xref: /linux/drivers/net/ethernet/dlink/dl2k.c (revision e3b9626f09d429788d929c9b9000a069fcfc056e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
3 /*
4     Copyright (c) 2001, 2002 by D-Link Corporation
5     Written by Edward Peng.<edward_peng@dlink.com.tw>
6     Created 03-May-2001, base on Linux' sundance.c.
7 
8 */
9 
10 #include "dl2k.h"
11 #include <linux/dma-mapping.h>
12 
13 #define dw32(reg, val)	iowrite32(val, ioaddr + (reg))
14 #define dw16(reg, val)	iowrite16(val, ioaddr + (reg))
15 #define dw8(reg, val)	iowrite8(val, ioaddr + (reg))
16 #define dr32(reg)	ioread32(ioaddr + (reg))
17 #define dr16(reg)	ioread16(ioaddr + (reg))
18 #define dr8(reg)	ioread8(ioaddr + (reg))
19 
20 #define MAX_UNITS 8
21 static int mtu[MAX_UNITS];
22 static int vlan[MAX_UNITS];
23 static int jumbo[MAX_UNITS];
24 static char *media[MAX_UNITS];
25 static int tx_flow=-1;
26 static int rx_flow=-1;
27 static int copy_thresh;
28 static int rx_coalesce=10;	/* Rx frame count each interrupt */
29 static int rx_timeout=200;	/* Rx DMA wait time in 640ns increments */
30 static int tx_coalesce=16;	/* HW xmit count each TxDMAComplete */
31 
32 
33 MODULE_AUTHOR ("Edward Peng");
34 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
35 MODULE_LICENSE("GPL");
36 module_param_array(mtu, int, NULL, 0);
37 module_param_array(media, charp, NULL, 0);
38 module_param_array(vlan, int, NULL, 0);
39 module_param_array(jumbo, int, NULL, 0);
40 module_param(tx_flow, int, 0);
41 module_param(rx_flow, int, 0);
42 module_param(copy_thresh, int, 0);
43 module_param(rx_coalesce, int, 0);	/* Rx frame count each interrupt */
44 module_param(rx_timeout, int, 0);	/* Rx DMA wait time in 64ns increments */
45 module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
46 
47 
48 /* Enable the default interrupts */
49 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
50        UpdateStats | LinkEvent)
51 
52 static void dl2k_enable_int(struct netdev_private *np)
53 {
54 	void __iomem *ioaddr = np->ioaddr;
55 
56 	dw16(IntEnable, DEFAULT_INTR);
57 }
58 
59 static const int max_intrloop = 50;
60 static const int multicast_filter_limit = 0x40;
61 
62 static int rio_open (struct net_device *dev);
63 static void rio_timer (struct timer_list *t);
64 static void rio_tx_timeout (struct net_device *dev, unsigned int txqueue);
65 static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
66 static irqreturn_t rio_interrupt (int irq, void *dev_instance);
67 static void rio_free_tx (struct net_device *dev, int irq);
68 static void tx_error (struct net_device *dev, int tx_status);
69 static int receive_packet (struct net_device *dev);
70 static void rio_error (struct net_device *dev, int int_status);
71 static void set_multicast (struct net_device *dev);
72 static struct net_device_stats *get_stats (struct net_device *dev);
73 static int clear_stats (struct net_device *dev);
74 static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
75 static int rio_close (struct net_device *dev);
76 static int find_miiphy (struct net_device *dev);
77 static int parse_eeprom (struct net_device *dev);
78 static int read_eeprom (struct netdev_private *, int eep_addr);
79 static int mii_wait_link (struct net_device *dev, int wait);
80 static int mii_set_media (struct net_device *dev);
81 static int mii_get_media (struct net_device *dev);
82 static int mii_set_media_pcs (struct net_device *dev);
83 static int mii_get_media_pcs (struct net_device *dev);
84 static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
85 static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
86 		      u16 data);
87 
88 static const struct ethtool_ops ethtool_ops;
89 
90 static const struct net_device_ops netdev_ops = {
91 	.ndo_open		= rio_open,
92 	.ndo_start_xmit	= start_xmit,
93 	.ndo_stop		= rio_close,
94 	.ndo_get_stats		= get_stats,
95 	.ndo_validate_addr	= eth_validate_addr,
96 	.ndo_set_mac_address 	= eth_mac_addr,
97 	.ndo_set_rx_mode	= set_multicast,
98 	.ndo_do_ioctl		= rio_ioctl,
99 	.ndo_tx_timeout		= rio_tx_timeout,
100 };
101 
102 static int
103 rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
104 {
105 	struct net_device *dev;
106 	struct netdev_private *np;
107 	static int card_idx;
108 	int chip_idx = ent->driver_data;
109 	int err, irq;
110 	void __iomem *ioaddr;
111 	void *ring_space;
112 	dma_addr_t ring_dma;
113 
114 	err = pci_enable_device (pdev);
115 	if (err)
116 		return err;
117 
118 	irq = pdev->irq;
119 	err = pci_request_regions (pdev, "dl2k");
120 	if (err)
121 		goto err_out_disable;
122 
123 	pci_set_master (pdev);
124 
125 	err = -ENOMEM;
126 
127 	dev = alloc_etherdev (sizeof (*np));
128 	if (!dev)
129 		goto err_out_res;
130 	SET_NETDEV_DEV(dev, &pdev->dev);
131 
132 	np = netdev_priv(dev);
133 
134 	/* IO registers range. */
135 	ioaddr = pci_iomap(pdev, 0, 0);
136 	if (!ioaddr)
137 		goto err_out_dev;
138 	np->eeprom_addr = ioaddr;
139 
140 #ifdef MEM_MAPPING
141 	/* MM registers range. */
142 	ioaddr = pci_iomap(pdev, 1, 0);
143 	if (!ioaddr)
144 		goto err_out_iounmap;
145 #endif
146 	np->ioaddr = ioaddr;
147 	np->chip_id = chip_idx;
148 	np->pdev = pdev;
149 	spin_lock_init (&np->tx_lock);
150 	spin_lock_init (&np->rx_lock);
151 
152 	/* Parse manual configuration */
153 	np->an_enable = 1;
154 	np->tx_coalesce = 1;
155 	if (card_idx < MAX_UNITS) {
156 		if (media[card_idx] != NULL) {
157 			np->an_enable = 0;
158 			if (strcmp (media[card_idx], "auto") == 0 ||
159 			    strcmp (media[card_idx], "autosense") == 0 ||
160 			    strcmp (media[card_idx], "0") == 0 ) {
161 				np->an_enable = 2;
162 			} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
163 			    strcmp (media[card_idx], "4") == 0) {
164 				np->speed = 100;
165 				np->full_duplex = 1;
166 			} else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
167 				   strcmp (media[card_idx], "3") == 0) {
168 				np->speed = 100;
169 				np->full_duplex = 0;
170 			} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
171 				   strcmp (media[card_idx], "2") == 0) {
172 				np->speed = 10;
173 				np->full_duplex = 1;
174 			} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
175 				   strcmp (media[card_idx], "1") == 0) {
176 				np->speed = 10;
177 				np->full_duplex = 0;
178 			} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
179 				 strcmp (media[card_idx], "6") == 0) {
180 				np->speed=1000;
181 				np->full_duplex=1;
182 			} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
183 				 strcmp (media[card_idx], "5") == 0) {
184 				np->speed = 1000;
185 				np->full_duplex = 0;
186 			} else {
187 				np->an_enable = 1;
188 			}
189 		}
190 		if (jumbo[card_idx] != 0) {
191 			np->jumbo = 1;
192 			dev->mtu = MAX_JUMBO;
193 		} else {
194 			np->jumbo = 0;
195 			if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
196 				dev->mtu = mtu[card_idx];
197 		}
198 		np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
199 		    vlan[card_idx] : 0;
200 		if (rx_coalesce > 0 && rx_timeout > 0) {
201 			np->rx_coalesce = rx_coalesce;
202 			np->rx_timeout = rx_timeout;
