i].next_desc = cpu_to_le64 (np->tx_ring_dma +
561 					      ((i+1)%TX_RING_SIZE) *
562 					      sizeof (struct netdev_desc));
563 	}
564 
565 	/* Initialize Rx descriptors */
566 	for (i = 0; i < RX_RING_SIZE; i++) {
567 		np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma +
568 						((i + 1) % RX_RING_SIZE) *
569 						sizeof (struct netdev_desc));
570 		np->rx_ring[i].status = 0;
571 		np->rx_ring[i].fraginfo = 0;
572 		np->rx_skbuff[i] = NULL;
573 	}
574 
575 	/* Allocate the rx buffers */
576 	for (i = 0; i < RX_RING_SIZE; i++) {
577 		/* Allocated fixed size of skbuff */
578 		struct sk_buff *skb;
579 
580 		skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
581 		np->rx_skbuff[i] = skb;
582 		if (skb == NULL) {
583 			printk (KERN_ERR
584 				"%s: alloc_list: allocate Rx buffer error! ",
585 				dev->name);
586 			break;
587 		}
588 		/* Rubicon now supports 40 bits of addressing space. */
589 		np->rx_ring[i].fraginfo =
590 		    cpu_to_le64 ( pci_map_single (
591 			 	  np->pdev, skb->data, np->rx_buf_sz,
592 				  PCI_DMA_FROMDEVICE));
593 		np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
594 	}
595 
596 	/* Set RFDListPtr */
597 	writel (np->rx_ring_dma, dev->base_addr + RFDListPtr0);
598 	writel (0, dev->base_addr + RFDListPtr1);
599 }
600 
601 static netdev_tx_t
602 start_xmit (struct sk_buff *skb, struct net_device *dev)
603 {
604 	struct netdev_private *np = netdev_priv(dev);
605 	struct netdev_desc *txdesc;
606 	unsigned entry;
607 	u32 ioaddr;
608 	u64 tfc_vlan_tag = 0;
609 
610 	if (np->link_status == 0) {	/* Link Down */
611 		dev_kfree_skb(skb);
612 		return NETDEV_TX_OK;
613 	}
614 	ioaddr = dev->base_addr;
615 	entry = np->cur_tx % TX_RING_SIZE;
616 	np->tx_skbuff[entry] = skb;
617 	txdesc = &np->tx_ring[entry];
618 
619 #if 0
620 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
621 		txdesc->status |=
622 		    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
623 				 IPChecksumEnable);
624 	}
625 #endif
626 	if (np->vlan) {
627 		tfc_vlan_tag = VLANTagInsert |
628 		    ((u64)np->vlan << 32) |
629 		    ((u64)skb->priority << 45);
630 	}
631 	txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
632 							skb->len,
633 							PCI_DMA_TODEVICE));
634 	txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
635 
636 	/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
637 	 * Work around: Always use 1 descriptor in 10Mbps mode */
638 	if (entry % np->tx_coalesce == 0 || np->speed == 10)
639 		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
640 					      WordAlignDisable |
641 					      TxDMAIndicate |
642 					      (1 << FragCountShift));
643 	else
644 		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
645 					      WordAlignDisable |
646 					      (1 << FragCountShift));
647 
648 	/* TxDMAPollNow */
649 	writel (readl (ioaddr + DMACtrl) | 0x00001000, ioaddr + DMACtrl);
650 	/* Schedule ISR */
651 	writel(10000, ioaddr + CountDown);
652 	np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
653 	if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
654 			< TX_QUEUE_LEN - 1 && np->speed != 10) {
655 		/* do nothing */
656 	} else if (!netif_queue_stopped(dev)) {
657 		netif_stop_queue (dev);
658 	}
659 
660 	/* The first TFDListPtr */
661 	if (readl (dev->base_addr + TFDListPtr0) == 0) {
662 		writel (np->tx_ring_dma + entry * sizeof (struct netdev_desc),
663 			dev->base_addr + TFDListPtr0);
664 		writel (0, dev->base_addr + TFDListPtr1);
665 	}
666 
667 	return NETDEV_TX_OK;
668 }
669 
670 static irqreturn_t
671 rio_interrupt (int irq, void *dev_instance)
672 {
673 	struct net_device *dev = dev_instance;
674 	struct netdev_private *np;
675 	unsigned int_status;
676 	long ioaddr;
677 	int cnt = max_intrloop;
678 	int handled = 0;
679 
680 	ioaddr = dev->base_addr;
681 	np = netdev_priv(dev);
682 	while (1) {
683 		int_status = readw (ioaddr + IntStatus);
684 		writew (int_status, ioaddr + IntStatus);
685 		int_status &= DEFAULT_INTR;
686 		if (int_status == 0 || --cnt < 0)
687 			break;
688 		handled = 1;
689 		/* Processing received packets */
690 		if (int_status & RxDMAComplete)
691 			receive_packet (dev);
692 		/* TxDMAComplete interrupt */
693 		if ((int_status & (TxDMAComplete|IntRequested))) {
694 			int tx_status;
695 			tx_status = readl (ioaddr + TxStatus);
696 			if (tx_status & 0x01)
697 				tx_error (dev, tx_status);
698 			/* Free used tx skbuffs */
699 			rio_free_tx (dev, 1);
700 		}
701 
702 		/* Handle uncommon events */
703 		if (int_status &
704 		    (HostError | LinkEvent | UpdateStats))
705 			rio_error (dev, int_status);
706 	}
707 	if (np->cur_tx != np->old_tx)
708 		writel (100, ioaddr + CountDown);
709 	return IRQ_RETVAL(handled);
710 }
711 
712 static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
713 {
