xref: /linux/drivers/net/ethernet/dec/tulip/dmfe.c (revision 3ba84ac69b53e6ee07c31d54554e00793d7b144f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3     A Davicom DM9102/DM9102A/DM9102A+DM9801/DM9102A+DM9802 NIC fast
4     ethernet driver for Linux.
5     Copyright (C) 1997  Sten Wang
6 
7 
8     DAVICOM Web-Site: www.davicom.com.tw
9 
10     Author: Sten Wang, 886-3-5798797-8517, E-mail: sten_wang@davicom.com.tw
11     Maintainer: Tobias Ringstrom <tori@unhappy.mine.nu>
12 
13     (C)Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
14 
15     Marcelo Tosatti <marcelo@conectiva.com.br> :
16     Made it compile in 2.3 (device to net_device)
17 
18     Alan Cox <alan@lxorguk.ukuu.org.uk> :
19     Cleaned up for kernel merge.
20     Removed the back compatibility support
21     Reformatted, fixing spelling etc as I went
22     Removed IRQ 0-15 assumption
23 
24     Jeff Garzik <jgarzik@pobox.com> :
25     Updated to use new PCI driver API.
26     Resource usage cleanups.
27     Report driver version to user.
28 
29     Tobias Ringstrom <tori@unhappy.mine.nu> :
30     Cleaned up and added SMP safety.  Thanks go to Jeff Garzik,
31     Andrew Morton and Frank Davis for the SMP safety fixes.
32 
33     Vojtech Pavlik <vojtech@suse.cz> :
34     Cleaned up pointer arithmetics.
35     Fixed a lot of 64bit issues.
36     Cleaned up printk()s a bit.
37     Fixed some obvious big endian problems.
38 
39     Tobias Ringstrom <tori@unhappy.mine.nu> :
40     Use time_after for jiffies calculation.  Added ethtool
41     support.  Updated PCI resource allocation.  Do not
42     forget to unmap PCI mapped skbs.
43 
44     Alan Cox <alan@lxorguk.ukuu.org.uk>
45     Added new PCI identifiers provided by Clear Zhang at ALi
46     for their 1563 ethernet device.
47 
48     TODO
49 
50     Check on 64 bit boxes.
51     Check and fix on big endian boxes.
52 
53     Test and make sure PCI latency is now correct for all cases.
54 */
55 
56 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
57 
58 #define DRV_NAME	"dmfe"
59 
60 #include <linux/module.h>
61 #include <linux/kernel.h>
62 #include <linux/string.h>
63 #include <linux/timer.h>
64 #include <linux/ptrace.h>
65 #include <linux/errno.h>
66 #include <linux/ioport.h>
67 #include <linux/interrupt.h>
68 #include <linux/pci.h>
69 #include <linux/dma-mapping.h>
70 #include <linux/init.h>
71 #include <linux/netdevice.h>
72 #include <linux/etherdevice.h>
73 #include <linux/ethtool.h>
74 #include <linux/skbuff.h>
75 #include <linux/delay.h>
76 #include <linux/spinlock.h>
77 #include <linux/crc32.h>
78 #include <linux/bitops.h>
79 
80 #include <asm/processor.h>
81 #include <asm/io.h>
82 #include <asm/dma.h>
83 #include <linux/uaccess.h>
84 #include <asm/irq.h>
85 
86 #ifdef CONFIG_TULIP_DM910X
87 #include <linux/of.h>
88 #endif
89 
90 
91 /* Board/System/Debug information/definition ---------------- */
92 #define PCI_DM9132_ID   0x91321282      /* Davicom DM9132 ID */
93 #define PCI_DM9102_ID   0x91021282      /* Davicom DM9102 ID */
94 #define PCI_DM9100_ID   0x91001282      /* Davicom DM9100 ID */
95 #define PCI_DM9009_ID   0x90091282      /* Davicom DM9009 ID */
96 
97 #define DM9102_IO_SIZE  0x80
98 #define DM9102A_IO_SIZE 0x100
99 #define TX_MAX_SEND_CNT 0x1             /* Maximum tx packet per time */
100 #define TX_DESC_CNT     0x10            /* Allocated Tx descriptors */
101 #define RX_DESC_CNT     0x20            /* Allocated Rx descriptors */
102 #define TX_FREE_DESC_CNT (TX_DESC_CNT - 2)	/* Max TX packet count */
103 #define TX_WAKE_DESC_CNT (TX_DESC_CNT - 3)	/* TX wakeup count */
104 #define DESC_ALL_CNT    (TX_DESC_CNT + RX_DESC_CNT)
105 #define TX_BUF_ALLOC    0x600
106 #define RX_ALLOC_SIZE   0x620
107 #define DM910X_RESET    1
108 #define CR0_DEFAULT     0x00E00000      /* TX & RX burst mode */
109 #define CR6_DEFAULT     0x00080000      /* HD */
110 #define CR7_DEFAULT     0x180c1
111 #define CR15_DEFAULT    0x06            /* TxJabber RxWatchdog */
112 #define TDES0_ERR_MASK  0x4302          /* TXJT, LC, EC, FUE */
113 #define MAX_PACKET_SIZE 1514
114 #define DMFE_MAX_MULTICAST 14
115 #define RX_COPY_SIZE	100
116 #define MAX_CHECK_PACKET 0x8000
117 #define DM9801_NOISE_FLOOR 8
118 #define DM9802_NOISE_FLOOR 5
119 
120 #define DMFE_WOL_LINKCHANGE	0x20000000
121 #define DMFE_WOL_SAMPLEPACKET	0x10000000
122 #define DMFE_WOL_MAGICPACKET	0x08000000
123 
124 
125 #define DMFE_10MHF      0
126 #define DMFE_100MHF     1
127 #define DMFE_10MFD      4
128 #define DMFE_100MFD     5
129 #define DMFE_AUTO       8
130 #define DMFE_1M_HPNA    0x10
131 
132 #define DMFE_TXTH_72	0x400000	/* TX TH 72 byte */
133 #define DMFE_TXTH_96	0x404000	/* TX TH 96 byte */
134 #define DMFE_TXTH_128	0x0000		/* TX TH 128 byte */
135 #define DMFE_TXTH_256	0x4000		/* TX TH 256 byte */
136 #define DMFE_TXTH_512	0x8000		/* TX TH 512 byte */
137 #define DMFE_TXTH_1K	0xC000		/* TX TH 1K  byte */
138 
139 #define DMFE_TIMER_WUT  (jiffies + HZ * 1)/* timer wakeup time : 1 second */
140 #define DMFE_TX_TIMEOUT ((3*HZ)/2)	/* tx packet time-out time 1.5 s" */
141 #define DMFE_TX_KICK 	(HZ/2)	/* tx packet Kick-out time 0.5 s" */
142 
143 #define dw32(reg, val)	iowrite32(val, ioaddr + (reg))
144 #define dw16(reg, val)	iowrite16(val, ioaddr + (reg))
145 #define dr32(reg)	ioread32(ioaddr + (reg))
146 #define dr16(reg)	ioread16(ioaddr + (reg))
147 #define dr8(reg)	ioread8(ioaddr + (reg))
148 
149 #define DMFE_DBUG(dbug_now, msg, value)			\
150 	do {						\
151 		if (dmfe_debug || (dbug_now))		\
152 			pr_err("%s %lx\n",		\
153 			       (msg), (long) (value));	\
154 	} while (0)
155 
156 #define SHOW_MEDIA_TYPE(mode)				\
157 	pr_info("Change Speed to %sMhz %s duplex\n" ,	\
158 		(mode & 1) ? "100":"10",		\
159 		(mode & 4) ? "full":"half");
160 
161 
162 /* CR9 definition: SROM/MII */
163 #define CR9_SROM_READ   0x4800
164 #define CR9_SRCS        0x1
165 #define CR9_SRCLK       0x2
166 #define CR9_CRDOUT      0x8
167 #define SROM_DATA_0     0x0
168 #define SROM_DATA_1     0x4
169 #define PHY_DATA_1      0x20000
170 #define PHY_DATA_0      0x00000
171 #define MDCLKH          0x10000
172 
173 #define PHY_POWER_DOWN	0x800
174 
175 #define SROM_V41_CODE   0x14
176 
177 #define __CHK_IO_SIZE(pci_id, dev_rev) \
178  (( ((pci_id)==PCI_DM9132_ID) || ((dev_rev) >= 0x30) ) ? \
179 	DM9102A_IO_SIZE: DM9102_IO_SIZE)
180 
181 #define CHK_IO_SIZE(pci_dev) \
182 	(__CHK_IO_SIZE(((pci_dev)->device << 16) | (pci_dev)->vendor, \
183 	(pci_dev)->revision))
184 
185 /* Structure/enum declaration ------------------------------- */
186 struct tx_desc {
187         __le32 tdes0, tdes1, tdes2, tdes3; /* Data for the card */
188         char *tx_buf_ptr;               /* Data for us */
189         struct tx_desc *next_tx_desc;
190 } __attribute__(( aligned(32) ));
191 
192 struct rx_desc {
193 	__le32 rdes0, rdes1, rdes2, rdes3; /* Data for the card */
194 	struct sk_buff *rx_skb_ptr;	/* Data for us */
195 	struct rx_desc *next_rx_desc;
196 } __attribute__(( aligned(32) ));
197 
198 struct dmfe_board_info {
199 	u32 chip_id;			/* Chip vendor/Device ID */
200 	u8 chip_revision;		/* Chip revision */
201 	struct net_device *next_dev;	/* next device */
202 	struct pci_dev *pdev;		/* PCI device */
203 	spinlock_t lock;
204 
205 	void __iomem *ioaddr;		/* I/O base address */
206 	u32 cr0_data;
207 	u32 cr5_data;
208 	u32 cr6_data;
209 	u32 cr7_data;
210 	u32 cr15_data;
211 
212 	/* pointer for memory physical address */
213 	dma_addr_t buf_pool_dma_ptr;	/* Tx buffer pool memory */
214 	dma_addr_t buf_pool_dma_start;	/* Tx buffer pool align dword */
215 	dma_addr_t desc_pool_dma_ptr;	/* descriptor pool memory */
216 	dma_addr_t first_tx_desc_dma;
217 	dma_addr_t first_rx_desc_dma;
218 
219 	/* descriptor pointer */
220 	unsigned char *buf_pool_ptr;	/* Tx buffer pool memory */
221 	unsigned char *buf_pool_start;	/* Tx buffer pool align dword */
222 	unsigned char *desc_pool_ptr;	/* descriptor pool memory */
223 	struct tx_desc *first_tx_desc;
224 	struct tx_desc *tx_insert_ptr;
225 	struct tx_desc *tx_remove_ptr;
226 	struct rx_desc *first_rx_desc;
227 	struct rx_desc *rx_insert_ptr;
228 	struct rx_desc *rx_ready_ptr;	/* packet come pointer */
229 	unsigned long tx_packet_cnt;	/* transmitted packet count */
230 	unsigned long tx_queue_cnt;	/* wait to send packet count */
231 	unsigned long rx_avail_cnt;	/* available rx descriptor count */
232 	unsigned long interval_rx_cnt;	/* rx packet count a callback time */
233 
234 	u16 HPNA_command;		/* For HPNA register 16 */
235 	u16 HPNA_timer;			/* For HPNA remote device check */
236 	u16 dbug_cnt;
237 	u16 NIC_capability;		/* NIC media capability */
238 	u16 PHY_reg4;			/* Saved Phyxcer register 4 value */
239 
240 	u8 HPNA_present;		/* 0:none, 1:DM9801, 2:DM9802 */
241 	u8 chip_type;			/* Keep DM9102A chip type */
242 	u8 media_mode;			/* user specify media mode */
243 	u8 op_mode;			/* real work media mode */
244 	u8 phy_addr;
245 	u8 wait_reset;			/* Hardware failed, need to reset */
246 	u8 dm910x_chk_mode;		/* Operating mode check */
247 	u8 first_in_callback;		/* Flag to record state */
248 	u8 wol_mode;			/* user WOL settings */
249 	struct timer_list timer;
250 
251 	/* Driver defined statistic counter */
252 	unsigned long tx_fifo_underrun;
253 	unsigned long tx_loss_carrier;
254 	unsigned long tx_no_carrier;
255 	unsigned long tx_late_collision;
256 	unsigned long tx_excessive_collision;
