1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */ 3 /* 4 Copyright (c) 2001, 2002 by D-Link Corporation 5 Written by Edward Peng.<edward_peng@dlink.com.tw> 6 Created 03-May-2001, base on Linux' sundance.c. 7 8 */ 9 10 #include "dl2k.h" 11 #include <linux/dma-mapping.h> 12 13 #define dw32(reg, val) iowrite32(val, ioaddr + (reg)) 14 #define dw16(reg, val) iowrite16(val, ioaddr + (reg)) 15 #define dw8(reg, val) iowrite8(val, ioaddr + (reg)) 16 #define dr32(reg) ioread32(ioaddr + (reg)) 17 #define dr16(reg) ioread16(ioaddr + (reg)) 18 #define dr8(reg) ioread8(ioaddr + (reg)) 19 20 #define MAX_UNITS 8 21 static int mtu[MAX_UNITS]; 22 static int vlan[MAX_UNITS]; 23 static int jumbo[MAX_UNITS]; 24 static char *media[MAX_UNITS]; 25 static int tx_flow=-1; 26 static int rx_flow=-1; 27 static int copy_thresh; 28 static int rx_coalesce=10; /* Rx frame count each interrupt */ 29 static int rx_timeout=200; /* Rx DMA wait time in 640ns increments */ 30 static int tx_coalesce=16; /* HW xmit count each TxDMAComplete */ 31 32 33 MODULE_AUTHOR ("Edward Peng"); 34 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter"); 35 MODULE_LICENSE("GPL"); 36 module_param_array(mtu, int, NULL, 0); 37 module_param_array(media, charp, NULL, 0); 38 module_param_array(vlan, int, NULL, 0); 39 module_param_array(jumbo, int, NULL, 0); 40 module_param(tx_flow, int, 0); 41 module_param(rx_flow, int, 0); 42 module_param(copy_thresh, int, 0); 43 module_param(rx_coalesce, int, 0); /* Rx frame count each interrupt */ 44 module_param(rx_timeout, int, 0); /* Rx DMA wait time in 64ns increments */ 45 module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */ 46 47 48 /* Enable the default interrupts */ 49 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \ 50 UpdateStats | LinkEvent) 51 52 static void dl2k_enable_int(struct netdev_private *np) 53 { 54 void __iomem *ioaddr = np->ioaddr; 55 56 dw16(IntEnable, DEFAULT_INTR); 57 } 58 59 static const int max_intrloop = 50; 60 static const int multicast_filter_limit = 0x40; 61 62 static int rio_open (struct net_device *dev); 63 static void rio_timer (struct timer_list *t); 64 static void rio_tx_timeout (struct net_device *dev, unsigned int txqueue); 65 static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev); 66 static irqreturn_t rio_interrupt (int irq, void *dev_instance); 67 static void rio_free_tx (struct net_device *dev, int irq); 68 static void tx_error (struct net_device *dev, int tx_status); 69 static int receive_packet (struct net_device *dev); 70 static void rio_error (struct net_device *dev, int int_status); 71 static void set_multicast (struct net_device *dev); 72 static struct net_device_stats *get_stats (struct net_device *dev); 73 static int clear_stats (struct net_device *dev); 74 static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd); 75 static int rio_close (struct net_device *dev); 76 static int find_miiphy (struct net_device *dev); 77 static int parse_eeprom (struct net_device *dev); 78 static int read_eeprom (struct netdev_private *, int eep_addr); 79 static int mii_wait_link (struct net_device *dev, int wait); 80 static int mii_set_media (struct net_device *dev); 81 static int mii_get_media (struct net_device *dev); 82 static int mii_set_media_pcs (struct net_device *dev); 83 static int mii_get_media_pcs (struct net_device *dev); 84 static int mii_read (struct net_device *dev, int phy_addr, int reg_num); 85 static int mii_write (struct net_device *dev, int phy_addr, int reg_num, 86 u16 data); 87 88 static const struct ethtool_ops ethtool_ops; 89 90 static const struct net_device_ops netdev_ops = { 91 .ndo_open = rio_open, 92 .ndo_start_xmit = start_xmit, 93 .ndo_stop = rio_close, 94 .ndo_get_stats = get_stats, 95 .ndo_validate_addr = eth_validate_addr, 96 .ndo_set_mac_address = eth_mac_addr, 97 .ndo_set_rx_mode = set_multicast, 98 .ndo_eth_ioctl = rio_ioctl, 99 .ndo_tx_timeout = rio_tx_timeout, 100 }; 101 102 static int 103 rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent) 104 { 105 struct net_device *dev; 106 struct netdev_private *np; 107 static int card_idx; 108 int chip_idx = ent->driver_data; 109 int err, irq; 110 void __iomem *ioaddr; 111 void *ring_space; 112 dma_addr_t ring_dma; 113 114 err = pci_enable_device (pdev); 115 if (err) 116 return err; 117 118 irq = pdev->irq; 119 err = pci_request_regions (pdev, "dl2k"); 120 if (err) 121 goto err_out_disable; 122 123 pci_set_master (pdev); 124 125 err = -ENOMEM; 126 127 dev = alloc_etherdev (sizeof (*np)); 128 if (!dev) 129 goto err_out_res; 130 SET_NETDEV_DEV(dev, &pdev->dev); 131 132 np = netdev_priv(dev); 133 134 /* IO registers range. */ 135 ioaddr = pci_iomap(pdev, 0, 0); 136 if (!ioaddr) 137 goto err_out_dev; 138 np->eeprom_addr = ioaddr; 139 140 #ifdef MEM_MAPPING 141 /* MM registers range. */ 142 ioaddr = pci_iomap(pdev, 1, 0); 143 if (!ioaddr) 144 goto err_out_iounmap; 145 #endif 146 np->ioaddr = ioaddr; 147 np->chip_id = chip_idx; 148 np->pdev = pdev; 149 spin_lock_init (&np->tx_lock); 150 spin_lock_init (&np->rx_lock); 151 152 /* Parse manual configuration */ 153 np->an_enable = 1; 154 np->tx_coalesce = 1; 155 if (card_idx < MAX_UNITS) { 156 if (media[card_idx] != NULL) { 157 np->an_enable = 0; 158 if (strcmp (media[card_idx], "auto") == 0 || 159 strcmp (media[card_idx], "autosense") == 0 || 160 strcmp (media[card_idx], "0") == 0 ) { 161 np->an_enable = 2; 162 } else if (strcmp (media[card_idx], "100mbps_fd") == 0 || 163 strcmp (media[card_idx], "4") == 0) { 164 np->speed = 100; 165 np->full_duplex = 1; 166 } else if (strcmp (media[card_idx], "100mbps_hd") == 0 || 167 strcmp (media[card_idx], "3") == 0) { 168 np->speed = 100; 169 np->full_duplex = 0; 170 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 || 171 strcmp (media[card_idx], "2") == 0) { 172 np->speed = 10; 173 np->full_duplex = 1; 174 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 || 175 strcmp (media[card_idx], "1") == 0) { 176 np->speed = 10; 177 np->full_duplex = 0; 178 } else if (strcmp (media[card_idx], "1000mbps_fd") == 0 || 179 strcmp (media[card_idx], "6") == 0) { 180 np->speed=1000; 181 np->full_duplex=1; 182 } else if (strcmp (media[card_idx], "1000mbps_hd") == 0 || 183 strcmp (media[card_idx], "5") == 0) { 184 np->speed = 1000; 185 np->full_duplex = 0; 186 } else { 187 np->an_enable = 1; 188 } 189 } 190 if (jumbo[card_idx] != 0) { 191 np->jumbo = 1; 192 dev->mtu = MAX_JUMBO; 193 } else { 194 np->jumbo = 0; 195 if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE) 196 dev->mtu = mtu[card_idx]; 197 } 198 np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ? 