714 	return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
715 }
716 
717 static void
718 rio_free_tx (struct net_device *dev, int irq)
719 {
720 	struct netdev_private *np = netdev_priv(dev);
721 	int entry = np->old_tx % TX_RING_SIZE;
722 	int tx_use = 0;
723 	unsigned long flag = 0;
724 
725 	if (irq)
726 		spin_lock(&np->tx_lock);
727 	else
728 		spin_lock_irqsave(&np->tx_lock, flag);
729 
730 	/* Free used tx skbuffs */
731 	while (entry != np->cur_tx) {
732 		struct sk_buff *skb;
733 
734 		if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
735 			break;
736 		skb = np->tx_skbuff[entry];
737 		pci_unmap_single (np->pdev,
738 				  desc_to_dma(&np->tx_ring[entry]),
739 				  skb->len, PCI_DMA_TODEVICE);
740 		if (irq)
741 			dev_kfree_skb_irq (skb);
742 		else
743 			dev_kfree_skb (skb);
744 
745 		np->tx_skbuff[entry] = NULL;
746 		entry = (entry + 1) % TX_RING_SIZE;
747 		tx_use++;
748 	}
749 	if (irq)
750 		spin_unlock(&np->tx_lock);
751 	else
752 		spin_unlock_irqrestore(&np->tx_lock, flag);
753 	np->old_tx = entry;
754 
755 	/* If the ring is no longer full, clear tx_full and
756 	   call netif_wake_queue() */
757 
758 	if (netif_queue_stopped(dev) &&
759 	    ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
760 	    < TX_QUEUE_LEN - 1 || np->speed == 10)) {
761 		netif_wake_queue (dev);
762 	}
763 }
764 
765 static void
766 tx_error (struct net_device *dev, int tx_status)
767 {
768 	struct netdev_private *np;
769 	long ioaddr = dev->base_addr;
770 	int frame_id;
771 	int i;
772 
773 	np = netdev_priv(dev);
774 
775 	frame_id = (tx_status & 0xffff0000);
776 	printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
777 		dev->name, tx_status, frame_id);
778 	np->stats.tx_errors++;
779 	/* Ttransmit Underrun */
780 	if (tx_status & 0x10) {
781 		np->stats.tx_fifo_errors++;
782 		writew (readw (ioaddr + TxStartThresh) + 0x10,
783 			ioaddr + TxStartThresh);
784 		/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
785 		writew (TxReset | DMAReset | FIFOReset | NetworkReset,
786 			ioaddr + ASICCtrl + 2);
787 		/* Wait for ResetBusy bit clear */
788 		for (i = 50; i > 0; i--) {
789 			if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
790 				break;
791 			mdelay (1);
792 		}
793 		rio_free_tx (dev, 1);
794 		/* Reset TFDListPtr */
795 		writel (np->tx_ring_dma +
796 			np->old_tx * sizeof (struct netdev_desc),
797 			dev->base_addr + TFDListPtr0);
798 		writel (0, dev->base_addr + TFDListPtr1);
799 
800 		/* Let TxStartThresh stay default value */
801 	}
802 	/* Late Collision */
803 	if (tx_status & 0x04) {
804 		np->stats.tx_fifo_errors++;
805 		/* TxReset and clear FIFO */
806 		writew (TxReset | FIFOReset, ioaddr + ASICCtrl + 2);
807 		/* Wait reset done */
808 		for (i = 50; i > 0; i--) {
809 			if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
810 				break;
811 			mdelay (1);
812 		}
813 		/* Let TxStartThresh stay default value */
814 	}
815 	/* Maximum Collisions */
816 #ifdef ETHER_STATS
817 	if (tx_status & 0x08)
818 		np->stats.collisions16++;
819 #else
820 	if (tx_status & 0x08)
821 		np->stats.collisions++;
822 #endif
823 	/* Restart the Tx */
824 	writel (readw (dev->base_addr + MACCtrl) | TxEnable, ioaddr + MACCtrl);
825 }
826 
827 static int
828 receive_packet (struct net_device *dev)
829 {
830 	struct netdev_private *np = netdev_priv(dev);
831 	int entry = np->cur_rx % RX_RING_SIZE;
832 	int cnt = 30;
833 
834 	/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
835 	while (1) {
836 		struct netdev_desc *desc = &np->rx_ring[entry];
837 		int pkt_len;
838 		u64 frame_status;
839 
840 		if (!(desc->status & cpu_to_le64(RFDDone)) ||
841 		    !(desc->status & cpu_to_le64(FrameStart)) ||
842 		    !(desc->status & cpu_to_le64(FrameEnd)))
843 			break;
844 
845 		/* Chip omits the CRC. */
846 		frame_status = le64_to_cpu(desc->status);
847 		pkt_len = frame_status & 0xffff;
848 		if (--cnt < 0)
849 			break;
850 		/* Update rx error statistics, drop packet. */
851 		if (frame_status & RFS_Errors) {
852 			np->stats.rx_errors++;
853 			if (frame_status & (RxRuntFrame | RxLengthError))
854 				np->stats.rx_length_errors++;
855 			if (frame_status & RxFCSError)
856 				np->stats.rx_crc_errors++;
857 			if (frame_status & RxAlignmentError && np->speed != 1000)
858 				np->stats.rx_frame_errors++;
859 			if (frame_status & RxFIFOOverrun)
860 	 			np->stats.rx_fifo_errors++;
861 		} else {
862 			struct sk_buff *skb;
863 
864 			/* Small skbuffs for short packets */
865 			if (pkt_len > copy_thresh) {
866 				pci_unmap_single (np->pdev,
867 						  desc_to_dma(desc),
868 						  np->rx_buf_sz,
869 						  PCI_DMA_FROMDEVICE);
870 				skb_put (skb = np->rx_skbuff[entry], pkt_len);
871 				np->rx_skbuff[entry] = NULL;
872 			} else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
873 				pci_dma_sync_single_for_cpu(np->pdev,
