xref: /linux/drivers/net/ethernet/davicom/dm9000.c (revision 9edd576d89a5b6d3e136d7dcab654d887c0d25b7)
1 /*
2  *      Davicom DM9000 Fast Ethernet driver for Linux.
3  * 	Copyright (C) 1997  Sten Wang
4  *
5  * 	This program is free software; you can redistribute it and/or
6  * 	modify it under the terms of the GNU General Public License
7  * 	as published by the Free Software Foundation; either version 2
8  * 	of the License, or (at your option) any later version.
9  *
10  * 	This program is distributed in the hope that it will be useful,
11  * 	but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * 	GNU General Public License for more details.
14  *
15  * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
16  *
17  * Additional updates, Copyright:
18  *	Ben Dooks <ben@simtec.co.uk>
19  *	Sascha Hauer <s.hauer@pengutronix.de>
20  */
21 
22 #include <linux/module.h>
23 #include <linux/ioport.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/skbuff.h>
29 #include <linux/spinlock.h>
30 #include <linux/crc32.h>
31 #include <linux/mii.h>
32 #include <linux/ethtool.h>
33 #include <linux/dm9000.h>
34 #include <linux/delay.h>
35 #include <linux/platform_device.h>
36 #include <linux/irq.h>
37 #include <linux/slab.h>
38 
39 #include <asm/delay.h>
40 #include <asm/irq.h>
41 #include <asm/io.h>
42 
43 #include "dm9000.h"
44 
45 /* Board/System/Debug information/definition ---------------- */
46 
47 #define DM9000_PHY		0x40	/* PHY address 0x01 */
48 
49 #define CARDNAME	"dm9000"
50 #define DRV_VERSION	"1.31"
51 
52 /*
53  * Transmit timeout, default 5 seconds.
54  */
55 static int watchdog = 5000;
56 module_param(watchdog, int, 0400);
57 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
58 
59 /*
60  * Debug messages level
61  */
62 static int debug;
63 module_param(debug, int, 0644);
64 MODULE_PARM_DESC(debug, "dm9000 debug level (0-4)");
65 
66 /* DM9000 register address locking.
67  *
68  * The DM9000 uses an address register to control where data written
69  * to the data register goes. This means that the address register
70  * must be preserved over interrupts or similar calls.
71  *
72  * During interrupt and other critical calls, a spinlock is used to
73  * protect the system, but the calls themselves save the address
74  * in the address register in case they are interrupting another
75  * access to the device.
76  *
77  * For general accesses a lock is provided so that calls which are
78  * allowed to sleep are serialised so that the address register does
79  * not need to be saved. This lock also serves to serialise access
80  * to the EEPROM and PHY access registers which are shared between
81  * these two devices.
82  */
83 
84 /* The driver supports the original DM9000E, and now the two newer
85  * devices, DM9000A and DM9000B.
86  */
87 
88 enum dm9000_type {
89 	TYPE_DM9000E,	/* original DM9000 */
90 	TYPE_DM9000A,
91 	TYPE_DM9000B
92 };
93 
94 /* Structure/enum declaration ------------------------------- */
95 typedef struct board_info {
96 
97 	void __iomem	*io_addr;	/* Register I/O base address */
98 	void __iomem	*io_data;	/* Data I/O address */
99 	u16		 irq;		/* IRQ */
100 
101 	u16		tx_pkt_cnt;
102 	u16		queue_pkt_len;
103 	u16		queue_start_addr;
104 	u16		queue_ip_summed;
105 	u16		dbug_cnt;
106 	u8		io_mode;		/* 0:word, 2:byte */
107 	u8		phy_addr;
108 	u8		imr_all;
109 
110 	unsigned int	flags;
111 	unsigned int	in_suspend :1;
112 	unsigned int	wake_supported :1;
113 
114 	enum dm9000_type type;
115 
116 	void (*inblk)(void __iomem *port, void *data, int length);
117 	void (*outblk)(void __iomem *port, void *data, int length);
118 	void (*dumpblk)(void __iomem *port, int length);
119 
120 	struct device	*dev;	     /* parent device */
121 
122 	struct resource	*addr_res;   /* resources found */
123 	struct resource *data_res;
124 	struct resource	*addr_req;   /* resources requested */
125 	struct resource *data_req;
126 	struct resource *irq_res;
127 
128 	int		 irq_wake;
129 
130 	struct mutex	 addr_lock;	/* phy and eeprom access lock */
131 
132 	struct delayed_work phy_poll;
133 	struct net_device  *ndev;
134 
135 	spinlock_t	lock;
136 
137 	struct mii_if_info mii;
138 	u32		msg_enable;
139 	u32		wake_state;
140 
141 	int		ip_summed;
142 } board_info_t;
143 
144 /* debug code */
145 
146 #define dm9000_dbg(db, lev, msg...) do {		\
147 	if ((lev) < debug) {				\
148 		dev_dbg(db->dev, msg);			\
149 	}						\
150 } while (0)
151 
152 static inline board_info_t *to_dm9000_board(struct net_device *dev)
153 {
154 	return netdev_priv(dev);
155 }
156 
157 /* DM9000 network board routine ---------------------------- */
158 
159 static void
160 dm9000_reset(board_info_t * db)
161 {
162 	dev_dbg(db->dev, "resetting device\n");
163 
164 	/* RESET device */
165 	writeb(DM9000_NCR, db->io_addr);
166 	udelay(200);
167 	writeb(NCR_RST, db->io_data);
168 	udelay(200);
169 }
170 
171 /*
172  *   Read a byte from I/O port
173  */
174 static u8
175 ior(board_info_t * db, int reg)
176 {
177 	writeb(reg, db->io_addr);
178 	return readb(db->io_data);
179 }
180 
181 /*
182  *   Write a byte to I/O port
183  */
184 
185 static void
186 iow(board_info_t * db, int reg, int value)
187 {
188 	writeb(reg, db->io_addr);
189 	writeb(value, db->io_data);
190 }
191 
192 /* routines for sending block to chip */
193 
194 static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
195 {
196 	writesb(reg, data, count);
197 }
198 
199 static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
200 {
201 	writesw(reg, data, (count+1) >> 1);
202 }
203 
204 static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
205 {
206 	writesl(reg, data, (count+3) >> 2);
207 }
208 
209 /* input block from chip to memory */
210 
211 static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
