xref: /linux/drivers/net/ethernet/davicom/dm9000.c (revision 5d3cb0ffdd0c8987dc17a2ef4529b246198ceb72)
1 /*
2  *      Davicom DM9000 Fast Ethernet driver for Linux.
3  * 	Copyright (C) 1997  Sten Wang
4  *
5  * 	This program is free software; you can redistribute it and/or
6  * 	modify it under the terms of the GNU General Public License
7  * 	as published by the Free Software Foundation; either version 2
8  * 	of the License, or (at your option) any later version.
9  *
10  * 	This program is distributed in the hope that it will be useful,
11  * 	but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * 	GNU General Public License for more details.
14  *
15  * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
16  *
17  * Additional updates, Copyright:
18  *	Ben Dooks <ben@simtec.co.uk>
19  *	Sascha Hauer <s.hauer@pengutronix.de>
20  */
21 
22 #include <linux/module.h>
23 #include <linux/ioport.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/skbuff.h>
29 #include <linux/spinlock.h>
30 #include <linux/crc32.h>
31 #include <linux/mii.h>
32 #include <linux/ethtool.h>
33 #include <linux/dm9000.h>
34 #include <linux/delay.h>
35 #include <linux/platform_device.h>
36 #include <linux/irq.h>
37 #include <linux/slab.h>
38 
39 #include <asm/delay.h>
40 #include <asm/irq.h>
41 #include <asm/io.h>
42 
43 #include "dm9000.h"
44 
45 /* Board/System/Debug information/definition ---------------- */
46 
47 #define DM9000_PHY		0x40	/* PHY address 0x01 */
48 
49 #define CARDNAME	"dm9000"
50 #define DRV_VERSION	"1.31"
51 
52 /*
53  * Transmit timeout, default 5 seconds.
54  */
55 static int watchdog = 5000;
56 module_param(watchdog, int, 0400);
57 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
58 
59 /*
60  * Debug messages level
61  */
62 static int debug;
63 module_param(debug, int, 0644);
64 MODULE_PARM_DESC(debug, "dm9000 debug level (0-4)");
65 
66 /* DM9000 register address locking.
67  *
68  * The DM9000 uses an address register to control where data written
69  * to the data register goes. This means that the address register
70  * must be preserved over interrupts or similar calls.
71  *
72  * During interrupt and other critical calls, a spinlock is used to
73  * protect the system, but the calls themselves save the address
74  * in the address register in case they are interrupting another
75  * access to the device.
76  *
77  * For general accesses a lock is provided so that calls which are
78  * allowed to sleep are serialised so that the address register does
79  * not need to be saved. This lock also serves to serialise access
80  * to the EEPROM and PHY access registers which are shared between
81  * these two devices.
82  */
83 
84 /* The driver supports the original DM9000E, and now the two newer
85  * devices, DM9000A and DM9000B.
86  */
87 
88 enum dm9000_type {
89 	TYPE_DM9000E,	/* original DM9000 */
90 	TYPE_DM9000A,
91 	TYPE_DM9000B
92 };
93 
94 /* Structure/enum declaration ------------------------------- */
95 typedef struct board_info {
96 
97 	void __iomem	*io_addr;	/* Register I/O base address */
98 	void __iomem	*io_data;	/* Data I/O address */
99 	u16		 irq;		/* IRQ */
100 
101 	u16		tx_pkt_cnt;
102 	u16		queue_pkt_len;
103 	u16		queue_start_addr;
104 	u16		queue_ip_summed;
105 	u16		dbug_cnt;
106 	u8		io_mode;		/* 0:word, 2:byte */
107 	u8		phy_addr;
108 	u8		imr_all;
109 
110 	unsigned int	flags;
111 	unsigned int	in_suspend :1;
112 	unsigned int	wake_supported :1;
113 
114 	enum dm9000_type type;
115 
116 	void (*inblk)(void __iomem *port, void *data, int length);
117 	void (*outblk)(void __iomem *port, void *data, int length);
118 	void (*dumpblk)(void __iomem *port, int length);
119 
120 	struct device	*dev;	     /* parent device */
121 
122 	struct resource	*addr_res;   /* resources found */
123 	struct resource *data_res;
124 	struct resource	*addr_req;   /* resources requested */
125 	struct resource *data_req;
126 	struct resource *irq_res;
127 
128 	int		 irq_wake;
129 
130 	struct mutex	 addr_lock;	/* phy and eeprom access lock */
131 
132 	struct delayed_work phy_poll;
133 	struct net_device  *ndev;
134 
135 	spinlock_t	lock;
136 
137 	struct mii_if_info mii;
138 	u32		msg_enable;
139 	u32		wake_state;
140 
141 	int		ip_summed;
142 } board_info_t;
143 
144 /* debug code */
145 
146 #define dm9000_dbg(db, lev, msg...) do {		\
147 	if ((lev) < debug) {				\
148 		dev_dbg(db->dev, msg);			\
149 	}						\
150 } while (0)
151 
152 static inline board_info_t *to_dm9000_board(struct net_device *dev)
153 {
154 	return netdev_priv(dev);
155 }
156 
157 /* DM9000 network board routine ---------------------------- */
158 
159 static void
160 dm9000_reset(board_info_t * db)
161 {
162 	dev_dbg(db->dev, "resetting device\n");
163 
164 	/* RESET device */
165 	writeb(DM9000_NCR, db->io_addr);
166 	udelay(200);
167 	writeb(NCR_RST, db->io_data);
168 	udelay(200);
169 }
170 
171 /*
172  *   Read a byte from I/O port
173  */
174 static u8
175 ior(board_info_t * db, int reg)
176 {
177 	writeb(reg, db->io_addr);
178 	return readb(db->io_data);
179 }
180 
181 /*
182  *   Write a byte to I/O port
183  */
184 
185 static void
186 iow(board_info_t * db, int reg, int value)
187 {
188 	writeb(reg, db->io_addr);
189 	writeb(value, db->io_data);
190 }
191 
192 /* routines for sending block to chip */
193 
194 static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
195 {
196 	writesb(reg, data, count);
197 }
198 
199 static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
200 {
201 	writesw(reg, data, (count+1) >> 1);
202 }
203 
204 static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
205 {
206 	writesl(reg, data, (count+3) >> 2);
207 }
208 
209 /* input block from chip to memory */
210 