874 							    desc_to_dma(desc),
875 							    np->rx_buf_sz,
876 							    PCI_DMA_FROMDEVICE);
877 				skb_copy_to_linear_data (skb,
878 						  np->rx_skbuff[entry]->data,
879 						  pkt_len);
880 				skb_put (skb, pkt_len);
881 				pci_dma_sync_single_for_device(np->pdev,
882 							       desc_to_dma(desc),
883 							       np->rx_buf_sz,
884 							       PCI_DMA_FROMDEVICE);
885 			}
886 			skb->protocol = eth_type_trans (skb, dev);
887 #if 0
888 			/* Checksum done by hw, but csum value unavailable. */
889 			if (np->pdev->pci_rev_id >= 0x0c &&
890 				!(frame_status & (TCPError | UDPError | IPError))) {
891 				skb->ip_summed = CHECKSUM_UNNECESSARY;
892 			}
893 #endif
894 			netif_rx (skb);
895 		}
896 		entry = (entry + 1) % RX_RING_SIZE;
897 	}
898 	spin_lock(&np->rx_lock);
899 	np->cur_rx = entry;
900 	/* Re-allocate skbuffs to fill the descriptor ring */
901 	entry = np->old_rx;
902 	while (entry != np->cur_rx) {
903 		struct sk_buff *skb;
904 		/* Dropped packets don't need to re-allocate */
905 		if (np->rx_skbuff[entry] == NULL) {
906 			skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
907 			if (skb == NULL) {
908 				np->rx_ring[entry].fraginfo = 0;
909 				printk (KERN_INFO
910 					"%s: receive_packet: "
911 					"Unable to re-allocate Rx skbuff.#%d\n",
912 					dev->name, entry);
913 				break;
914 			}
915 			np->rx_skbuff[entry] = skb;
916 			np->rx_ring[entry].fraginfo =
917 			    cpu_to_le64 (pci_map_single
918 					 (np->pdev, skb->data, np->rx_buf_sz,
919 					  PCI_DMA_FROMDEVICE));
920 		}
921 		np->rx_ring[entry].fraginfo |=
922 		    cpu_to_le64((u64)np->rx_buf_sz << 48);
923 		np->rx_ring[entry].status = 0;
924 		entry = (entry + 1) % RX_RING_SIZE;
925 	}
926 	np->old_rx = entry;
927 	spin_unlock(&np->rx_lock);
928 	return 0;
929 }
930 
931 static void
932 rio_error (struct net_device *dev, int int_status)
933 {
934 	long ioaddr = dev->base_addr;
935 	struct netdev_private *np = netdev_priv(dev);
936 	u16 macctrl;
937 
938 	/* Link change event */
939 	if (int_status & LinkEvent) {
940 		if (mii_wait_link (dev, 10) == 0) {
941 			printk (KERN_INFO "%s: Link up\n", dev->name);
942 			if (np->phy_media)
943 				mii_get_media_pcs (dev);
944 			else
945 				mii_get_media (dev);
946 			if (np->speed == 1000)
947 				np->tx_coalesce = tx_coalesce;
948 			else
949 				np->tx_coalesce = 1;
950 			macctrl = 0;
951 			macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
952 			macctrl |= (np->full_duplex) ? DuplexSelect : 0;
953 			macctrl |= (np->tx_flow) ?
954 				TxFlowControlEnable : 0;
955 			macctrl |= (np->rx_flow) ?
956 				RxFlowControlEnable : 0;
957 			writew(macctrl,	ioaddr + MACCtrl);
958 			np->link_status = 1;
959 			netif_carrier_on(dev);
960 		} else {
961 			printk (KERN_INFO "%s: Link off\n", dev->name);
962 			np->link_status = 0;
963 			netif_carrier_off(dev);
964 		}
965 	}
966 
967 	/* UpdateStats statistics registers */
968 	if (int_status & UpdateStats) {
969 		get_stats (dev);
970 	}
971 
972 	/* PCI Error, a catastronphic error related to the bus interface
973 	   occurs, set GlobalReset and HostReset to reset. */
974 	if (int_status & HostError) {
975 		printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
976 			dev->name, int_status);
977 		writew (GlobalReset | HostReset, ioaddr + ASICCtrl + 2);
978 		mdelay (500);
979 	}
980 }
981 
982 static struct net_device_stats *
983 get_stats (struct net_device *dev)
984 {
985 	long ioaddr = dev->base_addr;
986 	struct netdev_private *np = netdev_priv(dev);
987 #ifdef MEM_MAPPING
988 	int i;
989 #endif
990 	unsigned int stat_reg;
991 
992 	/* All statistics registers need to be acknowledged,
993 	   else statistic overflow could cause problems */
994 
995 	np->stats.rx_packets += readl (ioaddr + FramesRcvOk);
996 	np->stats.tx_packets += readl (ioaddr + FramesXmtOk);
997 	np->stats.rx_bytes += readl (ioaddr + OctetRcvOk);
998 	np->stats.tx_bytes += readl (ioaddr + OctetXmtOk);
999 
1000 	np->stats.multicast = readl (ioaddr + McstFramesRcvdOk);
1001 	np->stats.collisions += readl (ioaddr + SingleColFrames)
1002 			     +  readl (ioaddr + MultiColFrames);
1003 
1004 	/* detailed tx errors */
1005 	stat_reg = readw (ioaddr + FramesAbortXSColls);
1006 	np->stats.tx_aborted_errors += stat_reg;
1007 	np->stats.tx_errors += stat_reg;
1008 
1009 	stat_reg = readw (ioaddr + CarrierSenseErrors);
1010 	np->stats.tx_carrier_errors += stat_reg;
1011 	np->stats.tx_errors += stat_reg;
1012 
1013 	/* Clear all other statistic register. */
1014 	readl (ioaddr + McstOctetXmtOk);
1015 	readw (ioaddr + BcstFramesXmtdOk);
1016 	readl (ioaddr + McstFramesXmtdOk);
1017 	readw (ioaddr + BcstFramesRcvdOk);
1018 	readw (ioaddr + MacControlFramesRcvd);
1019 	readw (ioaddr + FrameTooLongErrors);
1020 	readw (ioaddr + InRangeLengthErrors);