212 {
213 	readsb(reg, data, count);
214 }
215 
216 
217 static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
218 {
219 	readsw(reg, data, (count+1) >> 1);
220 }
221 
222 static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
223 {
224 	readsl(reg, data, (count+3) >> 2);
225 }
226 
227 /* dump block from chip to null */
228 
229 static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
230 {
231 	int i;
232 	int tmp;
233 
234 	for (i = 0; i < count; i++)
235 		tmp = readb(reg);
236 }
237 
238 static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
239 {
240 	int i;
241 	int tmp;
242 
243 	count = (count + 1) >> 1;
244 
245 	for (i = 0; i < count; i++)
246 		tmp = readw(reg);
247 }
248 
249 static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
250 {
251 	int i;
252 	int tmp;
253 
254 	count = (count + 3) >> 2;
255 
256 	for (i = 0; i < count; i++)
257 		tmp = readl(reg);
258 }
259 
260 /* dm9000_set_io
261  *
262  * select the specified set of io routines to use with the
263  * device
264  */
265 
266 static void dm9000_set_io(struct board_info *db, int byte_width)
267 {
268 	/* use the size of the data resource to work out what IO
269 	 * routines we want to use
270 	 */
271 
272 	switch (byte_width) {
273 	case 1:
274 		db->dumpblk = dm9000_dumpblk_8bit;
275 		db->outblk  = dm9000_outblk_8bit;
276 		db->inblk   = dm9000_inblk_8bit;
277 		break;
278 
279 
280 	case 3:
281 		dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
282 	case 2:
283 		db->dumpblk = dm9000_dumpblk_16bit;
284 		db->outblk  = dm9000_outblk_16bit;
285 		db->inblk   = dm9000_inblk_16bit;
286 		break;
287 
288 	case 4:
289 	default:
290 		db->dumpblk = dm9000_dumpblk_32bit;
291 		db->outblk  = dm9000_outblk_32bit;
292 		db->inblk   = dm9000_inblk_32bit;
293 		break;
294 	}
295 }
296 
297 static void dm9000_schedule_poll(board_info_t *db)
298 {
299 	if (db->type == TYPE_DM9000E)
300 		schedule_delayed_work(&db->phy_poll, HZ * 2);
301 }
302 
303 static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
304 {
305 	board_info_t *dm = to_dm9000_board(dev);
306 
307 	if (!netif_running(dev))
308 		return -EINVAL;
309 
310 	return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
311 }
312 
313 static unsigned int
314 dm9000_read_locked(board_info_t *db, int reg)
315 {
316 	unsigned long flags;
317 	unsigned int ret;
318 
319 	spin_lock_irqsave(&db->lock, flags);
320 	ret = ior(db, reg);
321 	spin_unlock_irqrestore(&db->lock, flags);
322 
323 	return ret;
324 }
325 
326 static int dm9000_wait_eeprom(board_info_t *db)
327 {
328 	unsigned int status;
329 	int timeout = 8;	/* wait max 8msec */
330 
331 	/* The DM9000 data sheets say we should be able to
332 	 * poll the ERRE bit in EPCR to wait for the EEPROM
333 	 * operation. From testing several chips, this bit
334 	 * does not seem to work.
335 	 *
336 	 * We attempt to use the bit, but fall back to the
337 	 * timeout (which is why we do not return an error
338 	 * on expiry) to say that the EEPROM operation has
339 	 * completed.
340 	 */
341 
342 	while (1) {
343 		status = dm9000_read_locked(db, DM9000_EPCR);
344 
345 		if ((status & EPCR_ERRE) == 0)
346 			break;
347 
348 		msleep(1);
349 
350 		if (timeout-- < 0) {
351 			dev_dbg(db->dev, "timeout waiting EEPROM\n");
352 			break;
353 		}
354 	}
355 
356 	return 0;
357 }
358 
359 /*
360  *  Read a word data from EEPROM
361  */
362 static void
363 dm9000_read_eeprom(board_info_t *db, int offset, u8 *to)
364 {
365 	unsigned long flags;
366 
367 	if (db->flags & DM9000_PLATF_NO_EEPROM) {
368 		to[0] = 0xff;
369 		to[1] = 0xff;
370 		return;
371 	}
372 
373 	mutex_lock(&db->addr_lock);
374 
375 	spin_lock_irqsave(&db->lock, flags);
376 
377 	iow(db, DM9000_EPAR, offset);
378 	iow(db, DM9000_EPCR, EPCR_ERPRR);
379 
380 	spin_unlock_irqrestore(&db->lock, flags);
381 
382 	dm9000_wait_eeprom(db);
383 
384 	/* delay for at-least 150uS */
385 	msleep(1);
386 
387 	spin_lock_irqsave(&db->lock, flags);
388 
389 	iow(db, DM9000_EPCR, 0x0);
390 
391 	to[0] = ior(db, DM9000_EPDRL);
392 	to[1] = ior(db, DM9000_EPDRH);
393 
394 	spin_unlock_irqrestore(&db->lock, flags);
395 
396 	mutex_unlock(&db->addr_lock);
397 }
398 
399 /*
400  * Write a word data to SROM
401  */
402 static void
403 dm9000_write_eeprom(board_info_t *db, int offset, u8 *data)
404 {
405 	unsigned long flags;
406 
407 	if (db->flags & DM9000_PLATF_NO_EEPROM)
408 		return;
409 
410 	mutex_lock(&db->addr_lock);
411 
412 	spin_lock_irqsave(&db->lock, flags);
413 	iow(db, DM9000_EPAR, offset);
414 	iow(db, DM9000_EPDRH, data[1]);
415 	iow(db, DM9000_EPDRL, data[0]);
416 	iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
417 	spin_unlock_irqrestore(&db->lock, flags);
418 
419 	dm9000_wait_eeprom(db);
420 
421 	mdelay(1);	/* wait at least 150uS to clear */
422 
423 	spin_lock_irqsave(&db->lock, flags);
424 	iow(db, DM9000_EPCR, 0);
425 	spin_unlock_irqrestore(&db->lock, flags);
426 
427 	mutex_unlock(&db->addr_lock);
428 }
429 
430 /* ethtool ops */
431 
432 static void dm9000_get_drvinfo(struct net_device *dev,
433 			       struct ethtool_drvinfo *info)
434 {
435 	board_info_t *dm = to_dm9000_board(dev);
436 
437 	strcpy(info->driver, CARDNAME);
438 	strcpy(info->version, DRV_VERSION);
439 	strcpy(info->bus_info, to_platform_device(dm->dev)->name);
440 }
441 
442 static u32 dm9000_get_msglevel(struct net_device *dev)
443 {
444 	board_info_t *dm = to_dm9000_board(dev);
445 
446 	return dm->msg_enable;
447 }
448 
449 static void dm9000_set_msglevel(struct net_device *dev, u32 value)
450 {
451 	board_info_t *dm = to_dm9000_board(dev);
452 
453 	dm->msg_enable = value;
454 }
455 
456 static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
457 {