211 static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
212 {
213 	readsb(reg, data, count);
214 }
215 
216 
217 static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
218 {
219 	readsw(reg, data, (count+1) >> 1);
220 }
221 
222 static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
223 {
224 	readsl(reg, data, (count+3) >> 2);
225 }
226 
227 /* dump block from chip to null */
228 
229 static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
230 {
231 	int i;
232 	int tmp;
233 
234 	for (i = 0; i < count; i++)
235 		tmp = readb(reg);
236 }
237 
238 static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
239 {
240 	int i;
241 	int tmp;
242 
243 	count = (count + 1) >> 1;
244 
245 	for (i = 0; i < count; i++)
246 		tmp = readw(reg);
247 }
248 
249 static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
250 {
251 	int i;
252 	int tmp;
253 
254 	count = (count + 3) >> 2;
255 
256 	for (i = 0; i < count; i++)
257 		tmp = readl(reg);
258 }
259 
260 /* dm9000_set_io
261  *
262  * select the specified set of io routines to use with the
263  * device
264  */
265 
266 static void dm9000_set_io(struct board_info *db, int byte_width)
267 {
268 	/* use the size of the data resource to work out what IO
269 	 * routines we want to use
270 	 */
271 
272 	switch (byte_width) {
273 	case 1:
274 		db->dumpblk = dm9000_dumpblk_8bit;
275 		db->outblk  = dm9000_outblk_8bit;
276 		db->inblk   = dm9000_inblk_8bit;
277 		break;
278 
279 
280 	case 3:
281 		dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
282 	case 2:
283 		db->dumpblk = dm9000_dumpblk_16bit;
284 		db->outblk  = dm9000_outblk_16bit;
285 		db->inblk   = dm9000_inblk_16bit;
286 		break;
287 
288 	case 4:
289 	default:
290 		db->dumpblk = dm9000_dumpblk_32bit;
291 		db->outblk  = dm9000_outblk_32bit;
292 		db->inblk   = dm9000_inblk_32bit;
293 		break;
294 	}
295 }
296 
297 static void dm9000_schedule_poll(board_info_t *db)
298 {
299 	if (db->type == TYPE_DM9000E)
300 		schedule_delayed_work(&db->phy_poll, HZ * 2);
301 }
302 
303 static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
304 {
305 	board_info_t *dm = to_dm9000_board(dev);
306 
307 	if (!netif_running(dev))
308 		return -EINVAL;
309 
310 	return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
311 }
312 
313 static unsigned int
314 dm9000_read_locked(board_info_t *db, int reg)
315 {
316 	unsigned long flags;
317 	unsigned int ret;
318 
319 	spin_lock_irqsave(&db->lock, flags);
320 	ret = ior(db, reg);
321 	spin_unlock_irqrestore(&db->lock, flags);
322 
323 	return ret;
324 }
325 
326 static int dm9000_wait_eeprom(board_info_t *db)
327 {
328 	unsigned int status;
329 	int timeout = 8;	/* wait max 8msec */
330 
331 	/* The DM9000 data sheets say we should be able to
332 	 * poll the ERRE bit in EPCR to wait for the EEPROM
333 	 * operation. From testing several chips, this bit
334 	 * does not seem to work.
335 	 *
336 	 * We attempt to use the bit, but fall back to the
337 	 * timeout (which is why we do not return an error
338 	 * on expiry) to say that the EEPROM operation has
339 	 * completed.
340 	 */
341 
342 	while (1) {
343 		status = dm9000_read_locked(db, DM9000_EPCR);
344 
345 		if ((status & EPCR_ERRE) == 0)
346 			break;
347 
348 		msleep(1);
349 
350 		if (timeout-- < 0) {
351 			dev_dbg(db->dev, "timeout waiting EEPROM\n");
352 			break;
353 		}
354 	}
355 
356 	return 0;
357 }
358 
359 /*
360  *  Read a word data from EEPROM
361  */
362 static void
363 dm9000_read_eeprom(board_info_t *db, int offset, u8 *to)
364 {
365 	unsigned long flags;
366 
367 	if (db->flags & DM9000_PLATF_NO_EEPROM) {
368 		to[0] = 0xff;
369 		to[1] = 0xff;
370 		return;
371 	}
372 
373 	mutex_lock(&db->addr_lock);
374 
375 	spin_lock_irqsave(&db->lock, flags);
376 
377 	iow(db, DM9000_EPAR, offset);
378 	iow(db, DM9000_EPCR, EPCR_ERPRR);
379 
380 	spin_unlock_irqrestore(&db->lock, flags);
381 
382 	dm9000_wait_eeprom(db);
383 
384 	/* delay for at-least 150uS */
385 	msleep(1);
386 
387 	spin_lock_irqsave(&db->lock, flags);
388 
389 	iow(db, DM9000_EPCR, 0x0);
390 
391 	to[0] = ior(db, DM9000_EPDRL);
392 	to[1] = ior(db, DM9000_EPDRH);
393 
394 	spin_unlock_irqrestore(&db->lock, flags);
395 
396 	mutex_unlock(&db->addr_lock);
397 }
398 
399 /*
400  * Write a word data to SROM
401  */
402 static void
403 dm9000_write_eeprom(board_info_t *db, int offset, u8 *data)
404 {
405 	unsigned long flags;
406 
407 	if (db->flags & DM9000_PLATF_NO_EEPROM)
408 		return;
409 
410 	mutex_lock(&db->addr_lock);
411 
412 	spin_lock_irqsave(&db->lock, flags);
413 	iow(db, DM9000_EPAR, offset);
414 	iow(db, DM9000_EPDRH, data[1]);
415 	iow(db, DM9000_EPDRL, data[0]);
416 	iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
417 	spin_unlock_irqrestore(&db->lock, flags);
418 
419 	dm9000_wait_eeprom(db);
420 
421 	mdelay(1);	/* wait at least 150uS to clear */
422 
423 	spin_lock_irqsave(&db->lock, flags);
424 	iow(db, DM9000_EPCR, 0);
425 	spin_unlock_irqrestore(&db->lock, flags);
426 
427 	mutex_unlock(&db->addr_lock);
428 }
429 
430 /* ethtool ops */
431 
432 static void dm9000_get_drvinfo(struct net_device *dev,
433 			       struct ethtool_drvinfo *info)
434 {
435 	board_info_t *dm = to_dm9000_board(dev);
436 
437 	strcpy(info->driver, CARDNAME);
438 	strcpy(info->version, DRV_VERSION);
439 	strcpy(info->bus_info, to_platform_device(dm->dev)->name);
440 }
441 
442 static u32 dm9000_get_msglevel(struct net_device *dev)
443 {
444 	board_info_t *dm = to_dm9000_board(dev);
445 
446 	return dm->msg_enable;
447 }
448 
449 static void dm9000_set_msglevel(struct net_device *dev, u32 value)
450 {
451 	board_info_t *dm = to_dm9000_board(dev);
452 
453 	dm->msg_enable = value;
454 }
455 
456 static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
457 {