1021 	readw (ioaddr + FramesCheckSeqErrors);
1022 	readw (ioaddr + FramesLostRxErrors);
1023 	readl (ioaddr + McstOctetXmtOk);
1024 	readl (ioaddr + BcstOctetXmtOk);
1025 	readl (ioaddr + McstFramesXmtdOk);
1026 	readl (ioaddr + FramesWDeferredXmt);
1027 	readl (ioaddr + LateCollisions);
1028 	readw (ioaddr + BcstFramesXmtdOk);
1029 	readw (ioaddr + MacControlFramesXmtd);
1030 	readw (ioaddr + FramesWEXDeferal);
1031 
1032 #ifdef MEM_MAPPING
1033 	for (i = 0x100; i <= 0x150; i += 4)
1034 		readl (ioaddr + i);
1035 #endif
1036 	readw (ioaddr + TxJumboFrames);
1037 	readw (ioaddr + RxJumboFrames);
1038 	readw (ioaddr + TCPCheckSumErrors);
1039 	readw (ioaddr + UDPCheckSumErrors);
1040 	readw (ioaddr + IPCheckSumErrors);
1041 	return &np->stats;
1042 }
1043 
1044 static int
1045 clear_stats (struct net_device *dev)
1046 {
1047 	long ioaddr = dev->base_addr;
1048 #ifdef MEM_MAPPING
1049 	int i;
1050 #endif
1051 
1052 	/* All statistics registers need to be acknowledged,
1053 	   else statistic overflow could cause problems */
1054 	readl (ioaddr + FramesRcvOk);
1055 	readl (ioaddr + FramesXmtOk);
1056 	readl (ioaddr + OctetRcvOk);
1057 	readl (ioaddr + OctetXmtOk);
1058 
1059 	readl (ioaddr + McstFramesRcvdOk);
1060 	readl (ioaddr + SingleColFrames);
1061 	readl (ioaddr + MultiColFrames);
1062 	readl (ioaddr + LateCollisions);
1063 	/* detailed rx errors */
1064 	readw (ioaddr + FrameTooLongErrors);
1065 	readw (ioaddr + InRangeLengthErrors);
1066 	readw (ioaddr + FramesCheckSeqErrors);
1067 	readw (ioaddr + FramesLostRxErrors);
1068 
1069 	/* detailed tx errors */
1070 	readw (ioaddr + FramesAbortXSColls);
1071 	readw (ioaddr + CarrierSenseErrors);
1072 
1073 	/* Clear all other statistic register. */
1074 	readl (ioaddr + McstOctetXmtOk);
1075 	readw (ioaddr + BcstFramesXmtdOk);
1076 	readl (ioaddr + McstFramesXmtdOk);
1077 	readw (ioaddr + BcstFramesRcvdOk);
1078 	readw (ioaddr + MacControlFramesRcvd);
1079 	readl (ioaddr + McstOctetXmtOk);
1080 	readl (ioaddr + BcstOctetXmtOk);
1081 	readl (ioaddr + McstFramesXmtdOk);
1082 	readl (ioaddr + FramesWDeferredXmt);
1083 	readw (ioaddr + BcstFramesXmtdOk);
1084 	readw (ioaddr + MacControlFramesXmtd);
1085 	readw (ioaddr + FramesWEXDeferal);
1086 #ifdef MEM_MAPPING
1087 	for (i = 0x100; i <= 0x150; i += 4)
1088 		readl (ioaddr + i);
1089 #endif
1090 	readw (ioaddr + TxJumboFrames);
1091 	readw (ioaddr + RxJumboFrames);
1092 	readw (ioaddr + TCPCheckSumErrors);
1093 	readw (ioaddr + UDPCheckSumErrors);
1094 	readw (ioaddr + IPCheckSumErrors);
1095 	return 0;
1096 }
1097 
1098 
1099 static int
1100 change_mtu (struct net_device *dev, int new_mtu)
1101 {
1102 	struct netdev_private *np = netdev_priv(dev);
1103 	int max = (np->jumbo) ? MAX_JUMBO : 1536;
1104 
1105 	if ((new_mtu < 68) || (new_mtu > max)) {
1106 		return -EINVAL;
1107 	}
1108 
1109 	dev->mtu = new_mtu;
1110 
1111 	return 0;
1112 }
1113 
1114 static void
1115 set_multicast (struct net_device *dev)
1116 {
1117 	long ioaddr = dev->base_addr;
1118 	u32 hash_table[2];
1119 	u16 rx_mode = 0;
1120 	struct netdev_private *np = netdev_priv(dev);
1121 
1122 	hash_table[0] = hash_table[1] = 0;
1123 	/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1124 	hash_table[1] |= 0x02000000;
1125 	if (dev->flags & IFF_PROMISC) {
1126 		/* Receive all frames promiscuously. */
1127 		rx_mode = ReceiveAllFrames;
1128 	} else if ((dev->flags & IFF_ALLMULTI) ||
1129 			(netdev_mc_count(dev) > multicast_filter_limit)) {
1130 		/* Receive broadcast and multicast frames */
1131 		rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1132 	} else if (!netdev_mc_empty(dev)) {
1133 		struct netdev_hw_addr *ha;
1134 		/* Receive broadcast frames and multicast frames filtering
1135 		   by Hashtable */
1136 		rx_mode =
1137 		    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1138 		netdev_for_each_mc_addr(ha, dev) {
1139 			int bit, index = 0;
1140 			int crc = ether_crc_le(ETH_ALEN, ha->addr);
1141 			/* The inverted high significant 6 bits of CRC are
1142 			   used as an index to hashtable */
1143 			for (bit = 0; bit < 6; bit++)
1144 				if (crc & (1 << (31 - bit)))
1145 					index |= (1 << bit);
1146 			hash_table[index / 32] |= (1 << (index % 32));
1147 		}
1148 	} else {
1149 		rx_mode = ReceiveBroadcast | ReceiveUnicast;
1150 	}
1151 	if (np->vlan) {
1152 		/* ReceiveVLANMatch field in ReceiveMode */
1153 		rx_mode |= ReceiveVLANMatch;
1154 	}
1155 
1156 	writel (hash_table[0], ioaddr + HashTable0);
1157 	writel (hash_table[1], ioaddr + HashTable1);
1158 	writew (rx_mode, ioaddr + ReceiveMode);
1159 }
1160 
1161 static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1162 {
1163 	struct netdev_private *np = netdev_priv(dev);
1164 	strcpy(info->driver, "dl2k");
1165 	strcpy(info->version, DRV_VERSION);
1166 	strcpy(info->bus_info, pci_name(np->pdev));
1167 }
1168 