458 	board_info_t *dm = to_dm9000_board(dev);
459 
460 	mii_ethtool_gset(&dm->mii, cmd);
461 	return 0;
462 }
463 
464 static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
465 {
466 	board_info_t *dm = to_dm9000_board(dev);
467 
468 	return mii_ethtool_sset(&dm->mii, cmd);
469 }
470 
471 static int dm9000_nway_reset(struct net_device *dev)
472 {
473 	board_info_t *dm = to_dm9000_board(dev);
474 	return mii_nway_restart(&dm->mii);
475 }
476 
477 static int dm9000_set_features(struct net_device *dev,
478 	netdev_features_t features)
479 {
480 	board_info_t *dm = to_dm9000_board(dev);
481 	netdev_features_t changed = dev->features ^ features;
482 	unsigned long flags;
483 
484 	if (!(changed & NETIF_F_RXCSUM))
485 		return 0;
486 
487 	spin_lock_irqsave(&dm->lock, flags);
488 	iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
489 	spin_unlock_irqrestore(&dm->lock, flags);
490 
491 	return 0;
492 }
493 
494 static u32 dm9000_get_link(struct net_device *dev)
495 {
496 	board_info_t *dm = to_dm9000_board(dev);
497 	u32 ret;
498 
499 	if (dm->flags & DM9000_PLATF_EXT_PHY)
500 		ret = mii_link_ok(&dm->mii);
501 	else
502 		ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
503 
504 	return ret;
505 }
506 
507 #define DM_EEPROM_MAGIC		(0x444D394B)
508 
509 static int dm9000_get_eeprom_len(struct net_device *dev)
510 {
511 	return 128;
512 }
513 
514 static int dm9000_get_eeprom(struct net_device *dev,
515 			     struct ethtool_eeprom *ee, u8 *data)
516 {
517 	board_info_t *dm = to_dm9000_board(dev);
518 	int offset = ee->offset;
519 	int len = ee->len;
520 	int i;
521 
522 	/* EEPROM access is aligned to two bytes */
523 
524 	if ((len & 1) != 0 || (offset & 1) != 0)
525 		return -EINVAL;
526 
527 	if (dm->flags & DM9000_PLATF_NO_EEPROM)
528 		return -ENOENT;
529 
530 	ee->magic = DM_EEPROM_MAGIC;
531 
532 	for (i = 0; i < len; i += 2)
533 		dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
534 
535 	return 0;
536 }
537 
538 static int dm9000_set_eeprom(struct net_device *dev,
539 			     struct ethtool_eeprom *ee, u8 *data)
540 {
541 	board_info_t *dm = to_dm9000_board(dev);
542 	int offset = ee->offset;
543 	int len = ee->len;
544 	int done;
545 
546 	/* EEPROM access is aligned to two bytes */
547 
548 	if (dm->flags & DM9000_PLATF_NO_EEPROM)
549 		return -ENOENT;
550 
551 	if (ee->magic != DM_EEPROM_MAGIC)
552 		return -EINVAL;
553 
554 	while (len > 0) {
555 		if (len & 1 || offset & 1) {
556 			int which = offset & 1;
557 			u8 tmp[2];
558 
559 			dm9000_read_eeprom(dm, offset / 2, tmp);
560 			tmp[which] = *data;
561 			dm9000_write_eeprom(dm, offset / 2, tmp);
562 
563 			done = 1;
564 		} else {
565 			dm9000_write_eeprom(dm, offset / 2, data);
566 			done = 2;
567 		}
568 
569 		data += done;
570 		offset += done;
571 		len -= done;
572 	}
573 
574 	return 0;
575 }
576 
577 static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
578 {
579 	board_info_t *dm = to_dm9000_board(dev);
580 
581 	memset(w, 0, sizeof(struct ethtool_wolinfo));
582 
583 	/* note, we could probably support wake-phy too */
584 	w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
585 	w->wolopts = dm->wake_state;
586 }
587 
588 static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
589 {
590 	board_info_t *dm = to_dm9000_board(dev);
591 	unsigned long flags;
592 	u32 opts = w->wolopts;
593 	u32 wcr = 0;
594 
595 	if (!dm->wake_supported)
596 		return -EOPNOTSUPP;
597 
598 	if (opts & ~WAKE_MAGIC)
599 		return -EINVAL;
600 
601 	if (opts & WAKE_MAGIC)
602 		wcr |= WCR_MAGICEN;
603 
604 	mutex_lock(&dm->addr_lock);
605 
606 	spin_lock_irqsave(&dm->lock, flags);
607 	iow(dm, DM9000_WCR, wcr);
608 	spin_unlock_irqrestore(&dm->lock, flags);
609 
610 	mutex_unlock(&dm->addr_lock);
611 
612 	if (dm->wake_state != opts) {
613 		/* change in wol state, update IRQ state */
614 
615 		if (!dm->wake_state)
616 			irq_set_irq_wake(dm->irq_wake, 1);
617 		else if (dm->wake_state && !opts)
618 			irq_set_irq_wake(dm->irq_wake, 0);
619 	}
620 
621 	dm->wake_state = opts;
622 	return 0;
623 }
624 
625 static const struct ethtool_ops dm9000_ethtool_ops = {
626 	.get_drvinfo		= dm9000_get_drvinfo,
627 	.get_settings		= dm9000_get_settings,
628 	.set_settings		= dm9000_set_settings,
629 	.get_msglevel		= dm9000_get_msglevel,
630 	.set_msglevel		= dm9000_set_msglevel,
631 	.nway_reset		= dm9000_nway_reset,
632 	.get_link		= dm9000_get_link,
633 	.get_wol		= dm9000_get_wol,
634 	.set_wol		= dm9000_set_wol,
635  	.get_eeprom_len		= dm9000_get_eeprom_len,
636  	.get_eeprom		= dm9000_get_eeprom,
637  	.set_eeprom		= dm9000_set_eeprom,
638 };
639 
640 static void dm9000_show_carrier(board_info_t *db,
641 				unsigned carrier, unsigned nsr)
642 {
643 	struct net_device *ndev = db->ndev;
644 	unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
645 
646 	if (carrier)
647 		dev_info(db->dev, "%s: link up, %dMbps, %s-duplex, no LPA\n",
648 			 ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
649 			 (ncr & NCR_FDX) ? "full" : "half");
650 	else
651 		dev_info(db->dev, "%s: link down\n", ndev->name);
652 }
653 
654 static void
655 dm9000_poll_work(struct work_struct *w)
656 {
657 	struct delayed_work *dw = to_delayed_work(w);
658 	board_info_t *db = container_of(dw, board_info_t, phy_poll);
659 	struct net_device *ndev = db->ndev;
660 
661 	if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
662 	    !(db->flags & DM9000_PLATF_EXT_PHY)) {
663 		unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
664 		unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
665 		unsigned new_carrier;
666 
667 		new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
668 
669 		if (old_carrier != new_carrier) {
670 			if (netif_msg_link(db))
671 				dm9000_show_carrier(db, new_carrier, nsr);
