xref: /linux/drivers/net/ethernet/davicom/dm9000.c (revision 6331b8765cd0634a4e4cdcc1a6f1a74196616b94)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      Davicom DM9000 Fast Ethernet driver for Linux.
4  * 	Copyright (C) 1997  Sten Wang
5  *
6  * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
7  *
8  * Additional updates, Copyright:
9  *	Ben Dooks <ben@simtec.co.uk>
10  *	Sascha Hauer <s.hauer@pengutronix.de>
11  */
12 
13 #include <linux/module.h>
14 #include <linux/ioport.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/interrupt.h>
18 #include <linux/skbuff.h>
19 #include <linux/spinlock.h>
20 #include <linux/crc32.h>
21 #include <linux/mii.h>
22 #include <linux/of.h>
23 #include <linux/of_net.h>
24 #include <linux/ethtool.h>
25 #include <linux/dm9000.h>
26 #include <linux/delay.h>
27 #include <linux/platform_device.h>
28 #include <linux/irq.h>
29 #include <linux/slab.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
33 
34 #include <asm/delay.h>
35 #include <asm/irq.h>
36 #include <asm/io.h>
37 
38 #include "dm9000.h"
39 
40 /* Board/System/Debug information/definition ---------------- */
41 
42 #define DM9000_PHY		0x40	/* PHY address 0x01 */
43 
44 #define CARDNAME	"dm9000"
45 
46 /*
47  * Transmit timeout, default 5 seconds.
48  */
49 static int watchdog = 5000;
50 module_param(watchdog, int, 0400);
51 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
52 
53 /*
54  * Debug messages level
55  */
56 static int debug;
57 module_param(debug, int, 0644);
58 MODULE_PARM_DESC(debug, "dm9000 debug level (0-6)");
59 
60 /* DM9000 register address locking.
61  *
62  * The DM9000 uses an address register to control where data written
63  * to the data register goes. This means that the address register
64  * must be preserved over interrupts or similar calls.
65  *
66  * During interrupt and other critical calls, a spinlock is used to
67  * protect the system, but the calls themselves save the address
68  * in the address register in case they are interrupting another
69  * access to the device.
70  *
71  * For general accesses a lock is provided so that calls which are
72  * allowed to sleep are serialised so that the address register does
73  * not need to be saved. This lock also serves to serialise access
74  * to the EEPROM and PHY access registers which are shared between
75  * these two devices.
76  */
77 
78 /* The driver supports the original DM9000E, and now the two newer
79  * devices, DM9000A and DM9000B.
80  */
81 
82 enum dm9000_type {
83 	TYPE_DM9000E,	/* original DM9000 */
84 	TYPE_DM9000A,
85 	TYPE_DM9000B
86 };
87 
88 /* Structure/enum declaration ------------------------------- */
89 struct board_info {
90 
91 	void __iomem	*io_addr;	/* Register I/O base address */
92 	void __iomem	*io_data;	/* Data I/O address */
93 	u16		 irq;		/* IRQ */
94 
95 	u16		tx_pkt_cnt;
96 	u16		queue_pkt_len;
97 	u16		queue_start_addr;
98 	u16		queue_ip_summed;
99 	u16		dbug_cnt;
100 	u8		io_mode;		/* 0:word, 2:byte */
101 	u8		phy_addr;
102 	u8		imr_all;
103 
104 	unsigned int	flags;
105 	unsigned int	in_timeout:1;
106 	unsigned int	in_suspend:1;
107 	unsigned int	wake_supported:1;
108 
109 	enum dm9000_type type;
110 
111 	void (*inblk)(void __iomem *port, void *data, int length);
112 	void (*outblk)(void __iomem *port, void *data, int length);
113 	void (*dumpblk)(void __iomem *port, int length);
114 
115 	struct device	*dev;	     /* parent device */
116 
117 	struct resource	*addr_res;   /* resources found */
118 	struct resource *data_res;
119 	struct resource	*addr_req;   /* resources requested */
120 	struct resource *data_req;
121 
122 	int		 irq_wake;
123 
124 	struct mutex	 addr_lock;	/* phy and eeprom access lock */
125 
126 	struct delayed_work phy_poll;
127 	struct net_device  *ndev;
128 
129 	spinlock_t	lock;
130 
131 	struct mii_if_info mii;
132 	u32		msg_enable;
133 	u32		wake_state;
134 
135 	int		ip_summed;
136 
137 	struct regulator *power_supply;
138 };
139 
140 /* debug code */
141 
142 #define dm9000_dbg(db, lev, msg...) do {		\
143 	if ((lev) < debug) {				\
144 		dev_dbg(db->dev, msg);			\
145 	}						\
146 } while (0)
147 
148 static inline struct board_info *to_dm9000_board(struct net_device *dev)
149 {
150 	return netdev_priv(dev);
151 }
152 
153 /* DM9000 network board routine ---------------------------- */
154 
155 /*
156  *   Read a byte from I/O port
157  */
158 static u8
159 ior(struct board_info *db, int reg)
160 {
161 	writeb(reg, db->io_addr);
162 	return readb(db->io_data);
163 }
164 
165 /*
166  *   Write a byte to I/O port
167  */
168 
169 static void
170 iow(struct board_info *db, int reg, int value)
171 {
172 	writeb(reg, db->io_addr);
173 	writeb(value, db->io_data);
174 }
175 
176 static void
177 dm9000_reset(struct board_info *db)
178 {
179 	dev_dbg(db->dev, "resetting device\n");
180 
181 	/* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
182 	 * The essential point is that we have to do a double reset, and the
183 	 * instruction is to set LBK into MAC internal loopback mode.
184 	 */
185 	iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
186 	udelay(100); /* Application note says at least 20 us */
187 	if (ior(db, DM9000_NCR) & 1)
188 		dev_err(db->dev, "dm9000 did not respond to first reset\n");
189 
190 	iow(db, DM9000_NCR, 0);
191 	iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
192 	udelay(100);
193 	if (ior(db, DM9000_NCR) & 1)
194 		dev_err(db->dev, "dm9000 did not respond to second reset\n");
195 }
196 
197 /* routines for sending block to chip */
198 
199 static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
200 {
201 	iowrite8_rep(reg, data, count);
202 }
203 
204 static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
205 {
206 	iowrite16_rep(reg, data, (count+1) >> 1);
207 }
208 
209 static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
210 {
211 	iowrite32_rep(reg, data, (count+3) >> 2);
212 }
213 
214 /* input block from chip to memory */
215 
216 static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
217 {
218 	ioread8_rep(reg, data, count);
219 }
220 
221 
222 static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
223 {
224 	ioread16_rep(reg, data, (count+1) >> 1);
225 }
226 
227 static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
228 {
229 	ioread32_rep(reg, data, (count+3) >> 2);
230 }
231 
232 /* dump block from chip to null */
233 
234 static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
235 {
236 	int i;
237 
238 	for (i = 0; i < count; i++)
239 		readb(reg);
240 }
241 
242 static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
243 {
244 	int i;
245 
246 	count = (count + 1) >> 1;
247 
248 	for (i = 0; i < count; i++)
249 		readw(reg);
250 }
251 
252 static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
253 {
254 	int i;
255 
256 	count = (count + 3) >> 2;
257 
258 	for (i = 0; i < count; i++)
259 		readl(reg);
260 }
261 
262 /*
263  * Sleep, either by using msleep() or if we are suspending, then
264  * use mdelay() to sleep.
