1 /* de2104x.c: A Linux PCI Ethernet driver for Intel/Digital 21040/1 chips. */ 2 /* 3 Copyright 2001,2003 Jeff Garzik <jgarzik@pobox.com> 4 5 Copyright 1994, 1995 Digital Equipment Corporation. [de4x5.c] 6 Written/copyright 1994-2001 by Donald Becker. [tulip.c] 7 8 This software may be used and distributed according to the terms of 9 the GNU General Public License (GPL), incorporated herein by reference. 10 Drivers based on or derived from this code fall under the GPL and must 11 retain the authorship, copyright and license notice. This file is not 12 a complete program and may only be used when the entire operating 13 system is licensed under the GPL. 14 15 See the file COPYING in this distribution for more information. 16 17 TODO, in rough priority order: 18 * Support forcing media type with a module parameter, 19 like dl2k.c/sundance.c 20 * Constants (module parms?) for Rx work limit 21 * Complete reset on PciErr 22 * Jumbo frames / dev->change_mtu 23 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error 24 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error 25 * Implement Tx software interrupt mitigation via 26 Tx descriptor bit 27 28 */ 29 30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 31 32 #define DRV_NAME "de2104x" 33 #define DRV_VERSION "0.7" 34 #define DRV_RELDATE "Mar 17, 2004" 35 36 #include <linux/module.h> 37 #include <linux/kernel.h> 38 #include <linux/netdevice.h> 39 #include <linux/etherdevice.h> 40 #include <linux/init.h> 41 #include <linux/interrupt.h> 42 #include <linux/pci.h> 43 #include <linux/delay.h> 44 #include <linux/ethtool.h> 45 #include <linux/compiler.h> 46 #include <linux/rtnetlink.h> 47 #include <linux/crc32.h> 48 #include <linux/slab.h> 49 50 #include <asm/io.h> 51 #include <asm/irq.h> 52 #include <asm/uaccess.h> 53 #include <asm/unaligned.h> 54 55 /* These identify the driver base version and may not be removed. */ 56 static char version[] = 57 "PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")"; 58 59 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>"); 60 MODULE_DESCRIPTION("Intel/Digital 21040/1 series PCI Ethernet driver"); 61 MODULE_LICENSE("GPL"); 62 MODULE_VERSION(DRV_VERSION); 63 64 static int debug = -1; 65 module_param (debug, int, 0); 66 MODULE_PARM_DESC (debug, "de2104x bitmapped message enable number"); 67 68 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */ 69 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \ 70 defined(CONFIG_SPARC) || defined(__ia64__) || \ 71 defined(__sh__) || defined(__mips__) 72 static int rx_copybreak = 1518; 73 #else 74 static int rx_copybreak = 100; 75 #endif 76 module_param (rx_copybreak, int, 0); 77 MODULE_PARM_DESC (rx_copybreak, "de2104x Breakpoint at which Rx packets are copied"); 78 79 #define DE_DEF_MSG_ENABLE (NETIF_MSG_DRV | \ 80 NETIF_MSG_PROBE | \ 81 NETIF_MSG_LINK | \ 82 NETIF_MSG_IFDOWN | \ 83 NETIF_MSG_IFUP | \ 84 NETIF_MSG_RX_ERR | \ 85 NETIF_MSG_TX_ERR) 86 87 /* Descriptor skip length in 32 bit longwords. */ 88 #ifndef CONFIG_DE2104X_DSL 89 #define DSL 0 90 #else 91 #define DSL CONFIG_DE2104X_DSL 92 #endif 93 94 #define DE_RX_RING_SIZE 64 95 #define DE_TX_RING_SIZE 64 96 #define DE_RING_BYTES \ 97 ((sizeof(struct de_desc) * DE_RX_RING_SIZE) + \ 98 (sizeof(struct de_desc) * DE_TX_RING_SIZE)) 99 #define NEXT_TX(N) (((N) + 1) & (DE_TX_RING_SIZE - 1)) 100 #define NEXT_RX(N) (((N) + 1) & (DE_RX_RING_SIZE - 1)) 101 #define TX_BUFFS_AVAIL(CP) \ 102 (((CP)->tx_tail <= (CP)->tx_head) ? \ 103 (CP)->tx_tail + (DE_TX_RING_SIZE - 1) - (CP)->tx_head : \ 104 (CP)->tx_tail - (CP)->tx_head - 1) 105 106 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ 107 #define RX_OFFSET 2 108 109 #define DE_SETUP_SKB ((struct sk_buff *) 1) 110 #define DE_DUMMY_SKB ((struct sk_buff *) 2) 111 #define DE_SETUP_FRAME_WORDS 96 112 #define DE_EEPROM_WORDS 256 113 #define DE_EEPROM_SIZE (DE_EEPROM_WORDS * sizeof(u16)) 114 #define DE_MAX_MEDIA 5 115 116 #define DE_MEDIA_TP_AUTO 0 117 #define DE_MEDIA_BNC 1 118 #define DE_MEDIA_AUI 2 119 #define DE_MEDIA_TP 3 120 #define DE_MEDIA_TP_FD 4 121 #define DE_MEDIA_INVALID DE_MAX_MEDIA 122 #define DE_MEDIA_FIRST 0 123 #define DE_MEDIA_LAST (DE_MAX_MEDIA - 1) 124 #define DE_AUI_BNC (SUPPORTED_AUI | SUPPORTED_BNC) 125 126 #define DE_TIMER_LINK (60 * HZ) 127 #define DE_TIMER_NO_LINK (5 * HZ) 128 129 #define DE_NUM_REGS 16 130 #define DE_REGS_SIZE (DE_NUM_REGS * sizeof(u32)) 131 #define DE_REGS_VER 1 132 133 /* Time in jiffies before concluding the transmitter is hung. */ 134 #define TX_TIMEOUT (6*HZ) 135 136 /* This is a mysterious value that can be written to CSR11 in the 21040 (only) 137 to support a pre-NWay full-duplex signaling mechanism using short frames. 138 No one knows what it should be, but if left at its default value some 139 10base2(!) packets trigger a full-duplex-request interrupt. */ 140 #define FULL_DUPLEX_MAGIC 0x6969 141 142 enum { 143 /* NIC registers */ 144 BusMode = 0x00, 145 TxPoll = 0x08, 146 RxPoll = 0x10, 147 RxRingAddr = 0x18, 148 TxRingAddr = 0x20, 149 MacStatus = 0x28, 150 MacMode = 0x30, 151 IntrMask = 0x38, 152 RxMissed = 0x40, 153 ROMCmd = 0x48, 154 CSR11 = 0x58, 155 SIAStatus = 0x60, 156 CSR13 = 0x68, 157 CSR14 = 0x70, 158 CSR15 = 0x78, 159 PCIPM = 0x40, 160 161 /* BusMode bits */ 162 CmdReset = (1 << 0), 163 CacheAlign16 = 0x00008000, 164 BurstLen4 = 0x00000400, 165 DescSkipLen = (DSL << 2), 166 167 /* Rx/TxPoll bits */ 168 NormalTxPoll = (1 << 0), 169 NormalRxPoll = (1 << 0), 170 171 /* Tx/Rx descriptor status bits */ 172 DescOwn = (1 << 31), 173 RxError = (1 << 15), 174 RxErrLong = (1 << 7), 175 RxErrCRC = (1 << 1), 176 RxErrFIFO = (1 << 0), 177 RxErrRunt = (1 << 11), 178 RxErrFrame = (1 << 14), 179 RingEnd = (1 << 25), 180 FirstFrag = (1 << 29), 181 LastFrag = (1 << 30), 182 TxError = (1 << 15), 183 TxFIFOUnder = (1 << 1), 184 TxLinkFail = (1 << 2) | (1 << 10) | (1 << 11), 185 TxMaxCol = (1 << 8), 186 TxOWC = (1 << 9), 187 TxJabber = (1 << 14), 188 SetupFrame = (1 << 27), 189 TxSwInt = (1 << 31), 190 191 /* MacStatus bits */ 192 IntrOK = (1 << 16), 193 IntrErr = (1 << 15), 194 RxIntr = (1 << 6), 195 RxEmpty = (1 << 7), 196 TxIntr = (1 << 0), 197 TxEmpty = (1 << 2), 198 PciErr = (1 << 13), 199 TxState = (1 << 22) | (1 << 21) | (1 << 20), 200 RxState = (1 << 19) | (1 << 18) | (1 << 17), 201 LinkFail = (1 << 12), 202 LinkPass = (1 << 4), 203 RxStopped = (1 << 8), 204 TxStopped = (1 << 1), 205 206 /* MacMode bits */ 207 TxEnable = (1 << 13), 208 RxEnable = (1 << 1), 209 RxTx = TxEnable | RxEnable, 210 FullDuplex = (1 << 9), 211 AcceptAllMulticast = (1 << 7), 212 AcceptAllPhys = (1 << 6), 213 BOCnt = (1 << 5), 214 MacModeClear = (1<<12) | (1<<11) | (1<<10) | (1<<8) | (1<<3) | 215 RxTx | BOCnt | AcceptAllPhys | AcceptAllMulticast, 216 217 /* ROMCmd bits */ 218 EE_SHIFT_CLK = 0x02, /* EEPROM shift clock. */ 219 EE_CS = 0x01, /* EEPROM chip select. */ 220 EE_DATA_WRITE = 0x04, /* Data from the Tulip to EEPROM. */ 221 EE_WRITE_0 = 0x01, 222 EE_WRITE_1 = 0x05, 223 EE_DATA_READ = 0x08, /* Data from the EEPROM chip. */ 224 EE_ENB = (0x4800 | EE_CS), 225 226 /* The EEPROM commands include the alway-set leading bit. */ 227 EE_READ_CMD = 6, 228 229 /* RxMissed bits */ 230 RxMissedOver = (1 << 16), 231 RxMissedMask = 0xffff, 232 233 /* SROM-related bits */ 234 SROMC0InfoLeaf = 27, 235 MediaBlockMask = 0x3f, 236 MediaCustomCSRs = (1 << 6), 237 238 /* PCIPM bits */ 239 PM_Sleep = (1 << 31), 240 PM_Snooze = (1 << 30), 241 PM_Mask = PM_Sleep | PM_Snooze, 242 243 /* SIAStatus bits */ 244 NWayState = (1 << 14) | (1 << 13) | (1 << 12), 245 NWayRestart = (1 << 12), 246 NonselPortActive = (1 << 9), 247 SelPortActive = (1 << 8), 248 LinkFailStatus = (1 << 2), 249 NetCxnErr = (1 << 1), 250 }; 251 252 static const u32 de_intr_mask = 253 IntrOK | IntrErr | RxIntr | RxEmpty | TxIntr | TxEmpty | 254 LinkPass | LinkFail | PciErr; 255 256 /* 257 * Set the programmable burst length to 4 longwords for all: 258 * DMA errors result without these values. Cache align 16 long. 259 */ 260 static const u32 de_bus_mode = CacheAlign16 | BurstLen4 | DescSkipLen; 261 262 struct de_srom_media_block { 263 u8 opts; 264 u16 csr13; 265 u16 csr14; 266 u16 csr15; 267 } __packed; 268 269 struct de_srom_info_leaf { 270 u16 default_media; 271 u8 n_blocks; 272 u8 unused; 273 } __packed; 274 275 struct de_desc { 276 __le32 opts1; 277 __le32 opts2; 278 __le32 addr1; 279 __le32 addr2; 280 #if DSL 281 __le32 skip[DSL]; 282 #endif 283 }; 284 285 struct media_info { 286 u16 type; /* DE_MEDIA_xxx */ 287 u16 csr13; 288 u16 csr14; 289 u16 csr15; 290 }; 291 292 struct ring_info { 293 struct sk_buff *skb; 294 dma_addr_t mapping; 295 }; 296 297 struct de_private { 298 unsigned tx_head; 299 unsigned tx_tail; 300 unsigned rx_tail; 301 302 void __iomem *regs; 303 struct net_device *dev; 304 spinlock_t lock; 305 306 struct de_desc *rx_ring; 307 struct de_desc *tx_ring; 308 struct ring_info tx_skb[DE_TX_RING_SIZE]; 309 struct ring_info rx_skb[DE_RX_RING_SIZE]; 310 unsigned rx_buf_sz; 311 dma_addr_t ring_dma; 312 313 u32 msg_enable; 314 315 struct net_device_stats net_stats; 316 317 struct pci_dev *pdev; 318 319 u16 setup_frame[DE_SETUP_FRAME_WORDS]; 320 321 u32 media_type; 322 u32 media_supported; 323 u32 media_advertise; 324 struct media_info media[DE_MAX_MEDIA]; 325 struct timer_list media_timer; 326 327 u8 *ee_data; 328 unsigned board_idx; 329 unsigned de21040 : 1; 330 unsigned media_lock : 1; 331 }; 332 333 334 static void de_set_rx_mode (struct net_device *dev); 335 static void de_tx (struct de_private *de); 336 static void de_clean_rings (struct de_private *de); 337 static void de_media_interrupt (struct de_private *de, u32 status); 338 static void de21040_media_timer (unsigned long data); 339 static void de21041_media_timer (unsigned long data); 340 static unsigned int de_ok_to_advertise (struct de_private *de, u32 new_media); 341 342 343 static const struct pci_device_id de_pci_tbl[] = { 344 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP, 345 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, 346 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS, 347 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 }, 348 { }, 349 }; 350 MODULE_DEVICE_TABLE(pci, de_pci_tbl); 351 352 static const char * const media_name[DE_MAX_MEDIA] = { 353 "10baseT auto", 354 "BNC", 355 "AUI", 356 "10baseT-HD", 357 "10baseT-FD" 358 }; 359 360 /* 21040 transceiver register settings: 361 * TP AUTO(unused), BNC(unused), AUI, TP, TP FD*/ 362 static u16 t21040_csr13[] = { 0, 0, 0x8F09, 0x8F01, 0x8F01, }; 363 static u16 t21040_csr14[] = { 0, 0, 0x0705, 0xFFFF, 0xFFFD, }; 364 static u16 t21040_csr15[] = { 0, 0, 0x0006, 0x0000, 0x0000, }; 365 366 /* 21041 transceiver register settings: TP AUTO, BNC, AUI, TP, TP FD*/ 367 static u16 t21041_csr13[] = { 0xEF01, 0xEF09, 0xEF09, 0xEF01, 0xEF09, }; 368 static u16 t21041_csr14[] = { 0xFFFF, 0xF7FD, 0xF7FD, 0x7F3F, 0x7F3D, }; 369 /* If on-chip autonegotiation is broken, use half-duplex (FF3F) instead */ 370 static u16 t21041_csr14_brk[] = { 0xFF3F, 0xF7FD, 0xF7FD, 0x7F3F, 0x7F3D, }; 371 static u16 t21041_csr15[] = { 0x0008, 0x0006, 0x000E, 0x0008, 0x0008, }; 372 373 374 #define dr32(reg) ioread32(de->regs + (reg)) 375 #define dw32(reg, val) iowrite32((val), de->regs + (reg)) 376 377 378 static void de_rx_err_acct (struct de_private *de, unsigned rx_tail, 379 u32 status, u32 len) 380 { 381 netif_dbg(de, rx_err, de->dev, 382 "rx err, slot %d status 0x%x len %d\n", 383 rx_tail, status, len); 384 385 if ((status & 0x38000300) != 0x0300) { 386 /* Ingore earlier buffers. */ 387 if ((status & 0xffff) != 0x7fff) { 388 netif_warn(de, rx_err, de->dev, 389 "Oversized Ethernet frame spanned multiple buffers, status %08x!\n", 390 status); 391 de->net_stats.rx_length_errors++; 392 } 393 } else if (status & RxError) { 394 /* There was a fatal error. */ 395 de->net_stats.rx_errors++; /* end of a packet.*/ 396 if (status & 0x0890) de->net_stats.rx_length_errors++; 397 if (status & RxErrCRC) de->net_stats.rx_crc_errors++; 398 if (status & RxErrFIFO) de->net_stats.rx_fifo_errors++; 399 } 400 } 401 402 static void de_rx (struct de_private *de) 403 { 404 unsigned rx_tail = de->rx_tail; 405 unsigned rx_work = DE_RX_RING_SIZE; 406 unsigned drop = 0; 407 int rc; 408 409 while (--rx_work) { 410 u32 status, len; 411 dma_addr_t mapping; 412 struct sk_buff *skb, *copy_skb; 413 unsigned copying_skb, buflen; 414 415 skb = de->rx_skb[rx_tail].skb; 416 BUG_ON(!skb); 417 rmb(); 418 status = le32_to_cpu(de->rx_ring[rx_tail].opts1); 419 if (status & DescOwn) 420 break; 421 422 len = ((status >> 16) & 0x7ff) - 4; 423 mapping = de->rx_skb[rx_tail].mapping; 424 425 if (unlikely(drop)) { 426 de->net_stats.rx_dropped++; 427 goto rx_next; 428 } 429 430 if (unlikely((status & 0x38008300) != 0x0300)) { 431 de_rx_err_acct(de, rx_tail, status, len); 432 goto rx_next; 433 } 434 435 copying_skb = (len <= rx_copybreak); 436 437 netif_dbg(de, rx_status, de->dev, 438 "rx slot %d status 0x%x len %d copying? %d\n", 439 rx_tail, status, len, copying_skb); 440 441 buflen = copying_skb ? (len + RX_OFFSET) : de->rx_buf_sz; 442 copy_skb = netdev_alloc_skb(de->dev, buflen); 443 if (unlikely(!copy_skb)) { 444 de->net_stats.rx_dropped++; 445 drop = 1; 446 rx_work = 100; 447 goto rx_next; 448 } 449 450 if (!copying_skb) { 451 pci_unmap_single(de->pdev, mapping, 452 buflen, PCI_DMA_FROMDEVICE); 453 skb_put(skb, len); 454 455 mapping = 456 de->rx_skb[rx_tail].mapping = 457 pci_map_single(de->pdev, copy_skb->data, 458 buflen, PCI_DMA_FROMDEVICE); 459 de->rx_skb[rx_tail].skb = copy_skb; 460 } else { 461 pci_dma_sync_single_for_cpu(de->pdev, mapping, len, PCI_DMA_FROMDEVICE); 462 skb_reserve(copy_skb, RX_OFFSET); 463 skb_copy_from_linear_data(skb, skb_put(copy_skb, len), 464 len); 465 pci_dma_sync_single_for_device(de->pdev, mapping, len, PCI_DMA_FROMDEVICE); 466 467 /* We'll reuse the original ring buffer. */ 468 skb = copy_skb; 469 } 470 471 skb->protocol = eth_type_trans (skb, de->dev); 472 473 de->net_stats.rx_packets++; 474 de->net_stats.rx_bytes += skb->len; 475 rc = netif_rx (skb); 476 if (rc == NET_RX_DROP) 477 drop = 1; 478 479 rx_next: 480 if (rx_tail == (DE_RX_RING_SIZE - 1)) 481 de->rx_ring[rx_tail].opts2 = 482 cpu_to_le32(RingEnd | de->rx_buf_sz); 483 else 484 de->rx_ring[rx_tail].opts2 = cpu_to_le32(de->rx_buf_sz); 485 de->rx_ring[rx_tail].addr1 = cpu_to_le32(mapping); 486 wmb(); 487 de->rx_ring[rx_tail].opts1 = cpu_to_le32(DescOwn); 488 rx_tail = NEXT_RX(rx_tail); 489 } 490 491 if (!rx_work) 492 netdev_warn(de->dev, "rx work limit reached\n"); 493 494 de->rx_tail = rx_tail; 495 } 496 497 static irqreturn_t de_interrupt (int irq, void *dev_instance) 498 { 499 struct net_device *dev = dev_instance; 500 struct de_private *de = netdev_priv(dev); 501 u32 status; 502 503 status = dr32(MacStatus); 504 if ((!