458 	board_info_t *dm = to_dm9000_board(dev);
459 
460 	mii_ethtool_gset(&dm->mii, cmd);
461 	return 0;
462 }
463 
464 static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
465 {
466 	board_info_t *dm = to_dm9000_board(dev);
467 
468 	return mii_ethtool_sset(&dm->mii, cmd);
469 }
470 
471 static int dm9000_nway_reset(struct net_device *dev)
472 {
473 	board_info_t *dm = to_dm9000_board(dev);
474 	return mii_nway_restart(&dm->mii);
475 }
476 
477 static int dm9000_set_features(struct net_device *dev, u32 features)
478 {
479 	board_info_t *dm = to_dm9000_board(dev);
480 	u32 changed = dev->features ^ features;
481 	unsigned long flags;
482 
483 	if (!(changed & NETIF_F_RXCSUM))
484 		return 0;
485 
486 	spin_lock_irqsave(&dm->lock, flags);
487 	iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
488 	spin_unlock_irqrestore(&dm->lock, flags);
489 
490 	return 0;
491 }
492 
493 static u32 dm9000_get_link(struct net_device *dev)
494 {
495 	board_info_t *dm = to_dm9000_board(dev);
496 	u32 ret;
497 
498 	if (dm->flags & DM9000_PLATF_EXT_PHY)
499 		ret = mii_link_ok(&dm->mii);
500 	else
501 		ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
502 
503 	return ret;
504 }
505 
506 #define DM_EEPROM_MAGIC		(0x444D394B)
507 
508 static int dm9000_get_eeprom_len(struct net_device *dev)
509 {
510 	return 128;
511 }
512 
513 static int dm9000_get_eeprom(struct net_device *dev,
514 			     struct ethtool_eeprom *ee, u8 *data)
515 {
516 	board_info_t *dm = to_dm9000_board(dev);
517 	int offset = ee->offset;
518 	int len = ee->len;
519 	int i;
520 
521 	/* EEPROM access is aligned to two bytes */
522 
523 	if ((len & 1) != 0 || (offset & 1) != 0)
524 		return -EINVAL;
525 
526 	if (dm->flags & DM9000_PLATF_NO_EEPROM)
527 		return -ENOENT;
528 
529 	ee->magic = DM_EEPROM_MAGIC;
530 
531 	for (i = 0; i < len; i += 2)
532 		dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
533 
534 	return 0;
535 }
536 
537 static int dm9000_set_eeprom(struct net_device *dev,
538 			     struct ethtool_eeprom *ee, u8 *data)
539 {
540 	board_info_t *dm = to_dm9000_board(dev);
541 	int offset = ee->offset;
542 	int len = ee->len;
543 	int done;
544 
545 	/* EEPROM access is aligned to two bytes */
546 
547 	if (dm->flags & DM9000_PLATF_NO_EEPROM)
548 		return -ENOENT;
549 
550 	if (ee->magic != DM_EEPROM_MAGIC)
551 		return -EINVAL;
552 
553 	while (len > 0) {
554 		if (len & 1 || offset & 1) {
555 			int which = offset & 1;
556 			u8 tmp[2];
557 
558 			dm9000_read_eeprom(dm, offset / 2, tmp);
559 			tmp[which] = *data;
560 			dm9000_write_eeprom(dm, offset / 2, tmp);
561 
562 			done = 1;
563 		} else {
564 			dm9000_write_eeprom(dm, offset / 2, data);
565 			done = 2;
566 		}
567 
568 		data += done;
569 		offset += done;
570 		len -= done;
571 	}
572 
573 	return 0;
574 }
575 
576 static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
577 {
578 	board_info_t *dm = to_dm9000_board(dev);
579 
580 	memset(w, 0, sizeof(struct ethtool_wolinfo));
581 
582 	/* note, we could probably support wake-phy too */
583 	w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
584 	w->wolopts = dm->wake_state;
585 }
586 
587 static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
588 {
589 	board_info_t *dm = to_dm9000_board(dev);
590 	unsigned long flags;
591 	u32 opts = w->wolopts;
592 	u32 wcr = 0;
593 
594 	if (!dm->wake_supported)
595 		return -EOPNOTSUPP;
596 
597 	if (opts & ~WAKE_MAGIC)
598 		return -EINVAL;
599 
600 	if (opts & WAKE_MAGIC)
601 		wcr |= WCR_MAGICEN;
602 
603 	mutex_lock(&dm->addr_lock);
604 
605 	spin_lock_irqsave(&dm->lock, flags);
606 	iow(dm, DM9000_WCR, wcr);
607 	spin_unlock_irqrestore(&dm->lock, flags);
608 
609 	mutex_unlock(&dm->addr_lock);
610 
611 	if (dm->wake_state != opts) {
612 		/* change in wol state, update IRQ state */
613 
614 		if (!dm->wake_state)
615 			irq_set_irq_wake(dm->irq_wake, 1);
616 		else if (dm->wake_state && !opts)
617 			irq_set_irq_wake(dm->irq_wake, 0);
618 	}
619 
620 	dm->wake_state = opts;
621 	return 0;
622 }
623 
624 static const struct ethtool_ops dm9000_ethtool_ops = {
625 	.get_drvinfo		= dm9000_get_drvinfo,
626 	.get_settings		= dm9000_get_settings,
627 	.set_settings		= dm9000_set_settings,
628 	.get_msglevel		= dm9000_get_msglevel,
629 	.set_msglevel		= dm9000_set_msglevel,
630 	.nway_reset		= dm9000_nway_reset,
631 	.get_link		= dm9000_get_link,
632 	.get_wol		= dm9000_get_wol,
633 	.set_wol		= dm9000_set_wol,
634  	.get_eeprom_len		= dm9000_get_eeprom_len,
635  	.get_eeprom		= dm9000_get_eeprom,
636  	.set_eeprom		= dm9000_set_eeprom,
637 };
638 
639 static void dm9000_show_carrier(board_info_t *db,
640 				unsigned carrier, unsigned nsr)
641 {
642 	struct net_device *ndev = db->ndev;
643 	unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
644 
645 	if (carrier)
646 		dev_info(db->dev, "%s: link up, %dMbps, %s-duplex, no LPA\n",
647 			 ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
648 			 (ncr & NCR_FDX) ? "full" : "half");
649 	else
650 		dev_info(db->dev, "%s: link down\n", ndev->name);
651 }
652 
653 static void
654 dm9000_poll_work(struct work_struct *w)
655 {
656 	struct delayed_work *dw = to_delayed_work(w);
657 	board_info_t *db = container_of(dw, board_info_t, phy_poll);
658 	struct net_device *ndev = db->ndev;
659 
660 	if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
661 	    !(db->flags & DM9000_PLATF_EXT_PHY)) {
662 		unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
663 		unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
664 		unsigned new_carrier;
665 
666 		new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
667 
668 		if (old_carrier != new_carrier) {
669 			if (netif_msg_link(db))
670 				dm9000_show_carrier(db, new_carrier, nsr);