203 			np->coalesce = 1;
204 		}
205 		np->tx_flow = (tx_flow == 0) ? 0 : 1;
206 		np->rx_flow = (rx_flow == 0) ? 0 : 1;
207 
208 		if (tx_coalesce < 1)
209 			tx_coalesce = 1;
210 		else if (tx_coalesce > TX_RING_SIZE-1)
211 			tx_coalesce = TX_RING_SIZE - 1;
212 	}
213 	dev->netdev_ops = &netdev_ops;
214 	dev->watchdog_timeo = TX_TIMEOUT;
215 	dev->ethtool_ops = &ethtool_ops;
216 #if 0
217 	dev->features = NETIF_F_IP_CSUM;
218 #endif
219 	/* MTU range: 68 - 1536 or 8000 */
220 	dev->min_mtu = ETH_MIN_MTU;
221 	dev->max_mtu = np->jumbo ? MAX_JUMBO : PACKET_SIZE;
222 
223 	pci_set_drvdata (pdev, dev);
224 
225 	ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
226 	if (!ring_space)
227 		goto err_out_iounmap;
228 	np->tx_ring = ring_space;
229 	np->tx_ring_dma = ring_dma;
230 
231 	ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
232 	if (!ring_space)
233 		goto err_out_unmap_tx;
234 	np->rx_ring = ring_space;
235 	np->rx_ring_dma = ring_dma;
236 
237 	/* Parse eeprom data */
238 	parse_eeprom (dev);
239 
240 	/* Find PHY address */
241 	err = find_miiphy (dev);
242 	if (err)
243 		goto err_out_unmap_rx;
244 
245 	/* Fiber device? */
246 	np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
247 	np->link_status = 0;
248 	/* Set media and reset PHY */
249 	if (np->phy_media) {
250 		/* default Auto-Negotiation for fiber deivices */
251 	 	if (np->an_enable == 2) {
252 			np->an_enable = 1;
253 		}
254 	} else {
255 		/* Auto-Negotiation is mandatory for 1000BASE-T,
256 		   IEEE 802.3ab Annex 28D page 14 */
257 		if (np->speed == 1000)
258 			np->an_enable = 1;
259 	}
260 
261 	err = register_netdev (dev);
262 	if (err)
263 		goto err_out_unmap_rx;
264 
265 	card_idx++;
266 
267 	printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
268 		dev->name, np->name, dev->dev_addr, irq);
269 	if (tx_coalesce > 1)
270 		printk(KERN_INFO "tx_coalesce:\t%d packets\n",
271 				tx_coalesce);
272 	if (np->coalesce)
273 		printk(KERN_INFO
274 		       "rx_coalesce:\t%d packets\n"
275 		       "rx_timeout: \t%d ns\n",
276 				np->rx_coalesce, np->rx_timeout*640);
277 	if (np->vlan)
278 		printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
279 	return 0;
280 
281 err_out_unmap_rx:
282 	pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
283 err_out_unmap_tx:
284 	pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
285 err_out_iounmap:
286 #ifdef MEM_MAPPING
287 	pci_iounmap(pdev, np->ioaddr);
288 #endif
289 	pci_iounmap(pdev, np->eeprom_addr);
290 err_out_dev:
291 	free_netdev (dev);
292 err_out_res:
293 	pci_release_regions (pdev);
294 err_out_disable:
295 	pci_disable_device (pdev);
296 	return err;
297 }
298 
299 static int
300 find_miiphy (struct net_device *dev)
301 {
302 	struct netdev_private *np = netdev_priv(dev);
303 	int i, phy_found = 0;
304 
305 	np->phy_addr = 1;
306 
307 	for (i = 31; i >= 0; i--) {
308 		int mii_status = mii_read (dev, i, 1);
309 		if (mii_status != 0xffff && mii_status != 0x0000) {
310 			np->phy_addr = i;
311 			phy_found++;
312 		}
313 	}
314 	if (!phy_found) {
315 		printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
316 		return -ENODEV;
317 	}
318 	return 0;
319 }
320 
321 static int
322 parse_eeprom (struct net_device *dev)
323 {
324 	struct netdev_private *np = netdev_priv(dev);
325 	void __iomem *ioaddr = np->ioaddr;
326 	int i, j;
327 	u8 sromdata[256];
328 	u8 *psib;
329 	u32 crc;
330 	PSROM_t psrom = (PSROM_t) sromdata;
331 
332 	int cid, next;
333 
334 	for (i = 0; i < 128; i++)
335 		((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
336 
337 	if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {	/* D-Link Only */
338 		/* Check CRC */
339 		crc = ~ether_crc_le (256 - 4, sromdata);
340 		if (psrom->crc != cpu_to_le32(crc)) {
341 			printk (KERN_ERR "%s: EEPROM data CRC error.\n",
342 					dev->name);
343 			return -1;
344 		}
345 	}
346 
347 	/* Set MAC address */
348 	for (i = 0; i < 6; i++)
349 		dev->dev_addr[i] = psrom->mac_addr[i];
350 
351 	if (np->chip_id == CHIP_IP1000A) {
352 		np->led_mode = psrom->led_mode;
353 		return 0;
354 	}
355 
356 	if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
357 		return 0;
358 	}
359 
360 	/* Parse Software Information Block */
361 	i = 0x30;
362 	psib = (u8 *) sromdata;
363 	do {
364 		cid = psib[i++];
365 		next = psib[i++];
366 		if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
367 			printk (KERN_ERR "Cell data error\n");
368 			return -1;
369 		}
370 		switch (cid) {
371 		case 0:	/* Format version */
372 			break;
373 		case 1:	/* End of cell */
374 			return 0;
375 		case 2:	/* Duplex Polarity */
376 			np->duplex_polarity = psib[i];
377 			dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
378 			break;
379 		case 3:	/* Wake Polarity */
380 			np->wake_polarity = psib[i];
381 			break;
382 		case 9:	/* Adapter description */
383 			j = (next - i > 255) ? 255 : next - i;
384 			memcpy (np->name, &(psib[i]), j);
385 			break;
386 		case 4:
387 		case 5:
388 		case 6:
389 		case 7:
390 		case 8:	/* Reversed */
391 			break;
392 		default:	/* Unknown cell */
393 			return -1;
394 		}
395 		i = next;
396 	} while (1);
397 
398 	return 0;
399 }
400 
401 static void rio_set_led_mode(struct net_device *dev)
402 {
403 	struct netdev_private *np = netdev_priv(dev);
404 	void __iomem *ioaddr = np->ioaddr;
405 	u32 mode;
406 
407 	if (np->chip_id != CHIP_IP1000A)
408 		return;
409 
410 	mode = dr32(ASICCtrl);
411 	mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
412 
413 	if (np->led_mode & 0x01)
414 		mode |= IPG_AC_LED_MODE;
415 	if (np->led_mode & 0x02)
416 		mode |= IPG_AC_LED_MODE_BIT_1;
417 	if (np->led_mode & 0x08)
418 		mode |= IPG_AC_LED_SPEED;
419 
420 	dw32(ASICCtrl, mode);
421 }
422 
423 static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
424 {
425 	return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
426 }
427 
428 static void free_list(struct net_device *dev)
429 {
430 	struct netdev_private *np = netdev_priv(dev);
431 	struct sk_buff *skb;
432 	int i;
433 
434 	/* Free all the skbuffs in the queue. */
435 	for (i = 0; i < RX_RING_SIZE; i++) {
436 		skb = np->rx_skbuff[i];
437 		if (skb) {
438 			pci_unmap_single(np->pdev, desc_to_dma(&np->rx_ring[i]),
439 					 skb->len, PCI_DMA_FROMDEVICE);
440 			dev_kfree_skb(skb);
441 			np->rx_skbuff[i] = NULL;
442 		}
443 		np->rx_ring[i].status = 0;
444 		np->rx_ring[i].fraginfo = 0;
445 	}
446 	for (i = 0; i < TX_RING_SIZE; i++) {
447 		skb = np->tx_skbuff[i];
448 		if (skb) {
449 			pci_unmap_single(np->pdev, desc_to_dma(&np->tx_ring[i]),
450 					 skb->len, PCI_DMA_TODEVICE);
451 			dev_kfree_skb(skb);
452 			np->tx_skbuff[i] = NULL;
453 		}
454 	}
455 }
456 
457 static void rio_reset_ring(struct netdev_private *np)
458 {
459 	int i;
460 
461 	np->cur_rx = 0;
462 	np->cur_tx = 0;
463 	np->old_rx = 0;
464 	np->old_tx = 0;
465 
466 	for (i = 0; i < TX_RING_SIZE; i++)
467 		np->tx_ring[i].status = cpu_to_le64(TFDDone);
468 
469 	for (i = 0; i < RX_RING_SIZE; i++)
470 		np->rx_ring[i].status = 0;
471 }
472 