(status & (IntrOK|IntrErr))) || (status == 0xFFFF)) 505 return IRQ_NONE; 506 507 netif_dbg(de, intr, dev, "intr, status %08x mode %08x desc %u/%u/%u\n", 508 status, dr32(MacMode), 509 de->rx_tail, de->tx_head, de->tx_tail); 510 511 dw32(MacStatus, status); 512 513 if (status & (RxIntr | RxEmpty)) { 514 de_rx(de); 515 if (status & RxEmpty) 516 dw32(RxPoll, NormalRxPoll); 517 } 518 519 spin_lock(&de->lock); 520 521 if (status & (TxIntr | TxEmpty)) 522 de_tx(de); 523 524 if (status & (LinkPass | LinkFail)) 525 de_media_interrupt(de, status); 526 527 spin_unlock(&de->lock); 528 529 if (status & PciErr) { 530 u16 pci_status; 531 532 pci_read_config_word(de->pdev, PCI_STATUS, &pci_status); 533 pci_write_config_word(de->pdev, PCI_STATUS, pci_status); 534 netdev_err(de->dev, 535 "PCI bus error, status=%08x, PCI status=%04x\n", 536 status, pci_status); 537 } 538 539 return IRQ_HANDLED; 540 } 541 542 static void de_tx (struct de_private *de) 543 { 544 unsigned tx_head = de->tx_head; 545 unsigned tx_tail = de->tx_tail; 546 547 while (tx_tail != tx_head) { 548 struct sk_buff *skb; 549 u32 status; 550 551 rmb(); 552 status = le32_to_cpu(de->tx_ring[tx_tail].opts1); 553 if (status & DescOwn) 554 break; 555 556 skb = de->tx_skb[tx_tail].skb; 557 BUG_ON(!skb); 558 if (unlikely(skb == DE_DUMMY_SKB)) 559 goto next; 560 561 if (unlikely(skb == DE_SETUP_SKB)) { 562 pci_unmap_single(de->pdev, de->tx_skb[tx_tail].mapping, 563 sizeof(de->setup_frame), PCI_DMA_TODEVICE); 564 goto next; 565 } 566 567 pci_unmap_single(de->pdev, de->tx_skb[tx_tail].mapping, 568 skb->len, PCI_DMA_TODEVICE); 569 570 if (status & LastFrag) { 571 if (status & TxError) { 572 netif_dbg(de, tx_err, de->dev, 573 "tx err, status 0x%x\n", 574 status); 575 de->net_stats.tx_errors++; 576 if (status & TxOWC) 577 de->net_stats.tx_window_errors++; 578 if (status & TxMaxCol) 579 de->net_stats.tx_aborted_errors++; 580 if (status & TxLinkFail) 581 de->net_stats.tx_carrier_errors++; 582 if (status & TxFIFOUnder) 583 de->net_stats.tx_fifo_errors++; 584 } else { 585 de->net_stats.tx_packets++; 586 de->net_stats.tx_bytes += skb->len; 587 netif_dbg(de, tx_done, de->dev, 588 "tx done, slot %d\n", tx_tail); 589 } 590 dev_kfree_skb_irq(skb); 591 } 592 593 next: 594 de->tx_skb[tx_tail].skb = NULL; 595 596 tx_tail = NEXT_TX(tx_tail); 597 } 598 599 de->tx_tail = tx_tail; 600 601 if (netif_queue_stopped(de->dev) && (TX_BUFFS_AVAIL(de) > (DE_TX_RING_SIZE / 4))) 602 netif_wake_queue(de->dev); 603 } 604 605 static netdev_tx_t de_start_xmit (struct sk_buff *skb, 606 struct net_device *dev) 607 { 608 struct de_private *de = netdev_priv(dev); 609 unsigned int entry, tx_free; 610 u32 mapping, len, flags = FirstFrag | LastFrag; 611 struct de_desc *txd; 612 613 spin_lock_irq(&de->lock); 614 615 tx_free = TX_BUFFS_AVAIL(de); 616 if (tx_free == 0) { 617 netif_stop_queue(dev); 618 spin_unlock_irq(&de->lock); 619 return NETDEV_TX_BUSY; 620 } 621 tx_free--; 622 623 entry = de->tx_head; 624 625 txd = &de->tx_ring[entry]; 626 627 len = skb->len; 628 mapping = pci_map_single(de->pdev, skb->data, len, PCI_DMA_TODEVICE); 629 if (entry == (DE_TX_RING_SIZE - 1)) 630 flags |= RingEnd; 631 if (!tx_free || (tx_free == (DE_TX_RING_SIZE / 2))) 632 flags |= TxSwInt; 633 flags |= len; 634 txd->opts2 = cpu_to_le32(flags); 635 txd->addr1 = cpu_to_le32(mapping); 636 637 de->tx_skb[entry].skb = skb; 638 de->tx_skb[entry].mapping = mapping; 639 wmb(); 640 641 txd->opts1 = cpu_to_le32(DescOwn); 642 wmb(); 643 644 de->tx_head = NEXT_TX(entry); 645 netif_dbg(de, tx_queued, dev, "tx queued, slot %d, skblen %d\n", 646 entry, skb->len); 647 648 if (tx_free == 0) 649 netif_stop_queue(dev); 650 651 spin_unlock_irq(&de->lock); 652 653 /* Trigger an immediate transmit demand. */ 654 dw32(TxPoll, NormalTxPoll); 655 656 return NETDEV_TX_OK; 657 } 658 659 /* Set or clear the multicast filter for this adaptor. 660 Note that we only use exclusion around actually queueing the 661 new frame, not around filling de->setup_frame. This is non-deterministic 662 when re-entered but still correct. */ 663 664 static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev) 665 { 666 struct de_private *de = netdev_priv(dev); 667 u16 hash_table[32]; 668 struct netdev_hw_addr *ha; 669 int i; 670 u16 *eaddrs; 671 672 memset(hash_table, 0, sizeof(hash_table)); 673 __set_bit_le(255, hash_table); /* Broadcast entry */ 674 /* This should work on big-endian machines as well. */ 675 netdev_for_each_mc_addr(ha, dev) { 676 int index = ether_crc_le(ETH_ALEN, ha->addr) & 0x1ff; 677 678 __set_bit_le(index, hash_table); 679 } 680 681 for (i = 0; i < 32; i++) { 682 *setup_frm++ = hash_table[i]; 683 *setup_frm++ = hash_table[i]; 684 } 685 setup_frm = &de->setup_frame[13*6]; 686 687 /* Fill the final entry with our physical address. */ 688 eaddrs = (u16 *)dev->dev_addr; 689 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0]; 690 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1]; 691 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2]; 692 } 693 694 static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev) 695 { 696 struct de_private *de = netdev_priv(dev); 697 struct netdev_hw_addr *ha; 698 u16 *eaddrs; 699 700 /* We have <= 14 addresses so we can use the wonderful 701 16 address perfect filtering of the Tulip. */ 702 netdev_for_each_mc_addr(ha, dev) { 703 eaddrs = (u16 *) ha->addr; 704 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++; 705 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++; 706 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++; 707 } 708 /* Fill the unused entries with the broadcast address. */ 709 memset(setup_frm, 0xff, (15 - netdev_mc_count(dev)) * 12); 710 setup_frm = &de->setup_frame[15*6]; 711 712 /* Fill the final entry with our physical address. */ 713 eaddrs = (u16 *)dev->dev_addr; 714 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0]; 715 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1]; 716 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2]; 717 } 718 719 720 static void __de_set_rx_mode (struct net_device *dev) 721 { 722 struct de_private *de = netdev_priv(dev); 723 u32 macmode; 724 unsigned int entry; 725 u32 mapping; 726 struct de_desc *txd; 727 struct de_desc *dummy_txd = NULL; 728 729 macmode = dr32(MacMode) & ~(AcceptAllMulticast | AcceptAllPhys); 730 731 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 732 macmode |= AcceptAllMulticast | AcceptAllPhys; 733 goto out; 734 } 735 736 if ((netdev_mc_count(dev) > 1000) || (dev->flags & IFF_ALLMULTI)) { 737 /* Too many to filter well -- accept all multicasts. */ 738 macmode |= AcceptAllMulticast; 739 goto out; 740 } 741 742 /* Note that only the low-address shortword of setup_frame is valid! 743 The values are doubled for big-endian architectures. */ 744 if (netdev_mc_count(dev) > 14) /* Must use a multicast hash table. */ 745 build_setup_frame_hash (de->setup_frame, dev); 746 else 747 build_setup_frame_perfect (de->setup_frame, dev); 748 749 /* 750 * Now add this frame to the Tx list. 751 */ 752 753 entry = de->tx_head; 754 755 /* Avoid a chip errata by prefixing a dummy entry. */ 756 if (entry != 0) { 757 de->tx_skb[entry].skb = DE_DUMMY_SKB; 758 759 dummy_txd = &de->tx_ring[entry]; 760 dummy_txd->opts2 = (entry == (DE_TX_RING_SIZE - 1)) ? 