671 
672 			if (!new_carrier)
673 				netif_carrier_off(ndev);
674 			else
675 				netif_carrier_on(ndev);
676 		}
677 	} else
678 		mii_check_media(&db->mii, netif_msg_link(db), 0);
679 
680 	if (netif_running(ndev))
681 		dm9000_schedule_poll(db);
682 }
683 
684 /* dm9000_release_board
685  *
686  * release a board, and any mapped resources
687  */
688 
689 static void
690 dm9000_release_board(struct platform_device *pdev, struct board_info *db)
691 {
692 	/* unmap our resources */
693 
694 	iounmap(db->io_addr);
695 	iounmap(db->io_data);
696 
697 	/* release the resources */
698 
699 	release_resource(db->data_req);
700 	kfree(db->data_req);
701 
702 	release_resource(db->addr_req);
703 	kfree(db->addr_req);
704 }
705 
706 static unsigned char dm9000_type_to_char(enum dm9000_type type)
707 {
708 	switch (type) {
709 	case TYPE_DM9000E: return 'e';
710 	case TYPE_DM9000A: return 'a';
711 	case TYPE_DM9000B: return 'b';
712 	}
713 
714 	return '?';
715 }
716 
717 /*
718  *  Set DM9000 multicast address
719  */
720 static void
721 dm9000_hash_table_unlocked(struct net_device *dev)
722 {
723 	board_info_t *db = netdev_priv(dev);
724 	struct netdev_hw_addr *ha;
725 	int i, oft;
726 	u32 hash_val;
727 	u16 hash_table[4];
728 	u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
729 
730 	dm9000_dbg(db, 1, "entering %s\n", __func__);
731 
732 	for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
733 		iow(db, oft, dev->dev_addr[i]);
734 
735 	/* Clear Hash Table */
736 	for (i = 0; i < 4; i++)
737 		hash_table[i] = 0x0;
738 
739 	/* broadcast address */
740 	hash_table[3] = 0x8000;
741 
742 	if (dev->flags & IFF_PROMISC)
743 		rcr |= RCR_PRMSC;
744 
745 	if (dev->flags & IFF_ALLMULTI)
746 		rcr |= RCR_ALL;
747 
748 	/* the multicast address in Hash Table : 64 bits */
749 	netdev_for_each_mc_addr(ha, dev) {
750 		hash_val = ether_crc_le(6, ha->addr) & 0x3f;
751 		hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
752 	}
753 
754 	/* Write the hash table to MAC MD table */
755 	for (i = 0, oft = DM9000_MAR; i < 4; i++) {
756 		iow(db, oft++, hash_table[i]);
757 		iow(db, oft++, hash_table[i] >> 8);
758 	}
759 
760 	iow(db, DM9000_RCR, rcr);
761 }
762 
763 static void
764 dm9000_hash_table(struct net_device *dev)
765 {
766 	board_info_t *db = netdev_priv(dev);
767 	unsigned long flags;
768 
769 	spin_lock_irqsave(&db->lock, flags);
770 	dm9000_hash_table_unlocked(dev);
771 	spin_unlock_irqrestore(&db->lock, flags);
772 }
773 
774 /*
775  * Initialize dm9000 board
776  */
777 static void
778 dm9000_init_dm9000(struct net_device *dev)
779 {
780 	board_info_t *db = netdev_priv(dev);
781 	unsigned int imr;
782 	unsigned int ncr;
783 
784 	dm9000_dbg(db, 1, "entering %s\n", __func__);
785 
786 	/* I/O mode */
787 	db->io_mode = ior(db, DM9000_ISR) >> 6;	/* ISR bit7:6 keeps I/O mode */
788 
789 	/* Checksum mode */
790 	if (dev->hw_features & NETIF_F_RXCSUM)
791 		iow(db, DM9000_RCSR,
792 			(dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
793 
794 	iow(db, DM9000_GPCR, GPCR_GEP_CNTL);	/* Let GPIO0 output */
795 
796 	ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
797 
798 	/* if wol is needed, then always set NCR_WAKEEN otherwise we end
799 	 * up dumping the wake events if we disable this. There is already
800 	 * a wake-mask in DM9000_WCR */
801 	if (db->wake_supported)
802 		ncr |= NCR_WAKEEN;
803 
804 	iow(db, DM9000_NCR, ncr);
805 
806 	/* Program operating register */
807 	iow(db, DM9000_TCR, 0);	        /* TX Polling clear */
808 	iow(db, DM9000_BPTR, 0x3f);	/* Less 3Kb, 200us */
809 	iow(db, DM9000_FCR, 0xff);	/* Flow Control */
810 	iow(db, DM9000_SMCR, 0);        /* Special Mode */
811 	/* clear TX status */
812 	iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
813 	iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
814 
815 	/* Set address filter table */
816 	dm9000_hash_table_unlocked(dev);
817 
818 	imr = IMR_PAR | IMR_PTM | IMR_PRM;
819 	if (db->type != TYPE_DM9000E)
820 		imr |= IMR_LNKCHNG;
821 
822 	db->imr_all = imr;
823 
824 	/* Enable TX/RX interrupt mask */
825 	iow(db, DM9000_IMR, imr);
826 
827 	/* Init Driver variable */
828 	db->tx_pkt_cnt = 0;
829 	db->queue_pkt_len = 0;
830 	dev->trans_start = jiffies;
831 }
832 
833 /* Our watchdog timed out. Called by the networking layer */
834 static void dm9000_timeout(struct net_device *dev)
835 {
836 	board_info_t *db = netdev_priv(dev);
837 	u8 reg_save;
838 	unsigned long flags;
839 
840 	/* Save previous register address */
841 	spin_lock_irqsave(&db->lock, flags);
842 	reg_save = readb(db->io_addr);
843 
844 	netif_stop_queue(dev);
845 	dm9000_reset(db);
846 	dm9000_init_dm9000(dev);
847 	/* We can accept TX packets again */
848 	dev->trans_start = jiffies; /* prevent tx timeout */
849 	netif_wake_queue(dev);
850 
851 	/* Restore previous register address */
852 	writeb(reg_save, db->io_addr);
853 	spin_unlock_irqrestore(&db->lock, flags);
854 }
855 
856 static void dm9000_send_packet(struct net_device *dev,
857 			       int ip_summed,
858 			       u16 pkt_len)
859 {
860 	board_info_t *dm = to_dm9000_board(dev);
861 
862 	/* The DM9000 is not smart enough to leave fragmented packets alone. */
863 	if (dm->ip_summed != ip_summed) {
864 		if (ip_summed == CHECKSUM_NONE)
865 			iow(dm, DM9000_TCCR, 0);
866 		else
867 			iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
868 		dm->ip_summed = ip_summed;
869 	}
870 
871 	/* Set TX length to DM9000 */
872 	iow(dm, DM9000_TXPLL, pkt_len);
873 	iow(dm, DM9000_TXPLH, pkt_len >> 8);
874 
875 	/* Issue TX polling command */
876 	iow(dm, DM9000_TCR, TCR_TXREQ);	/* Cleared after TX complete */
877 }
878 
879 /*
880  *  Hardware start transmission.
881  *  Send a packet to media from the upper layer.