473  /* allocate and initialize Tx and Rx descriptors */
474 static int alloc_list(struct net_device *dev)
475 {
476 	struct netdev_private *np = netdev_priv(dev);
477 	int i;
478 
479 	rio_reset_ring(np);
480 	np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
481 
482 	/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
483 	for (i = 0; i < TX_RING_SIZE; i++) {
484 		np->tx_skbuff[i] = NULL;
485 		np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma +
486 					      ((i + 1) % TX_RING_SIZE) *
487 					      sizeof(struct netdev_desc));
488 	}
489 
490 	/* Initialize Rx descriptors & allocate buffers */
491 	for (i = 0; i < RX_RING_SIZE; i++) {
492 		/* Allocated fixed size of skbuff */
493 		struct sk_buff *skb;
494 
495 		skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
496 		np->rx_skbuff[i] = skb;
497 		if (!skb) {
498 			free_list(dev);
499 			return -ENOMEM;
500 		}
501 
502 		np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma +
503 						((i + 1) % RX_RING_SIZE) *
504 						sizeof(struct netdev_desc));
505 		/* Rubicon now supports 40 bits of addressing space. */
506 		np->rx_ring[i].fraginfo =
507 		    cpu_to_le64(pci_map_single(
508 				  np->pdev, skb->data, np->rx_buf_sz,
509 				  PCI_DMA_FROMDEVICE));
510 		np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
511 	}
512 
513 	return 0;
514 }
515 
516 static void rio_hw_init(struct net_device *dev)
517 {
518 	struct netdev_private *np = netdev_priv(dev);
519 	void __iomem *ioaddr = np->ioaddr;
520 	int i;
521 	u16 macctrl;
522 
523 	/* Reset all logic functions */
524 	dw16(ASICCtrl + 2,
525 	     GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
526 	mdelay(10);
527 
528 	rio_set_led_mode(dev);
529 
530 	/* DebugCtrl bit 4, 5, 9 must set */
531 	dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
532 
533 	if (np->chip_id == CHIP_IP1000A &&
534 	    (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) {
535 		/* PHY magic taken from ipg driver, undocumented registers */
536 		mii_write(dev, np->phy_addr, 31, 0x0001);
537 		mii_write(dev, np->phy_addr, 27, 0x01e0);
538 		mii_write(dev, np->phy_addr, 31, 0x0002);
539 		mii_write(dev, np->phy_addr, 27, 0xeb8e);
540 		mii_write(dev, np->phy_addr, 31, 0x0000);
541 		mii_write(dev, np->phy_addr, 30, 0x005e);
542 		/* advertise 1000BASE-T half & full duplex, prefer MASTER */
543 		mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700);
544 	}
545 
546 	if (np->phy_media)
547 		mii_set_media_pcs(dev);
548 	else
549 		mii_set_media(dev);
550 
551 	/* Jumbo frame */
552 	if (np->jumbo != 0)
553 		dw16(MaxFrameSize, MAX_JUMBO+14);
554 
555 	/* Set RFDListPtr */
556 	dw32(RFDListPtr0, np->rx_ring_dma);
557 	dw32(RFDListPtr1, 0);
558 
559 	/* Set station address */
560 	/* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
561 	 * too. However, it doesn't work on IP1000A so we use 16-bit access.
562 	 */
563 	for (i = 0; i < 3; i++)
564 		dw16(StationAddr0 + 2 * i,
565 		     cpu_to_le16(((u16 *)dev->dev_addr)[i]));
566 
567 	set_multicast (dev);
568 	if (np->coalesce) {
569 		dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
570 	}
571 	/* Set RIO to poll every N*320nsec. */
572 	dw8(RxDMAPollPeriod, 0x20);
573 	dw8(TxDMAPollPeriod, 0xff);
574 	dw8(RxDMABurstThresh, 0x30);
575 	dw8(RxDMAUrgentThresh, 0x30);
576 	dw32(RmonStatMask, 0x0007ffff);
577 	/* clear statistics */
578 	clear_stats (dev);
579 
580 	/* VLAN supported */
581 	if (np->vlan) {
582 		/* priority field in RxDMAIntCtrl  */
583 		dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
584 		/* VLANId */
585 		dw16(VLANId, np->vlan);
586 		/* Length/Type should be 0x8100 */
587 		dw32(VLANTag, 0x8100 << 16 | np->vlan);
588 		/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
589 		   VLAN information tagged by TFC' VID, CFI fields. */
590 		dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
591 	}
592 
593 	/* Start Tx/Rx */
594 	dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
595 
596 	macctrl = 0;
597 	macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
598 	macctrl |= (np->full_duplex) ? DuplexSelect : 0;
599 	macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
600 	macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
601 	dw16(MACCtrl, macctrl);
602 }
603 
604 static void rio_hw_stop(struct net_device *dev)
605 {
606 	struct netdev_private *np = netdev_priv(dev);
607 	void __iomem *ioaddr = np->ioaddr;
608 
609 	/* Disable interrupts */
610 	dw16(IntEnable, 0);
611 
612 	/* Stop Tx and Rx logics */
613 	dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
614 }
615 
616 static int rio_open(struct net_device *dev)
617 {
618 	struct netdev_private *np = netdev_priv(dev);
619 	const int irq = np->pdev->irq;
620 	int i;
621 
622 	i = alloc_list(dev);
623 	if (i)
624 		return i;
625 
626 	rio_hw_init(dev);
627 
628 	i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
629 	if (i) {
630 		rio_hw_stop(dev);
631 		free_list(dev);
632 		return i;
633 	}
634 
635 	timer_setup(&np->timer, rio_timer, 0);
636 	np->timer.expires = jiffies + 1 * HZ;
637 	add_timer(&np->timer);
638 
639 	netif_start_queue (dev);
640 
641 	dl2k_enable_int(np);
642 	return 0;
643 }
644 
645 static void
646 rio_timer (struct timer_list *t)
647 {
648 	struct netdev_private *np = from_timer(np, t, timer);
649 	struct net_device *dev = pci_get_drvdata(np->pdev);
650 	unsigned int entry;
651 	int next_tick = 1*HZ;
652 	unsigned long flags;
653 
654 	spin_lock_irqsave(&np->rx_lock, flags);
655 	/* Recover rx ring exhausted error */
656 	if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
657 		printk(KERN_INFO "Try to recover rx ring exhausted...\n");
658 		/* Re-allocate skbuffs to fill the descriptor ring */
659 		for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
660 			struct sk_buff *skb;
661 			entry = np->old_rx % RX_RING_SIZE;
662 			/* Dropped packets don't need to re-allocate */
663 			if (np->rx_skbuff[entry] == NULL) {
664 				skb = netdev_alloc_skb_ip_align(dev,
665 								np->rx_buf_sz);
666 				if (skb == NULL) {
667 					np->rx_ring[entry].fraginfo = 0;
668 					printk (KERN_INFO
669 						"%s: Still unable to re-allocate Rx skbuff.#%d\n",
670 						dev->name, entry);
671 					break;
672 				}
673 				np->rx_skbuff[entry] = skb;
674 				np->rx_ring[entry].fraginfo =
675 				    cpu_to_le64 (pci_map_single
676 					 (np->pdev, skb->data, np->rx_buf_sz,
677 					  PCI_DMA_FROMDEVICE));
678 			}
679 			np->rx_ring[entry].fraginfo |=
680 			    cpu_to_le64((u64)np->rx_buf_sz << 48);
681 			np->rx_ring[entry].status = 0;
682 		} /* end for */
683 	} /* end if */
684 	spin_unlock_irqrestore (&np->rx_lock, flags);
685 	np->timer.expires = jiffies + next_tick;
686 	add_timer(&np->timer);
687 }
688 
689 static void
690 rio_tx_timeout (struct net_device *dev, unsigned int txqueue)
691 {
692 	struct netdev_private *np = netdev_priv(dev);
693 	void __iomem *ioaddr = np->ioaddr;
694 
695 	printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
696 		dev->name, dr32(TxStatus));
697 	rio_free_tx(dev, 0);
698 	dev->if_port = 0;
