1 /* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */ 2 /* 3 Copyright (c) 2001, 2002 by D-Link Corporation 4 Written by Edward Peng.<edward_peng@dlink.com.tw> 5 Created 03-May-2001, base on Linux' sundance.c. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 2 of the License, or 10 (at your option) any later version. 11 */ 12 13 #define DRV_NAME "DL2000/TC902x-based linux driver" 14 #define DRV_VERSION "v1.19" 15 #define DRV_RELDATE "2007/08/12" 16 #include "dl2k.h" 17 #include <linux/dma-mapping.h> 18 19 #define dw32(reg, val) iowrite32(val, ioaddr + (reg)) 20 #define dw16(reg, val) iowrite16(val, ioaddr + (reg)) 21 #define dw8(reg, val) iowrite8(val, ioaddr + (reg)) 22 #define dr32(reg) ioread32(ioaddr + (reg)) 23 #define dr16(reg) ioread16(ioaddr + (reg)) 24 #define dr8(reg) ioread8(ioaddr + (reg)) 25 26 static char version[] = 27 KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n"; 28 #define MAX_UNITS 8 29 static int mtu[MAX_UNITS]; 30 static int vlan[MAX_UNITS]; 31 static int jumbo[MAX_UNITS]; 32 static char *media[MAX_UNITS]; 33 static int tx_flow=-1; 34 static int rx_flow=-1; 35 static int copy_thresh; 36 static int rx_coalesce=10; /* Rx frame count each interrupt */ 37 static int rx_timeout=200; /* Rx DMA wait time in 640ns increments */ 38 static int tx_coalesce=16; /* HW xmit count each TxDMAComplete */ 39 40 41 MODULE_AUTHOR ("Edward Peng"); 42 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter"); 43 MODULE_LICENSE("GPL"); 44 module_param_array(mtu, int, NULL, 0); 45 module_param_array(media, charp, NULL, 0); 46 module_param_array(vlan, int, NULL, 0); 47 module_param_array(jumbo, int, NULL, 0); 48 module_param(tx_flow, int, 0); 49 module_param(rx_flow, int, 0); 50 module_param(copy_thresh, int, 0); 51 module_param(rx_coalesce, int, 0); /* Rx frame count each interrupt */ 52 module_param(rx_timeout, int, 0); /* Rx DMA wait time in 64ns increments */ 53 module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */ 54 55 56 /* Enable the default interrupts */ 57 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \ 58 UpdateStats | LinkEvent) 59 60 static void dl2k_enable_int(struct netdev_private *np) 61 { 62 void __iomem *ioaddr = np->ioaddr; 63 64 dw16(IntEnable, DEFAULT_INTR); 65 } 66 67 static const int max_intrloop = 50; 68 static const int multicast_filter_limit = 0x40; 69 70 static int rio_open (struct net_device *dev); 71 static void rio_timer (unsigned long data); 72 static void rio_tx_timeout (struct net_device *dev); 73 static void alloc_list (struct net_device *dev); 74 static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev); 75 static irqreturn_t rio_interrupt (int irq, void *dev_instance); 76 static void rio_free_tx (struct net_device *dev, int irq); 77 static void tx_error (struct net_device *dev, int tx_status); 78 static int receive_packet (struct net_device *dev); 79 static void rio_error (struct net_device *dev, int int_status); 80 static int change_mtu (struct net_device *dev, int new_mtu); 81 static void set_multicast (struct net_device *dev); 82 static struct net_device_stats *get_stats (struct net_device *dev); 83 static int clear_stats (struct net_device *dev); 84 static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd); 85 static int rio_close (struct net_device *dev); 86 static int find_miiphy (struct net_device *dev); 87 static int parse_eeprom (struct net_device *dev); 88 static int read_eeprom (struct netdev_private *, int eep_addr); 89 static int mii_wait_link (struct net_device *dev, int wait); 90 static int mii_set_media (struct net_device *dev); 91 static int mii_get_media (struct net_device *dev); 92 static int mii_set_media_pcs (struct net_device *dev); 93 static int mii_get_media_pcs (struct net_device *dev); 94 static int mii_read (struct net_device *dev, int phy_addr, int reg_num); 95 static int mii_write (struct net_device *dev, int phy_addr, int reg_num, 96 u16 data); 97 98 static const struct ethtool_ops ethtool_ops; 99 100 static const struct net_device_ops netdev_ops = { 101 .ndo_open = rio_open, 102 .ndo_start_xmit = start_xmit, 103 .ndo_stop = rio_close, 104 .ndo_get_stats = get_stats, 105 .ndo_validate_addr = eth_validate_addr, 106 .ndo_set_mac_address = eth_mac_addr, 107 .ndo_set_rx_mode = set_multicast, 108 .ndo_do_ioctl = rio_ioctl, 109 .ndo_tx_timeout = rio_tx_timeout, 110 .ndo_change_mtu = change_mtu, 111 }; 112 113 static int 114 rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent) 115 { 116 struct net_device *dev; 117 struct netdev_private *np; 118 static int card_idx; 119 int chip_idx = ent->driver_data; 120 int err, irq; 121 void __iomem *ioaddr; 122 static int version_printed; 123 void *ring_space; 124 dma_addr_t ring_dma; 125 126 if (!version_printed++) 127 printk ("%s", version); 128 129 err = pci_enable_device (pdev); 130 if (err) 131 return err; 132 133 irq = pdev->irq; 134 err = pci_request_regions (pdev, "dl2k"); 135 if (err) 136 goto err_out_disable; 137 138 pci_set_master (pdev); 139 140 err = -ENOMEM; 141 142 dev = alloc_etherdev (sizeof (*np)); 143 if (!dev) 144 goto err_out_res; 145 SET_NETDEV_DEV(dev, &pdev->dev); 146 147 np = netdev_priv(dev); 148 149 /* IO registers range. */ 150 ioaddr = pci_iomap(pdev, 0, 0); 151 if (!ioaddr) 152 goto err_out_dev; 153 np->eeprom_addr = ioaddr; 154 155 #ifdef MEM_MAPPING 156 /* MM registers range. */ 157 ioaddr = pci_iomap(pdev, 1, 0); 158 if (!ioaddr) 159 goto err_out_iounmap; 160 #endif 161 np->ioaddr = ioaddr; 162 np->chip_id = chip_idx; 163 np->pdev = pdev; 164 spin_lock_init (&np->tx_lock); 165 spin_lock_init (&np->rx_lock); 166 167 /* Parse manual configuration */ 168 np->an_enable = 1; 169 np->tx_coalesce = 1; 170 if (card_idx < MAX_UNITS) { 171 if (media[card_idx] != NULL) { 172 np->an_enable = 0; 173 if (strcmp (media[card_idx], "auto") == 0 || 174 strcmp (media[card_idx], "autosense") == 0 || 175 strcmp (media[card_idx], "0") == 0 ) { 176 np->an_enable = 2; 177 } else if (strcmp (media[card_idx], "100mbps_fd") == 0 || 178 strcmp (media[card_idx], "4") == 0) { 179 np->speed = 100; 180 np->full_duplex = 1; 181 } else if (strcmp (media[card_idx], "100mbps_hd") == 0 || 182 strcmp (media[card_idx], "3") == 0) { 183 np->speed = 100; 184 np->full_duplex = 0; 185 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 || 186 strcmp (media[card_idx], "2") == 0) { 187 np->speed = 10; 188 np->full_duplex = 1; 189 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 || 190 strcmp (media[card_idx], "1") == 0) { 191 np->speed = 10; 192 np->full_duplex = 0; 193 } else if (strcmp (media[card_idx], "1000mbps_fd") == 0 || 194 strcmp (media[card_idx], "6") == 0) { 195 np->speed=1000; 196 np->full_duplex=1; 197 } else if (strcmp (media[card_idx], "1000mbps_hd") == 0 || 198 strcmp (media[card_idx], "5") == 0) { 199 np->speed = 1000; 200 np->full_duplex = 0; 201 } else { 202 np->an_enable = 1; 203 } 204 } 205 if (jumbo[card_idx] != 0) { 206 np->jumbo = 1; 207 dev->mtu = MAX_JUMBO; 208 } else { 209 np->jumbo = 0; 210 if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE) 211 dev->mtu = mtu[card_idx]; 212 } 213 np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ? 