1 /* de2104x.c: A Linux PCI Ethernet driver for Intel/Digital 21040/1 chips. */ 2 /* 3 Copyright 2001,2003 Jeff Garzik <jgarzik@pobox.com> 4 5 Copyright 1994, 1995 Digital Equipment Corporation. [de4x5.c] 6 Written/copyright 1994-2001 by Donald Becker. [tulip.c] 7 8 This software may be used and distributed according to the terms of 9 the GNU General Public License (GPL), incorporated herein by reference. 10 Drivers based on or derived from this code fall under the GPL and must 11 retain the authorship, copyright and license notice. This file is not 12 a complete program and may only be used when the entire operating 13 system is licensed under the GPL. 14 15 See the file COPYING in this distribution for more information. 16 17 TODO, in rough priority order: 18 * Support forcing media type with a module parameter, 19 like dl2k.c/sundance.c 20 * Constants (module parms?) for Rx work limit 21 * Complete reset on PciErr 22 * Jumbo frames / dev->change_mtu 23 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error 24 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error 25 * Implement Tx software interrupt mitigation via 26 Tx descriptor bit 27 28 */ 29 30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 31 32 #define DRV_NAME "de2104x" 33 #define DRV_VERSION "0.7" 34 #define DRV_RELDATE "Mar 17, 2004" 35 36 #include <linux/module.h> 37 #include <linux/kernel.h> 38 #include <linux/netdevice.h> 39 #include <linux/etherdevice.h> 40 #include <linux/init.h> 41 #include <linux/interrupt.h> 42 #include <linux/pci.h> 43 #include <linux/delay.h> 44 #include <linux/ethtool.h> 45 #include <linux/compiler.h> 46 #include <linux/rtnetlink.h> 47 #include <linux/crc32.h> 48 #include <linux/slab.h> 49 50 #include <asm/io.h> 51 #include <asm/irq.h> 52 #include <asm/uaccess.h> 53 #include <asm/unaligned.h> 54 55 /* These identify the driver base version and may not be removed. */ 56 static char version[] = 57 "PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")"; 58 59 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>"); 60 MODULE_DESCRIPTION("Intel/Digital 21040/1 series PCI Ethernet driver"); 61 MODULE_LICENSE("GPL"); 62 MODULE_VERSION(DRV_VERSION); 63 64 static int debug = -1; 65 module_param (debug, int, 0); 66 MODULE_PARM_DESC (debug, "de2104x bitmapped message enable number"); 67 68 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */ 69 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \ 70 defined(CONFIG_SPARC) || defined(__ia64__) || \ 71 defined(__sh__) || defined(__mips__) 72 static int rx_copybreak = 1518; 73 #else 74 static int rx_copybreak = 100; 75 #endif 76 module_param (rx_copybreak, int, 0); 77 MODULE_PARM_DESC (rx_copybreak, "de2104x Breakpoint at which Rx packets are copied"); 78 79 #define DE_DEF_MSG_ENABLE (NETIF_MSG_DRV | \ 80 NETIF_MSG_PROBE | \ 81 NETIF_MSG_LINK | \ 82 NETIF_MSG_IFDOWN | \ 83 NETIF_MSG_IFUP | \ 84 NETIF_MSG_RX_ERR | \ 85 NETIF_MSG_TX_ERR) 86 87 /* Descriptor skip length in 32 bit longwords. */ 88 #ifndef CONFIG_DE2104X_DSL 89 #define DSL 0 90 #else 91 #define DSL CONFIG_DE2104X_DSL 92 #endif 93 94 #define DE_RX_RING_SIZE 64 95 #define DE_TX_RING_SIZE 64 96 #define DE_RING_BYTES \ 97 ((sizeof(struct de_desc) * DE_RX_RING_SIZE) + \ 98 (sizeof(struct de_desc) * DE_TX_RING_SIZE)) 99 #define NEXT_TX(N) (((N) + 1) & (DE_TX_RING_SIZE - 1)) 100 #define NEXT_RX(N) (((N) + 1) & (DE_RX_RING_SIZE - 1)) 101 #define TX_BUFFS_AVAIL(CP) \ 102 (((CP)->tx_tail <= (CP)->tx_head) ? \ 103 (CP)->tx_tail + (DE_TX_RING_SIZE - 1) - (CP)->tx_head : \ 104 (CP)->tx_tail - (CP)->tx_head - 1) 105 106 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ 107 #define RX_OFFSET 2 108 109 #define DE_SETUP_SKB ((struct sk_buff *) 1) 110 #define DE_DUMMY_SKB ((struct sk_buff *) 2) 111 #define DE_SETUP_FRAME_WORDS 96 112 #define DE_EEPROM_WORDS 256 113 #define DE_EEPROM_SIZE (DE_EEPROM_WORDS * sizeof(u16)) 114 #define DE_MAX_MEDIA 5 115 116 #define DE_MEDIA_TP_AUTO 0 117 #define DE_MEDIA_BNC 1 118 #define DE_MEDIA_AUI 2 119 #define DE_MEDIA_TP 3 120 #define DE_MEDIA_TP_FD 4 121 #define DE_MEDIA_INVALID DE_MAX_MEDIA 122 #define DE_MEDIA_FIRST 0 123 #define DE_MEDIA_LAST (DE_MAX_MEDIA - 1) 124 #define DE_AUI_BNC (SUPPORTED_AUI | SUPPORTED_BNC) 125 126 #define DE_TIMER_LINK (60 * HZ) 127 #define DE_TIMER_NO_LINK (5 * HZ) 128 129 #define DE_NUM_REGS 16 130 #define DE_REGS_SIZE (DE_NUM_REGS * sizeof(u32)) 131 #define DE_REGS_VER 1 132 133 /* Time in jiffies before concluding the transmitter is hung. */ 134 #define TX_TIMEOUT (6*HZ) 135 136 /* This is a mysterious value that can be written to CSR11 in the 21040 (only) 137 to support a pre-NWay full-duplex signaling mechanism using short frames. 138 No one knows what it should be, but if left at its default value some 139 10base2(!) packets trigger a full-duplex-request interrupt. */ 140 #define FULL_DUPLEX_MAGIC 0x6969 141 142 enum { 143 /* NIC registers */ 144 BusMode = 0x00, 145 TxPoll = 0x08, 146 RxPoll = 0x10, 147 RxRingAddr = 0x18, 148 TxRingAddr = 0x20, 149 MacStatus = 0x28, 150 MacMode = 0x30, 151 IntrMask = 0x38, 152 RxMissed = 0x40, 153 ROMCmd = 0x48, 154 CSR11 = 0x58, 155 SIAStatus = 0x60, 156 CSR13 = 0x68, 157 CSR14 = 0x70, 158 CSR15 = 0x78, 159 PCIPM = 0x40, 160 161 /* BusMode bits */ 162 CmdReset = (1 << 0), 163 CacheAlign16 = 0x00008000, 164 BurstLen4 = 0x00000400, 165 DescSkipLen = (DSL << 2), 166 167 /* Rx/TxPoll bits */ 168 NormalTxPoll = (1 << 0), 169 NormalRxPoll = (1 << 0), 170 171 /* Tx/Rx descriptor status bits */ 172 DescOwn = (1 << 31), 173 RxError = (1 << 15), 174 RxErrLong = (1 << 7), 175 RxErrCRC = (1 << 1), 176 RxErrFIFO = (1 << 0), 177 RxErrRunt = (1 << 11), 178 RxErrFrame = (1 << 14), 179 RingEnd = (1 << 25), 180 FirstFrag = (1 << 29), 181 LastFrag = (1 << 30), 182 TxError = (1 << 15), 183 TxFIFOUnder = (1 << 1), 184 TxLinkFail = (1 << 2) | (1 << 10) | (1 << 11), 185 TxMaxCol = (1 << 8), 186 TxOWC = (1 << 9), 187 TxJabber = (1 << 14), 188 SetupFrame = (1 << 27), 189 TxSwInt = (1 << 31), 190 191 /* MacStatus bits */ 192 IntrOK = (1 << 16), 193 IntrErr = (1 << 15), 194 RxIntr = (1 << 6), 195 RxEmpty = (1 << 7), 196 TxIntr = (1 << 0), 197 TxEmpty = (1 << 2), 198 PciErr = (1 << 13), 199 TxState = (1 << 22) | (1 << 21) | (1 << 20), 200 RxState = (1 << 19) | (1 << 18) | (1 << 17), 201 LinkFail = (1 << 12), 202 LinkPass = (1 << 4), 203 RxStopped = (1 << 8), 204 TxStopped = (1 << 1), 205 206 /* MacMode bits */ 207 TxEnable = (1 << 13), 208 RxEnable = (1 << 1), 209 RxTx = TxEnable | RxEnable, 210 FullDuplex = (1 << 9), 211 AcceptAllMulticast = (1 << 7), 212 AcceptAllPhys = (1 << 6), 213 BOCnt = (1 << 5), 214 MacModeClear = (1<<12) | (1<<11) | (1<<10) | (1<<8) | (1<<3) | 215 RxTx | BOCnt | AcceptAllPhys | AcceptAllMulticast, 216 217 /* ROMCmd bits */ 218 EE_SHIFT_CLK = 0x02, /* EEPROM shift clock. */ 219 EE_CS = 0x01, /* EEPROM chip select. */ 220 EE_DATA_WRITE = 0x04, /* Data from the Tulip to EEPROM. */ 221 EE_WRITE_0 = 0x01, 222 EE_WRITE_1 = 0x05, 223 EE_DATA_READ = 0x08, /* Data from the EEPROM chip. */ 224 EE_ENB = (0x4800 | EE_CS), 225 226 /* The EEPROM commands include the alway-set leading bit. */ 227 EE_READ_CMD = 6, 228 229 /* RxMissed bits */ 230 RxMissedOver = (1 << 16), 231 RxMissedMask = 0xffff, 232 233 /* SROM-related bits */ 234 SROMC0InfoLeaf = 27, 235 MediaBlockMask = 0x3f, 236 MediaCustomCSRs = (1 << 6), 237 238 /* PCIPM bits */ 239 PM_Sleep = (1 << 31), 240 PM_Snooze = (1 << 30), 241 PM_Mask = PM_Sleep | PM_Snooze, 242 243 /* SIAStatus bits */ 244 NWayState = (1 << 14) | (1 << 13) | (1 << 12), 245 NWayRestart = (1 << 12), 246 NonselPortActive = (1 << 9), 247 SelPortActive = (1 << 8), 248 LinkFailStatus = (1 << 2), 249 NetCxnErr = (1 << 1), 250 }; 251 252 static const u32 de_intr_mask = 253 IntrOK | IntrErr | RxIntr | RxEmpty | TxIntr | TxEmpty | 254 LinkPass | LinkFail | PciErr; 255 256 /* 257 * Set the programmable burst length to 4 longwords for all: 258 * DMA errors result without these values. Cache align 16 long. 259 */ 260 static const u32 de_bus_mode = CacheAlign16 | BurstLen4 | DescSkipLen; 261 262 struct de_srom_media_block { 263 u8 opts; 264 u16 csr13; 265 u16 csr14; 266 u16 csr15; 267 } __packed; 268 269 struct de_srom_info_leaf { 270 u16 default_media; 271 u8 n_blocks; 272 u8 unused; 273 } __packed; 274 275 struct de_desc { 276 __le32 opts1; 277 __le32 opts2; 278 __le32 addr1; 279 __le32 addr2; 280 #if DSL 281 __le32 skip[DSL]; 282 #endif 283 }; 284 285 struct media_info { 286 u16 type; /* DE_MEDIA_xxx */ 287 u16 csr13; 288 u16 csr14; 289 u16 csr15; 290 }; 291 292 struct ring_info { 293 struct sk_buff *skb; 294 dma_addr_t mapping; 295 }; 296 297 struct de_private { 298 unsigned tx_head; 299 unsigned tx_tail; 300 unsigned rx_tail; 301 302 void __iomem *regs; 303 struct net_device *dev; 304 spinlock_t lock; 305 306 struct de_desc *rx_ring; 307 struct de_desc *tx_ring; 308 struct ring_info tx_skb[DE_TX_RING_SIZE]; 309 struct ring_info rx_skb[DE_RX_RING_SIZE]; 310 unsigned rx_buf_sz; 311 dma_addr_t ring_dma; 312 313 u32 msg_enable; 314 315 struct net_device_stats net_stats; 316 317 struct pci_dev *pdev; 318 319 u16 setup_frame[DE_SETUP_FRAME_WORDS]; 320 321 u32 media_type; 322 u32 media_supported; 323 u32 media_advertise; 324 struct media_info media[DE_MAX_MEDIA]; 325 struct timer_list media_timer; 326 327 u8 *ee_data; 328 unsigned board_idx; 329 unsigned de21040 : 1; 330 unsigned media_lock : 1; 331 }; 332 333 334 static void de_set_rx_mode (struct net_device *dev); 335 static void de_tx (struct de_private *de); 336 static void de_clean_rings (struct de_private *de); 337 static void de_media_interrupt (struct de_private *de, u32 status); 338 static void de21040_media_timer (unsigned long data); 339 static void de21041_media_timer (unsigned long data); 340 static unsigned int de_ok_to_advertise (struct de_private *de, u32 new_media); 341 342 343 static DEFINE_PCI_DEVICE_TABLE(de_pci_tbl) = { 344 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP, 345 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, 346 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS, 347 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 }, 348 { }, 349 }; 350 MODULE_DEVICE_TABLE(pci, de_pci_tbl); 351 352 static const char * const media_name[DE_MAX_MEDIA] = { 353 "10baseT auto", 354 "BNC", 355 "AUI", 356 "10baseT-HD", 357 "10baseT-FD" 358 }; 359 360 /* 21040 transceiver register settings: 361 * TP AUTO(unused), BNC(unused), AUI, TP, TP FD*/ 362 static u16 t21040_csr13[] = { 0, 0, 0x8F09, 0x8F01, 0x8F01, }; 363 static u16 t21040_csr14[] = { 0, 0, 0x0705, 0xFFFF, 0xFFFD, }; 364 static u16 t21040_csr15[] = { 0, 0, 0x0006, 0x0000, 0x0000, }; 365 366 /* 21041 transceiver register settings: TP AUTO, BNC, AUI, TP, TP FD*/ 367 static u16 t21041_csr13[] = { 0xEF01, 0xEF09, 0xEF09, 0xEF01, 0xEF09, }; 368 static u16 t21041_csr14[] = { 0xFFFF, 0xF7FD, 0xF7FD, 0x7F3F, 0x7F3D, }; 369 /* If on-chip autonegotiation is broken, use half-duplex (FF3F) instead */ 370 static u16 t21041_csr14_brk[] = { 0xFF3F, 0xF7FD, 0xF7FD, 0x7F3F, 0x7F3D, }; 371 static u16 t21041_csr15[] = { 0x0008, 0x0006, 0x000E, 0x0008, 0x0008, }; 372 373 374 #define dr32(reg) ioread32(de->regs + (reg)) 375 #define dw32(reg, val) iowrite32((val), de->regs + (reg)) 376 377 378 static void de_rx_err_acct (struct de_private *de, unsigned rx_tail, 379 u32 status, u32 len) 380 { 381 netif_dbg(de, rx_err, de->dev, 382 "rx err, slot %d status 0x%x len %d\n", 383 rx_tail, status, len); 384 385 if ((status & 0x38000300) != 0x0300) { 386 /* Ingore earlier buffers. */ 387 if ((status & 0xffff) != 0x7fff) { 388 netif_warn(de, rx_err, de->dev, 389 "Oversized Ethernet frame spanned multiple buffers, status %08x!\n", 390 status); 391 de->net_stats.rx_length_errors++; 392 } 393 } else if (status & RxError) { 394 /* There was a fatal error. */ 395 de->net_stats.rx_errors++; /* end of a packet.*/ 396 if (status & 0x0890) de->net_stats.rx_length_errors++; 397 if (status & RxErrCRC) de->net_stats.rx_crc_errors++; 398 if (status & RxErrFIFO) de->net_stats.rx_fifo_errors++; 399 } 400 } 401 402 static void de_rx (struct de_private *de) 403 { 404 unsigned rx_tail = de->rx_tail; 405 unsigned rx_work = DE_RX_RING_SIZE; 406 unsigned drop = 0; 407 int rc; 408 409 while (--rx_work) { 410 u32 status, len; 411 dma_addr_t mapping; 412 struct sk_buff *skb, *copy_skb; 413 unsigned copying_skb, buflen; 414 415 skb = de->rx_skb[rx_tail].skb; 416 BUG_ON(!skb); 417 rmb(); 418 status = le32_to_cpu(de->rx_ring[rx_tail].opts1); 419 if (status & DescOwn) 420 break; 421 422 len = ((status >> 16) & 0x7ff) - 4; 423 mapping = de->rx_skb[rx_tail].mapping; 424 425 if (unlikely(drop)) { 426 de->net_stats.rx_dropped++; 427 goto rx_next; 428 } 429 430 if (unlikely((status & 0x38008300) != 0x0300)) { 431 de_rx_err_acct(de, rx_tail, status, len); 432 goto rx_next; 433 } 434 435 copying_skb = (len <= rx_copybreak); 436 437 netif_dbg(de, rx_status, de->dev, 438 "rx slot %d status 0x%x len %d copying? %d\n", 439 rx_tail, status, len, copying_skb); 440 441 buflen = copying_skb ? (len + RX_OFFSET) : de->rx_buf_sz; 442 copy_skb = dev_alloc_skb (buflen); 443 if (unlikely(!copy_skb)) { 444 de->net_stats.rx_dropped++; 445 drop = 1; 446 rx_work = 100; 447 goto rx_next; 448 } 449 450 if (!copying_skb) { 451 pci_unmap_single(de->pdev, mapping, 452 buflen, PCI_DMA_FROMDEVICE); 453 skb_put(skb, len); 454 455 mapping = 456 de->rx_skb[rx_tail].mapping = 457 pci_map_single(de->pdev, copy_skb->data, 458 buflen, PCI_DMA_FROMDEVICE); 459 de->rx_skb[rx_tail].skb = copy_skb; 460 } else { 461 pci_dma_sync_single_for_cpu(de->pdev, mapping, len, PCI_DMA_FROMDEVICE); 462 skb_reserve(copy_skb, RX_OFFSET); 463 skb_copy_from_linear_data(skb, skb_put(copy_skb, len), 464 len); 465 pci_dma_sync_single_for_device(de->pdev, mapping, len, PCI_DMA_FROMDEVICE); 466 467 /* We'll reuse the original ring buffer. */ 468 skb = copy_skb; 469 } 470 471 skb->protocol = eth_type_trans (skb, de->dev); 472 473 de->net_stats.rx_packets++; 474 de->net_stats.rx_bytes += skb->len; 475 rc = netif_rx (skb); 476 if (rc == NET_RX_DROP) 477 drop = 1; 478 479 rx_next: 480 if (rx_tail == (DE_RX_RING_SIZE - 1)) 481 de->rx_ring[rx_tail].opts2 = 482 cpu_to_le32(RingEnd | de->rx_buf_sz); 483 else 484 de->rx_ring[rx_tail].opts2 = cpu_to_le32(de->rx_buf_sz); 485 de->rx_ring[rx_tail].addr1 = cpu_to_le32(mapping); 486 wmb(); 487 de->rx_ring[rx_tail].opts1 = cpu_to_le32(DescOwn); 488 rx_tail = NEXT_RX(rx_tail); 489 } 490 491 if (!rx_work) 492 netdev_warn(de->dev, "rx work limit reached\n"); 493 494 de->rx_tail = rx_tail; 495 } 496 497 static irqreturn_t de_interrupt (int irq, void *dev_instance) 498 { 499 struct net_device *dev = dev_instance; 500 struct de_private *de = netdev_priv(dev); 501 u32 status; 502 503 status = dr32(MacStatus); 504 if ((!