xref: /linux/drivers/net/ethernet/davicom/dm9000.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  *      Davicom DM9000 Fast Ethernet driver for Linux.
3  * 	Copyright (C) 1997  Sten Wang
4  *
5  * 	This program is free software; you can redistribute it and/or
6  * 	modify it under the terms of the GNU General Public License
7  * 	as published by the Free Software Foundation; either version 2
8  * 	of the License, or (at your option) any later version.
9  *
10  * 	This program is distributed in the hope that it will be useful,
11  * 	but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * 	GNU General Public License for more details.
14  *
15  * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
16  *
17  * Additional updates, Copyright:
18  *	Ben Dooks <ben@simtec.co.uk>
19  *	Sascha Hauer <s.hauer@pengutronix.de>
20  */
21 
22 #include <linux/module.h>
23 #include <linux/ioport.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/interrupt.h>
27 #include <linux/skbuff.h>
28 #include <linux/spinlock.h>
29 #include <linux/crc32.h>
30 #include <linux/mii.h>
31 #include <linux/of.h>
32 #include <linux/of_net.h>
33 #include <linux/ethtool.h>
34 #include <linux/dm9000.h>
35 #include <linux/delay.h>
36 #include <linux/platform_device.h>
37 #include <linux/irq.h>
38 #include <linux/slab.h>
39 #include <linux/regulator/consumer.h>
40 #include <linux/gpio.h>
41 #include <linux/of_gpio.h>
42 
43 #include <asm/delay.h>
44 #include <asm/irq.h>
45 #include <asm/io.h>
46 
47 #include "dm9000.h"
48 
49 /* Board/System/Debug information/definition ---------------- */
50 
51 #define DM9000_PHY		0x40	/* PHY address 0x01 */
52 
53 #define CARDNAME	"dm9000"
54 #define DRV_VERSION	"1.31"
55 
56 /*
57  * Transmit timeout, default 5 seconds.
58  */
59 static int watchdog = 5000;
60 module_param(watchdog, int, 0400);
61 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
62 
63 /*
64  * Debug messages level
65  */
66 static int debug;
67 module_param(debug, int, 0644);
68 MODULE_PARM_DESC(debug, "dm9000 debug level (0-4)");
69 
70 /* DM9000 register address locking.
71  *
72  * The DM9000 uses an address register to control where data written
73  * to the data register goes. This means that the address register
74  * must be preserved over interrupts or similar calls.
75  *
76  * During interrupt and other critical calls, a spinlock is used to
77  * protect the system, but the calls themselves save the address
78  * in the address register in case they are interrupting another
79  * access to the device.
80  *
81  * For general accesses a lock is provided so that calls which are
82  * allowed to sleep are serialised so that the address register does
83  * not need to be saved. This lock also serves to serialise access
84  * to the EEPROM and PHY access registers which are shared between
85  * these two devices.
86  */
87 
88 /* The driver supports the original DM9000E, and now the two newer
89  * devices, DM9000A and DM9000B.
90  */
91 
92 enum dm9000_type {
93 	TYPE_DM9000E,	/* original DM9000 */
94 	TYPE_DM9000A,
95 	TYPE_DM9000B
96 };
97 
98 /* Structure/enum declaration ------------------------------- */
99 struct board_info {
100 
101 	void __iomem	*io_addr;	/* Register I/O base address */
102 	void __iomem	*io_data;	/* Data I/O address */
103 	u16		 irq;		/* IRQ */
104 
105 	u16		tx_pkt_cnt;
106 	u16		queue_pkt_len;
107 	u16		queue_start_addr;
108 	u16		queue_ip_summed;
109 	u16		dbug_cnt;
110 	u8		io_mode;		/* 0:word, 2:byte */
111 	u8		phy_addr;
112 	u8		imr_all;
113 
114 	unsigned int	flags;
115 	unsigned int	in_timeout:1;
116 	unsigned int	in_suspend:1;
117 	unsigned int	wake_supported:1;
118 
119 	enum dm9000_type type;
120 
121 	void (*inblk)(void __iomem *port, void *data, int length);
122 	void (*outblk)(void __iomem *port, void *data, int length);
123 	void (*dumpblk)(void __iomem *port, int length);
124 
125 	struct device	*dev;	     /* parent device */
126 
127 	struct resource	*addr_res;   /* resources found */
128 	struct resource *data_res;
129 	struct resource	*addr_req;   /* resources requested */
130 	struct resource *data_req;
131 
132 	int		 irq_wake;
133 
134 	struct mutex	 addr_lock;	/* phy and eeprom access lock */
135 
136 	struct delayed_work phy_poll;
137 	struct net_device  *ndev;
138 
139 	spinlock_t	lock;
140 
141 	struct mii_if_info mii;
142 	u32		msg_enable;
143 	u32		wake_state;
144 
145 	int		ip_summed;
146 };
147 
148 /* debug code */
149 
150 #define dm9000_dbg(db, lev, msg...) do {		\
151 	if ((lev) < debug) {				\
152 		dev_dbg(db->dev, msg);			\
153 	}						\
154 } while (0)
155 
156 static inline struct board_info *to_dm9000_board(struct net_device *dev)
157 {
158 	return netdev_priv(dev);
159 }
160 
161 /* DM9000 network board routine ---------------------------- */
162 
163 /*
164  *   Read a byte from I/O port
165  */
166 static u8
167 ior(struct board_info *db, int reg)
168 {
169 	writeb(reg, db->io_addr);
170 	return readb(db->io_data);
171 }
172 
173 /*
174  *   Write a byte to I/O port
175  */
176 
177 static void
178 iow(struct board_info *db, int reg, int value)
179 {
180 	writeb(reg, db->io_addr);
181 	writeb(value, db->io_data);
182 }
183 
184 static void
185 dm9000_reset(struct board_info *db)
186 {
187 	dev_dbg(db->dev, "resetting device\n");
188 
189 	/* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
190 	 * The essential point is that we have to do a double reset, and the
191 	 * instruction is to set LBK into MAC internal loopback mode.