214 vlan[card_idx] : 0; 215 if (rx_coalesce > 0 && rx_timeout > 0) { 216 np->rx_coalesce = rx_coalesce; 217 np->rx_timeout = rx_timeout; 218 np->coalesce = 1; 219 } 220 np->tx_flow = (tx_flow == 0) ? 0 : 1; 221 np->rx_flow = (rx_flow == 0) ? 0 : 1; 222 223 if (tx_coalesce < 1) 224 tx_coalesce = 1; 225 else if (tx_coalesce > TX_RING_SIZE-1) 226 tx_coalesce = TX_RING_SIZE - 1; 227 } 228 dev->netdev_ops = &netdev_ops; 229 dev->watchdog_timeo = TX_TIMEOUT; 230 dev->ethtool_ops = ðtool_ops; 231 #if 0 232 dev->features = NETIF_F_IP_CSUM; 233 #endif 234 pci_set_drvdata (pdev, dev); 235 236 ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma); 237 if (!ring_space) 238 goto err_out_iounmap; 239 np->tx_ring = ring_space; 240 np->tx_ring_dma = ring_dma; 241 242 ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma); 243 if (!ring_space) 244 goto err_out_unmap_tx; 245 np->rx_ring = ring_space; 246 np->rx_ring_dma = ring_dma; 247 248 /* Parse eeprom data */ 249 parse_eeprom (dev); 250 251 /* Find PHY address */ 252 err = find_miiphy (dev); 253 if (err) 254 goto err_out_unmap_rx; 255 256 /* Fiber device? */ 257 np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0; 258 np->link_status = 0; 259 /* Set media and reset PHY */ 260 if (np->phy_media) { 261 /* default Auto-Negotiation for fiber deivices */ 262 if (np->an_enable == 2) { 263 np->an_enable = 1; 264 } 265 mii_set_media_pcs (dev); 266 } else { 267 /* Auto-Negotiation is mandatory for 1000BASE-T, 268 IEEE 802.3ab Annex 28D page 14 */ 269 if (np->speed == 1000) 270 np->an_enable = 1; 271 mii_set_media (dev); 272 } 273 274 err = register_netdev (dev); 275 if (err) 276 goto err_out_unmap_rx; 277 278 card_idx++; 279 280 printk (KERN_INFO "%s: %s, %pM, IRQ %d\n", 281 dev->name, np->name, dev->dev_addr, irq); 282 if (tx_coalesce > 1) 283 printk(KERN_INFO "tx_coalesce:\t%d packets\n", 284 tx_coalesce); 285 if (np->coalesce) 286 printk(KERN_INFO 287 "rx_coalesce:\t%d packets\n" 288 "rx_timeout: \t%d ns\n", 289 np->rx_coalesce, np->rx_timeout*640); 290 if (np->vlan) 291 printk(KERN_INFO "vlan(id):\t%d\n", np->vlan); 292 return 0; 293 294 err_out_unmap_rx: 295 pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma); 296 err_out_unmap_tx: 297 pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma); 298 err_out_iounmap: 299 #ifdef MEM_MAPPING 300 pci_iounmap(pdev, np->ioaddr); 301 #endif 302 pci_iounmap(pdev, np->eeprom_addr); 303 err_out_dev: 304 free_netdev (dev); 305 err_out_res: 306 pci_release_regions (pdev); 307 err_out_disable: 308 pci_disable_device (pdev); 309 return err; 310 } 311 312 static int 313 find_miiphy (struct net_device *dev) 314 { 315 struct netdev_private *np = netdev_priv(dev); 316 int i, phy_found = 0; 317 np = netdev_priv(dev); 318 np->phy_addr = 1; 319 320 for (i = 31; i >= 0; i--) { 321 int mii_status = mii_read (dev, i, 1); 322 if (mii_status != 0xffff && mii_status != 0x0000) { 323 np->phy_addr = i; 324 phy_found++; 325 } 326 } 327 if (!phy_found) { 328 printk (KERN_ERR "%s: No MII PHY found!\n", dev->name); 329 return -ENODEV; 330 } 331 return 0; 332 } 333 334 static int 335 parse_eeprom (struct net_device *dev) 336 { 337 struct netdev_private *np = netdev_priv(dev); 338 void __iomem *ioaddr = np->ioaddr; 339 int i, j; 340 u8 sromdata[256]; 341 u8 *psib; 342 u32 crc; 343 PSROM_t psrom = (PSROM_t) sromdata; 344 345 int cid, next; 346 347 for (i = 0; i < 128; i++) 348 ((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i)); 349 350 if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) { /* D-Link Only */ 351 /* Check CRC */ 352 crc = ~ether_crc_le (256 - 4, sromdata); 353 if (psrom->crc != cpu_to_le32(crc)) { 354 printk (KERN_ERR "%s: EEPROM data CRC error.\n", 355 dev->name); 356 return -1; 357 } 358 } 359 360 /* Set MAC address */ 361 for (i = 0; i < 6; i++) 362 dev->dev_addr[i] = psrom->mac_addr[i]; 363 364 if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) { 365 return 0; 366 } 367 368 /* Parse Software Information Block */ 369 i = 0x30; 370 psib = (u8 *) sromdata; 371 do { 372 cid = psib[i++]; 373 next = psib[i++]; 374 if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) { 375 printk (KERN_ERR "Cell data error\n"); 376 return -1; 377 } 378 switch (cid) { 379 case 0: /* Format version */ 380 break; 381 case 1: /* End of cell */ 382 return 0; 383 case 2: /* Duplex Polarity */ 384 np->duplex_polarity = psib[i]; 385 dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]); 386 break; 387 case 3: /* Wake Polarity */ 388 np->wake_polarity = psib[i]; 389 break; 390 case 9: /* Adapter description */ 391 j = (next - i > 255) ? 255 : next - i; 392 memcpy (np->name, &(psib[i]), j); 393 break; 394 case 4: 395 case 5: 396 case 6: 397 case 7: 398 case 8: /* Reversed */ 399 break; 400 default: /* Unknown cell */ 401 return -1; 402 } 403 i = next; 404 } while (1); 405 406 return 0; 407 } 408 409 static int 410 rio_open (struct net_device *dev) 411 { 412 struct netdev_private *np = netdev_priv(dev); 413 void __iomem *ioaddr = np->ioaddr; 414 const int irq = np->pdev->irq; 415 int i; 416 u16 macctrl; 417 418 i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev); 419 if (i) 420 return i; 421 422 /* Reset all logic functions */ 423 dw16(ASICCtrl + 2, 424 GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset); 425 mdelay(10); 426 427 /* DebugCtrl bit 4, 5, 9 must set */ 428 dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230); 429 430 /* Jumbo frame */ 431 if (np->jumbo != 0) 432 dw16(MaxFrameSize, MAX_JUMBO+14); 433 434 alloc_list (dev); 435 436 /* Get station address */ 437 for (i = 0; i < 6; i++) 438 dw8(StationAddr0 + i, dev->dev_addr[i]); 439 440 set_multicast (dev); 441 if (np->coalesce) { 442 dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16); 443 } 444 /* Set RIO to poll every N*320nsec. */ 445 dw8(RxDMAPollPeriod, 0x20); 446 dw8(TxDMAPollPeriod, 0xff); 447 dw8(RxDMABurstThresh, 0x30); 448 dw8(RxDMAUrgentThresh, 0x30); 449 dw32(RmonStatMask, 0x0007ffff); 450 /* clear statistics */ 451 clear_stats (dev); 452 453 /* VLAN supported */ 454 if (np->vlan) { 455 /* priority field in RxDMAIntCtrl */ 456 dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10); 457 /* VLANId */ 458 dw16(VLANId, np->vlan); 459 /* Length/Type should be 0x8100 */ 460 dw32(VLANTag, 0x8100 << 16 | np->vlan); 461 /* Enable AutoVLANuntagging, but disable AutoVLANtagging. 