1169 static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1170 {
1171 	struct netdev_private *np = netdev_priv(dev);
1172 	if (np->phy_media) {
1173 		/* fiber device */
1174 		cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1175 		cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1176 		cmd->port = PORT_FIBRE;
1177 		cmd->transceiver = XCVR_INTERNAL;
1178 	} else {
1179 		/* copper device */
1180 		cmd->supported = SUPPORTED_10baseT_Half |
1181 			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1182 			| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1183 			SUPPORTED_Autoneg | SUPPORTED_MII;
1184 		cmd->advertising = ADVERTISED_10baseT_Half |
1185 			ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1186 			ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full|
1187 			ADVERTISED_Autoneg | ADVERTISED_MII;
1188 		cmd->port = PORT_MII;
1189 		cmd->transceiver = XCVR_INTERNAL;
1190 	}
1191 	if ( np->link_status ) {
1192 		ethtool_cmd_speed_set(cmd, np->speed);
1193 		cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1194 	} else {
1195 		ethtool_cmd_speed_set(cmd, -1);
1196 		cmd->duplex = -1;
1197 	}
1198 	if ( np->an_enable)
1199 		cmd->autoneg = AUTONEG_ENABLE;
1200 	else
1201 		cmd->autoneg = AUTONEG_DISABLE;
1202 
1203 	cmd->phy_address = np->phy_addr;
1204 	return 0;
1205 }
1206 
1207 static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1208 {
1209 	struct netdev_private *np = netdev_priv(dev);
1210 	netif_carrier_off(dev);
1211 	if (cmd->autoneg == AUTONEG_ENABLE) {
1212 		if (np->an_enable)
1213 			return 0;
1214 		else {
1215 			np->an_enable = 1;
1216 			mii_set_media(dev);
1217 			return 0;
1218 		}
1219 	} else {
1220 		np->an_enable = 0;
1221 		if (np->speed == 1000) {
1222 			ethtool_cmd_speed_set(cmd, SPEED_100);
1223 			cmd->duplex = DUPLEX_FULL;
1224 			printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1225 		}
1226 		switch (ethtool_cmd_speed(cmd)) {
1227 		case SPEED_10:
1228 			np->speed = 10;
1229 			np->full_duplex = (cmd->duplex == DUPLEX_FULL);
1230 			break;
1231 		case SPEED_100:
1232 			np->speed = 100;
1233 			np->full_duplex = (cmd->duplex == DUPLEX_FULL);
1234 			break;
1235 		case SPEED_1000: /* not supported */
1236 		default:
1237 			return -EINVAL;
1238 		}
1239 		mii_set_media(dev);
1240 	}
1241 	return 0;
1242 }
1243 
1244 static u32 rio_get_link(struct net_device *dev)
1245 {
1246 	struct netdev_private *np = netdev_priv(dev);
1247 	return np->link_status;
1248 }
1249 
1250 static const struct ethtool_ops ethtool_ops = {
1251 	.get_drvinfo = rio_get_drvinfo,
1252 	.get_settings = rio_get_settings,
1253 	.set_settings = rio_set_settings,
1254 	.get_link = rio_get_link,
1255 };
1256 
1257 static int
1258 rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1259 {
1260 	int phy_addr;
1261 	struct netdev_private *np = netdev_priv(dev);
1262 	struct mii_data *miidata = (struct mii_data *) &rq->ifr_ifru;
1263 
1264 	struct netdev_desc *desc;
1265 	int i;
1266 
1267 	phy_addr = np->phy_addr;
1268 	switch (cmd) {
1269 	case SIOCDEVPRIVATE:
1270 		break;
1271 
1272 	case SIOCDEVPRIVATE + 1:
1273 		miidata->out_value = mii_read (dev, phy_addr, miidata->reg_num);
1274 		break;
1275 	case SIOCDEVPRIVATE + 2:
1276 		mii_write (dev, phy_addr, miidata->reg_num, miidata->in_value);
1277 		break;
1278 	case SIOCDEVPRIVATE + 3:
1279 		break;
1280 	case SIOCDEVPRIVATE + 4:
1281 		break;
1282 	case SIOCDEVPRIVATE + 5:
1283 		netif_stop_queue (dev);
1284 		break;
1285 	case SIOCDEVPRIVATE + 6:
1286 		netif_wake_queue (dev);
1287 		break;
1288 	case SIOCDEVPRIVATE + 7:
1289 		printk
1290 		    ("tx_full=%x cur_tx=%lx old_tx=%lx cur_rx=%lx old_rx=%lx\n",
1291 		     netif_queue_stopped(dev), np->cur_tx, np->old_tx, np->cur_rx,
1292 		     np->old_rx);
1293 		break;
1294 	case SIOCDEVPRIVATE + 8:
1295 		printk("TX ring:\n");
1296 		for (i = 0; i < TX_RING_SIZE; i++) {
1297 			desc = &np->tx_ring[i];
1298 			printk
1299 			    ("%02x:cur:%08x next:%08x status:%08x frag1:%08x frag0:%08x",
1300 			     i,
1301 			     (u32) (np->tx_ring_dma + i * sizeof (*desc)),
1302 			     (u32)le64_to_cpu(desc->next_desc),
1303 			     (u32)le64_to_cpu(desc->status),
1304 			     (u32)(le64_to_cpu(desc->fraginfo) >> 32),
1305 			     (u32)le64_to_cpu(desc->fraginfo));
1306 			printk ("\n");
1307 		}
1308 		printk ("\n");
1309 		break;
1310 
1311 	default:
1312 		return -EOPNOTSUPP;
1313 	}
1314 	return 0;
1315 }
1316 
1317 #define EEP_READ 0x0200
1318 #define EEP_BUSY 0x8000
1319 /* Read the EEPROM word */
1320 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1321 static int
1322 read_eeprom (long ioaddr, int eep_addr)
1323 {
1324 	int i = 1000;
1325 	outw (EEP_READ | (eep_addr & 0xff), ioaddr + EepromCtrl);
1326 	while (i-- > 0) {
1327 		if (!(inw (ioaddr + EepromCtrl) & EEP_BUSY)) {
1328 			return inw (ioaddr + EepromData);