257 	unsigned long tx_jabber_timeout;
258 	unsigned long reset_count;
259 	unsigned long reset_cr8;
260 	unsigned long reset_fatal;
261 	unsigned long reset_TXtimeout;
262 
263 	/* NIC SROM data */
264 	unsigned char srom[128];
265 };
266 
267 enum dmfe_offsets {
268 	DCR0 = 0x00, DCR1 = 0x08, DCR2 = 0x10, DCR3 = 0x18, DCR4 = 0x20,
269 	DCR5 = 0x28, DCR6 = 0x30, DCR7 = 0x38, DCR8 = 0x40, DCR9 = 0x48,
270 	DCR10 = 0x50, DCR11 = 0x58, DCR12 = 0x60, DCR13 = 0x68, DCR14 = 0x70,
271 	DCR15 = 0x78
272 };
273 
274 enum dmfe_CR6_bits {
275 	CR6_RXSC = 0x2, CR6_PBF = 0x8, CR6_PM = 0x40, CR6_PAM = 0x80,
276 	CR6_FDM = 0x200, CR6_TXSC = 0x2000, CR6_STI = 0x100000,
277 	CR6_SFT = 0x200000, CR6_RXA = 0x40000000, CR6_NO_PURGE = 0x20000000
278 };
279 
280 /* Global variable declaration ----------------------------- */
281 static int dmfe_debug;
282 static unsigned char dmfe_media_mode = DMFE_AUTO;
283 static u32 dmfe_cr6_user_set;
284 
285 /* For module input parameter */
286 static int debug;
287 static u32 cr6set;
288 static unsigned char mode = 8;
289 static u8 chkmode = 1;
290 static u8 HPNA_mode;		/* Default: Low Power/High Speed */
291 static u8 HPNA_rx_cmd;		/* Default: Disable Rx remote command */
292 static u8 HPNA_tx_cmd;		/* Default: Don't issue remote command */
293 static u8 HPNA_NoiseFloor;	/* Default: HPNA NoiseFloor */
294 static u8 SF_mode;		/* Special Function: 1:VLAN, 2:RX Flow Control
295 				   4: TX pause packet */
296 
297 
298 /* function declaration ------------------------------------- */
299 static int dmfe_open(struct net_device *);
300 static netdev_tx_t dmfe_start_xmit(struct sk_buff *, struct net_device *);
301 static int dmfe_stop(struct net_device *);
302 static void dmfe_set_filter_mode(struct net_device *);
303 static const struct ethtool_ops netdev_ethtool_ops;
304 static u16 read_srom_word(void __iomem *, int);
305 static irqreturn_t dmfe_interrupt(int , void *);
306 #ifdef CONFIG_NET_POLL_CONTROLLER
307 static void poll_dmfe (struct net_device *dev);
308 #endif
309 static void dmfe_descriptor_init(struct net_device *);
310 static void allocate_rx_buffer(struct net_device *);
311 static void update_cr6(u32, void __iomem *);
312 static void send_filter_frame(struct net_device *);
313 static void dm9132_id_table(struct net_device *);
314 static u16 dmfe_phy_read(void __iomem *, u8, u8, u32);
315 static void dmfe_phy_write(void __iomem *, u8, u8, u16, u32);
316 static void dmfe_phy_write_1bit(void __iomem *, u32);
317 static u16 dmfe_phy_read_1bit(void __iomem *);
318 static u8 dmfe_sense_speed(struct dmfe_board_info *);
319 static void dmfe_process_mode(struct dmfe_board_info *);
320 static void dmfe_timer(struct timer_list *);
321 static inline u32 cal_CRC(unsigned char *, unsigned int, u8);
322 static void dmfe_rx_packet(struct net_device *, struct dmfe_board_info *);
323 static void dmfe_free_tx_pkt(struct net_device *, struct dmfe_board_info *);
324 static void dmfe_reuse_skb(struct dmfe_board_info *, struct sk_buff *);
325 static void dmfe_dynamic_reset(struct net_device *);
326 static void dmfe_free_rxbuffer(struct dmfe_board_info *);
327 static void dmfe_init_dm910x(struct net_device *);
328 static void dmfe_parse_srom(struct dmfe_board_info *);
329 static void dmfe_program_DM9801(struct dmfe_board_info *, int);
330 static void dmfe_program_DM9802(struct dmfe_board_info *);
331 static void dmfe_HPNA_remote_cmd_chk(struct dmfe_board_info * );
332 static void dmfe_set_phyxcer(struct dmfe_board_info *);
333 
334 /* DM910X network board routine ---------------------------- */
335 
336 static const struct net_device_ops netdev_ops = {
337 	.ndo_open 		= dmfe_open,
338 	.ndo_stop		= dmfe_stop,
339 	.ndo_start_xmit		= dmfe_start_xmit,
340 	.ndo_set_rx_mode	= dmfe_set_filter_mode,
341 	.ndo_set_mac_address	= eth_mac_addr,
342 	.ndo_validate_addr	= eth_validate_addr,
343 #ifdef CONFIG_NET_POLL_CONTROLLER
344 	.ndo_poll_controller	= poll_dmfe,
345 #endif
346 };
347 
348 /*
349  *	Search DM910X board ,allocate space and register it
350  */
351 
352 static int dmfe_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
353 {
354 	struct dmfe_board_info *db;	/* board information structure */
355 	struct net_device *dev;
356 	u32 pci_pmr;
357 	int i, err;
358 
359 	DMFE_DBUG(0, "dmfe_init_one()", 0);
360 
361 	/*
362 	 *	SPARC on-board DM910x chips should be handled by the main
363 	 *	tulip driver, except for early DM9100s.
364 	 */
365 #ifdef CONFIG_TULIP_DM910X
366 	if ((ent->driver_data == PCI_DM9100_ID && pdev->revision >= 0x30) ||
367 	    ent->driver_data == PCI_DM9102_ID) {
368 		struct device_node *dp = pci_device_to_OF_node(pdev);
369 
370 		if (dp && of_get_property(dp, "local-mac-address", NULL)) {
371 			pr_info("skipping on-board DM910x (use tulip)\n");
372 			return -ENODEV;
373 		}
374 	}
375 #endif
376 
377 	/* Init network device */
378 	dev = alloc_etherdev(sizeof(*db));
379 	if (dev == NULL)
380 		return -ENOMEM;
381 	SET_NETDEV_DEV(dev, &pdev->dev);
382 
383 	if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
384 		pr_warn("32-bit PCI DMA not available\n");
385 		err = -ENODEV;
386 		goto err_out_free;
387 	}
388 
389 	/* Enable Master/IO access, Disable memory access */
390 	err = pci_enable_device(pdev);
391 	if (err)
392 		goto err_out_free;
393 
394 	if (!pci_resource_start(pdev, 0)) {
395 		pr_err("I/O base is zero\n");
396 		err = -ENODEV;
397 		goto err_out_disable;
398 	}
399 
400 	if (pci_resource_len(pdev, 0) < (CHK_IO_SIZE(pdev)) ) {
401 		pr_err("Allocated I/O size too small\n");
402 		err = -ENODEV;
403 		goto err_out_disable;
404 	}
405 
406 #if 0	/* pci_{enable_device,set_master} sets minimum latency for us now */
407 
408 	/* Set Latency Timer 80h */
409 	/* FIXME: setting values > 32 breaks some SiS 559x stuff.
410 	   Need a PCI quirk.. */
411 
412 	pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x80);
413 #endif
414 
415 	if (pci_request_regions(pdev, DRV_NAME)) {
416 		pr_err("Failed to request PCI regions\n");
417 		err = -ENODEV;
418 		goto err_out_disable;
419 	}
420 
421 	/* Init system & device */
422 	db = netdev_priv(dev);
423 
424 	/* Allocate Tx/Rx descriptor memory */
425 	db->desc_pool_ptr = dma_alloc_coherent(&pdev->dev,
426 					       sizeof(struct tx_desc) * DESC_ALL_CNT + 0x20,
427 					       &db->desc_pool_dma_ptr, GFP_KERNEL);
428 	if (!db->desc_pool_ptr) {
429 		err = -ENOMEM;
430 		goto err_out_res;
431 	}
432 
433 	db->buf_pool_ptr = dma_alloc_coherent(&pdev->dev,
434 					      TX_BUF_ALLOC * TX_DESC_CNT + 4,
435 					      &db->buf_pool_dma_ptr, GFP_KERNEL);
436 	if (!db->buf_pool_ptr) {
437 		err = -ENOMEM;
438 		goto err_out_free_desc;
439 	}
440 
441 	db->first_tx_desc = (struct tx_desc *) db->desc_pool_ptr;
442 	db->first_tx_desc_dma = db->desc_pool_dma_ptr;
443 	db->buf_pool_start = db->buf_pool_ptr;
444 	db->buf_pool_dma_start = db->buf_pool_dma_ptr;
445 
446 	db->chip_id = ent->driver_data;
447 	/* IO type range. */
448 	db->ioaddr = pci_iomap(pdev, 0, 0);
449 	if (!db->ioaddr) {
450 		err = -ENOMEM;
451 		goto err_out_free_buf;
452 	}
453 
454 	db->chip_revision = pdev->revision;
455 	db->wol_mode = 0;
456 
457 	db->pdev = pdev;
458 
459 	pci_set_drvdata(pdev, dev);
460 	dev->netdev_ops = &netdev_ops;
461 	dev->ethtool_ops = &netdev_ethtool_ops;
462 	netif_carrier_off(dev);
463 	spin_lock_init(&db->lock);
464 
465 	pci_read_config_dword(pdev, 0x50, &pci_pmr);
466 	pci_pmr &= 0x70000;
467 	if ( (pci_pmr == 0x10000) && (db->chip_revision == 0x31) )
468 		db->chip_type = 1;	/* DM9102A E3 */
469 	else
470 		db->chip_type = 0;
471 
472 	/* read 64 word srom data */
473 	for (i = 0; i < 64; i++) {
474 		((__le16 *) db->srom)[i] =
475 			cpu_to_le16(read_srom_word(db->ioaddr, i));
476 	}
477 
478 	/* Set Node address */
479 	eth_hw_addr_set(dev, &db->srom[20]);
480 
481 	err = register_netdev (dev);
482 	if (err)
483 		goto err_out_unmap;
484 
485 	dev_info(&dev->dev, "Davicom DM%04lx at pci%s, %pM, irq %d\n",
486 		 ent->driver_data >> 16,
487 		 pci_name(pdev), dev->dev_addr, pdev->irq);
488 
489 	pci_set_master(pdev);
490 
491 	return 0;
492 
493 err_out_unmap:
494 	pci_iounmap(pdev, db->ioaddr);
495 err_out_free_buf:
496 	dma_free_coherent(&pdev->dev, TX_BUF_ALLOC * TX_DESC_CNT + 4,
497 			  db->buf_pool_ptr, db->buf_pool_dma_ptr);
498 err_out_free_desc:
499 	dma_free_coherent(&pdev->dev,
500 			  sizeof(struct tx_desc) * DESC_ALL_CNT + 0x20,
501 			  db->desc_pool_ptr, db->desc_pool_dma_ptr);
502 err_out_res:
503 	pci_release_regions(pdev);
504 err_out_disable:
505 	pci_disable_device(pdev);
506 err_out_free:
507 	free_netdev(dev);
508 
509 	return err;
510 }
511 
512 
513 static void dmfe_remove_one(struct pci_dev *pdev)
514 {
515 	struct net_device *dev = pci_get_drvdata(pdev);
516 	struct dmfe_board_info *db = netdev_priv(dev);
517 
518 	DMFE_DBUG(0, "dmfe_remove_one()", 0);
519 
520 	if (dev) {
521 
522 		unregister_netdev(dev);
523 		pci_iounmap(db->pdev, db->ioaddr);
524 		dma_free_coherent(&db->pdev->dev,
525 				  sizeof(struct tx_desc) * DESC_ALL_CNT + 0x20,
526 				  db->desc_pool_ptr, db->desc_pool_dma_ptr);
527 		dma_free_coherent(&db->pdev->dev,
528 				  TX_BUF_ALLOC * TX_DESC_CNT + 4,
529 				  db->buf_pool_ptr, db->buf_pool_dma_ptr);
530 		pci_release_regions(pdev);
531 		free_netdev(dev);	/* free board information */
532 	}
533 
534 	DMFE_DBUG(0, "dmfe_remove_one() exit", 0);
535 }
536 
537 
538 /*
539  *	Open the interface.