761 cpu_to_le32(RingEnd) : 0; 762 dummy_txd->addr1 = 0; 763 764 /* Must set DescOwned later to avoid race with chip */ 765 766 entry = NEXT_TX(entry); 767 } 768 769 de->tx_skb[entry].skb = DE_SETUP_SKB; 770 de->tx_skb[entry].mapping = mapping = 771 pci_map_single (de->pdev, de->setup_frame, 772 sizeof (de->setup_frame), PCI_DMA_TODEVICE); 773 774 /* Put the setup frame on the Tx list. */ 775 txd = &de->tx_ring[entry]; 776 if (entry == (DE_TX_RING_SIZE - 1)) 777 txd->opts2 = cpu_to_le32(SetupFrame | RingEnd | sizeof (de->setup_frame)); 778 else 779 txd->opts2 = cpu_to_le32(SetupFrame | sizeof (de->setup_frame)); 780 txd->addr1 = cpu_to_le32(mapping); 781 wmb(); 782 783 txd->opts1 = cpu_to_le32(DescOwn); 784 wmb(); 785 786 if (dummy_txd) { 787 dummy_txd->opts1 = cpu_to_le32(DescOwn); 788 wmb(); 789 } 790 791 de->tx_head = NEXT_TX(entry); 792 793 if (TX_BUFFS_AVAIL(de) == 0) 794 netif_stop_queue(dev); 795 796 /* Trigger an immediate transmit demand. */ 797 dw32(TxPoll, NormalTxPoll); 798 799 out: 800 if (macmode != dr32(MacMode)) 801 dw32(MacMode, macmode); 802 } 803 804 static void de_set_rx_mode (struct net_device *dev) 805 { 806 unsigned long flags; 807 struct de_private *de = netdev_priv(dev); 808 809 spin_lock_irqsave (&de->lock, flags); 810 __de_set_rx_mode(dev); 811 spin_unlock_irqrestore (&de->lock, flags); 812 } 813 814 static inline void de_rx_missed(struct de_private *de, u32 rx_missed) 815 { 816 if (unlikely(rx_missed & RxMissedOver)) 817 de->net_stats.rx_missed_errors += RxMissedMask; 818 else 819 de->net_stats.rx_missed_errors += (rx_missed & RxMissedMask); 820 } 821 822 static void __de_get_stats(struct de_private *de) 823 { 824 u32 tmp = dr32(RxMissed); /* self-clearing */ 825 826 de_rx_missed(de, tmp); 827 } 828 829 static struct net_device_stats *de_get_stats(struct net_device *dev) 830 { 831 struct de_private *de = netdev_priv(dev); 832 833 /* The chip only need report frame silently dropped. */ 834 spin_lock_irq(&de->lock); 835 if (netif_running(dev) && netif_device_present(dev)) 836 __de_get_stats(de); 837 spin_unlock_irq(&de->lock); 838 839 return &de->net_stats; 840 } 841 842 static inline int de_is_running (struct de_private *de) 843 { 844 return (dr32(MacStatus) & (RxState | TxState)) ? 1 : 0; 845 } 846 847 static void de_stop_rxtx (struct de_private *de) 848 { 849 u32 macmode; 850 unsigned int i = 1300/100; 851 852 macmode = dr32(MacMode); 853 if (macmode & RxTx) { 854 dw32(MacMode, macmode & ~RxTx); 855 dr32(MacMode); 856 } 857 858 /* wait until in-flight frame completes. 859 * Max time @ 10BT: 1500*8b/10Mbps == 1200us (+ 100us margin) 860 * Typically expect this loop to end in < 50 us on 100BT. 861 */ 862 while (--i) { 863 if (!de_is_running(de)) 864 return; 865 udelay(100); 866 } 867 868 netdev_warn(de->dev, "timeout expired, stopping DMA\n"); 869 } 870 871 static inline void de_start_rxtx (struct de_private *de) 872 { 873 u32 macmode; 874 875 macmode = dr32(MacMode); 876 if ((macmode & RxTx) != RxTx) { 877 dw32(MacMode, macmode | RxTx); 878 dr32(MacMode); 879 } 880 } 881 882 static void de_stop_hw (struct de_private *de) 883 { 884 885 udelay(5); 886 dw32(IntrMask, 0); 887 888 de_stop_rxtx(de); 889 890 dw32(MacStatus, dr32(MacStatus)); 891 892 udelay(10); 893 894 de->rx_tail = 0; 895 de->tx_head = de->tx_tail = 0; 896 } 897 898 static void de_link_up(struct de_private *de) 899 { 900 if (!netif_carrier_ok(de->dev)) { 901 netif_carrier_on(de->dev); 902 netif_info(de, link, de->dev, "link up, media %s\n", 903 media_name[de->media_type]); 904 } 905 } 906 907 static void de_link_down(struct de_private *de) 908 { 909 if (netif_carrier_ok(de->dev)) { 910 netif_carrier_off(de->dev); 911 netif_info(de, link, de->dev, "link down\n"); 912 } 913 } 914 915 static void de_set_media (struct de_private *de) 916 { 917 unsigned media = de->media_type; 918 u32 macmode = dr32(MacMode); 919 920 if (de_is_running(de)) 921 netdev_warn(de->dev, "chip is running while changing media!\n"); 922 923 if (de->de21040) 924 dw32(CSR11, FULL_DUPLEX_MAGIC); 925 dw32(CSR13, 0); /* Reset phy */ 926 dw32(CSR14, de->media[media].csr14); 927 dw32(CSR15, de->media[media].csr15); 928 dw32(CSR13, de->media[media].csr13); 929 930 /* must delay 10ms before writing to other registers, 931 * especially CSR6 932 */ 933 mdelay(10); 934 935 if (media == DE_MEDIA_TP_FD) 936 macmode |= FullDuplex; 937 else 938 macmode &= ~FullDuplex; 939 940 netif_info(de, link, de->dev, "set link %s\n", media_name[media]); 941 netif_info(de, hw, de->dev, "mode 0x%x, sia 0x%x,0x%x,0x%x,0x%x\n", 942 dr32(MacMode), dr32(SIAStatus), 943 dr32(CSR13), dr32(CSR14), dr32(CSR15)); 944 netif_info(de, hw, de->dev, "set mode 0x%x, set sia 0x%x,0x%x,0x%x\n", 945 macmode, de->media[media].csr13, 946 de->media[media].csr14, de->media[media].csr15); 947 if (macmode != dr32(MacMode)) 948 dw32(MacMode, macmode); 949 } 950 951 static void de_next_media (struct de_private *de, const u32 *media, 952 unsigned int n_media) 953 { 954 unsigned int i; 955 956 for (i = 0; i < n_media; i++) { 957 if (de_ok_to_advertise(de, media[i])) { 958 de->media_type = media[i]; 959 return; 960 } 961 } 962 } 963 964 static void de21040_media_timer (unsigned long data) 965 { 966 struct de_private *de = (struct de_private *) data; 967 struct net_device *dev = de->dev; 968 u32 status = dr32(SIAStatus); 969 unsigned int carrier; 970 unsigned long flags; 971 972 carrier = (status & NetCxnErr) ? 0 : 1; 973 974 if (carrier) { 975 if (de->media_type != DE_MEDIA_AUI && (status & LinkFailStatus)) 976 goto no_link_yet; 977 978 de->media_timer.expires = jiffies + DE_TIMER_LINK; 979 add_timer(&de->media_timer); 980 if (!netif_carrier_ok(dev)) 981 de_link_up(de); 982 else 983 netif_info(de, timer, dev, "%s link ok, status %x\n", 984 media_name[de->media_type], status); 985 return; 986 } 987 988 de_link_down(de); 989 990 if (de->media_lock) 991 return; 992 993 if (de->media_type == DE_MEDIA_AUI) { 994 static const u32 next_state = DE_MEDIA_TP; 995 de_next_media(de, &next_state, 1); 996 } else { 997 static const u32 next_state = DE_MEDIA_AUI; 998 de_next_media(de, &next_state, 1); 999 } 1000 1001 spin_lock_irqsave(&de->lock, flags); 1002 de_stop_rxtx(de); 1003 spin_unlock_irqrestore(&de->lock, flags); 1004 de_set_media(de); 1005 de_start_rxtx(de); 1006 1007 no_link_yet: 1008 de->media_timer.expires = jiffies + DE_TIMER_NO_LINK; 1009 add_timer(&de->media_timer); 1010 1011 netif_info(de, timer, dev, "no link, trying media %s, status %x\n", 1012 media_name[de->media_type], status); 1013 } 1014 1015 static unsigned int de_ok_to_advertise (struct de_private *de, u32 new_media) 1016 { 1017 switch (new_media) { 1018 case DE_MEDIA_TP_AUTO: 1019 if (!(de->media_advertise & ADVERTISED_Autoneg)) 1020 return 0; 1021 if (!(de->media_advertise & (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full))) 1022 return 0; 1023 break; 1024 case DE_MEDIA_BNC: 1025 if (!(de->media_advertise & ADVERTISED_BNC)) 1026 return 0; 1027 break; 1028 case DE_MEDIA_AUI: 1029 if (!(de->media_advertise & ADVERTISED_AUI)) 1030 return 0; 1031 break; 1032 case DE_MEDIA_TP: 1033 if (!(de->media_advertise & ADVERTISED_10baseT_Half)) 1034 return 0; 1035 break; 1036 case DE_MEDIA_TP_FD: 1037 if (!(de->media_advertise & ADVERTISED_10baseT_Full)) 1038 return 0; 1039 break; 1040 } 1041 1042 return 1; 1043 } 1044 1045 static void de21041_media_timer (unsigned long data) 1046 { 1047 struct de_private *de = (struct de_private *) data; 1048 struct net_device *dev = de->dev; 1049 u32 status = dr32(SIAStatus); 1050 unsigned int carrier; 1051 unsigned long flags; 1052 1053 /* clear port active bits */ 1054 dw32(SIAStatus, NonselPortActive | SelPortActive); 1055 1056 carrier = (status & NetCxnErr) ? 