882  */
883 static int
884 dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
885 {
886 	unsigned long flags;
887 	board_info_t *db = netdev_priv(dev);
888 
889 	dm9000_dbg(db, 3, "%s:\n", __func__);
890 
891 	if (db->tx_pkt_cnt > 1)
892 		return NETDEV_TX_BUSY;
893 
894 	spin_lock_irqsave(&db->lock, flags);
895 
896 	/* Move data to DM9000 TX RAM */
897 	writeb(DM9000_MWCMD, db->io_addr);
898 
899 	(db->outblk)(db->io_data, skb->data, skb->len);
900 	dev->stats.tx_bytes += skb->len;
901 
902 	db->tx_pkt_cnt++;
903 	/* TX control: First packet immediately send, second packet queue */
904 	if (db->tx_pkt_cnt == 1) {
905 		dm9000_send_packet(dev, skb->ip_summed, skb->len);
906 	} else {
907 		/* Second packet */
908 		db->queue_pkt_len = skb->len;
909 		db->queue_ip_summed = skb->ip_summed;
910 		netif_stop_queue(dev);
911 	}
912 
913 	spin_unlock_irqrestore(&db->lock, flags);
914 
915 	/* free this SKB */
916 	dev_kfree_skb(skb);
917 
918 	return NETDEV_TX_OK;
919 }
920 
921 /*
922  * DM9000 interrupt handler
923  * receive the packet to upper layer, free the transmitted packet
924  */
925 
926 static void dm9000_tx_done(struct net_device *dev, board_info_t *db)
927 {
928 	int tx_status = ior(db, DM9000_NSR);	/* Got TX status */
929 
930 	if (tx_status & (NSR_TX2END | NSR_TX1END)) {
931 		/* One packet sent complete */
932 		db->tx_pkt_cnt--;
933 		dev->stats.tx_packets++;
934 
935 		if (netif_msg_tx_done(db))
936 			dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
937 
938 		/* Queue packet check & send */
939 		if (db->tx_pkt_cnt > 0)
940 			dm9000_send_packet(dev, db->queue_ip_summed,
941 					   db->queue_pkt_len);
942 		netif_wake_queue(dev);
943 	}
944 }
945 
946 struct dm9000_rxhdr {
947 	u8	RxPktReady;
948 	u8	RxStatus;
949 	__le16	RxLen;
950 } __packed;
951 
952 /*
953  *  Received a packet and pass to upper layer
954  */
955 static void
956 dm9000_rx(struct net_device *dev)
957 {
958 	board_info_t *db = netdev_priv(dev);
959 	struct dm9000_rxhdr rxhdr;
960 	struct sk_buff *skb;
961 	u8 rxbyte, *rdptr;
962 	bool GoodPacket;
963 	int RxLen;
964 
965 	/* Check packet ready or not */
966 	do {
967 		ior(db, DM9000_MRCMDX);	/* Dummy read */
968 
969 		/* Get most updated data */
970 		rxbyte = readb(db->io_data);
971 
972 		/* Status check: this byte must be 0 or 1 */
973 		if (rxbyte & DM9000_PKT_ERR) {
974 			dev_warn(db->dev, "status check fail: %d\n", rxbyte);
975 			iow(db, DM9000_RCR, 0x00);	/* Stop Device */
976 			iow(db, DM9000_ISR, IMR_PAR);	/* Stop INT request */
977 			return;
978 		}
979 
980 		if (!(rxbyte & DM9000_PKT_RDY))
981 			return;
982 
983 		/* A packet ready now  & Get status/length */
984 		GoodPacket = true;
985 		writeb(DM9000_MRCMD, db->io_addr);
986 
987 		(db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
988 
989 		RxLen = le16_to_cpu(rxhdr.RxLen);
990 
991 		if (netif_msg_rx_status(db))
992 			dev_dbg(db->dev, "RX: status %02x, length %04x\n",
993 				rxhdr.RxStatus, RxLen);
994 
995 		/* Packet Status check */
996 		if (RxLen < 0x40) {
997 			GoodPacket = false;
998 			if (netif_msg_rx_err(db))
999 				dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1000 		}
1001 
1002 		if (RxLen > DM9000_PKT_MAX) {
1003 			dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1004 		}
1005 
1006 		/* rxhdr.RxStatus is identical to RSR register. */
1007 		if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1008 				      RSR_PLE | RSR_RWTO |
1009 				      RSR_LCS | RSR_RF)) {
1010 			GoodPacket = false;
1011 			if (rxhdr.RxStatus & RSR_FOE) {
1012 				if (netif_msg_rx_err(db))
1013 					dev_dbg(db->dev, "fifo error\n");
1014 				dev->stats.rx_fifo_errors++;
1015 			}
1016 			if (rxhdr.RxStatus & RSR_CE) {
1017 				if (netif_msg_rx_err(db))
1018 					dev_dbg(db->dev, "crc error\n");
1019 				dev->stats.rx_crc_errors++;
1020 			}
1021 			if (rxhdr.RxStatus & RSR_RF) {
1022 				if (netif_msg_rx_err(db))
1023 					dev_dbg(db->dev, "length error\n");
1024 				dev->stats.rx_length_errors++;
1025 			}
1026 		}
1027 
1028 		/* Move data from DM9000 */
1029 		if (GoodPacket &&
1030 		    ((skb = dev_alloc_skb(RxLen + 4)) != NULL)) {
1031 			skb_reserve(skb, 2);
1032 			rdptr = (u8 *) skb_put(skb, RxLen - 4);
1033 
1034 			/* Read received packet from RX SRAM */
1035 
1036 			(db->inblk)(db->io_data, rdptr, RxLen);
1037 			dev->stats.rx_bytes += RxLen;
1038 
1039 			/* Pass to upper layer */
1040 			skb->protocol = eth_type_trans(skb, dev);
1041 			if (dev->features & NETIF_F_RXCSUM) {
1042 				if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1043 					skb->ip_summed = CHECKSUM_UNNECESSARY;
1044 				else
1045 					skb_checksum_none_assert(skb);
1046 			}
1047 			netif_rx(skb);
1048 			dev->stats.rx_packets++;
1049 
1050 		} else {
1051 			/* need to dump the packet's data */
1052 
1053 			(db->dumpblk)(db->io_data, RxLen);
1054 		}
1055 	} while (rxbyte & DM9000_PKT_RDY);
1056 }
1057 
1058 static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1059 {
1060 	struct net_device *dev = dev_id;
1061 	board_info_t *db = netdev_priv(dev);
1062 	int int_status;
1063 	unsigned long flags;
1064 	u8 reg_save;
1065 
1066 	dm9000_dbg(db, 3, "entering %s\n", __func__);
1067 
1068 	/* A real interrupt coming */
1069 
1070 	/* holders of db->lock must always block IRQs */
1071 	spin_lock_irqsave(&db->lock, flags);
1072 
1073 	/* Save previous register address */
1074 	reg_save = readb(db->io_addr);
1075 
1076 	/* Disable all interrupts */
1077 	iow(db, DM9000_IMR, IMR_PAR);
1078 
1079 	/* Got DM9000 interrupt status */
1080 	int_status = ior(db, DM9000_ISR);	/* Got ISR */
1081 	iow(db, DM9000_ISR, int_status);	/* Clear ISR status */
1082 
1083 	if (netif_msg_intr(db))
1084 		dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1085 
1086 	/* Received the coming packet */
1087 	if (int_status & ISR_PRS)
1088 		dm9000_rx(dev);
1089 
1090 	/* Trnasmit Interrupt check */
1091 	if (int_status & ISR_PTS)
1092 		dm9000_tx_done(dev, db);
1093 
1094 	if (db->type != TYPE_DM9000E) {
1095 		if (int_status & ISR_LNKCHNG) {
1096 			/* fire a link-change request */
1097 			schedule_delayed_work(&db->phy_poll, 1);
1098 		}
1099 	}
1100 
1101 	/* Re-enable interrupt mask */
1102 	iow(db, DM9000_IMR, db->imr_all);
1103 
1104 	/* Restore previous register address */
1105 	writeb(reg_save, db->io_addr);
1106 
1107 	spin_unlock_irqrestore(&db->lock, flags);
1108 
1109 	return IRQ_HANDLED;
1110 }
1111 
1112 static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1113 {
1114 	struct net_device *dev = dev_id;
1115 	board_info_t *db = netdev_priv(dev);
1116 	unsigned long flags;
1117 	unsigned nsr, wcr;
1118 
1119 	spin_lock_irqsave(&db->lock, flags);
1120 
1121 	nsr = ior(db, DM9000_NSR);
1122 	wcr = ior(db, DM9000_WCR);
1123 
1124 	dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1125 
1126 	if (nsr & NSR_WAKEST) {
1127 		/* clear, so we can avoid */
1128 		iow(db, DM9000_NSR, NSR_WAKEST);
1129 
1130 		if (wcr & WCR_LINKST)
1131 			dev_info(db->dev, "wake by link status change\n");
1132 		if (wcr & WCR_SAMPLEST)
1133 			dev_info(db->dev, "wake by sample packet\n");
1134 		if (wcr & WCR_MAGICST )
1135 			dev_info(db->dev, "wake by magic packet\n");
1136 		if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1137 			dev_err(db->dev, "wake signalled with no reason? "
1138 				"NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1139 
1140 	}
1141 
1142 	spin_unlock_irqrestore(&db->lock, flags);
1143 
1144 	return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1145 }
1146 
1147 #ifdef CONFIG_NET_POLL_CONTROLLER
1148 /*
1149  *Used by netconsole
1150  */
1151 static void dm9000_poll_controller(struct net_device *dev)
1152 {
1153 	disable_irq(dev->irq);
1154 	dm9000_interrupt(dev->irq, dev);
1155 	enable_irq(dev->irq);
1156 }
1157 #endif
1158 
1159 /*
1160  *  Open the interface.