540  *	The interface is opened whenever "ifconfig" actives it.
541  */
542 
543 static int dmfe_open(struct net_device *dev)
544 {
545 	struct dmfe_board_info *db = netdev_priv(dev);
546 	const int irq = db->pdev->irq;
547 	int ret;
548 
549 	DMFE_DBUG(0, "dmfe_open", 0);
550 
551 	ret = request_irq(irq, dmfe_interrupt, IRQF_SHARED, dev->name, dev);
552 	if (ret)
553 		return ret;
554 
555 	/* system variable init */
556 	db->cr6_data = CR6_DEFAULT | dmfe_cr6_user_set;
557 	db->tx_packet_cnt = 0;
558 	db->tx_queue_cnt = 0;
559 	db->rx_avail_cnt = 0;
560 	db->wait_reset = 0;
561 
562 	db->first_in_callback = 0;
563 	db->NIC_capability = 0xf;	/* All capability*/
564 	db->PHY_reg4 = 0x1e0;
565 
566 	/* CR6 operation mode decision */
567 	if ( !chkmode || (db->chip_id == PCI_DM9132_ID) ||
568 		(db->chip_revision >= 0x30) ) {
569 		db->cr6_data |= DMFE_TXTH_256;
570 		db->cr0_data = CR0_DEFAULT;
571 		db->dm910x_chk_mode=4;		/* Enter the normal mode */
572 	} else {
573 		db->cr6_data |= CR6_SFT;	/* Store & Forward mode */
574 		db->cr0_data = 0;
575 		db->dm910x_chk_mode = 1;	/* Enter the check mode */
576 	}
577 
578 	/* Initialize DM910X board */
579 	dmfe_init_dm910x(dev);
580 
581 	/* Active System Interface */
582 	netif_wake_queue(dev);
583 
584 	/* set and active a timer process */
585 	timer_setup(&db->timer, dmfe_timer, 0);
586 	db->timer.expires = DMFE_TIMER_WUT + HZ * 2;
587 	add_timer(&db->timer);
588 
589 	return 0;
590 }
591 
592 
593 /*	Initialize DM910X board
594  *	Reset DM910X board
595  *	Initialize TX/Rx descriptor chain structure
596  *	Send the set-up frame
597  *	Enable Tx/Rx machine
598  */
599 
600 static void dmfe_init_dm910x(struct net_device *dev)
601 {
602 	struct dmfe_board_info *db = netdev_priv(dev);
603 	void __iomem *ioaddr = db->ioaddr;
604 
605 	DMFE_DBUG(0, "dmfe_init_dm910x()", 0);
606 
607 	/* Reset DM910x MAC controller */
608 	dw32(DCR0, DM910X_RESET);	/* RESET MAC */
609 	udelay(100);
610 	dw32(DCR0, db->cr0_data);
611 	udelay(5);
612 
613 	/* Phy addr : DM910(A)2/DM9132/9801, phy address = 1 */
614 	db->phy_addr = 1;
615 
616 	/* Parser SROM and media mode */
617 	dmfe_parse_srom(db);
618 	db->media_mode = dmfe_media_mode;
619 
620 	/* RESET Phyxcer Chip by GPR port bit 7 */
621 	dw32(DCR12, 0x180);		/* Let bit 7 output port */
622 	if (db->chip_id == PCI_DM9009_ID) {
623 		dw32(DCR12, 0x80);	/* Issue RESET signal */
624 		mdelay(300);			/* Delay 300 ms */
625 	}
626 	dw32(DCR12, 0x0);	/* Clear RESET signal */
627 
628 	/* Process Phyxcer Media Mode */
629 	if ( !(db->media_mode & 0x10) )	/* Force 1M mode */
630 		dmfe_set_phyxcer(db);
631 
632 	/* Media Mode Process */
633 	if ( !(db->media_mode & DMFE_AUTO) )
634 		db->op_mode = db->media_mode; 	/* Force Mode */
635 
636 	/* Initialize Transmit/Receive descriptor and CR3/4 */
637 	dmfe_descriptor_init(dev);
638 
639 	/* Init CR6 to program DM910x operation */
640 	update_cr6(db->cr6_data, ioaddr);
641 
642 	/* Send setup frame */
643 	if (db->chip_id == PCI_DM9132_ID)
644 		dm9132_id_table(dev);	/* DM9132 */
645 	else
646 		send_filter_frame(dev);	/* DM9102/DM9102A */
647 
648 	/* Init CR7, interrupt active bit */
649 	db->cr7_data = CR7_DEFAULT;
650 	dw32(DCR7, db->cr7_data);
651 
652 	/* Init CR15, Tx jabber and Rx watchdog timer */
653 	dw32(DCR15, db->cr15_data);
654 
655 	/* Enable DM910X Tx/Rx function */
656 	db->cr6_data |= CR6_RXSC | CR6_TXSC | 0x40000;
657 	update_cr6(db->cr6_data, ioaddr);
658 }
659 
660 
661 /*
662  *	Hardware start transmission.
663  *	Send a packet to media from the upper layer.
664  */
665 
666 static netdev_tx_t dmfe_start_xmit(struct sk_buff *skb,
667 					 struct net_device *dev)
668 {
669 	struct dmfe_board_info *db = netdev_priv(dev);
670 	void __iomem *ioaddr = db->ioaddr;
671 	struct tx_desc *txptr;
672 	unsigned long flags;
673 
674 	DMFE_DBUG(0, "dmfe_start_xmit", 0);
675 
676 	/* Too large packet check */
677 	if (skb->len > MAX_PACKET_SIZE) {
678 		pr_err("big packet = %d\n", (u16)skb->len);
679 		dev_kfree_skb_any(skb);
680 		return NETDEV_TX_OK;
681 	}
682 
683 	/* Resource flag check */
684 	netif_stop_queue(dev);
685 
686 	spin_lock_irqsave(&db->lock, flags);
687 
688 	/* No Tx resource check, it never happen nromally */
689 	if (db->tx_queue_cnt >= TX_FREE_DESC_CNT) {
690 		spin_unlock_irqrestore(&db->lock, flags);
691 		pr_err("No Tx resource %ld\n", db->tx_queue_cnt);
692 		return NETDEV_TX_BUSY;
693 	}
694 
695 	/* Disable NIC interrupt */
696 	dw32(DCR7, 0);
697 
698 	/* transmit this packet */
699 	txptr = db->tx_insert_ptr;
700 	skb_copy_from_linear_data(skb, txptr->tx_buf_ptr, skb->len);
701 	txptr->tdes1 = cpu_to_le32(0xe1000000 | skb->len);
702 
703 	/* Point to next transmit free descriptor */
704 	db->tx_insert_ptr = txptr->next_tx_desc;
705 
706 	/* Transmit Packet Process */
707 	if ( (!db->tx_queue_cnt) && (db->tx_packet_cnt < TX_MAX_SEND_CNT) ) {
708 		txptr->tdes0 = cpu_to_le32(0x80000000);	/* Set owner bit */
709 		db->tx_packet_cnt++;			/* Ready to send */
710 		dw32(DCR1, 0x1);			/* Issue Tx polling */
711 		netif_trans_update(dev);		/* saved time stamp */
712 	} else {
713 		db->tx_queue_cnt++;			/* queue TX packet */
714 		dw32(DCR1, 0x1);			/* Issue Tx polling */
715 	}
716 
717 	/* Tx resource check */
718 	if ( db->tx_queue_cnt < TX_FREE_DESC_CNT )
719 		netif_wake_queue(dev);
720 
721 	/* Restore CR7 to enable interrupt */
722 	spin_unlock_irqrestore(&db->lock, flags);
723 	dw32(DCR7, db->cr7_data);
724 
725 	/* free this SKB */
726 	dev_consume_skb_any(skb);
727 
728 	return NETDEV_TX_OK;
729 }
730 
731 
732 /*
733  *	Stop the interface.
734  *	The interface is stopped when it is brought.
735  */
736 
737 static int dmfe_stop(struct net_device *dev)
738 {
739 	struct dmfe_board_info *db = netdev_priv(dev);
740 	void __iomem *ioaddr = db->ioaddr;
741 
742 	DMFE_DBUG(0, "dmfe_stop", 0);
743 
744 	/* disable system */
745 	netif_stop_queue(dev);
746 
747 	/* deleted timer */
748 	del_timer_sync(&db->timer);
749 
750 	/* Reset & stop DM910X board */
751 	dw32(DCR0, DM910X_RESET);
752 	udelay(100);
753 	dmfe_phy_write(ioaddr, db->phy_addr, 0, 0x8000, db->chip_id);
754 
755 	/* free interrupt */
756 	free_irq(db->pdev->irq, dev);
757 
758 	/* free allocated rx buffer */
759 	dmfe_free_rxbuffer(db);
760 
761 #if 0
762 	/* show statistic counter */
763 	printk("FU:%lx EC:%lx LC:%lx NC:%lx LOC:%lx TXJT:%lx RESET:%lx RCR8:%lx FAL:%lx TT:%lx\n",
764 	       db->tx_fifo_underrun, db->tx_excessive_collision,
765 	       db->tx_late_collision, db->tx_no_carrier, db->tx_loss_carrier,
766 	       db->tx_jabber_timeout, db->reset_count, db->reset_cr8,
767 	       db->reset_fatal, db->reset_TXtimeout);
768 #endif
769 
770 	return 0;
771 }
772 
773 
774 /*
775  *	DM9102 insterrupt handler
776  *	receive the packet to upper layer, free the transmitted packet
777  */
778 
779 static irqreturn_t dmfe_interrupt(int irq, void *dev_id)
780 {
781 	struct net_device *dev = dev_id;
782 	struct dmfe_board_info *db = netdev_priv(dev);
783 	void __iomem *ioaddr = db->ioaddr;
784 	unsigned long flags;
785 
786 	DMFE_DBUG(0, "dmfe_interrupt()", 0);
787 
788 	spin_lock_irqsave(&db->lock, flags);
789 
790 	/* Got DM910X status */
791 	db->cr5_data = dr32(DCR5);
792 	dw32(DCR5, db->cr5_data);
793 	if ( !(db->cr5_data & 0xc1) ) {
794 		spin_unlock_irqrestore(&db->lock, flags);
795 		return IRQ_HANDLED;
796 	}
797 
798 	/* Disable all interrupt in CR7 to solve the interrupt edge problem */
799 	dw32(DCR7, 0);
800 
801 	/* Check system status */
802 	if (db->cr5_data & 0x2000) {
803 		/* system bus error happen */
804 		DMFE_DBUG(1, "System bus error happen. CR5=", db->cr5_data);
805 		db->reset_fatal++;
806 		db->wait_reset = 1;	/* Need to RESET */
807 		spin_unlock_irqrestore(&db->lock, flags);
808 		return IRQ_HANDLED;
809 	}
810 
811 	 /* Received the coming packet */
812 	if ( (db->cr5_data & 0x40) && db->rx_avail_cnt )
813 		dmfe_rx_packet(dev, db);
814 
815 	/* reallocate rx descriptor buffer */
816 	if (db->rx_avail_cnt<RX_DESC_CNT)
817 		allocate_rx_buffer(dev);
818 
819 	/* Free the transmitted descriptor */
820 	if ( db->cr5_data & 0x01)
821 		dmfe_free_tx_pkt(dev, db);
822 
823 	/* Mode Check */
824 	if (db->dm910x_chk_mode & 0x2) {
825 		db->dm910x_chk_mode = 0x4;
826 		db->cr6_data |= 0x100;
827 		update_cr6(db->cr6_data, ioaddr);
828 	}
829 
830 	/* Restore CR7 to enable interrupt mask */
831 	dw32(DCR7, db->cr7_data);
832 
833 	spin_unlock_irqrestore(&db->lock, flags);
834 	return IRQ_HANDLED;
835 }
836 
837 
838 #ifdef CONFIG_NET_POLL_CONTROLLER
839 /*
840  * Polling 'interrupt' - used by things like netconsole to send skbs
841  * without having to re-enable interrupts. It's not called while
842  * the interrupt routine is executing.