192 	 */
193 	iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
194 	udelay(100); /* Application note says at least 20 us */
195 	if (ior(db, DM9000_NCR) & 1)
196 		dev_err(db->dev, "dm9000 did not respond to first reset\n");
197 
198 	iow(db, DM9000_NCR, 0);
199 	iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
200 	udelay(100);
201 	if (ior(db, DM9000_NCR) & 1)
202 		dev_err(db->dev, "dm9000 did not respond to second reset\n");
203 }
204 
205 /* routines for sending block to chip */
206 
207 static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
208 {
209 	iowrite8_rep(reg, data, count);
210 }
211 
212 static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
213 {
214 	iowrite16_rep(reg, data, (count+1) >> 1);
215 }
216 
217 static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
218 {
219 	iowrite32_rep(reg, data, (count+3) >> 2);
220 }
221 
222 /* input block from chip to memory */
223 
224 static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
225 {
226 	ioread8_rep(reg, data, count);
227 }
228 
229 
230 static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
231 {
232 	ioread16_rep(reg, data, (count+1) >> 1);
233 }
234 
235 static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
236 {
237 	ioread32_rep(reg, data, (count+3) >> 2);
238 }
239 
240 /* dump block from chip to null */
241 
242 static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
243 {
244 	int i;
245 	int tmp;
246 
247 	for (i = 0; i < count; i++)
248 		tmp = readb(reg);
249 }
250 
251 static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
252 {
253 	int i;
254 	int tmp;
255 
256 	count = (count + 1) >> 1;
257 
258 	for (i = 0; i < count; i++)
259 		tmp = readw(reg);
260 }
261 
262 static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
263 {
264 	int i;
265 	int tmp;
266 
267 	count = (count + 3) >> 2;
268 
269 	for (i = 0; i < count; i++)
270 		tmp = readl(reg);
271 }
272 
273 /*
274  * Sleep, either by using msleep() or if we are suspending, then
275  * use mdelay() to sleep.
276  */
277 static void dm9000_msleep(struct board_info *db, unsigned int ms)
278 {
279 	if (db->in_suspend || db->in_timeout)
280 		mdelay(ms);
281 	else
282 		msleep(ms);
283 }
284 
285 /* Read a word from phyxcer */
286 static int
287 dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
288 {
289 	struct board_info *db = netdev_priv(dev);
290 	unsigned long flags;
291 	unsigned int reg_save;
292 	int ret;
293 
294 	mutex_lock(&db->addr_lock);
295 
296 	spin_lock_irqsave(&db->lock, flags);
297 
298 	/* Save previous register address */
299 	reg_save = readb(db->io_addr);
300 
301 	/* Fill the phyxcer register into REG_0C */
302 	iow(db, DM9000_EPAR, DM9000_PHY | reg);
303 
304 	/* Issue phyxcer read command */
305 	iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);
306 
307 	writeb(reg_save, db->io_addr);
308 	spin_unlock_irqrestore(&db->lock, flags);
309 
310 	dm9000_msleep(db, 1);		/* Wait read complete */
311 
312 	spin_lock_irqsave(&db->lock, flags);
313 	reg_save = readb(db->io_addr);
314 
315 	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer read command */
316 
317 	/* The read data keeps on REG_0D & REG_0E */
318 	ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
319 
320 	/* restore the previous address */
321 	writeb(reg_save, db->io_addr);
322 	spin_unlock_irqrestore(&db->lock, flags);
323 
324 	mutex_unlock(&db->addr_lock);
325 
326 	dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
327 	return ret;
328 }