672 
673 			if (!new_carrier)
674 				netif_carrier_off(ndev);
675 			else
676 				netif_carrier_on(ndev);
677 		}
678 	} else
679 		mii_check_media(&db->mii, netif_msg_link(db), 0);
680 
681 	if (netif_running(ndev))
682 		dm9000_schedule_poll(db);
683 }
684 
685 /* dm9000_release_board
686  *
687  * release a board, and any mapped resources
688  */
689 
690 static void
691 dm9000_release_board(struct platform_device *pdev, struct board_info *db)
692 {
693 	/* unmap our resources */
694 
695 	iounmap(db->io_addr);
696 	iounmap(db->io_data);
697 
698 	/* release the resources */
699 
700 	release_resource(db->data_req);
701 	kfree(db->data_req);
702 
703 	release_resource(db->addr_req);
704 	kfree(db->addr_req);
705 }
706 
707 static unsigned char dm9000_type_to_char(enum dm9000_type type)
708 {
709 	switch (type) {
710 	case TYPE_DM9000E: return 'e';
711 	case TYPE_DM9000A: return 'a';
712 	case TYPE_DM9000B: return 'b';
713 	}
714 
715 	return '?';
716 }
717 
718 /*
719  *  Set DM9000 multicast address
720  */
721 static void
722 dm9000_hash_table_unlocked(struct net_device *dev)
723 {
724 	board_info_t *db = netdev_priv(dev);
725 	struct netdev_hw_addr *ha;
726 	int i, oft;
727 	u32 hash_val;
728 	u16 hash_table[4];
729 	u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
730 
731 	dm9000_dbg(db, 1, "entering %s\n", __func__);
732 
733 	for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
734 		iow(db, oft, dev->dev_addr[i]);
735 
736 	/* Clear Hash Table */
737 	for (i = 0; i < 4; i++)
738 		hash_table[i] = 0x0;
739 
740 	/* broadcast address */
741 	hash_table[3] = 0x8000;
742 
743 	if (dev->flags & IFF_PROMISC)
744 		rcr |= RCR_PRMSC;
745 
746 	if (dev->flags & IFF_ALLMULTI)
747 		rcr |= RCR_ALL;
748 
749 	/* the multicast address in Hash Table : 64 bits */
750 	netdev_for_each_mc_addr(ha, dev) {
751 		hash_val = ether_crc_le(6, ha->addr) & 0x3f;
752 		hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
753 	}
754 
755 	/* Write the hash table to MAC MD table */
756 	for (i = 0, oft = DM9000_MAR; i < 4; i++) {
757 		iow(db, oft++, hash_table[i]);
758 		iow(db, oft++, hash_table[i] >> 8);
759 	}
760 
761 	iow(db, DM9000_RCR, rcr);
762 }
763 
764 static void
765 dm9000_hash_table(struct net_device *dev)
766 {
767 	board_info_t *db = netdev_priv(dev);
768 	unsigned long flags;
769 
770 	spin_lock_irqsave(&db->lock, flags);
771 	dm9000_hash_table_unlocked(dev);
772 	spin_unlock_irqrestore(&db->lock, flags);
773 }
774 
775 /*
776  * Initialize dm9000 board
777  */
778 static void
779 dm9000_init_dm9000(struct net_device *dev)
780 {
781 	board_info_t *db = netdev_priv(dev);
782 	unsigned int imr;
783 	unsigned int ncr;
784 
785 	dm9000_dbg(db, 1, "entering %s\n", __func__);
786 
787 	/* I/O mode */
788 	db->io_mode = ior(db, DM9000_ISR) >> 6;	/* ISR bit7:6 keeps I/O mode */
789 
790 	/* Checksum mode */
791 	if (dev->hw_features & NETIF_F_RXCSUM)
792 		iow(db, DM9000_RCSR,
793 			(dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
794 
795 	iow(db, DM9000_GPCR, GPCR_GEP_CNTL);	/* Let GPIO0 output */
796 
797 	ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
798 
799 	/* if wol is needed, then always set NCR_WAKEEN otherwise we end
800 	 * up dumping the wake events if we disable this. There is already
801 	 * a wake-mask in DM9000_WCR */
802 	if (db->wake_supported)
803 		ncr |= NCR_WAKEEN;
804 
805 	iow(db, DM9000_NCR, ncr);
806 
807 	/* Program operating register */
808 	iow(db, DM9000_TCR, 0);	        /* TX Polling clear */
809 	iow(db, DM9000_BPTR, 0x3f);	/* Less 3Kb, 200us */
810 	iow(db, DM9000_FCR, 0xff);	/* Flow Control */
811 	iow(db, DM9000_SMCR, 0);        /* Special Mode */
812 	/* clear TX status */
813 	iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
814 	iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
815 
816 	/* Set address filter table */
817 	dm9000_hash_table_unlocked(dev);
818 
819 	imr = IMR_PAR | IMR_PTM | IMR_PRM;
820 	if (db->type != TYPE_DM9000E)
821 		imr |= IMR_LNKCHNG;
822 
823 	db->imr_all = imr;
824 
825 	/* Enable TX/RX interrupt mask */
826 	iow(db, DM9000_IMR, imr);
827 
828 	/* Init Driver variable */
829 	db->tx_pkt_cnt = 0;
830 	db->queue_pkt_len = 0;
831 	dev->trans_start = jiffies;
832 }
833 
834 /* Our watchdog timed out. Called by the networking layer */
835 static void dm9000_timeout(struct net_device *dev)
836 {
837 	board_info_t *db = netdev_priv(dev);
838 	u8 reg_save;
839 	unsigned long flags;
840 
841 	/* Save previous register address */
842 	spin_lock_irqsave(&db->lock, flags);
843 	reg_save = readb(db->io_addr);
844 
845 	netif_stop_queue(dev);
846 	dm9000_reset(db);
847 	dm9000_init_dm9000(dev);
848 	/* We can accept TX packets again */
849 	dev->trans_start = jiffies; /* prevent tx timeout */
850 	netif_wake_queue(dev);
851 
852 	/* Restore previous register address */
853 	writeb(reg_save, db->io_addr);
854 	spin_unlock_irqrestore(&db->lock, flags);
855 }
856 
857 static void dm9000_send_packet(struct net_device *dev,
858 			       int ip_summed,
859 			       u16 pkt_len)
860 {
861 	board_info_t *dm = to_dm9000_board(dev);
862 
863 	/* The DM9000 is not smart enough to leave fragmented packets alone. */
864 	if (dm->ip_summed != ip_summed) {
865 		if (ip_summed == CHECKSUM_NONE)
866 			iow(dm, DM9000_TCCR, 0);
867 		else
868 			iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
869 		dm->ip_summed = ip_summed;
870 	}
871 
872 	/* Set TX length to DM9000 */
873 	iow(dm, DM9000_TXPLL, pkt_len);
874 	iow(dm, DM9000_TXPLH, pkt_len >> 8);
875 
876 	/* Issue TX polling command */
877 	iow(dm, DM9000_TCR, TCR_TXREQ);	/* Cleared after TX complete */
878 }
879 
880 /*
881  *  Hardware start transmission.
882  *  Send a packet to media from the upper layer.