0 : 1; 1057 1058 if (carrier) { 1059 if ((de->media_type == DE_MEDIA_TP_AUTO || 1060 de->media_type == DE_MEDIA_TP || 1061 de->media_type == DE_MEDIA_TP_FD) && 1062 (status & LinkFailStatus)) 1063 goto no_link_yet; 1064 1065 de->media_timer.expires = jiffies + DE_TIMER_LINK; 1066 add_timer(&de->media_timer); 1067 if (!netif_carrier_ok(dev)) 1068 de_link_up(de); 1069 else 1070 netif_info(de, timer, dev, 1071 "%s link ok, mode %x status %x\n", 1072 media_name[de->media_type], 1073 dr32(MacMode), status); 1074 return; 1075 } 1076 1077 de_link_down(de); 1078 1079 /* if media type locked, don't switch media */ 1080 if (de->media_lock) 1081 goto set_media; 1082 1083 /* if activity detected, use that as hint for new media type */ 1084 if (status & NonselPortActive) { 1085 unsigned int have_media = 1; 1086 1087 /* if AUI/BNC selected, then activity is on TP port */ 1088 if (de->media_type == DE_MEDIA_AUI || 1089 de->media_type == DE_MEDIA_BNC) { 1090 if (de_ok_to_advertise(de, DE_MEDIA_TP_AUTO)) 1091 de->media_type = DE_MEDIA_TP_AUTO; 1092 else 1093 have_media = 0; 1094 } 1095 1096 /* TP selected. If there is only TP and BNC, then it's BNC */ 1097 else if (((de->media_supported & DE_AUI_BNC) == SUPPORTED_BNC) && 1098 de_ok_to_advertise(de, DE_MEDIA_BNC)) 1099 de->media_type = DE_MEDIA_BNC; 1100 1101 /* TP selected. If there is only TP and AUI, then it's AUI */ 1102 else if (((de->media_supported & DE_AUI_BNC) == SUPPORTED_AUI) && 1103 de_ok_to_advertise(de, DE_MEDIA_AUI)) 1104 de->media_type = DE_MEDIA_AUI; 1105 1106 /* otherwise, ignore the hint */ 1107 else 1108 have_media = 0; 1109 1110 if (have_media) 1111 goto set_media; 1112 } 1113 1114 /* 1115 * Absent or ambiguous activity hint, move to next advertised 1116 * media state. If de->media_type is left unchanged, this 1117 * simply resets the PHY and reloads the current media settings. 1118 */ 1119 if (de->media_type == DE_MEDIA_AUI) { 1120 static const u32 next_states[] = { 1121 DE_MEDIA_BNC, DE_MEDIA_TP_AUTO 1122 }; 1123 de_next_media(de, next_states, ARRAY_SIZE(next_states)); 1124 } else if (de->media_type == DE_MEDIA_BNC) { 1125 static const u32 next_states[] = { 1126 DE_MEDIA_TP_AUTO, DE_MEDIA_AUI 1127 }; 1128 de_next_media(de, next_states, ARRAY_SIZE(next_states)); 1129 } else { 1130 static const u32 next_states[] = { 1131 DE_MEDIA_AUI, DE_MEDIA_BNC, DE_MEDIA_TP_AUTO 1132 }; 1133 de_next_media(de, next_states, ARRAY_SIZE(next_states)); 1134 } 1135 1136 set_media: 1137 spin_lock_irqsave(&de->lock, flags); 1138 de_stop_rxtx(de); 1139 spin_unlock_irqrestore(&de->lock, flags); 1140 de_set_media(de); 1141 de_start_rxtx(de); 1142 1143 no_link_yet: 1144 de->media_timer.expires = jiffies + DE_TIMER_NO_LINK; 1145 add_timer(&de->media_timer); 1146 1147 netif_info(de, timer, dev, "no link, trying media %s, status %x\n", 1148 media_name[de->media_type], status); 1149 } 1150 1151 static void de_media_interrupt (struct de_private *de, u32 status) 1152 { 1153 if (status & LinkPass) { 1154 /* Ignore if current media is AUI or BNC and we can't use TP */ 1155 if ((de->media_type == DE_MEDIA_AUI || 1156 de->media_type == DE_MEDIA_BNC) && 1157 (de->media_lock || 1158 !de_ok_to_advertise(de, DE_MEDIA_TP_AUTO))) 1159 return; 1160 /* If current media is not TP, change it to TP */ 1161 if ((de->media_type == DE_MEDIA_AUI || 1162 de->media_type == DE_MEDIA_BNC)) { 1163 de->media_type = DE_MEDIA_TP_AUTO; 1164 de_stop_rxtx(de); 1165 de_set_media(de); 1166 de_start_rxtx(de); 1167 } 1168 de_link_up(de); 1169 mod_timer(&de->media_timer, jiffies + DE_TIMER_LINK); 1170 return; 1171 } 1172 1173 BUG_ON(!(status & LinkFail)); 1174 /* Mark the link as down only if current media is TP */ 1175 if (netif_carrier_ok(de->dev) && de->media_type != DE_MEDIA_AUI && 1176 de->media_type != DE_MEDIA_BNC) { 1177 de_link_down(de); 1178 mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK); 1179 } 1180 } 1181 1182 static int de_reset_mac (struct de_private *de) 1183 { 1184 u32 status, tmp; 1185 1186 /* 1187 * Reset MAC. de4x5.c and tulip.c examined for "advice" 1188 * in this area. 1189 */ 1190 1191 if (dr32(BusMode) == 0xffffffff) 1192 return -EBUSY; 1193 1194 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */ 1195 dw32 (BusMode, CmdReset); 1196 mdelay (1); 1197 1198 dw32 (BusMode, de_bus_mode); 1199 mdelay (1); 1200 1201 for (tmp = 0; tmp < 5; tmp++) { 1202 dr32 (BusMode); 1203 mdelay (1); 1204 } 1205 1206 mdelay (1); 1207 1208 status = dr32(MacStatus); 1209 if (status & (RxState | TxState)) 1210 return -EBUSY; 1211 if (status == 0xffffffff) 1212 return -ENODEV; 1213 return 0; 1214 } 1215 1216 static void de_adapter_wake (struct de_private *de) 1217 { 1218 u32 pmctl; 1219 1220 if (de->de21040) 1221 return; 1222 1223 pci_read_config_dword(de->pdev, PCIPM, &pmctl); 1224 if (pmctl & PM_Mask) { 1225 pmctl &= ~PM_Mask; 1226 pci_write_config_dword(de->pdev, PCIPM, pmctl); 1227 1228 /* de4x5.c delays, so we do too */ 1229 msleep(10); 1230 } 1231 } 1232 1233 static void de_adapter_sleep (struct de_private *de) 1234 { 1235 u32 pmctl; 1236 1237 if (de->de21040) 1238 return; 1239 1240 dw32(CSR13, 0); /* Reset phy */ 1241 pci_read_config_dword(de->pdev, PCIPM, &pmctl); 1242 pmctl |= PM_Sleep; 1243 pci_write_config_dword(de->pdev, PCIPM, pmctl); 1244 } 1245 1246 static int de_init_hw (struct de_private *de) 1247 { 1248 struct net_device *dev = de->dev; 1249 u32 macmode; 1250 int rc; 1251 1252 de_adapter_wake(de); 1253 1254 macmode = dr32(MacMode) & ~MacModeClear; 1255 1256 rc = de_reset_mac(de); 1257 if (rc) 1258 return rc; 1259 1260 de_set_media(de); /* reset phy */ 1261 1262 dw32(RxRingAddr, de->ring_dma); 1263 dw32(TxRingAddr, de->ring_dma + (sizeof(struct de_desc) * DE_RX_RING_SIZE)); 1264 1265 dw32(MacMode, RxTx | macmode); 1266 1267 dr32(RxMissed); /* self-clearing */ 1268 1269 dw32(IntrMask, de_intr_mask); 1270 1271 de_set_rx_mode(dev); 1272 1273 return 0; 1274 } 1275 1276 static int de_refill_rx (struct de_private *de) 1277 { 1278 unsigned i; 1279 1280 for (i = 0; i < DE_RX_RING_SIZE; i++) { 1281 struct sk_buff *skb; 1282 1283 skb = netdev_alloc_skb(de->dev, de->rx_buf_sz); 1284 if (!skb) 1285 goto err_out; 1286 1287 de->rx_skb[i].mapping = pci_map_single(de->pdev, 1288 skb->data, de->rx_buf_sz, PCI_DMA_FROMDEVICE); 1289 de->rx_skb[i].skb = skb; 1290 1291 de->rx_ring[i].opts1 = cpu_to_le32(DescOwn); 1292 if (i == (DE_RX_RING_SIZE - 1)) 1293 de->rx_ring[i].opts2 = 1294 cpu_to_le32(RingEnd | de->rx_buf_sz); 1295 else 1296 de->rx_ring[i].opts2 = cpu_to_le32(de->rx_buf_sz); 1297 de->rx_ring[i].addr1 = cpu_to_le32(de->rx_skb[i].mapping); 1298 de->rx_ring[i].addr2 = 0; 1299 } 1300 1301 return 0; 1302 1303 err_out: 1304 de_clean_rings(de); 1305 return -ENOMEM; 1306 } 1307 1308 static int de_init_rings (struct de_private *de) 1309 { 1310 memset(de->tx_ring, 0, sizeof(struct de_desc) * DE_TX_RING_SIZE); 1311 de->tx_ring[DE_TX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd); 1312 1313 de->rx_tail = 0; 1314 de->tx_head = de->tx_tail = 0; 1315 1316 return de_refill_rx (de); 1317 } 1318 1319 static int de_alloc_rings (struct de_private *de) 1320 { 1321 de->rx_ring = pci_alloc_consistent(de->pdev, DE_RING_BYTES, &de->ring_dma); 1322 if (!de->rx_ring) 1323 return -ENOMEM; 1324 de->tx_ring = &de->rx_ring[DE_RX_RING_SIZE]; 1325 return de_init_rings(de); 1326 } 1327 1328 static void de_clean_rings (struct de_private *de) 1329 { 1330 unsigned i; 1331 1332 memset(de->rx_ring, 0, sizeof(struct de_desc) * DE_RX_RING_SIZE); 1333 de->rx_ring[DE_RX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd); 1334 wmb(); 1335 memset(de->tx_ring, 0, sizeof(struct de_desc) * DE_TX_RING_SIZE); 1336 de->tx_ring[DE_TX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd); 1337 wmb(); 1338 1339 for (i = 0; i < DE_RX_RING_SIZE; i++) { 1340 if (de->rx_skb[i].skb) { 1341 pci_unmap_single(de->pdev, de->rx_skb[i].mapping, 1342 de->rx_buf_sz, PCI_DMA_FROMDEVICE); 1343 dev_kfree_skb(de->rx_skb[i].skb); 1344 } 1345 } 1346 1347 for (i = 0; i < DE_TX_RING_SIZE; i++) { 1348 struct sk_buff *skb = de->tx_skb[i].skb; 1349 if ((skb) && (skb != DE_DUMMY_SKB)) { 1350 if (skb != DE_SETUP_SKB) { 1351 de->net_stats.tx_dropped++; 1352 pci_unmap_single(de->pdev, 1353 de->tx_skb[i].mapping, 1354 skb->len, PCI_DMA_TODEVICE); 1355 dev_kfree_skb(skb); 1356 } else { 1357 pci_unmap_single(de->pdev, 1358 de->tx_skb[i].mapping, 1359 sizeof(de->setup_frame), 1360 PCI_DMA_TODEVICE); 1361 } 1362 } 1363 } 1364 1365 memset(&de->rx_skb, 0, sizeof(struct