(status & (IntrOK|IntrErr))) || (status == 0xFFFF)) 505 return IRQ_NONE; 506 507 netif_dbg(de, intr, dev, "intr, status %08x mode %08x desc %u/%u/%u\n", 508 status, dr32(MacMode), 509 de->rx_tail, de->tx_head, de->tx_tail); 510 511 dw32(MacStatus, status); 512 513 if (status & (RxIntr | RxEmpty)) { 514 de_rx(de); 515 if (status & RxEmpty) 516 dw32(RxPoll, NormalRxPoll); 517 } 518 519 spin_lock(&de->lock); 520 521 if (status & (TxIntr | TxEmpty)) 522 de_tx(de); 523 524 if (status & (LinkPass | LinkFail)) 525 de_media_interrupt(de, status); 526 527 spin_unlock(&de->lock); 528 529 if (status & PciErr) { 530 u16 pci_status; 531 532 pci_read_config_word(de->pdev, PCI_STATUS, &pci_status); 533 pci_write_config_word(de->pdev, PCI_STATUS, pci_status); 534 netdev_err(de->dev, 535 "PCI bus error, status=%08x, PCI status=%04x\n", 536 status, pci_status); 537 } 538 539 return IRQ_HANDLED; 540 } 541 542 static void de_tx (struct de_private *de) 543 { 544 unsigned tx_head = de->tx_head; 545 unsigned tx_tail = de->tx_tail; 546 547 while (tx_tail != tx_head) { 548 struct sk_buff *skb; 549 u32 status; 550 551 rmb(); 552 status = le32_to_cpu(de->tx_ring[tx_tail].opts1); 553 if (status & DescOwn) 554 break; 555 556 skb = de->tx_skb[tx_tail].skb; 557 BUG_ON(!skb); 558 if (unlikely(skb == DE_DUMMY_SKB)) 559 goto next; 560 561 if (unlikely(skb == DE_SETUP_SKB)) { 562 pci_unmap_single(de->pdev, de->tx_skb[tx_tail].mapping, 563 sizeof(de->setup_frame), PCI_DMA_TODEVICE); 564 goto next; 565 } 566 567 pci_unmap_single(de->pdev, de->tx_skb[tx_tail].mapping, 568 skb->len, PCI_DMA_TODEVICE); 569 570 if (status & LastFrag) { 571 if (status & TxError) { 572 netif_dbg(de, tx_err, de->dev, 573 "tx err, status 0x%x\n", 574 status); 575 de->net_stats.tx_errors++; 576 if (status & TxOWC) 577 de->net_stats.tx_window_errors++; 578 if (status & TxMaxCol) 579 de->net_stats.tx_aborted_errors++; 580 if (status & TxLinkFail) 581 de->net_stats.tx_carrier_errors++; 582 if (status & TxFIFOUnder) 583 de->net_stats.tx_fifo_errors++; 584 } else { 585 de->net_stats.tx_packets++; 586 de->net_stats.tx_bytes += skb->len; 587 netif_dbg(de, tx_done, de->dev, 588 "tx done, slot %d\n", tx_tail); 589 } 590 dev_kfree_skb_irq(skb); 591 } 592 593 next: 594 de->tx_skb[tx_tail].skb = NULL; 595 596 tx_tail = NEXT_TX(tx_tail); 597 } 598 599 de->tx_tail = tx_tail; 600 601 if (netif_queue_stopped(de->dev) && (TX_BUFFS_AVAIL(de) > (DE_TX_RING_SIZE / 4))) 602 netif_wake_queue(de->dev); 603 } 604 605 static netdev_tx_t de_start_xmit (struct sk_buff *skb, 606 struct net_device *dev) 607 { 608 struct de_private *de = netdev_priv(dev); 609 unsigned int entry, tx_free; 610 u32 mapping, len, flags = FirstFrag | LastFrag; 611 struct de_desc *txd; 612 613 spin_lock_irq(&de->lock); 614 615 tx_free = TX_BUFFS_AVAIL(de); 616 if (tx_free == 0) { 617 netif_stop_queue(dev); 618 spin_unlock_irq(&de->lock); 619 return NETDEV_TX_BUSY; 620 } 621 tx_free--; 622 623 entry = de->tx_head; 624 625 txd = &de->tx_ring[entry]; 626 627 len = skb->len; 628 mapping = pci_map_single(de->pdev, skb->data, len, PCI_DMA_TODEVICE); 629 if (entry == (DE_TX_RING_SIZE - 1)) 630 flags |= RingEnd; 631 if (!tx_free || (tx_free == (DE_TX_RING_SIZE / 2))) 632 flags |= TxSwInt; 633 flags |= len; 634 txd->opts2 = cpu_to_le32(flags); 635 txd->addr1 = cpu_to_le32(mapping); 636 637 de->tx_skb[entry].skb = skb; 638 de->tx_skb[entry].mapping = mapping; 639 wmb(); 640 641 txd->opts1 = cpu_to_le32(DescOwn); 642 wmb(); 643 644 de->tx_head = NEXT_TX(entry); 645 netif_dbg(de, tx_queued, dev, "tx queued, slot %d, skblen %d\n", 646 entry, skb->len); 647 648 if (tx_free == 0) 649 netif_stop_queue(dev); 650 651 spin_unlock_irq(&de->lock); 652 653 /* Trigger an immediate transmit demand. */ 654 dw32(TxPoll, NormalTxPoll); 655 656 return NETDEV_TX_OK; 657 } 658 659 /* Set or clear the multicast filter for this adaptor. 660 Note that we only use exclusion around actually queueing the 661 new frame, not around filling de->setup_frame. This is non-deterministic 662 when re-entered but still correct. */ 663 664 #undef set_bit_le 665 #define set_bit_le(i,p) do { ((char *)(p))[(i)/8] |= (1<<((i)%8)); } while(0) 666 667 static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev) 668 { 669 struct de_private *de = netdev_priv(dev); 670 u16 hash_table[32]; 671 struct netdev_hw_addr *ha; 672 int i; 673 u16 *eaddrs; 674 675 memset(hash_table, 0, sizeof(hash_table)); 676 set_bit_le(255, hash_table); /* Broadcast entry */ 677 /* This should work on big-endian machines as well. */ 678 netdev_for_each_mc_addr(ha, dev) { 679 int index = ether_crc_le(ETH_ALEN, ha->addr) & 0x1ff; 680 681 set_bit_le(index, hash_table); 682 } 683 684 for (i = 0; i < 32; i++) { 685 *setup_frm++ = hash_table[i]; 686 *setup_frm++ = hash_table[i]; 687 } 688 setup_frm = &de->setup_frame[13*6]; 689 690 /* Fill the final entry with our physical address. */ 691 eaddrs = (u16 *)dev->dev_addr; 692 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0]; 693 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1]; 694 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2]; 695 } 696 697 static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev) 698 { 699 struct de_private *de = netdev_priv(dev); 700 struct netdev_hw_addr *ha; 701 u16 *eaddrs; 702 703 /* We have <= 14 addresses so we can use the wonderful 704 16 address perfect filtering of the Tulip. */ 705 netdev_for_each_mc_addr(ha, dev) { 706 eaddrs = (u16 *) ha->addr; 707 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++; 708 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++; 709 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++; 710 } 711 /* Fill the unused entries with the broadcast address. */ 712 memset(setup_frm, 0xff, (15 - netdev_mc_count(dev)) * 12); 713 setup_frm = &de->setup_frame[15*6]; 714 715 /* Fill the final entry with our physical address. */ 716 eaddrs = (u16 *)dev->dev_addr; 717 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0]; 718 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1]; 719 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2]; 720 } 721 722 723 static void __de_set_rx_mode (struct net_device *dev) 724 { 725 struct de_private *de = netdev_priv(dev); 726 u32 macmode; 727 unsigned int entry; 728 u32 mapping; 729 struct de_desc *txd; 730 struct de_desc *dummy_txd = NULL; 731 732 macmode = dr32(MacMode) & ~(AcceptAllMulticast | AcceptAllPhys); 733 734 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 735 macmode |= AcceptAllMulticast | AcceptAllPhys; 736 goto out; 737 } 738 739 if ((netdev_mc_count(dev) > 1000) || (dev->flags & IFF_ALLMULTI)) { 740 /* Too many to filter well -- accept all multicasts. */ 741 macmode |= AcceptAllMulticast; 742 goto out; 743 } 744 745 /* Note that only the low-address shortword of setup_frame is valid! 746 The values are doubled for big-endian architectures. */ 747 if (netdev_mc_count(dev) > 14) /* Must use a multicast hash table. */ 748 build_setup_frame_hash (de->setup_frame, dev); 749 else 750 build_setup_frame_perfect (de->setup_frame, dev); 751 752 /* 753 * Now add this frame to the Tx list. 754 */ 755 756 entry = de->tx_head; 757 758 /* Avoid a chip errata by prefixing a dummy entry. */ 759 if (entry != 0) { 760 de->tx_skb[entry].skb = DE_DUMMY_SKB; 761 762 dummy_txd = &de->tx_ring[entry]; 763 dummy_txd->opts2 = (entry == (DE_TX_RING_SIZE - 1)) ? 