462 VLAN information tagged by TFC' VID, CFI fields. */ 463 dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging); 464 } 465 466 init_timer (&np->timer); 467 np->timer.expires = jiffies + 1*HZ; 468 np->timer.data = (unsigned long) dev; 469 np->timer.function = rio_timer; 470 add_timer (&np->timer); 471 472 /* Start Tx/Rx */ 473 dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable); 474 475 macctrl = 0; 476 macctrl |= (np->vlan) ? AutoVLANuntagging : 0; 477 macctrl |= (np->full_duplex) ? DuplexSelect : 0; 478 macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0; 479 macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0; 480 dw16(MACCtrl, macctrl); 481 482 netif_start_queue (dev); 483 484 dl2k_enable_int(np); 485 return 0; 486 } 487 488 static void 489 rio_timer (unsigned long data) 490 { 491 struct net_device *dev = (struct net_device *)data; 492 struct netdev_private *np = netdev_priv(dev); 493 unsigned int entry; 494 int next_tick = 1*HZ; 495 unsigned long flags; 496 497 spin_lock_irqsave(&np->rx_lock, flags); 498 /* Recover rx ring exhausted error */ 499 if (np->cur_rx - np->old_rx >= RX_RING_SIZE) { 500 printk(KERN_INFO "Try to recover rx ring exhausted...\n"); 501 /* Re-allocate skbuffs to fill the descriptor ring */ 502 for (; np->cur_rx - np->old_rx > 0; np->old_rx++) { 503 struct sk_buff *skb; 504 entry = np->old_rx % RX_RING_SIZE; 505 /* Dropped packets don't need to re-allocate */ 506 if (np->rx_skbuff[entry] == NULL) { 507 skb = netdev_alloc_skb_ip_align(dev, 508 np->rx_buf_sz); 509 if (skb == NULL) { 510 np->rx_ring[entry].fraginfo = 0; 511 printk (KERN_INFO 512 "%s: Still unable to re-allocate Rx skbuff.#%d\n", 513 dev->name, entry); 514 break; 515 } 516 np->rx_skbuff[entry] = skb; 517 np->rx_ring[entry].fraginfo = 518 cpu_to_le64 (pci_map_single 519 (np->pdev, skb->data, np->rx_buf_sz, 520 PCI_DMA_FROMDEVICE)); 521 } 522 np->rx_ring[entry].fraginfo |= 523 cpu_to_le64((u64)np->rx_buf_sz << 48); 524 np->rx_ring[entry].status = 0; 525 } /* end for */ 526 } /* end if */ 527 spin_unlock_irqrestore (&np->rx_lock, flags); 528 np->timer.expires = jiffies + next_tick; 529 add_timer(&np->timer); 530 } 531 532 static void 533 rio_tx_timeout (struct net_device *dev) 534 { 535 struct netdev_private *np = netdev_priv(dev); 536 void __iomem *ioaddr = np->ioaddr; 537 538 printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n", 539 dev->name, dr32(TxStatus)); 540 rio_free_tx(dev, 0); 541 dev->if_port = 0; 542 dev->trans_start = jiffies; /* prevent tx timeout */ 543 } 544 545 /* allocate and initialize Tx and Rx descriptors */ 546 static void 547 alloc_list (struct net_device *dev) 548 { 549 struct netdev_private *np = netdev_priv(dev); 550 void __iomem *ioaddr = np->ioaddr; 551 int i; 552 553 np->cur_rx = np->cur_tx = 0; 554 np->old_rx = np->old_tx = 0; 555 np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32); 556 557 /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */ 558 for (i = 0; i < TX_RING_SIZE; i++) { 559 np->tx_skbuff[i] = NULL; 560 np->tx_ring[i].status = cpu_to_le64 (TFDDone); 561 np->tx_ring[i].next_desc = cpu_to_le64 (np->tx_ring_dma + 562 ((i+1)%TX_RING_SIZE) * 563 sizeof (struct netdev_desc)); 564 } 565 566 /* Initialize Rx descriptors */ 567 for (i = 0; i < RX_RING_SIZE; i++) { 568 np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma + 569 ((i + 1) % RX_RING_SIZE) * 570 sizeof (struct netdev_desc)); 571 np->rx_ring[i].status = 0; 572 np->rx_ring[i].fraginfo = 0; 573 np->rx_skbuff[i] = NULL; 574 } 575 576 /* Allocate the rx buffers */ 577 for (i = 0; i < RX_RING_SIZE; i++) { 578 /* Allocated fixed size of skbuff */ 579 struct sk_buff *skb; 580 581 skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz); 582 np->rx_skbuff[i] = skb; 583 if (skb == NULL) 584 break; 585 586 /* Rubicon now supports 40 bits of addressing space. */ 587 np->rx_ring[i].fraginfo = 588 cpu_to_le64 ( pci_map_single ( 589 np->pdev, skb->data, np->rx_buf_sz, 590 PCI_DMA_FROMDEVICE)); 591 np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48); 592 } 593 594 /* Set RFDListPtr */ 595 dw32(RFDListPtr0, np->rx_ring_dma); 596 dw32(RFDListPtr1, 0); 597 } 598 599 static netdev_tx_t 600 start_xmit (struct sk_buff *skb, struct net_device *dev) 601 { 602 struct netdev_private *np = netdev_priv(dev); 603 void __iomem *ioaddr = np->ioaddr; 604 struct netdev_desc *txdesc; 605 unsigned entry; 606 u64 tfc_vlan_tag = 0; 607 608 if (np->link_status == 0) { /* Link Down */ 609 dev_kfree_skb(skb); 610 return NETDEV_TX_OK; 611 } 612 entry = np->cur_tx % TX_RING_SIZE; 613 np->tx_skbuff[entry] = skb; 614 txdesc = &np->tx_ring[entry]; 615 616 #if 0 617 if (skb->ip_summed == CHECKSUM_PARTIAL) { 618 txdesc->status |= 619 cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable | 620 IPChecksumEnable); 621 } 622 #endif 623 if (np->vlan) { 624 tfc_vlan_tag = VLANTagInsert | 625 ((u64)np->vlan << 32) | 626 ((u64)skb->priority << 45); 627 } 628 txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data, 629 skb->len, 630 PCI_DMA_TODEVICE)); 631 txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48); 632 633 /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode 634 * Work around: Always use 1 descriptor in 10Mbps mode */ 635 if (entry % np->tx_coalesce == 0 || np->speed == 10) 636 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag | 637 WordAlignDisable | 638 TxDMAIndicate | 639 (1 << FragCountShift)); 640 else 641 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag | 642 WordAlignDisable | 643 (1 << FragCountShift)); 644 645 /* TxDMAPollNow */ 646 dw32(DMACtrl, dr32(DMACtrl) | 0x00001000); 647 /* Schedule ISR */ 648 dw32(CountDown, 10000); 649 np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE; 650 if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE 651 < TX_QUEUE_LEN - 1 && np->speed != 10) { 652 /* do nothing */ 653 } else if (!netif_queue_stopped(dev)) { 654 netif_stop_queue (dev); 655 } 656 657 /* The first TFDListPtr */ 658 if (!dr32(TFDListPtr0)) { 659 dw32(TFDListPtr0, np->tx_ring_dma + 660 entry * sizeof (struct netdev_desc)); 661 dw32(TFDListPtr1, 0); 662 } 663 664 return NETDEV_TX_OK; 665 } 666 667 static irqreturn_t 668 rio_interrupt (int irq, void *dev_instance) 669 { 670 struct net_device *dev = dev_instance; 671 struct netdev_private *np = netdev_priv(dev); 672 void __iomem *ioaddr = np->ioaddr; 673 unsigned int_status; 674 int cnt = max_intrloop; 675 int handled = 0; 676 677 while (1) { 678 int_status = dr16(IntStatus); 679 dw16(IntStatus, int_status); 680 int_status &= DEFAULT_INTR; 681 if (int_status == 0 || --cnt < 0) 682 break; 683 handled = 1; 684 /* Processing received packets */ 685 if (int_status & RxDMAComplete) 686 receive_packet (dev); 687 /* TxDMAComplete interrupt */ 688 if ((int_status & (TxDMAComplete|IntRequested))) { 689 int tx_status; 690 tx_status = dr32(TxStatus); 691 if (tx_status & 0x01) 692 tx_error (dev, tx_status); 693 /* Free used tx skbuffs */ 694 rio_free_tx (dev, 1); 695 } 696 697 /* Handle uncommon events */ 698 if (int_status & 699 (HostError | LinkEvent | UpdateStats)) 700 rio_error (dev, int_status); 701 } 702 if (np->cur_tx != np->old_tx) 703 dw32(CountDown, 100); 704 return IRQ_RETVAL(handled); 705 } 706 707 static inline dma_addr_t desc_to_dma(struct netdev_desc *desc) 708 { 709 return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48); 710 } 711 712 static void 713 rio_free_tx (struct net_device *dev, int irq) 714 { 715 struct netdev_private *np = netdev_priv(dev); 716 int entry = np->old_tx % TX_RING_SIZE; 717 int tx_use = 0; 718 unsigned long flag = 0; 719 720 if (irq) 721 spin_lock(&np->tx_lock); 722 else 723 spin_lock_irqsave(&np->tx_lock, flag); 724 725 /* Free used tx skbuffs */ 726 while (entry != np->cur_tx) { 727 struct sk_buff *skb; 728 729 if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone))) 730 break; 731 skb = np->tx_skbuff[entry]; 732 pci_unmap_single (np->pdev, 733 desc_to_dma(&np->tx_ring[entry]), 734 skb->len, PCI_DMA_TODEVICE); 735 if (irq) 736 dev_kfree_skb_irq (skb); 737 else 738 dev_kfree_skb (skb); 739 740 np->tx_skbuff[entry] = NULL; 741 entry = (entry + 1) % TX_RING_SIZE; 742 tx_use++; 743 } 744 if (irq) 745 spin_unlock(&np->tx_lock); 746 else 747 spin_unlock_irqrestore(&np->tx_lock, flag); 748 np->old_tx = entry; 749 750 /* If the ring is no longer full, clear tx_full and 751 call netif_wake_queue() */ 752 753 if (netif_queue_stopped(dev) && 754 ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE 755 < TX_QUEUE_LEN - 1 || np->speed == 10)) { 756 netif_wake_queue (dev); 757 } 758 } 759 760 static void 761 tx_error (struct net_device *dev, int tx_status) 762 { 763 struct netdev_private *np = netdev_priv(dev); 764 void __iomem *ioaddr = np->ioaddr; 765 int frame_id; 766 int i; 767 768 frame_id = (tx_status & 0xffff0000); 769 printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n", 770 dev->name, tx_status, frame_id); 771 np->stats.tx_errors++; 772 /* Ttransmit Underrun */ 773 if (tx_status & 0x10) { 774 np->stats.tx_fifo_errors++; 775 dw16(TxStartThresh, dr16(TxStartThresh) + 0x10); 776 /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */ 777 dw16(ASICCtrl + 2, 778 TxReset | DMAReset | FIFOReset | NetworkReset); 779 /* Wait for ResetBusy bit clear */ 780 for (i = 50; i > 0; i--) { 781 if (!(dr16(ASICCtrl + 2) & ResetBusy)) 782 break; 783 mdelay (1); 784 } 785 rio_free_tx (dev, 1); 786 /* Reset TFDListPtr */ 787 dw32(TFDListPtr0, np->tx_ring_dma + 788 np->old_tx * sizeof (struct netdev_desc)); 789 dw32(TFDListPtr1, 0); 790 791 /* Let TxStartThresh stay default value */ 792 } 793 /* Late Collision */ 794 if (tx_status & 0x04) { 795 np->stats.tx_fifo_errors++; 796 /* TxReset and clear FIFO */ 797 dw16(ASICCtrl + 2, TxReset | FIFOReset); 798 /* Wait reset done */ 799 for (i = 50; i > 0; i--) { 800 if (!(dr16(ASICCtrl + 2) & ResetBusy)) 801 break; 802 mdelay (1); 803 } 804 /* Let TxStartThresh stay default value */ 805 } 806 /* Maximum Collisions */ 807 #ifdef ETHER_STATS 808 if (tx_status & 0x08) 809 np->stats.collisions16++; 810 #else 811 if (tx_status & 0x08) 812 np->stats.collisions++; 813 #endif 814 /* Restart the Tx */ 815 dw32(MACCtrl, dr16(MACCtrl) | TxEnable); 816 } 817 818 static int 819 receive_packet (struct net_device *dev) 820 { 821 struct netdev_private *np = netdev_priv(dev); 822 int entry = np->cur_rx % RX_RING_SIZE; 823 int cnt = 30; 824 825 /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */ 826 while (1) { 827 struct netdev_desc *desc = &np->rx_ring[entry]; 828 int pkt_len; 829 u64 frame_status; 830 831 if (!(desc->status & cpu_to_le64(RFDDone)) || 832 !(desc->status & cpu_to_le64(FrameStart)) || 833 !(desc->status & cpu_to_le64(FrameEnd))) 834 break; 835 836 /* Chip omits the CRC. */ 837 frame_status = le64_to_cpu(desc->status); 838 pkt_len = frame_status & 0xffff; 839 if (--cnt < 0) 840 break; 841 /* Update rx error statistics, drop packet. */ 842 if (frame_status & RFS_Errors) { 843 np->stats.rx_errors++; 844 if (frame_status & (RxRuntFrame | RxLengthError)) 845 np->stats.rx_length_errors++; 846 if (frame_status & RxFCSError) 847 np->stats.rx_crc_errors++; 848 if (frame_status & RxAlignmentError && np->speed != 1000) 849 np->stats.rx_frame_errors++; 850 if (frame_status & RxFIFOOverrun) 851 np->stats.rx_fifo_errors++; 852 } else { 853 struct sk_buff *skb; 854 855 /* Small skbuffs for short packets */ 856 if (pkt_len > copy_thresh) { 857 pci_unmap_single (np->pdev, 858 desc_to_dma(desc), 859 np->rx_buf_sz, 860 PCI_DMA_FROMDEVICE); 861 skb_put (skb = np->rx_skbuff[entry], pkt_len); 862 np->rx_skbuff[entry] = NULL; 863 } else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) { 864 pci_dma_sync_single_for_cpu(np->pdev, 865 desc_to_dma(desc), 866 np->rx_buf_sz, 867 PCI_DMA_FROMDEVICE); 868 skb_copy_to_linear_data (skb, 869 np->rx_skbuff[entry]->data, 870 pkt_len); 871 skb_put (skb, pkt_len); 872 pci_dma_sync_single_for_device(np->pdev, 873 desc_to_dma(desc), 874 np->rx_buf_sz, 875 PCI_DMA_FROMDEVICE); 876 } 877 skb->protocol = eth_type_trans (skb, dev); 878 #if 0 879 /* Checksum done by hw, but csum value unavailable. */ 880 if (np->pdev->pci_rev_id >= 0x0c && 881 !