329 
330 /* Write a word to phyxcer */
331 static void
332 dm9000_phy_write(struct net_device *dev,
333 		 int phyaddr_unused, int reg, int value)
334 {
335 	struct board_info *db = netdev_priv(dev);
336 	unsigned long flags;
337 	unsigned long reg_save;
338 
339 	dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
340 	if (!db->in_timeout)
341 		mutex_lock(&db->addr_lock);
342 
343 	spin_lock_irqsave(&db->lock, flags);
344 
345 	/* Save previous register address */
346 	reg_save = readb(db->io_addr);
347 
348 	/* Fill the phyxcer register into REG_0C */
349 	iow(db, DM9000_EPAR, DM9000_PHY | reg);
350 
351 	/* Fill the written data into REG_0D & REG_0E */
352 	iow(db, DM9000_EPDRL, value);
353 	iow(db, DM9000_EPDRH, value >> 8);
354 
355 	/* Issue phyxcer write command */
356 	iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);
357 
358 	writeb(reg_save, db->io_addr);
359 	spin_unlock_irqrestore(&db->lock, flags);
360 
361 	dm9000_msleep(db, 1);		/* Wait write complete */
362 
363 	spin_lock_irqsave(&db->lock, flags);
364 	reg_save = readb(db->io_addr);
365 
366 	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer write command */
367 
368 	/* restore the previous address */
369 	writeb(reg_save, db->io_addr);
370 
371 	spin_unlock_irqrestore(&db->lock, flags);
372 	if (!db->in_timeout)
373 		mutex_unlock(&db->addr_lock);
374 }
375 
376 /* dm9000_set_io
377  *
378  * select the specified set of io routines to use with the
379  * device
380  */
381 
382 static void dm9000_set_io(struct board_info *db, int byte_width)
383 {
384 	/* use the size of the data resource to work out what IO
385 	 * routines we want to use
386 	 */
387 
388 	switch (byte_width) {
389 	case 1:
390 		db->dumpblk = dm9000_dumpblk_8bit;
391 		db->outblk  = dm9000_outblk_8bit;
392 		db->inblk   = dm9000_inblk_8bit;
393 		break;
394 
395 
396 	case 3:
397 		dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
398 	case 2:
399 		db->dumpblk = dm9000_dumpblk_16bit;
400 		db->outblk  = dm9000_outblk_16bit;
401 		db->inblk   = dm9000_inblk_16bit;
402 		break;
403 
404 	case 4:
405 	default:
406 		db->dumpblk = dm9000_dumpblk_32bit;
407 		db->outblk  = dm9000_outblk_32bit;
408 		db->inblk   = dm9000_inblk_32bit;
409 		break;
410 	}
411 }
412 
413 static void dm9000_schedule_poll(struct board_info *db)
414 {
415 	if (db->type == TYPE_DM9000E)
416 		schedule_delayed_work(&db->phy_poll, HZ * 2);
417 }
418 
419 static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
420 {
421 	struct board_info *dm = to_dm9000_board(dev);
422 
423 	if (!netif_running(dev))
424 		return -EINVAL;
425 
426 	return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
427 }
428 
429 static unsigned int
430 dm9000_read_locked(struct board_info *db, int reg)
431 {
432 	unsigned long flags;
433 	unsigned int ret;
434 
435 	spin_lock_irqsave(&db->lock, flags);
436 	ret = ior(db, reg);
437 	spin_unlock_irqrestore(&db->lock, flags);
438 
439 	return ret;
440 }
441 
442 static int dm9000_wait_eeprom(struct board_info *db)
443 {
444 	unsigned int status;
445 	int timeout = 8;	/* wait max 8msec */
446 
447 	/* The DM9000 data sheets say we should be able to
448 	 * poll the ERRE bit in EPCR to wait for the EEPROM
449 	 * operation. From testing several chips, this bit
450 	 * does not seem to work.
451 	 *
452 	 * We attempt to use the bit, but fall back to the
453 	 * timeout (which is why we do not return an error
454 	 * on expiry) to say that the EEPROM operation has
455 	 * completed.