265  */
266 static void dm9000_msleep(struct board_info *db, unsigned int ms)
267 {
268 	if (db->in_suspend || db->in_timeout)
269 		mdelay(ms);
270 	else
271 		msleep(ms);
272 }
273 
274 /* Read a word from phyxcer */
275 static int
276 dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
277 {
278 	struct board_info *db = netdev_priv(dev);
279 	unsigned long flags;
280 	unsigned int reg_save;
281 	int ret;
282 
283 	mutex_lock(&db->addr_lock);
284 
285 	spin_lock_irqsave(&db->lock, flags);
286 
287 	/* Save previous register address */
288 	reg_save = readb(db->io_addr);
289 
290 	/* Fill the phyxcer register into REG_0C */
291 	iow(db, DM9000_EPAR, DM9000_PHY | reg);
292 
293 	/* Issue phyxcer read command */
294 	iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);
295 
296 	writeb(reg_save, db->io_addr);
297 	spin_unlock_irqrestore(&db->lock, flags);
298 
299 	dm9000_msleep(db, 1);		/* Wait read complete */
300 
301 	spin_lock_irqsave(&db->lock, flags);
302 	reg_save = readb(db->io_addr);
303 
304 	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer read command */
305 
306 	/* The read data keeps on REG_0D & REG_0E */
307 	ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
308 
309 	/* restore the previous address */
310 	writeb(reg_save, db->io_addr);
311 	spin_unlock_irqrestore(&db->lock, flags);
312 
313 	mutex_unlock(&db->addr_lock);
314 
315 	dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
316 	return ret;
317 }
318 
319 /* Write a word to phyxcer */
320 static void
321 dm9000_phy_write(struct net_device *dev,
322 		 int phyaddr_unused, int reg, int value)
323 {
324 	struct board_info *db = netdev_priv(dev);
325 	unsigned long flags;
326 	unsigned long reg_save;
327 
328 	dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
329 	if (!db->in_timeout)
330 		mutex_lock(&db->addr_lock);
331 
332 	spin_lock_irqsave(&db->lock, flags);
333 
334 	/* Save previous register address */
335 	reg_save = readb(db->io_addr);
336 
337 	/* Fill the phyxcer register into REG_0C */
338 	iow(db, DM9000_EPAR, DM9000_PHY | reg);
339 
340 	/* Fill the written data into REG_0D & REG_0E */
341 	iow(db, DM9000_EPDRL, value);
342 	iow(db, DM9000_EPDRH, value >> 8);
343 
344 	/* Issue phyxcer write command */
345 	iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);
346 
347 	writeb(reg_save, db->io_addr);
348 	spin_unlock_irqrestore(&db->lock, flags);
349 
350 	dm9000_msleep(db, 1);		/* Wait write complete */
351 
352 	spin_lock_irqsave(&db->lock, flags);
353 	reg_save = readb(db->io_addr);
354 
355 	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer write command */
356 
357 	/* restore the previous address */
358 	writeb(reg_save, db->io_addr);
359 
360 	spin_unlock_irqrestore(&db->lock, flags);
361 	if (!db->in_timeout)
362 		mutex_unlock(&db->addr_lock);
363 }
364 
365 /* dm9000_set_io
366  *
367  * select the specified set of io routines to use with the
368  * device
369  */
370 
371 static void dm9000_set_io(struct board_info *db, int byte_width)
372 {
373 	/* use the size of the data resource to work out what IO
374 	 * routines we want to use
375 	 */
376 
377 	switch (byte_width) {
378 	case 1:
379 		db->dumpblk = dm9000_dumpblk_8bit;
380 		db->outblk  = dm9000_outblk_8bit;
381 		db->inblk   = dm9000_inblk_8bit;
382 		break;
383 
384 
385 	case 3:
386 		dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
387 		fallthrough;
388 	case 2:
389 		db->dumpblk = dm9000_dumpblk_16bit;
390 		db->outblk  = dm9000_outblk_16bit;
391 		db->inblk   = dm9000_inblk_16bit;
392 		break;
393 
394 	case 4:
395 	default:
396 		db->dumpblk = dm9000_dumpblk_32bit;
397 		db->outblk  = dm9000_outblk_32bit;
398 		db->inblk   = dm9000_inblk_32bit;
399 		break;
400 	}
401 }
402 
403 static void dm9000_schedule_poll(struct board_info *db)
404 {
405 	if (db->type == TYPE_DM9000E)
406 		schedule_delayed_work(&db->phy_poll, HZ * 2);
407 }
408 
409 static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
410 {
411 	struct board_info *dm = to_dm9000_board(dev);
412 
413 	if (!netif_running(dev))
414 		return -EINVAL;
415 
416 	return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
417 }
418 
419 static unsigned int
420 dm9000_read_locked(struct board_info *db, int reg)
421 {
422 	unsigned long flags;
423 	unsigned int ret;
424 
425 	spin_lock_irqsave(&db->lock, flags);
426 	ret = ior(db, reg);
427 	spin_unlock_irqrestore(&db->lock, flags);
428 
429 	return ret;
430 }
431 
432 static int dm9000_wait_eeprom(struct board_info *db)
433 {
434 	unsigned int status;
435 	int timeout = 8;	/* wait max 8msec */
436 
437 	/* The DM9000 data sheets say we should be able to
438 	 * poll the ERRE bit in EPCR to wait for the EEPROM
439 	 * operation. From testing several chips, this bit
440 	 * does not seem to work.
441 	 *
442 	 * We attempt to use the bit, but fall back to the
443 	 * timeout (which is why we do not return an error
444 	 * on expiry) to say that the EEPROM operation has
445 	 * completed.