1329 		}
1330 	}
1331 	return 0;
1332 }
1333 
1334 enum phy_ctrl_bits {
1335 	MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1336 	MII_DUPLEX = 0x08,
1337 };
1338 
1339 #define mii_delay() readb(ioaddr)
1340 static void
1341 mii_sendbit (struct net_device *dev, u32 data)
1342 {
1343 	long ioaddr = dev->base_addr + PhyCtrl;
1344 	data = (data) ? MII_DATA1 : 0;
1345 	data |= MII_WRITE;
1346 	data |= (readb (ioaddr) & 0xf8) | MII_WRITE;
1347 	writeb (data, ioaddr);
1348 	mii_delay ();
1349 	writeb (data | MII_CLK, ioaddr);
1350 	mii_delay ();
1351 }
1352 
1353 static int
1354 mii_getbit (struct net_device *dev)
1355 {
1356 	long ioaddr = dev->base_addr + PhyCtrl;
1357 	u8 data;
1358 
1359 	data = (readb (ioaddr) & 0xf8) | MII_READ;
1360 	writeb (data, ioaddr);
1361 	mii_delay ();
1362 	writeb (data | MII_CLK, ioaddr);
1363 	mii_delay ();
1364 	return ((readb (ioaddr) >> 1) & 1);
1365 }
1366 
1367 static void
1368 mii_send_bits (struct net_device *dev, u32 data, int len)
1369 {
1370 	int i;
1371 	for (i = len - 1; i >= 0; i--) {
1372 		mii_sendbit (dev, data & (1 << i));
1373 	}
1374 }
1375 
1376 static int
1377 mii_read (struct net_device *dev, int phy_addr, int reg_num)
1378 {
1379 	u32 cmd;
1380 	int i;
1381 	u32 retval = 0;
1382 
1383 	/* Preamble */
1384 	mii_send_bits (dev, 0xffffffff, 32);
1385 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1386 	/* ST,OP = 0110'b for read operation */
1387 	cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1388 	mii_send_bits (dev, cmd, 14);
1389 	/* Turnaround */
1390 	if (mii_getbit (dev))
1391 		goto err_out;
1392 	/* Read data */
1393 	for (i = 0; i < 16; i++) {
1394 		retval |= mii_getbit (dev);
1395 		retval <<= 1;
1396 	}
1397 	/* End cycle */
1398 	mii_getbit (dev);
1399 	return (retval >> 1) & 0xffff;
1400 
1401       err_out:
1402 	return 0;
1403 }
1404 static int
1405 mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1406 {
1407 	u32 cmd;
1408 
1409 	/* Preamble */
1410 	mii_send_bits (dev, 0xffffffff, 32);
1411 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1412 	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1413 	cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1414 	mii_send_bits (dev, cmd, 32);
1415 	/* End cycle */
1416 	mii_getbit (dev);
1417 	return 0;
1418 }
1419 static int
1420 mii_wait_link (struct net_device *dev, int wait)
1421 {
1422 	__u16 bmsr;
1423 	int phy_addr;
1424 	struct netdev_private *np;
1425 
1426 	np = netdev_priv(dev);
1427 	phy_addr = np->phy_addr;
1428 
1429 	do {
1430 		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1431 		if (bmsr & BMSR_LSTATUS)
1432 			return 0;
1433 		mdelay (1);
1434 	} while (--wait > 0);
1435 	return -1;
1436 }
1437 static int
1438 mii_get_media (struct net_device *dev)
1439 {
1440 	__u16 negotiate;
1441 	__u16 bmsr;
1442 	__u16 mscr;
1443 	__u16 mssr;
1444 	int phy_addr;
1445 	struct netdev_private *np;
1446 
1447 	np = netdev_priv(dev);
1448 	phy_addr = np->phy_addr;
1449 
1450 	bmsr = mii_read (dev, phy_addr, MII_BMSR);
1451 	if (np->an_enable) {
1452 		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1453 			/* Auto-Negotiation not completed */
1454 			return -1;
1455 		}
1456 		negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1457 			mii_read (dev, phy_addr, MII_LPA);
1458 		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1459 		mssr = mii_read (dev, phy_addr, MII_STAT1000);
1460 		if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1461 			np->speed = 1000;
1462 			np->full_duplex = 1;
1463 			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1464 		} else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1465 			np->speed = 1000;
1466 			np->full_duplex = 0;
1467 			printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1468 		} else if (negotiate & ADVERTISE_100FULL) {
1469 			np->speed = 100;
1470 			np->full_duplex = 1;
1471 			printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1472 		} else if (negotiate & ADVERTISE_100HALF) {
1473 			np->speed = 100;
1474 			np->full_duplex = 0;
1475 			printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1476 		} else if (negotiate & ADVERTISE_10FULL) {
1477 			np->speed = 10;
1478 			np->full_duplex = 1;
1479 			printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1480 		} else if (negotiate & ADVERTISE_10HALF) {
1481 			np->speed = 10;
1482 			np->full_duplex = 0;
1483 			printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1484 		}
1485 		if (negotiate & ADVERTISE_PAUSE_CAP) {
1486 			np->tx_flow &= 1;
1487 			np->rx_flow &= 1;
1488 		} else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1489 			np->tx_flow = 0;
1490 			np->rx_flow &= 1;
1491 		}
1492 		/* else tx_flow, rx_flow = user select  */
1493 	} else {