1161  *  The interface is opened whenever "ifconfig" actives it.
1162  */
1163 static int
1164 dm9000_open(struct net_device *dev)
1165 {
1166 	board_info_t *db = netdev_priv(dev);
1167 	unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;
1168 
1169 	if (netif_msg_ifup(db))
1170 		dev_dbg(db->dev, "enabling %s\n", dev->name);
1171 
1172 	/* If there is no IRQ type specified, default to something that
1173 	 * may work, and tell the user that this is a problem */
1174 
1175 	if (irqflags == IRQF_TRIGGER_NONE)
1176 		dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1177 
1178 	irqflags |= IRQF_SHARED;
1179 
1180 	/* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1181 	iow(db, DM9000_GPR, 0);	/* REG_1F bit0 activate phyxcer */
1182 	mdelay(1); /* delay needs by DM9000B */
1183 
1184 	/* Initialize DM9000 board */
1185 	dm9000_reset(db);
1186 	dm9000_init_dm9000(dev);
1187 
1188 	if (request_irq(dev->irq, dm9000_interrupt, irqflags, dev->name, dev))
1189 		return -EAGAIN;
1190 
1191 	/* Init driver variable */
1192 	db->dbug_cnt = 0;
1193 
1194 	mii_check_media(&db->mii, netif_msg_link(db), 1);
1195 	netif_start_queue(dev);
1196 
1197 	dm9000_schedule_poll(db);
1198 
1199 	return 0;
1200 }
1201 
1202 /*
1203  * Sleep, either by using msleep() or if we are suspending, then
1204  * use mdelay() to sleep.
1205  */
1206 static void dm9000_msleep(board_info_t *db, unsigned int ms)
1207 {
1208 	if (db->in_suspend)
1209 		mdelay(ms);
1210 	else
1211 		msleep(ms);
1212 }
1213 
1214 /*
1215  *   Read a word from phyxcer
1216  */
1217 static int
1218 dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
1219 {
1220 	board_info_t *db = netdev_priv(dev);
1221 	unsigned long flags;
1222 	unsigned int reg_save;
1223 	int ret;
1224 
1225 	mutex_lock(&db->addr_lock);
1226 
1227 	spin_lock_irqsave(&db->lock,flags);
1228 
1229 	/* Save previous register address */
1230 	reg_save = readb(db->io_addr);
1231 
1232 	/* Fill the phyxcer register into REG_0C */
1233 	iow(db, DM9000_EPAR, DM9000_PHY | reg);
1234 
1235 	iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);	/* Issue phyxcer read command */
1236 
1237 	writeb(reg_save, db->io_addr);
1238 	spin_unlock_irqrestore(&db->lock,flags);
1239 
1240 	dm9000_msleep(db, 1);		/* Wait read complete */
1241 
1242 	spin_lock_irqsave(&db->lock,flags);
1243 	reg_save = readb(db->io_addr);
1244 
1245 	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer read command */
1246 
1247 	/* The read data keeps on REG_0D & REG_0E */
1248 	ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
1249 
1250 	/* restore the previous address */
1251 	writeb(reg_save, db->io_addr);
1252 	spin_unlock_irqrestore(&db->lock,flags);
1253 
1254 	mutex_unlock(&db->addr_lock);
1255 
1256 	dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
1257 	return ret;
1258 }
1259 
1260 /*
1261  *   Write a word to phyxcer
1262  */
1263 static void
1264 dm9000_phy_write(struct net_device *dev,
1265 		 int phyaddr_unused, int reg, int value)
1266 {
1267 	board_info_t *db = netdev_priv(dev);
1268 	unsigned long flags;
1269 	unsigned long reg_save;
1270 
1271 	dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
1272 	mutex_lock(&db->addr_lock);
1273 
1274 	spin_lock_irqsave(&db->lock,flags);
1275 
1276 	/* Save previous register address */
1277 	reg_save = readb(db->io_addr);
1278 
1279 	/* Fill the phyxcer register into REG_0C */
1280 	iow(db, DM9000_EPAR, DM9000_PHY | reg);
1281 
1282 	/* Fill the written data into REG_0D & REG_0E */
1283 	iow(db, DM9000_EPDRL, value);
1284 	iow(db, DM9000_EPDRH, value >> 8);
1285 
1286 	iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);	/* Issue phyxcer write command */
1287 
1288 	writeb(reg_save, db->io_addr);
1289 	spin_unlock_irqrestore(&db->lock, flags);
1290 
1291 	dm9000_msleep(db, 1);		/* Wait write complete */
1292 
1293 	spin_lock_irqsave(&db->lock,flags);
1294 	reg_save = readb(db->io_addr);
1295 
1296 	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer write command */
1297 
1298 	/* restore the previous address */
1299 	writeb(reg_save, db->io_addr);
1300 
1301 	spin_unlock_irqrestore(&db->lock, flags);
1302 	mutex_unlock(&db->addr_lock);
1303 }
1304 
1305 static void
1306 dm9000_shutdown(struct net_device *dev)
1307 {
1308 	board_info_t *db = netdev_priv(dev);
1309 
1310 	/* RESET device */
1311 	dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);	/* PHY RESET */
1312 	iow(db, DM9000_GPR, 0x01);	/* Power-Down PHY */
1313 	iow(db, DM9000_IMR, IMR_PAR);	/* Disable all interrupt */
1314 	iow(db, DM9000_RCR, 0x00);	/* Disable RX */
1315 }
1316 
1317 /*
1318  * Stop the interface.