446 	 */
447 
448 	while (1) {
449 		status = dm9000_read_locked(db, DM9000_EPCR);
450 
451 		if ((status & EPCR_ERRE) == 0)
452 			break;
453 
454 		msleep(1);
455 
456 		if (timeout-- < 0) {
457 			dev_dbg(db->dev, "timeout waiting EEPROM\n");
458 			break;
459 		}
460 	}
461 
462 	return 0;
463 }
464 
465 /*
466  *  Read a word data from EEPROM
467  */
468 static void
469 dm9000_read_eeprom(struct board_info *db, int offset, u8 *to)
470 {
471 	unsigned long flags;
472 
473 	if (db->flags & DM9000_PLATF_NO_EEPROM) {
474 		to[0] = 0xff;
475 		to[1] = 0xff;
476 		return;
477 	}
478 
479 	mutex_lock(&db->addr_lock);
480 
481 	spin_lock_irqsave(&db->lock, flags);
482 
483 	iow(db, DM9000_EPAR, offset);
484 	iow(db, DM9000_EPCR, EPCR_ERPRR);
485 
486 	spin_unlock_irqrestore(&db->lock, flags);
487 
488 	dm9000_wait_eeprom(db);
489 
490 	/* delay for at-least 150uS */
491 	msleep(1);
492 
493 	spin_lock_irqsave(&db->lock, flags);
494 
495 	iow(db, DM9000_EPCR, 0x0);
496 
497 	to[0] = ior(db, DM9000_EPDRL);
498 	to[1] = ior(db, DM9000_EPDRH);
499 
500 	spin_unlock_irqrestore(&db->lock, flags);
501 
502 	mutex_unlock(&db->addr_lock);
503 }
504 
505 /*
506  * Write a word data to SROM
507  */
508 static void
509 dm9000_write_eeprom(struct board_info *db, int offset, u8 *data)
510 {
511 	unsigned long flags;
512 
513 	if (db->flags & DM9000_PLATF_NO_EEPROM)
514 		return;
515 
516 	mutex_lock(&db->addr_lock);
517 
518 	spin_lock_irqsave(&db->lock, flags);
519 	iow(db, DM9000_EPAR, offset);
520 	iow(db, DM9000_EPDRH, data[1]);
521 	iow(db, DM9000_EPDRL, data[0]);
522 	iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
523 	spin_unlock_irqrestore(&db->lock, flags);
524 
525 	dm9000_wait_eeprom(db);
526 
527 	mdelay(1);	/* wait at least 150uS to clear */
528 
529 	spin_lock_irqsave(&db->lock, flags);
530 	iow(db, DM9000_EPCR, 0);
531 	spin_unlock_irqrestore(&db->lock, flags);
532 
533 	mutex_unlock(&db->addr_lock);
534 }
535 
536 /* ethtool ops */
537 
538 static void dm9000_get_drvinfo(struct net_device *dev,
539 			       struct ethtool_drvinfo *info)
540 {
541 	struct board_info *dm = to_dm9000_board(dev);
542 
543 	strlcpy(info->driver, CARDNAME, sizeof(info->driver));
544 	strlcpy(info->bus_info, to_platform_device(dm->dev)->name,
545 		sizeof(info->bus_info));
546 }
547 
548 static u32 dm9000_get_msglevel(struct net_device *dev)
549 {
550 	struct board_info *dm = to_dm9000_board(dev);
551 
552 	return dm->msg_enable;
553 }
554 
555 static void dm9000_set_msglevel(struct net_device *dev, u32 value)
556 {
557 	struct board_info *dm = to_dm9000_board(dev);
558 
559 	dm->msg_enable = value;
560 }
561 
562 static int dm9000_get_link_ksettings(struct net_device *dev,
563 				     struct ethtool_link_ksettings *cmd)
564 {
565 	struct board_info *dm = to_dm9000_board(dev);
566 
567 	mii_ethtool_get_link_ksettings(&dm->mii, cmd);
568 	return 0;
569 }
570 
571 static int dm9000_set_link_ksettings(struct net_device *dev,
572 				     const struct ethtool_link_ksettings *cmd)
573 {
574 	struct board_info *dm = to_dm9000_board(dev);
575 
576 	return mii_ethtool_set_link_ksettings(&dm->mii, cmd);
577 }
578 
579 static int dm9000_nway_reset(struct net_device *dev)
580 {
581 	struct board_info *dm = to_dm9000_board(dev);
582 	return mii_nway_restart(&dm->mii);
583 }
584 
585 static int dm9000_set_features(struct net_device *dev,
586 	netdev_features_t features)
587 {
588 	struct board_info *dm = to_dm9000_board(dev);
589 	netdev_features_t changed = dev->features ^ features;
590 	unsigned long flags;
591 
592 	if (!(changed & NETIF_F_RXCSUM))
593 		return 0;
594 
595 	spin_lock_irqsave(&dm->lock, flags);
596 	iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
597 	spin_unlock_irqrestore(&dm->lock, flags);
598 
599 	return 0;
600 }
601 
602 static u32 dm9000_get_link(struct net_device *dev)
603 {
604 	struct board_info *dm = to_dm9000_board(dev);
605 	u32 ret;
606 
607 	if (dm->flags & DM9000_PLATF_EXT_PHY)
608 		ret = mii_link_ok(&dm->mii);
609 	else
610 		ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
611 
612 	return ret;
613 }
614 
615 #define DM_EEPROM_MAGIC		(0x444D394B)
616 
617 static int dm9000_get_eeprom_len(struct net_device *dev)
618 {
619 	return 128;
620 }
621 
622 static int dm9000_get_eeprom(struct net_device *dev,
623 			     struct ethtool_eeprom *ee, u8 *data)
624 {
625 	struct board_info *dm = to_dm9000_board(dev);
626 	int offset = ee->offset;
627 	int len = ee->len;
628 	int i;
629 
630 	/* EEPROM access is aligned to two bytes */
631 
632 	if ((len & 1) != 0 || (offset & 1) != 0)
633 		return -EINVAL;
634 
635 	if (dm->flags & DM9000_PLATF_NO_EEPROM)
636 		return -ENOENT;
637 
638 	ee->magic = DM_EEPROM_MAGIC;
639 
640 	for (i = 0; i < len; i += 2)
641 		dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
642 
643 	return 0;
644 }
645 
646 static int dm9000_set_eeprom(struct net_device *dev,
647 			     struct ethtool_eeprom *ee, u8 *data)
648 {
649 	struct board_info *dm = to_dm9000_board(dev);
650 	int offset = ee->offset;
651 	int len = ee->len;
652 	int done;
653 
654 	/* EEPROM access is aligned to two bytes */
655 
656 	if (dm->flags & DM9000_PLATF_NO_EEPROM)
657 		return -ENOENT;
658 
659 	if (ee->magic != DM_EEPROM_MAGIC)
660 		return -EINVAL;
661 
662 	while (len > 0) {
663 		if (len & 1 || offset & 1) {
664 			int which = offset & 1;
665 			u8 tmp[2];
666 
667 			dm9000_read_eeprom(dm, offset / 2, tmp);
668 			tmp[which] = *data;
669 			dm9000_write_eeprom(dm, offset / 2, tmp);
670 
671 			done = 1;
672 		} else {
673 			dm9000_write_eeprom(dm, offset / 2, data);
674 			done = 2;
675 		}
676 
677 		data += done;
678 		offset += done;
679 		len -= done;
680 	}
681 
682 	return 0;
683 }
684 
685 static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
686 {
687 	struct board_info *dm = to_dm9000_board(dev);
688 
689 	memset(w, 0, sizeof(struct ethtool_wolinfo));
690 
691 	/* note, we could probably support wake-phy too */
692 	w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
693 	w->wolopts = dm->wake_state;
694 }
695 
696 static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
697 {
698 	struct board_info *dm = to_dm9000_board(dev);
699 	unsigned long flags;
700 	u32 opts = w->wolopts;
701 	u32 wcr = 0;
702 
703 	if (!dm->wake_supported)
704 		return -EOPNOTSUPP;
705 
706 	if (opts & ~WAKE_MAGIC)
707 		return -EINVAL;
708 
709 	if (opts & WAKE_MAGIC)
710 		wcr |= WCR_MAGICEN;
711 
712 	mutex_lock(&dm->addr_lock);
713 
714 	spin_lock_irqsave(&dm->lock, flags);
715 	iow(dm, DM9000_WCR, wcr);
716 	spin_unlock_irqrestore(&dm->lock, flags);
717 
718 	mutex_unlock(&dm->addr_lock);
719 
720 	if (dm->wake_state != opts) {
721 		/* change in wol state, update IRQ state */
722 
723 		if (!dm->wake_state)
724 			irq_set_irq_wake(dm->irq_wake, 1);
725 		else if (dm->wake_state && !opts)
726 			irq_set_irq_wake(dm->irq_wake, 0);
727 	}
728 
729 	dm->wake_state = opts;
730 	return 0;
731 }
732 
733 static const struct ethtool_ops dm9000_ethtool_ops = {
734 	.get_drvinfo		= dm9000_get_drvinfo,
735 	.get_msglevel		= dm9000_get_msglevel,
736 	.set_msglevel		= dm9000_set_msglevel,
737 	.nway_reset		= dm9000_nway_reset,
738 	.get_link		= dm9000_get_link,
739 	.get_wol		= dm9000_get_wol,
740 	.set_wol		= dm9000_set_wol,
741 	.get_eeprom_len		= dm9000_get_eeprom_len,
742 	.get_eeprom		= dm9000_get_eeprom,
743 	.set_eeprom		= dm9000_set_eeprom,
744 	.get_link_ksettings	= dm9000_get_link_ksettings,
745 	.set_link_ksettings	= dm9000_set_link_ksettings,
746 };
747 
748 static void dm9000_show_carrier(struct board_info *db,