883  */
884 static int
885 dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
886 {
887 	unsigned long flags;
888 	board_info_t *db = netdev_priv(dev);
889 
890 	dm9000_dbg(db, 3, "%s:\n", __func__);
891 
892 	if (db->tx_pkt_cnt > 1)
893 		return NETDEV_TX_BUSY;
894 
895 	spin_lock_irqsave(&db->lock, flags);
896 
897 	/* Move data to DM9000 TX RAM */
898 	writeb(DM9000_MWCMD, db->io_addr);
899 
900 	(db->outblk)(db->io_data, skb->data, skb->len);
901 	dev->stats.tx_bytes += skb->len;
902 
903 	db->tx_pkt_cnt++;
904 	/* TX control: First packet immediately send, second packet queue */
905 	if (db->tx_pkt_cnt == 1) {
906 		dm9000_send_packet(dev, skb->ip_summed, skb->len);
907 	} else {
908 		/* Second packet */
909 		db->queue_pkt_len = skb->len;
910 		db->queue_ip_summed = skb->ip_summed;
911 		netif_stop_queue(dev);
912 	}
913 
914 	spin_unlock_irqrestore(&db->lock, flags);
915 
916 	/* free this SKB */
917 	dev_kfree_skb(skb);
918 
919 	return NETDEV_TX_OK;
920 }
921 
922 /*
923  * DM9000 interrupt handler
924  * receive the packet to upper layer, free the transmitted packet
925  */
926 
927 static void dm9000_tx_done(struct net_device *dev, board_info_t *db)
928 {
929 	int tx_status = ior(db, DM9000_NSR);	/* Got TX status */
930 
931 	if (tx_status & (NSR_TX2END | NSR_TX1END)) {
932 		/* One packet sent complete */
933 		db->tx_pkt_cnt--;
934 		dev->stats.tx_packets++;
935 
936 		if (netif_msg_tx_done(db))
937 			dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
938 
939 		/* Queue packet check & send */
940 		if (db->tx_pkt_cnt > 0)
941 			dm9000_send_packet(dev, db->queue_ip_summed,
942 					   db->queue_pkt_len);
943 		netif_wake_queue(dev);
944 	}
945 }
946 
947 struct dm9000_rxhdr {
948 	u8	RxPktReady;
949 	u8	RxStatus;
950 	__le16	RxLen;
951 } __packed;
952 
953 /*
954  *  Received a packet and pass to upper layer
955  */
956 static void
957 dm9000_rx(struct net_device *dev)
958 {
959 	board_info_t *db = netdev_priv(dev);
960 	struct dm9000_rxhdr rxhdr;
961 	struct sk_buff *skb;
962 	u8 rxbyte, *rdptr;
963 	bool GoodPacket;
964 	int RxLen;
965 
966 	/* Check packet ready or not */
967 	do {
968 		ior(db, DM9000_MRCMDX);	/* Dummy read */
969 
970 		/* Get most updated data */
971 		rxbyte = readb(db->io_data);
972 
973 		/* Status check: this byte must be 0 or 1 */
974 		if (rxbyte & DM9000_PKT_ERR) {
975 			dev_warn(db->dev, "status check fail: %d\n", rxbyte);
976 			iow(db, DM9000_RCR, 0x00);	/* Stop Device */
977 			iow(db, DM9000_ISR, IMR_PAR);	/* Stop INT request */
978 			return;
979 		}
980 
981 		if (!(rxbyte & DM9000_PKT_RDY))
982 			return;
983 
984 		/* A packet ready now  & Get status/length */
985 		GoodPacket = true;
986 		writeb(DM9000_MRCMD, db->io_addr);
987 
988 		(db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
989 
990 		RxLen = le16_to_cpu(rxhdr.RxLen);
991 
992 		if (netif_msg_rx_status(db))
993 			dev_dbg(db->dev, "RX: status %02x, length %04x\n",
994 				rxhdr.RxStatus, RxLen);
995 
996 		/* Packet Status check */
997 		if (RxLen < 0x40) {
998 			GoodPacket = false;
999 			if (netif_msg_rx_err(db))
1000 				dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1001 		}
1002 
1003 		if (RxLen > DM9000_PKT_MAX) {
1004 			dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1005 		}
1006 
1007 		/* rxhdr.RxStatus is identical to RSR register. */
1008 		if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1009 				      RSR_PLE | RSR_RWTO |
1010 				      RSR_LCS | RSR_RF)) {
1011 			GoodPacket = false;
1012 			if (rxhdr.RxStatus & RSR_FOE) {
1013 				if (netif_msg_rx_err(db))
1014 					dev_dbg(db->dev, "fifo error\n");
1015 				dev->stats.rx_fifo_errors++;
1016 			}
1017 			if (rxhdr.RxStatus & RSR_CE) {
1018 				if (netif_msg_rx_err(db))
1019 					dev_dbg(db->dev, "crc error\n");
1020 				dev->stats.rx_crc_errors++;
1021 			}
1022 			if (rxhdr.RxStatus & RSR_RF) {
1023 				if (netif_msg_rx_err(db))
1024 					dev_dbg(db->dev, "length error\n");
1025 				dev->stats.rx_length_errors++;
1026 			}
1027 		}
1028 
1029 		/* Move data from DM9000 */
1030 		if (GoodPacket &&
1031 		    ((skb = dev_alloc_skb(RxLen + 4)) != NULL)) {
1032 			skb_reserve(skb, 2);
1033 			rdptr = (u8 *) skb_put(skb, RxLen - 4);
1034 
1035 			/* Read received packet from RX SRAM */
1036 
1037 			(db->inblk)(db->io_data, rdptr, RxLen);
1038 			dev->stats.rx_bytes += RxLen;
1039 
1040 			/* Pass to upper layer */
1041 			skb->protocol = eth_type_trans(skb, dev);
1042 			if (dev->features & NETIF_F_RXCSUM) {
1043 				if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1044 					skb->ip_summed = CHECKSUM_UNNECESSARY;
1045 				else
1046 					skb_checksum_none_assert(skb);
1047 			}
1048 			netif_rx(skb);
1049 			dev->stats.rx_packets++;
1050 
1051 		} else {
1052 			/* need to dump the packet's data */
1053 
1054 			(db->dumpblk)(db->io_data, RxLen);
1055 		}
1056 	} while (rxbyte & DM9000_PKT_RDY);
1057 }
1058 
1059 static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1060 {
1061 	struct net_device *dev = dev_id;
1062 	board_info_t *db = netdev_priv(dev);
1063 	int int_status;
1064 	unsigned long flags;
1065 	u8 reg_save;
1066 
1067 	dm9000_dbg(db, 3, "entering %s\n", __func__);
1068 
1069 	/* A real interrupt coming */
1070 
1071 	/* holders of db->lock must always block IRQs */
1072 	spin_lock_irqsave(&db->lock, flags);
1073 
1074 	/* Save previous register address */
1075 	reg_save = readb(db->io_addr);
1076 
1077 	/* Disable all interrupts */
1078 	iow(db, DM9000_IMR, IMR_PAR);
1079 
1080 	/* Got DM9000 interrupt status */
1081 	int_status = ior(db, DM9000_ISR);	/* Got ISR */
1082 	iow(db, DM9000_ISR, int_status);	/* Clear ISR status */
1083 
1084 	if (netif_msg_intr(db))
1085 		dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1086 
1087 	/* Received the coming packet */
1088 	if (int_status & ISR_PRS)
1089 		dm9000_rx(dev);
1090 
1091 	/* Trnasmit Interrupt check */
1092 	if (int_status & ISR_PTS)
1093 		dm9000_tx_done(dev, db);
1094 
1095 	if (db->type != TYPE_DM9000E) {
1096 		if (int_status & ISR_LNKCHNG) {
1097 			/* fire a link-change request */
1098 			schedule_delayed_work(&db->phy_poll, 1);
1099 		}
1100 	}
1101 
1102 	/* Re-enable interrupt mask */
1103 	iow(db, DM9000_IMR, db->imr_all);
1104 
1105 	/* Restore previous register address */
1106 	writeb(reg_save, db->io_addr);
1107 
1108 	spin_unlock_irqrestore(&db->lock, flags);
1109 
1110 	return IRQ_HANDLED;
1111 }
1112 
1113 static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1114 {
1115 	struct net_device *dev = dev_id;
1116 	board_info_t *db = netdev_priv(dev);
1117 	unsigned long flags;
1118 	unsigned nsr, wcr;
1119 
1120 	spin_lock_irqsave(&db->lock, flags);
1121 
1122 	nsr = ior(db, DM9000_NSR);
1123 	wcr = ior(db, DM9000_WCR);
1124 
1125 	dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1126 
1127 	if (nsr & NSR_WAKEST) {
1128 		/* clear, so we can avoid */
1129 		iow(db, DM9000_NSR, NSR_WAKEST);
1130 
1131 		if (wcr & WCR_LINKST)
1132 			dev_info(db->dev, "wake by link status change\n");
1133 		if (wcr & WCR_SAMPLEST)
1134 			dev_info(db->dev, "wake by sample packet\n");
1135 		if (wcr & WCR_MAGICST )
1136 			dev_info(db->dev, "wake by magic packet\n");
1137 		if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1138 			dev_err(db->dev, "wake signalled with no reason? "
1139 				"NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1140 
1141 	}
1142 
1143 	spin_unlock_irqrestore(&db->lock, flags);
1144 
1145 	return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1146 }
1147 
1148 #ifdef CONFIG_NET_POLL_CONTROLLER
1149 /*
1150  *Used by netconsole
1151  */
1152 static void dm9000_poll_controller(struct net_device *dev)
1153 {
1154 	disable_irq(dev->irq);
1155 	dm9000_interrupt(dev->irq, dev);
1156 	enable_irq(dev->irq);
1157 }
1158 #endif
1159 
1160 /*
1161  *  Open the interface.