199 vlan[card_idx] : 0; 200 if (rx_coalesce > 0 && rx_timeout > 0) { 201 np->rx_coalesce = rx_coalesce; 202 np->rx_timeout = rx_timeout; 203 np->coalesce = 1; 204 } 205 np->tx_flow = (tx_flow == 0) ? 0 : 1; 206 np->rx_flow = (rx_flow == 0) ? 0 : 1; 207 208 if (tx_coalesce < 1) 209 tx_coalesce = 1; 210 else if (tx_coalesce > TX_RING_SIZE-1) 211 tx_coalesce = TX_RING_SIZE - 1; 212 } 213 dev->netdev_ops = &netdev_ops; 214 dev->watchdog_timeo = TX_TIMEOUT; 215 dev->ethtool_ops = ðtool_ops; 216 #if 0 217 dev->features = NETIF_F_IP_CSUM; 218 #endif 219 /* MTU range: 68 - 1536 or 8000 */ 220 dev->min_mtu = ETH_MIN_MTU; 221 dev->max_mtu = np->jumbo ? MAX_JUMBO : PACKET_SIZE; 222 223 pci_set_drvdata (pdev, dev); 224 225 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma, 226 GFP_KERNEL); 227 if (!ring_space) 228 goto err_out_iounmap; 229 np->tx_ring = ring_space; 230 np->tx_ring_dma = ring_dma; 231 232 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma, 233 GFP_KERNEL); 234 if (!ring_space) 235 goto err_out_unmap_tx; 236 np->rx_ring = ring_space; 237 np->rx_ring_dma = ring_dma; 238 239 /* Parse eeprom data */ 240 parse_eeprom (dev); 241 242 /* Find PHY address */ 243 err = find_miiphy (dev); 244 if (err) 245 goto err_out_unmap_rx; 246 247 /* Fiber device? */ 248 np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0; 249 np->link_status = 0; 250 /* Set media and reset PHY */ 251 if (np->phy_media) { 252 /* default Auto-Negotiation for fiber deivices */ 253 if (np->an_enable == 2) { 254 np->an_enable = 1; 255 } 256 } else { 257 /* Auto-Negotiation is mandatory for 1000BASE-T, 258 IEEE 802.3ab Annex 28D page 14 */ 259 if (np->speed == 1000) 260 np->an_enable = 1; 261 } 262 263 err = register_netdev (dev); 264 if (err) 265 goto err_out_unmap_rx; 266 267 card_idx++; 268 269 printk (KERN_INFO "%s: %s, %pM, IRQ %d\n", 270 dev->name, np->name, dev->dev_addr, irq); 271 if (tx_coalesce > 1) 272 printk(KERN_INFO "tx_coalesce:\t%d packets\n", 273 tx_coalesce); 274 if (np->coalesce) 275 printk(KERN_INFO 276 "rx_coalesce:\t%d packets\n" 277 "rx_timeout: \t%d ns\n", 278 np->rx_coalesce, np->rx_timeout*640); 279 if (np->vlan) 280 printk(KERN_INFO "vlan(id):\t%d\n", np->vlan); 281 return 0; 282 283 err_out_unmap_rx: 284 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring, 285 np->rx_ring_dma); 286 err_out_unmap_tx: 287 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring, 288 np->tx_ring_dma); 289 err_out_iounmap: 290 #ifdef MEM_MAPPING 291 pci_iounmap(pdev, np->ioaddr); 292 #endif 293 pci_iounmap(pdev, np->eeprom_addr); 294 err_out_dev: 295 free_netdev (dev); 296 err_out_res: 297 pci_release_regions (pdev); 298 err_out_disable: 299 pci_disable_device (pdev); 300 return err; 301 } 302 303 static int 304 find_miiphy (struct net_device *dev) 305 { 306 struct netdev_private *np = netdev_priv(dev); 307 int i, phy_found = 0; 308 309 np->phy_addr = 1; 310 311 for (i = 31; i >= 0; i--) { 312 int mii_status = mii_read (dev, i, 1); 313 if (mii_status != 0xffff && mii_status != 0x0000) { 314 np->phy_addr = i; 315 phy_found++; 316 } 317 } 318 if (!phy_found) { 319 printk (KERN_ERR "%s: No MII PHY found!\n", dev->name); 320 return -ENODEV; 321 } 322 return 0; 323 } 324 325 static int 326 parse_eeprom (struct net_device *dev) 327 { 328 struct netdev_private *np = netdev_priv(dev); 329 void __iomem *ioaddr = np->ioaddr; 330 int i, j; 331 u8 sromdata[256]; 332 u8 *psib; 333 u32 crc; 334 PSROM_t psrom = (PSROM_t) sromdata; 335 336 int cid, next; 337 338 for (i = 0; i < 128; i++) 339 ((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i)); 340 341 if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) { /* D-Link Only */ 342 /* Check CRC */ 343 crc = ~ether_crc_le (256 - 4, sromdata); 344 if (psrom->crc != cpu_to_le32(crc)) { 345 printk (KERN_ERR "%s: EEPROM data CRC error.\n", 346 dev->name); 347 return -1; 348 } 349 } 350 351 /* Set MAC address */ 352 eth_hw_addr_set(dev, psrom->mac_addr); 353 354 if (np->chip_id == CHIP_IP1000A) { 355 np->led_mode = psrom->led_mode; 356 return 0; 357 } 358 359 if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) { 360 return 0; 361 } 362 363 /* Parse Software Information Block */ 364 i = 0x30; 365 psib = (u8 *) sromdata; 366 do { 367 cid = psib[i++]; 368 next = psib[i++]; 369 if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) { 370 printk (KERN_ERR "Cell data error\n"); 371 return -1; 372 } 373 switch (cid) { 374 case 0: /* Format version */ 375 break; 376 case 1: /* End of cell */ 377 return 0; 378 case 2: /* Duplex Polarity */ 379 np->duplex_polarity = psib[i]; 380 dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]); 381 break; 382 case 3: /* Wake Polarity */ 383 np->wake_polarity = psib[i]; 384 break; 385 case 9: /* Adapter description */ 386 j = (next - i > 255) ? 255 : next - i; 387 memcpy (np->name, &(psib[i]), j); 388 break; 389 case 4: 390 case 5: 391 case 6: 392 case 7: 393 case 8: /* Reversed */ 394 break; 395 default: /* Unknown cell */ 396 return -1; 397 } 398 i = next; 399 } while (1); 400 401 return 0; 402 } 403 404 static void rio_set_led_mode(struct net_device *dev) 405 { 406 struct netdev_private *np = netdev_priv(dev); 407 void __iomem *ioaddr = np->ioaddr; 408 u32 mode; 409 410 if (np->chip_id != CHIP_IP1000A) 411 return; 412 413 mode = dr32(ASICCtrl); 414 mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED); 415 416 if (np->led_mode & 0x01) 417 mode |= IPG_AC_LED_MODE; 418 if (np->led_mode & 0x02) 419 mode |= IPG_AC_LED_MODE_BIT_1; 420 if (np->led_mode & 0x08) 421 mode |= IPG_AC_LED_SPEED; 422 423 dw32(ASICCtrl, mode); 424 } 425 426 static inline dma_addr_t desc_to_dma(struct netdev_desc *desc) 427 { 428 return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48); 429 } 430 431 static void free_list(struct net_device *dev) 432 { 433 struct netdev_private *np = netdev_priv(dev); 434 struct sk_buff *skb; 435 int i; 436 437 /* Free all the skbuffs in the queue. */ 438 for (i = 0; i < RX_RING_SIZE; i++) { 439 skb = np->rx_skbuff[i]; 440 if (skb) { 441 dma_unmap_single(&np->pdev->dev, 442 desc_to_dma(&np->rx_ring[i]), 443 skb->len, DMA_FROM_DEVICE); 444 dev_kfree_skb(skb); 445 np->rx_skbuff[i] = NULL; 446 } 447 np->rx_ring[i].status = 0; 448 np->rx_ring[i].fraginfo = 0; 449 } 450 for (i = 0; i < TX_RING_SIZE; i++) { 451 skb = np->tx_skbuff[i]; 452 if (skb) { 453 dma_unmap_single(&np->pdev->dev, 454 desc_to_dma(&np->tx_ring[i]), 455 skb->len, DMA_TO_DEVICE); 456 dev_kfree_skb(skb); 457 np->tx_skbuff[i] = NULL; 458 } 459 } 460 } 461 462 static void rio_reset_ring(struct netdev_private *np) 463 { 464 int i; 465 466 np->cur_rx = 0; 467 np->cur_tx = 0; 468 np->old_rx = 0; 469 np->old_tx = 0; 470 471 for (i = 0; i < TX_RING_SIZE; i++) 472 