749 				unsigned carrier, unsigned nsr)
750 {
751 	int lpa;
752 	struct net_device *ndev = db->ndev;
753 	struct mii_if_info *mii = &db->mii;
754 	unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
755 
756 	if (carrier) {
757 		lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA);
758 		dev_info(db->dev,
759 			 "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
760 			 ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
761 			 (ncr & NCR_FDX) ? "full" : "half", lpa);
762 	} else {
763 		dev_info(db->dev, "%s: link down\n", ndev->name);
764 	}
765 }
766 
767 static void
768 dm9000_poll_work(struct work_struct *w)
769 {
770 	struct delayed_work *dw = to_delayed_work(w);
771 	struct board_info *db = container_of(dw, struct board_info, phy_poll);
772 	struct net_device *ndev = db->ndev;
773 
774 	if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
775 	    !(db->flags & DM9000_PLATF_EXT_PHY)) {
776 		unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
777 		unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
778 		unsigned new_carrier;
779 
780 		new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
781 
782 		if (old_carrier != new_carrier) {
783 			if (netif_msg_link(db))
784 				dm9000_show_carrier(db, new_carrier, nsr);
785 
786 			if (!new_carrier)
787 				netif_carrier_off(ndev);
788 			else
789 				netif_carrier_on(ndev);
790 		}
791 	} else
792 		mii_check_media(&db->mii, netif_msg_link(db), 0);
793 
794 	if (netif_running(ndev))
795 		dm9000_schedule_poll(db);
796 }
797 
798 /* dm9000_release_board
799  *
800  * release a board, and any mapped resources
801  */
802 
803 static void
804 dm9000_release_board(struct platform_device *pdev, struct board_info *db)
805 {
806 	/* unmap our resources */
807 
808 	iounmap(db->io_addr);
809 	iounmap(db->io_data);
810 
811 	/* release the resources */
812 
813 	if (db->data_req)
814 		release_resource(db->data_req);
815 	kfree(db->data_req);
816 
817 	if (db->addr_req)
818 		release_resource(db->addr_req);
819 	kfree(db->addr_req);
820 }
821 
822 static unsigned char dm9000_type_to_char(enum dm9000_type type)
823 {
824 	switch (type) {
825 	case TYPE_DM9000E: return 'e';
826 	case TYPE_DM9000A: return 'a';
827 	case TYPE_DM9000B: return 'b';
828 	}
829 
830 	return '?';
831 }
832 
833 /*
834  *  Set DM9000 multicast address
835  */
836 static void
837 dm9000_hash_table_unlocked(struct net_device *dev)
838 {
839 	struct board_info *db = netdev_priv(dev);
840 	struct netdev_hw_addr *ha;
841 	int i, oft;
842 	u32 hash_val;
843 	u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
844 	u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
845 
846 	dm9000_dbg(db, 1, "entering %s\n", __func__);
847 
848 	for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
849 		iow(db, oft, dev->dev_addr[i]);
850 
851 	if (dev->flags & IFF_PROMISC)
852 		rcr |= RCR_PRMSC;
853 
854 	if (dev->flags & IFF_ALLMULTI)
855 		rcr |= RCR_ALL;
856 
857 	/* the multicast address in Hash Table : 64 bits */
858 	netdev_for_each_mc_addr(ha, dev) {
859 		hash_val = ether_crc_le(6, ha->addr) & 0x3f;
860 		hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
861 	}
862 
863 	/* Write the hash table to MAC MD table */
864 	for (i = 0, oft = DM9000_MAR; i < 4; i++) {
865 		iow(db, oft++, hash_table[i]);
866 		iow(db, oft++, hash_table[i] >> 8);
867 	}
868 
869 	iow(db, DM9000_RCR, rcr);
870 }
871 
872 static void
873 dm9000_hash_table(struct net_device *dev)
874 {
875 	struct board_info *db = netdev_priv(dev);
876 	unsigned long flags;
877 
878 	spin_lock_irqsave(&db->lock, flags);
879 	dm9000_hash_table_unlocked(dev);
880 	spin_unlock_irqrestore(&db->lock, flags);
881 }
882 
883 static void
884 dm9000_mask_interrupts(struct board_info *db)
885 {
886 	iow(db, DM9000_IMR, IMR_PAR);
887 }
888 
889 static void
890 dm9000_unmask_interrupts(struct board_info *db)
891 {
892 	iow(db, DM9000_IMR, db->imr_all);
893 }
894 
895 /*
896  * Initialize dm9000 board
897  */
898 static void
899 dm9000_init_dm9000(struct net_device *dev)
900 {
901 	struct board_info *db = netdev_priv(dev);
902 	unsigned int imr;
903 	unsigned int ncr;
904 
905 	dm9000_dbg(db, 1, "entering %s\n", __func__);
906 
907 	dm9000_reset(db);
908 	dm9000_mask_interrupts(db);
909 
910 	/* I/O mode */
911 	db->io_mode = ior(db, DM9000_ISR) >> 6;	/* ISR bit7:6 keeps I/O mode */
912 
913 	/* Checksum mode */
914 	if (dev->hw_features & NETIF_F_RXCSUM)
915 		iow(db, DM9000_RCSR,
916 			(dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
917 
918 	iow(db, DM9000_GPCR, GPCR_GEP_CNTL);	/* Let GPIO0 output */
919 	iow(db, DM9000_GPR, 0);
920 
921 	/* If we are dealing with DM9000B, some extra steps are required: a
922 	 * manual phy reset, and setting init params.
923 	 */
924 	if (db->type == TYPE_DM9000B) {
925 		dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);
926 		dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM);
927 	}
928 
929 	ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
930 
931 	/* if wol is needed, then always set NCR_WAKEEN otherwise we end
932 	 * up dumping the wake events if we disable this. There is already
933 	 * a wake-mask in DM9000_WCR */
934 	if (db->wake_supported)
935 		ncr |= NCR_WAKEEN;
936 
937 	iow(db, DM9000_NCR, ncr);
938 
939 	/* Program operating register */
940 	iow(db, DM9000_TCR, 0);	        /* TX Polling clear */
941 	iow(db, DM9000_BPTR, 0x3f);	/* Less 3Kb, 200us */
942 	iow(db, DM9000_FCR, 0xff);	/* Flow Control */
943 	iow(db, DM9000_SMCR, 0);        /* Special Mode */
944 	/* clear TX status */
945 	iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
946 	iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
947 
948 	/* Set address filter table */
949 	dm9000_hash_table_unlocked(dev);
950 
951 	imr = IMR_PAR | IMR_PTM | IMR_PRM;
952 	if (db->type != TYPE_DM9000E)
953 		imr |= IMR_LNKCHNG;
954 
955 	db->imr_all = imr;
956 
957 	/* Init Driver variable */
958 	db->tx_pkt_cnt = 0;
959 	db->queue_pkt_len = 0;
960 	netif_trans_update(dev);
961 }
962 
963 /* Our watchdog timed out. Called by the networking layer */
964 static void dm9000_timeout(struct net_device *dev, unsigned int txqueue)
965 {
966 	struct board_info *db = netdev_priv(dev);
967 	u8 reg_save;
968 	unsigned long flags;
969 
970 	/* Save previous register address */
971 	spin_lock_irqsave(&db->lock, flags);
972 	db->in_timeout = 1;
973 	reg_save = readb(db->io_addr);
974 
975 	netif_stop_queue(dev);
976 	dm9000_init_dm9000(dev);
977 	dm9000_unmask_interrupts(db);
978 	/* We can accept TX packets again */
979 	netif_trans_update(dev); /* prevent tx timeout */
980 	netif_wake_queue(dev);
981 
982 	/* Restore previous register address */
983 	writeb(reg_save, db->io_addr);
984 	db->in_timeout = 0;
985 	spin_unlock_irqrestore(&db->lock, flags);
986 }
987 
988 static void dm9000_send_packet(struct net_device *dev,
989 			       int ip_summed,
990 			       u16 pkt_len)
991 {
992 	struct board_info *dm = to_dm9000_board(dev);
993 
994 	/* The DM9000 is not smart enough to leave fragmented packets alone. */
995 	if (dm->ip_summed != ip_summed) {
996 		if (ip_summed == CHECKSUM_NONE)
997 			iow(dm, DM9000_TCCR, 0);
998 		else
999 			iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
1000 		dm->ip_summed = ip_summed;
1001 	}
1002 
1003 	/* Set TX length to DM9000 */
1004 	iow(dm, DM9000_TXPLL, pkt_len);
1005 	iow(dm, DM9000_TXPLH, pkt_len >> 8);
1006 
1007 	/* Issue TX polling command */
1008 	iow(dm, DM9000_TCR, TCR_TXREQ);	/* Cleared after TX complete */
1009 }
1010 
1011 /*
1012  *  Hardware start transmission.