699 	netif_trans_update(dev); /* prevent tx timeout */
700 }
701 
702 static netdev_tx_t
703 start_xmit (struct sk_buff *skb, struct net_device *dev)
704 {
705 	struct netdev_private *np = netdev_priv(dev);
706 	void __iomem *ioaddr = np->ioaddr;
707 	struct netdev_desc *txdesc;
708 	unsigned entry;
709 	u64 tfc_vlan_tag = 0;
710 
711 	if (np->link_status == 0) {	/* Link Down */
712 		dev_kfree_skb(skb);
713 		return NETDEV_TX_OK;
714 	}
715 	entry = np->cur_tx % TX_RING_SIZE;
716 	np->tx_skbuff[entry] = skb;
717 	txdesc = &np->tx_ring[entry];
718 
719 #if 0
720 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
721 		txdesc->status |=
722 		    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
723 				 IPChecksumEnable);
724 	}
725 #endif
726 	if (np->vlan) {
727 		tfc_vlan_tag = VLANTagInsert |
728 		    ((u64)np->vlan << 32) |
729 		    ((u64)skb->priority << 45);
730 	}
731 	txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
732 							skb->len,
733 							PCI_DMA_TODEVICE));
734 	txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
735 
736 	/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
737 	 * Work around: Always use 1 descriptor in 10Mbps mode */
738 	if (entry % np->tx_coalesce == 0 || np->speed == 10)
739 		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
740 					      WordAlignDisable |
741 					      TxDMAIndicate |
742 					      (1 << FragCountShift));
743 	else
744 		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
745 					      WordAlignDisable |
746 					      (1 << FragCountShift));
747 
748 	/* TxDMAPollNow */
749 	dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
750 	/* Schedule ISR */
751 	dw32(CountDown, 10000);
752 	np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
753 	if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
754 			< TX_QUEUE_LEN - 1 && np->speed != 10) {
755 		/* do nothing */
756 	} else if (!netif_queue_stopped(dev)) {
757 		netif_stop_queue (dev);
758 	}
759 
760 	/* The first TFDListPtr */
761 	if (!dr32(TFDListPtr0)) {
762 		dw32(TFDListPtr0, np->tx_ring_dma +
763 		     entry * sizeof (struct netdev_desc));
764 		dw32(TFDListPtr1, 0);
765 	}
766 
767 	return NETDEV_TX_OK;
768 }
769 
770 static irqreturn_t
771 rio_interrupt (int irq, void *dev_instance)
772 {
773 	struct net_device *dev = dev_instance;
774 	struct netdev_private *np = netdev_priv(dev);
775 	void __iomem *ioaddr = np->ioaddr;
776 	unsigned int_status;
777 	int cnt = max_intrloop;
778 	int handled = 0;
779 
780 	while (1) {
781 		int_status = dr16(IntStatus);
782 		dw16(IntStatus, int_status);
783 		int_status &= DEFAULT_INTR;
784 		if (int_status == 0 || --cnt < 0)
785 			break;
786 		handled = 1;
787 		/* Processing received packets */
788 		if (int_status & RxDMAComplete)
789 			receive_packet (dev);
790 		/* TxDMAComplete interrupt */
791 		if ((int_status & (TxDMAComplete|IntRequested))) {
792 			int tx_status;
793 			tx_status = dr32(TxStatus);
794 			if (tx_status & 0x01)
795 				tx_error (dev, tx_status);
796 			/* Free used tx skbuffs */
797 			rio_free_tx (dev, 1);
798 		}
799 
800 		/* Handle uncommon events */
801 		if (int_status &
802 		    (HostError | LinkEvent | UpdateStats))
803 			rio_error (dev, int_status);
804 	}
805 	if (np->cur_tx != np->old_tx)
806 		dw32(CountDown, 100);
807 	return IRQ_RETVAL(handled);
808 }
809 
810 static void
811 rio_free_tx (struct net_device *dev, int irq)
812 {
813 	struct netdev_private *np = netdev_priv(dev);
814 	int entry = np->old_tx % TX_RING_SIZE;
815 	int tx_use = 0;
816 	unsigned long flag = 0;
817 
818 	if (irq)
819 		spin_lock(&np->tx_lock);
820 	else
821 		spin_lock_irqsave(&np->tx_lock, flag);
822 
823 	/* Free used tx skbuffs */
824 	while (entry != np->cur_tx) {
825 		struct sk_buff *skb;
826 
827 		if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
828 			break;
829 		skb = np->tx_skbuff[entry];
830 		pci_unmap_single (np->pdev,
831 				  desc_to_dma(&np->tx_ring[entry]),
832 				  skb->len, PCI_DMA_TODEVICE);
833 		if (irq)
834 			dev_consume_skb_irq(skb);
835 		else
836 			dev_kfree_skb(skb);
837 
838 		np->tx_skbuff[entry] = NULL;
839 		entry = (entry + 1) % TX_RING_SIZE;
840 		tx_use++;
841 	}
842 	if (irq)
843 		spin_unlock(&np->tx_lock);
844 	else
845 		spin_unlock_irqrestore(&np->tx_lock, flag);
846 	np->old_tx = entry;
847 
848 	/* If the ring is no longer full, clear tx_full and
849 	   call netif_wake_queue() */
850 
851 	if (netif_queue_stopped(dev) &&
852 	    ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
853 	    < TX_QUEUE_LEN - 1 || np->speed == 10)) {
854 		netif_wake_queue (dev);
855 	}
856 }
857 
858 static void
859 tx_error (struct net_device *dev, int tx_status)
860 {
861 	struct netdev_private *np = netdev_priv(dev);
862 	void __iomem *ioaddr = np->ioaddr;
863 	int frame_id;
864 	int i;
865 
866 	frame_id = (tx_status & 0xffff0000);
867 	printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
868 		dev->name, tx_status, frame_id);
869 	dev->stats.tx_errors++;
870 	/* Ttransmit Underrun */
871 	if (tx_status & 0x10) {
872 		dev->stats.tx_fifo_errors++;
873 		dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
874 		/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
875 		dw16(ASICCtrl + 2,
876 		     TxReset | DMAReset | FIFOReset | NetworkReset);
877 		/* Wait for ResetBusy bit clear */
878 		for (i = 50; i > 0; i--) {
879 			if (!(dr16(ASICCtrl + 2) & ResetBusy))
880 				break;
881 			mdelay (1);
882 		}
883 		rio_set_led_mode(dev);
884 		rio_free_tx (dev, 1);
885 		/* Reset TFDListPtr */
886 		dw32(TFDListPtr0, np->tx_ring_dma +
887 		     np->old_tx * sizeof (struct netdev_desc));
888 		dw32(TFDListPtr1, 0);
889 
890 		/* Let TxStartThresh stay default value */
891 	}
892 	/* Late Collision */
893 	if (tx_status & 0x04) {
894 		dev->stats.tx_fifo_errors++;
895 		/* TxReset and clear FIFO */
896 		dw16(ASICCtrl + 2, TxReset | FIFOReset);
897 		/* Wait reset done */
898 		for (i = 50; i > 0; i--) {
899 			if (!(dr16(ASICCtrl + 2) & ResetBusy))
900 				break;
901 			mdelay (1);
902 		}
903 		rio_set_led_mode(dev);
904 		/* Let TxStartThresh stay default value */
905 	}
906 	/* Maximum Collisions */
907 	if (tx_status & 0x08)
908 		dev->stats.collisions++;
909 	/* Restart the Tx */
910 	dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
911 }
912 
913 static int
914 receive_packet (struct net_device *dev)
915 {
916 	struct netdev_private *np = netdev_priv(dev);
917 	int entry = np->cur_rx % RX_RING_SIZE;
918 	int cnt = 30;
919 
920 	/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
921 	while (1) {
922 		struct netdev_desc *desc = &np->rx_ring[entry];
923 		int pkt_len;
924 		u64 frame_status;
925 
926 		if (!(desc->status & cpu_to_le64(RFDDone)) ||
927 		    !(desc->status & cpu_to_le64(FrameStart)) ||
928 		    !(desc->status & cpu_to_le64(FrameEnd)))
929 			break;
930 
931 		/* Chip omits the CRC. */
932 		frame_status = le64_to_cpu(desc->status);
933 		pkt_len = frame_status & 0xffff;
934 		if (--cnt < 0)
935 			break;