np->tx_ring[i].status = cpu_to_le64(TFDDone); 473 474 for (i = 0; i < RX_RING_SIZE; i++) 475 np->rx_ring[i].status = 0; 476 } 477 478 /* allocate and initialize Tx and Rx descriptors */ 479 static int alloc_list(struct net_device *dev) 480 { 481 struct netdev_private *np = netdev_priv(dev); 482 int i; 483 484 rio_reset_ring(np); 485 np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32); 486 487 /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */ 488 for (i = 0; i < TX_RING_SIZE; i++) { 489 np->tx_skbuff[i] = NULL; 490 np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma + 491 ((i + 1) % TX_RING_SIZE) * 492 sizeof(struct netdev_desc)); 493 } 494 495 /* Initialize Rx descriptors & allocate buffers */ 496 for (i = 0; i < RX_RING_SIZE; i++) { 497 /* Allocated fixed size of skbuff */ 498 struct sk_buff *skb; 499 500 skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz); 501 np->rx_skbuff[i] = skb; 502 if (!skb) { 503 free_list(dev); 504 return -ENOMEM; 505 } 506 507 np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma + 508 ((i + 1) % RX_RING_SIZE) * 509 sizeof(struct netdev_desc)); 510 /* Rubicon now supports 40 bits of addressing space. */ 511 np->rx_ring[i].fraginfo = 512 cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data, 513 np->rx_buf_sz, DMA_FROM_DEVICE)); 514 np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48); 515 } 516 517 return 0; 518 } 519 520 static void rio_hw_init(struct net_device *dev) 521 { 522 struct netdev_private *np = netdev_priv(dev); 523 void __iomem *ioaddr = np->ioaddr; 524 int i; 525 u16 macctrl; 526 527 /* Reset all logic functions */ 528 dw16(ASICCtrl + 2, 529 GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset); 530 mdelay(10); 531 532 rio_set_led_mode(dev); 533 534 /* DebugCtrl bit 4, 5, 9 must set */ 535 dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230); 536 537 if (np->chip_id == CHIP_IP1000A && 538 (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) { 539 /* PHY magic taken from ipg driver, undocumented registers */ 540 mii_write(dev, np->phy_addr, 31, 0x0001); 541 mii_write(dev, np->phy_addr, 27, 0x01e0); 542 mii_write(dev, np->phy_addr, 31, 0x0002); 543 mii_write(dev, np->phy_addr, 27, 0xeb8e); 544 mii_write(dev, np->phy_addr, 31, 0x0000); 545 mii_write(dev, np->phy_addr, 30, 0x005e); 546 /* advertise 1000BASE-T half & full duplex, prefer MASTER */ 547 mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700); 548 } 549 550 if (np->phy_media) 551 mii_set_media_pcs(dev); 552 else 553 mii_set_media(dev); 554 555 /* Jumbo frame */ 556 if (np->jumbo != 0) 557 dw16(MaxFrameSize, MAX_JUMBO+14); 558 559 /* Set RFDListPtr */ 560 dw32(RFDListPtr0, np->rx_ring_dma); 561 dw32(RFDListPtr1, 0); 562 563 /* Set station address */ 564 /* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works 565 * too. However, it doesn't work on IP1000A so we use 16-bit access. 566 */ 567 for (i = 0; i < 3; i++) 568 dw16(StationAddr0 + 2 * i, get_unaligned_le16(&dev->dev_addr[2 * i])); 569 570 set_multicast (dev); 571 if (np->coalesce) { 572 dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16); 573 } 574 /* Set RIO to poll every N*320nsec. */ 575 dw8(RxDMAPollPeriod, 0x20); 576 dw8(TxDMAPollPeriod, 0xff); 577 dw8(RxDMABurstThresh, 0x30); 578 dw8(RxDMAUrgentThresh, 0x30); 579 dw32(RmonStatMask, 0x0007ffff); 580 /* clear statistics */ 581 clear_stats (dev); 582 583 /* VLAN supported */ 584 if (np->vlan) { 585 /* priority field in RxDMAIntCtrl */ 586 dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10); 587 /* VLANId */ 588 dw16(VLANId, np->vlan); 589 /* Length/Type should be 0x8100 */ 590 dw32(VLANTag, 0x8100 << 16 | np->vlan); 591 /* Enable AutoVLANuntagging, but disable AutoVLANtagging. 592 VLAN information tagged by TFC' VID, CFI fields. */ 593 dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging); 594 } 595 596 /* Start Tx/Rx */ 597 dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable); 598 599 macctrl = 0; 600 macctrl |= (np->vlan) ? AutoVLANuntagging : 0; 601 macctrl |= (np->full_duplex) ? DuplexSelect : 0; 602 macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0; 603 macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0; 604 dw16(MACCtrl, macctrl); 605 } 606 607 static void rio_hw_stop(struct net_device *dev) 608 { 609 struct netdev_private *np = netdev_priv(dev); 610 void __iomem *ioaddr = np->ioaddr; 611 612 /* Disable interrupts */ 613 dw16(IntEnable, 0); 614 615 /* Stop Tx and Rx logics */ 616 dw32(MACCtrl, TxDisable | RxDisable | StatsDisable); 617 } 618 619 static int rio_open(struct net_device *dev) 620 { 621 struct netdev_private *np = netdev_priv(dev); 622 const int irq = np->pdev->irq; 623 int i; 624 625 i = alloc_list(dev); 626 if (i) 627 return i; 628 629 rio_hw_init(dev); 630 631 i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev); 632 if (i) { 633 rio_hw_stop(dev); 634 free_list(dev); 635 return i; 636 } 637 638 timer_setup(&np->timer, rio_timer, 0); 639 np->timer.expires = jiffies + 1 * HZ; 640 add_timer(&np->timer); 641 642 netif_start_queue (dev); 643 644 dl2k_enable_int(np); 645 return 0; 646 } 647 648 static void 649 rio_timer (struct timer_list *t) 650 { 651 struct netdev_private *np = from_timer(np, t, timer); 652 struct net_device *dev = pci_get_drvdata(np->pdev); 653 unsigned int entry; 654 int next_tick = 1*HZ; 655 unsigned long flags; 656 657 spin_lock_irqsave(&np->rx_lock, flags); 658 /* Recover rx ring exhausted error */ 659 if (np->cur_rx - np->old_rx >= RX_RING_SIZE) { 660 printk(KERN_INFO "Try to recover rx ring exhausted...\n"); 661 /* Re-allocate skbuffs to fill the descriptor ring */ 662 for (; np->cur_rx - np->old_rx > 0; np->old_rx++) { 663 struct sk_buff *skb; 664 entry = np->old_rx % RX_RING_SIZE; 665 /* Dropped packets don't need to re-allocate */ 666 if (np->rx_skbuff[entry] == NULL) { 667 skb = netdev_alloc_skb_ip_align(dev, 668 np->rx_buf_sz); 669 if (skb == NULL) { 670 np->rx_ring[entry].fraginfo = 0; 671 printk (KERN_INFO 672 "%s: Still unable to re-allocate Rx skbuff.