456 	 */
457 
458 	while (1) {
459 		status = dm9000_read_locked(db, DM9000_EPCR);
460 
461 		if ((status & EPCR_ERRE) == 0)
462 			break;
463 
464 		msleep(1);
465 
466 		if (timeout-- < 0) {
467 			dev_dbg(db->dev, "timeout waiting EEPROM\n");
468 			break;
469 		}
470 	}
471 
472 	return 0;
473 }
474 
475 /*
476  *  Read a word data from EEPROM
477  */
478 static void
479 dm9000_read_eeprom(struct board_info *db, int offset, u8 *to)
480 {
481 	unsigned long flags;
482 
483 	if (db->flags & DM9000_PLATF_NO_EEPROM) {
484 		to[0] = 0xff;
485 		to[1] = 0xff;
486 		return;
487 	}
488 
489 	mutex_lock(&db->addr_lock);
490 
491 	spin_lock_irqsave(&db->lock, flags);
492 
493 	iow(db, DM9000_EPAR, offset);
494 	iow(db, DM9000_EPCR, EPCR_ERPRR);
495 
496 	spin_unlock_irqrestore(&db->lock, flags);
497 
498 	dm9000_wait_eeprom(db);
499 
500 	/* delay for at-least 150uS */
501 	msleep(1);
502 
503 	spin_lock_irqsave(&db->lock, flags);
504 
505 	iow(db, DM9000_EPCR, 0x0);
506 
507 	to[0] = ior(db, DM9000_EPDRL);
508 	to[1] = ior(db, DM9000_EPDRH);
509 
510 	spin_unlock_irqrestore(&db->lock, flags);
511 
512 	mutex_unlock(&db->addr_lock);
513 }
514 
515 /*
516  * Write a word data to SROM
517  */
518 static void
519 dm9000_write_eeprom(struct board_info *db, int offset, u8 *data)
520 {
521 	unsigned long flags;
522 
523 	if (db->flags & DM9000_PLATF_NO_EEPROM)
524 		return;
525 
526 	mutex_lock(&db->addr_lock);
527 
528 	spin_lock_irqsave(&db->lock, flags);
529 	iow(db, DM9000_EPAR, offset);
530 	iow(db, DM9000_EPDRH, data[1]);
531 	iow(db, DM9000_EPDRL, data[0]);
532 	iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
533 	spin_unlock_irqrestore(&db->lock, flags);
534 
535 	dm9000_wait_eeprom(db);
536 
537 	mdelay(1);	/* wait at least 150uS to clear */
538 
539 	spin_lock_irqsave(&db->lock, flags);
540 	iow(db, DM9000_EPCR, 0);
541 	spin_unlock_irqrestore(&db->lock, flags);
542 
543 	mutex_unlock(&db->addr_lock);
544 }
545 
546 /* ethtool ops */
547 
548 static void dm9000_get_drvinfo(struct net_device *dev,
549 			       struct ethtool_drvinfo *info)
550 {
551 	struct board_info *dm = to_dm9000_board(dev);
552 
553 	strlcpy(info->driver, CARDNAME, sizeof(info->driver));
554 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
555 	strlcpy(info->bus_info, to_platform_device(dm->dev)->name,
556 		sizeof(info->bus_info));
557 }
558 
559 static u32 dm9000_get_msglevel(struct net_device *dev)
560 {
561 	struct board_info *dm = to_dm9000_board(dev);
562 
563 	return dm->msg_enable;
564 }
565 
566 static void dm9000_set_msglevel(struct net_device *dev, u32 value)
567 {
568 	struct board_info *dm = to_dm9000_board(dev);
569 
570 	dm->msg_enable = value;
571 }
572 
573 static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
574 {
575 	struct board_info *dm = to_dm9000_board(dev);
576 
577 	mii_ethtool_gset(&dm->mii, cmd);
578 	return 0;
579 }
580 
581 static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
582 {
583 	struct board_info *dm = to_dm9000_board(dev);
584 
585 	return mii_ethtool_sset(&dm->mii, cmd);
586 }
587 
588 static int dm9000_nway_reset(struct net_device *dev)
589 {
590 	struct board_info *dm = to_dm9000_board(dev);
591 	return mii_nway_restart(&dm->mii);
592 }
593 
594 static int dm9000_set_features(struct net_device *dev,
595 	netdev_features_t features)
596 {
597 	struct board_info *dm = to_dm9000_board(dev);
598 	netdev_features_t changed = dev->features ^ features;
599 	unsigned long flags;
600 
601 	if (!(changed & NETIF_F_RXCSUM))
602 		return 0;
603 
604 	spin_lock_irqsave(&dm->lock, flags);
605 	iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
606 	spin_unlock_irqrestore(&dm->lock, flags);
607 
608 	return 0;
609 }
610 
611 static u32 dm9000_get_link(struct net_device *dev)
612 {
613 	struct board_info *dm = to_dm9000_board(dev);
614 	u32 ret;
615 
616 	if (dm->flags & DM9000_PLATF_EXT_PHY)
617 		ret = mii_link_ok(&dm->mii);
618 	else
619 		ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
620 
621 	return ret;
622 }
623 
624 #define DM_EEPROM_MAGIC		(0x444D394B)
625 