764 cpu_to_le32(RingEnd) : 0; 765 dummy_txd->addr1 = 0; 766 767 /* Must set DescOwned later to avoid race with chip */ 768 769 entry = NEXT_TX(entry); 770 } 771 772 de->tx_skb[entry].skb = DE_SETUP_SKB; 773 de->tx_skb[entry].mapping = mapping = 774 pci_map_single (de->pdev, de->setup_frame, 775 sizeof (de->setup_frame), PCI_DMA_TODEVICE); 776 777 /* Put the setup frame on the Tx list. */ 778 txd = &de->tx_ring[entry]; 779 if (entry == (DE_TX_RING_SIZE - 1)) 780 txd->opts2 = cpu_to_le32(SetupFrame | RingEnd | sizeof (de->setup_frame)); 781 else 782 txd->opts2 = cpu_to_le32(SetupFrame | sizeof (de->setup_frame)); 783 txd->addr1 = cpu_to_le32(mapping); 784 wmb(); 785 786 txd->opts1 = cpu_to_le32(DescOwn); 787 wmb(); 788 789 if (dummy_txd) { 790 dummy_txd->opts1 = cpu_to_le32(DescOwn); 791 wmb(); 792 } 793 794 de->tx_head = NEXT_TX(entry); 795 796 if (TX_BUFFS_AVAIL(de) == 0) 797 netif_stop_queue(dev); 798 799 /* Trigger an immediate transmit demand. */ 800 dw32(TxPoll, NormalTxPoll); 801 802 out: 803 if (macmode != dr32(MacMode)) 804 dw32(MacMode, macmode); 805 } 806 807 static void de_set_rx_mode (struct net_device *dev) 808 { 809 unsigned long flags; 810 struct de_private *de = netdev_priv(dev); 811 812 spin_lock_irqsave (&de->lock, flags); 813 __de_set_rx_mode(dev); 814 spin_unlock_irqrestore (&de->lock, flags); 815 } 816 817 static inline void de_rx_missed(struct de_private *de, u32 rx_missed) 818 { 819 if (unlikely(rx_missed & RxMissedOver)) 820 de->net_stats.rx_missed_errors += RxMissedMask; 821 else 822 de->net_stats.rx_missed_errors += (rx_missed & RxMissedMask); 823 } 824 825 static void __de_get_stats(struct de_private *de) 826 { 827 u32 tmp = dr32(RxMissed); /* self-clearing */ 828 829 de_rx_missed(de, tmp); 830 } 831 832 static struct net_device_stats *de_get_stats(struct net_device *dev) 833 { 834 struct de_private *de = netdev_priv(dev); 835 836 /* The chip only need report frame silently dropped. */ 837 spin_lock_irq(&de->lock); 838 if (netif_running(dev) && netif_device_present(dev)) 839 __de_get_stats(de); 840 spin_unlock_irq(&de->lock); 841 842 return &de->net_stats; 843 } 844 845 static inline int de_is_running (struct de_private *de) 846 { 847 return (dr32(MacStatus) & (RxState | TxState)) ? 1 : 0; 848 } 849 850 static void de_stop_rxtx (struct de_private *de) 851 { 852 u32 macmode; 853 unsigned int i = 1300/100; 854 855 macmode = dr32(MacMode); 856 if (macmode & RxTx) { 857 dw32(MacMode, macmode & ~RxTx); 858 dr32(MacMode); 859 } 860 861 /* wait until in-flight frame completes. 862 * Max time @ 10BT: 1500*8b/10Mbps == 1200us (+ 100us margin) 863 * Typically expect this loop to end in < 50 us on 100BT. 864 */ 865 while (--i) { 866 if (!de_is_running(de)) 867 return; 868 udelay(100); 869 } 870 871 netdev_warn(de->dev, "timeout expired, stopping DMA\n"); 872 } 873 874 static inline void de_start_rxtx (struct de_private *de) 875 { 876 u32 macmode; 877 878 macmode = dr32(MacMode); 879 if ((macmode & RxTx) != RxTx) { 880 dw32(MacMode, macmode | RxTx); 881 dr32(MacMode); 882 } 883 } 884 885 static void de_stop_hw (struct de_private *de) 886 { 887 888 udelay(5); 889 dw32(IntrMask, 0); 890 891 de_stop_rxtx(de); 892 893 dw32(MacStatus, dr32(MacStatus)); 894 895 udelay(10); 896 897 de->rx_tail = 0; 898 de->tx_head = de->tx_tail = 0; 899 } 900 901 static void de_link_up(struct de_private *de) 902 { 903 if (!netif_carrier_ok(de->dev)) { 904 netif_carrier_on(de->dev); 905 netif_info(de, link, de->dev, "link up, media %s\n", 906 media_name[de->media_type]); 907 } 908 } 909 910 static void de_link_down(struct de_private *de) 911 { 912 if (netif_carrier_ok(de->dev)) { 913 netif_carrier_off(de->dev); 914 netif_info(de, link, de->dev, "link down\n"); 915 } 916 } 917 918 static void de_set_media (struct de_private *de) 919 { 920 unsigned media = de->media_type; 921 u32 macmode = dr32(MacMode); 922 923 if (de_is_running(de)) 924 netdev_warn(de->dev, "chip is running while changing media!\n"); 925 926 if (de->de21040) 927 dw32(CSR11, FULL_DUPLEX_MAGIC); 928 dw32(CSR13, 0); /* Reset phy */ 929 dw32(CSR14, de->media[media].csr14); 930 dw32(CSR15, de->media[media].csr15); 931 dw32(CSR13, de->media[media].csr13); 932 933 /* must delay 10ms before writing to other registers, 934 * especially CSR6 935 */ 936 mdelay(10); 937 938 if (media == DE_MEDIA_TP_FD) 939 macmode |= FullDuplex; 940 else 941 macmode &= ~FullDuplex; 942 943 netif_info(de, link, de->dev, "set link %s\n", media_name[media]); 944 netif_info(de, hw, de->dev, "mode 0x%x, sia 0x%x,0x%x,0x%x,0x%x\n", 945 dr32(MacMode), dr32(SIAStatus), 946 dr32(CSR13), dr32(CSR14), dr32(CSR15)); 947 netif_info(de, hw, de->dev, "set mode 0x%x, set sia 0x%x,0x%x,0x%x\n", 948 macmode, de->media[media].csr13, 949 de->media[media].csr14, de->media[media].csr15); 950 if (macmode != dr32(MacMode)) 951 dw32(MacMode, macmode); 952 } 953 954 static void de_next_media (struct de_private *de, const u32 *media, 955 unsigned int n_media) 956 { 957 unsigned int i; 958 959 for (i = 0; i < n_media; i++) { 960 if (de_ok_to_advertise(de, media[i])) { 961 de->media_type = media[i]; 962 return; 963 } 964 } 965 } 966 967 static void de21040_media_timer (unsigned long data) 968 { 969 struct de_private *de = (struct de_private *) data; 970 struct net_device *dev = de->dev; 971 u32 status = dr32(SIAStatus); 972 unsigned int carrier; 973 unsigned long flags; 974 975 carrier = (status & NetCxnErr) ? 0 : 1; 976 977 if (carrier) { 978 if (de->media_type != DE_MEDIA_AUI && (status & LinkFailStatus)) 979 goto no_link_yet; 980 981 de->media_timer.expires = jiffies + DE_TIMER_LINK; 982 add_timer(&de->media_timer); 983 if (!netif_carrier_ok(dev)) 984 de_link_up(de); 985 else 986 netif_info(de, timer, dev, "%s link ok, status %x\n", 987 media_name[de->media_type], status); 988 return; 989 } 990 991 de_link_down(de); 992 993 if (de->media_lock) 994 return; 995 996 if (de->media_type == DE_MEDIA_AUI) { 997 static const u32 next_state = DE_MEDIA_TP; 998 de_next_media(de, &next_state, 1); 999 } else { 1000 static const u32 next_state = DE_MEDIA_AUI; 1001 de_next_media(de, &next_state, 1); 1002 } 1003 1004 spin_lock_irqsave(&de->lock, flags); 1005 de_stop_rxtx(de); 1006 spin_unlock_irqrestore(&de->lock, flags); 1007 de_set_media(de); 1008 de_start_rxtx(de); 1009 1010 no_link_yet: 1011 de->media_timer.expires = jiffies + DE_TIMER_NO_LINK; 1012 add_timer(&de->media_timer); 1013 1014 netif_info(de, timer, dev, "no link, trying media %s, status %x\n", 1015 media_name[de->media_type], status); 1016 } 1017 1018 static unsigned int de_ok_to_advertise (struct de_private *de, u32 new_media) 1019 { 1020 switch (new_media) { 1021 case DE_MEDIA_TP_AUTO: 1022 if (!(de->media_advertise & ADVERTISED_Autoneg)) 1023 return 0; 1024 if (!(de->media_advertise & (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full))) 1025 return 0; 1026 break; 1027 case DE_MEDIA_BNC: 1028 if (!(de->media_advertise & ADVERTISED_BNC)) 1029 return 0; 1030 break; 1031 case DE_MEDIA_AUI: 1032 if (!(de->media_advertise & ADVERTISED_AUI)) 1033 return 0; 1034 break; 1035 case DE_MEDIA_TP: 1036 if (!(de->media_advertise & ADVERTISED_10baseT_Half)) 1037 return 0; 1038 break; 1039 case DE_MEDIA_TP_FD: 1040 if (!(de->media_advertise & ADVERTISED_10baseT_Full)) 1041 return 0; 1042 break; 1043 } 1044 1045 return 1; 1046 } 1047 1048 static void de21041_media_timer (unsigned long data) 1049 { 1050 struct de_private *de = (struct de_private *) data; 1051 struct net_device *dev = de->dev; 1052 u32 status = dr32(SIAStatus); 1053 unsigned int carrier; 1054 unsigned long flags; 1055 1056 /* clear port active bits */ 1057 dw32(SIAStatus, NonselPortActive | SelPortActive); 1058 1059 carrier = (status & NetCxnErr) ? 