1013  *  Send a packet to media from the upper layer.
1014  */
1015 static int
1016 dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1017 {
1018 	unsigned long flags;
1019 	struct board_info *db = netdev_priv(dev);
1020 
1021 	dm9000_dbg(db, 3, "%s:\n", __func__);
1022 
1023 	if (db->tx_pkt_cnt > 1)
1024 		return NETDEV_TX_BUSY;
1025 
1026 	spin_lock_irqsave(&db->lock, flags);
1027 
1028 	/* Move data to DM9000 TX RAM */
1029 	writeb(DM9000_MWCMD, db->io_addr);
1030 
1031 	(db->outblk)(db->io_data, skb->data, skb->len);
1032 	dev->stats.tx_bytes += skb->len;
1033 
1034 	db->tx_pkt_cnt++;
1035 	/* TX control: First packet immediately send, second packet queue */
1036 	if (db->tx_pkt_cnt == 1) {
1037 		dm9000_send_packet(dev, skb->ip_summed, skb->len);
1038 	} else {
1039 		/* Second packet */
1040 		db->queue_pkt_len = skb->len;
1041 		db->queue_ip_summed = skb->ip_summed;
1042 		netif_stop_queue(dev);
1043 	}
1044 
1045 	spin_unlock_irqrestore(&db->lock, flags);
1046 
1047 	/* free this SKB */
1048 	dev_consume_skb_any(skb);
1049 
1050 	return NETDEV_TX_OK;
1051 }
1052 
1053 /*
1054  * DM9000 interrupt handler
1055  * receive the packet to upper layer, free the transmitted packet
1056  */
1057 
1058 static void dm9000_tx_done(struct net_device *dev, struct board_info *db)
1059 {
1060 	int tx_status = ior(db, DM9000_NSR);	/* Got TX status */
1061 
1062 	if (tx_status & (NSR_TX2END | NSR_TX1END)) {
1063 		/* One packet sent complete */
1064 		db->tx_pkt_cnt--;
1065 		dev->stats.tx_packets++;
1066 
1067 		if (netif_msg_tx_done(db))
1068 			dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
1069 
1070 		/* Queue packet check & send */
1071 		if (db->tx_pkt_cnt > 0)
1072 			dm9000_send_packet(dev, db->queue_ip_summed,
1073 					   db->queue_pkt_len);
1074 		netif_wake_queue(dev);
1075 	}
1076 }
1077 
1078 struct dm9000_rxhdr {
1079 	u8	RxPktReady;
1080 	u8	RxStatus;
1081 	__le16	RxLen;
1082 } __packed;
1083 
1084 /*
1085  *  Received a packet and pass to upper layer
1086  */
1087 static void
1088 dm9000_rx(struct net_device *dev)
1089 {
1090 	struct board_info *db = netdev_priv(dev);
1091 	struct dm9000_rxhdr rxhdr;
1092 	struct sk_buff *skb;
1093 	u8 rxbyte, *rdptr;
1094 	bool GoodPacket;
1095 	int RxLen;
1096 
1097 	/* Check packet ready or not */
1098 	do {
1099 		ior(db, DM9000_MRCMDX);	/* Dummy read */
1100 
1101 		/* Get most updated data */
1102 		rxbyte = readb(db->io_data);
1103 
1104 		/* Status check: this byte must be 0 or 1 */
1105 		if (rxbyte & DM9000_PKT_ERR) {
1106 			dev_warn(db->dev, "status check fail: %d\n", rxbyte);
1107 			iow(db, DM9000_RCR, 0x00);	/* Stop Device */
1108 			return;
1109 		}
1110 
1111 		if (!(rxbyte & DM9000_PKT_RDY))
1112 			return;
1113 
1114 		/* A packet ready now  & Get status/length */
1115 		GoodPacket = true;
1116 		writeb(DM9000_MRCMD, db->io_addr);
1117 
1118 		(db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
1119 
1120 		RxLen = le16_to_cpu(rxhdr.RxLen);
1121 
1122 		if (netif_msg_rx_status(db))
1123 			dev_dbg(db->dev, "RX: status %02x, length %04x\n",
1124 				rxhdr.RxStatus, RxLen);
1125 
1126 		/* Packet Status check */
1127 		if (RxLen < 0x40) {
1128 			GoodPacket = false;
1129 			if (netif_msg_rx_err(db))
1130 				dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1131 		}
1132 
1133 		if (RxLen > DM9000_PKT_MAX) {
1134 			dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1135 		}
1136 
1137 		/* rxhdr.RxStatus is identical to RSR register. */
1138 		if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1139 				      RSR_PLE | RSR_RWTO |
1140 				      RSR_LCS | RSR_RF)) {
1141 			GoodPacket = false;
1142 			if (rxhdr.RxStatus & RSR_FOE) {
1143 				if (netif_msg_rx_err(db))
1144 					dev_dbg(db->dev, "fifo error\n");
1145 				dev->stats.rx_fifo_errors++;
1146 			}
1147 			if (rxhdr.RxStatus & RSR_CE) {
1148 				if (netif_msg_rx_err(db))
1149 					dev_dbg(db->dev, "crc error\n");
1150 				dev->stats.rx_crc_errors++;
1151 			}
1152 			if (rxhdr.RxStatus & RSR_RF) {
1153 				if (netif_msg_rx_err(db))
1154 					dev_dbg(db->dev, "length error\n");
1155 				dev->stats.rx_length_errors++;
1156 			}
1157 		}
1158 
1159 		/* Move data from DM9000 */
1160 		if (GoodPacket &&
1161 		    ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
1162 			skb_reserve(skb, 2);
1163 			rdptr = skb_put(skb, RxLen - 4);
1164 
1165 			/* Read received packet from RX SRAM */
1166 
1167 			(db->inblk)(db->io_data, rdptr, RxLen);
1168 			dev->stats.rx_bytes += RxLen;
1169 
1170 			/* Pass to upper layer */
1171 			skb->protocol = eth_type_trans(skb, dev);
1172 			if (dev->features & NETIF_F_RXCSUM) {
1173 				if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1174 					skb->ip_summed = CHECKSUM_UNNECESSARY;
1175 				else
1176 					skb_checksum_none_assert(skb);
1177 			}
1178 			netif_rx(skb);
1179 			dev->stats.rx_packets++;