843  */
844 
845 static void poll_dmfe (struct net_device *dev)
846 {
847 	struct dmfe_board_info *db = netdev_priv(dev);
848 	const int irq = db->pdev->irq;
849 
850 	/* disable_irq here is not very nice, but with the lockless
851 	   interrupt handler we have no other choice. */
852 	disable_irq(irq);
853 	dmfe_interrupt (irq, dev);
854 	enable_irq(irq);
855 }
856 #endif
857 
858 /*
859  *	Free TX resource after TX complete
860  */
861 
862 static void dmfe_free_tx_pkt(struct net_device *dev, struct dmfe_board_info *db)
863 {
864 	struct tx_desc *txptr;
865 	void __iomem *ioaddr = db->ioaddr;
866 	u32 tdes0;
867 
868 	txptr = db->tx_remove_ptr;
869 	while(db->tx_packet_cnt) {
870 		tdes0 = le32_to_cpu(txptr->tdes0);
871 		if (tdes0 & 0x80000000)
872 			break;
873 
874 		/* A packet sent completed */
875 		db->tx_packet_cnt--;
876 		dev->stats.tx_packets++;
877 
878 		/* Transmit statistic counter */
879 		if ( tdes0 != 0x7fffffff ) {
880 			dev->stats.collisions += (tdes0 >> 3) & 0xf;
881 			dev->stats.tx_bytes += le32_to_cpu(txptr->tdes1) & 0x7ff;
882 			if (tdes0 & TDES0_ERR_MASK) {
883 				dev->stats.tx_errors++;
884 
885 				if (tdes0 & 0x0002) {	/* UnderRun */
886 					db->tx_fifo_underrun++;
887 					if ( !(db->cr6_data & CR6_SFT) ) {
888 						db->cr6_data = db->cr6_data | CR6_SFT;
889 						update_cr6(db->cr6_data, ioaddr);
890 					}
891 				}
892 				if (tdes0 & 0x0100)
893 					db->tx_excessive_collision++;
894 				if (tdes0 & 0x0200)
895 					db->tx_late_collision++;
896 				if (tdes0 & 0x0400)
897 					db->tx_no_carrier++;
898 				if (tdes0 & 0x0800)
899 					db->tx_loss_carrier++;
900 				if (tdes0 & 0x4000)
901 					db->tx_jabber_timeout++;
902 			}
903 		}
904 
905 		txptr = txptr->next_tx_desc;
906 	}/* End of while */
907 
908 	/* Update TX remove pointer to next */
909 	db->tx_remove_ptr = txptr;
910 
911 	/* Send the Tx packet in queue */
912 	if ( (db->tx_packet_cnt < TX_MAX_SEND_CNT) && db->tx_queue_cnt ) {
913 		txptr->tdes0 = cpu_to_le32(0x80000000);	/* Set owner bit */
914 		db->tx_packet_cnt++;			/* Ready to send */
915 		db->tx_queue_cnt--;
916 		dw32(DCR1, 0x1);			/* Issue Tx polling */
917 		netif_trans_update(dev);		/* saved time stamp */
918 	}
919 
920 	/* Resource available check */
921 	if ( db->tx_queue_cnt < TX_WAKE_DESC_CNT )
922 		netif_wake_queue(dev);	/* Active upper layer, send again */
923 }
924 
925 
926 /*
927  *	Calculate the CRC valude of the Rx packet
928  *	flag = 	1 : return the reverse CRC (for the received packet CRC)
929  *		0 : return the normal CRC (for Hash Table index)
930  */
931 
932 static inline u32 cal_CRC(unsigned char * Data, unsigned int Len, u8 flag)
933 {
934 	u32 crc = crc32(~0, Data, Len);
935 	if (flag) crc = ~crc;
936 	return crc;
937 }
938 
939 
940 /*
941  *	Receive the come packet and pass to upper layer
942  */
943 
944 static void dmfe_rx_packet(struct net_device *dev, struct dmfe_board_info *db)
945 {
946 	struct rx_desc *rxptr;
947 	struct sk_buff *skb, *newskb;
948 	int rxlen;
949 	u32 rdes0;
950 
951 	rxptr = db->rx_ready_ptr;
952 
953 	while(db->rx_avail_cnt) {
954 		rdes0 = le32_to_cpu(rxptr->rdes0);
955 		if (rdes0 & 0x80000000)	/* packet owner check */
956 			break;
957 
958 		db->rx_avail_cnt--;
959 		db->interval_rx_cnt++;
960 
961 		dma_unmap_single(&db->pdev->dev, le32_to_cpu(rxptr->rdes2),
962 				 RX_ALLOC_SIZE, DMA_FROM_DEVICE);
963 
964 		if ( (rdes0 & 0x300) != 0x300) {
965 			/* A packet without First/Last flag */
966 			/* reuse this SKB */
967 			DMFE_DBUG(0, "Reuse SK buffer, rdes0", rdes0);
968 			dmfe_reuse_skb(db, rxptr->rx_skb_ptr);
969 		} else {
970 			/* A packet with First/Last flag */
971 			rxlen = ( (rdes0 >> 16) & 0x3fff) - 4;
972 
973 			/* error summary bit check */
974 			if (rdes0 & 0x8000) {
975 				/* This is a error packet */
976 				dev->stats.rx_errors++;
977 				if (rdes0 & 1)
978 					dev->stats.rx_fifo_errors++;
979 				if (rdes0 & 2)
980 					dev->stats.rx_crc_errors++;
981 				if (rdes0 & 0x80)
982 					dev->stats.rx_length_errors++;
983 			}
984 
985 			if ( !(rdes0 & 0x8000) ||
986 				((db->cr6_data & CR6_PM) && (rxlen>6)) ) {
987 				skb = rxptr->rx_skb_ptr;
988 
989 				/* Received Packet CRC check need or not */
990 				if ( (db->dm910x_chk_mode & 1) &&
991 					(cal_CRC(skb->data, rxlen, 1) !=
992 					(*(u32 *) (skb->data+rxlen) ))) { /* FIXME (?) */
993 					/* Found a error received packet */
994 					dmfe_reuse_skb(db, rxptr->rx_skb_ptr);
995 					db->dm910x_chk_mode = 3;
996 				} else {
997 					/* Good packet, send to upper layer */
998 					/* Shorst packet used new SKB */
999 					if ((rxlen < RX_COPY_SIZE) &&
1000 						((newskb = netdev_alloc_skb(dev, rxlen + 2))
1001 						!= NULL)) {
1002 
1003 						skb = newskb;
1004 						/* size less than COPY_SIZE, allocate a rxlen SKB */
1005 						skb_reserve(skb, 2); /* 16byte align */
1006 						skb_copy_from_linear_data(rxptr->rx_skb_ptr,
1007 							  skb_put(skb, rxlen),
1008 									  rxlen);
1009 						dmfe_reuse_skb(db, rxptr->rx_skb_ptr);
1010 					} else
1011 						skb_put(skb, rxlen);
1012 
1013 					skb->protocol = eth_type_trans(skb, dev);
1014 					netif_rx(skb);
1015 					dev->stats.rx_packets++;
1016 					dev->stats.rx_bytes += rxlen;
1017 				}
1018 			} else {
1019 				/* Reuse SKB buffer when the packet is error */
1020 				DMFE_DBUG(0, "Reuse SK buffer, rdes0", rdes0);
1021 				dmfe_reuse_skb(db, rxptr->rx_skb_ptr);
1022 			}
1023 		}
1024 
1025 		rxptr = rxptr->next_rx_desc;
1026 	}
1027 
1028 	db->rx_ready_ptr = rxptr;
1029 }
1030 
1031 /*
1032  * Set DM910X multicast address
1033  */
1034 
1035 static void dmfe_set_filter_mode(struct net_device *dev)
1036 {
1037 	struct dmfe_board_info *db = netdev_priv(dev);
1038 	unsigned long flags;
1039 	int mc_count = netdev_mc_count(dev);
1040 
1041 	DMFE_DBUG(0, "dmfe_set_filter_mode()", 0);
1042 	spin_lock_irqsave(&db->lock, flags);
1043 
1044 	if (dev->flags & IFF_PROMISC) {
1045 		DMFE_DBUG(0, "Enable PROM Mode", 0);
1046 		db->cr6_data |= CR6_PM | CR6_PBF;
1047 		update_cr6(db->cr6_data, db->ioaddr);
1048 		spin_unlock_irqrestore(&db->lock, flags);
1049 		return;
1050 	}
1051 
1052 	if (dev->flags & IFF_ALLMULTI || mc_count > DMFE_MAX_MULTICAST) {
1053 		DMFE_DBUG(0, "Pass all multicast address", mc_count);
1054 		db->cr6_data &= ~(CR6_PM | CR6_PBF);
1055 		db->cr6_data |= CR6_PAM;
1056 		spin_unlock_irqrestore(&db->lock, flags);
1057 		return;
1058 	}
1059 
1060 	DMFE_DBUG(0, "Set multicast address", mc_count);
1061 	if (db->chip_id == PCI_DM9132_ID)
1062 		dm9132_id_table(dev);	/* DM9132 */
1063 	else
1064 		send_filter_frame(dev);	/* DM9102/DM9102A */
1065 	spin_unlock_irqrestore(&db->lock, flags);
1066 }
1067 
1068 /*
1069  * 	Ethtool interace
1070  */
1071 
1072 static void dmfe_ethtool_get_drvinfo(struct net_device *dev,
1073 			       struct ethtool_drvinfo *info)
1074 {
1075 	struct dmfe_board_info *np = netdev_priv(dev);
1076 
1077 	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1078 	strscpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
1079 }
1080 
1081 static int dmfe_ethtool_set_wol(struct net_device *dev,
1082 				struct ethtool_wolinfo *wolinfo)
1083 {
1084 	struct dmfe_board_info *db = netdev_priv(dev);
1085 
1086 	if (wolinfo->wolopts & (WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1087 		   		WAKE_ARP | WAKE_MAGICSECURE))
1088 		   return -EOPNOTSUPP;
1089 
1090 	db->wol_mode = wolinfo->wolopts;
1091 	return 0;
1092 }
1093 
1094 static void dmfe_ethtool_get_wol(struct net_device *dev,
1095 				 struct ethtool_wolinfo *wolinfo)
1096 {
1097 	struct dmfe_board_info *db = netdev_priv(dev);
1098 
1099 	wolinfo->supported = WAKE_PHY | WAKE_MAGIC;
1100 	wolinfo->wolopts = db->wol_mode;
1101 }
1102 
1103 
1104 static const struct ethtool_ops netdev_ethtool_ops = {
1105 	.get_drvinfo		= dmfe_ethtool_get_drvinfo,
1106 	.get_link               = ethtool_op_get_link,
1107 	.set_wol		= dmfe_ethtool_set_wol,
1108 	.get_wol		= dmfe_ethtool_get_wol,
1109 };
1110 
1111 /*
1112  *	A periodic timer routine
1113  *	Dynamic media sense, allocate Rx buffer...