(frame_status & (TCPError | UDPError | IPError))) { 882 skb->ip_summed = CHECKSUM_UNNECESSARY; 883 } 884 #endif 885 netif_rx (skb); 886 } 887 entry = (entry + 1) % RX_RING_SIZE; 888 } 889 spin_lock(&np->rx_lock); 890 np->cur_rx = entry; 891 /* Re-allocate skbuffs to fill the descriptor ring */ 892 entry = np->old_rx; 893 while (entry != np->cur_rx) { 894 struct sk_buff *skb; 895 /* Dropped packets don't need to re-allocate */ 896 if (np->rx_skbuff[entry] == NULL) { 897 skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz); 898 if (skb == NULL) { 899 np->rx_ring[entry].fraginfo = 0; 900 printk (KERN_INFO 901 "%s: receive_packet: " 902 "Unable to re-allocate Rx skbuff.#%d\n", 903 dev->name, entry); 904 break; 905 } 906 np->rx_skbuff[entry] = skb; 907 np->rx_ring[entry].fraginfo = 908 cpu_to_le64 (pci_map_single 909 (np->pdev, skb->data, np->rx_buf_sz, 910 PCI_DMA_FROMDEVICE)); 911 } 912 np->rx_ring[entry].fraginfo |= 913 cpu_to_le64((u64)np->rx_buf_sz << 48); 914 np->rx_ring[entry].status = 0; 915 entry = (entry + 1) % RX_RING_SIZE; 916 } 917 np->old_rx = entry; 918 spin_unlock(&np->rx_lock); 919 return 0; 920 } 921 922 static void 923 rio_error (struct net_device *dev, int int_status) 924 { 925 struct netdev_private *np = netdev_priv(dev); 926 void __iomem *ioaddr = np->ioaddr; 927 u16 macctrl; 928 929 /* Link change event */ 930 if (int_status & LinkEvent) { 931 if (mii_wait_link (dev, 10) == 0) { 932 printk (KERN_INFO "%s: Link up\n", dev->name); 933 if (np->phy_media) 934 mii_get_media_pcs (dev); 935 else 936 mii_get_media (dev); 937 if (np->speed == 1000) 938 np->tx_coalesce = tx_coalesce; 939 else 940 np->tx_coalesce = 1; 941 macctrl = 0; 942 macctrl |= (np->vlan) ? AutoVLANuntagging : 0; 943 macctrl |= (np->full_duplex) ? DuplexSelect : 0; 944 macctrl |= (np->tx_flow) ? 945 TxFlowControlEnable : 0; 946 macctrl |= (np->rx_flow) ? 947 RxFlowControlEnable : 0; 948 dw16(MACCtrl, macctrl); 949 np->link_status = 1; 950 netif_carrier_on(dev); 951 } else { 952 printk (KERN_INFO "%s: Link off\n", dev->name); 953 np->link_status = 0; 954 netif_carrier_off(dev); 955 } 956 } 957 958 /* UpdateStats statistics registers */ 959 if (int_status & UpdateStats) { 960 get_stats (dev); 961 } 962 963 /* PCI Error, a catastronphic error related to the bus interface 964 occurs, set GlobalReset and HostReset to reset. */ 965 if (int_status & HostError) { 966 printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n", 967 dev->name, int_status); 968 dw16(ASICCtrl + 2, GlobalReset | HostReset); 969 mdelay (500); 970 } 971 } 972 973 static struct net_device_stats * 974 get_stats (struct net_device *dev) 975 { 976 struct netdev_private *np = netdev_priv(dev); 977 void __iomem *ioaddr = np->ioaddr; 978 #ifdef MEM_MAPPING 979 int i; 980 #endif 981 unsigned int stat_reg; 982 983 /* All statistics registers need to be acknowledged, 984 else statistic overflow could cause problems */ 985 986 np->stats.rx_packets += dr32(FramesRcvOk); 987 np->stats.tx_packets += dr32(FramesXmtOk); 988 np->stats.rx_bytes += dr32(OctetRcvOk); 989 np->stats.tx_bytes += dr32(OctetXmtOk); 990 991 np->stats.multicast = dr32(McstFramesRcvdOk); 992 np->stats.collisions += dr32(SingleColFrames) 993 + dr32(MultiColFrames); 994 995 /* detailed tx errors */ 996 stat_reg = dr16(FramesAbortXSColls); 997 np->stats.tx_aborted_errors += stat_reg; 998 np->stats.tx_errors += stat_reg; 999 1000 stat_reg = dr16(CarrierSenseErrors); 1001 np->stats.tx_carrier_errors += stat_reg; 1002 np->stats.tx_errors += stat_reg; 1003 1004 /* Clear all other statistic register. */ 1005 dr32(McstOctetXmtOk); 1006 dr16(BcstFramesXmtdOk); 1007 dr32(McstFramesXmtdOk); 1008 dr16(BcstFramesRcvdOk); 1009 dr16(MacControlFramesRcvd); 1010 dr16(FrameTooLongErrors); 1011 dr16(InRangeLengthErrors); 1012 dr16(FramesCheckSeqErrors); 1013 dr16(FramesLostRxErrors); 1014 dr32(McstOctetXmtOk); 1015 dr32(BcstOctetXmtOk); 1016 dr32(McstFramesXmtdOk); 1017 dr32(FramesWDeferredXmt); 1018 dr32(LateCollisions); 1019 dr16(BcstFramesXmtdOk); 1020 dr16(MacControlFramesXmtd); 1021 dr16(FramesWEXDeferal); 1022 1023 #ifdef MEM_MAPPING 1024 for (i = 0x100; i <= 0x150; i += 4) 1025 dr32(i); 1026 #endif 1027 dr16(TxJumboFrames); 1028 dr16(RxJumboFrames); 1029 dr16(TCPCheckSumErrors); 1030 dr16(UDPCheckSumErrors); 1031 dr16(IPCheckSumErrors); 1032 return &np->stats; 1033 } 1034 1035 static int 1036 clear_stats (struct net_device *dev) 1037 { 1038 struct netdev_private *np = netdev_priv(dev); 1039 void __iomem *ioaddr = np->ioaddr; 1040 #ifdef MEM_MAPPING 1041 int i; 1042 #endif 1043 1044 /* All statistics registers need to be acknowledged, 1045 else statistic overflow could cause problems */ 1046 dr32(FramesRcvOk); 1047 dr32(FramesXmtOk); 1048 dr32(OctetRcvOk); 1049 dr32(OctetXmtOk); 1050 1051 dr32(McstFramesRcvdOk); 1052 dr32(SingleColFrames); 1053 dr32(MultiColFrames); 1054 dr32(LateCollisions); 1055 /* detailed rx errors */ 1056 dr16(FrameTooLongErrors); 1057 dr16(InRangeLengthErrors); 1058 dr16(FramesCheckSeqErrors); 1059 dr16(FramesLostRxErrors); 1060 1061 /* detailed tx errors */ 1062 dr16(FramesAbortXSColls); 1063 dr16(CarrierSenseErrors); 1064 1065 /* Clear all other statistic register. */ 1066 dr32(McstOctetXmtOk); 1067 dr16(BcstFramesXmtdOk); 1068 dr32(McstFramesXmtdOk); 1069 dr16(BcstFramesRcvdOk); 1070 dr16(MacControlFramesRcvd); 1071 dr32(McstOctetXmtOk); 1072 dr32(BcstOctetXmtOk); 1073 dr32(McstFramesXmtdOk); 1074 dr32(FramesWDeferredXmt); 1075 dr16(BcstFramesXmtdOk); 1076 dr16(MacControlFramesXmtd); 1077 dr16(FramesWEXDeferal); 1078 #ifdef MEM_MAPPING 1079 for (i = 0x100; i <= 0x150; i += 4) 1080 dr32(i); 1081 #endif 1082 dr16(TxJumboFrames); 1083 dr16(RxJumboFrames); 1084 dr16(TCPCheckSumErrors); 1085 dr16(UDPCheckSumErrors); 1086 dr16(IPCheckSumErrors); 1087 return 0; 1088 } 1089 1090 1091 static int 1092 change_mtu (struct net_device *dev, int new_mtu) 1093 { 1094 struct netdev_private *np = netdev_priv(dev); 1095 int max = (np->jumbo) ? MAX_JUMBO : 1536; 1096 1097 if ((new_mtu < 68) || (new_mtu > max)) { 1098 return -EINVAL; 1099 } 1100 1101 dev->mtu = new_mtu; 1102 1103 return 0; 1104 } 1105 1106 static void 1107 set_multicast (struct net_device *dev) 1108 { 1109 struct netdev_private *np = netdev_priv(dev); 1110 void __iomem *ioaddr = np->ioaddr; 1111 u32 hash_table[2]; 1112 u16 rx_mode = 0; 1113 1114 hash_table[0] = hash_table[1] = 0; 1115 /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */ 1116 hash_table[1] |= 0x02000000; 1117 if (dev->flags & IFF_PROMISC) { 1118 /* Receive all frames promiscuously. */ 1119 rx_mode = ReceiveAllFrames; 1120 } else if ((dev->flags & IFF_ALLMULTI) || 1121 (netdev_mc_count(dev) > multicast_filter_limit)) { 1122 /* Receive broadcast and multicast frames */ 1123 rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast; 1124 } else if (!netdev_mc_empty(dev)) { 1125 struct netdev_hw_addr *ha; 1126 /* Receive broadcast frames and multicast frames filtering 1127 by Hashtable */ 1128 rx_mode = 1129 ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast; 1130 netdev_for_each_mc_addr(ha, dev) { 1131 int bit, index = 0; 1132 int crc = ether_crc_le(ETH_ALEN, ha->addr); 1133 /* The inverted high significant 6 bits of CRC are 1134 used as an index to hashtable */ 1135 for (bit = 0; bit < 6; bit++) 1136 if (crc & (1 << (31 - bit))) 1137 index |= (1 << bit); 1138 hash_table[index / 32] |= (1 << (index % 32)); 1139 } 1140 } else { 1141 rx_mode = ReceiveBroadcast | ReceiveUnicast; 1142 } 1143 if (np->vlan) { 1144 /* ReceiveVLANMatch field in ReceiveMode */ 1145 rx_mode |= ReceiveVLANMatch; 1146 } 1147 1148 dw32(HashTable0, hash_table[0]); 1149 dw32(HashTable1, hash_table[1]); 1150 dw16(ReceiveMode, rx_mode); 1151 } 1152 1153 static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1154 { 1155 struct netdev_private *np = netdev_priv(dev); 1156 1157 strlcpy(info->driver, "dl2k", sizeof(info->driver)); 1158 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1159 strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info)); 1160 } 1161 1162 static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1163 { 1164 struct netdev_private *np = netdev_priv(dev); 1165 if (np->phy_media) { 1166 /* fiber device */ 1167 cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE; 1168 cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE; 1169 cmd->port = PORT_FIBRE; 1170 cmd->transceiver = XCVR_INTERNAL; 1171 } else { 1172 /* copper device */ 1173 cmd->supported = SUPPORTED_10baseT_Half | 1174 SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half 1175 | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full | 1176 SUPPORTED_Autoneg | SUPPORTED_MII; 1177 cmd->advertising = ADVERTISED_10baseT_Half | 1178 ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half | 1179 ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full| 1180 ADVERTISED_Autoneg | ADVERTISED_MII; 1181 cmd->port = PORT_MII; 1182 cmd->transceiver = XCVR_INTERNAL; 1183 } 1184 if ( np->link_status ) { 1185 ethtool_cmd_speed_set(cmd, np->speed); 1186 cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF; 1187 } else { 1188 ethtool_cmd_speed_set(cmd, SPEED_UNKNOWN); 1189 cmd->duplex = DUPLEX_UNKNOWN; 1190 } 1191 if ( np->an_enable) 1192 cmd->autoneg = AUTONEG_ENABLE; 1193 else 1194 cmd->autoneg = AUTONEG_DISABLE; 1195 1196 cmd->phy_address = np->phy_addr; 1197 return 0; 1198 } 1199 1200 static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1201 { 1202 struct netdev_private *np = netdev_priv(dev); 1203 netif_carrier_off(dev); 1204 if (cmd->autoneg == AUTONEG_ENABLE) { 1205 if (np->an_enable) 1206 return 0; 1207 else { 1208 np->an_enable = 1; 1209 mii_set_media(dev); 1210 return 0; 1211 } 1212 } else { 1213 np->an_enable = 0; 1214 if (np->speed == 1000) { 1215 ethtool_cmd_speed_set(cmd, SPEED_100); 1216 cmd->duplex = DUPLEX_FULL; 1217 printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n"); 1218 } 1219 switch (ethtool_cmd_speed(cmd)) { 1220 case SPEED_10: 1221 np->speed = 10; 1222 np->full_duplex = (cmd->duplex == DUPLEX_FULL); 1223 break; 1224 case SPEED_100: 1225 np->speed = 100; 1226 np->full_duplex = (cmd->duplex == DUPLEX_FULL); 1227 break; 1228 case SPEED_1000: /* not supported */ 1229 default: 1230 return -EINVAL; 1231 } 1232 mii_set_media(dev); 1233 } 1234 return 0; 1235 } 1236 1237 static u32 rio_get_link(struct net_device *dev) 1238 { 1239 struct netdev_private *np = netdev_priv(dev); 1240 return np->link_status; 1241 } 1242 1243 static const struct ethtool_ops ethtool_ops = { 1244 .get_drvinfo = rio_get_drvinfo, 1245 .get_settings = rio_get_settings, 1246 .set_settings = rio_set_settings, 1247 .get_link = rio_get_link, 1248 }; 1249 1250 static int 1251 rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd) 1252 { 1253 int phy_addr; 1254 struct netdev_private *np = netdev_priv(dev); 1255 struct mii_ioctl_data *miidata = if_mii(rq); 1256 1257 phy_addr = np->phy_addr; 1258 switch (cmd) { 1259 case SIOCGMIIPHY: 1260 miidata->phy_id = phy_addr; 1261 break; 1262 case SIOCGMIIREG: 1263 miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num); 1264 break; 1265 case SIOCSMIIREG: 1266 if (!capable(CAP_NET_ADMIN)) 1267 return -EPERM; 1268 mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in); 1269 break; 1270 default: 1271 return -EOPNOTSUPP; 1272 } 1273 return 0; 1274 } 1275 1276 #define EEP_READ 0x0200 1277 #define EEP_BUSY 0x8000 1278 /* Read the EEPROM word */ 1279 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */ 1280 static int read_eeprom(struct netdev_private *np, int eep_addr) 1281 { 1282 void __iomem *ioaddr = np->eeprom_addr; 1283 int i = 1000; 1284 1285 dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff)); 1286 while (i-- > 0) { 1287 if (!