626 static int dm9000_get_eeprom_len(struct net_device *dev)
627 {
628 	return 128;
629 }
630 
631 static int dm9000_get_eeprom(struct net_device *dev,
632 			     struct ethtool_eeprom *ee, u8 *data)
633 {
634 	struct board_info *dm = to_dm9000_board(dev);
635 	int offset = ee->offset;
636 	int len = ee->len;
637 	int i;
638 
639 	/* EEPROM access is aligned to two bytes */
640 
641 	if ((len & 1) != 0 || (offset & 1) != 0)
642 		return -EINVAL;
643 
644 	if (dm->flags & DM9000_PLATF_NO_EEPROM)
645 		return -ENOENT;
646 
647 	ee->magic = DM_EEPROM_MAGIC;
648 
649 	for (i = 0; i < len; i += 2)
650 		dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
651 
652 	return 0;
653 }
654 
655 static int dm9000_set_eeprom(struct net_device *dev,
656 			     struct ethtool_eeprom *ee, u8 *data)
657 {
658 	struct board_info *dm = to_dm9000_board(dev);
659 	int offset = ee->offset;
660 	int len = ee->len;
661 	int done;
662 
663 	/* EEPROM access is aligned to two bytes */
664 
665 	if (dm->flags & DM9000_PLATF_NO_EEPROM)
666 		return -ENOENT;
667 
668 	if (ee->magic != DM_EEPROM_MAGIC)
669 		return -EINVAL;
670 
671 	while (len > 0) {
672 		if (len & 1 || offset & 1) {
673 			int which = offset & 1;
674 			u8 tmp[2];
675 
676 			dm9000_read_eeprom(dm, offset / 2, tmp);
677 			tmp[which] = *data;
678 			dm9000_write_eeprom(dm, offset / 2, tmp);
679 
680 			done = 1;
681 		} else {
682 			dm9000_write_eeprom(dm, offset / 2, data);
683 			done = 2;
684 		}
685 
686 		data += done;
687 		offset += done;
688 		len -= done;
689 	}
690 
691 	return 0;
692 }
693 
694 static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
695 {
696 	struct board_info *dm = to_dm9000_board(dev);
697 
698 	memset(w, 0, sizeof(struct ethtool_wolinfo));
699 
700 	/* note, we could probably support wake-phy too */
701 	w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
702 	w->wolopts = dm->wake_state;
703 }
704 
705 static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
706 {
707 	struct board_info *dm = to_dm9000_board(dev);
708 	unsigned long flags;
709 	u32 opts = w->wolopts;
710 	u32 wcr = 0;
711 
712 	if (!dm->wake_supported)
713 		return -EOPNOTSUPP;
714 
715 	if (opts & ~WAKE_MAGIC)
716 		return -EINVAL;
717 
718 	if (opts & WAKE_MAGIC)
719 		wcr |= WCR_MAGICEN;
720 
721 	mutex_lock(&dm->addr_lock);
722 
723 	spin_lock_irqsave(&dm->lock, flags);
724 	iow(dm, DM9000_WCR, wcr);
725 	spin_unlock_irqrestore(&dm->lock, flags);
726 
727 	mutex_unlock(&dm->addr_lock);
728 
729 	if (dm->wake_state != opts) {
730 		/* change in wol state, update IRQ state */
731 
732 		if (!dm->wake_state)
733 			irq_set_irq_wake(dm->irq_wake, 1);
734 		else if (dm->wake_state && !opts)
735 			irq_set_irq_wake(dm->irq_wake, 0);
736 	}
737 
738 	dm->wake_state = opts;
739 	return 0;
740 }
741 
742 static const struct ethtool_ops dm9000_ethtool_ops = {
743 	.get_drvinfo		= dm9000_get_drvinfo,
744 	.get_settings		= dm9000_get_settings,
745 	.set_settings		= dm9000_set_settings,
746 	.get_msglevel		= dm9000_get_msglevel,
747 	.set_msglevel		= dm9000_set_msglevel,
748 	.nway_reset		= dm9000_nway_reset,
749 	.get_link		= dm9000_get_link,
750 	.get_wol		= dm9000_get_wol,
751 	.set_wol		= dm9000_set_wol,
752 	.get_eeprom_len		= dm9000_get_eeprom_len,
753 	.get_eeprom		= dm9000_get_eeprom,
754 	.set_eeprom		= dm9000_set_eeprom,
755 };
756 
757 static void dm9000_show_carrier(struct board_info *db,
758 				unsigned carrier, unsigned nsr)
759 {
760 	int lpa;
761 	struct net_device *ndev = db->ndev;
762 	struct mii_if_info *mii = &db->mii;
763 	unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
764 
765 	if (carrier) {
766 		lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA);
767 		dev_info(db->dev,
768 			 "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
769 			 ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
770 			 (ncr & NCR_FDX) ? "full" : "half", lpa);
771 	} else {
772 		dev_info(db->dev, "%s: link down\n", ndev->name);
773 	}
774 }
775 
776 static void
777 dm9000_poll_work(struct work_struct *w)
778 {
779 	struct delayed_work *dw = to_delayed_work(w);