#%d\n", 673 dev->name, entry); 674 break; 675 } 676 np->rx_skbuff[entry] = skb; 677 np->rx_ring[entry].fraginfo = 678 cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data, 679 np->rx_buf_sz, DMA_FROM_DEVICE)); 680 } 681 np->rx_ring[entry].fraginfo |= 682 cpu_to_le64((u64)np->rx_buf_sz << 48); 683 np->rx_ring[entry].status = 0; 684 } /* end for */ 685 } /* end if */ 686 spin_unlock_irqrestore (&np->rx_lock, flags); 687 np->timer.expires = jiffies + next_tick; 688 add_timer(&np->timer); 689 } 690 691 static void 692 rio_tx_timeout (struct net_device *dev, unsigned int txqueue) 693 { 694 struct netdev_private *np = netdev_priv(dev); 695 void __iomem *ioaddr = np->ioaddr; 696 697 printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n", 698 dev->name, dr32(TxStatus)); 699 rio_free_tx(dev, 0); 700 dev->if_port = 0; 701 netif_trans_update(dev); /* prevent tx timeout */ 702 } 703 704 static netdev_tx_t 705 start_xmit (struct sk_buff *skb, struct net_device *dev) 706 { 707 struct netdev_private *np = netdev_priv(dev); 708 void __iomem *ioaddr = np->ioaddr; 709 struct netdev_desc *txdesc; 710 unsigned entry; 711 u64 tfc_vlan_tag = 0; 712 713 if (np->link_status == 0) { /* Link Down */ 714 dev_kfree_skb(skb); 715 return NETDEV_TX_OK; 716 } 717 entry = np->cur_tx % TX_RING_SIZE; 718 np->tx_skbuff[entry] = skb; 719 txdesc = &np->tx_ring[entry]; 720 721 #if 0 722 if (skb->ip_summed == CHECKSUM_PARTIAL) { 723 txdesc->status |= 724 cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable | 725 IPChecksumEnable); 726 } 727 #endif 728 if (np->vlan) { 729 tfc_vlan_tag = VLANTagInsert | 730 ((u64)np->vlan << 32) | 731 ((u64)skb->priority << 45); 732 } 733 txdesc->fraginfo = cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data, 734 skb->len, DMA_TO_DEVICE)); 735 txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48); 736 737 /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode 738 * Work around: Always use 1 descriptor in 10Mbps mode */ 739 if (entry % np->tx_coalesce == 0 || np->speed == 10) 740 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag | 741 WordAlignDisable | 742 TxDMAIndicate | 743 (1 << FragCountShift)); 744 else 745 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag | 746 WordAlignDisable | 747 (1 << FragCountShift)); 748 749 /* TxDMAPollNow */ 750 dw32(DMACtrl, dr32(DMACtrl) | 0x00001000); 751 /* Schedule ISR */ 752 dw32(CountDown, 10000); 753 np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE; 754 if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE 755 < TX_QUEUE_LEN - 1 && np->speed != 10) { 756 /* do nothing */ 757 } else if (!netif_queue_stopped(dev)) { 758 netif_stop_queue (dev); 759 } 760 761 /* The first TFDListPtr */ 762 if (!dr32(TFDListPtr0)) { 763 dw32(TFDListPtr0, np->tx_ring_dma + 764 entry * sizeof (struct netdev_desc)); 765 dw32(TFDListPtr1, 0); 766 } 767 768 return NETDEV_TX_OK; 769 } 770 771 static irqreturn_t 772 rio_interrupt (int irq, void *dev_instance) 773 { 774 struct net_device *dev = dev_instance; 775 struct netdev_private *np = netdev_priv(dev); 776 void __iomem *ioaddr = np->ioaddr; 777 unsigned int_status; 778 int cnt = max_intrloop; 779 int handled = 0; 780 781 while (1) { 782 int_status = dr16(IntStatus); 783 dw16(IntStatus, int_status); 784 int_status &= DEFAULT_INTR; 785 if (int_status == 0 || --cnt < 0) 786 break; 787 handled = 1; 788 /* Processing received packets */ 789 if (int_status & RxDMAComplete) 790 receive_packet (dev); 791 /* TxDMAComplete interrupt */ 792 if ((int_status & (TxDMAComplete|IntRequested))) { 793 int tx_status; 794 tx_status = dr32(TxStatus); 795 if (tx_status & 0x01) 796 tx_error (dev, tx_status); 797 /* Free used tx skbuffs */ 798 rio_free_tx (dev, 1); 799 } 800 801 /* Handle uncommon events */ 802 if (int_status & 803 (HostError | LinkEvent | UpdateStats)) 804 rio_error (dev, int_status); 805 } 806 if (np->cur_tx != np->old_tx) 807 dw32(CountDown, 100); 808 return IRQ_RETVAL(handled); 809 } 810 811 static void 812 rio_free_tx (struct net_device *dev, int irq) 813 { 814 struct netdev_private *np = netdev_priv(dev); 815 int entry = np->old_tx % TX_RING_SIZE; 816 unsigned long flag = 0; 817 818 if (irq) 819 spin_lock(&np->tx_lock); 820 else 821 spin_lock_irqsave(&np->tx_lock, flag); 822 823 /* Free used tx skbuffs */ 824 while (entry != np->cur_tx) { 825 struct sk_buff *skb; 826 827 if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone))) 828 break; 829 skb = np->tx_skbuff[entry]; 830 dma_unmap_single(&np->pdev->dev, 831 desc_to_dma(&np->tx_ring[entry]), skb->len, 832 DMA_TO_DEVICE); 833 if (irq) 834 dev_consume_skb_irq(skb); 835 else 836 dev_kfree_skb(skb); 837 838 np->tx_skbuff[entry] = NULL; 839 entry = (entry + 1) % TX_RING_SIZE; 840 } 841 if (irq) 842 spin_unlock(&np->tx_lock); 843 else 844 spin_unlock_irqrestore(&np->tx_lock, flag); 845 np->old_tx = entry; 846 847 /* If the ring is no longer full, clear tx_full and 848 call netif_wake_queue() */ 849 850 if (netif_queue_stopped(dev) && 851 ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE 852 < TX_QUEUE_LEN - 1 || np->speed == 10)) { 853 netif_wake_queue (dev); 854 } 855 } 856 857 static void 858 tx_error (struct net_device *dev, int tx_status) 859 { 860 struct netdev_private *np = netdev_priv(dev); 861 void __iomem *ioaddr = np->ioaddr; 862 int frame_id; 863 int i; 864 865 frame_id = (tx_status & 0xffff0000); 866 printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n", 867 dev->name, tx_status, frame_id); 868 dev->stats.tx_errors++; 869 /* Ttransmit Underrun */ 870 if (tx_status & 0x10) { 871 dev->stats.tx_fifo_errors++; 872 dw16(TxStartThresh, dr16(TxStartThresh) + 0x10); 873 /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */ 874 dw16(ASICCtrl + 2, 875 TxReset | DMAReset | FIFOReset | NetworkReset); 876 /* Wait for ResetBusy bit clear */ 877 for (i = 50; i > 0; i--) { 878 if (!(dr16(ASICCtrl + 2) & ResetBusy)) 879 break; 880 mdelay (1); 881 } 882 rio_set_led_mode(dev); 883 rio_free_tx (dev, 1); 884 /* Reset TFDListPtr */ 885 dw32(TFDListPtr0, np->tx_ring_dma + 886 np->old_tx * sizeof (struct netdev_desc)); 887 dw32(TFDListPtr1, 0); 888 889 /* Let TxStartThresh stay default value */ 890 } 891 /* Late Collision */ 892 if (tx_status & 0x04) { 893 dev->stats.tx_fifo_errors++; 894 /* TxReset and clear FIFO */ 895 dw16(ASICCtrl + 2, TxReset | FIFOReset); 896 /* Wait reset done */ 897 for (i = 50; i > 0; i--) { 898 if (!(dr16(ASICCtrl + 2) & ResetBusy)) 899 break; 900 mdelay (1); 901 } 902 rio_set_led_mode(dev); 903 /* Let TxStartThresh stay default value */ 904 } 905 /* Maximum Collisions */ 906 if (tx_status & 0x08) 907 dev->stats.collisions++; 908 /* Restart the Tx */ 909 dw32(MACCtrl, dr16(MACCtrl) | TxEnable); 910 } 911 912 static int 913 receive_packet (struct net_device *dev) 914 { 915 struct netdev_private *np = netdev_priv(dev); 916 int entry = np->cur_rx % RX_RING_SIZE; 917 int cnt = 30; 918 919 /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */ 920 while (1) { 921 struct netdev_desc *desc = &np->rx_ring[entry]; 922 int pkt_len; 923 u64 frame_status; 924 925 if (!(desc->status & cpu_to_le64(RFDDone)) || 926 !(desc->status & cpu_to_le64(FrameStart)) || 927 !