(dr16(EepromCtrl) & EEP_BUSY)) 1288 return dr16(EepromData); 1289 } 1290 return 0; 1291 } 1292 1293 enum phy_ctrl_bits { 1294 MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04, 1295 MII_DUPLEX = 0x08, 1296 }; 1297 1298 #define mii_delay() dr8(PhyCtrl) 1299 static void 1300 mii_sendbit (struct net_device *dev, u32 data) 1301 { 1302 struct netdev_private *np = netdev_priv(dev); 1303 void __iomem *ioaddr = np->ioaddr; 1304 1305 data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE; 1306 dw8(PhyCtrl, data); 1307 mii_delay (); 1308 dw8(PhyCtrl, data | MII_CLK); 1309 mii_delay (); 1310 } 1311 1312 static int 1313 mii_getbit (struct net_device *dev) 1314 { 1315 struct netdev_private *np = netdev_priv(dev); 1316 void __iomem *ioaddr = np->ioaddr; 1317 u8 data; 1318 1319 data = (dr8(PhyCtrl) & 0xf8) | MII_READ; 1320 dw8(PhyCtrl, data); 1321 mii_delay (); 1322 dw8(PhyCtrl, data | MII_CLK); 1323 mii_delay (); 1324 return (dr8(PhyCtrl) >> 1) & 1; 1325 } 1326 1327 static void 1328 mii_send_bits (struct net_device *dev, u32 data, int len) 1329 { 1330 int i; 1331 1332 for (i = len - 1; i >= 0; i--) { 1333 mii_sendbit (dev, data & (1 << i)); 1334 } 1335 } 1336 1337 static int 1338 mii_read (struct net_device *dev, int phy_addr, int reg_num) 1339 { 1340 u32 cmd; 1341 int i; 1342 u32 retval = 0; 1343 1344 /* Preamble */ 1345 mii_send_bits (dev, 0xffffffff, 32); 1346 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */ 1347 /* ST,OP = 0110'b for read operation */ 1348 cmd = (0x06 << 10 | phy_addr << 5 | reg_num); 1349 mii_send_bits (dev, cmd, 14); 1350 /* Turnaround */ 1351 if (mii_getbit (dev)) 1352 goto err_out; 1353 /* Read data */ 1354 for (i = 0; i < 16; i++) { 1355 retval |= mii_getbit (dev); 1356 retval <<= 1; 1357 } 1358 /* End cycle */ 1359 mii_getbit (dev); 1360 return (retval >> 1) & 0xffff; 1361 1362 err_out: 1363 return 0; 1364 } 1365 static int 1366 mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data) 1367 { 1368 u32 cmd; 1369 1370 /* Preamble */ 1371 mii_send_bits (dev, 0xffffffff, 32); 1372 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */ 1373 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */ 1374 cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data; 1375 mii_send_bits (dev, cmd, 32); 1376 /* End cycle */ 1377 mii_getbit (dev); 1378 return 0; 1379 } 1380 static int 1381 mii_wait_link (struct net_device *dev, int wait) 1382 { 1383 __u16 bmsr; 1384 int phy_addr; 1385 struct netdev_private *np; 1386 1387 np = netdev_priv(dev); 1388 phy_addr = np->phy_addr; 1389 1390 do { 1391 bmsr = mii_read (dev, phy_addr, MII_BMSR); 1392 if (bmsr & BMSR_LSTATUS) 1393 return 0; 1394 mdelay (1); 1395 } while (--wait > 0); 1396 return -1; 1397 } 1398 static int 1399 mii_get_media (struct net_device *dev) 1400 { 1401 __u16 negotiate; 1402 __u16 bmsr; 1403 __u16 mscr; 1404 __u16 mssr; 1405 int phy_addr; 1406 struct netdev_private *np; 1407 1408 np = netdev_priv(dev); 1409 phy_addr = np->phy_addr; 1410 1411 bmsr = mii_read (dev, phy_addr, MII_BMSR); 1412 if (np->an_enable) { 1413 if (!(bmsr & BMSR_ANEGCOMPLETE)) { 1414 /* Auto-Negotiation not completed */ 1415 return -1; 1416 } 1417 negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) & 1418 mii_read (dev, phy_addr, MII_LPA); 1419 mscr = mii_read (dev, phy_addr, MII_CTRL1000); 1420 mssr = mii_read (dev, phy_addr, MII_STAT1000); 1421 if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) { 1422 np->speed = 1000; 1423 np->full_duplex = 1; 1424 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n"); 1425 } else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) { 1426 np->speed = 1000; 1427 np->full_duplex = 0; 1428 printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n"); 1429 } else if (negotiate & ADVERTISE_100FULL) { 1430 np->speed = 100; 1431 np->full_duplex = 1; 1432 printk (KERN_INFO "Auto 100 Mbps, Full duplex\n"); 1433 } else if (negotiate & ADVERTISE_100HALF) { 1434 np->speed = 100; 1435 np->full_duplex = 0; 1436 printk (KERN_INFO "Auto 100 Mbps, Half duplex\n"); 1437 } else if (negotiate & ADVERTISE_10FULL) { 1438 np->speed = 10; 1439 np->full_duplex = 1; 1440 printk (KERN_INFO "Auto 10 Mbps, Full duplex\n"); 1441 } else if (negotiate & ADVERTISE_10HALF) { 1442 np->speed = 10; 1443 np->full_duplex = 0; 1444 printk (KERN_INFO "Auto 10 Mbps, Half duplex\n"); 1445 } 1446 if (negotiate & ADVERTISE_PAUSE_CAP) { 1447 np->tx_flow &= 1; 1448 np->rx_flow &= 1; 1449 } else if (negotiate & ADVERTISE_PAUSE_ASYM) { 1450 np->tx_flow = 0; 1451 np->rx_flow &= 1; 1452 } 1453 /* else tx_flow, rx_flow = user select */ 1454 } else { 1455 __u16 bmcr = mii_read (dev, phy_addr, MII_BMCR); 1456 switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) { 1457 case BMCR_SPEED1000: 1458 printk (KERN_INFO "Operating at 1000 Mbps, "); 1459 break; 1460 case BMCR_SPEED100: 1461 printk (KERN_INFO "Operating at 100 Mbps, "); 1462 break; 1463 case 0: 1464 printk (KERN_INFO "Operating at 10 Mbps, "); 1465 } 1466 if (bmcr & BMCR_FULLDPLX) { 1467 printk (KERN_CONT "Full duplex\n"); 1468 } else { 1469 printk (KERN_CONT "Half duplex\n"); 1470 } 1471 } 1472 if (np->tx_flow) 1473 printk(KERN_INFO "Enable Tx Flow Control\n"); 1474 else 1475 printk(KERN_INFO "Disable Tx Flow Control\n"); 1476 if (np->rx_flow) 1477 printk(KERN_INFO "Enable Rx Flow Control\n"); 1478 else 1479 printk(KERN_INFO "Disable Rx Flow Control\n"); 1480 1481 return 0; 1482 } 1483 1484 static int 1485 mii_set_media (struct net_device *dev) 1486 { 1487 __u16 pscr; 1488 __u16 bmcr; 1489 __u16 bmsr; 1490 __u16 anar; 1491 int phy_addr; 1492 struct netdev_private *np; 1493 np = netdev_priv(dev); 1494 phy_addr = np->phy_addr; 1495 1496 /* Does user set speed? */ 1497 if (np->an_enable) { 1498 /* Advertise capabilities */ 1499 bmsr = mii_read (dev, phy_addr, MII_BMSR); 1500 anar = mii_read (dev, phy_addr, MII_ADVERTISE) & 1501 ~(ADVERTISE_100FULL | ADVERTISE_10FULL | 1502 ADVERTISE_100HALF | ADVERTISE_10HALF | 1503 ADVERTISE_100BASE4); 1504 if (bmsr & BMSR_100FULL) 1505 anar |= ADVERTISE_100FULL; 1506 if (bmsr & BMSR_100HALF) 1507 anar |= ADVERTISE_100HALF; 1508 if (bmsr & BMSR_100BASE4) 1509 anar |= ADVERTISE_100BASE4; 1510 if (bmsr & BMSR_10FULL) 1511 anar |= ADVERTISE_10FULL; 1512 if (bmsr & BMSR_10HALF) 1513 anar |= ADVERTISE_10HALF; 1514 anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; 1515 mii_write (dev, phy_addr, MII_ADVERTISE, anar); 1516 1517 /* Enable Auto crossover */ 1518 pscr = mii_read (dev, phy_addr, MII_PHY_SCR); 1519 pscr |= 3 << 5; /* 11'b */ 1520 mii_write (dev, phy_addr, MII_PHY_SCR, pscr); 1521 1522 /* Soft reset PHY */ 1523 mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET); 1524 bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET; 1525 mii_write (dev, phy_addr, MII_BMCR, bmcr); 1526 mdelay(1); 1527 } else { 1528 /* Force speed setting */ 1529 /* 1) Disable Auto crossover */ 1530 pscr = mii_read (dev, phy_addr, MII_PHY_SCR); 1531 pscr &= ~(3 << 5); 1532 mii_write (dev, phy_addr, MII_PHY_SCR, pscr); 1533 1534 /* 2) PHY Reset */ 1535 