1319  * The interface is stopped when it is brought.
1320  */
1321 static int
1322 dm9000_stop(struct net_device *ndev)
1323 {
1324 	board_info_t *db = netdev_priv(ndev);
1325 
1326 	if (netif_msg_ifdown(db))
1327 		dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1328 
1329 	cancel_delayed_work_sync(&db->phy_poll);
1330 
1331 	netif_stop_queue(ndev);
1332 	netif_carrier_off(ndev);
1333 
1334 	/* free interrupt */
1335 	free_irq(ndev->irq, ndev);
1336 
1337 	dm9000_shutdown(ndev);
1338 
1339 	return 0;
1340 }
1341 
1342 static const struct net_device_ops dm9000_netdev_ops = {
1343 	.ndo_open		= dm9000_open,
1344 	.ndo_stop		= dm9000_stop,
1345 	.ndo_start_xmit		= dm9000_start_xmit,
1346 	.ndo_tx_timeout		= dm9000_timeout,
1347 	.ndo_set_rx_mode	= dm9000_hash_table,
1348 	.ndo_do_ioctl		= dm9000_ioctl,
1349 	.ndo_change_mtu		= eth_change_mtu,
1350 	.ndo_set_features	= dm9000_set_features,
1351 	.ndo_validate_addr	= eth_validate_addr,
1352 	.ndo_set_mac_address	= eth_mac_addr,
1353 #ifdef CONFIG_NET_POLL_CONTROLLER
1354 	.ndo_poll_controller	= dm9000_poll_controller,
1355 #endif
1356 };
1357 
1358 /*
1359  * Search DM9000 board, allocate space and register it
1360  */
1361 static int __devinit
1362 dm9000_probe(struct platform_device *pdev)
1363 {
1364 	struct dm9000_plat_data *pdata = pdev->dev.platform_data;
1365 	struct board_info *db;	/* Point a board information structure */
1366 	struct net_device *ndev;
1367 	const unsigned char *mac_src;
1368 	int ret = 0;
1369 	int iosize;
1370 	int i;
1371 	u32 id_val;
1372 
1373 	/* Init network device */
1374 	ndev = alloc_etherdev(sizeof(struct board_info));
1375 	if (!ndev) {
1376 		dev_err(&pdev->dev, "could not allocate device.\n");
1377 		return -ENOMEM;
1378 	}
1379 
1380 	SET_NETDEV_DEV(ndev, &pdev->dev);
1381 
1382 	dev_dbg(&pdev->dev, "dm9000_probe()\n");
1383 
1384 	/* setup board info structure */
1385 	db = netdev_priv(ndev);
1386 
1387 	db->dev = &pdev->dev;
1388 	db->ndev = ndev;
1389 
1390 	spin_lock_init(&db->lock);
1391 	mutex_init(&db->addr_lock);
1392 
1393 	INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1394 
1395 	db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1396 	db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1397 	db->irq_res  = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1398 
1399 	if (db->addr_res == NULL || db->data_res == NULL ||
1400 	    db->irq_res == NULL) {
1401 		dev_err(db->dev, "insufficient resources\n");
1402 		ret = -ENOENT;
1403 		goto out;
1404 	}
1405 
1406 	db->irq_wake = platform_get_irq(pdev, 1);
1407 	if (db->irq_wake >= 0) {
1408 		dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1409 
1410 		ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1411 				  IRQF_SHARED, dev_name(db->dev), ndev);
1412 		if (ret) {
1413 			dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1414 		} else {
1415 
1416 			/* test to see if irq is really wakeup capable */
1417 			ret = irq_set_irq_wake(db->irq_wake, 1);
1418 			if (ret) {
1419 				dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1420 					db->irq_wake, ret);
1421 				ret = 0;
1422 			} else {
1423 				irq_set_irq_wake(db->irq_wake, 0);
1424 				db->wake_supported = 1;
1425 			}
1426 		}
1427 	}
1428 
1429 	iosize = resource_size(db->addr_res);
1430 	db->addr_req = request_mem_region(db->addr_res->start, iosize,
1431 					  pdev->name);
1432 
1433 	if (db->addr_req == NULL) {
1434 		dev_err(db->dev, "cannot claim address reg area\n");
1435 		ret = -EIO;
1436 		goto out;
1437 	}
1438 
1439 	db->io_addr = ioremap(db->addr_res->start, iosize);
1440 
1441 	if (db->io_addr == NULL) {
1442 		dev_err(db->dev, "failed to ioremap address reg\n");
1443 		ret = -EINVAL;
1444 		goto out;
1445 	}
1446 
1447 	iosize = resource_size(db->data_res);
1448 	db->data_req = request_mem_region(db->data_res->start, iosize,
1449 					  pdev->name);
1450 
1451 	if (db->data_req == NULL) {
1452 		dev_err(db->dev, "cannot claim data reg area\n");
1453 		ret = -EIO;
1454 		goto out;
1455 	}
1456 
1457 	db->io_data = ioremap(db->data_res->start, iosize);
1458 
1459 	if (db->io_data == NULL) {
1460 		dev_err(db->dev, "failed to ioremap data reg\n");
1461 		ret = -EINVAL;
1462 		goto out;
1463 	}
1464 
1465 	/* fill in parameters for net-dev structure */
1466 	ndev->base_addr = (unsigned long)db->io_addr;
1467 	ndev->irq	= db->irq_res->start;
1468 
1469 	/* ensure at least we have a default set of IO routines */
1470 	dm9000_set_io(db, iosize);
1471 
1472 	/* check to see if anything is being over-ridden */
1473 	if (pdata != NULL) {
1474 		/* check to see if the driver wants to over-ride the
1475 		 * default IO width */
1476 
1477 		if (pdata->flags & DM9000_PLATF_8BITONLY)
1478 			dm9000_set_io(db, 1);
1479 
1480 		if (pdata->flags & DM9000_PLATF_16BITONLY)
1481 			dm9000_set_io(db, 2);
1482 
1483 		if (pdata->flags & DM9000_PLATF_32BITONLY)
1484 			dm9000_set_io(db, 4);
1485 
1486 		/* check to see if there are any IO routine
1487 		 * over-rides */
1488 
1489 		if (pdata->inblk != NULL)
1490 			db->inblk = pdata->inblk;
1491 
1492 		if (pdata->outblk != NULL)
1493 			db->outblk = pdata->outblk;
1494 
1495 		if (pdata->dumpblk != NULL)
1496 			db->dumpblk = pdata->dumpblk;
1497 
1498 		db->flags = pdata->flags;
1499 	}
1500 
1501 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1502 	db->flags |= DM9000_PLATF_SIMPLE_PHY;
1503 #endif
1504 
1505 	dm9000_reset(db);
1506 
1507 	/* try multiple times, DM9000 sometimes gets the read wrong */
1508 	for (i = 0; i < 8; i++) {
1509 		id_val  = ior(db, DM9000_VIDL);