(desc->status & cpu_to_le64(FrameEnd))) 928 break; 929 930 /* Chip omits the CRC. */ 931 frame_status = le64_to_cpu(desc->status); 932 pkt_len = frame_status & 0xffff; 933 if (--cnt < 0) 934 break; 935 /* Update rx error statistics, drop packet. */ 936 if (frame_status & RFS_Errors) { 937 dev->stats.rx_errors++; 938 if (frame_status & (RxRuntFrame | RxLengthError)) 939 dev->stats.rx_length_errors++; 940 if (frame_status & RxFCSError) 941 dev->stats.rx_crc_errors++; 942 if (frame_status & RxAlignmentError && np->speed != 1000) 943 dev->stats.rx_frame_errors++; 944 if (frame_status & RxFIFOOverrun) 945 dev->stats.rx_fifo_errors++; 946 } else { 947 struct sk_buff *skb; 948 949 /* Small skbuffs for short packets */ 950 if (pkt_len > copy_thresh) { 951 dma_unmap_single(&np->pdev->dev, 952 desc_to_dma(desc), 953 np->rx_buf_sz, 954 DMA_FROM_DEVICE); 955 skb_put (skb = np->rx_skbuff[entry], pkt_len); 956 np->rx_skbuff[entry] = NULL; 957 } else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) { 958 dma_sync_single_for_cpu(&np->pdev->dev, 959 desc_to_dma(desc), 960 np->rx_buf_sz, 961 DMA_FROM_DEVICE); 962 skb_copy_to_linear_data (skb, 963 np->rx_skbuff[entry]->data, 964 pkt_len); 965 skb_put (skb, pkt_len); 966 dma_sync_single_for_device(&np->pdev->dev, 967 desc_to_dma(desc), 968 np->rx_buf_sz, 969 DMA_FROM_DEVICE); 970 } 971 skb->protocol = eth_type_trans (skb, dev); 972 #if 0 973 /* Checksum done by hw, but csum value unavailable. */ 974 if (np->pdev->pci_rev_id >= 0x0c && 975 !(frame_status & (TCPError | UDPError | IPError))) { 976 skb->ip_summed = CHECKSUM_UNNECESSARY; 977 } 978 #endif 979 netif_rx (skb); 980 } 981 entry = (entry + 1) % RX_RING_SIZE; 982 } 983 spin_lock(&np->rx_lock); 984 np->cur_rx = entry; 985 /* Re-allocate skbuffs to fill the descriptor ring */ 986 entry = np->old_rx; 987 while (entry != np->cur_rx) { 988 struct sk_buff *skb; 989 /* Dropped packets don't need to re-allocate */ 990 if (np->rx_skbuff[entry] == NULL) { 991 skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz); 992 if (skb == NULL) { 993 np->rx_ring[entry].fraginfo = 0; 994 printk (KERN_INFO 995 "%s: receive_packet: " 996 "Unable to re-allocate Rx skbuff.#%d\n", 997 dev->name, entry); 998 break; 999 } 1000 np->rx_skbuff[entry] = skb; 1001 np->rx_ring[entry].fraginfo = 1002 cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data, 1003 np->rx_buf_sz, DMA_FROM_DEVICE)); 1004 } 1005 np->rx_ring[entry].fraginfo |= 1006 cpu_to_le64((u64)np->rx_buf_sz << 48); 1007 np->rx_ring[entry].status = 0; 1008 entry = (entry + 1) % RX_RING_SIZE; 1009 } 1010 np->old_rx = entry; 1011 spin_unlock(&np->rx_lock); 1012 return 0; 1013 } 1014 1015 static void 1016 rio_error (struct net_device *dev, int int_status) 1017 { 1018 struct netdev_private *np = netdev_priv(dev); 1019 void __iomem *ioaddr = np->ioaddr; 1020 u16 macctrl; 1021 1022 /* Link change event */ 1023 if (int_status & LinkEvent) { 1024 if (mii_wait_link (dev, 10) == 0) { 1025 printk (KERN_INFO "%s: Link up\n", dev->name); 1026 if (np->phy_media) 1027 mii_get_media_pcs (dev); 1028 else 1029 mii_get_media (dev); 1030 if (np->speed == 1000) 1031 np->tx_coalesce = tx_coalesce; 1032 else 1033 np->tx_coalesce = 1; 1034 macctrl = 0; 1035 macctrl |= (np->vlan) ? AutoVLANuntagging : 0; 1036 macctrl |= (np->full_duplex) ? DuplexSelect : 0; 1037 macctrl |= (np->tx_flow) ? 1038 TxFlowControlEnable : 0; 1039 macctrl |= (np->rx_flow) ? 1040 RxFlowControlEnable : 0; 1041 dw16(MACCtrl, macctrl); 1042 np->link_status = 1; 1043 netif_carrier_on(dev); 1044 } else { 1045 printk (KERN_INFO "%s: Link off\n", dev->name); 1046 np->link_status = 0; 1047 netif_carrier_off(dev); 1048 } 1049 } 1050 1051 /* UpdateStats statistics registers */ 1052 if (int_status & UpdateStats) { 1053 get_stats (dev); 1054 } 1055 1056 /* PCI Error, a catastronphic error related to the bus interface 1057 occurs, set GlobalReset and HostReset to reset. */ 1058 if (int_status & HostError) { 1059 printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n", 1060 dev->name, int_status); 1061 dw16(ASICCtrl + 2, GlobalReset | HostReset); 1062 mdelay (500); 1063 rio_set_led_mode(dev); 1064 } 1065 } 1066 1067 static struct net_device_stats * 1068 get_stats (struct net_device *dev) 1069 { 1070 struct netdev_private *np = netdev_priv(dev); 1071 void __iomem *ioaddr = np->ioaddr; 1072 #ifdef MEM_MAPPING 1073 int i; 1074 #endif 1075 unsigned int stat_reg; 1076 1077 /* All statistics registers need to be acknowledged, 1078 else statistic overflow could cause problems */ 1079 1080 dev->stats.rx_packets += dr32(FramesRcvOk); 1081 dev->stats.tx_packets += dr32(FramesXmtOk); 1082 dev->stats.rx_bytes += dr32(OctetRcvOk); 1083 dev->stats.tx_bytes += dr32(OctetXmtOk); 1084 1085 dev->stats.multicast = dr32(McstFramesRcvdOk); 1086 dev->stats.collisions += dr32(SingleColFrames) 1087 + dr32(MultiColFrames); 1088 1089 /* detailed tx errors */ 1090 stat_reg = dr16(FramesAbortXSColls); 1091 dev->stats.tx_aborted_errors += stat_reg; 1092 dev->stats.tx_errors += stat_reg; 1093 1094 stat_reg = dr16(CarrierSenseErrors); 1095 dev->stats.tx_carrier_errors += stat_reg; 1096 dev->stats.tx_errors += stat_reg; 1097 1098 /* Clear all other statistic register. */ 1099 dr32(McstOctetXmtOk); 1100 dr16(BcstFramesXmtdOk); 1101 dr32(McstFramesXmtdOk); 1102 dr16(BcstFramesRcvdOk); 1103 dr16(MacControlFramesRcvd); 1104 dr16(FrameTooLongErrors); 1105 dr16(InRangeLengthErrors); 1106 dr16(FramesCheckSeqErrors); 1107 dr16(FramesLostRxErrors); 1108 dr32(McstOctetXmtOk); 1109 dr32(BcstOctetXmtOk); 1110 dr32(McstFramesXmtdOk); 1111 dr32(FramesWDeferredXmt); 1112 dr32(LateCollisions); 1113 dr16(BcstFramesXmtdOk); 1114 dr16(MacControlFramesXmtd); 1115 dr16(FramesWEXDeferal); 1116 1117 #ifdef MEM_MAPPING 1118 for (i = 0x100; i <= 0x150; i += 4) 1119 dr32(i); 1120 #endif 1121 dr16(TxJumboFrames); 1122 dr16(RxJumboFrames); 1123 dr16(TCPCheckSumErrors); 1124 dr16(UDPCheckSumErrors); 1125 dr16(IPCheckSumErrors); 1126 return &dev->stats; 1127 } 1128 1129 static int 1130 clear_stats (struct net_device *dev) 1131 { 1132 struct netdev_private *np = netdev_priv(dev); 1133 void __iomem *ioaddr = np->ioaddr; 1134 #ifdef MEM_MAPPING 1135 int i; 1136 #endif 1137 1138 /* All statistics registers need to be acknowledged, 1139 else statistic overflow could cause problems */ 1140 dr32(FramesRcvOk); 1141 dr32(FramesXmtOk); 1142 dr32(OctetRcvOk); 1143 dr32(OctetXmtOk); 1144 1145 dr32(McstFramesRcvdOk); 1146 dr32(SingleColFrames); 1147 dr32(MultiColFrames); 1148 dr32(LateCollisions); 1149 /* detailed rx errors */ 1150 dr16(FrameTooLongErrors); 1151 dr16(InRangeLengthErrors); 1152 dr16(FramesCheckSeqErrors); 1153 dr16(FramesLostRxErrors); 1154 1155 /* detailed tx errors */ 1156 dr16(FramesAbortXSColls); 1157 dr16(CarrierSenseErrors); 