1162  *  The interface is opened whenever "ifconfig" actives it.
1163  */
1164 static int
1165 dm9000_open(struct net_device *dev)
1166 {
1167 	board_info_t *db = netdev_priv(dev);
1168 	unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;
1169 
1170 	if (netif_msg_ifup(db))
1171 		dev_dbg(db->dev, "enabling %s\n", dev->name);
1172 
1173 	/* If there is no IRQ type specified, default to something that
1174 	 * may work, and tell the user that this is a problem */
1175 
1176 	if (irqflags == IRQF_TRIGGER_NONE)
1177 		dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1178 
1179 	irqflags |= IRQF_SHARED;
1180 
1181 	/* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1182 	iow(db, DM9000_GPR, 0);	/* REG_1F bit0 activate phyxcer */
1183 	mdelay(1); /* delay needs by DM9000B */
1184 
1185 	/* Initialize DM9000 board */
1186 	dm9000_reset(db);
1187 	dm9000_init_dm9000(dev);
1188 
1189 	if (request_irq(dev->irq, dm9000_interrupt, irqflags, dev->name, dev))
1190 		return -EAGAIN;
1191 
1192 	/* Init driver variable */
1193 	db->dbug_cnt = 0;
1194 
1195 	mii_check_media(&db->mii, netif_msg_link(db), 1);
1196 	netif_start_queue(dev);
1197 
1198 	dm9000_schedule_poll(db);
1199 
1200 	return 0;
1201 }
1202 
1203 /*
1204  * Sleep, either by using msleep() or if we are suspending, then
1205  * use mdelay() to sleep.
1206  */
1207 static void dm9000_msleep(board_info_t *db, unsigned int ms)
1208 {
1209 	if (db->in_suspend)
1210 		mdelay(ms);
1211 	else
1212 		msleep(ms);
1213 }
1214 
1215 /*
1216  *   Read a word from phyxcer
1217  */
1218 static int
1219 dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
1220 {
1221 	board_info_t *db = netdev_priv(dev);
1222 	unsigned long flags;
1223 	unsigned int reg_save;
1224 	int ret;
1225 
1226 	mutex_lock(&db->addr_lock);
1227 
1228 	spin_lock_irqsave(&db->lock,flags);
1229 
1230 	/* Save previous register address */
1231 	reg_save = readb(db->io_addr);
1232 
1233 	/* Fill the phyxcer register into REG_0C */
1234 	iow(db, DM9000_EPAR, DM9000_PHY | reg);
1235 
1236 	iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);	/* Issue phyxcer read command */
1237 
1238 	writeb(reg_save, db->io_addr);
1239 	spin_unlock_irqrestore(&db->lock,flags);
1240 
1241 	dm9000_msleep(db, 1);		/* Wait read complete */
1242 
1243 	spin_lock_irqsave(&db->lock,flags);
1244 	reg_save = readb(db->io_addr);
1245 
1246 	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer read command */
1247 
1248 	/* The read data keeps on REG_0D & REG_0E */
1249 	ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
1250 
1251 	/* restore the previous address */
1252 	writeb(reg_save, db->io_addr);
1253 	spin_unlock_irqrestore(&db->lock,flags);
1254 
1255 	mutex_unlock(&db->addr_lock);
1256 
1257 	dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
1258 	return ret;
1259 }
1260 
1261 /*
1262  *   Write a word to phyxcer
1263  */
1264 static void
1265 dm9000_phy_write(struct net_device *dev,
1266 		 int phyaddr_unused, int reg, int value)
1267 {
1268 	board_info_t *db = netdev_priv(dev);
1269 	unsigned long flags;
1270 	unsigned long reg_save;
1271 
1272 	dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
1273 	mutex_lock(&db->addr_lock);
1274 
1275 	spin_lock_irqsave(&db->lock,flags);
1276 
1277 	/* Save previous register address */
1278 	reg_save = readb(db->io_addr);
1279 
1280 	/* Fill the phyxcer register into REG_0C */
1281 	iow(db, DM9000_EPAR, DM9000_PHY | reg);
1282 
1283 	/* Fill the written data into REG_0D & REG_0E */
1284 	iow(db, DM9000_EPDRL, value);
1285 	iow(db, DM9000_EPDRH, value >> 8);
1286 
1287 	iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);	/* Issue phyxcer write command */
1288 
1289 	writeb(reg_save, db->io_addr);
1290 	spin_unlock_irqrestore(&db->lock, flags);
1291 
1292 	dm9000_msleep(db, 1);		/* Wait write complete */
1293 
1294 	spin_lock_irqsave(&db->lock,flags);
1295 	reg_save = readb(db->io_addr);
1296 
1297 	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer write command */
1298 
1299 	/* restore the previous address */
1300 	writeb(reg_save, db->io_addr);
1301 
1302 	spin_unlock_irqrestore(&db->lock, flags);
1303 	mutex_unlock(&db->addr_lock);
1304 }
1305 
1306 static void
1307 dm9000_shutdown(struct net_device *dev)
1308 {
1309 	board_info_t *db = netdev_priv(dev);
1310 
1311 	/* RESET device */
1312 	dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);	/* PHY RESET */
1313 	iow(db, DM9000_GPR, 0x01);	/* Power-Down PHY */
1314 	iow(db, DM9000_IMR, IMR_PAR);	/* Disable all interrupt */
1315 	iow(db, DM9000_RCR, 0x00);	/* Disable RX */
1316 }
1317 
1318 /*
1319  * Stop the interface.