780 	struct board_info *db = container_of(dw, struct board_info, phy_poll);
781 	struct net_device *ndev = db->ndev;
782 
783 	if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
784 	    !(db->flags & DM9000_PLATF_EXT_PHY)) {
785 		unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
786 		unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
787 		unsigned new_carrier;
788 
789 		new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
790 
791 		if (old_carrier != new_carrier) {
792 			if (netif_msg_link(db))
793 				dm9000_show_carrier(db, new_carrier, nsr);
794 
795 			if (!new_carrier)
796 				netif_carrier_off(ndev);
797 			else
798 				netif_carrier_on(ndev);
799 		}
800 	} else
801 		mii_check_media(&db->mii, netif_msg_link(db), 0);
802 
803 	if (netif_running(ndev))
804 		dm9000_schedule_poll(db);
805 }
806 
807 /* dm9000_release_board
808  *
809  * release a board, and any mapped resources
810  */
811 
812 static void
813 dm9000_release_board(struct platform_device *pdev, struct board_info *db)
814 {
815 	/* unmap our resources */
816 
817 	iounmap(db->io_addr);
818 	iounmap(db->io_data);
819 
820 	/* release the resources */
821 
822 	if (db->data_req)
823 		release_resource(db->data_req);
824 	kfree(db->data_req);
825 
826 	if (db->addr_req)
827 		release_resource(db->addr_req);
828 	kfree(db->addr_req);
829 }
830 
831 static unsigned char dm9000_type_to_char(enum dm9000_type type)
832 {
833 	switch (type) {
834 	case TYPE_DM9000E: return 'e';
835 	case TYPE_DM9000A: return 'a';
836 	case TYPE_DM9000B: return 'b';
837 	}
838 
839 	return '?';
840 }
841 
842 /*
843  *  Set DM9000 multicast address
844  */
845 static void
846 dm9000_hash_table_unlocked(struct net_device *dev)
847 {
848 	struct board_info *db = netdev_priv(dev);
849 	struct netdev_hw_addr *ha;
850 	int i, oft;
851 	u32 hash_val;
852 	u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
853 	u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
854 
855 	dm9000_dbg(db, 1, "entering %s\n", __func__);
856 
857 	for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
858 		iow(db, oft, dev->dev_addr[i]);
859 
860 	if (dev->flags & IFF_PROMISC)
861 		rcr |= RCR_PRMSC;
862 
863 	if (dev->flags & IFF_ALLMULTI)
864 		rcr |= RCR_ALL;
865 
866 	/* the multicast address in Hash Table : 64 bits */
867 	netdev_for_each_mc_addr(ha, dev) {
868 		hash_val = ether_crc_le(6, ha->addr) & 0x3f;
869 		hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
870 	}
871 
872 	/* Write the hash table to MAC MD table */
873 	for (i = 0, oft = DM9000_MAR; i < 4; i++) {
874 		iow(db, oft++, hash_table[i]);
875 		iow(db, oft++, hash_table[i] >> 8);
876 	}
877 
878 	iow(db, DM9000_RCR, rcr);
879 }
880 
881 static void
882 dm9000_hash_table(struct net_device *dev)
883 {
884 	struct board_info *db = netdev_priv(dev);
885 	unsigned long flags;
886 
887 	spin_lock_irqsave(&db->lock, flags);
888 	dm9000_hash_table_unlocked(dev);
889 	spin_unlock_irqrestore(&db->lock, flags);
890 }
891 
892 static void
893 dm9000_mask_interrupts(struct board_info *db)
894 {
895 	iow(db, DM9000_IMR, IMR_PAR);
896 }
897 
898 static void
899 dm9000_unmask_interrupts(struct board_info *db)
900 {
901 	iow(db, DM9000_IMR, db->imr_all);
902 }
903 
904 /*
905  * Initialize dm9000 board
906  */
907 static void
908 dm9000_init_dm9000(struct net_device *dev)
909 {
910 	struct board_info *db = netdev_priv(dev);
911 	unsigned int imr;
912 	unsigned int ncr;
913 
914 	dm9000_dbg(db, 1, "entering %s\n", __func__);
915 
916 	dm9000_reset(db);
917 	dm9000_mask_interrupts(db);
918 
919 	/* I/O mode */
920 	db->io_mode = ior(db, DM9000_ISR) >> 6;	/* ISR bit7:6 keeps I/O mode */
921 
922 	/* Checksum mode */
923 	if (dev->hw_features & NETIF_F_RXCSUM)
924 		iow(db, DM9000_RCSR,
925 			(dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
926 
927 	iow(db, DM9000_GPCR, GPCR_GEP_CNTL);	/* Let GPIO0 output */
928 	iow(db, DM9000_GPR, 0);
929 
930 	/* If we are dealing with DM9000B, some extra steps are required: a
931 	 * manual phy reset, and setting init params.