1158 1159 /* Clear all other statistic register. */ 1160 dr32(McstOctetXmtOk); 1161 dr16(BcstFramesXmtdOk); 1162 dr32(McstFramesXmtdOk); 1163 dr16(BcstFramesRcvdOk); 1164 dr16(MacControlFramesRcvd); 1165 dr32(McstOctetXmtOk); 1166 dr32(BcstOctetXmtOk); 1167 dr32(McstFramesXmtdOk); 1168 dr32(FramesWDeferredXmt); 1169 dr16(BcstFramesXmtdOk); 1170 dr16(MacControlFramesXmtd); 1171 dr16(FramesWEXDeferal); 1172 #ifdef MEM_MAPPING 1173 for (i = 0x100; i <= 0x150; i += 4) 1174 dr32(i); 1175 #endif 1176 dr16(TxJumboFrames); 1177 dr16(RxJumboFrames); 1178 dr16(TCPCheckSumErrors); 1179 dr16(UDPCheckSumErrors); 1180 dr16(IPCheckSumErrors); 1181 return 0; 1182 } 1183 1184 static void 1185 set_multicast (struct net_device *dev) 1186 { 1187 struct netdev_private *np = netdev_priv(dev); 1188 void __iomem *ioaddr = np->ioaddr; 1189 u32 hash_table[2]; 1190 u16 rx_mode = 0; 1191 1192 hash_table[0] = hash_table[1] = 0; 1193 /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */ 1194 hash_table[1] |= 0x02000000; 1195 if (dev->flags & IFF_PROMISC) { 1196 /* Receive all frames promiscuously. */ 1197 rx_mode = ReceiveAllFrames; 1198 } else if ((dev->flags & IFF_ALLMULTI) || 1199 (netdev_mc_count(dev) > multicast_filter_limit)) { 1200 /* Receive broadcast and multicast frames */ 1201 rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast; 1202 } else if (!netdev_mc_empty(dev)) { 1203 struct netdev_hw_addr *ha; 1204 /* Receive broadcast frames and multicast frames filtering 1205 by Hashtable */ 1206 rx_mode = 1207 ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast; 1208 netdev_for_each_mc_addr(ha, dev) { 1209 int bit, index = 0; 1210 int crc = ether_crc_le(ETH_ALEN, ha->addr); 1211 /* The inverted high significant 6 bits of CRC are 1212 used as an index to hashtable */ 1213 for (bit = 0; bit < 6; bit++) 1214 if (crc & (1 << (31 - bit))) 1215 index |= (1 << bit); 1216 hash_table[index / 32] |= (1 << (index % 32)); 1217 } 1218 } else { 1219 rx_mode = ReceiveBroadcast | ReceiveUnicast; 1220 } 1221 if (np->vlan) { 1222 /* ReceiveVLANMatch field in ReceiveMode */ 1223 rx_mode |= ReceiveVLANMatch; 1224 } 1225 1226 dw32(HashTable0, hash_table[0]); 1227 dw32(HashTable1, hash_table[1]); 1228 dw16(ReceiveMode, rx_mode); 1229 } 1230 1231 static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1232 { 1233 struct netdev_private *np = netdev_priv(dev); 1234 1235 strscpy(info->driver, "dl2k", sizeof(info->driver)); 1236 strscpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info)); 1237 } 1238 1239 static int rio_get_link_ksettings(struct net_device *dev, 1240 struct ethtool_link_ksettings *cmd) 1241 { 1242 struct netdev_private *np = netdev_priv(dev); 1243 u32 supported, advertising; 1244 1245 if (np->phy_media) { 1246 /* fiber device */ 1247 supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE; 1248 advertising = ADVERTISED_Autoneg | ADVERTISED_FIBRE; 1249 cmd->base.port = PORT_FIBRE; 1250 } else { 1251 /* copper device */ 1252 supported = SUPPORTED_10baseT_Half | 1253 SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half 1254 | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full | 1255 SUPPORTED_Autoneg | SUPPORTED_MII; 1256 advertising = ADVERTISED_10baseT_Half | 1257 ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half | 1258 ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full | 1259 ADVERTISED_Autoneg | ADVERTISED_MII; 1260 cmd->base.port = PORT_MII; 1261 } 1262 if (np->link_status) { 1263 cmd->base.speed = np->speed; 1264 cmd->base.duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF; 1265 } else { 1266 cmd->base.speed = SPEED_UNKNOWN; 1267 cmd->base.duplex = DUPLEX_UNKNOWN; 1268 } 1269 if (np->an_enable) 1270 cmd->base.autoneg = AUTONEG_ENABLE; 1271 else 1272 cmd->base.autoneg = AUTONEG_DISABLE; 1273 1274 cmd->base.phy_address = np->phy_addr; 1275 1276 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 1277 supported); 1278 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 1279 advertising); 1280 1281 return 0; 1282 } 1283 1284 static int rio_set_link_ksettings(struct net_device *dev, 1285 const struct ethtool_link_ksettings *cmd) 1286 { 1287 struct netdev_private *np = netdev_priv(dev); 1288 u32 speed = cmd->base.speed; 1289 u8 duplex = cmd->base.duplex; 1290 1291 netif_carrier_off(dev); 1292 if (cmd->base.autoneg == AUTONEG_ENABLE) { 1293 if (np->an_enable) { 1294 return 0; 1295 } else { 1296 np->an_enable = 1; 1297 mii_set_media(dev); 1298 return 0; 1299 } 1300 } else { 1301 np->an_enable = 0; 1302 if (np->speed == 1000) { 1303 speed = SPEED_100; 1304 duplex = DUPLEX_FULL; 1305 printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n"); 1306 } 1307 switch (speed) { 1308 case SPEED_10: 1309 np->speed = 10; 1310 np->full_duplex = (duplex == DUPLEX_FULL); 1311 break; 1312 case SPEED_100: 1313 np->speed = 100; 1314 np->full_duplex = (duplex == DUPLEX_FULL); 1315 break; 1316 case SPEED_1000: /* not supported */ 1317 default: 1318 return -EINVAL; 1319 } 1320 mii_set_media(dev); 1321 } 1322 return 0; 1323 } 1324 1325 static u32 rio_get_link(struct net_device *dev) 1326 { 1327 struct netdev_private *np = netdev_priv(dev); 1328 return np->link_status; 1329 } 1330 1331 static const struct ethtool_ops ethtool_ops = { 1332 .get_drvinfo = rio_get_drvinfo, 1333 .get_link = rio_get_link, 1334 .get_link_ksettings = rio_get_link_ksettings, 1335 .set_link_ksettings = rio_set_link_ksettings, 1336 }; 1337 1338 static int 1339 rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd) 1340 { 1341 int phy_addr; 1342 struct netdev_private *np = netdev_priv(dev); 1343 struct mii_ioctl_data *miidata = if_mii(rq); 1344 1345 phy_addr = np->phy_addr; 1346 switch (cmd) { 1347 case SIOCGMIIPHY: 1348 miidata->phy_id = phy_addr; 1349 break; 1350 case SIOCGMIIREG: 1351 miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num); 1352 break; 1353 case SIOCSMIIREG: 1354 if (!capable(CAP_NET_ADMIN)) 1355 return -EPERM; 1356 mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in); 1357 break; 1358 default: 1359 return -EOPNOTSUPP; 1360 } 1361 return 0; 1362 } 1363 1364 #define EEP_READ 0x0200 1365 #define EEP_BUSY 0x8000 1366 /* Read the EEPROM word */ 1367 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */ 1368 static int read_eeprom(struct netdev_private *np, int eep_addr) 1369 { 1370 void __iomem *ioaddr = np->eeprom_addr; 1371 int i = 1000; 1372 1373 dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff)); 1374 while (i-- > 0) { 1375 if (!