1494 		__u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1495 		switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1496 		case BMCR_SPEED1000:
1497 			printk (KERN_INFO "Operating at 1000 Mbps, ");
1498 			break;
1499 		case BMCR_SPEED100:
1500 			printk (KERN_INFO "Operating at 100 Mbps, ");
1501 			break;
1502 		case 0:
1503 			printk (KERN_INFO "Operating at 10 Mbps, ");
1504 		}
1505 		if (bmcr & BMCR_FULLDPLX) {
1506 			printk (KERN_CONT "Full duplex\n");
1507 		} else {
1508 			printk (KERN_CONT "Half duplex\n");
1509 		}
1510 	}
1511 	if (np->tx_flow)
1512 		printk(KERN_INFO "Enable Tx Flow Control\n");
1513 	else
1514 		printk(KERN_INFO "Disable Tx Flow Control\n");
1515 	if (np->rx_flow)
1516 		printk(KERN_INFO "Enable Rx Flow Control\n");
1517 	else
1518 		printk(KERN_INFO "Disable Rx Flow Control\n");
1519 
1520 	return 0;
1521 }
1522 
1523 static int
1524 mii_set_media (struct net_device *dev)
1525 {
1526 	__u16 pscr;
1527 	__u16 bmcr;
1528 	__u16 bmsr;
1529 	__u16 anar;
1530 	int phy_addr;
1531 	struct netdev_private *np;
1532 	np = netdev_priv(dev);
1533 	phy_addr = np->phy_addr;
1534 
1535 	/* Does user set speed? */
1536 	if (np->an_enable) {
1537 		/* Advertise capabilities */
1538 		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1539 		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1540 			~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1541 			  ADVERTISE_100HALF | ADVERTISE_10HALF |
1542 			  ADVERTISE_100BASE4);
1543 		if (bmsr & BMSR_100FULL)
1544 			anar |= ADVERTISE_100FULL;
1545 		if (bmsr & BMSR_100HALF)
1546 			anar |= ADVERTISE_100HALF;
1547 		if (bmsr & BMSR_100BASE4)
1548 			anar |= ADVERTISE_100BASE4;
1549 		if (bmsr & BMSR_10FULL)
1550 			anar |= ADVERTISE_10FULL;
1551 		if (bmsr & BMSR_10HALF)
1552 			anar |= ADVERTISE_10HALF;
1553 		anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1554 		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1555 
1556 		/* Enable Auto crossover */
1557 		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1558 		pscr |= 3 << 5;	/* 11'b */
1559 		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1560 
1561 		/* Soft reset PHY */
1562 		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1563 		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1564 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1565 		mdelay(1);
1566 	} else {
1567 		/* Force speed setting */
1568 		/* 1) Disable Auto crossover */
1569 		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1570 		pscr &= ~(3 << 5);
1571 		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1572 
1573 		/* 2) PHY Reset */
1574 		bmcr = mii_read (dev, phy_addr, MII_BMCR);
1575 		bmcr |= BMCR_RESET;
1576 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1577 
1578 		/* 3) Power Down */
1579 		bmcr = 0x1940;	/* must be 0x1940 */
1580 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1581 		mdelay (100);	/* wait a certain time */
1582 
1583 		/* 4) Advertise nothing */
1584 		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1585 
1586 		/* 5) Set media and Power Up */
1587 		bmcr = BMCR_PDOWN;
1588 		if (np->speed == 100) {
1589 			bmcr |= BMCR_SPEED100;
1590 			printk (KERN_INFO "Manual 100 Mbps, ");
1591 		} else if (np->speed == 10) {
1592 			printk (KERN_INFO "Manual 10 Mbps, ");
1593 		}
1594 		if (np->full_duplex) {
1595 			bmcr |= BMCR_FULLDPLX;
1596 			printk (KERN_CONT "Full duplex\n");
1597 		} else {
1598 			printk (KERN_CONT "Half duplex\n");
1599 		}
1600 #if 0
1601 		/* Set 1000BaseT Master/Slave setting */
1602 		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1603 		mscr |= MII_MSCR_CFG_ENABLE;
1604 		mscr &= ~MII_MSCR_CFG_VALUE = 0;
1605 #endif
1606 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1607 		mdelay(10);
1608 	}
1609 	return 0;
1610 }
1611 
1612 static int
1613 mii_get_media_pcs (struct net_device *dev)
1614 {
1615 	__u16 negotiate;
1616 	__u16 bmsr;
1617 	int phy_addr;
1618 	struct netdev_private *np;
1619 
1620 	np = netdev_priv(dev);
1621 	phy_addr = np->phy_addr;
1622 
1623 	bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1624 	if (np->an_enable) {
1625 		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1626 			/* Auto-Negotiation not completed */
1627 			return -1;
1628 		}
1629 		negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1630 			mii_read (dev, phy_addr, PCS_ANLPAR);
1631 		np->speed = 1000;
1632 		if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1633 			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1634 			np->full_duplex = 1;
1635 		} else {
1636 			printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1637 			np->full_duplex = 0;
1638 		}
1639 		if (negotiate & PCS_ANAR_PAUSE) {
1640 			np->tx_flow &= 1;
1641 			np->rx_flow &= 1;
1642 		} else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1643 			np->tx_flow = 0;
1644 			np->rx_flow &= 1;
1645 		}