0 : 1; 1060 1061 if (carrier) { 1062 if ((de->media_type == DE_MEDIA_TP_AUTO || 1063 de->media_type == DE_MEDIA_TP || 1064 de->media_type == DE_MEDIA_TP_FD) && 1065 (status & LinkFailStatus)) 1066 goto no_link_yet; 1067 1068 de->media_timer.expires = jiffies + DE_TIMER_LINK; 1069 add_timer(&de->media_timer); 1070 if (!netif_carrier_ok(dev)) 1071 de_link_up(de); 1072 else 1073 netif_info(de, timer, dev, 1074 "%s link ok, mode %x status %x\n", 1075 media_name[de->media_type], 1076 dr32(MacMode), status); 1077 return; 1078 } 1079 1080 de_link_down(de); 1081 1082 /* if media type locked, don't switch media */ 1083 if (de->media_lock) 1084 goto set_media; 1085 1086 /* if activity detected, use that as hint for new media type */ 1087 if (status & NonselPortActive) { 1088 unsigned int have_media = 1; 1089 1090 /* if AUI/BNC selected, then activity is on TP port */ 1091 if (de->media_type == DE_MEDIA_AUI || 1092 de->media_type == DE_MEDIA_BNC) { 1093 if (de_ok_to_advertise(de, DE_MEDIA_TP_AUTO)) 1094 de->media_type = DE_MEDIA_TP_AUTO; 1095 else 1096 have_media = 0; 1097 } 1098 1099 /* TP selected. If there is only TP and BNC, then it's BNC */ 1100 else if (((de->media_supported & DE_AUI_BNC) == SUPPORTED_BNC) && 1101 de_ok_to_advertise(de, DE_MEDIA_BNC)) 1102 de->media_type = DE_MEDIA_BNC; 1103 1104 /* TP selected. If there is only TP and AUI, then it's AUI */ 1105 else if (((de->media_supported & DE_AUI_BNC) == SUPPORTED_AUI) && 1106 de_ok_to_advertise(de, DE_MEDIA_AUI)) 1107 de->media_type = DE_MEDIA_AUI; 1108 1109 /* otherwise, ignore the hint */ 1110 else 1111 have_media = 0; 1112 1113 if (have_media) 1114 goto set_media; 1115 } 1116 1117 /* 1118 * Absent or ambiguous activity hint, move to next advertised 1119 * media state. If de->media_type is left unchanged, this 1120 * simply resets the PHY and reloads the current media settings. 1121 */ 1122 if (de->media_type == DE_MEDIA_AUI) { 1123 static const u32 next_states[] = { 1124 DE_MEDIA_BNC, DE_MEDIA_TP_AUTO 1125 }; 1126 de_next_media(de, next_states, ARRAY_SIZE(next_states)); 1127 } else if (de->media_type == DE_MEDIA_BNC) { 1128 static const u32 next_states[] = { 1129 DE_MEDIA_TP_AUTO, DE_MEDIA_AUI 1130 }; 1131 de_next_media(de, next_states, ARRAY_SIZE(next_states)); 1132 } else { 1133 static const u32 next_states[] = { 1134 DE_MEDIA_AUI, DE_MEDIA_BNC, DE_MEDIA_TP_AUTO 1135 }; 1136 de_next_media(de, next_states, ARRAY_SIZE(next_states)); 1137 } 1138 1139 set_media: 1140 spin_lock_irqsave(&de->lock, flags); 1141 de_stop_rxtx(de); 1142 spin_unlock_irqrestore(&de->lock, flags); 1143 de_set_media(de); 1144 de_start_rxtx(de); 1145 1146 no_link_yet: 1147 de->media_timer.expires = jiffies + DE_TIMER_NO_LINK; 1148 add_timer(&de->media_timer); 1149 1150 netif_info(de, timer, dev, "no link, trying media %s, status %x\n", 1151 media_name[de->media_type], status); 1152 } 1153 1154 static void de_media_interrupt (struct de_private *de, u32 status) 1155 { 1156 if (status & LinkPass) { 1157 /* Ignore if current media is AUI or BNC and we can't use TP */ 1158 if ((de->media_type == DE_MEDIA_AUI || 1159 de->media_type == DE_MEDIA_BNC) && 1160 (de->media_lock || 1161 !de_ok_to_advertise(de, DE_MEDIA_TP_AUTO))) 1162 return; 1163 /* If current media is not TP, change it to TP */ 1164 if ((de->media_type == DE_MEDIA_AUI || 1165 de->media_type == DE_MEDIA_BNC)) { 1166 de->media_type = DE_MEDIA_TP_AUTO; 1167 de_stop_rxtx(de); 1168 de_set_media(de); 1169 de_start_rxtx(de); 1170 } 1171 de_link_up(de); 1172 mod_timer(&de->media_timer, jiffies + DE_TIMER_LINK); 1173 return; 1174 } 1175 1176 BUG_ON(!(status & LinkFail)); 1177 /* Mark the link as down only if current media is TP */ 1178 if (netif_carrier_ok(de->dev) && de->media_type != DE_MEDIA_AUI && 1179 de->media_type != DE_MEDIA_BNC) { 1180 de_link_down(de); 1181 mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK); 1182 } 1183 } 1184 1185 static int de_reset_mac (struct de_private *de) 1186 { 1187 u32 status, tmp; 1188 1189 /* 1190 * Reset MAC. de4x5.c and tulip.c examined for "advice" 1191 * in this area. 1192 */ 1193 1194 if (dr32(BusMode) == 0xffffffff) 1195 return -EBUSY; 1196 1197 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */ 1198 dw32 (BusMode, CmdReset); 1199 mdelay (1); 1200 1201 dw32 (BusMode, de_bus_mode); 1202 mdelay (1); 1203 1204 for (tmp = 0; tmp < 5; tmp++) { 1205 dr32 (BusMode); 1206 mdelay (1); 1207 } 1208 1209 mdelay (1); 1210 1211 status = dr32(MacStatus); 1212 if (status & (RxState | TxState)) 1213 return -EBUSY; 1214 if (status == 0xffffffff) 1215 return -ENODEV; 1216 return 0; 1217 } 1218 1219 static void de_adapter_wake (struct de_private *de) 1220 { 1221 u32 pmctl; 1222 1223 if (de->de21040) 1224 return; 1225 1226 pci_read_config_dword(de->pdev, PCIPM, &pmctl); 1227 if (pmctl & PM_Mask) { 1228 pmctl &= ~PM_Mask; 1229 pci_write_config_dword(de->pdev, PCIPM, pmctl); 1230 1231 /* de4x5.c delays, so we do too */ 1232 msleep(10); 1233 } 1234 } 1235 1236 static void de_adapter_sleep (struct de_private *de) 1237 { 1238 u32 pmctl; 1239 1240 if (de->de21040) 1241 return; 1242 1243 dw32(CSR13, 0); /* Reset phy */ 1244 pci_read_config_dword(de->pdev, PCIPM, &pmctl); 1245 pmctl |= PM_Sleep; 1246 pci_write_config_dword(de->pdev, PCIPM, pmctl); 1247 } 1248 1249 static int de_init_hw (struct de_private *de) 1250 { 1251 struct net_device *dev = de->dev; 1252 u32 macmode; 1253 int rc; 1254 1255 de_adapter_wake(de); 1256 1257 macmode = dr32(MacMode) & ~MacModeClear; 1258 1259 rc = de_reset_mac(de); 1260 if (rc) 1261 return rc; 1262 1263 de_set_media(de); /* reset phy */ 1264 1265 dw32(RxRingAddr, de->ring_dma); 1266 dw32(TxRingAddr, de->ring_dma + (sizeof(struct de_desc) * DE_RX_RING_SIZE)); 1267 1268 dw32(MacMode, RxTx | macmode); 1269 1270 dr32(RxMissed); /* self-clearing */ 1271 1272 dw32(IntrMask, de_intr_mask); 1273 1274 de_set_rx_mode(dev); 1275 1276 return 0; 1277 } 1278 1279 static int de_refill_rx (struct de_private *de) 1280 { 1281 unsigned i; 1282 1283 for (i = 0; i < DE_RX_RING_SIZE; i++) { 1284 struct sk_buff *skb; 1285 1286 skb = dev_alloc_skb(de->rx_buf_sz); 1287 if (!skb) 1288 goto err_out; 1289 1290 skb->dev = de->dev; 1291 1292 de->rx_skb[i].mapping = pci_map_single(de->pdev, 1293 skb->data, de->rx_buf_sz, PCI_DMA_FROMDEVICE); 1294 de->rx_skb[i].skb = skb; 1295 1296 de->rx_ring[i].opts1 = cpu_to_le32(DescOwn); 1297 if (i == (DE_RX_RING_SIZE - 1)) 1298 de->rx_ring[i].opts2 = 1299 cpu_to_le32(RingEnd | de->rx_buf_sz); 1300 else 1301 de->rx_ring[i].opts2 = cpu_to_le32(de->rx_buf_sz); 1302 de->rx_ring[i].addr1 = cpu_to_le32(de->rx_skb[i].mapping); 1303 de->rx_ring[i].addr2 = 0; 1304 } 1305 1306 return 0; 1307 1308 err_out: 1309 de_clean_rings(de); 1310 return -ENOMEM; 1311 } 1312 1313 static int de_init_rings (struct de_private *de) 1314 { 1315 memset(de->tx_ring, 0, sizeof(struct de_desc) * DE_TX_RING_SIZE); 1316 de->tx_ring[DE_TX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd); 1317 1318 de->rx_tail = 0; 1319 de->tx_head = de->tx_tail = 0; 1320 1321 return de_refill_rx (de); 1322 } 1323 1324 static int de_alloc_rings (struct de_private *de) 1325 { 1326 de->rx_ring = pci_alloc_consistent(de->pdev, DE_RING_BYTES, &de->ring_dma); 1327 if (!de->rx_ring) 1328 return -ENOMEM; 1329 de->tx_ring = &de->rx_ring[DE_RX_RING_SIZE]; 1330 return de_init_rings(de); 1331 } 1332 1333 static void de_clean_rings (struct de_private *de) 1334 { 1335 unsigned i; 1336 1337 memset(de->rx_ring, 0, sizeof(struct de_desc) * DE_RX_RING_SIZE); 1338 de->rx_ring[DE_RX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd); 1339 wmb(); 1340 memset(de->tx_ring, 0, sizeof(struct de_desc) * DE_TX_RING_SIZE); 1341 de->tx_ring[DE_TX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd); 1342 wmb(); 1343 1344 for (i = 0; i < DE_RX_RING_SIZE; i++) { 1345 if (de->rx_skb[i].skb) { 1346 pci_unmap_single(de->pdev, de->rx_skb[i].mapping, 1347 de->rx_buf_sz, PCI_DMA_FROMDEVICE); 1348 dev_kfree_skb(de->rx_skb[i].skb); 1349 } 1350 } 1351 1352 for (i = 0; i < DE_TX_RING_SIZE; i++) { 1353 struct sk_buff *skb = de->tx_skb[i].skb; 1354 if ((skb) && (skb != DE_DUMMY_SKB)) { 1355 if (skb != DE_SETUP_SKB) { 1356 de->net_stats.tx_dropped++; 1357 pci_unmap_single(de->pdev, 1358 de->tx_skb[i].mapping, 1359 skb->len, PCI_DMA_TODEVICE); 1360 dev_kfree_skb(skb); 1361 } else { 1362 pci_unmap_single(de->pdev, 1363 de->tx_skb[i].mapping, 1364 sizeof(de->setup_frame), 1365 PCI_DMA_TODEVICE); 1366 } 1367 } 1368 } 1369 1370 memset(&de->rx_skb, 0, sizeof(struct ring_info) * DE_RX_RING_SIZE); 