932 	 */
933 	if (db->type == TYPE_DM9000B) {
934 		dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);
935 		dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM);
936 	}
937 
938 	ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
939 
940 	/* if wol is needed, then always set NCR_WAKEEN otherwise we end
941 	 * up dumping the wake events if we disable this. There is already
942 	 * a wake-mask in DM9000_WCR */
943 	if (db->wake_supported)
944 		ncr |= NCR_WAKEEN;
945 
946 	iow(db, DM9000_NCR, ncr);
947 
948 	/* Program operating register */
949 	iow(db, DM9000_TCR, 0);	        /* TX Polling clear */
950 	iow(db, DM9000_BPTR, 0x3f);	/* Less 3Kb, 200us */
951 	iow(db, DM9000_FCR, 0xff);	/* Flow Control */
952 	iow(db, DM9000_SMCR, 0);        /* Special Mode */
953 	/* clear TX status */
954 	iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
955 	iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
956 
957 	/* Set address filter table */
958 	dm9000_hash_table_unlocked(dev);
959 
960 	imr = IMR_PAR | IMR_PTM | IMR_PRM;
961 	if (db->type != TYPE_DM9000E)
962 		imr |= IMR_LNKCHNG;
963 
964 	db->imr_all = imr;
965 
966 	/* Init Driver variable */
967 	db->tx_pkt_cnt = 0;
968 	db->queue_pkt_len = 0;
969 	netif_trans_update(dev);
970 }
971 
972 /* Our watchdog timed out. Called by the networking layer */
973 static void dm9000_timeout(struct net_device *dev)
974 {
975 	struct board_info *db = netdev_priv(dev);
976 	u8 reg_save;
977 	unsigned long flags;
978 
979 	/* Save previous register address */
980 	spin_lock_irqsave(&db->lock, flags);
981 	db->in_timeout = 1;
982 	reg_save = readb(db->io_addr);
983 
984 	netif_stop_queue(dev);
985 	dm9000_init_dm9000(dev);
986 	dm9000_unmask_interrupts(db);
987 	/* We can accept TX packets again */
988 	netif_trans_update(dev); /* prevent tx timeout */
989 	netif_wake_queue(dev);
990 
991 	/* Restore previous register address */
992 	writeb(reg_save, db->io_addr);
993 	db->in_timeout = 0;
994 	spin_unlock_irqrestore(&db->lock, flags);
995 }
996 
997 static void dm9000_send_packet(struct net_device *dev,
998 			       int ip_summed,
999 			       u16 pkt_len)
1000 {
1001 	struct board_info *dm = to_dm9000_board(dev);
1002 
1003 	/* The DM9000 is not smart enough to leave fragmented packets alone. */
1004 	if (dm->ip_summed != ip_summed) {
1005 		if (ip_summed == CHECKSUM_NONE)
1006 			iow(dm, DM9000_TCCR, 0);
1007 		else
1008 			iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
1009 		dm->ip_summed = ip_summed;
1010 	}
1011 
1012 	/* Set TX length to DM9000 */
1013 	iow(dm, DM9000_TXPLL, pkt_len);
1014 	iow(dm, DM9000_TXPLH, pkt_len >> 8);
1015 
1016 	/* Issue TX polling command */
1017 	iow(dm, DM9000_TCR, TCR_TXREQ);	/* Cleared after TX complete */
1018 }
1019 
1020 /*
1021  *  Hardware start transmission.
1022  *  Send a packet to media from the upper layer.
1023  */
1024 static int
1025 dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1026 {
1027 	unsigned long flags;
1028 	struct board_info *db = netdev_priv(dev);
1029 
1030 	dm9000_dbg(db, 3, "%s:\n", __func__);
1031 
1032 	if (db->tx_pkt_cnt > 1)
1033 		return NETDEV_TX_BUSY;
1034 
1035 	spin_lock_irqsave(&db->lock, flags);
1036 
1037 	/* Move data to DM9000 TX RAM */
1038 	writeb(DM9000_MWCMD, db->io_addr);
1039 
1040 	(db->outblk)(db->io_data, skb->data, skb->len);
1041 	dev->stats.tx_bytes += skb->len;
1042 
1043 	db->tx_pkt_cnt++;
1044 	/* TX control: First packet immediately send, second packet queue */
1045 	if (db->tx_pkt_cnt == 1) {
1046 		dm9000_send_packet(dev, skb->ip_summed, skb->len);
1047 	} else {
1048 		/* Second packet */
1049 		db->queue_pkt_len = skb->len;
1050 		db->queue_ip_summed = skb->ip_summed;
1051 		netif_stop_queue(dev);
1052 	}
1053 
1054 	spin_unlock_irqrestore(&db->lock, flags);
1055 
1056 	/* free this SKB */
1057 	dev_consume_skb_any(skb);
1058 
1059 	return NETDEV_TX_OK;
1060 }
1061 
1062 /*
1063  * DM9000 interrupt handler
1064  * receive the packet to upper layer, free the transmitted packet
1065  */
1066 
1067 static void dm9000_tx_done(struct net_device *dev, struct board_info *db)
1068 {
1069 	int tx_status = ior(db, DM9000_NSR);	/* Got TX status */
1070 
1071 	if (tx_status & (NSR_TX2END | NSR_TX1END)) {
1072 		/* One packet sent complete */
1073 		db->tx_pkt_cnt--;
1074 		dev->stats.tx_packets++;
1075 
1076 		if (netif_msg_tx_done(db))