936 		/* Update rx error statistics, drop packet. */
937 		if (frame_status & RFS_Errors) {
938 			dev->stats.rx_errors++;
939 			if (frame_status & (RxRuntFrame | RxLengthError))
940 				dev->stats.rx_length_errors++;
941 			if (frame_status & RxFCSError)
942 				dev->stats.rx_crc_errors++;
943 			if (frame_status & RxAlignmentError && np->speed != 1000)
944 				dev->stats.rx_frame_errors++;
945 			if (frame_status & RxFIFOOverrun)
946 				dev->stats.rx_fifo_errors++;
947 		} else {
948 			struct sk_buff *skb;
949 
950 			/* Small skbuffs for short packets */
951 			if (pkt_len > copy_thresh) {
952 				pci_unmap_single (np->pdev,
953 						  desc_to_dma(desc),
954 						  np->rx_buf_sz,
955 						  PCI_DMA_FROMDEVICE);
956 				skb_put (skb = np->rx_skbuff[entry], pkt_len);
957 				np->rx_skbuff[entry] = NULL;
958 			} else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
959 				pci_dma_sync_single_for_cpu(np->pdev,
960 							    desc_to_dma(desc),
961 							    np->rx_buf_sz,
962 							    PCI_DMA_FROMDEVICE);
963 				skb_copy_to_linear_data (skb,
964 						  np->rx_skbuff[entry]->data,
965 						  pkt_len);
966 				skb_put (skb, pkt_len);
967 				pci_dma_sync_single_for_device(np->pdev,
968 							       desc_to_dma(desc),
969 							       np->rx_buf_sz,
970 							       PCI_DMA_FROMDEVICE);
971 			}
972 			skb->protocol = eth_type_trans (skb, dev);
973 #if 0
974 			/* Checksum done by hw, but csum value unavailable. */
975 			if (np->pdev->pci_rev_id >= 0x0c &&
976 				!(frame_status & (TCPError | UDPError | IPError))) {
977 				skb->ip_summed = CHECKSUM_UNNECESSARY;
978 			}
979 #endif
980 			netif_rx (skb);
981 		}
982 		entry = (entry + 1) % RX_RING_SIZE;
983 	}
984 	spin_lock(&np->rx_lock);
985 	np->cur_rx = entry;
986 	/* Re-allocate skbuffs to fill the descriptor ring */
987 	entry = np->old_rx;
988 	while (entry != np->cur_rx) {
989 		struct sk_buff *skb;
990 		/* Dropped packets don't need to re-allocate */
991 		if (np->rx_skbuff[entry] == NULL) {
992 			skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
993 			if (skb == NULL) {
994 				np->rx_ring[entry].fraginfo = 0;
995 				printk (KERN_INFO
996 					"%s: receive_packet: "
997 					"Unable to re-allocate Rx skbuff.#%d\n",
998 					dev->name, entry);
999 				break;
1000 			}
1001 			np->rx_skbuff[entry] = skb;
1002 			np->rx_ring[entry].fraginfo =
1003 			    cpu_to_le64 (pci_map_single
1004 					 (np->pdev, skb->data, np->rx_buf_sz,
1005 					  PCI_DMA_FROMDEVICE));
1006 		}
1007 		np->rx_ring[entry].fraginfo |=
1008 		    cpu_to_le64((u64)np->rx_buf_sz << 48);
1009 		np->rx_ring[entry].status = 0;
1010 		entry = (entry + 1) % RX_RING_SIZE;
1011 	}
1012 	np->old_rx = entry;
1013 	spin_unlock(&np->rx_lock);
1014 	return 0;
1015 }
1016 
1017 static void
1018 rio_error (struct net_device *dev, int int_status)
1019 {
1020 	struct netdev_private *np = netdev_priv(dev);
1021 	void __iomem *ioaddr = np->ioaddr;
1022 	u16 macctrl;
1023 
1024 	/* Link change event */
1025 	if (int_status & LinkEvent) {
1026 		if (mii_wait_link (dev, 10) == 0) {
1027 			printk (KERN_INFO "%s: Link up\n", dev->name);
1028 			if (np->phy_media)
1029 				mii_get_media_pcs (dev);
1030 			else
1031 				mii_get_media (dev);
1032 			if (np->speed == 1000)
1033 				np->tx_coalesce = tx_coalesce;
1034 			else
1035 				np->tx_coalesce = 1;
1036 			macctrl = 0;
1037 			macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
1038 			macctrl |= (np->full_duplex) ? DuplexSelect : 0;
1039 			macctrl |= (np->tx_flow) ?
1040 				TxFlowControlEnable : 0;
1041 			macctrl |= (np->rx_flow) ?
1042 				RxFlowControlEnable : 0;
1043 			dw16(MACCtrl, macctrl);
1044 			np->link_status = 1;
1045 			netif_carrier_on(dev);
1046 		} else {
1047 			printk (KERN_INFO "%s: Link off\n", dev->name);
1048 			np->link_status = 0;
1049 			netif_carrier_off(dev);
1050 		}
1051 	}
1052 
1053 	/* UpdateStats statistics registers */
1054 	if (int_status & UpdateStats) {
1055 		get_stats (dev);
1056 	}
1057 
1058 	/* PCI Error, a catastronphic error related to the bus interface
1059 	   occurs, set GlobalReset and HostReset to reset. */
1060 	if (int_status & HostError) {
1061 		printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
1062 			dev->name, int_status);
1063 		dw16(ASICCtrl + 2, GlobalReset | HostReset);
1064 		mdelay (500);
1065 		rio_set_led_mode(dev);
1066 	}
1067 }
1068 
1069 static struct net_device_stats *
1070 get_stats (struct net_device *dev)
1071 {
1072 	struct netdev_private *np = netdev_priv(dev);
1073 	void __iomem *ioaddr = np->ioaddr;
1074 #ifdef MEM_MAPPING
1075 	int i;
1076 #endif
1077 	unsigned int stat_reg;
1078 
1079 	/* All statistics registers need to be acknowledged,
1080 	   else statistic overflow could cause problems */
1081 
1082 	dev->stats.rx_packets += dr32(FramesRcvOk);
1083 	dev->stats.tx_packets += dr32(FramesXmtOk);
1084 	dev->stats.rx_bytes += dr32(OctetRcvOk);
1085 	dev->stats.tx_bytes += dr32(OctetXmtOk);
1086 
1087 	dev->stats.multicast = dr32(McstFramesRcvdOk);
1088 	dev->stats.collisions += dr32(SingleColFrames)
1089 			     +  dr32(MultiColFrames);
1090 
1091 	/* detailed tx errors */
1092 	stat_reg = dr16(FramesAbortXSColls);
1093 	dev->stats.tx_aborted_errors += stat_reg;
1094 	dev->stats.tx_errors += stat_reg;
1095 
1096 	stat_reg = dr16(CarrierSenseErrors);
1097 	dev->stats.tx_carrier_errors += stat_reg;
1098 	dev->stats.tx_errors += stat_reg;
1099 
1100 	/* Clear all other statistic register. */
1101 	dr32(McstOctetXmtOk);
1102 	dr16(BcstFramesXmtdOk);
1103 	dr32(McstFramesXmtdOk);
1104 	dr16(BcstFramesRcvdOk);
1105 	dr16(MacControlFramesRcvd);
1106 	dr16(FrameTooLongErrors);
1107 	dr16(InRangeLengthErrors);
1108 	dr16(FramesCheckSeqErrors);
1109 	dr16(FramesLostRxErrors);
1110 	dr32(McstOctetXmtOk);
1111 	dr32(BcstOctetXmtOk);
1112 	dr32(McstFramesXmtdOk);
1113 	dr32(FramesWDeferredXmt);
1114 	dr32(LateCollisions);
1115 	dr16(BcstFramesXmtdOk);
1116 	dr16(MacControlFramesXmtd);
1117 	dr16(FramesWEXDeferal);
1118 
1119 #ifdef MEM_MAPPING
1120 	for (i = 0x100; i <= 0x150; i += 4)
1121 		dr32(i);
1122 #endif
1123 	dr16(TxJumboFrames);
1124 	dr16(RxJumboFrames);
1125 	dr16(TCPCheckSumErrors);
1126 	dr16(UDPCheckSumErrors);
1127 	dr16(IPCheckSumErrors);
1128 	return &dev->stats;
1129 }
1130 
1131 static int
1132 clear_stats (struct net_device *dev)
1133 {
1134 	struct netdev_private *np = netdev_priv(dev);
1135 	void __iomem *ioaddr = np->ioaddr;
1136 #ifdef MEM_MAPPING
1137 	int i;
1138 #endif
1139 
1140 	/* All statistics registers need to be acknowledged,
1141 	   else statistic overflow could cause problems */
1142 	dr32(FramesRcvOk);
1143 	dr32(FramesXmtOk);
1144 	dr32(OctetRcvOk);
1145 	dr32(OctetXmtOk);
1146 
1147 	dr32(McstFramesRcvdOk);
1148 	dr32(SingleColFrames);
1149 	dr32(MultiColFrames);
1150 	dr32(LateCollisions);
1151 	/* detailed rx errors */
1152 	dr16(FrameTooLongErrors);
1153 	dr16(InRangeLengthErrors);
1154 	dr16(FramesCheckSeqErrors);
1155 	dr16(FramesLostRxErrors);
1156 
1157 	/* detailed tx errors */
1158 	dr16(FramesAbortXSColls);
1159 	dr16(CarrierSenseErrors);