ring_info) * DE_RX_RING_SIZE); 1366 memset(&de->tx_skb, 0, sizeof(struct ring_info) * DE_TX_RING_SIZE); 1367 } 1368 1369 static void de_free_rings (struct de_private *de) 1370 { 1371 de_clean_rings(de); 1372 pci_free_consistent(de->pdev, DE_RING_BYTES, de->rx_ring, de->ring_dma); 1373 de->rx_ring = NULL; 1374 de->tx_ring = NULL; 1375 } 1376 1377 static int de_open (struct net_device *dev) 1378 { 1379 struct de_private *de = netdev_priv(dev); 1380 const int irq = de->pdev->irq; 1381 int rc; 1382 1383 netif_dbg(de, ifup, dev, "enabling interface\n"); 1384 1385 de->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32); 1386 1387 rc = de_alloc_rings(de); 1388 if (rc) { 1389 netdev_err(dev, "ring allocation failure, err=%d\n", rc); 1390 return rc; 1391 } 1392 1393 dw32(IntrMask, 0); 1394 1395 rc = request_irq(irq, de_interrupt, IRQF_SHARED, dev->name, dev); 1396 if (rc) { 1397 netdev_err(dev, "IRQ %d request failure, err=%d\n", irq, rc); 1398 goto err_out_free; 1399 } 1400 1401 rc = de_init_hw(de); 1402 if (rc) { 1403 netdev_err(dev, "h/w init failure, err=%d\n", rc); 1404 goto err_out_free_irq; 1405 } 1406 1407 netif_start_queue(dev); 1408 mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK); 1409 1410 return 0; 1411 1412 err_out_free_irq: 1413 free_irq(irq, dev); 1414 err_out_free: 1415 de_free_rings(de); 1416 return rc; 1417 } 1418 1419 static int de_close (struct net_device *dev) 1420 { 1421 struct de_private *de = netdev_priv(dev); 1422 unsigned long flags; 1423 1424 netif_dbg(de, ifdown, dev, "disabling interface\n"); 1425 1426 del_timer_sync(&de->media_timer); 1427 1428 spin_lock_irqsave(&de->lock, flags); 1429 de_stop_hw(de); 1430 netif_stop_queue(dev); 1431 netif_carrier_off(dev); 1432 spin_unlock_irqrestore(&de->lock, flags); 1433 1434 free_irq(de->pdev->irq, dev); 1435 1436 de_free_rings(de); 1437 de_adapter_sleep(de); 1438 return 0; 1439 } 1440 1441 static void de_tx_timeout (struct net_device *dev) 1442 { 1443 struct de_private *de = netdev_priv(dev); 1444 const int irq = de->pdev->irq; 1445 1446 netdev_dbg(dev, "NIC status %08x mode %08x sia %08x desc %u/%u/%u\n", 1447 dr32(MacStatus), dr32(MacMode), dr32(SIAStatus), 1448 de->rx_tail, de->tx_head, de->tx_tail); 1449 1450 del_timer_sync(&de->media_timer); 1451 1452 disable_irq(irq); 1453 spin_lock_irq(&de->lock); 1454 1455 de_stop_hw(de); 1456 netif_stop_queue(dev); 1457 netif_carrier_off(dev); 1458 1459 spin_unlock_irq(&de->lock); 1460 enable_irq(irq); 1461 1462 /* Update the error counts. */ 1463 __de_get_stats(de); 1464 1465 synchronize_irq(irq); 1466 de_clean_rings(de); 1467 1468 de_init_rings(de); 1469 1470 de_init_hw(de); 1471 1472 netif_wake_queue(dev); 1473 } 1474 1475 static void __de_get_regs(struct de_private *de, u8 *buf) 1476 { 1477 int i; 1478 u32 *rbuf = (u32 *)buf; 1479 1480 /* read all CSRs */ 1481 for (i = 0; i < DE_NUM_REGS; i++) 1482 rbuf[i] = dr32(i * 8); 1483 1484 /* handle self-clearing RxMissed counter, CSR8 */ 1485 de_rx_missed(de, rbuf[8]); 1486 } 1487 1488 static int __de_get_settings(struct de_private *de, struct ethtool_cmd *ecmd) 1489 { 1490 ecmd->supported = de->media_supported; 1491 ecmd->transceiver = XCVR_INTERNAL; 1492 ecmd->phy_address = 0; 1493 ecmd->advertising = de->media_advertise; 1494 1495 switch (de->media_type) { 1496 case DE_MEDIA_AUI: 1497 ecmd->port = PORT_AUI; 1498 break; 1499 case DE_MEDIA_BNC: 1500 ecmd->port = PORT_BNC; 1501 break; 1502 default: 1503 ecmd->port = PORT_TP; 1504 break; 1505 } 1506 1507 ethtool_cmd_speed_set(ecmd, 10); 1508 1509 if (dr32(MacMode) & FullDuplex) 1510 ecmd->duplex = DUPLEX_FULL; 1511 else 1512 ecmd->duplex = DUPLEX_HALF; 1513 1514 if (de->media_lock) 1515 ecmd->autoneg = AUTONEG_DISABLE; 1516 else 1517 ecmd->autoneg = AUTONEG_ENABLE; 1518 1519 /* ignore maxtxpkt, maxrxpkt for now */ 1520 1521 return 0; 1522 } 1523 1524 static int __de_set_settings(struct de_private *de, struct ethtool_cmd *ecmd) 1525 { 1526 u32 new_media; 1527 unsigned int media_lock; 1528 1529 if (ethtool_cmd_speed(ecmd) != 10) 1530 return -EINVAL; 1531 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL) 1532 return -EINVAL; 1533 if (ecmd->port != PORT_TP && ecmd->port != PORT_AUI && ecmd->port != PORT_BNC) 1534 return -EINVAL; 1535 if (de->de21040 && ecmd->port == PORT_BNC) 1536 return -EINVAL; 1537 if (ecmd->transceiver != XCVR_INTERNAL) 1538 return -EINVAL; 1539 if (ecmd->autoneg != AUTONEG_DISABLE && ecmd->autoneg != AUTONEG_ENABLE) 1540 return -EINVAL; 1541 if (ecmd->advertising & ~de->media_supported) 1542 return -EINVAL; 1543 if (ecmd->autoneg == AUTONEG_ENABLE && 1544 (!(ecmd->advertising & ADVERTISED_Autoneg))) 1545 return -EINVAL; 1546 1547 switch (ecmd->port) { 1548 case PORT_AUI: 1549 new_media = DE_MEDIA_AUI; 1550 if (!(ecmd->advertising & ADVERTISED_AUI)) 1551 return -EINVAL; 1552 break; 1553 case PORT_BNC: 1554 new_media = DE_MEDIA_BNC; 1555 if (!(ecmd->advertising & ADVERTISED_BNC)) 1556 return -EINVAL; 1557 break; 1558 default: 1559 if (ecmd->autoneg == AUTONEG_ENABLE) 1560 new_media = DE_MEDIA_TP_AUTO; 1561 else if (ecmd->duplex == DUPLEX_FULL) 1562 new_media = DE_MEDIA_TP_FD; 1563 else 1564 new_media = DE_MEDIA_TP; 1565 if (!(ecmd->advertising & ADVERTISED_TP)) 1566 return -EINVAL; 1567 if (!(ecmd->advertising & (ADVERTISED_10baseT_Full | ADVERTISED_10baseT_Half))) 1568 return -EINVAL; 1569 break; 1570 } 1571 1572 media_lock = (ecmd->autoneg == AUTONEG_ENABLE) ? 0 : 1; 1573 1574 if ((new_media == de->media_type) && 1575 (media_lock == de->media_lock) && 1576 (ecmd->advertising == de->media_advertise)) 1577 return 0; /* nothing to change */ 1578 1579 de_link_down(de); 1580 mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK); 1581 de_stop_rxtx(de); 1582 1583 de->media_type = new_media; 1584 de->media_lock = media_lock; 1585 de->media_advertise = ecmd->advertising; 1586 de_set_media(de); 1587 if (netif_running(de->dev)) 1588 de_start_rxtx(de); 1589 1590 return 0; 1591 } 1592 1593 static void de_get_drvinfo (struct net_device *dev,struct ethtool_drvinfo *info) 1594 { 1595 struct de_private *de = netdev_priv(dev); 1596 1597 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1598 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1599 strlcpy(info->bus_info, pci_name(de->pdev), sizeof(info->bus_info)); 1600 info->eedump_len = DE_EEPROM_SIZE; 1601 } 1602 1603 static int de_get_regs_len(struct net_device *dev) 1604 { 1605 return DE_REGS_SIZE; 1606 } 1607 1608 static int de_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) 1609 { 1610 struct de_private *de = netdev_priv(dev); 1611 int rc; 1612 1613 spin_lock_irq(&de->lock); 1614 rc = __de_get_settings(de, ecmd); 1615 spin_unlock_irq(&de->lock); 1616 1617 return rc; 1618 } 1619 1620 static int de_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) 1621 { 1622 struct de_private *de = netdev_priv(dev); 1623 int rc; 1624 1625 spin_lock_irq(&de->lock); 1626 rc = __de_set_settings(de, ecmd); 1627 spin_unlock_irq(&de->lock); 1628 1629 return rc; 1630 } 1631 1632 static u32 de_get_msglevel(struct net_device *dev) 1633 { 1634 struct de_private *de = netdev_priv(dev); 1635 1636 return de->msg_enable; 1637 } 1638 1639 static void de_set_msglevel(struct net_device *dev, u32 msglvl) 1640 { 1641 struct de_private *de = netdev_priv(dev); 1642 1643 de->msg_enable = msglvl; 1644 } 1645 1646 static int de_get_eeprom(struct net_device *dev, 1647 struct ethtool_eeprom *eeprom, u8 *data) 1648 { 1649 struct de_private *de = netdev_priv(dev); 1650 1651 if (!de->ee_data) 1652 return -EOPNOTSUPP; 1653 if ((eeprom->offset != 0) || (eeprom->magic != 0) || 1654 (eeprom->len != DE_EEPROM_SIZE)) 1655 return -EINVAL; 1656 memcpy(data, de->ee_data, eeprom->len); 