(dr16(EepromCtrl) & EEP_BUSY)) 1376 return dr16(EepromData); 1377 } 1378 return 0; 1379 } 1380 1381 enum phy_ctrl_bits { 1382 MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04, 1383 MII_DUPLEX = 0x08, 1384 }; 1385 1386 #define mii_delay() dr8(PhyCtrl) 1387 static void 1388 mii_sendbit (struct net_device *dev, u32 data) 1389 { 1390 struct netdev_private *np = netdev_priv(dev); 1391 void __iomem *ioaddr = np->ioaddr; 1392 1393 data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE; 1394 dw8(PhyCtrl, data); 1395 mii_delay (); 1396 dw8(PhyCtrl, data | MII_CLK); 1397 mii_delay (); 1398 } 1399 1400 static int 1401 mii_getbit (struct net_device *dev) 1402 { 1403 struct netdev_private *np = netdev_priv(dev); 1404 void __iomem *ioaddr = np->ioaddr; 1405 u8 data; 1406 1407 data = (dr8(PhyCtrl) & 0xf8) | MII_READ; 1408 dw8(PhyCtrl, data); 1409 mii_delay (); 1410 dw8(PhyCtrl, data | MII_CLK); 1411 mii_delay (); 1412 return (dr8(PhyCtrl) >> 1) & 1; 1413 } 1414 1415 static void 1416 mii_send_bits (struct net_device *dev, u32 data, int len) 1417 { 1418 int i; 1419 1420 for (i = len - 1; i >= 0; i--) { 1421 mii_sendbit (dev, data & (1 << i)); 1422 } 1423 } 1424 1425 static int 1426 mii_read (struct net_device *dev, int phy_addr, int reg_num) 1427 { 1428 u32 cmd; 1429 int i; 1430 u32 retval = 0; 1431 1432 /* Preamble */ 1433 mii_send_bits (dev, 0xffffffff, 32); 1434 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */ 1435 /* ST,OP = 0110'b for read operation */ 1436 cmd = (0x06 << 10 | phy_addr << 5 | reg_num); 1437 mii_send_bits (dev, cmd, 14); 1438 /* Turnaround */ 1439 if (mii_getbit (dev)) 1440 goto err_out; 1441 /* Read data */ 1442 for (i = 0; i < 16; i++) { 1443 retval |= mii_getbit (dev); 1444 retval <<= 1; 1445 } 1446 /* End cycle */ 1447 mii_getbit (dev); 1448 return (retval >> 1) & 0xffff; 1449 1450 err_out: 1451 return 0; 1452 } 1453 static int 1454 mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data) 1455 { 1456 u32 cmd; 1457 1458 /* Preamble */ 1459 mii_send_bits (dev, 0xffffffff, 32); 1460 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */ 1461 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */ 1462 cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data; 1463 mii_send_bits (dev, cmd, 32); 1464 /* End cycle */ 1465 mii_getbit (dev); 1466 return 0; 1467 } 1468 static int 1469 mii_wait_link (struct net_device *dev, int wait) 1470 { 1471 __u16 bmsr; 1472 int phy_addr; 1473 struct netdev_private *np; 1474 1475 np = netdev_priv(dev); 1476 phy_addr = np->phy_addr; 1477 1478 do { 1479 bmsr = mii_read (dev, phy_addr, MII_BMSR); 1480 if (bmsr & BMSR_LSTATUS) 1481 return 0; 1482 mdelay (1); 1483 } while (--wait > 0); 1484 return -1; 1485 } 1486 static int 1487 mii_get_media (struct net_device *dev) 1488 { 1489 __u16 negotiate; 1490 __u16 bmsr; 1491 __u16 mscr; 1492 __u16 mssr; 1493 int phy_addr; 1494 struct netdev_private *np; 1495 1496 np = netdev_priv(dev); 1497 phy_addr = np->phy_addr; 1498 1499 bmsr = mii_read (dev, phy_addr, MII_BMSR); 1500 if (np->an_enable) { 1501 if (!(bmsr & BMSR_ANEGCOMPLETE)) { 1502 /* Auto-Negotiation not completed */ 1503 return -1; 1504 } 1505 negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) & 1506 mii_read (dev, phy_addr, MII_LPA); 1507 mscr = mii_read (dev, phy_addr, MII_CTRL1000); 1508 mssr = mii_read (dev, phy_addr, MII_STAT1000); 1509 if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) { 1510 np->speed = 1000; 1511 np->full_duplex = 1; 1512 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n"); 1513 } else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) { 1514 np->speed = 1000; 1515 np->full_duplex = 0; 1516 printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n"); 1517 } else if (negotiate & ADVERTISE_100FULL) { 1518 np->speed = 100; 1519 np->full_duplex = 1; 1520 printk (KERN_INFO "Auto 100 Mbps, Full duplex\n"); 1521 } else if (negotiate & ADVERTISE_100HALF) { 1522 np->speed = 100; 1523 np->full_duplex = 0; 1524 printk (KERN_INFO "Auto 100 Mbps, Half duplex\n"); 1525 } else if (negotiate & ADVERTISE_10FULL) { 1526 np->speed = 10; 1527 np->full_duplex = 1; 1528 printk (KERN_INFO "Auto 10 Mbps, Full duplex\n"); 1529 } else if (negotiate & ADVERTISE_10HALF) { 1530 np->speed = 10; 1531 np->full_duplex = 0; 1532 printk (KERN_INFO "Auto 10 Mbps, Half duplex\n"); 1533 } 1534 if (negotiate & ADVERTISE_PAUSE_CAP) { 1535 np->tx_flow &= 1; 1536 np->rx_flow &= 1; 1537 } else if (negotiate & ADVERTISE_PAUSE_ASYM) { 1538 np->tx_flow = 0; 1539 np->rx_flow &= 1; 1540 } 1541 /* else tx_flow, rx_flow = user select */ 1542 } else { 1543 __u16 bmcr = mii_read (dev, phy_addr, MII_BMCR); 1544 switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) { 1545 case BMCR_SPEED1000: 1546 printk (KERN_INFO "Operating at 1000 Mbps, "); 1547 break; 1548 case BMCR_SPEED100: 1549 printk (KERN_INFO "Operating at 100 Mbps, "); 1550 break; 1551 case 0: 1552 printk (KERN_INFO "Operating at 10 Mbps, "); 1553 } 1554 if (bmcr & BMCR_FULLDPLX) { 1555 printk (KERN_CONT "Full duplex\n"); 1556 } else { 1557 printk (KERN_CONT "Half duplex\n"); 1558 } 1559 } 1560 if (np->tx_flow) 1561 printk(KERN_INFO "Enable Tx Flow Control\n"); 1562 else 1563 printk(KERN_INFO "Disable Tx Flow Control\n"); 1564 if (np->rx_flow) 1565 printk(KERN_INFO "Enable Rx Flow Control\n"); 1566 else 1567 printk(KERN_INFO "Disable Rx Flow Control\n"); 1568 1569 return 0; 1570 } 1571 1572 static int 1573 mii_set_media (struct net_device *dev) 1574 { 1575 __u16 pscr; 1576 __u16 bmcr; 1577 __u16 bmsr; 1578 __u16 anar; 1579 int phy_addr; 1580 struct netdev_private *np; 1581 np = netdev_priv(dev); 1582 phy_addr = np->phy_addr; 1583 1584 /* Does user set speed? */ 1585 if (np->an_enable) { 1586 /* Advertise capabilities */ 1587 bmsr = mii_read (dev, phy_addr, MII_BMSR); 1588 anar = mii_read (dev, phy_addr, MII_ADVERTISE) & 1589 ~(ADVERTISE_100FULL | ADVERTISE_10FULL | 1590 ADVERTISE_100HALF | ADVERTISE_10HALF | 1591 ADVERTISE_100BASE4); 1592 if (bmsr & BMSR_100FULL) 1593 anar |= ADVERTISE_100FULL; 1594 if (bmsr & BMSR_100HALF) 1595 anar |= ADVERTISE_100HALF; 1596 if (bmsr & BMSR_100BASE4) 1597 anar |= ADVERTISE_100BASE4; 1598 if (bmsr & BMSR_10FULL) 1599 anar |= ADVERTISE_10FULL; 1600 if (bmsr & BMSR_10HALF) 1601 anar |= ADVERTISE_10HALF; 1602 anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; 1603 mii_write (dev, phy_addr, MII_ADVERTISE, anar); 1604 1605 /* Enable Auto crossover */ 1606 pscr = mii_read (dev, phy_addr, MII_PHY_SCR); 1607 pscr |= 3 << 5; /* 11'b */ 1608 mii_write (dev, phy_addr, MII_PHY_SCR, pscr); 1609 1610 /* Soft reset PHY */ 1611 mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET); 1612 bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET; 1613 mii_write (dev, phy_addr, MII_BMCR, bmcr); 1614 mdelay(1); 1615 } else { 1616 /* Force speed setting */ 1617 /* 