1160 
1161 	/* Clear all other statistic register. */
1162 	dr32(McstOctetXmtOk);
1163 	dr16(BcstFramesXmtdOk);
1164 	dr32(McstFramesXmtdOk);
1165 	dr16(BcstFramesRcvdOk);
1166 	dr16(MacControlFramesRcvd);
1167 	dr32(McstOctetXmtOk);
1168 	dr32(BcstOctetXmtOk);
1169 	dr32(McstFramesXmtdOk);
1170 	dr32(FramesWDeferredXmt);
1171 	dr16(BcstFramesXmtdOk);
1172 	dr16(MacControlFramesXmtd);
1173 	dr16(FramesWEXDeferal);
1174 #ifdef MEM_MAPPING
1175 	for (i = 0x100; i <= 0x150; i += 4)
1176 		dr32(i);
1177 #endif
1178 	dr16(TxJumboFrames);
1179 	dr16(RxJumboFrames);
1180 	dr16(TCPCheckSumErrors);
1181 	dr16(UDPCheckSumErrors);
1182 	dr16(IPCheckSumErrors);
1183 	return 0;
1184 }
1185 
1186 static void
1187 set_multicast (struct net_device *dev)
1188 {
1189 	struct netdev_private *np = netdev_priv(dev);
1190 	void __iomem *ioaddr = np->ioaddr;
1191 	u32 hash_table[2];
1192 	u16 rx_mode = 0;
1193 
1194 	hash_table[0] = hash_table[1] = 0;
1195 	/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1196 	hash_table[1] |= 0x02000000;
1197 	if (dev->flags & IFF_PROMISC) {
1198 		/* Receive all frames promiscuously. */
1199 		rx_mode = ReceiveAllFrames;
1200 	} else if ((dev->flags & IFF_ALLMULTI) ||
1201 			(netdev_mc_count(dev) > multicast_filter_limit)) {
1202 		/* Receive broadcast and multicast frames */
1203 		rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1204 	} else if (!netdev_mc_empty(dev)) {
1205 		struct netdev_hw_addr *ha;
1206 		/* Receive broadcast frames and multicast frames filtering
1207 		   by Hashtable */
1208 		rx_mode =
1209 		    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1210 		netdev_for_each_mc_addr(ha, dev) {
1211 			int bit, index = 0;
1212 			int crc = ether_crc_le(ETH_ALEN, ha->addr);
1213 			/* The inverted high significant 6 bits of CRC are
1214 			   used as an index to hashtable */
1215 			for (bit = 0; bit < 6; bit++)
1216 				if (crc & (1 << (31 - bit)))
1217 					index |= (1 << bit);
1218 			hash_table[index / 32] |= (1 << (index % 32));
1219 		}
1220 	} else {
1221 		rx_mode = ReceiveBroadcast | ReceiveUnicast;
1222 	}
1223 	if (np->vlan) {
1224 		/* ReceiveVLANMatch field in ReceiveMode */
1225 		rx_mode |= ReceiveVLANMatch;
1226 	}
1227 
1228 	dw32(HashTable0, hash_table[0]);
1229 	dw32(HashTable1, hash_table[1]);
1230 	dw16(ReceiveMode, rx_mode);
1231 }
1232 
1233 static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1234 {
1235 	struct netdev_private *np = netdev_priv(dev);
1236 
1237 	strlcpy(info->driver, "dl2k", sizeof(info->driver));
1238 	strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
1239 }
1240 
1241 static int rio_get_link_ksettings(struct net_device *dev,
1242 				  struct ethtool_link_ksettings *cmd)
1243 {
1244 	struct netdev_private *np = netdev_priv(dev);
1245 	u32 supported, advertising;
1246 
1247 	if (np->phy_media) {
1248 		/* fiber device */
1249 		supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1250 		advertising = ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1251 		cmd->base.port = PORT_FIBRE;
1252 	} else {
1253 		/* copper device */
1254 		supported = SUPPORTED_10baseT_Half |
1255 			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1256 			| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1257 			SUPPORTED_Autoneg | SUPPORTED_MII;
1258 		advertising = ADVERTISED_10baseT_Half |
1259 			ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1260 			ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full |
1261 			ADVERTISED_Autoneg | ADVERTISED_MII;
1262 		cmd->base.port = PORT_MII;
1263 	}
1264 	if (np->link_status) {
1265 		cmd->base.speed = np->speed;
1266 		cmd->base.duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1267 	} else {
1268 		cmd->base.speed = SPEED_UNKNOWN;
1269 		cmd->base.duplex = DUPLEX_UNKNOWN;
1270 	}
1271 	if (np->an_enable)
1272 		cmd->base.autoneg = AUTONEG_ENABLE;
1273 	else
1274 		cmd->base.autoneg = AUTONEG_DISABLE;
1275 
1276 	cmd->base.phy_address = np->phy_addr;
1277 
1278 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1279 						supported);
1280 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1281 						advertising);
1282 
1283 	return 0;
1284 }
1285 
1286 static int rio_set_link_ksettings(struct net_device *dev,
1287 				  const struct ethtool_link_ksettings *cmd)
1288 {
1289 	struct netdev_private *np = netdev_priv(dev);
1290 	u32 speed = cmd->base.speed;
1291 	u8 duplex = cmd->base.duplex;
1292 
1293 	netif_carrier_off(dev);
1294 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
1295 		if (np->an_enable) {
1296 			return 0;
1297 		} else {
1298 			np->an_enable = 1;
1299 			mii_set_media(dev);
1300 			return 0;
1301 		}
1302 	} else {
1303 		np->an_enable = 0;
1304 		if (np->speed == 1000) {
1305 			speed = SPEED_100;
1306 			duplex = DUPLEX_FULL;
1307 			printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1308 		}
1309 		switch (speed) {
1310 		case SPEED_10:
1311 			np->speed = 10;
1312 			np->full_duplex = (duplex == DUPLEX_FULL);
1313 			break;
1314 		case SPEED_100:
1315 			np->speed = 100;
1316 			np->full_duplex = (duplex == DUPLEX_FULL);
1317 			break;
1318 		case SPEED_1000: /* not supported */
1319 		default:
1320 			return -EINVAL;
1321 		}
1322 		mii_set_media(dev);
1323 	}
1324 	return 0;
1325 }
1326 
1327 static u32 rio_get_link(struct net_device *dev)
1328 {
1329 	struct netdev_private *np = netdev_priv(dev);
1330 	return np->link_status;
1331 }
1332 
1333 static const struct ethtool_ops ethtool_ops = {
1334 	.get_drvinfo = rio_get_drvinfo,
1335 	.get_link = rio_get_link,
1336 	.get_link_ksettings = rio_get_link_ksettings,
1337 	.set_link_ksettings = rio_set_link_ksettings,
1338 };
1339 
1340 static int
1341 rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1342 {
1343 	int phy_addr;
1344 	struct netdev_private *np = netdev_priv(dev);
1345 	struct mii_ioctl_data *miidata = if_mii(rq);
1346 
1347 	phy_addr = np->phy_addr;
1348 	switch (cmd) {
1349 	case SIOCGMIIPHY:
1350 		miidata->phy_id = phy_addr;
1351 		break;
1352 	case SIOCGMIIREG:
1353 		miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
1354 		break;
1355 	case SIOCSMIIREG:
1356 		if (!capable(CAP_NET_ADMIN))
1357 			return -EPERM;
1358 		mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
1359 		break;
1360 	default:
1361 		return -EOPNOTSUPP;
1362 	}
1363 	return 0;
1364 }
1365 
1366 #define EEP_READ 0x0200
1367 #define EEP_BUSY 0x8000
1368 /* Read the EEPROM word */
1369 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1370 static int read_eeprom(struct netdev_private *np, int eep_addr)
1371 {
1372 	void __iomem *ioaddr = np->eeprom_addr;
1373 	int i = 1000;
1374 
1375 	dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1376 	while (i-- > 0) {
1377 		if (!(dr16(EepromCtrl) & EEP_BUSY))
1378 			return dr16(EepromData);
1379 	}
1380 	return 0;
1381 }
1382 
1383 enum phy_ctrl_bits {
1384 	MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1385 	MII_DUPLEX = 0x08,
1386 };
1387 
1388 #define mii_delay() dr8(PhyCtrl)
1389 static void
1390 mii_sendbit (struct net_device *dev, u32 data)