1114  */
1115 
1116 static void dmfe_timer(struct timer_list *t)
1117 {
1118 	struct dmfe_board_info *db = from_timer(db, t, timer);
1119 	struct net_device *dev = pci_get_drvdata(db->pdev);
1120 	void __iomem *ioaddr = db->ioaddr;
1121 	u32 tmp_cr8;
1122 	unsigned char tmp_cr12;
1123 	unsigned long flags;
1124 
1125 	int link_ok, link_ok_phy;
1126 
1127 	DMFE_DBUG(0, "dmfe_timer()", 0);
1128 	spin_lock_irqsave(&db->lock, flags);
1129 
1130 	/* Media mode process when Link OK before enter this route */
1131 	if (db->first_in_callback == 0) {
1132 		db->first_in_callback = 1;
1133 		if (db->chip_type && (db->chip_id==PCI_DM9102_ID)) {
1134 			db->cr6_data &= ~0x40000;
1135 			update_cr6(db->cr6_data, ioaddr);
1136 			dmfe_phy_write(ioaddr, db->phy_addr, 0, 0x1000, db->chip_id);
1137 			db->cr6_data |= 0x40000;
1138 			update_cr6(db->cr6_data, ioaddr);
1139 			db->timer.expires = DMFE_TIMER_WUT + HZ * 2;
1140 			add_timer(&db->timer);
1141 			spin_unlock_irqrestore(&db->lock, flags);
1142 			return;
1143 		}
1144 	}
1145 
1146 
1147 	/* Operating Mode Check */
1148 	if ( (db->dm910x_chk_mode & 0x1) &&
1149 		(dev->stats.rx_packets > MAX_CHECK_PACKET) )
1150 		db->dm910x_chk_mode = 0x4;
1151 
1152 	/* Dynamic reset DM910X : system error or transmit time-out */
1153 	tmp_cr8 = dr32(DCR8);
1154 	if ( (db->interval_rx_cnt==0) && (tmp_cr8) ) {
1155 		db->reset_cr8++;
1156 		db->wait_reset = 1;
1157 	}
1158 	db->interval_rx_cnt = 0;
1159 
1160 	/* TX polling kick monitor */
1161 	if ( db->tx_packet_cnt &&
1162 	     time_after(jiffies, dev_trans_start(dev) + DMFE_TX_KICK) ) {
1163 		dw32(DCR1, 0x1);   /* Tx polling again */
1164 
1165 		/* TX Timeout */
1166 		if (time_after(jiffies, dev_trans_start(dev) + DMFE_TX_TIMEOUT) ) {
1167 			db->reset_TXtimeout++;
1168 			db->wait_reset = 1;
1169 			dev_warn(&dev->dev, "Tx timeout - resetting\n");
1170 		}
1171 	}
1172 
1173 	if (db->wait_reset) {
1174 		DMFE_DBUG(0, "Dynamic Reset device", db->tx_packet_cnt);
1175 		db->reset_count++;
1176 		dmfe_dynamic_reset(dev);
1177 		db->first_in_callback = 0;
1178 		db->timer.expires = DMFE_TIMER_WUT;
1179 		add_timer(&db->timer);
1180 		spin_unlock_irqrestore(&db->lock, flags);
1181 		return;
1182 	}
1183 
1184 	/* Link status check, Dynamic media type change */
1185 	if (db->chip_id == PCI_DM9132_ID)
1186 		tmp_cr12 = dr8(DCR9 + 3);	/* DM9132 */
1187 	else
1188 		tmp_cr12 = dr8(DCR12);		/* DM9102/DM9102A */
1189 
1190 	if ( ((db->chip_id == PCI_DM9102_ID) &&
1191 		(db->chip_revision == 0x30)) ||
1192 		((db->chip_id == PCI_DM9132_ID) &&
1193 		(db->chip_revision == 0x10)) ) {
1194 		/* DM9102A Chip */
1195 		if (tmp_cr12 & 2)
1196 			link_ok = 0;
1197 		else
1198 			link_ok = 1;
1199 	}
1200 	else
1201 		/*0x43 is used instead of 0x3 because bit 6 should represent
1202 			link status of external PHY */
1203 		link_ok = (tmp_cr12 & 0x43) ? 1 : 0;
1204 
1205 
1206 	/* If chip reports that link is failed it could be because external
1207 		PHY link status pin is not connected correctly to chip
1208 		To be sure ask PHY too.
1209 	*/
1210 
1211 	/* need a dummy read because of PHY's register latch*/
1212 	dmfe_phy_read (db->ioaddr, db->phy_addr, 1, db->chip_id);
1213 	link_ok_phy = (dmfe_phy_read (db->ioaddr,
1214 				      db->phy_addr, 1, db->chip_id) & 0x4) ? 1 : 0;
1215 
1216 	if (link_ok_phy != link_ok) {
1217 		DMFE_DBUG (0, "PHY and chip report different link status", 0);
1218 		link_ok = link_ok | link_ok_phy;
1219 	}
1220 
1221 	if ( !link_ok && netif_carrier_ok(dev)) {
1222 		/* Link Failed */
1223 		DMFE_DBUG(0, "Link Failed", tmp_cr12);
1224 		netif_carrier_off(dev);
1225 
1226 		/* For Force 10/100M Half/Full mode: Enable Auto-Nego mode */
1227 		/* AUTO or force 1M Homerun/Longrun don't need */
1228 		if ( !(db->media_mode & 0x38) )
1229 			dmfe_phy_write(db->ioaddr, db->phy_addr,
1230 				       0, 0x1000, db->chip_id);
1231 
1232 		/* AUTO mode, if INT phyxcer link failed, select EXT device */
1233 		if (db->media_mode & DMFE_AUTO) {
1234 			/* 10/100M link failed, used 1M Home-Net */
1235 			db->cr6_data|=0x00040000;	/* bit18=1, MII */
1236 			db->cr6_data&=~0x00000200;	/* bit9=0, HD mode */
1237 			update_cr6(db->cr6_data, ioaddr);
1238 		}
1239 	} else if (!netif_carrier_ok(dev)) {
1240 
1241 		DMFE_DBUG(0, "Link link OK", tmp_cr12);
1242 
1243 		/* Auto Sense Speed */
1244 		if ( !(db->media_mode & DMFE_AUTO) || !dmfe_sense_speed(db)) {
1245 			netif_carrier_on(dev);
1246 			SHOW_MEDIA_TYPE(db->op_mode);
1247 		}
1248 
1249 		dmfe_process_mode(db);
1250 	}
1251 
1252 	/* HPNA remote command check */
1253 	if (db->HPNA_command & 0xf00) {
1254 		db->HPNA_timer--;
1255 		if (!db->HPNA_timer)
1256 			dmfe_HPNA_remote_cmd_chk(db);
1257 	}
1258 
1259 	/* Timer active again */
1260 	db->timer.expires = DMFE_TIMER_WUT;
1261 	add_timer(&db->timer);
1262 	spin_unlock_irqrestore(&db->lock, flags);
1263 }
1264 
1265 
1266 /*
1267  *	Dynamic reset the DM910X board
1268  *	Stop DM910X board
1269  *	Free Tx/Rx allocated memory
1270  *	Reset DM910X board
1271  *	Re-initialize DM910X board
1272  */
1273 
1274 static void dmfe_dynamic_reset(struct net_device *dev)
1275 {
1276 	struct dmfe_board_info *db = netdev_priv(dev);
1277 	void __iomem *ioaddr = db->ioaddr;
1278 
1279 	DMFE_DBUG(0, "dmfe_dynamic_reset()", 0);
1280 
1281 	/* Sopt MAC controller */
1282 	db->cr6_data &= ~(CR6_RXSC | CR6_TXSC);	/* Disable Tx/Rx */
1283 	update_cr6(db->cr6_data, ioaddr);
1284 	dw32(DCR7, 0);				/* Disable Interrupt */
1285 	dw32(DCR5, dr32(DCR5));
1286 
1287 	/* Disable upper layer interface */
1288 	netif_stop_queue(dev);
1289 
1290 	/* Free Rx Allocate buffer */
1291 	dmfe_free_rxbuffer(db);
1292 
1293 	/* system variable init */
1294 	db->tx_packet_cnt = 0;
1295 	db->tx_queue_cnt = 0;
1296 	db->rx_avail_cnt = 0;
1297 	netif_carrier_off(dev);
1298 	db->wait_reset = 0;
1299 
1300 	/* Re-initialize DM910X board */
1301 	dmfe_init_dm910x(dev);
1302 
1303 	/* Restart upper layer interface */
1304 	netif_wake_queue(dev);
1305 }
1306 
1307 
1308 /*
1309  *	free all allocated rx buffer
1310  */
1311 
1312 static void dmfe_free_rxbuffer(struct dmfe_board_info * db)
1313 {
1314 	DMFE_DBUG(0, "dmfe_free_rxbuffer()", 0);
1315 
1316 	/* free allocated rx buffer */
1317 	while (db->rx_avail_cnt) {
1318 		dev_kfree_skb(db->rx_ready_ptr->rx_skb_ptr);
1319 		db->rx_ready_ptr = db->rx_ready_ptr->next_rx_desc;
1320 		db->rx_avail_cnt--;
1321 	}
1322 }
1323 
1324 
1325 /*
1326  *	Reuse the SK buffer
1327  */
1328 
1329 static void dmfe_reuse_skb(struct dmfe_board_info *db, struct sk_buff * skb)
1330 {
1331 	struct rx_desc *rxptr = db->rx_insert_ptr;
1332 
1333 	if (!(rxptr->rdes0 & cpu_to_le32(0x80000000))) {
1334 		rxptr->rx_skb_ptr = skb;
1335 		rxptr->rdes2 = cpu_to_le32(dma_map_single(&db->pdev->dev, skb->data,
1336 							  RX_ALLOC_SIZE, DMA_FROM_DEVICE));
1337 		wmb();
1338 		rxptr->rdes0 = cpu_to_le32(0x80000000);
1339 		db->rx_avail_cnt++;
1340 		db->rx_insert_ptr = rxptr->next_rx_desc;
1341 	} else
1342 		DMFE_DBUG(0, "SK Buffer reuse method error", db->rx_avail_cnt);
1343 }
1344 
1345 
1346 /*
1347  *	Initialize transmit/Receive descriptor
1348  *	Using Chain structure, and allocate Tx/Rx buffer
1349  */
1350 
1351 static void dmfe_descriptor_init(struct net_device *dev)
1352 {
1353 	struct dmfe_board_info *db = netdev_priv(dev);
1354 	void __iomem *ioaddr = db->ioaddr;
1355 	struct tx_desc *tmp_tx;
1356 	struct rx_desc *tmp_rx;
1357 	unsigned char *tmp_buf;
1358 	dma_addr_t tmp_tx_dma, tmp_rx_dma;
1359 	dma_addr_t tmp_buf_dma;
1360 	int i;
1361 
1362 	DMFE_DBUG(0, "dmfe_descriptor_init()", 0);
1363 
1364 	/* tx descriptor start pointer */
1365 	db->tx_insert_ptr = db->first_tx_desc;
1366 	db->tx_remove_ptr = db->first_tx_desc;
1367 	dw32(DCR4, db->first_tx_desc_dma);     /* TX DESC address */
1368 
1369 	/* rx descriptor start pointer */
1370 	db->first_rx_desc = (void *)db->first_tx_desc +
1371 			sizeof(struct tx_desc) * TX_DESC_CNT;
1372 
1373 	db->first_rx_desc_dma =  db->first_tx_desc_dma +
1374 			sizeof(struct tx_desc) * TX_DESC_CNT;
1375 	db->rx_insert_ptr = db->first_rx_desc;
1376 	db->rx_ready_ptr = db->first_rx_desc;
1377 	dw32(DCR3, db->first_rx_desc_dma);		/* RX DESC address */
1378 
1379 	/* Init Transmit chain */
1380 	tmp_buf = db->buf_pool_start;
1381 	tmp_buf_dma = db->buf_pool_dma_start;
1382 	tmp_tx_dma = db->first_tx_desc_dma;
1383 	for (tmp_tx = db->first_tx_desc, i = 0; i < TX_DESC_CNT; i++, tmp_tx++) {