1371 memset(&de->tx_skb, 0, sizeof(struct ring_info) * DE_TX_RING_SIZE); 1372 } 1373 1374 static void de_free_rings (struct de_private *de) 1375 { 1376 de_clean_rings(de); 1377 pci_free_consistent(de->pdev, DE_RING_BYTES, de->rx_ring, de->ring_dma); 1378 de->rx_ring = NULL; 1379 de->tx_ring = NULL; 1380 } 1381 1382 static int de_open (struct net_device *dev) 1383 { 1384 struct de_private *de = netdev_priv(dev); 1385 int rc; 1386 1387 netif_dbg(de, ifup, dev, "enabling interface\n"); 1388 1389 de->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32); 1390 1391 rc = de_alloc_rings(de); 1392 if (rc) { 1393 netdev_err(dev, "ring allocation failure, err=%d\n", rc); 1394 return rc; 1395 } 1396 1397 dw32(IntrMask, 0); 1398 1399 rc = request_irq(dev->irq, de_interrupt, IRQF_SHARED, dev->name, dev); 1400 if (rc) { 1401 netdev_err(dev, "IRQ %d request failure, err=%d\n", 1402 dev->irq, rc); 1403 goto err_out_free; 1404 } 1405 1406 rc = de_init_hw(de); 1407 if (rc) { 1408 netdev_err(dev, "h/w init failure, err=%d\n", rc); 1409 goto err_out_free_irq; 1410 } 1411 1412 netif_start_queue(dev); 1413 mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK); 1414 1415 return 0; 1416 1417 err_out_free_irq: 1418 free_irq(dev->irq, dev); 1419 err_out_free: 1420 de_free_rings(de); 1421 return rc; 1422 } 1423 1424 static int de_close (struct net_device *dev) 1425 { 1426 struct de_private *de = netdev_priv(dev); 1427 unsigned long flags; 1428 1429 netif_dbg(de, ifdown, dev, "disabling interface\n"); 1430 1431 del_timer_sync(&de->media_timer); 1432 1433 spin_lock_irqsave(&de->lock, flags); 1434 de_stop_hw(de); 1435 netif_stop_queue(dev); 1436 netif_carrier_off(dev); 1437 spin_unlock_irqrestore(&de->lock, flags); 1438 1439 free_irq(dev->irq, dev); 1440 1441 de_free_rings(de); 1442 de_adapter_sleep(de); 1443 return 0; 1444 } 1445 1446 static void de_tx_timeout (struct net_device *dev) 1447 { 1448 struct de_private *de = netdev_priv(dev); 1449 1450 netdev_dbg(dev, "NIC status %08x mode %08x sia %08x desc %u/%u/%u\n", 1451 dr32(MacStatus), dr32(MacMode), dr32(SIAStatus), 1452 de->rx_tail, de->tx_head, de->tx_tail); 1453 1454 del_timer_sync(&de->media_timer); 1455 1456 disable_irq(dev->irq); 1457 spin_lock_irq(&de->lock); 1458 1459 de_stop_hw(de); 1460 netif_stop_queue(dev); 1461 netif_carrier_off(dev); 1462 1463 spin_unlock_irq(&de->lock); 1464 enable_irq(dev->irq); 1465 1466 /* Update the error counts. */ 1467 __de_get_stats(de); 1468 1469 synchronize_irq(dev->irq); 1470 de_clean_rings(de); 1471 1472 de_init_rings(de); 1473 1474 de_init_hw(de); 1475 1476 netif_wake_queue(dev); 1477 } 1478 1479 static void __de_get_regs(struct de_private *de, u8 *buf) 1480 { 1481 int i; 1482 u32 *rbuf = (u32 *)buf; 1483 1484 /* read all CSRs */ 1485 for (i = 0; i < DE_NUM_REGS; i++) 1486 rbuf[i] = dr32(i * 8); 1487 1488 /* handle self-clearing RxMissed counter, CSR8 */ 1489 de_rx_missed(de, rbuf[8]); 1490 } 1491 1492 static int __de_get_settings(struct de_private *de, struct ethtool_cmd *ecmd) 1493 { 1494 ecmd->supported = de->media_supported; 1495 ecmd->transceiver = XCVR_INTERNAL; 1496 ecmd->phy_address = 0; 1497 ecmd->advertising = de->media_advertise; 1498 1499 switch (de->media_type) { 1500 case DE_MEDIA_AUI: 1501 ecmd->port = PORT_AUI; 1502 break; 1503 case DE_MEDIA_BNC: 1504 ecmd->port = PORT_BNC; 1505 break; 1506 default: 1507 ecmd->port = PORT_TP; 1508 break; 1509 } 1510 1511 ethtool_cmd_speed_set(ecmd, 10); 1512 1513 if (dr32(MacMode) & FullDuplex) 1514 ecmd->duplex = DUPLEX_FULL; 1515 else 1516 ecmd->duplex = DUPLEX_HALF; 1517 1518 if (de->media_lock) 1519 ecmd->autoneg = AUTONEG_DISABLE; 1520 else 1521 ecmd->autoneg = AUTONEG_ENABLE; 1522 1523 /* ignore maxtxpkt, maxrxpkt for now */ 1524 1525 return 0; 1526 } 1527 1528 static int __de_set_settings(struct de_private *de, struct ethtool_cmd *ecmd) 1529 { 1530 u32 new_media; 1531 unsigned int media_lock; 1532 1533 if (ethtool_cmd_speed(ecmd) != 10) 1534 return -EINVAL; 1535 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL) 1536 return -EINVAL; 1537 if (ecmd->port != PORT_TP && ecmd->port != PORT_AUI && ecmd->port != PORT_BNC) 1538 return -EINVAL; 1539 if (de->de21040 && ecmd->port == PORT_BNC) 1540 return -EINVAL; 1541 if (ecmd->transceiver != XCVR_INTERNAL) 1542 return -EINVAL; 1543 if (ecmd->autoneg != AUTONEG_DISABLE && ecmd->autoneg != AUTONEG_ENABLE) 1544 return -EINVAL; 1545 if (ecmd->advertising & ~de->media_supported) 1546 return -EINVAL; 1547 if (ecmd->autoneg == AUTONEG_ENABLE && 1548 (!(ecmd->advertising & ADVERTISED_Autoneg))) 1549 return -EINVAL; 1550 1551 switch (ecmd->port) { 1552 case PORT_AUI: 1553 new_media = DE_MEDIA_AUI; 1554 if (!(ecmd->advertising & ADVERTISED_AUI)) 1555 return -EINVAL; 1556 break; 1557 case PORT_BNC: 1558 new_media = DE_MEDIA_BNC; 1559 if (!(ecmd->advertising & ADVERTISED_BNC)) 1560 return -EINVAL; 1561 break; 1562 default: 1563 if (ecmd->autoneg == AUTONEG_ENABLE) 1564 new_media = DE_MEDIA_TP_AUTO; 1565 else if (ecmd->duplex == DUPLEX_FULL) 1566 new_media = DE_MEDIA_TP_FD; 1567 else 1568 new_media = DE_MEDIA_TP; 1569 if (!(ecmd->advertising & ADVERTISED_TP)) 1570 return -EINVAL; 1571 if (!(ecmd->advertising & (ADVERTISED_10baseT_Full | ADVERTISED_10baseT_Half))) 1572 return -EINVAL; 1573 break; 1574 } 1575 1576 media_lock = (ecmd->autoneg == AUTONEG_ENABLE) ? 0 : 1; 1577 1578 if ((new_media == de->media_type) && 1579 (media_lock == de->media_lock) && 1580 (ecmd->advertising == de->media_advertise)) 1581 return 0; /* nothing to change */ 1582 1583 de_link_down(de); 1584 mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK); 1585 de_stop_rxtx(de); 1586 1587 de->media_type = new_media; 1588 de->media_lock = media_lock; 1589 de->media_advertise = ecmd->advertising; 1590 de_set_media(de); 1591 if (netif_running(de->dev)) 1592 de_start_rxtx(de); 1593 1594 return 0; 1595 } 1596 1597 static void de_get_drvinfo (struct net_device *dev,struct ethtool_drvinfo *info) 1598 { 1599 struct de_private *de = netdev_priv(dev); 1600 1601 strcpy (info->driver, DRV_NAME); 1602 strcpy (info->version, DRV_VERSION); 1603 strcpy (info->bus_info, pci_name(de->pdev)); 1604 info->eedump_len = DE_EEPROM_SIZE; 1605 } 1606 1607 static int de_get_regs_len(struct net_device *dev) 1608 { 1609 return DE_REGS_SIZE; 1610 } 1611 1612 static int de_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) 1613 { 1614 struct de_private *de = netdev_priv(dev); 1615 int rc; 1616 1617 spin_lock_irq(&de->lock); 1618 rc = __de_get_settings(de, ecmd); 1619 spin_unlock_irq(&de->lock); 1620 1621 return rc; 1622 } 1623 1624 static int de_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) 1625 { 1626 struct de_private *de = netdev_priv(dev); 1627 int rc; 1628 1629 spin_lock_irq(&de->lock); 1630 rc = __de_set_settings(de, ecmd); 1631 spin_unlock_irq(&de->lock); 1632 1633 return rc; 1634 } 1635 1636 static u32 de_get_msglevel(struct net_device *dev) 1637 { 1638 struct de_private *de = netdev_priv(dev); 1639 1640 return de->msg_enable; 1641 } 1642 1643 static void de_set_msglevel(struct net_device *dev, u32 msglvl) 1644 { 1645 struct de_private *de = netdev_priv(dev); 1646 1647 de->msg_enable = msglvl; 1648 } 1649 1650 static int de_get_eeprom(struct net_device *dev, 1651 struct ethtool_eeprom *eeprom, u8 *data) 1652 { 1653 struct de_private *de = netdev_priv(dev); 1654 1655 if (!de->ee_data) 1656 return -EOPNOTSUPP; 1657 if ((eeprom->offset != 0) || (eeprom->magic != 0) || 1658 (eeprom->len != DE_EEPROM_SIZE)) 1659 return -EINVAL; 1660 memcpy(data, de->ee_data, eeprom->len); 1661 1662 return 0; 1663 } 1664 1665 static int de_nway_reset(struct net_device *dev) 1666 { 1667 struct de_private *de = netdev_priv(dev); 1668 u32 status; 1669 1670 if (de->media_type != DE_MEDIA_TP_AUTO) 1671 return -EINVAL; 1672 if (netif_carrier_ok(de->dev)) 1673 de_link_down(de); 1674 1675 status = dr32(SIAStatus); 1676 dw32(SIAStatus, (status & ~NWayState) | NWayRestart); 1677 netif_info(de, link, dev, "link nway restart, status %x,%x\n", 1678 status, dr32(SIAStatus)); 1679 return 0; 1680 } 1681 1682 static void de_get_regs(struct net_device *dev, struct ethtool_regs *regs, 1683 void *data) 1684 { 1685 struct de_private *de = netdev_priv(dev); 1686 1687 regs->version = (DE_REGS_VER << 2) | de->de21040; 1688 1689 spin_lock_irq(&de->lock); 1690 __de_get_regs(de, data); 1691 spin_unlock_irq(&de->lock); 1692 } 1693 1694 static const struct ethtool_ops de_ethtool_ops = { 1695 .get_link = ethtool_op_get_link, 1696 .get_drvinfo = de_get_drvinfo, 1697 .get_regs_len = de_get_regs_len, 1698 .get_settings = de_get_settings, 1699 .set_settings = de_set_settings, 1700 .get_msglevel = de_get_msglevel, 1701 .set_msglevel = de_set_msglevel, 1702 .get_eeprom = de_get_eeprom, 1703 .nway_reset = de_nway_reset, 1704 .get_regs = de_get_regs, 1705 }; 1706 1707 static void __devinit de21040_get_mac_address (struct de_private *de) 1708 { 1709 unsigned i; 1710 1711 dw32 (ROMCmd, 0); /* Reset the pointer with a dummy write. */ 1712 udelay(5); 1713 1714 for (i = 0; i < 6; i++) { 1715 int value, boguscnt = 100000; 1716 do { 1717 value = dr32(ROMCmd); 1718 rmb(); 1719 } while (value < 0 && --boguscnt > 0); 1720 de->dev->dev_addr[i] = value; 1721 udelay(1); 1722 if (boguscnt <= 0) 1723 pr_warn("timeout reading 21040 MAC address byte %u\n", 1724 i); 1725 } 1726 } 1727 1728 static void __devinit de21040_get_media_info(struct de_private *de) 1729 { 1730 unsigned int i; 1731 1732 de->media_type = DE_MEDIA_TP; 1733 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Full | 1734 SUPPORTED_10baseT_Half | SUPPORTED_AUI; 1735 de->media_advertise = de->media_supported; 1736 1737 for (i = 0; i < DE_MAX_MEDIA; i++) { 1738 switch (i) { 1739 case DE_MEDIA_AUI: 1740 case DE_MEDIA_TP: 1741 case DE_MEDIA_TP_FD: 1742 de->media[i].type = i; 1743 de->media[i].csr13 = t21040_csr13[i]; 1744 de->media[i].csr14 = t21040_csr14[i]; 1745 de->media[i].csr15 = t21040_csr15[i]; 1746 break; 1747 default: 1748 de->media[i].type = DE_MEDIA_INVALID; 1749 break; 1750 } 1751 } 1752 } 1753 1754 /* Note: this routine returns extra data bits for size detection. */ 1755 static unsigned __devinit tulip_read_eeprom(void __iomem *regs, int location, int addr_len) 1756 { 1757 int i; 1758 unsigned retval = 0; 1759 void __iomem *ee_addr = regs + ROMCmd; 1760 int read_cmd = location | (EE_READ_CMD << addr_len); 1761 1762 writel(EE_ENB & ~EE_CS, ee_addr); 1763 writel(EE_ENB, ee_addr); 1764 1765 /* Shift the read command bits out. */ 1766 for (i = 4 + addr_len; i >= 0; i--) { 1767 short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0; 1768 writel(EE_ENB | dataval, ee_addr); 1769 readl(ee_addr); 1770 writel(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr); 1771 readl(ee_addr); 1772 retval = (retval << 1) | ((readl(ee_addr) & EE_DATA_READ) ? 1 : 0); 1773 } 1774 writel(EE_ENB, ee_addr); 1775 readl(ee_addr); 1776 1777 for (i = 16; i > 0; i--) { 1778 writel(EE_ENB | EE_SHIFT_CLK, ee_addr); 1779 readl(ee_addr); 1780 retval = (retval << 1) | ((readl(ee_addr) & EE_DATA_READ) ? 1 : 0); 1781 writel(EE_ENB, ee_addr); 1782 readl(ee_addr); 1783 } 1784 1785 /* Terminate the EEPROM access. */ 1786 writel(EE_ENB & ~EE_CS, ee_addr); 1787 return retval; 1788 } 1789 1790 static void __devinit de21041_get_srom_info (struct de_private *de) 1791 { 1792 unsigned i, sa_offset = 0, ofs; 1793 u8 ee_data[DE_EEPROM_SIZE + 6] = {}; 1794 unsigned ee_addr_size = tulip_read_eeprom(de->regs, 0xff, 8) & 0x40000 ? 8 : 6; 1795 struct de_srom_info_leaf *il; 1796 void *bufp; 1797 1798 /* download entire eeprom */ 1799 for (i = 0; i < DE_EEPROM_WORDS; i++) 1800 ((__le16 *)ee_data)[i] = 1801 cpu_to_le16(tulip_read_eeprom(de->regs, i, ee_addr_size)); 1802 1803 /* DEC now has a specification but early board makers 1804 just put the address in the first EEPROM locations. */ 1805 /* This does memcmp(eedata, eedata+16, 8) */ 1806 1807 #ifndef CONFIG_MIPS_COBALT 1808 1809 for (i = 0; i < 8; i ++) 1810 if (ee_data[i] != ee_data[16+i]) 1811 sa_offset = 20; 1812 1813 #endif 1814 1815 /* store MAC address */ 1816 for (i = 0; i < 6; i ++) 1817 de->dev->dev_addr[i] = ee_data[i + sa_offset]; 1818 1819 /* get offset of controller 0 info leaf. ignore 2nd byte. */ 1820 ofs = ee_data[SROMC0InfoLeaf]; 1821 if (ofs >= (sizeof(ee_data) - sizeof(struct de_srom_info_leaf) - sizeof(struct de_srom_media_block))) 1822 goto bad_srom; 1823 1824 /* get pointer to info leaf */ 1825 il = (struct de_srom_info_leaf *) &ee_data[ofs]; 1826 1827 /* paranoia checks */ 1828 if (il->n_blocks == 0) 1829 goto bad_srom; 1830 if ((sizeof(ee_data) - ofs) < 1831 (sizeof(struct de_srom_info_leaf) + (sizeof(struct de_srom_media_block) * il->n_blocks))) 1832 goto bad_srom; 1833 1834 /* get default media type */ 1835 switch (get_unaligned(&il->default_media)) { 1836 case 0x0001: de->media_type = DE_MEDIA_BNC; break; 1837 case 0x0002: de->media_type = DE_MEDIA_AUI; break; 1838 case 0x0204: de->media_type = DE_MEDIA_TP_FD; break; 1839 default: de->media_type = DE_MEDIA_TP_AUTO; break; 1840 } 1841 1842 if (netif_msg_probe(de)) 1843 pr_info("de%d: SROM leaf offset %u, default media %s\n", 1844 de->board_idx, ofs, media_name[de->media_type]); 1845 1846 /* init SIA register values to defaults */ 1847 for (i = 0; i < DE_MAX_MEDIA; i++) { 1848 de->media[i].type = DE_MEDIA_INVALID; 1849 de->media[i].csr13 = 0xffff; 1850 de->media[i].csr14 = 0xffff; 1851 de->media[i].csr15 = 0xffff; 1852 } 1853 1854 /* parse media blocks to see what medias are supported, 1855 * and if any custom CSR values are provided 1856 */ 1857 bufp = ((void *)il) + sizeof(*il); 1858 for (i = 0; i < il->n_blocks; i++) { 1859 struct de_srom_media_block *ib = bufp; 1860 unsigned idx; 1861 1862 /* index based on media type in media block */ 1863 switch(ib->opts & MediaBlockMask) { 1864 case 0: /* 10baseT */ 1865 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Half 1866 | SUPPORTED_Autoneg; 1867 idx = DE_MEDIA_TP; 1868 de->media[DE_MEDIA_TP_AUTO].type = DE_MEDIA_TP_AUTO; 1869 break; 1870 case 1: /* BNC */ 1871 de->media_supported |= SUPPORTED_BNC; 1872 idx = DE_MEDIA_BNC; 1873 break; 1874 case 2: /* AUI */ 1875 de->media_supported |= SUPPORTED_AUI; 1876 idx = DE_MEDIA_AUI; 1877 break; 1878 case 4: /* 10baseT-FD */ 1879 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Full 1880 | SUPPORTED_Autoneg; 1881 idx = DE_MEDIA_TP_FD; 1882 de->media[DE_MEDIA_TP_AUTO].type = DE_MEDIA_TP_AUTO; 1883 break; 1884 default: 1885 goto bad_srom; 1886 } 1887 1888 de->media[idx].type = idx; 1889 1890 if (netif_msg_probe(de)) 1891 pr_info("de%d: media block #%u: %s", 1892 de->board_idx, i, 1893 media_name[de->media[idx].type]); 1894 1895 bufp += sizeof (ib->opts); 1896 1897 if (ib->opts & MediaCustomCSRs) { 1898 de->media[idx].csr13 = get_unaligned(&ib->csr13); 1899 de->media[idx].csr14 = get_unaligned(&ib->csr14); 1900 de->media[idx].csr15 = get_unaligned(&ib->csr15); 1901 bufp += sizeof(ib->csr13) + sizeof(ib->csr14) + 1902 sizeof(ib->csr15); 1903 1904 if (netif_msg_probe(de)) 1905 pr_cont(" (%x,%x,%x)\n", 1906 de->media[idx].csr13, 1907 de->media[idx].csr14, 1908 de->media[idx].csr15); 1909 1910 } else { 1911 if (netif_msg_probe(de)) 1912 pr_cont("\n"); 1913 } 1914 1915 if (bufp > ((void *)&ee_data[DE_EEPROM_SIZE - 3])) 1916 break; 1917 } 1918 1919 de->media_advertise = de->media_supported; 1920 1921 fill_defaults: 1922 /* fill in defaults, for