1) Disable Auto crossover */ 1618 pscr = mii_read (dev, phy_addr, MII_PHY_SCR); 1619 pscr &= ~(3 << 5); 1620 mii_write (dev, phy_addr, MII_PHY_SCR, pscr); 1621 1622 /* 2) PHY Reset */ 1623 bmcr = mii_read (dev, phy_addr, MII_BMCR); 1624 bmcr |= BMCR_RESET; 1625 mii_write (dev, phy_addr, MII_BMCR, bmcr); 1626 1627 /* 3) Power Down */ 1628 bmcr = 0x1940; /* must be 0x1940 */ 1629 mii_write (dev, phy_addr, MII_BMCR, bmcr); 1630 mdelay (100); /* wait a certain time */ 1631 1632 /* 4) Advertise nothing */ 1633 mii_write (dev, phy_addr, MII_ADVERTISE, 0); 1634 1635 /* 5) Set media and Power Up */ 1636 bmcr = BMCR_PDOWN; 1637 if (np->speed == 100) { 1638 bmcr |= BMCR_SPEED100; 1639 printk (KERN_INFO "Manual 100 Mbps, "); 1640 } else if (np->speed == 10) { 1641 printk (KERN_INFO "Manual 10 Mbps, "); 1642 } 1643 if (np->full_duplex) { 1644 bmcr |= BMCR_FULLDPLX; 1645 printk (KERN_CONT "Full duplex\n"); 1646 } else { 1647 printk (KERN_CONT "Half duplex\n"); 1648 } 1649 #if 0 1650 /* Set 1000BaseT Master/Slave setting */ 1651 mscr = mii_read (dev, phy_addr, MII_CTRL1000); 1652 mscr |= MII_MSCR_CFG_ENABLE; 1653 mscr &= ~MII_MSCR_CFG_VALUE = 0; 1654 #endif 1655 mii_write (dev, phy_addr, MII_BMCR, bmcr); 1656 mdelay(10); 1657 } 1658 return 0; 1659 } 1660 1661 static int 1662 mii_get_media_pcs (struct net_device *dev) 1663 { 1664 __u16 negotiate; 1665 __u16 bmsr; 1666 int phy_addr; 1667 struct netdev_private *np; 1668 1669 np = netdev_priv(dev); 1670 phy_addr = np->phy_addr; 1671 1672 bmsr = mii_read (dev, phy_addr, PCS_BMSR); 1673 if (np->an_enable) { 1674 if (!(bmsr & BMSR_ANEGCOMPLETE)) { 1675 /* Auto-Negotiation not completed */ 1676 return -1; 1677 } 1678 negotiate = mii_read (dev, phy_addr, PCS_ANAR) & 1679 mii_read (dev, phy_addr, PCS_ANLPAR); 1680 np->speed = 1000; 1681 if (negotiate & PCS_ANAR_FULL_DUPLEX) { 1682 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n"); 1683 np->full_duplex = 1; 1684 } else { 1685 printk (KERN_INFO "Auto 1000 Mbps, half duplex\n"); 1686 np->full_duplex = 0; 1687 } 1688 if (negotiate & PCS_ANAR_PAUSE) { 1689 np->tx_flow &= 1; 1690 np->rx_flow &= 1; 1691 } else if (negotiate & PCS_ANAR_ASYMMETRIC) { 1692 np->tx_flow = 0; 1693 np->rx_flow &= 1; 1694 } 1695 /* else tx_flow, rx_flow = user select */ 1696 } else { 1697 __u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR); 1698 printk (KERN_INFO "Operating at 1000 Mbps, "); 1699 if (bmcr & BMCR_FULLDPLX) { 1700 printk (KERN_CONT "Full duplex\n"); 1701 } else { 1702 printk (KERN_CONT "Half duplex\n"); 1703 } 1704 } 1705 if (np->tx_flow) 1706 printk(KERN_INFO "Enable Tx Flow Control\n"); 1707 else 1708 printk(KERN_INFO "Disable Tx Flow Control\n"); 1709 if (np->rx_flow) 1710 printk(KERN_INFO "Enable Rx Flow Control\n"); 1711 else 1712 printk(KERN_INFO "Disable Rx Flow Control\n"); 1713 1714 return 0; 1715 } 1716 1717 static int 1718 mii_set_media_pcs (struct net_device *dev) 1719 { 1720 __u16 bmcr; 1721 __u16 esr; 1722 __u16 anar; 1723 int phy_addr; 1724 struct netdev_private *np; 1725 np = netdev_priv(dev); 1726 phy_addr = np->phy_addr; 1727 1728 /* Auto-Negotiation? */ 1729 if (np->an_enable) { 1730 /* Advertise capabilities */ 1731 esr = mii_read (dev, phy_addr, PCS_ESR); 1732 anar = mii_read (dev, phy_addr, MII_ADVERTISE) & 1733 ~PCS_ANAR_HALF_DUPLEX & 1734 ~PCS_ANAR_FULL_DUPLEX; 1735 if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD)) 1736 anar |= PCS_ANAR_HALF_DUPLEX; 1737 if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD)) 1738 anar |= PCS_ANAR_FULL_DUPLEX; 1739 anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC; 1740 mii_write (dev, phy_addr, MII_ADVERTISE, anar); 1741 1742 /* Soft reset PHY */ 1743 mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET); 1744 bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET; 1745 mii_write (dev, phy_addr, MII_BMCR, bmcr); 1746 mdelay(1); 1747 } else { 1748 /* Force speed setting */ 1749 /* PHY Reset */ 1750 bmcr = BMCR_RESET; 1751 mii_write (dev, phy_addr, MII_BMCR, bmcr); 1752 mdelay(10); 1753 if (np->full_duplex) { 1754 bmcr = BMCR_FULLDPLX; 1755 printk (KERN_INFO "Manual full duplex\n"); 1756 } else { 1757 bmcr = 0; 1758 printk (KERN_INFO "Manual half duplex\n"); 1759 } 1760 mii_write (dev, phy_addr, MII_BMCR, bmcr); 1761 mdelay(10); 1762 1763 /* Advertise nothing */ 1764 mii_write (dev, phy_addr, MII_ADVERTISE, 0); 1765 } 1766 return 0; 1767 } 1768 1769 1770 static int 1771 rio_close (struct net_device *dev) 1772 { 1773 struct netdev_private *np = netdev_priv(dev); 1774 struct pci_dev *pdev = np->pdev; 1775 1776 netif_stop_queue (dev); 1777 1778 rio_hw_stop(dev); 1779 1780 free_irq(pdev->irq, dev); 1781 del_timer_sync (&np->timer); 1782 1783 free_list(dev); 1784 1785 return 0; 1786 } 1787 1788 static void 1789 rio_remove1 (struct pci_dev *pdev) 1790 { 1791 struct net_device *dev = pci_get_drvdata (pdev); 1792 1793 if (dev) { 1794 struct netdev_private *np = netdev_priv(dev); 1795 1796 unregister_netdev (dev); 1797 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring, 1798 np->rx_ring_dma); 1799 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring, 1800 np->tx_ring_dma); 1801 #ifdef MEM_MAPPING 1802 pci_iounmap(pdev, np->ioaddr); 1803 #endif 1804 pci_iounmap(pdev, np->eeprom_addr); 1805 free_netdev (dev); 1806 pci_release_regions (pdev); 1807 pci_disable_device (pdev); 1808 } 1809 } 1810 1811 #ifdef CONFIG_PM_SLEEP 1812 static int rio_suspend(struct device *device) 1813 { 1814 struct net_device *dev = dev_get_drvdata(device); 1815 struct netdev_private *np = netdev_priv(dev); 1816 1817 if (!netif_running(dev)) 1818 return 0; 1819 1820 netif_device_detach(dev); 1821 del_timer_sync(&np->timer); 1822 rio_hw_stop(dev); 1823 1824 return 0; 1825 } 1826 1827 static int rio_resume(struct device *device) 1828 { 1829 struct net_device *dev = dev_get_drvdata(device); 1830 struct netdev_private *np = netdev_priv(dev); 1831 1832 if (!netif_running(dev)) 1833 return 0; 1834 1835 rio_reset_ring(np); 1836 rio_hw_init(dev); 1837 np->timer.expires = jiffies + 1 * HZ; 1838 add_timer(&np->timer); 1839 netif_device_attach(dev); 1840 dl2k_enable_int(np); 1841 1842 return 0; 1843 } 1844 1845 static SIMPLE_DEV_PM_OPS(rio_pm_ops, rio_suspend, rio_resume); 1846 #define RIO_PM_OPS (&rio_pm_ops) 1847 1848 #else 1849 1850 #define RIO_PM_OPS NULL 1851 1852 #endif /* CONFIG_PM_SLEEP */ 1853 1854 static struct pci_driver rio_driver = { 1855 .name = "dl2k", 1856 .id_table = rio_pci_tbl, 1857 .probe = rio_probe1, 1858 .remove = rio_remove1, 1859 .driver.pm = RIO_PM_OPS, 1860 }; 1861 1862 module_pci_driver(rio_driver); 1863 1864 /* Read Documentation/networking/device_drivers/ethernet/dlink/dl2k.rst. */ 1865