1180 
1181 		} else {
1182 			/* need to dump the packet's data */
1183 
1184 			(db->dumpblk)(db->io_data, RxLen);
1185 		}
1186 	} while (rxbyte & DM9000_PKT_RDY);
1187 }
1188 
1189 static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1190 {
1191 	struct net_device *dev = dev_id;
1192 	struct board_info *db = netdev_priv(dev);
1193 	int int_status;
1194 	unsigned long flags;
1195 	u8 reg_save;
1196 
1197 	dm9000_dbg(db, 3, "entering %s\n", __func__);
1198 
1199 	/* A real interrupt coming */
1200 
1201 	/* holders of db->lock must always block IRQs */
1202 	spin_lock_irqsave(&db->lock, flags);
1203 
1204 	/* Save previous register address */
1205 	reg_save = readb(db->io_addr);
1206 
1207 	dm9000_mask_interrupts(db);
1208 	/* Got DM9000 interrupt status */
1209 	int_status = ior(db, DM9000_ISR);	/* Got ISR */
1210 	iow(db, DM9000_ISR, int_status);	/* Clear ISR status */
1211 
1212 	if (netif_msg_intr(db))
1213 		dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1214 
1215 	/* Received the coming packet */
1216 	if (int_status & ISR_PRS)
1217 		dm9000_rx(dev);
1218 
1219 	/* Transmit Interrupt check */
1220 	if (int_status & ISR_PTS)
1221 		dm9000_tx_done(dev, db);
1222 
1223 	if (db->type != TYPE_DM9000E) {
1224 		if (int_status & ISR_LNKCHNG) {
1225 			/* fire a link-change request */
1226 			schedule_delayed_work(&db->phy_poll, 1);
1227 		}
1228 	}
1229 
1230 	dm9000_unmask_interrupts(db);
1231 	/* Restore previous register address */
1232 	writeb(reg_save, db->io_addr);
1233 
1234 	spin_unlock_irqrestore(&db->lock, flags);
1235 
1236 	return IRQ_HANDLED;
1237 }
1238 
1239 static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1240 {
1241 	struct net_device *dev = dev_id;
1242 	struct board_info *db = netdev_priv(dev);
1243 	unsigned long flags;
1244 	unsigned nsr, wcr;
1245 
1246 	spin_lock_irqsave(&db->lock, flags);
1247 
1248 	nsr = ior(db, DM9000_NSR);
1249 	wcr = ior(db, DM9000_WCR);
1250 
1251 	dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1252 
1253 	if (nsr & NSR_WAKEST) {
1254 		/* clear, so we can avoid */
1255 		iow(db, DM9000_NSR, NSR_WAKEST);
1256 
1257 		if (wcr & WCR_LINKST)
1258 			dev_info(db->dev, "wake by link status change\n");
1259 		if (wcr & WCR_SAMPLEST)
1260 			dev_info(db->dev, "wake by sample packet\n");
1261 		if (wcr & WCR_MAGICST)
1262 			dev_info(db->dev, "wake by magic packet\n");
1263 		if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1264 			dev_err(db->dev, "wake signalled with no reason? "
1265 				"NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1266 	}
1267 
1268 	spin_unlock_irqrestore(&db->lock, flags);
1269 
1270 	return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1271 }
1272 
1273 #ifdef CONFIG_NET_POLL_CONTROLLER
1274 /*
1275  *Used by netconsole
1276  */
1277 static void dm9000_poll_controller(struct net_device *dev)
1278 {
1279 	disable_irq(dev->irq);
1280 	dm9000_interrupt(dev->irq, dev);
1281 	enable_irq(dev->irq);
1282 }
1283 #endif
1284 
1285 /*
1286  *  Open the interface.
1287  *  The interface is opened whenever "ifconfig" actives it.
1288  */
1289 static int
1290 dm9000_open(struct net_device *dev)
1291 {
1292 	struct board_info *db = netdev_priv(dev);
1293 	unsigned int irq_flags = irq_get_trigger_type(dev->irq);
1294 
1295 	if (netif_msg_ifup(db))
1296 		dev_dbg(db->dev, "enabling %s\n", dev->name);
1297 
1298 	/* If there is no IRQ type specified, tell the user that this is a
1299 	 * problem
1300 	 */
1301 	if (irq_flags == IRQF_TRIGGER_NONE)
1302 		dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1303 
1304 	irq_flags |= IRQF_SHARED;
1305 
1306 	/* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1307 	iow(db, DM9000_GPR, 0);	/* REG_1F bit0 activate phyxcer */
1308 	mdelay(1); /* delay needs by DM9000B */
1309 
1310 	/* Initialize DM9000 board */
1311 	dm9000_init_dm9000(dev);
1312 
1313 	if (request_irq(dev->irq, dm9000_interrupt, irq_flags, dev->name, dev))
1314 		return -EAGAIN;
1315 	/* Now that we have an interrupt handler hooked up we can unmask
1316 	 * our interrupts
1317 	 */
1318 	dm9000_unmask_interrupts(db);
1319 
1320 	/* Init driver variable */
1321 	db->dbug_cnt = 0;
1322 
1323 	mii_check_media(&db->mii, netif_msg_link(db), 1);
1324 	netif_start_queue(dev);
1325 
1326 	/* Poll initial link status */
1327 	schedule_delayed_work(&db->phy_poll, 1);
1328 
1329 	return 0;
1330 }
1331 
1332 static void
1333 dm9000_shutdown(struct net_device *dev)
1334 {
1335 	struct board_info *db = netdev_priv(dev);
1336 
1337 	/* RESET device */
1338 	dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);	/* PHY RESET */
1339 	iow(db, DM9000_GPR, 0x01);	/* Power-Down PHY */
1340 	dm9000_mask_interrupts(db);
1341 	iow(db, DM9000_RCR, 0x00);	/* Disable RX */
1342 }
1343 
1344 /*
1345  * Stop the interface.
1346  * The interface is stopped when it is brought.