1646 		/* else tx_flow, rx_flow = user select  */
1647 	} else {
1648 		__u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1649 		printk (KERN_INFO "Operating at 1000 Mbps, ");
1650 		if (bmcr & BMCR_FULLDPLX) {
1651 			printk (KERN_CONT "Full duplex\n");
1652 		} else {
1653 			printk (KERN_CONT "Half duplex\n");
1654 		}
1655 	}
1656 	if (np->tx_flow)
1657 		printk(KERN_INFO "Enable Tx Flow Control\n");
1658 	else
1659 		printk(KERN_INFO "Disable Tx Flow Control\n");
1660 	if (np->rx_flow)
1661 		printk(KERN_INFO "Enable Rx Flow Control\n");
1662 	else
1663 		printk(KERN_INFO "Disable Rx Flow Control\n");
1664 
1665 	return 0;
1666 }
1667 
1668 static int
1669 mii_set_media_pcs (struct net_device *dev)
1670 {
1671 	__u16 bmcr;
1672 	__u16 esr;
1673 	__u16 anar;
1674 	int phy_addr;
1675 	struct netdev_private *np;
1676 	np = netdev_priv(dev);
1677 	phy_addr = np->phy_addr;
1678 
1679 	/* Auto-Negotiation? */
1680 	if (np->an_enable) {
1681 		/* Advertise capabilities */
1682 		esr = mii_read (dev, phy_addr, PCS_ESR);
1683 		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1684 			~PCS_ANAR_HALF_DUPLEX &
1685 			~PCS_ANAR_FULL_DUPLEX;
1686 		if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1687 			anar |= PCS_ANAR_HALF_DUPLEX;
1688 		if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1689 			anar |= PCS_ANAR_FULL_DUPLEX;
1690 		anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1691 		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1692 
1693 		/* Soft reset PHY */
1694 		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1695 		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1696 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1697 		mdelay(1);
1698 	} else {
1699 		/* Force speed setting */
1700 		/* PHY Reset */
1701 		bmcr = BMCR_RESET;
1702 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1703 		mdelay(10);
1704 		if (np->full_duplex) {
1705 			bmcr = BMCR_FULLDPLX;
1706 			printk (KERN_INFO "Manual full duplex\n");
1707 		} else {
1708 			bmcr = 0;
1709 			printk (KERN_INFO "Manual half duplex\n");
1710 		}
1711 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1712 		mdelay(10);
1713 
1714 		/*  Advertise nothing */
1715 		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1716 	}
1717 	return 0;
1718 }
1719 
1720 
1721 static int
1722 rio_close (struct net_device *dev)
1723 {
1724 	long ioaddr = dev->base_addr;
1725 	struct netdev_private *np = netdev_priv(dev);
1726 	struct sk_buff *skb;
1727 	int i;
1728 
1729 	netif_stop_queue (dev);
1730 
1731 	/* Disable interrupts */
1732 	writew (0, ioaddr + IntEnable);
1733 
1734 	/* Stop Tx and Rx logics */
1735 	writel (TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl);
1736 
1737 	free_irq (dev->irq, dev);
1738 	del_timer_sync (&np->timer);
1739 
1740 	/* Free all the skbuffs in the queue. */
1741 	for (i = 0; i < RX_RING_SIZE; i++) {
1742 		skb = np->rx_skbuff[i];
1743 		if (skb) {
1744 			pci_unmap_single(np->pdev,
1745 					 desc_to_dma(&np->rx_ring[i]),
1746 					 skb->len, PCI_DMA_FROMDEVICE);
1747 			dev_kfree_skb (skb);
1748 			np->rx_skbuff[i] = NULL;
1749 		}
1750 		np->rx_ring[i].status = 0;
1751 		np->rx_ring[i].fraginfo = 0;
1752 	}
1753 	for (i = 0; i < TX_RING_SIZE; i++) {
1754 		skb = np->tx_skbuff[i];
1755 		if (skb) {
1756 			pci_unmap_single(np->pdev,
1757 					 desc_to_dma(&np->tx_ring[i]),
1758 					 skb->len, PCI_DMA_TODEVICE);
1759 			dev_kfree_skb (skb);
1760 			np->tx_skbuff[i] = NULL;
1761 		}
1762 	}
1763 
1764 	return 0;
1765 }
1766 
1767 static void __devexit
1768 rio_remove1 (struct pci_dev *pdev)
1769 {
1770 	struct net_device *dev = pci_get_drvdata (pdev);
1771 
1772 	if (dev) {
1773 		struct netdev_private *np = netdev_priv(dev);
1774 
1775 		unregister_netdev (dev);
1776 		pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
1777 				     np->rx_ring_dma);
1778 		pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
1779 				     np->tx_ring_dma);
1780 #ifdef MEM_MAPPING
1781 		iounmap ((char *) (dev->base_addr));
1782 #endif
1783 		free_netdev (dev);
1784 		pci_release_regions (pdev);
1785 		pci_disable_device (pdev);
1786 	}
1787 	pci_set_drvdata (pdev, NULL);
1788 }
1789 
1790 static struct pci_driver rio_driver = {
1791 	.name		= "dl2k",
1792 	.id_table	= rio_pci_tbl,
1793 	.probe		= rio_probe1,
1794 	.remove		= __devexit_p(rio_remove1),
1795 };
1796 
1797 static int __init
1798 rio_init (void)
1799 {
1800 	return pci_register_driver(&rio_driver);
1801 }
1802 
1803 static void __exit
1804 rio_exit (void)
1805 {
1806 	pci_unregister_driver (&rio_driver);
1807 }
1808 
1809 module_init (rio_init);
1810 module_exit (rio_exit);
1811 
1812 /*
1813 
1814 Compile command:
1815 
1816 gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1817 
1818 Read Documentation/networking/dl2k.txt for details.
1819 
1820 */
1821 
1822