1384 		tmp_tx->tx_buf_ptr = tmp_buf;
1385 		tmp_tx->tdes0 = cpu_to_le32(0);
1386 		tmp_tx->tdes1 = cpu_to_le32(0x81000000);	/* IC, chain */
1387 		tmp_tx->tdes2 = cpu_to_le32(tmp_buf_dma);
1388 		tmp_tx_dma += sizeof(struct tx_desc);
1389 		tmp_tx->tdes3 = cpu_to_le32(tmp_tx_dma);
1390 		tmp_tx->next_tx_desc = tmp_tx + 1;
1391 		tmp_buf = tmp_buf + TX_BUF_ALLOC;
1392 		tmp_buf_dma = tmp_buf_dma + TX_BUF_ALLOC;
1393 	}
1394 	(--tmp_tx)->tdes3 = cpu_to_le32(db->first_tx_desc_dma);
1395 	tmp_tx->next_tx_desc = db->first_tx_desc;
1396 
1397 	 /* Init Receive descriptor chain */
1398 	tmp_rx_dma=db->first_rx_desc_dma;
1399 	for (tmp_rx = db->first_rx_desc, i = 0; i < RX_DESC_CNT; i++, tmp_rx++) {
1400 		tmp_rx->rdes0 = cpu_to_le32(0);
1401 		tmp_rx->rdes1 = cpu_to_le32(0x01000600);
1402 		tmp_rx_dma += sizeof(struct rx_desc);
1403 		tmp_rx->rdes3 = cpu_to_le32(tmp_rx_dma);
1404 		tmp_rx->next_rx_desc = tmp_rx + 1;
1405 	}
1406 	(--tmp_rx)->rdes3 = cpu_to_le32(db->first_rx_desc_dma);
1407 	tmp_rx->next_rx_desc = db->first_rx_desc;
1408 
1409 	/* pre-allocate Rx buffer */
1410 	allocate_rx_buffer(dev);
1411 }
1412 
1413 
1414 /*
1415  *	Update CR6 value
1416  *	Firstly stop DM910X , then written value and start
1417  */
1418 
1419 static void update_cr6(u32 cr6_data, void __iomem *ioaddr)
1420 {
1421 	u32 cr6_tmp;
1422 
1423 	cr6_tmp = cr6_data & ~0x2002;           /* stop Tx/Rx */
1424 	dw32(DCR6, cr6_tmp);
1425 	udelay(5);
1426 	dw32(DCR6, cr6_data);
1427 	udelay(5);
1428 }
1429 
1430 
1431 /*
1432  *	Send a setup frame for DM9132
1433  *	This setup frame initialize DM910X address filter mode
1434 */
1435 
1436 static void dm9132_id_table(struct net_device *dev)
1437 {
1438 	const u16 *addrptr = (const u16 *)dev->dev_addr;
1439 	struct dmfe_board_info *db = netdev_priv(dev);
1440 	void __iomem *ioaddr = db->ioaddr + 0xc0;
1441 	struct netdev_hw_addr *ha;
1442 	u16 i, hash_table[4];
1443 
1444 	/* Node address */
1445 	for (i = 0; i < 3; i++) {
1446 		dw16(0, addrptr[i]);
1447 		ioaddr += 4;
1448 	}
1449 
1450 	/* Clear Hash Table */
1451 	memset(hash_table, 0, sizeof(hash_table));
1452 
1453 	/* broadcast address */
1454 	hash_table[3] = 0x8000;
1455 
1456 	/* the multicast address in Hash Table : 64 bits */
1457 	netdev_for_each_mc_addr(ha, dev) {
1458 		u32 hash_val = cal_CRC((char *)ha->addr, 6, 0) & 0x3f;
1459 
1460 		hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
1461 	}
1462 
1463 	/* Write the hash table to MAC MD table */
1464 	for (i = 0; i < 4; i++, ioaddr += 4)
1465 		dw16(0, hash_table[i]);
1466 }
1467 
1468 
1469 /*
1470  *	Send a setup frame for DM9102/DM9102A
1471  *	This setup frame initialize DM910X address filter mode
1472  */
1473 
1474 static void send_filter_frame(struct net_device *dev)
1475 {
1476 	struct dmfe_board_info *db = netdev_priv(dev);
1477 	struct netdev_hw_addr *ha;
1478 	struct tx_desc *txptr;
1479 	const u16 * addrptr;
1480 	u32 * suptr;
1481 	int i;
1482 
1483 	DMFE_DBUG(0, "send_filter_frame()", 0);
1484 
1485 	txptr = db->tx_insert_ptr;
1486 	suptr = (u32 *) txptr->tx_buf_ptr;
1487 
1488 	/* Node address */
1489 	addrptr = (const u16 *) dev->dev_addr;
1490 	*suptr++ = addrptr[0];
1491 	*suptr++ = addrptr[1];
1492 	*suptr++ = addrptr[2];
1493 
1494 	/* broadcast address */
1495 	*suptr++ = 0xffff;
1496 	*suptr++ = 0xffff;
1497 	*suptr++ = 0xffff;
1498 
1499 	/* fit the multicast address */
1500 	netdev_for_each_mc_addr(ha, dev) {
1501 		addrptr = (u16 *) ha->addr;
1502 		*suptr++ = addrptr[0];
1503 		*suptr++ = addrptr[1];
1504 		*suptr++ = addrptr[2];
1505 	}
1506 
1507 	for (i = netdev_mc_count(dev); i < 14; i++) {
1508 		*suptr++ = 0xffff;
1509 		*suptr++ = 0xffff;
1510 		*suptr++ = 0xffff;
1511 	}
1512 
1513 	/* prepare the setup frame */
1514 	db->tx_insert_ptr = txptr->next_tx_desc;
1515 	txptr->tdes1 = cpu_to_le32(0x890000c0);
1516 
1517 	/* Resource Check and Send the setup packet */
1518 	if (!db->tx_packet_cnt) {
1519 		void __iomem *ioaddr = db->ioaddr;
1520 
1521 		/* Resource Empty */
1522 		db->tx_packet_cnt++;
1523 		txptr->tdes0 = cpu_to_le32(0x80000000);
1524 		update_cr6(db->cr6_data | 0x2000, ioaddr);
1525 		dw32(DCR1, 0x1);	/* Issue Tx polling */
1526 		update_cr6(db->cr6_data, ioaddr);
1527 		netif_trans_update(dev);
1528 	} else
1529 		db->tx_queue_cnt++;	/* Put in TX queue */
1530 }
1531 
1532 
1533 /*
1534  *	Allocate rx buffer,
1535  *	As possible as allocate maxiumn Rx buffer
1536  */
1537 
1538 static void allocate_rx_buffer(struct net_device *dev)
1539 {
1540 	struct dmfe_board_info *db = netdev_priv(dev);
1541 	struct rx_desc *rxptr;
1542 	struct sk_buff *skb;
1543 
1544 	rxptr = db->rx_insert_ptr;
1545 
1546 	while(db->rx_avail_cnt < RX_DESC_CNT) {
1547 		if ( ( skb = netdev_alloc_skb(dev, RX_ALLOC_SIZE) ) == NULL )
1548 			break;
1549 		rxptr->rx_skb_ptr = skb; /* FIXME (?) */
1550 		rxptr->rdes2 = cpu_to_le32(dma_map_single(&db->pdev->dev, skb->data,
1551 							  RX_ALLOC_SIZE, DMA_FROM_DEVICE));
1552 		wmb();
1553 		rxptr->rdes0 = cpu_to_le32(0x80000000);
1554 		rxptr = rxptr->next_rx_desc;
1555 		db->rx_avail_cnt++;
1556 	}
1557 
1558 	db->rx_insert_ptr = rxptr;
1559 }
1560 
1561 static void srom_clk_write(void __iomem *ioaddr, u32 data)
1562 {
1563 	static const u32 cmd[] = {
1564 		CR9_SROM_READ | CR9_SRCS,
1565 		CR9_SROM_READ | CR9_SRCS | CR9_SRCLK,
1566 		CR9_SROM_READ | CR9_SRCS
1567 	};
1568 	int i;
1569 
1570 	for (i = 0; i < ARRAY_SIZE(cmd); i++) {
1571 		dw32(DCR9, data | cmd[i]);
1572 		udelay(5);
1573 	}
1574 }
1575 
1576 /*
1577  *	Read one word data from the serial ROM
1578  */
1579 static u16 read_srom_word(void __iomem *ioaddr, int offset)
1580 {
1581 	u16 srom_data;
1582 	int i;
1583 
1584 	dw32(DCR9, CR9_SROM_READ);
1585 	udelay(5);
1586 	dw32(DCR9, CR9_SROM_READ | CR9_SRCS);
1587 	udelay(5);
1588 
1589 	/* Send the Read Command 110b */
1590 	srom_clk_write(ioaddr, SROM_DATA_1);
1591 	srom_clk_write(ioaddr, SROM_DATA_1);
1592 	srom_clk_write(ioaddr, SROM_DATA_0);
1593 
1594 	/* Send the offset */
1595 	for (i = 5; i >= 0; i--) {
1596 		srom_data = (offset & (1 << i)) ? SROM_DATA_1 : SROM_DATA_0;
1597 		srom_clk_write(ioaddr, srom_data);
1598 	}
1599 
1600 	dw32(DCR9, CR9_SROM_READ | CR9_SRCS);
1601 	udelay(5);
1602 
1603 	for (i = 16; i > 0; i--) {
1604 		dw32(DCR9, CR9_SROM_READ | CR9_SRCS | CR9_SRCLK);
1605 		udelay(5);
1606 		srom_data = (srom_data << 1) |
1607 				((dr32(DCR9) & CR9_CRDOUT) ? 1 : 0);
1608 		dw32(DCR9, CR9_SROM_READ | CR9_SRCS);
1609 		udelay(5);
1610 	}
1611 
1612 	dw32(DCR9, CR9_SROM_READ);
1613 	udelay(5);
1614 	return srom_data;
1615 }
1616 
1617 
1618 /*
1619  *	Auto sense the media mode
1620  */
1621 
1622 static u8 dmfe_sense_speed(struct dmfe_board_info *db)
1623 {
1624 	void __iomem *ioaddr = db->ioaddr;
1625 	u8 ErrFlag = 0;
1626 	u16 phy_mode;
1627 
1628 	/* CR6 bit18=0, select 10/100M */
1629 	update_cr6(db->cr6_data & ~0x40000, ioaddr);
1630 
1631 	phy_mode = dmfe_phy_read(db->ioaddr, db->phy_addr, 1, db->chip_id);
1632 	phy_mode = dmfe_phy_read(db->ioaddr, db->phy_addr, 1, db->chip_id);
1633 
1634 	if ( (phy_mode & 0x24) == 0x24 ) {
1635 		if (db->chip_id == PCI_DM9132_ID)	/* DM9132 */
1636 			phy_mode = dmfe_phy_read(db->ioaddr,
1637 						 db->phy_addr, 7, db->chip_id) & 0xf000;
1638 		else 				/* DM9102/DM9102A */
1639 			phy_mode = dmfe_phy_read(db->ioaddr,
1640 						 db->phy_addr, 17, db->chip_id) & 0xf000;
1641 		switch (phy_mode) {
1642 		case 0x1000: db->op_mode = DMFE_10MHF; break;
1643 		case 0x2000: db->op_mode = DMFE_10MFD; break;
1644 		case 0x4000: db->op_mode = DMFE_100MHF; break;
1645 		case 0x8000: db->op_mode = DMFE_100MFD; break;
1646 		default: db->op_mode = DMFE_10MHF;
1647 			ErrFlag = 1;
1648 			break;
1649 		}
1650 	} else {
1651 		db->op_mode = DMFE_10MHF;
1652 		DMFE_DBUG(0, "Link Failed :", phy_mode);
1653 		ErrFlag = 1;
1654 	}
1655 
1656 	return ErrFlag;
1657 }
1658 
1659 
1660 /*
1661  *	Set 10/100 phyxcer capability
1662  *	AUTO mode : phyxcer register4 is NIC capability
1663  *	Force mode: phyxcer register4 is the force media
1664  */
1665 
1666 static void dmfe_set_phyxcer(struct dmfe_board_info *db)
1667 {
1668 	void __iomem *ioaddr = db->ioaddr;
1669 	u16 phy_reg;
1670 
1671 	/* Select 10/100M phyxcer */
1672 	db->cr6_data &= ~0x40000;
1673 	update_cr6(db->cr6_data, ioaddr);
1674 
1675 	/* DM9009 Chip: Phyxcer reg18 bit12=0 */
1676 	if (db->chip_id == PCI_DM9009_ID) {