1347  */
1348 static int
1349 dm9000_stop(struct net_device *ndev)
1350 {
1351 	struct board_info *db = netdev_priv(ndev);
1352 
1353 	if (netif_msg_ifdown(db))
1354 		dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1355 
1356 	cancel_delayed_work_sync(&db->phy_poll);
1357 
1358 	netif_stop_queue(ndev);
1359 	netif_carrier_off(ndev);
1360 
1361 	/* free interrupt */
1362 	free_irq(ndev->irq, ndev);
1363 
1364 	dm9000_shutdown(ndev);
1365 
1366 	return 0;
1367 }
1368 
1369 static const struct net_device_ops dm9000_netdev_ops = {
1370 	.ndo_open		= dm9000_open,
1371 	.ndo_stop		= dm9000_stop,
1372 	.ndo_start_xmit		= dm9000_start_xmit,
1373 	.ndo_tx_timeout		= dm9000_timeout,
1374 	.ndo_set_rx_mode	= dm9000_hash_table,
1375 	.ndo_eth_ioctl		= dm9000_ioctl,
1376 	.ndo_set_features	= dm9000_set_features,
1377 	.ndo_validate_addr	= eth_validate_addr,
1378 	.ndo_set_mac_address	= eth_mac_addr,
1379 #ifdef CONFIG_NET_POLL_CONTROLLER
1380 	.ndo_poll_controller	= dm9000_poll_controller,
1381 #endif
1382 };
1383 
1384 static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev)
1385 {
1386 	struct dm9000_plat_data *pdata;
1387 	struct device_node *np = dev->of_node;
1388 	int ret;
1389 
1390 	if (!IS_ENABLED(CONFIG_OF) || !np)
1391 		return ERR_PTR(-ENXIO);
1392 
1393 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1394 	if (!pdata)
1395 		return ERR_PTR(-ENOMEM);
1396 
1397 	if (of_find_property(np, "davicom,ext-phy", NULL))
1398 		pdata->flags |= DM9000_PLATF_EXT_PHY;
1399 	if (of_find_property(np, "davicom,no-eeprom", NULL))
1400 		pdata->flags |= DM9000_PLATF_NO_EEPROM;
1401 
1402 	ret = of_get_mac_address(np, pdata->dev_addr);
1403 	if (ret == -EPROBE_DEFER)
1404 		return ERR_PTR(ret);
1405 
1406 	return pdata;
1407 }
1408 
1409 /*
1410  * Search DM9000 board, allocate space and register it
1411  */
1412 static int
1413 dm9000_probe(struct platform_device *pdev)
1414 {
1415 	struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev);
1416 	struct board_info *db;	/* Point a board information structure */
1417 	struct net_device *ndev;
1418 	struct device *dev = &pdev->dev;
1419 	const unsigned char *mac_src;
1420 	int ret = 0;
1421 	int iosize;
1422 	int i;
1423 	u32 id_val;
1424 	int reset_gpios;
1425 	enum of_gpio_flags flags;
1426 	struct regulator *power;
1427 	bool inv_mac_addr = false;
1428 	u8 addr[ETH_ALEN];
1429 
1430 	power = devm_regulator_get(dev, "vcc");
1431 	if (IS_ERR(power)) {
1432 		if (PTR_ERR(power) == -EPROBE_DEFER)
1433 			return -EPROBE_DEFER;
1434 		dev_dbg(dev, "no regulator provided\n");
1435 	} else {
1436 		ret = regulator_enable(power);
1437 		if (ret != 0) {
1438 			dev_err(dev,
1439 				"Failed to enable power regulator: %d\n", ret);
1440 			return ret;
1441 		}
1442 		dev_dbg(dev, "regulator enabled\n");
1443 	}
1444 
1445 	reset_gpios = of_get_named_gpio_flags(dev->of_node, "reset-gpios", 0,
1446 					      &flags);
1447 	if (gpio_is_valid(reset_gpios)) {
1448 		ret = devm_gpio_request_one(dev, reset_gpios, flags,
1449 					    "dm9000_reset");
1450 		if (ret) {
1451 			dev_err(dev, "failed to request reset gpio %d: %d\n",
1452 				reset_gpios, ret);
1453 			goto out_regulator_disable;
1454 		}
1455 
1456 		/* According to manual PWRST# Low Period Min 1ms */
1457 		msleep(2);
1458 		gpio_set_value(reset_gpios, 1);
1459 		/* Needs 3ms to read eeprom when PWRST is deasserted */
1460 		msleep(4);
1461 	}
1462 
1463 	if (!pdata) {
1464 		pdata = dm9000_parse_dt(&pdev->dev);
1465 		if (IS_ERR(pdata)) {
1466 			ret = PTR_ERR(pdata);
1467 			goto out_regulator_disable;
1468 		}
1469 	}
1470 
1471 	/* Init network device */
1472 	ndev = alloc_etherdev(sizeof(struct board_info));
1473 	if (!ndev) {
1474 		ret = -ENOMEM;
1475 		goto out_regulator_disable;
1476 	}
1477 
1478 	SET_NETDEV_DEV(ndev, &pdev->dev);
1479 
1480 	dev_dbg(&pdev->dev, "dm9000_probe()\n");
1481 
1482 	/* setup board info structure */
1483 	db = netdev_priv(ndev);
1484 
1485 	db->dev = &pdev->dev;
1486 	db->ndev = ndev;
1487 	if (!IS_ERR(power))
1488 		db->power_supply = power;
1489 
1490 	spin_lock_init(&db->lock);
1491 	mutex_init(&db->addr_lock);
1492 
1493 	INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1494 
1495 	db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1496 	db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1497 
1498 	if (!db->addr_res || !db->data_res) {
1499 		dev_err(db->dev, "insufficient resources addr=%p data=%p\n",
1500 			db->addr_res, db->data_res);
1501 		ret = -ENOENT;
1502 		goto out;
1503 	}
1504 
1505 	ndev->irq = platform_get_irq(pdev, 0);
1506 	if (ndev->irq < 0) {
1507 		ret = ndev->irq;
1508 		goto out;
1509 	}
1510 
1511 	db->irq_wake = platform_get_irq_optional(pdev, 1);
1512 	if (db->irq_wake >= 0) {
1513 		dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1514 
1515 		ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1516 				  IRQF_SHARED, dev_name(db->dev), ndev);
1517 		if (ret) {
1518 			dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1519 		} else {
1520 
1521 			/* test to see if irq is really wakeup capable */
1522 			ret = irq_set_irq_wake(db->irq_wake, 1);
1523 			if (ret) {
1524 				dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1525 					db->irq_wake, ret);
1526 			} else {
1527 				irq_set_irq_wake(db->irq_wake, 0);
1528 				db->wake_supported = 1;
1529 			}
1530 		}
1531 	}
1532 
1533 	iosize = resource_size(db->addr_res);
1534 	db->addr_req = request_mem_region(db->addr_res->start, iosize,
1535 					  pdev->name);
1536 
1537 	if (db->addr_req == NULL) {
1538 		dev_err(db->dev, "cannot claim address reg area\n");
1539 		ret = -EIO;
1540 		goto out;
1541 	}
1542 
1543 	db->io_addr = ioremap(db->addr_res->start, iosize);
1544 
1545 	if (db->io_addr == NULL) {
1546 		dev_err(db->dev, "failed to ioremap address reg\n");
1547 		ret = -EINVAL;
1548 		goto out;
1549 	}
1550 
1551 	iosize = resource_size(db->data_res);
1552 	db->data_req = request_mem_region(db->data_res->start, iosize,
1553 					  pdev->name);
1554 
1555 	if (db->data_req == NULL) {
1556 		dev_err(db->dev, "cannot claim data reg area\n");
1557 		ret = -EIO;
1558 		goto out;
1559 	}
1560 
1561 	db->io_data = ioremap(db->data_res->start, iosize);
1562 
1563 	if (db->io_data == NULL) {
1564 		dev_err(db->dev, "failed to ioremap data reg\n");
1565 		ret = -EINVAL;
1566 		goto out;
1567 	}
1568 
1569 	/* fill in parameters for net-dev structure */
1570 	ndev->base_addr = (unsigned long)db->io_addr;
1571 
1572 	/* ensure at least we have a default set of IO routines */
1573 	dm9000_set_io(db, iosize);
1574 
1575 	/* check to see if anything is being over-ridden */
1576 	if (pdata != NULL) {