cases where custom CSRs not used */ 1923 for (i = 0; i < DE_MAX_MEDIA; i++) { 1924 if (de->media[i].csr13 == 0xffff) 1925 de->media[i].csr13 = t21041_csr13[i]; 1926 if (de->media[i].csr14 == 0xffff) { 1927 /* autonegotiation is broken at least on some chip 1928 revisions - rev. 0x21 works, 0x11 does not */ 1929 if (de->pdev->revision < 0x20) 1930 de->media[i].csr14 = t21041_csr14_brk[i]; 1931 else 1932 de->media[i].csr14 = t21041_csr14[i]; 1933 } 1934 if (de->media[i].csr15 == 0xffff) 1935 de->media[i].csr15 = t21041_csr15[i]; 1936 } 1937 1938 de->ee_data = kmemdup(&ee_data[0], DE_EEPROM_SIZE, GFP_KERNEL); 1939 1940 return; 1941 1942 bad_srom: 1943 /* for error cases, it's ok to assume we support all these */ 1944 for (i = 0; i < DE_MAX_MEDIA; i++) 1945 de->media[i].type = i; 1946 de->media_supported = 1947 SUPPORTED_10baseT_Half | 1948 SUPPORTED_10baseT_Full | 1949 SUPPORTED_Autoneg | 1950 SUPPORTED_TP | 1951 SUPPORTED_AUI | 1952 SUPPORTED_BNC; 1953 goto fill_defaults; 1954 } 1955 1956 static const struct net_device_ops de_netdev_ops = { 1957 .ndo_open = de_open, 1958 .ndo_stop = de_close, 1959 .ndo_set_rx_mode = de_set_rx_mode, 1960 .ndo_start_xmit = de_start_xmit, 1961 .ndo_get_stats = de_get_stats, 1962 .ndo_tx_timeout = de_tx_timeout, 1963 .ndo_change_mtu = eth_change_mtu, 1964 .ndo_set_mac_address = eth_mac_addr, 1965 .ndo_validate_addr = eth_validate_addr, 1966 }; 1967 1968 static int __devinit de_init_one (struct pci_dev *pdev, 1969 const struct pci_device_id *ent) 1970 { 1971 struct net_device *dev; 1972 struct de_private *de; 1973 int rc; 1974 void __iomem *regs; 1975 unsigned long pciaddr; 1976 static int board_idx = -1; 1977 1978 board_idx++; 1979 1980 #ifndef MODULE 1981 if (board_idx == 0) 1982 pr_info("%s\n", version); 1983 #endif 1984 1985 /* allocate a new ethernet device structure, and fill in defaults */ 1986 dev = alloc_etherdev(sizeof(struct de_private)); 1987 if (!dev) 1988 return -ENOMEM; 1989 1990 dev->netdev_ops = &de_netdev_ops; 1991 SET_NETDEV_DEV(dev, &pdev->dev); 1992 dev->ethtool_ops = &de_ethtool_ops; 1993 dev->watchdog_timeo = TX_TIMEOUT; 1994 1995 de = netdev_priv(dev); 1996 de->de21040 = ent->driver_data == 0 ? 1 : 0; 1997 de->pdev = pdev; 1998 de->dev = dev; 1999 de->msg_enable = (debug < 0 ? DE_DEF_MSG_ENABLE : debug); 2000 de->board_idx = board_idx; 2001 spin_lock_init (&de->lock); 2002 init_timer(&de->media_timer); 2003 if (de->de21040) 2004 de->media_timer.function = de21040_media_timer; 2005 else 2006 de->media_timer.function = de21041_media_timer; 2007 de->media_timer.data = (unsigned long) de; 2008 2009 netif_carrier_off(dev); 2010 2011 /* wake up device, assign resources */ 2012 rc = pci_enable_device(pdev); 2013 if (rc) 2014 goto err_out_free; 2015 2016 /* reserve PCI resources to ensure driver atomicity */ 2017 rc = pci_request_regions(pdev, DRV_NAME); 2018 if (rc) 2019 goto err_out_disable; 2020 2021 /* check for invalid IRQ value */ 2022 if (pdev->irq < 2) { 2023 rc = -EIO; 2024 pr_err("invalid irq (%d) for pci dev %s\n", 2025 pdev->irq, pci_name(pdev)); 2026 goto err_out_res; 2027 } 2028 2029 dev->irq = pdev->irq; 2030 2031 /* obtain and check validity of PCI I/O address */ 2032 pciaddr = pci_resource_start(pdev, 1); 2033 if (!pciaddr) { 2034 rc = -EIO; 2035 pr_err("no MMIO resource for pci dev %s\n", pci_name(pdev)); 2036 goto err_out_res; 2037 } 2038 if (pci_resource_len(pdev, 1) < DE_REGS_SIZE) { 2039 rc = -EIO; 2040 pr_err("MMIO resource (%llx) too small on pci dev %s\n", 2041 (unsigned long long)pci_resource_len(pdev, 1), 2042 pci_name(pdev)); 2043 goto err_out_res; 2044 } 2045 2046 /* remap CSR registers */ 2047 regs = ioremap_nocache(pciaddr, DE_REGS_SIZE); 2048 if (!regs) { 2049 rc = -EIO; 2050 pr_err("Cannot map PCI MMIO (%llx@%lx) on pci dev %s\n", 2051 (unsigned long long)pci_resource_len(pdev, 1), 2052 pciaddr, pci_name(pdev)); 2053 goto err_out_res; 2054 } 2055 dev->base_addr = (unsigned long) regs; 2056 de->regs = regs; 2057 2058 de_adapter_wake(de); 2059 2060 /* make sure hardware is not running */ 2061 rc = de_reset_mac(de); 2062 if (rc) { 2063 pr_err("Cannot reset MAC, pci dev %s\n", pci_name(pdev)); 2064 goto err_out_iomap; 2065 } 2066 2067 /* get MAC address, initialize default media type and 2068 * get list of supported media 2069 */ 2070 if (de->de21040) { 2071 de21040_get_mac_address(de); 2072 de21040_get_media_info(de); 2073 } else { 2074 de21041_get_srom_info(de); 2075 } 2076 2077 /* register new network interface with kernel */ 2078 rc = register_netdev(dev); 2079 if (rc) 2080 goto err_out_iomap; 2081 2082 /* print info about board and interface just registered */ 2083 netdev_info(dev, "%s at 0x%lx, %pM, IRQ %d\n", 2084 de->de21040 ? "21040" : "21041", 2085 dev->base_addr, 2086 dev->dev_addr, 2087 dev->irq); 2088 2089 pci_set_drvdata(pdev, dev); 2090 2091 /* enable busmastering */ 2092 pci_set_master(pdev); 2093 2094 /* put adapter to sleep */ 2095 de_adapter_sleep(de); 2096 2097 return 0; 2098 2099 err_out_iomap: 2100 kfree(de->ee_data); 2101 iounmap(regs); 2102 err_out_res: 2103 pci_release_regions(pdev); 2104 err_out_disable: 2105 pci_disable_device(pdev); 2106 err_out_free: 2107 free_netdev(dev); 2108 return rc; 2109 } 2110 2111 static void __devexit de_remove_one (struct pci_dev *pdev) 2112 { 2113 struct net_device *dev = pci_get_drvdata(pdev); 2114 struct de_private *de = netdev_priv(dev); 2115 2116 BUG_ON(!dev); 2117 unregister_netdev(dev); 2118 kfree(de->ee_data); 2119 iounmap(de->regs); 2120 pci_release_regions(pdev); 2121 pci_disable_device(pdev); 2122 pci_set_drvdata(pdev, NULL); 2123 free_netdev(dev); 2124 } 2125 2126 #ifdef CONFIG_PM 2127 2128 static int de_suspend (struct pci_dev *pdev, pm_message_t state) 2129 { 2130 struct net_device *dev = pci_get_drvdata (pdev); 2131 struct de_private *de = netdev_priv(dev); 2132 2133 rtnl_lock(); 2134 if (netif_running (dev)) { 2135 del_timer_sync(&de->media_timer); 2136 2137 disable_irq(dev->irq); 2138 spin_lock_irq(&de->lock); 2139 2140 de_stop_hw(de); 2141 netif_stop_queue(dev); 2142 netif_device_detach(dev); 2143 netif_carrier_off(dev); 2144 2145 spin_unlock_irq(&de->lock); 2146 enable_irq(dev->irq); 2147 2148 /* Update the error counts. */ 2149 __de_get_stats(de); 2150 2151 synchronize_irq(dev->irq); 2152 de_clean_rings(de); 2153 2154 de_adapter_sleep(de); 2155 pci_disable_device(pdev); 2156 } else { 2157 netif_device_detach(dev); 2158 } 2159 rtnl_unlock(); 2160 return 0; 2161 } 2162 2163 static int de_resume (struct pci_dev *pdev) 2164 { 2165 struct net_device *dev = pci_get_drvdata (pdev); 2166 struct de_private *de = netdev_priv(dev); 2167 int retval = 0; 2168 2169 rtnl_lock(); 2170 if (netif_device_present(dev)) 2171 goto out; 2172 if (!netif_running(dev)) 2173 goto out_attach; 2174 if ((retval = pci_enable_device(pdev))) { 2175 netdev_err(dev, "pci_enable_device failed in resume\n"); 2176 goto out; 2177 } 2178 pci_set_master(pdev); 2179 de_init_rings(de); 2180 de_init_hw(de); 2181 out_attach: 2182 netif_device_attach(dev); 2183 out: 2184 rtnl_unlock(); 2185 return 0; 2186 } 2187 2188 #endif /* CONFIG_PM */ 2189 2190 static struct pci_driver de_driver = { 2191 .name = DRV_NAME, 2192 .id_table = de_pci_tbl, 2193 .probe = de_init_one, 2194 .remove = __devexit_p(de_remove_one), 2195 #ifdef CONFIG_PM 2196 .suspend = de_suspend, 2197 .resume = de_resume, 2198 #endif 2199 }; 2200 2201 static int __init de_init (void) 2202 { 2203 #ifdef MODULE 2204 pr_info("%s\n", version); 2205 #endif 2206 return pci_register_driver(&de_driver); 2207 } 2208 2209 static void __exit de_exit (void) 2210 { 2211 pci_unregister_driver (&de_driver); 2212 } 2213 2214 module_init(de_init); 2215 module_exit(de_exit); 2216