1677 		phy_reg = dmfe_phy_read(db->ioaddr,
1678 					db->phy_addr, 18, db->chip_id) & ~0x1000;
1679 
1680 		dmfe_phy_write(db->ioaddr,
1681 			       db->phy_addr, 18, phy_reg, db->chip_id);
1682 	}
1683 
1684 	/* Phyxcer capability setting */
1685 	phy_reg = dmfe_phy_read(db->ioaddr, db->phy_addr, 4, db->chip_id) & ~0x01e0;
1686 
1687 	if (db->media_mode & DMFE_AUTO) {
1688 		/* AUTO Mode */
1689 		phy_reg |= db->PHY_reg4;
1690 	} else {
1691 		/* Force Mode */
1692 		switch(db->media_mode) {
1693 		case DMFE_10MHF: phy_reg |= 0x20; break;
1694 		case DMFE_10MFD: phy_reg |= 0x40; break;
1695 		case DMFE_100MHF: phy_reg |= 0x80; break;
1696 		case DMFE_100MFD: phy_reg |= 0x100; break;
1697 		}
1698 		if (db->chip_id == PCI_DM9009_ID) phy_reg &= 0x61;
1699 	}
1700 
1701 	/* Write new capability to Phyxcer Reg4 */
1702 	if ( !(phy_reg & 0x01e0)) {
1703 		phy_reg|=db->PHY_reg4;
1704 		db->media_mode|=DMFE_AUTO;
1705 	}
1706 	dmfe_phy_write(db->ioaddr, db->phy_addr, 4, phy_reg, db->chip_id);
1707 
1708 	/* Restart Auto-Negotiation */
1709 	if ( db->chip_type && (db->chip_id == PCI_DM9102_ID) )
1710 		dmfe_phy_write(db->ioaddr, db->phy_addr, 0, 0x1800, db->chip_id);
1711 	if ( !db->chip_type )
1712 		dmfe_phy_write(db->ioaddr, db->phy_addr, 0, 0x1200, db->chip_id);
1713 }
1714 
1715 
1716 /*
1717  *	Process op-mode
1718  *	AUTO mode : PHY controller in Auto-negotiation Mode
1719  *	Force mode: PHY controller in force mode with HUB
1720  *			N-way force capability with SWITCH
1721  */
1722 
1723 static void dmfe_process_mode(struct dmfe_board_info *db)
1724 {
1725 	u16 phy_reg;
1726 
1727 	/* Full Duplex Mode Check */
1728 	if (db->op_mode & 0x4)
1729 		db->cr6_data |= CR6_FDM;	/* Set Full Duplex Bit */
1730 	else
1731 		db->cr6_data &= ~CR6_FDM;	/* Clear Full Duplex Bit */
1732 
1733 	/* Transciver Selection */
1734 	if (db->op_mode & 0x10)		/* 1M HomePNA */
1735 		db->cr6_data |= 0x40000;/* External MII select */
1736 	else
1737 		db->cr6_data &= ~0x40000;/* Internal 10/100 transciver */
1738 
1739 	update_cr6(db->cr6_data, db->ioaddr);
1740 
1741 	/* 10/100M phyxcer force mode need */
1742 	if ( !(db->media_mode & 0x18)) {
1743 		/* Forece Mode */
1744 		phy_reg = dmfe_phy_read(db->ioaddr, db->phy_addr, 6, db->chip_id);
1745 		if ( !(phy_reg & 0x1) ) {
1746 			/* parter without N-Way capability */
1747 			phy_reg = 0x0;
1748 			switch(db->op_mode) {
1749 			case DMFE_10MHF: phy_reg = 0x0; break;
1750 			case DMFE_10MFD: phy_reg = 0x100; break;
1751 			case DMFE_100MHF: phy_reg = 0x2000; break;
1752 			case DMFE_100MFD: phy_reg = 0x2100; break;
1753 			}
1754 			dmfe_phy_write(db->ioaddr,
1755 				       db->phy_addr, 0, phy_reg, db->chip_id);
1756 			if ( db->chip_type && (db->chip_id == PCI_DM9102_ID) )
1757 				mdelay(20);
1758 			dmfe_phy_write(db->ioaddr,
1759 				       db->phy_addr, 0, phy_reg, db->chip_id);
1760 		}
1761 	}
1762 }
1763 
1764 
1765 /*
1766  *	Write a word to Phy register
1767  */
1768 
1769 static void dmfe_phy_write(void __iomem *ioaddr, u8 phy_addr, u8 offset,
1770 			   u16 phy_data, u32 chip_id)
1771 {
1772 	u16 i;
1773 
1774 	if (chip_id == PCI_DM9132_ID) {
1775 		dw16(0x80 + offset * 4, phy_data);
1776 	} else {
1777 		/* DM9102/DM9102A Chip */
1778 
1779 		/* Send 33 synchronization clock to Phy controller */
1780 		for (i = 0; i < 35; i++)
1781 			dmfe_phy_write_1bit(ioaddr, PHY_DATA_1);
1782 
1783 		/* Send start command(01) to Phy */
1784 		dmfe_phy_write_1bit(ioaddr, PHY_DATA_0);
1785 		dmfe_phy_write_1bit(ioaddr, PHY_DATA_1);
1786 
1787 		/* Send write command(01) to Phy */
1788 		dmfe_phy_write_1bit(ioaddr, PHY_DATA_0);
1789 		dmfe_phy_write_1bit(ioaddr, PHY_DATA_1);
1790 
1791 		/* Send Phy address */
1792 		for (i = 0x10; i > 0; i = i >> 1)
1793 			dmfe_phy_write_1bit(ioaddr,
1794 					    phy_addr & i ? PHY_DATA_1 : PHY_DATA_0);
1795 
1796 		/* Send register address */
1797 		for (i = 0x10; i > 0; i = i >> 1)
1798 			dmfe_phy_write_1bit(ioaddr,
1799 					    offset & i ? PHY_DATA_1 : PHY_DATA_0);
1800 
1801 		/* written trasnition */
1802 		dmfe_phy_write_1bit(ioaddr, PHY_DATA_1);
1803 		dmfe_phy_write_1bit(ioaddr, PHY_DATA_0);
1804 
1805 		/* Write a word data to PHY controller */
1806 		for ( i = 0x8000; i > 0; i >>= 1)
1807 			dmfe_phy_write_1bit(ioaddr,
1808 					    phy_data & i ? PHY_DATA_1 : PHY_DATA_0);
1809 	}
1810 }
1811 
1812 
1813 /*
1814  *	Read a word data from phy register
1815  */
1816 
1817 static u16 dmfe_phy_read(void __iomem *ioaddr, u8 phy_addr, u8 offset, u32 chip_id)
1818 {
1819 	int i;
1820 	u16 phy_data;
1821 
1822 	if (chip_id == PCI_DM9132_ID) {
1823 		/* DM9132 Chip */
1824 		phy_data = dr16(0x80 + offset * 4);
1825 	} else {
1826 		/* DM9102/DM9102A Chip */
1827 
1828 		/* Send 33 synchronization clock to Phy controller */
1829 		for (i = 0; i < 35; i++)
1830 			dmfe_phy_write_1bit(ioaddr, PHY_DATA_1);
1831 
1832 		/* Send start command(01) to Phy */
1833 		dmfe_phy_write_1bit(ioaddr, PHY_DATA_0);
1834 		dmfe_phy_write_1bit(ioaddr, PHY_DATA_1);
1835 
1836 		/* Send read command(10) to Phy */
1837 		dmfe_phy_write_1bit(ioaddr, PHY_DATA_1);
1838 		dmfe_phy_write_1bit(ioaddr, PHY_DATA_0);
1839 
1840 		/* Send Phy address */
1841 		for (i = 0x10; i > 0; i = i >> 1)
1842 			dmfe_phy_write_1bit(ioaddr,
1843 					    phy_addr & i ? PHY_DATA_1 : PHY_DATA_0);
1844 
1845 		/* Send register address */
1846 		for (i = 0x10; i > 0; i = i >> 1)
1847 			dmfe_phy_write_1bit(ioaddr,
1848 					    offset & i ? PHY_DATA_1 : PHY_DATA_0);
1849 
1850 		/* Skip transition state */
1851 		dmfe_phy_read_1bit(ioaddr);
1852 
1853 		/* read 16bit data */
1854 		for (phy_data = 0, i = 0; i < 16; i++) {
1855 			phy_data <<= 1;
1856 			phy_data |= dmfe_phy_read_1bit(ioaddr);
1857 		}
1858 	}
1859 
1860 	return phy_data;
1861 }
1862 
1863 
1864 /*
1865  *	Write one bit data to Phy Controller
1866  */
1867 
1868 static void dmfe_phy_write_1bit(void __iomem *ioaddr, u32 phy_data)
1869 {
1870 	dw32(DCR9, phy_data);		/* MII Clock Low */
1871 	udelay(1);
1872 	dw32(DCR9, phy_data | MDCLKH);	/* MII Clock High */
1873 	udelay(1);
1874 	dw32(DCR9, phy_data);		/* MII Clock Low */
1875 	udelay(1);
1876 }
1877 
1878 
1879 /*
1880  *	Read one bit phy data from PHY controller
1881  */
1882 
1883 static u16 dmfe_phy_read_1bit(void __iomem *ioaddr)
1884 {
1885 	u16 phy_data;
1886 
1887 	dw32(DCR9, 0x50000);
1888 	udelay(1);
1889 	phy_data = (dr32(DCR9) >> 19) & 0x1;
1890 	dw32(DCR9, 0x40000);
1891 	udelay(1);
1892 
1893 	return phy_data;
1894 }
1895 
1896 
1897 /*
1898  *	Parser SROM and media mode
1899  */
1900 
1901 static void dmfe_parse_srom(struct dmfe_board_info * db)
1902 {
1903 	char * srom = db->srom;
1904 	int dmfe_mode, tmp_reg;
1905 
1906 	DMFE_DBUG(0, "dmfe_parse_srom() ", 0);
1907 
1908 	/* Init CR15 */
1909 	db->cr15_data = CR15_DEFAULT;
1910 
1911 	/* Check SROM Version */
1912 	if ( ( (int) srom[18] & 0xff) == SROM_V41_CODE) {
1913 		/* SROM V4.01 */
1914 		/* Get NIC support media mode */
1915 		db->NIC_capability = le16_to_cpup((__le16 *) (srom + 34));
1916 		db->PHY_reg4 = 0;
1917 		for (tmp_reg = 1; tmp_reg < 0x10; tmp_reg <<= 1) {
1918 			switch( db->NIC_capability & tmp_reg ) {
1919 			case 0x1: db->PHY_reg4 |= 0x0020; break;
1920 			case 0x2: db->PHY_reg4 |= 0x0040; break;
1921 			case 0x4: db->PHY_reg4 |= 0x0080; break;
1922 			case 0x8: db->PHY_reg4 |= 0x0100; break;
1923 			}
1924 		}
1925 
1926 		/* Media Mode Force or not check */
1927 		dmfe_mode = (le32_to_cpup((__le32 *) (srom + 34)) &
1928 			     le32_to_cpup((__le32 *) (srom + 36)));
1929 		switch(dmfe_mode) {
1930 		case 0x4: dmfe_media_mode = DMFE_100MHF; break;	/* 100MHF */
1931 		case 0x2: dmfe_media_mode = DMFE_10MFD; break;	/* 10MFD */
1932 		case 0x8: dmfe_media_mode = DMFE_100MFD; break;	/* 100MFD */
1933 		case 0x100:
1934 		case 0x200: dmfe_media_mode = DMFE_1M_HPNA; break;/* HomePNA */
1935 		}
1936 
1937 		/* Special Function setting */
1938 		/* VLAN function */
1939 		if ( (SF_mode & 0x1) || (srom[43] & 0x80) )
1940 			db->cr15_data |= 0x40;
1941 
1942 		/* Flow Control */
1943 		if ( (SF_mode & 0x2) || (srom[40] & 0x1) )
1944 			db->cr15_data |= 0x400;
1945 
1946 		/* TX pause packet */
1947 		if ( (SF_mode & 0x4) || (srom[40] & 0xe) )
1948 			db->cr15_data |= 0x9800;
1949 	}
1950 
1951 	/* Parse HPNA parameter */
1952 	db->HPNA_command = 1;
1953 
1954 	/* Accept remote command or not */
1955 	if (HPNA_rx_cmd == 0)