1391 {
1392 	struct netdev_private *np = netdev_priv(dev);
1393 	void __iomem *ioaddr = np->ioaddr;
1394 
1395 	data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1396 	dw8(PhyCtrl, data);
1397 	mii_delay ();
1398 	dw8(PhyCtrl, data | MII_CLK);
1399 	mii_delay ();
1400 }
1401 
1402 static int
1403 mii_getbit (struct net_device *dev)
1404 {
1405 	struct netdev_private *np = netdev_priv(dev);
1406 	void __iomem *ioaddr = np->ioaddr;
1407 	u8 data;
1408 
1409 	data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1410 	dw8(PhyCtrl, data);
1411 	mii_delay ();
1412 	dw8(PhyCtrl, data | MII_CLK);
1413 	mii_delay ();
1414 	return (dr8(PhyCtrl) >> 1) & 1;
1415 }
1416 
1417 static void
1418 mii_send_bits (struct net_device *dev, u32 data, int len)
1419 {
1420 	int i;
1421 
1422 	for (i = len - 1; i >= 0; i--) {
1423 		mii_sendbit (dev, data & (1 << i));
1424 	}
1425 }
1426 
1427 static int
1428 mii_read (struct net_device *dev, int phy_addr, int reg_num)
1429 {
1430 	u32 cmd;
1431 	int i;
1432 	u32 retval = 0;
1433 
1434 	/* Preamble */
1435 	mii_send_bits (dev, 0xffffffff, 32);
1436 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1437 	/* ST,OP = 0110'b for read operation */
1438 	cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1439 	mii_send_bits (dev, cmd, 14);
1440 	/* Turnaround */
1441 	if (mii_getbit (dev))
1442 		goto err_out;
1443 	/* Read data */
1444 	for (i = 0; i < 16; i++) {
1445 		retval |= mii_getbit (dev);
1446 		retval <<= 1;
1447 	}
1448 	/* End cycle */
1449 	mii_getbit (dev);
1450 	return (retval >> 1) & 0xffff;
1451 
1452       err_out:
1453 	return 0;
1454 }
1455 static int
1456 mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1457 {
1458 	u32 cmd;
1459 
1460 	/* Preamble */
1461 	mii_send_bits (dev, 0xffffffff, 32);
1462 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1463 	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1464 	cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1465 	mii_send_bits (dev, cmd, 32);
1466 	/* End cycle */
1467 	mii_getbit (dev);
1468 	return 0;
1469 }
1470 static int
1471 mii_wait_link (struct net_device *dev, int wait)
1472 {
1473 	__u16 bmsr;
1474 	int phy_addr;
1475 	struct netdev_private *np;
1476 
1477 	np = netdev_priv(dev);
1478 	phy_addr = np->phy_addr;
1479 
1480 	do {
1481 		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1482 		if (bmsr & BMSR_LSTATUS)
1483 			return 0;
1484 		mdelay (1);
1485 	} while (--wait > 0);
1486 	return -1;
1487 }
1488 static int
1489 mii_get_media (struct net_device *dev)
1490 {
1491 	__u16 negotiate;
1492 	__u16 bmsr;
1493 	__u16 mscr;
1494 	__u16 mssr;
1495 	int phy_addr;
1496 	struct netdev_private *np;
1497 
1498 	np = netdev_priv(dev);
1499 	phy_addr = np->phy_addr;
1500 
1501 	bmsr = mii_read (dev, phy_addr, MII_BMSR);
1502 	if (np->an_enable) {
1503 		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1504 			/* Auto-Negotiation not completed */
1505 			return -1;
1506 		}
1507 		negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1508 			mii_read (dev, phy_addr, MII_LPA);
1509 		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1510 		mssr = mii_read (dev, phy_addr, MII_STAT1000);
1511 		if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1512 			np->speed = 1000;
1513 			np->full_duplex = 1;
1514 			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1515 		} else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1516 			np->speed = 1000;
1517 			np->full_duplex = 0;
1518 			printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1519 		} else if (negotiate & ADVERTISE_100FULL) {
1520 			np->speed = 100;
1521 			np->full_duplex = 1;
1522 			printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1523 		} else if (negotiate & ADVERTISE_100HALF) {
1524 			np->speed = 100;
1525 			np->full_duplex = 0;
1526 			printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1527 		} else if (negotiate & ADVERTISE_10FULL) {
1528 			np->speed = 10;
1529 			np->full_duplex = 1;
1530 			printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1531 		} else if (negotiate & ADVERTISE_10HALF) {
1532 			np->speed = 10;
1533 			np->full_duplex = 0;
1534 			printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1535 		}
1536 		if (negotiate & ADVERTISE_PAUSE_CAP) {
1537 			np->tx_flow &= 1;
1538 			np->rx_flow &= 1;
1539 		} else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1540 			np->tx_flow = 0;
1541 			np->rx_flow &= 1;
1542 		}
1543 		/* else tx_flow, rx_flow = user select  */
1544 	} else {
1545 		__u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1546 		switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1547 		case BMCR_SPEED1000:
1548 			printk (KERN_INFO "Operating at 1000 Mbps, ");
1549 			break;
1550 		case BMCR_SPEED100:
1551 			printk (KERN_INFO "Operating at 100 Mbps, ");
1552 			break;
1553 		case 0:
1554 			printk (KERN_INFO "Operating at 10 Mbps, ");
1555 		}
1556 		if (bmcr & BMCR_FULLDPLX) {
1557 			printk (KERN_CONT "Full duplex\n");
1558 		} else {
1559 			printk (KERN_CONT "Half duplex\n");
1560 		}
1561 	}
1562 	if (np->tx_flow)
1563 		printk(KERN_INFO "Enable Tx Flow Control\n");
1564 	else
1565 		printk(KERN_INFO "Disable Tx Flow Control\n");
1566 	if (np->rx_flow)
1567 		printk(KERN_INFO "Enable Rx Flow Control\n");
1568 	else
1569 		printk(KERN_INFO "Disable Rx Flow Control\n");
1570 
1571 	return 0;
1572 }
1573 
1574 static int
1575 mii_set_media (struct net_device *dev)
1576 {
1577 	__u16 pscr;
1578 	__u16 bmcr;
1579 	__u16 bmsr;
1580 	__u16 anar;
1581 	int phy_addr;
1582 	struct netdev_private *np;
1583 	np = netdev_priv(dev);
1584 	phy_addr = np->phy_addr;
1585 
1586 	/* Does user set speed? */
1587 	if (np->an_enable) {
1588 		/* Advertise capabilities */
1589 		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1590 		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1591 			~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1592 			  ADVERTISE_100HALF | ADVERTISE_10HALF |
1593 			  ADVERTISE_100BASE4);
1594 		if (bmsr & BMSR_100FULL)
1595 			anar |= ADVERTISE_100FULL;
1596 		if (bmsr & BMSR_100HALF)
1597 			anar |= ADVERTISE_100HALF;
1598 		if (bmsr & BMSR_100BASE4)
1599 			anar |= ADVERTISE_100BASE4;
1600 		if (bmsr & BMSR_10FULL)
1601 			anar |= ADVERTISE_10FULL;
1602 		if (bmsr & BMSR_10HALF)
1603 			anar |= ADVERTISE_10HALF;
1604 		anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1605 		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1606 
1607 		/* Enable Auto crossover */
1608 		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1609 		pscr |= 3 << 5;	/* 11'b */
1610 		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1611 
1612 		/* Soft reset PHY */
1613 		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1614 		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1615 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1616 		mdelay(1);
1617 	} else {
1618 		/* Force speed setting */
1619 		/* 1) Disable Auto crossover */
1620 		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1621 		pscr &= ~(3 << 5);