1320  * The interface is stopped when it is brought.
1321  */
1322 static int
1323 dm9000_stop(struct net_device *ndev)
1324 {
1325 	board_info_t *db = netdev_priv(ndev);
1326 
1327 	if (netif_msg_ifdown(db))
1328 		dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1329 
1330 	cancel_delayed_work_sync(&db->phy_poll);
1331 
1332 	netif_stop_queue(ndev);
1333 	netif_carrier_off(ndev);
1334 
1335 	/* free interrupt */
1336 	free_irq(ndev->irq, ndev);
1337 
1338 	dm9000_shutdown(ndev);
1339 
1340 	return 0;
1341 }
1342 
1343 static const struct net_device_ops dm9000_netdev_ops = {
1344 	.ndo_open		= dm9000_open,
1345 	.ndo_stop		= dm9000_stop,
1346 	.ndo_start_xmit		= dm9000_start_xmit,
1347 	.ndo_tx_timeout		= dm9000_timeout,
1348 	.ndo_set_rx_mode	= dm9000_hash_table,
1349 	.ndo_do_ioctl		= dm9000_ioctl,
1350 	.ndo_change_mtu		= eth_change_mtu,
1351 	.ndo_set_features	= dm9000_set_features,
1352 	.ndo_validate_addr	= eth_validate_addr,
1353 	.ndo_set_mac_address	= eth_mac_addr,
1354 #ifdef CONFIG_NET_POLL_CONTROLLER
1355 	.ndo_poll_controller	= dm9000_poll_controller,
1356 #endif
1357 };
1358 
1359 /*
1360  * Search DM9000 board, allocate space and register it
1361  */
1362 static int __devinit
1363 dm9000_probe(struct platform_device *pdev)
1364 {
1365 	struct dm9000_plat_data *pdata = pdev->dev.platform_data;
1366 	struct board_info *db;	/* Point a board information structure */
1367 	struct net_device *ndev;
1368 	const unsigned char *mac_src;
1369 	int ret = 0;
1370 	int iosize;
1371 	int i;
1372 	u32 id_val;
1373 
1374 	/* Init network device */
1375 	ndev = alloc_etherdev(sizeof(struct board_info));
1376 	if (!ndev) {
1377 		dev_err(&pdev->dev, "could not allocate device.\n");
1378 		return -ENOMEM;
1379 	}
1380 
1381 	SET_NETDEV_DEV(ndev, &pdev->dev);
1382 
1383 	dev_dbg(&pdev->dev, "dm9000_probe()\n");
1384 
1385 	/* setup board info structure */
1386 	db = netdev_priv(ndev);
1387 
1388 	db->dev = &pdev->dev;
1389 	db->ndev = ndev;
1390 
1391 	spin_lock_init(&db->lock);
1392 	mutex_init(&db->addr_lock);
1393 
1394 	INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1395 
1396 	db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1397 	db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1398 	db->irq_res  = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1399 
1400 	if (db->addr_res == NULL || db->data_res == NULL ||
1401 	    db->irq_res == NULL) {
1402 		dev_err(db->dev, "insufficient resources\n");
1403 		ret = -ENOENT;
1404 		goto out;
1405 	}
1406 
1407 	db->irq_wake = platform_get_irq(pdev, 1);
1408 	if (db->irq_wake >= 0) {
1409 		dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1410 
1411 		ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1412 				  IRQF_SHARED, dev_name(db->dev), ndev);
1413 		if (ret) {
1414 			dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1415 		} else {
1416 
1417 			/* test to see if irq is really wakeup capable */
1418 			ret = irq_set_irq_wake(db->irq_wake, 1);
1419 			if (ret) {
1420 				dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1421 					db->irq_wake, ret);
1422 				ret = 0;
1423 			} else {
1424 				irq_set_irq_wake(db->irq_wake, 0);
1425 				db->wake_supported = 1;
1426 			}
1427 		}
1428 	}
1429 
1430 	iosize = resource_size(db->addr_res);
1431 	db->addr_req = request_mem_region(db->addr_res->start, iosize,
1432 					  pdev->name);
1433 
1434 	if (db->addr_req == NULL) {
1435 		dev_err(db->dev, "cannot claim address reg area\n");
1436 		ret = -EIO;
1437 		goto out;
1438 	}
1439 
1440 	db->io_addr = ioremap(db->addr_res->start, iosize);
1441 
1442 	if (db->io_addr == NULL) {
1443 		dev_err(db->dev, "failed to ioremap address reg\n");
1444 		ret = -EINVAL;
1445 		goto out;
1446 	}
1447 
1448 	iosize = resource_size(db->data_res);
1449 	db->data_req = request_mem_region(db->data_res->start, iosize,
1450 					  pdev->name);
1451 
1452 	if (db->data_req == NULL) {
1453 		dev_err(db->dev, "cannot claim data reg area\n");
1454 		ret = -EIO;
1455 		goto out;
1456 	}
1457 
1458 	db->io_data = ioremap(db->data_res->start, iosize);
1459 
1460 	if (db->io_data == NULL) {
1461 		dev_err(db->dev, "failed to ioremap data reg\n");
1462 		ret = -EINVAL;
1463 		goto out;
1464 	}
1465 
1466 	/* fill in parameters for net-dev structure */
1467 	ndev->base_addr = (unsigned long)db->io_addr;
1468 	ndev->irq	= db->irq_res->start;
1469 
1470 	/* ensure at least we have a default set of IO routines */
1471 	dm9000_set_io(db, iosize);
1472 
1473 	/* check to see if anything is being over-ridden */
1474 	if (pdata != NULL) {
1475 		/* check to see if the driver wants to over-ride the
1476 		 * default IO width */
1477 
1478 		if (pdata->flags & DM9000_PLATF_8BITONLY)
1479 			dm9000_set_io(db, 1);
1480 
1481 		if (pdata->flags & DM9000_PLATF_16BITONLY)
1482 			dm9000_set_io(db, 2);
1483 
1484 		if (pdata->flags & DM9000_PLATF_32BITONLY)
1485 			dm9000_set_io(db, 4);
1486 
1487 		/* check to see if there are any IO routine
1488 		 * over-rides */
1489 
1490 		if (pdata->inblk != NULL)
1491 			db->inblk = pdata->inblk;
1492 
1493 		if (pdata->outblk != NULL)
1494 			db->outblk = pdata->outblk;
1495 
1496 		if (pdata->dumpblk != NULL)
1497 			db->dumpblk = pdata->dumpblk;
1498 
1499 		db->flags = pdata->flags;
1500 	}
1501 
1502 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1503 	db->flags |= DM9000_PLATF_SIMPLE_PHY;
1504 #endif
1505 
1506 	dm9000_reset(db);
1507 
1508 	/* try multiple times, DM9000 sometimes gets the read wrong */
1509 	for (i = 0; i < 8; i++) {
1510 		id_val  = ior(db, DM9000_VIDL);