1956 		db->HPNA_command |= 0x8000;
1957 
1958 	 /* Issue remote command & operation mode */
1959 	if (HPNA_tx_cmd == 1)
1960 		switch(HPNA_mode) {	/* Issue Remote Command */
1961 		case 0: db->HPNA_command |= 0x0904; break;
1962 		case 1: db->HPNA_command |= 0x0a00; break;
1963 		case 2: db->HPNA_command |= 0x0506; break;
1964 		case 3: db->HPNA_command |= 0x0602; break;
1965 		}
1966 	else
1967 		switch(HPNA_mode) {	/* Don't Issue */
1968 		case 0: db->HPNA_command |= 0x0004; break;
1969 		case 1: db->HPNA_command |= 0x0000; break;
1970 		case 2: db->HPNA_command |= 0x0006; break;
1971 		case 3: db->HPNA_command |= 0x0002; break;
1972 		}
1973 
1974 	/* Check DM9801 or DM9802 present or not */
1975 	db->HPNA_present = 0;
1976 	update_cr6(db->cr6_data | 0x40000, db->ioaddr);
1977 	tmp_reg = dmfe_phy_read(db->ioaddr, db->phy_addr, 3, db->chip_id);
1978 	if ( ( tmp_reg & 0xfff0 ) == 0xb900 ) {
1979 		/* DM9801 or DM9802 present */
1980 		db->HPNA_timer = 8;
1981 		if ( dmfe_phy_read(db->ioaddr, db->phy_addr, 31, db->chip_id) == 0x4404) {
1982 			/* DM9801 HomeRun */
1983 			db->HPNA_present = 1;
1984 			dmfe_program_DM9801(db, tmp_reg);
1985 		} else {
1986 			/* DM9802 LongRun */
1987 			db->HPNA_present = 2;
1988 			dmfe_program_DM9802(db);
1989 		}
1990 	}
1991 
1992 }
1993 
1994 
1995 /*
1996  *	Init HomeRun DM9801
1997  */
1998 
1999 static void dmfe_program_DM9801(struct dmfe_board_info * db, int HPNA_rev)
2000 {
2001 	uint reg17, reg25;
2002 
2003 	if ( !HPNA_NoiseFloor ) HPNA_NoiseFloor = DM9801_NOISE_FLOOR;
2004 	switch(HPNA_rev) {
2005 	case 0xb900: /* DM9801 E3 */
2006 		db->HPNA_command |= 0x1000;
2007 		reg25 = dmfe_phy_read(db->ioaddr, db->phy_addr, 24, db->chip_id);
2008 		reg25 = ( (reg25 + HPNA_NoiseFloor) & 0xff) | 0xf000;
2009 		reg17 = dmfe_phy_read(db->ioaddr, db->phy_addr, 17, db->chip_id);
2010 		break;
2011 	case 0xb901: /* DM9801 E4 */
2012 		reg25 = dmfe_phy_read(db->ioaddr, db->phy_addr, 25, db->chip_id);
2013 		reg25 = (reg25 & 0xff00) + HPNA_NoiseFloor;
2014 		reg17 = dmfe_phy_read(db->ioaddr, db->phy_addr, 17, db->chip_id);
2015 		reg17 = (reg17 & 0xfff0) + HPNA_NoiseFloor + 3;
2016 		break;
2017 	case 0xb902: /* DM9801 E5 */
2018 	case 0xb903: /* DM9801 E6 */
2019 	default:
2020 		db->HPNA_command |= 0x1000;
2021 		reg25 = dmfe_phy_read(db->ioaddr, db->phy_addr, 25, db->chip_id);
2022 		reg25 = (reg25 & 0xff00) + HPNA_NoiseFloor - 5;
2023 		reg17 = dmfe_phy_read(db->ioaddr, db->phy_addr, 17, db->chip_id);
2024 		reg17 = (reg17 & 0xfff0) + HPNA_NoiseFloor;
2025 		break;
2026 	}
2027 	dmfe_phy_write(db->ioaddr, db->phy_addr, 16, db->HPNA_command, db->chip_id);
2028 	dmfe_phy_write(db->ioaddr, db->phy_addr, 17, reg17, db->chip_id);
2029 	dmfe_phy_write(db->ioaddr, db->phy_addr, 25, reg25, db->chip_id);
2030 }
2031 
2032 
2033 /*
2034  *	Init HomeRun DM9802
2035  */
2036 
2037 static void dmfe_program_DM9802(struct dmfe_board_info * db)
2038 {
2039 	uint phy_reg;
2040 
2041 	if ( !HPNA_NoiseFloor ) HPNA_NoiseFloor = DM9802_NOISE_FLOOR;
2042 	dmfe_phy_write(db->ioaddr, db->phy_addr, 16, db->HPNA_command, db->chip_id);
2043 	phy_reg = dmfe_phy_read(db->ioaddr, db->phy_addr, 25, db->chip_id);
2044 	phy_reg = ( phy_reg & 0xff00) + HPNA_NoiseFloor;
2045 	dmfe_phy_write(db->ioaddr, db->phy_addr, 25, phy_reg, db->chip_id);
2046 }
2047 
2048 
2049 /*
2050  *	Check remote HPNA power and speed status. If not correct,
2051  *	issue command again.
2052 */
2053 
2054 static void dmfe_HPNA_remote_cmd_chk(struct dmfe_board_info * db)
2055 {
2056 	uint phy_reg;
2057 
2058 	/* Got remote device status */
2059 	phy_reg = dmfe_phy_read(db->ioaddr, db->phy_addr, 17, db->chip_id) & 0x60;
2060 	switch(phy_reg) {
2061 	case 0x00: phy_reg = 0x0a00;break; /* LP/LS */
2062 	case 0x20: phy_reg = 0x0900;break; /* LP/HS */
2063 	case 0x40: phy_reg = 0x0600;break; /* HP/LS */
2064 	case 0x60: phy_reg = 0x0500;break; /* HP/HS */
2065 	}
2066 
2067 	/* Check remote device status match our setting ot not */
2068 	if ( phy_reg != (db->HPNA_command & 0x0f00) ) {
2069 		dmfe_phy_write(db->ioaddr, db->phy_addr, 16, db->HPNA_command,
2070 			       db->chip_id);
2071 		db->HPNA_timer=8;
2072 	} else
2073 		db->HPNA_timer=600;	/* Match, every 10 minutes, check */
2074 }
2075 
2076 
2077 
2078 static const struct pci_device_id dmfe_pci_tbl[] = {
2079 	{ 0x1282, 0x9132, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PCI_DM9132_ID },
2080 	{ 0x1282, 0x9102, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PCI_DM9102_ID },
2081 	{ 0x1282, 0x9100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PCI_DM9100_ID },
2082 	{ 0x1282, 0x9009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PCI_DM9009_ID },
2083 	{ 0, }
2084 };
2085 MODULE_DEVICE_TABLE(pci, dmfe_pci_tbl);
2086 
2087 static int __maybe_unused dmfe_suspend(struct device *dev_d)
2088 {
2089 	struct net_device *dev = dev_get_drvdata(dev_d);
2090 	struct dmfe_board_info *db = netdev_priv(dev);
2091 	void __iomem *ioaddr = db->ioaddr;
2092 
2093 	/* Disable upper layer interface */
2094 	netif_device_detach(dev);
2095 
2096 	/* Disable Tx/Rx */
2097 	db->cr6_data &= ~(CR6_RXSC | CR6_TXSC);
2098 	update_cr6(db->cr6_data, ioaddr);
2099 
2100 	/* Disable Interrupt */
2101 	dw32(DCR7, 0);
2102 	dw32(DCR5, dr32(DCR5));
2103 
2104 	/* Fre RX buffers */
2105 	dmfe_free_rxbuffer(db);
2106 
2107 	/* Enable WOL */
2108 	device_wakeup_enable(dev_d);
2109 
2110 	return 0;
2111 }
2112 
2113 static int __maybe_unused dmfe_resume(struct device *dev_d)
2114 {
2115 	struct net_device *dev = dev_get_drvdata(dev_d);
2116 
2117 	/* Re-initialize DM910X board */
2118 	dmfe_init_dm910x(dev);
2119 
2120 	/* Disable WOL */
2121 	device_wakeup_disable(dev_d);
2122 
2123 	/* Restart upper layer interface */
2124 	netif_device_attach(dev);
2125 
2126 	return 0;
2127 }
2128 
2129 static SIMPLE_DEV_PM_OPS(dmfe_pm_ops, dmfe_suspend, dmfe_resume);
2130 
2131 static struct pci_driver dmfe_driver = {
2132 	.name		= "dmfe",
2133 	.id_table	= dmfe_pci_tbl,
2134 	.probe		= dmfe_init_one,
2135 	.remove		= dmfe_remove_one,
2136 	.driver.pm	= &dmfe_pm_ops,
2137 };
2138 
2139 MODULE_AUTHOR("Sten Wang, sten_wang@davicom.com.tw");
2140 MODULE_DESCRIPTION("Davicom DM910X fast ethernet driver");
2141 MODULE_LICENSE("GPL");
2142 
2143 module_param(debug, int, 0);
2144 module_param(mode, byte, 0);
2145 module_param(cr6set, int, 0);
2146 module_param(chkmode, byte, 0);
2147 module_param(HPNA_mode, byte, 0);
2148 module_param(HPNA_rx_cmd, byte, 0);
2149 module_param(HPNA_tx_cmd, byte, 0);
2150 module_param(HPNA_NoiseFloor, byte, 0);
2151 module_param(SF_mode, byte, 0);
2152 MODULE_PARM_DESC(debug, "Davicom DM9xxx enable debugging (0-1)");
2153 MODULE_PARM_DESC(mode, "Davicom DM9xxx: "
2154 		"Bit 0: 10/100Mbps, bit 2: duplex, bit 8: HomePNA");
2155 
2156 MODULE_PARM_DESC(SF_mode, "Davicom DM9xxx special function "
2157 		"(bit 0: VLAN, bit 1 Flow Control, bit 2: TX pause packet)");
2158 
2159 /*	Description:
2160  *	when user used insmod to add module, system invoked init_module()
2161  *	to initialize and register.
2162  */
2163 
2164 static int __init dmfe_init_module(void)
2165 {
2166 	int rc;
2167 
2168 	DMFE_DBUG(0, "init_module() ", debug);
2169 
2170 	if (debug)
2171 		dmfe_debug = debug;	/* set debug flag */
2172 	if (cr6set)
2173 		dmfe_cr6_user_set = cr6set;
2174 
2175 	switch (mode) {
2176 	case DMFE_10MHF:
2177 	case DMFE_100MHF:
2178 	case DMFE_10MFD:
2179 	case DMFE_100MFD:
2180 	case DMFE_1M_HPNA:
2181 		dmfe_media_mode = mode;
2182 		break;
2183 	default:
2184 		dmfe_media_mode = DMFE_AUTO;
2185 		break;
2186 	}
2187 
2188 	if (HPNA_mode > 4)
2189 		HPNA_mode = 0;		/* Default: LP/HS */
2190 	if (HPNA_rx_cmd > 1)
2191 		HPNA_rx_cmd = 0;	/* Default: Ignored remote cmd */
2192 	if (HPNA_tx_cmd > 1)
2193 		HPNA_tx_cmd = 0;	/* Default: Don't issue remote cmd */
2194 	if (HPNA_NoiseFloor > 15)
2195 		HPNA_NoiseFloor = 0;
2196 
2197 	rc = pci_register_driver(&dmfe_driver);
2198 	if (rc < 0)
2199 		return rc;
2200 
2201 	return 0;
2202 }
2203 
2204 
2205 /*
2206  *	Description:
2207  *	when user used rmmod to delete module, system invoked clean_module()
2208  *	to un-register all registered services.
2209  */
2210 
2211 static void __exit dmfe_cleanup_module(void)
2212 {
2213 	DMFE_DBUG(0, "dmfe_cleanup_module() ", debug);
2214 	pci_unregister_driver(&dmfe_driver);
2215 }
2216 
2217 module_init(dmfe_init_module);
2218 module_exit(dmfe_cleanup_module);
2219