1577 		/* check to see if the driver wants to over-ride the
1578 		 * default IO width */
1579 
1580 		if (pdata->flags & DM9000_PLATF_8BITONLY)
1581 			dm9000_set_io(db, 1);
1582 
1583 		if (pdata->flags & DM9000_PLATF_16BITONLY)
1584 			dm9000_set_io(db, 2);
1585 
1586 		if (pdata->flags & DM9000_PLATF_32BITONLY)
1587 			dm9000_set_io(db, 4);
1588 
1589 		/* check to see if there are any IO routine
1590 		 * over-rides */
1591 
1592 		if (pdata->inblk != NULL)
1593 			db->inblk = pdata->inblk;
1594 
1595 		if (pdata->outblk != NULL)
1596 			db->outblk = pdata->outblk;
1597 
1598 		if (pdata->dumpblk != NULL)
1599 			db->dumpblk = pdata->dumpblk;
1600 
1601 		db->flags = pdata->flags;
1602 	}
1603 
1604 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1605 	db->flags |= DM9000_PLATF_SIMPLE_PHY;
1606 #endif
1607 
1608 	dm9000_reset(db);
1609 
1610 	/* try multiple times, DM9000 sometimes gets the read wrong */
1611 	for (i = 0; i < 8; i++) {
1612 		id_val  = ior(db, DM9000_VIDL);
1613 		id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1614 		id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1615 		id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1616 
1617 		if (id_val == DM9000_ID)
1618 			break;
1619 		dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1620 	}
1621 
1622 	if (id_val != DM9000_ID) {
1623 		dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1624 		ret = -ENODEV;
1625 		goto out;
1626 	}
1627 
1628 	/* Identify what type of DM9000 we are working on */
1629 
1630 	id_val = ior(db, DM9000_CHIPR);
1631 	dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1632 
1633 	switch (id_val) {
1634 	case CHIPR_DM9000A:
1635 		db->type = TYPE_DM9000A;
1636 		break;
1637 	case CHIPR_DM9000B:
1638 		db->type = TYPE_DM9000B;
1639 		break;
1640 	default:
1641 		dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1642 		db->type = TYPE_DM9000E;
1643 	}
1644 
1645 	/* dm9000a/b are capable of hardware checksum offload */
1646 	if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1647 		ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1648 		ndev->features |= ndev->hw_features;
1649 	}
1650 
1651 	/* from this point we assume that we have found a DM9000 */
1652 
1653 	ndev->netdev_ops	= &dm9000_netdev_ops;
1654 	ndev->watchdog_timeo	= msecs_to_jiffies(watchdog);
1655 	ndev->ethtool_ops	= &dm9000_ethtool_ops;
1656 
1657 	db->msg_enable       = NETIF_MSG_LINK;
1658 	db->mii.phy_id_mask  = 0x1f;
1659 	db->mii.reg_num_mask = 0x1f;
1660 	db->mii.force_media  = 0;
1661 	db->mii.full_duplex  = 0;
1662 	db->mii.dev	     = ndev;
1663 	db->mii.mdio_read    = dm9000_phy_read;
1664 	db->mii.mdio_write   = dm9000_phy_write;
1665 
1666 	mac_src = "eeprom";
1667 
1668 	/* try reading the node address from the attached EEPROM */
1669 	for (i = 0; i < 6; i += 2)
1670 		dm9000_read_eeprom(db, i / 2, addr + i);
1671 	eth_hw_addr_set(ndev, addr);
1672 
1673 	if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1674 		mac_src = "platform data";
1675 		eth_hw_addr_set(ndev, pdata->dev_addr);
1676 	}
1677 
1678 	if (!is_valid_ether_addr(ndev->dev_addr)) {
1679 		/* try reading from mac */
1680 
1681 		mac_src = "chip";
1682 		for (i = 0; i < 6; i++)
1683 			addr[i] = ior(db, i + DM9000_PAR);
1684 		eth_hw_addr_set(ndev, pdata->dev_addr);
1685 	}
1686 
1687 	if (!is_valid_ether_addr(ndev->dev_addr)) {
1688 		inv_mac_addr = true;
1689 		eth_hw_addr_random(ndev);
1690 		mac_src = "random";
1691 	}
1692 
1693 
1694 	platform_set_drvdata(pdev, ndev);
1695 	ret = register_netdev(ndev);
1696 
1697 	if (ret == 0) {
1698 		if (inv_mac_addr)
1699 			dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please set using ip\n",
1700 				 ndev->name);
1701 		printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1702 		       ndev->name, dm9000_type_to_char(db->type),
1703 		       db->io_addr, db->io_data, ndev->irq,
1704 		       ndev->dev_addr, mac_src);
1705 	}
1706 	return 0;
1707 
1708 out:
1709 	dev_err(db->dev, "not found (%d).\n", ret);
1710 
1711 	dm9000_release_board(pdev, db);
1712 	free_netdev(ndev);
1713 
1714 out_regulator_disable:
1715 	if (!IS_ERR(power))
1716 		regulator_disable(power);
1717 
1718 	return ret;
1719 }
1720 
1721 static int
1722 dm9000_drv_suspend(struct device *dev)
1723 {
1724 	struct net_device *ndev = dev_get_drvdata(dev);
1725 	struct board_info *db;
1726 
1727 	if (ndev) {
1728 		db = netdev_priv(ndev);
1729 		db->in_suspend = 1;
1730 
1731 		if (!netif_running(ndev))
1732 			return 0;
1733 
1734 		netif_device_detach(ndev);
1735 
1736 		/* only shutdown if not using WoL */
1737 		if (!db->wake_state)
1738 			dm9000_shutdown(ndev);
1739 	}
1740 	return 0;
1741 }
1742 
1743 static int
1744 dm9000_drv_resume(struct device *dev)
1745 {
1746 	struct net_device *ndev = dev_get_drvdata(dev);
1747 	struct board_info *db = netdev_priv(ndev);
1748 
1749 	if (ndev) {
1750 		if (netif_running(ndev)) {
1751 			/* reset if we were not in wake mode to ensure if
1752 			 * the device was powered off it is in a known state */
1753 			if (!db->wake_state) {
1754 				dm9000_init_dm9000(ndev);
1755 				dm9000_unmask_interrupts(db);
1756 			}
1757 
1758 			netif_device_attach(ndev);
1759 		}
1760 
1761 		db->in_suspend = 0;
1762 	}
1763 	return 0;
1764 }
1765 
1766 static const struct dev_pm_ops dm9000_drv_pm_ops = {
1767 	.suspend	= dm9000_drv_suspend,
1768 	.resume		= dm9000_drv_resume,
1769 };
1770 
1771 static int
1772 dm9000_drv_remove(struct platform_device *pdev)
1773 {
1774 	struct net_device *ndev = platform_get_drvdata(pdev);
1775 	struct board_info *dm = to_dm9000_board(ndev);
1776 
1777 	unregister_netdev(ndev);
1778 	dm9000_release_board(pdev, dm);
1779 	free_netdev(ndev);		/* free device structure */
1780 	if (dm->power_supply)
1781 		regulator_disable(dm->power_supply);
1782 
1783 	dev_dbg(&pdev->dev, "released and freed device\n");
1784 	return 0;
1785 }
1786 
1787 #ifdef CONFIG_OF
1788 static const struct of_device_id dm9000_of_matches[] = {
1789 	{ .compatible = "davicom,dm9000", },
1790 	{ /* sentinel */ }
1791 };
1792 MODULE_DEVICE_TABLE(of, dm9000_of_matches);
1793 #endif
1794 
1795 static struct platform_driver dm9000_driver = {
1796 	.driver	= {
1797 		.name    = "dm9000",
1798 		.pm	 = &dm9000_drv_pm_ops,
1799 		.of_match_table = of_match_ptr(dm9000_of_matches),
1800 	},
1801 	.probe   = dm9000_probe,
1802 	.remove  = dm9000_drv_remove,
1803 };
1804 
1805 module_platform_driver(dm9000_driver);
1806 
1807 MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1808 MODULE_DESCRIPTION("Davicom DM9000 network driver");
1809 MODULE_LICENSE("GPL");
1810 MODULE_ALIAS("platform:dm9000");
1811