1511 		id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1512 		id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1513 		id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1514 
1515 		if (id_val == DM9000_ID)
1516 			break;
1517 		dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1518 	}
1519 
1520 	if (id_val != DM9000_ID) {
1521 		dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1522 		ret = -ENODEV;
1523 		goto out;
1524 	}
1525 
1526 	/* Identify what type of DM9000 we are working on */
1527 
1528 	id_val = ior(db, DM9000_CHIPR);
1529 	dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1530 
1531 	switch (id_val) {
1532 	case CHIPR_DM9000A:
1533 		db->type = TYPE_DM9000A;
1534 		break;
1535 	case CHIPR_DM9000B:
1536 		db->type = TYPE_DM9000B;
1537 		break;
1538 	default:
1539 		dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1540 		db->type = TYPE_DM9000E;
1541 	}
1542 
1543 	/* dm9000a/b are capable of hardware checksum offload */
1544 	if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1545 		ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1546 		ndev->features |= ndev->hw_features;
1547 	}
1548 
1549 	/* from this point we assume that we have found a DM9000 */
1550 
1551 	/* driver system function */
1552 	ether_setup(ndev);
1553 
1554 	ndev->netdev_ops	= &dm9000_netdev_ops;
1555 	ndev->watchdog_timeo	= msecs_to_jiffies(watchdog);
1556 	ndev->ethtool_ops	= &dm9000_ethtool_ops;
1557 
1558 	db->msg_enable       = NETIF_MSG_LINK;
1559 	db->mii.phy_id_mask  = 0x1f;
1560 	db->mii.reg_num_mask = 0x1f;
1561 	db->mii.force_media  = 0;
1562 	db->mii.full_duplex  = 0;
1563 	db->mii.dev	     = ndev;
1564 	db->mii.mdio_read    = dm9000_phy_read;
1565 	db->mii.mdio_write   = dm9000_phy_write;
1566 
1567 	mac_src = "eeprom";
1568 
1569 	/* try reading the node address from the attached EEPROM */
1570 	for (i = 0; i < 6; i += 2)
1571 		dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
1572 
1573 	if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1574 		mac_src = "platform data";
1575 		memcpy(ndev->dev_addr, pdata->dev_addr, 6);
1576 	}
1577 
1578 	if (!is_valid_ether_addr(ndev->dev_addr)) {
1579 		/* try reading from mac */
1580 
1581 		mac_src = "chip";
1582 		for (i = 0; i < 6; i++)
1583 			ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
1584 	}
1585 
1586 	if (!is_valid_ether_addr(ndev->dev_addr)) {
1587 		dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
1588 			 "set using ifconfig\n", ndev->name);
1589 
1590 		random_ether_addr(ndev->dev_addr);
1591 		mac_src = "random";
1592 	}
1593 
1594 
1595 	platform_set_drvdata(pdev, ndev);
1596 	ret = register_netdev(ndev);
1597 
1598 	if (ret == 0)
1599 		printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1600 		       ndev->name, dm9000_type_to_char(db->type),
1601 		       db->io_addr, db->io_data, ndev->irq,
1602 		       ndev->dev_addr, mac_src);
1603 	return 0;
1604 
1605 out:
1606 	dev_err(db->dev, "not found (%d).\n", ret);
1607 
1608 	dm9000_release_board(pdev, db);
1609 	free_netdev(ndev);
1610 
1611 	return ret;
1612 }
1613 
1614 static int
1615 dm9000_drv_suspend(struct device *dev)
1616 {
1617 	struct platform_device *pdev = to_platform_device(dev);
1618 	struct net_device *ndev = platform_get_drvdata(pdev);
1619 	board_info_t *db;
1620 
1621 	if (ndev) {
1622 		db = netdev_priv(ndev);
1623 		db->in_suspend = 1;
1624 
1625 		if (!netif_running(ndev))
1626 			return 0;
1627 
1628 		netif_device_detach(ndev);
1629 
1630 		/* only shutdown if not using WoL */
1631 		if (!db->wake_state)
1632 			dm9000_shutdown(ndev);
1633 	}
1634 	return 0;
1635 }
1636 
1637 static int
1638 dm9000_drv_resume(struct device *dev)
1639 {
1640 	struct platform_device *pdev = to_platform_device(dev);
1641 	struct net_device *ndev = platform_get_drvdata(pdev);
1642 	board_info_t *db = netdev_priv(ndev);
1643 
1644 	if (ndev) {
1645 		if (netif_running(ndev)) {
1646 			/* reset if we were not in wake mode to ensure if
1647 			 * the device was powered off it is in a known state */
1648 			if (!db->wake_state) {
1649 				dm9000_reset(db);
1650 				dm9000_init_dm9000(ndev);
1651 			}
1652 
1653 			netif_device_attach(ndev);
1654 		}
1655 
1656 		db->in_suspend = 0;
1657 	}
1658 	return 0;
1659 }
1660 
1661 static const struct dev_pm_ops dm9000_drv_pm_ops = {
1662 	.suspend	= dm9000_drv_suspend,
1663 	.resume		= dm9000_drv_resume,
1664 };
1665 
1666 static int __devexit
1667 dm9000_drv_remove(struct platform_device *pdev)
1668 {
1669 	struct net_device *ndev = platform_get_drvdata(pdev);
1670 
1671 	platform_set_drvdata(pdev, NULL);
1672 
1673 	unregister_netdev(ndev);
1674 	dm9000_release_board(pdev, netdev_priv(ndev));
1675 	free_netdev(ndev);		/* free device structure */
1676 
1677 	dev_dbg(&pdev->dev, "released and freed device\n");
1678 	return 0;
1679 }
1680 
1681 static struct platform_driver dm9000_driver = {
1682 	.driver	= {
1683 		.name    = "dm9000",
1684 		.owner	 = THIS_MODULE,
1685 		.pm	 = &dm9000_drv_pm_ops,
1686 	},
1687 	.probe   = dm9000_probe,
1688 	.remove  = __devexit_p(dm9000_drv_remove),
1689 };
1690 
1691 static int __init
1692 dm9000_init(void)
1693 {
1694 	printk(KERN_INFO "%s Ethernet Driver, V%s\n", CARDNAME, DRV_VERSION);
1695 
1696 	return platform_driver_register(&dm9000_driver);
1697 }
1698 
1699 static void __exit
1700 dm9000_cleanup(void)
1701 {
1702 	platform_driver_unregister(&dm9000_driver);
1703 }
1704 
1705 module_init(dm9000_init);
1706 module_exit(dm9000_cleanup);
1707 
1708 MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1709 MODULE_DESCRIPTION("Davicom DM9000 network driver");
1710 MODULE_LICENSE("GPL");
1711 MODULE_ALIAS("platform:dm9000");
1712