1510 		id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1511 		id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1512 		id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1513 
1514 		if (id_val == DM9000_ID)
1515 			break;
1516 		dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1517 	}
1518 
1519 	if (id_val != DM9000_ID) {
1520 		dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1521 		ret = -ENODEV;
1522 		goto out;
1523 	}
1524 
1525 	/* Identify what type of DM9000 we are working on */
1526 
1527 	id_val = ior(db, DM9000_CHIPR);
1528 	dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1529 
1530 	switch (id_val) {
1531 	case CHIPR_DM9000A:
1532 		db->type = TYPE_DM9000A;
1533 		break;
1534 	case CHIPR_DM9000B:
1535 		db->type = TYPE_DM9000B;
1536 		break;
1537 	default:
1538 		dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1539 		db->type = TYPE_DM9000E;
1540 	}
1541 
1542 	/* dm9000a/b are capable of hardware checksum offload */
1543 	if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1544 		ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1545 		ndev->features |= ndev->hw_features;
1546 	}
1547 
1548 	/* from this point we assume that we have found a DM9000 */
1549 
1550 	/* driver system function */
1551 	ether_setup(ndev);
1552 
1553 	ndev->netdev_ops	= &dm9000_netdev_ops;
1554 	ndev->watchdog_timeo	= msecs_to_jiffies(watchdog);
1555 	ndev->ethtool_ops	= &dm9000_ethtool_ops;
1556 
1557 	db->msg_enable       = NETIF_MSG_LINK;
1558 	db->mii.phy_id_mask  = 0x1f;
1559 	db->mii.reg_num_mask = 0x1f;
1560 	db->mii.force_media  = 0;
1561 	db->mii.full_duplex  = 0;
1562 	db->mii.dev	     = ndev;
1563 	db->mii.mdio_read    = dm9000_phy_read;
1564 	db->mii.mdio_write   = dm9000_phy_write;
1565 
1566 	mac_src = "eeprom";
1567 
1568 	/* try reading the node address from the attached EEPROM */
1569 	for (i = 0; i < 6; i += 2)
1570 		dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
1571 
1572 	if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1573 		mac_src = "platform data";
1574 		memcpy(ndev->dev_addr, pdata->dev_addr, 6);
1575 	}
1576 
1577 	if (!is_valid_ether_addr(ndev->dev_addr)) {
1578 		/* try reading from mac */
1579 
1580 		mac_src = "chip";
1581 		for (i = 0; i < 6; i++)
1582 			ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
1583 	}
1584 
1585 	if (!is_valid_ether_addr(ndev->dev_addr)) {
1586 		dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
1587 			 "set using ifconfig\n", ndev->name);
1588 
1589 		random_ether_addr(ndev->dev_addr);
1590 		mac_src = "random";
1591 	}
1592 
1593 
1594 	platform_set_drvdata(pdev, ndev);
1595 	ret = register_netdev(ndev);
1596 
1597 	if (ret == 0)
1598 		printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1599 		       ndev->name, dm9000_type_to_char(db->type),
1600 		       db->io_addr, db->io_data, ndev->irq,
1601 		       ndev->dev_addr, mac_src);
1602 	return 0;
1603 
1604 out:
1605 	dev_err(db->dev, "not found (%d).\n", ret);
1606 
1607 	dm9000_release_board(pdev, db);
1608 	free_netdev(ndev);
1609 
1610 	return ret;
1611 }
1612 
1613 static int
1614 dm9000_drv_suspend(struct device *dev)
1615 {
1616 	struct platform_device *pdev = to_platform_device(dev);
1617 	struct net_device *ndev = platform_get_drvdata(pdev);
1618 	board_info_t *db;
1619 
1620 	if (ndev) {
1621 		db = netdev_priv(ndev);
1622 		db->in_suspend = 1;
1623 
1624 		if (!netif_running(ndev))
1625 			return 0;
1626 
1627 		netif_device_detach(ndev);
1628 
1629 		/* only shutdown if not using WoL */
1630 		if (!db->wake_state)
1631 			dm9000_shutdown(ndev);
1632 	}
1633 	return 0;
1634 }
1635 
1636 static int
1637 dm9000_drv_resume(struct device *dev)
1638 {
1639 	struct platform_device *pdev = to_platform_device(dev);
1640 	struct net_device *ndev = platform_get_drvdata(pdev);
1641 	board_info_t *db = netdev_priv(ndev);
1642 
1643 	if (ndev) {
1644 		if (netif_running(ndev)) {
1645 			/* reset if we were not in wake mode to ensure if
1646 			 * the device was powered off it is in a known state */
1647 			if (!db->wake_state) {
1648 				dm9000_reset(db);
1649 				dm9000_init_dm9000(ndev);
1650 			}
1651 
1652 			netif_device_attach(ndev);
1653 		}
1654 
1655 		db->in_suspend = 0;
1656 	}
1657 	return 0;
1658 }
1659 
1660 static const struct dev_pm_ops dm9000_drv_pm_ops = {
1661 	.suspend	= dm9000_drv_suspend,
1662 	.resume		= dm9000_drv_resume,
1663 };
1664 
1665 static int __devexit
1666 dm9000_drv_remove(struct platform_device *pdev)
1667 {
1668 	struct net_device *ndev = platform_get_drvdata(pdev);
1669 
1670 	platform_set_drvdata(pdev, NULL);
1671 
1672 	unregister_netdev(ndev);
1673 	dm9000_release_board(pdev, netdev_priv(ndev));
1674 	free_netdev(ndev);		/* free device structure */
1675 
1676 	dev_dbg(&pdev->dev, "released and freed device\n");
1677 	return 0;
1678 }
1679 
1680 static struct platform_driver dm9000_driver = {
1681 	.driver	= {
1682 		.name    = "dm9000",
1683 		.owner	 = THIS_MODULE,
1684 		.pm	 = &dm9000_drv_pm_ops,
1685 	},
1686 	.probe   = dm9000_probe,
1687 	.remove  = __devexit_p(dm9000_drv_remove),
1688 };
1689 
1690 static int __init
1691 dm9000_init(void)
1692 {
1693 	printk(KERN_INFO "%s Ethernet Driver, V%s\n", CARDNAME, DRV_VERSION);
1694 
1695 	return platform_driver_register(&dm9000_driver);
1696 }
1697 
1698 static void __exit
1699 dm9000_cleanup(void)
1700 {
1701 	platform_driver_unregister(&dm9000_driver);
1702 }
1703 
1704 module_init(dm9000_init);
1705 module_exit(dm9000_cleanup);
1706 
1707 MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1708 MODULE_DESCRIPTION("Davicom DM9000 network driver");
1709 MODULE_LICENSE("GPL");
1710 MODULE_ALIAS("platform:dm9000");
1711