bmcr = mii_read (dev, phy_addr, MII_BMCR); 1536 bmcr |= BMCR_RESET; 1537 mii_write (dev, phy_addr, MII_BMCR, bmcr); 1538 1539 /* 3) Power Down */ 1540 bmcr = 0x1940; /* must be 0x1940 */ 1541 mii_write (dev, phy_addr, MII_BMCR, bmcr); 1542 mdelay (100); /* wait a certain time */ 1543 1544 /* 4) Advertise nothing */ 1545 mii_write (dev, phy_addr, MII_ADVERTISE, 0); 1546 1547 /* 5) Set media and Power Up */ 1548 bmcr = BMCR_PDOWN; 1549 if (np->speed == 100) { 1550 bmcr |= BMCR_SPEED100; 1551 printk (KERN_INFO "Manual 100 Mbps, "); 1552 } else if (np->speed == 10) { 1553 printk (KERN_INFO "Manual 10 Mbps, "); 1554 } 1555 if (np->full_duplex) { 1556 bmcr |= BMCR_FULLDPLX; 1557 printk (KERN_CONT "Full duplex\n"); 1558 } else { 1559 printk (KERN_CONT "Half duplex\n"); 1560 } 1561 #if 0 1562 /* Set 1000BaseT Master/Slave setting */ 1563 mscr = mii_read (dev, phy_addr, MII_CTRL1000); 1564 mscr |= MII_MSCR_CFG_ENABLE; 1565 mscr &= ~MII_MSCR_CFG_VALUE = 0; 1566 #endif 1567 mii_write (dev, phy_addr, MII_BMCR, bmcr); 1568 mdelay(10); 1569 } 1570 return 0; 1571 } 1572 1573 static int 1574 mii_get_media_pcs (struct net_device *dev) 1575 { 1576 __u16 negotiate; 1577 __u16 bmsr; 1578 int phy_addr; 1579 struct netdev_private *np; 1580 1581 np = netdev_priv(dev); 1582 phy_addr = np->phy_addr; 1583 1584 bmsr = mii_read (dev, phy_addr, PCS_BMSR); 1585 if (np->an_enable) { 1586 if (!(bmsr & BMSR_ANEGCOMPLETE)) { 1587 /* Auto-Negotiation not completed */ 1588 return -1; 1589 } 1590 negotiate = mii_read (dev, phy_addr, PCS_ANAR) & 1591 mii_read (dev, phy_addr, PCS_ANLPAR); 1592 np->speed = 1000; 1593 if (negotiate & PCS_ANAR_FULL_DUPLEX) { 1594 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n"); 1595 np->full_duplex = 1; 1596 } else { 1597 printk (KERN_INFO "Auto 1000 Mbps, half duplex\n"); 1598 np->full_duplex = 0; 1599 } 1600 if (negotiate & PCS_ANAR_PAUSE) { 1601 np->tx_flow &= 1; 1602 np->rx_flow &= 1; 1603 } else if (negotiate & PCS_ANAR_ASYMMETRIC) { 1604 np->tx_flow = 0; 1605 np->rx_flow &= 1; 1606 } 1607 /* else tx_flow, rx_flow = user select */ 1608 } else { 1609 __u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR); 1610 printk (KERN_INFO "Operating at 1000 Mbps, "); 1611 if (bmcr & BMCR_FULLDPLX) { 1612 printk (KERN_CONT "Full duplex\n"); 1613 } else { 1614 printk (KERN_CONT "Half duplex\n"); 1615 } 1616 } 1617 if (np->tx_flow) 1618 printk(KERN_INFO "Enable Tx Flow Control\n"); 1619 else 1620 printk(KERN_INFO "Disable Tx Flow Control\n"); 1621 if (np->rx_flow) 1622 printk(KERN_INFO "Enable Rx Flow Control\n"); 1623 else 1624 printk(KERN_INFO "Disable Rx Flow Control\n"); 1625 1626 return 0; 1627 } 1628 1629 static int 1630 mii_set_media_pcs (struct net_device *dev) 1631 { 1632 __u16 bmcr; 1633 __u16 esr; 1634 __u16 anar; 1635 int phy_addr; 1636 struct netdev_private *np; 1637 np = netdev_priv(dev); 1638 phy_addr = np->phy_addr; 1639 1640 /* Auto-Negotiation? */ 1641 if (np->an_enable) { 1642 /* Advertise capabilities */ 1643 esr = mii_read (dev, phy_addr, PCS_ESR); 1644 anar = mii_read (dev, phy_addr, MII_ADVERTISE) & 1645 ~PCS_ANAR_HALF_DUPLEX & 1646 ~PCS_ANAR_FULL_DUPLEX; 1647 if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD)) 1648 anar |= PCS_ANAR_HALF_DUPLEX; 1649 if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD)) 1650 anar |= PCS_ANAR_FULL_DUPLEX; 1651 anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC; 1652 mii_write (dev, phy_addr, MII_ADVERTISE, anar); 1653 1654 /* Soft reset PHY */ 1655 mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET); 1656 bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET; 1657 mii_write (dev, phy_addr, MII_BMCR, bmcr); 1658 mdelay(1); 1659 } else { 1660 /* Force speed setting */ 1661 /* PHY Reset */ 1662 bmcr = BMCR_RESET; 1663 mii_write (dev, phy_addr, MII_BMCR, bmcr); 1664 mdelay(10); 1665 if (np->full_duplex) { 1666 bmcr = BMCR_FULLDPLX; 1667 printk (KERN_INFO "Manual full duplex\n"); 1668 } else { 1669 bmcr = 0; 1670 printk (KERN_INFO "Manual half duplex\n"); 1671 } 1672 mii_write (dev, phy_addr, MII_BMCR, bmcr); 1673 mdelay(10); 1674 1675 /* Advertise nothing */ 1676 mii_write (dev, phy_addr, MII_ADVERTISE, 0); 1677 } 1678 return 0; 1679 } 1680 1681 1682 static int 1683 rio_close (struct net_device *dev) 1684 { 1685 struct netdev_private *np = netdev_priv(dev); 1686 void __iomem *ioaddr = np->ioaddr; 1687 1688 struct pci_dev *pdev = np->pdev; 1689 struct sk_buff *skb; 1690 int i; 1691 1692 netif_stop_queue (dev); 1693 1694 /* Disable interrupts */ 1695 dw16(IntEnable, 0); 1696 1697 /* Stop Tx and Rx logics */ 1698 dw32(MACCtrl, TxDisable | RxDisable | StatsDisable); 1699 1700 free_irq(pdev->irq, dev); 1701 del_timer_sync (&np->timer); 1702 1703 /* Free all the skbuffs in the queue. */ 1704 for (i = 0; i < RX_RING_SIZE; i++) { 1705 skb = np->rx_skbuff[i]; 1706 if (skb) { 1707 pci_unmap_single(pdev, desc_to_dma(&np->rx_ring[i]), 1708 skb->len, PCI_DMA_FROMDEVICE); 1709 dev_kfree_skb (skb); 1710 np->rx_skbuff[i] = NULL; 1711 } 1712 np->rx_ring[i].status = 0; 1713 np->rx_ring[i].fraginfo = 0; 1714 } 1715 for (i = 0; i < TX_RING_SIZE; i++) { 1716 skb = np->tx_skbuff[i]; 1717 if (skb) { 1718 pci_unmap_single(pdev, desc_to_dma(&np->tx_ring[i]), 1719 skb->len, PCI_DMA_TODEVICE); 1720 dev_kfree_skb (skb); 1721 np->tx_skbuff[i] = NULL; 1722 } 1723 } 1724 1725 return 0; 1726 } 1727 1728 static void 1729 rio_remove1 (struct pci_dev *pdev) 1730 { 1731 struct net_device *dev = pci_get_drvdata (pdev); 1732 1733 if (dev) { 1734 struct netdev_private *np = netdev_priv(dev); 1735 1736 unregister_netdev (dev); 1737 pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, 1738 np->rx_ring_dma); 1739 pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, 1740 np->tx_ring_dma); 1741 #ifdef MEM_MAPPING 1742 pci_iounmap(pdev, np->ioaddr); 1743 #endif 1744 pci_iounmap(pdev, np->eeprom_addr); 1745 free_netdev (dev); 1746 pci_release_regions (pdev); 1747 pci_disable_device (pdev); 1748 } 1749 } 1750 1751 static struct pci_driver rio_driver = { 1752 .name = "dl2k", 1753 .id_table = rio_pci_tbl, 1754 .probe = rio_probe1, 1755 .remove = rio_remove1, 1756 }; 1757 1758 module_pci_driver(rio_driver); 1759 /* 1760 1761 Compile command: 1762 1763 gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c 1764 1765 Read Documentation/networking/dl2k.txt for details. 1766 1767 */ 1768 1769