1657 1658 return 0; 1659 } 1660 1661 static int de_nway_reset(struct net_device *dev) 1662 { 1663 struct de_private *de = netdev_priv(dev); 1664 u32 status; 1665 1666 if (de->media_type != DE_MEDIA_TP_AUTO) 1667 return -EINVAL; 1668 if (netif_carrier_ok(de->dev)) 1669 de_link_down(de); 1670 1671 status = dr32(SIAStatus); 1672 dw32(SIAStatus, (status & ~NWayState) | NWayRestart); 1673 netif_info(de, link, dev, "link nway restart, status %x,%x\n", 1674 status, dr32(SIAStatus)); 1675 return 0; 1676 } 1677 1678 static void de_get_regs(struct net_device *dev, struct ethtool_regs *regs, 1679 void *data) 1680 { 1681 struct de_private *de = netdev_priv(dev); 1682 1683 regs->version = (DE_REGS_VER << 2) | de->de21040; 1684 1685 spin_lock_irq(&de->lock); 1686 __de_get_regs(de, data); 1687 spin_unlock_irq(&de->lock); 1688 } 1689 1690 static const struct ethtool_ops de_ethtool_ops = { 1691 .get_link = ethtool_op_get_link, 1692 .get_drvinfo = de_get_drvinfo, 1693 .get_regs_len = de_get_regs_len, 1694 .get_settings = de_get_settings, 1695 .set_settings = de_set_settings, 1696 .get_msglevel = de_get_msglevel, 1697 .set_msglevel = de_set_msglevel, 1698 .get_eeprom = de_get_eeprom, 1699 .nway_reset = de_nway_reset, 1700 .get_regs = de_get_regs, 1701 }; 1702 1703 static void de21040_get_mac_address(struct de_private *de) 1704 { 1705 unsigned i; 1706 1707 dw32 (ROMCmd, 0); /* Reset the pointer with a dummy write. */ 1708 udelay(5); 1709 1710 for (i = 0; i < 6; i++) { 1711 int value, boguscnt = 100000; 1712 do { 1713 value = dr32(ROMCmd); 1714 rmb(); 1715 } while (value < 0 && --boguscnt > 0); 1716 de->dev->dev_addr[i] = value; 1717 udelay(1); 1718 if (boguscnt <= 0) 1719 pr_warn("timeout reading 21040 MAC address byte %u\n", 1720 i); 1721 } 1722 } 1723 1724 static void de21040_get_media_info(struct de_private *de) 1725 { 1726 unsigned int i; 1727 1728 de->media_type = DE_MEDIA_TP; 1729 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Full | 1730 SUPPORTED_10baseT_Half | SUPPORTED_AUI; 1731 de->media_advertise = de->media_supported; 1732 1733 for (i = 0; i < DE_MAX_MEDIA; i++) { 1734 switch (i) { 1735 case DE_MEDIA_AUI: 1736 case DE_MEDIA_TP: 1737 case DE_MEDIA_TP_FD: 1738 de->media[i].type = i; 1739 de->media[i].csr13 = t21040_csr13[i]; 1740 de->media[i].csr14 = t21040_csr14[i]; 1741 de->media[i].csr15 = t21040_csr15[i]; 1742 break; 1743 default: 1744 de->media[i].type = DE_MEDIA_INVALID; 1745 break; 1746 } 1747 } 1748 } 1749 1750 /* Note: this routine returns extra data bits for size detection. */ 1751 static unsigned tulip_read_eeprom(void __iomem *regs, int location, 1752 int addr_len) 1753 { 1754 int i; 1755 unsigned retval = 0; 1756 void __iomem *ee_addr = regs + ROMCmd; 1757 int read_cmd = location | (EE_READ_CMD << addr_len); 1758 1759 writel(EE_ENB & ~EE_CS, ee_addr); 1760 writel(EE_ENB, ee_addr); 1761 1762 /* Shift the read command bits out. */ 1763 for (i = 4 + addr_len; i >= 0; i--) { 1764 short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0; 1765 writel(EE_ENB | dataval, ee_addr); 1766 readl(ee_addr); 1767 writel(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr); 1768 readl(ee_addr); 1769 retval = (retval << 1) | ((readl(ee_addr) & EE_DATA_READ) ? 1 : 0); 1770 } 1771 writel(EE_ENB, ee_addr); 1772 readl(ee_addr); 1773 1774 for (i = 16; i > 0; i--) { 1775 writel(EE_ENB | EE_SHIFT_CLK, ee_addr); 1776 readl(ee_addr); 1777 retval = (retval << 1) | ((readl(ee_addr) & EE_DATA_READ) ? 1 : 0); 1778 writel(EE_ENB, ee_addr); 1779 readl(ee_addr); 1780 } 1781 1782 /* Terminate the EEPROM access. */ 1783 writel(EE_ENB & ~EE_CS, ee_addr); 1784 return retval; 1785 } 1786 1787 static void de21041_get_srom_info(struct de_private *de) 1788 { 1789 unsigned i, sa_offset = 0, ofs; 1790 u8 ee_data[DE_EEPROM_SIZE + 6] = {}; 1791 unsigned ee_addr_size = tulip_read_eeprom(de->regs, 0xff, 8) & 0x40000 ? 8 : 6; 1792 struct de_srom_info_leaf *il; 1793 void *bufp; 1794 1795 /* download entire eeprom */ 1796 for (i = 0; i < DE_EEPROM_WORDS; i++) 1797 ((__le16 *)ee_data)[i] = 1798 cpu_to_le16(tulip_read_eeprom(de->regs, i, ee_addr_size)); 1799 1800 /* DEC now has a specification but early board makers 1801 just put the address in the first EEPROM locations. */ 1802 /* This does memcmp(eedata, eedata+16, 8) */ 1803 1804 #ifndef CONFIG_MIPS_COBALT 1805 1806 for (i = 0; i < 8; i ++) 1807 if (ee_data[i] != ee_data[16+i]) 1808 sa_offset = 20; 1809 1810 #endif 1811 1812 /* store MAC address */ 1813 for (i = 0; i < 6; i ++) 1814 de->dev->dev_addr[i] = ee_data[i + sa_offset]; 1815 1816 /* get offset of controller 0 info leaf. ignore 2nd byte. */ 1817 ofs = ee_data[SROMC0InfoLeaf]; 1818 if (ofs >= (sizeof(ee_data) - sizeof(struct de_srom_info_leaf) - sizeof(struct de_srom_media_block))) 1819 goto bad_srom; 1820 1821 /* get pointer to info leaf */ 1822 il = (struct de_srom_info_leaf *) &ee_data[ofs]; 1823 1824 /* paranoia checks */ 1825 if (il->n_blocks == 0) 1826 goto bad_srom; 1827 if ((sizeof(ee_data) - ofs) < 1828 (sizeof(struct de_srom_info_leaf) + (sizeof(struct de_srom_media_block) * il->n_blocks))) 1829 goto bad_srom; 1830 1831 /* get default media type */ 1832 switch (get_unaligned(&il->default_media)) { 1833 case 0x0001: de->media_type = DE_MEDIA_BNC; break; 1834 case 0x0002: de->media_type = DE_MEDIA_AUI; break; 1835 case 0x0204: de->media_type = DE_MEDIA_TP_FD; break; 1836 default: de->media_type = DE_MEDIA_TP_AUTO; break; 1837 } 1838 1839 if (netif_msg_probe(de)) 1840 pr_info("de%d: SROM leaf offset %u, default media %s\n", 1841 de->board_idx, ofs, media_name[de->media_type]); 1842 1843 /* init SIA register values to defaults */ 1844 for (i = 0; i < DE_MAX_MEDIA; i++) { 1845 de->media[i].type = DE_MEDIA_INVALID; 1846 de->media[i].csr13 = 0xffff; 1847 de->media[i].csr14 = 0xffff; 1848 de->media[i].csr15 = 0xffff; 1849 } 1850 1851 /* parse media blocks to see what medias are supported, 1852 * and if any custom CSR values are provided 1853 */ 1854 bufp = ((void *)il) + sizeof(*il); 1855 for (i = 0; i < il->n_blocks; i++) { 1856 struct de_srom_media_block *ib = bufp; 1857 unsigned idx; 1858 1859 /* index based on media type in media block */ 1860 switch(ib->opts & MediaBlockMask) { 1861 case 0: /* 10baseT */ 1862 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Half 1863 | SUPPORTED_Autoneg; 1864 idx = DE_MEDIA_TP; 1865 de->media[DE_MEDIA_TP_AUTO].type = DE_MEDIA_TP_AUTO; 1866 break; 1867 case 1: /* BNC */ 1868 de->media_supported |= SUPPORTED_BNC; 1869 idx = DE_MEDIA_BNC; 1870 break; 1871 case 2: /* AUI */ 1872 de->media_supported |= SUPPORTED_AUI; 1873 idx = DE_MEDIA_AUI; 1874 break; 1875 case 4: /* 10baseT-FD */ 1876 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Full 1877 | SUPPORTED_Autoneg; 1878 idx = DE_MEDIA_TP_FD; 1879 de->media[DE_MEDIA_TP_AUTO].type = DE_MEDIA_TP_AUTO; 1880 break; 1881 default: 1882 goto bad_srom; 1883 } 1884 1885 de->media[idx].type = idx; 1886 1887 if (netif_msg_probe(de)) 1888 pr_info("de%d: media block #%u: %s", 1889 de->board_idx, i, 1890 media_name[de->media[idx].type]); 1891 1892 bufp += sizeof (ib->opts); 1893 1894 if (ib->opts & MediaCustomCSRs) { 1895 de->media[idx].csr13 = get_unaligned(&ib->csr13); 1896 de->media[idx].csr14 = get_unaligned(&ib->csr14); 1897 de->media[idx].csr15 = get_unaligned(&ib->csr15); 1898 bufp += sizeof(ib->csr13) + sizeof(ib->csr14) + 1899 sizeof(ib->csr15); 1900 1901 if (netif_msg_probe(de)) 1902 pr_cont(" (%x,%x,%x)\n", 1903 de->media[idx].csr13, 1904 de->media[idx].csr14, 1905 de->media[idx].csr15); 1906 1907 } else { 1908 if (netif_msg_probe(de)) 1909 pr_cont("\n"); 1910 } 1911 1912 if (bufp > ((void *)&ee_data[DE_EEPROM_SIZE - 3])) 1913 break; 1914 } 1915 1916 de->media_advertise = de->media_supported; 1917 1918 fill_defaults: 1919 /* fill in defaults, for cases where custom CSRs not used */ 1920 for (i = 0; i < DE_MAX_MEDIA; i++) { 1921 if (de->media[i].csr13 == 0xffff) 1922 de->media[i].csr13 = t21041_csr13[i]; 1923 if (de->media[i].csr14 == 0xffff) { 1924 /* autonegotiation is broken at least on some chip 1925 revisions - rev. 0x21 works, 0x11 does not */ 1926 if (de->pdev->revision < 0x20) 1927 de->media[i].csr14 = t21041_csr14_brk[i]; 1928 else 1929 de->media[i].csr14 = t21041_csr14[i]; 1930 } 1931 if (de->media[i].csr15 == 0xffff) 1932 de->media[i].csr15 = t21041_csr15[i]; 1933 } 1934 1935 de->ee_data = kmemdup(&ee_data[0], DE_EEPROM_SIZE, GFP_KERNEL); 1936 1937 return; 1938 1939 bad_srom: 1940 /* for error cases, it's ok to assume we support all these */ 1941 for (i = 0; i < DE_MAX_MEDIA; i++) 1942 de->media[i].type = i; 1943 de->media_supported = 1944 SUPPORTED_10baseT_Half | 1945 SUPPORTED_10baseT_Full | 1946 SUPPORTED_Autoneg | 1947 SUPPORTED_TP | 1948 SUPPORTED_AUI | 1949 SUPPORTED_BNC; 1950 goto fill_defaults; 1951 } 1952 1953 static const struct net_device_ops de_netdev_ops = { 1954 .ndo_open = de_open, 1955 .ndo_stop = de_close, 1956 .ndo_set_rx_mode = de_set_rx_mode, 1957 .ndo_start_xmit = de_start_xmit, 1958 .ndo_get_stats = de_get_stats, 1959 .ndo_tx_timeout = de_tx_timeout, 1960 .ndo_change_mtu = eth_change_mtu, 1961 .ndo_set_mac_address = eth_mac_addr, 1962 .ndo_validate_addr = eth_validate_addr, 1963 }; 1964 1965 static int de_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 1966 { 1967 struct net_device *dev; 1968 struct de_private *de; 1969 int rc; 1970 void __iomem *regs; 1971 unsigned long pciaddr; 1972 static int board_idx = -1; 1973 1974 board_idx++; 1975 1976 #ifndef MODULE 1977 if (board_idx == 0) 1978 pr_info("%s\n", version); 1979 #endif 1980 1981 /* allocate a new ethernet device structure, and fill in defaults */ 1982 dev = alloc_etherdev(sizeof(struct de_private)); 1983 if (!dev) 1984 return -ENOMEM; 1985 1986 dev->netdev_ops = &de_netdev_ops; 1987 SET_NETDEV_DEV(dev, &pdev->dev); 1988 dev->ethtool_ops = &de_ethtool_ops; 1989 dev->watchdog_timeo = TX_TIMEOUT; 1990 1991 de = netdev_priv(dev); 1992 de->de21040 = ent->driver_data == 0 ? 1 : 0; 1993 de->pdev = pdev; 1994 de->dev = dev; 1995 de->msg_enable = (debug < 0 ? DE_DEF_MSG_ENABLE : debug); 1996 de->board_idx = board_idx; 1997 spin_lock_init (&de->lock); 1998 init_timer(&de->media_timer); 1999 if (de->de21040) 2000 de->media_timer.function = de21040_media_timer; 2001 else 2002 de->media_timer.function = de21041_media_timer; 2003 de->media_timer.data = (unsigned long) de; 2004 2005 netif_carrier_off(dev); 2006 2007 /* wake up device, assign resources */ 2008 rc = pci_enable_device(pdev); 2009 if (rc) 2010 goto err_out_free; 2011 2012 /* reserve PCI resources to ensure driver atomicity */ 2013 rc = pci_request_regions(pdev, DRV_NAME); 2014 if (rc) 2015 goto err_out_disable; 2016 2017 /* check for invalid IRQ value */ 2018 if (pdev->irq < 2) { 2019 rc = -EIO; 2020 pr_err("invalid irq (%d) for pci dev %s\n", 2021 pdev->irq, pci_name(pdev)); 2022 goto err_out_res; 2023 } 2024 2025 /* obtain and check validity of PCI I/O address */ 2026 pciaddr = pci_resource_start(pdev, 1); 2027 if (!pciaddr) { 2028 rc = -EIO; 2029 pr_err("no MMIO resource for pci dev %s\n", pci_name(pdev)); 2030 goto err_out_res; 2031 } 2032 if (pci_resource_len(pdev, 1) < DE_REGS_SIZE) { 2033 rc = -EIO; 2034 pr_err("MMIO resource (%llx) too small on pci dev %s\n", 2035 (unsigned long long)pci_resource_len(pdev, 1), 2036 pci_name(pdev)); 2037 goto err_out_res; 2038 } 2039 2040 /* remap CSR registers */ 2041 regs = ioremap_nocache(pciaddr, DE_REGS_SIZE); 2042 if (!regs) { 2043 rc = -EIO; 2044 pr_err("Cannot map PCI MMIO (%llx@%lx) on pci dev %s\n", 2045 (unsigned long long)pci_resource_len(pdev, 1), 2046 pciaddr, pci_name(pdev)); 2047 goto err_out_res; 2048 } 2049 de->regs = regs; 2050 2051 de_adapter_wake(de); 2052 2053 /* make sure hardware is not running */ 2054 rc = de_reset_mac(de); 2055 if (rc) { 2056 pr_err("Cannot reset MAC, pci dev %s\n", pci_name(pdev)); 2057 goto err_out_iomap; 2058 } 2059 2060 /* get MAC address, initialize default media type and 2061 * get list of supported media 2062 */ 2063 if (de->de21040) { 2064 de21040_get_mac_address(de); 2065 de21040_get_media_info(de); 2066 } else { 2067 de21041_get_srom_info(de); 2068 } 2069 2070 /* register new network interface with kernel */ 2071 rc = register_netdev(dev); 2072 if (rc) 2073 goto err_out_iomap; 2074 2075 /* print info about board and interface just registered */ 2076 netdev_info(dev, "%s at %p, %pM, IRQ %d\n", 2077 de->de21040 ? "21040" : "21041", 2078 regs, dev->dev_addr, pdev->irq); 2079 2080 pci_set_drvdata(pdev, dev); 2081 2082 /* enable busmastering */ 2083 pci_set_master(pdev); 2084 2085 /* put adapter to sleep */ 2086 de_adapter_sleep(de); 2087 2088 return 0; 2089 2090 err_out_iomap: 2091 kfree(de->ee_data); 2092 iounmap(regs); 2093 err_out_res: 2094 pci_release_regions(pdev); 2095 err_out_disable: 2096 pci_disable_device(pdev); 2097 err_out_free: 2098 free_netdev(dev); 2099 return rc; 2100 } 2101 2102 static void de_remove_one(struct pci_dev *pdev) 2103 { 2104 struct net_device *dev = pci_get_drvdata(pdev); 2105 struct de_private *de = netdev_priv(dev); 2106 2107 BUG_ON(!dev); 2108 unregister_netdev(dev); 2109 kfree(de->ee_data); 2110 iounmap(de->regs); 2111 pci_release_regions(pdev); 2112 pci_disable_device(pdev); 2113 free_netdev(dev); 2114 } 2115 2116 #ifdef CONFIG_PM 2117 2118 static int de_suspend (struct pci_dev *pdev, pm_message_t state) 2119 { 2120 struct net_device *dev = pci_get_drvdata (pdev); 2121 struct de_private *de = netdev_priv(dev); 2122 2123 rtnl_lock(); 2124 if (netif_running (dev)) { 2125 const int irq = pdev->irq; 2126 2127 del_timer_sync(&de->media_timer); 2128 2129 disable_irq(irq); 2130 spin_lock_irq(&de->lock); 2131 2132 de_stop_hw(de); 2133 netif_stop_queue(dev); 2134 netif_device_detach(dev); 2135 netif_carrier_off(dev); 2136 2137 spin_unlock_irq(&de->lock); 2138 enable_irq(irq); 2139 2140 /* Update the error counts. */ 2141 __de_get_stats(de); 2142 2143 synchronize_irq(irq); 2144 de_clean_rings(de); 2145 2146 de_adapter_sleep(de); 2147 pci_disable_device(pdev); 2148 } else { 2149 netif_device_detach(dev); 2150 } 2151 rtnl_unlock(); 2152 return 0; 2153 } 2154 2155 static int de_resume (struct pci_dev *pdev) 2156 { 2157 struct net_device *dev = pci_get_drvdata (pdev); 2158 struct de_private *de = netdev_priv(dev); 2159 int retval = 0; 2160 2161 rtnl_lock(); 2162 if (netif_device_present(dev)) 2163 goto out; 2164 if (!netif_running(dev)) 2165 goto out_attach; 2166 if ((retval = pci_enable_device(pdev))) { 2167 netdev_err(dev, "pci_enable_device failed in resume\n"); 2168 goto out; 2169 } 2170 pci_set_master(pdev); 2171 de_init_rings(de); 2172 de_init_hw(de); 2173 out_attach: 2174 netif_device_attach(dev); 2175 out: 2176 rtnl_unlock(); 2177 return 0; 2178 } 2179 2180 #endif /* CONFIG_PM */ 2181 2182 static struct pci_driver de_driver = { 2183 .name = DRV_NAME, 2184 .id_table = de_pci_tbl, 2185 .probe = de_init_one, 2186 .remove = de_remove_one, 2187 #ifdef CONFIG_PM 2188 .suspend = de_suspend, 2189 .resume = de_resume, 2190 #endif 2191 }; 2192 2193 static int __init de_init (void) 2194 { 2195 #ifdef MODULE 2196 pr_info("%s\n", version); 2197 #endif 2198 return pci_register_driver(&de_driver); 2199 } 2200 2201 static void __exit de_exit (void) 2202 { 2203 pci_unregister_driver (&de_driver); 2204 } 2205 2206 module_init(de_init); 2207 module_exit(de_exit); 2208