1622 		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1623 
1624 		/* 2) PHY Reset */
1625 		bmcr = mii_read (dev, phy_addr, MII_BMCR);
1626 		bmcr |= BMCR_RESET;
1627 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1628 
1629 		/* 3) Power Down */
1630 		bmcr = 0x1940;	/* must be 0x1940 */
1631 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1632 		mdelay (100);	/* wait a certain time */
1633 
1634 		/* 4) Advertise nothing */
1635 		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1636 
1637 		/* 5) Set media and Power Up */
1638 		bmcr = BMCR_PDOWN;
1639 		if (np->speed == 100) {
1640 			bmcr |= BMCR_SPEED100;
1641 			printk (KERN_INFO "Manual 100 Mbps, ");
1642 		} else if (np->speed == 10) {
1643 			printk (KERN_INFO "Manual 10 Mbps, ");
1644 		}
1645 		if (np->full_duplex) {
1646 			bmcr |= BMCR_FULLDPLX;
1647 			printk (KERN_CONT "Full duplex\n");
1648 		} else {
1649 			printk (KERN_CONT "Half duplex\n");
1650 		}
1651 #if 0
1652 		/* Set 1000BaseT Master/Slave setting */
1653 		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1654 		mscr |= MII_MSCR_CFG_ENABLE;
1655 		mscr &= ~MII_MSCR_CFG_VALUE = 0;
1656 #endif
1657 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1658 		mdelay(10);
1659 	}
1660 	return 0;
1661 }
1662 
1663 static int
1664 mii_get_media_pcs (struct net_device *dev)
1665 {
1666 	__u16 negotiate;
1667 	__u16 bmsr;
1668 	int phy_addr;
1669 	struct netdev_private *np;
1670 
1671 	np = netdev_priv(dev);
1672 	phy_addr = np->phy_addr;
1673 
1674 	bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1675 	if (np->an_enable) {
1676 		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1677 			/* Auto-Negotiation not completed */
1678 			return -1;
1679 		}
1680 		negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1681 			mii_read (dev, phy_addr, PCS_ANLPAR);
1682 		np->speed = 1000;
1683 		if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1684 			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1685 			np->full_duplex = 1;
1686 		} else {
1687 			printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1688 			np->full_duplex = 0;
1689 		}
1690 		if (negotiate & PCS_ANAR_PAUSE) {
1691 			np->tx_flow &= 1;
1692 			np->rx_flow &= 1;
1693 		} else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1694 			np->tx_flow = 0;
1695 			np->rx_flow &= 1;
1696 		}
1697 		/* else tx_flow, rx_flow = user select  */
1698 	} else {
1699 		__u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1700 		printk (KERN_INFO "Operating at 1000 Mbps, ");
1701 		if (bmcr & BMCR_FULLDPLX) {
1702 			printk (KERN_CONT "Full duplex\n");
1703 		} else {
1704 			printk (KERN_CONT "Half duplex\n");
1705 		}
1706 	}
1707 	if (np->tx_flow)
1708 		printk(KERN_INFO "Enable Tx Flow Control\n");
1709 	else
1710 		printk(KERN_INFO "Disable Tx Flow Control\n");
1711 	if (np->rx_flow)
1712 		printk(KERN_INFO "Enable Rx Flow Control\n");
1713 	else
1714 		printk(KERN_INFO "Disable Rx Flow Control\n");
1715 
1716 	return 0;
1717 }
1718 
1719 static int
1720 mii_set_media_pcs (struct net_device *dev)
1721 {
1722 	__u16 bmcr;
1723 	__u16 esr;
1724 	__u16 anar;
1725 	int phy_addr;
1726 	struct netdev_private *np;
1727 	np = netdev_priv(dev);
1728 	phy_addr = np->phy_addr;
1729 
1730 	/* Auto-Negotiation? */
1731 	if (np->an_enable) {
1732 		/* Advertise capabilities */
1733 		esr = mii_read (dev, phy_addr, PCS_ESR);
1734 		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1735 			~PCS_ANAR_HALF_DUPLEX &
1736 			~PCS_ANAR_FULL_DUPLEX;
1737 		if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1738 			anar |= PCS_ANAR_HALF_DUPLEX;
1739 		if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1740 			anar |= PCS_ANAR_FULL_DUPLEX;
1741 		anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1742 		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1743 
1744 		/* Soft reset PHY */
1745 		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1746 		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1747 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1748 		mdelay(1);
1749 	} else {
1750 		/* Force speed setting */
1751 		/* PHY Reset */
1752 		bmcr = BMCR_RESET;
1753 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1754 		mdelay(10);
1755 		if (np->full_duplex) {
1756 			bmcr = BMCR_FULLDPLX;
1757 			printk (KERN_INFO "Manual full duplex\n");
1758 		} else {
1759 			bmcr = 0;
1760 			printk (KERN_INFO "Manual half duplex\n");
1761 		}
1762 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1763 		mdelay(10);
1764 
1765 		/*  Advertise nothing */
1766 		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1767 	}
1768 	return 0;
1769 }
1770 
1771 
1772 static int
1773 rio_close (struct net_device *dev)
1774 {
1775 	struct netdev_private *np = netdev_priv(dev);
1776 	struct pci_dev *pdev = np->pdev;
1777 
1778 	netif_stop_queue (dev);
1779 
1780 	rio_hw_stop(dev);
1781 
1782 	free_irq(pdev->irq, dev);
1783 	del_timer_sync (&np->timer);
1784 
1785 	free_list(dev);
1786 
1787 	return 0;
1788 }
1789 
1790 static void
1791 rio_remove1 (struct pci_dev *pdev)
1792 {
1793 	struct net_device *dev = pci_get_drvdata (pdev);
1794 
1795 	if (dev) {
1796 		struct netdev_private *np = netdev_priv(dev);
1797 
1798 		unregister_netdev (dev);
1799 		pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
1800 				     np->rx_ring_dma);
1801 		pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
1802 				     np->tx_ring_dma);
1803 #ifdef MEM_MAPPING
1804 		pci_iounmap(pdev, np->ioaddr);
1805 #endif
1806 		pci_iounmap(pdev, np->eeprom_addr);
1807 		free_netdev (dev);
1808 		pci_release_regions (pdev);
1809 		pci_disable_device (pdev);
1810 	}
1811 }
1812 
1813 #ifdef CONFIG_PM_SLEEP
1814 static int rio_suspend(struct device *device)
1815 {
1816 	struct net_device *dev = dev_get_drvdata(device);
1817 	struct netdev_private *np = netdev_priv(dev);
1818 
1819 	if (!netif_running(dev))
1820 		return 0;
1821 
1822 	netif_device_detach(dev);
1823 	del_timer_sync(&np->timer);
1824 	rio_hw_stop(dev);
1825 
1826 	return 0;
1827 }
1828 
1829 static int rio_resume(struct device *device)
1830 {
1831 	struct net_device *dev = dev_get_drvdata(device);
1832 	struct netdev_private *np = netdev_priv(dev);
1833 
1834 	if (!netif_running(dev))
1835 		return 0;
1836 
1837 	rio_reset_ring(np);
1838 	rio_hw_init(dev);
1839 	np->timer.expires = jiffies + 1 * HZ;
1840 	add_timer(&np->timer);
1841 	netif_device_attach(dev);
1842 	dl2k_enable_int(np);
1843 
1844 	return 0;
1845 }
1846 
1847 static SIMPLE_DEV_PM_OPS(rio_pm_ops, rio_suspend, rio_resume);
1848 #define RIO_PM_OPS    (&rio_pm_ops)
1849 
1850 #else
1851 
1852 #define RIO_PM_OPS	NULL
1853 
1854 #endif /* CONFIG_PM_SLEEP */
1855 
1856 static struct pci_driver rio_driver = {
1857 	.name		= "dl2k",
1858 	.id_table	= rio_pci_tbl,
1859 	.probe		= rio_probe1,
1860 	.remove		= rio_remove1,
1861 	.driver.pm	= RIO_PM_OPS,
1862 };
1863 
1864 module_pci_driver(rio_driver);
1865 
1866 /* Read Documentation/networking/device_drivers/ethernet/dlink/dl2k.rst. */
1867