1077 			dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
1078 
1079 		/* Queue packet check & send */
1080 		if (db->tx_pkt_cnt > 0)
1081 			dm9000_send_packet(dev, db->queue_ip_summed,
1082 					   db->queue_pkt_len);
1083 		netif_wake_queue(dev);
1084 	}
1085 }
1086 
1087 struct dm9000_rxhdr {
1088 	u8	RxPktReady;
1089 	u8	RxStatus;
1090 	__le16	RxLen;
1091 } __packed;
1092 
1093 /*
1094  *  Received a packet and pass to upper layer
1095  */
1096 static void
1097 dm9000_rx(struct net_device *dev)
1098 {
1099 	struct board_info *db = netdev_priv(dev);
1100 	struct dm9000_rxhdr rxhdr;
1101 	struct sk_buff *skb;
1102 	u8 rxbyte, *rdptr;
1103 	bool GoodPacket;
1104 	int RxLen;
1105 
1106 	/* Check packet ready or not */
1107 	do {
1108 		ior(db, DM9000_MRCMDX);	/* Dummy read */
1109 
1110 		/* Get most updated data */
1111 		rxbyte = readb(db->io_data);
1112 
1113 		/* Status check: this byte must be 0 or 1 */
1114 		if (rxbyte & DM9000_PKT_ERR) {
1115 			dev_warn(db->dev, "status check fail: %d\n", rxbyte);
1116 			iow(db, DM9000_RCR, 0x00);	/* Stop Device */
1117 			return;
1118 		}
1119 
1120 		if (!(rxbyte & DM9000_PKT_RDY))
1121 			return;
1122 
1123 		/* A packet ready now  & Get status/length */
1124 		GoodPacket = true;
1125 		writeb(DM9000_MRCMD, db->io_addr);
1126 
1127 		(db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
1128 
1129 		RxLen = le16_to_cpu(rxhdr.RxLen);
1130 
1131 		if (netif_msg_rx_status(db))
1132 			dev_dbg(db->dev, "RX: status %02x, length %04x\n",
1133 				rxhdr.RxStatus, RxLen);
1134 
1135 		/* Packet Status check */
1136 		if (RxLen < 0x40) {
1137 			GoodPacket = false;
1138 			if (netif_msg_rx_err(db))
1139 				dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1140 		}
1141 
1142 		if (RxLen > DM9000_PKT_MAX) {
1143 			dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1144 		}
1145 
1146 		/* rxhdr.RxStatus is identical to RSR register. */
1147 		if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1148 				      RSR_PLE | RSR_RWTO |
1149 				      RSR_LCS | RSR_RF)) {
1150 			GoodPacket = false;
1151 			if (rxhdr.RxStatus & RSR_FOE) {
1152 				if (netif_msg_rx_err(db))
1153 					dev_dbg(db->dev, "fifo error\n");
1154 				dev->stats.rx_fifo_errors++;
1155 			}
1156 			if (rxhdr.RxStatus & RSR_CE) {
1157 				if (netif_msg_rx_err(db))
1158 					dev_dbg(db->dev, "crc error\n");
1159 				dev->stats.rx_crc_errors++;
1160 			}
1161 			if (rxhdr.RxStatus & RSR_RF) {
1162 				if (netif_msg_rx_err(db))
1163 					dev_dbg(db->dev, "length error\n");
1164 				dev->stats.rx_length_errors++;
1165 			}
1166 		}
1167 
1168 		/* Move data from DM9000 */
1169 		if (GoodPacket &&
1170 		    ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
1171 			skb_reserve(skb, 2);
1172 			rdptr = (u8 *) skb_put(skb, RxLen - 4);
1173 
1174 			/* Read received packet from RX SRAM */
1175 
1176 			(db->inblk)(db->io_data, rdptr, RxLen);
1177 			dev->stats.rx_bytes += RxLen;
1178 
1179 			/* Pass to upper layer */
1180 			skb->protocol = eth_type_trans(skb, dev);
1181 			if (dev->features & NETIF_F_RXCSUM) {
1182 				if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1183 					skb->ip_summed = CHECKSUM_UNNECESSARY;
1184 				else
1185 					skb_checksum_none_assert(skb);
1186 			}
1187 			netif_rx(skb);
1188 			dev->stats.rx_packets++;
1189 
1190 		} else {
1191 			/* need to dump the packet's data */
1192 
1193 			(db->dumpblk)(db->io_data, RxLen);
1194 		}
1195 	} while (rxbyte & DM9000_PKT_RDY);
1196 }
1197 
1198 static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1199 {
1200 	struct net_device *dev = dev_id;
1201 	struct board_info *db = netdev_priv(dev);
1202 	int int_status;
1203 	unsigned long flags;
1204 	u8 reg_save;
1205 
1206 	dm9000_dbg(db, 3, "entering %s\n", __func__);
1207 
1208 	/* A real interrupt coming */
1209 
1210 	/* holders of db->lock must always block IRQs */
1211 	spin_lock_irqsave(&db->lock, flags);
1212 
1213 	/* Save previous register address */
1214 	reg_save = readb(db->io_addr);
1215 
1216 	dm9000_mask_interrupts(db);
1217 	/* Got DM9000 interrupt status */
1218 	int_status = ior(db, DM9000_ISR);	/* Got ISR */
1219 	iow(db, DM9000_ISR, int_status);	/* Clear ISR status */
1220 
1221 	if (netif_msg_intr(db))
1222 		dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1223 
1224 	/* Received the coming packet */
1225 	if (int_status & ISR_PRS)
1226 		dm9000_rx(dev);
1227 
1228 	/* Transmit Interrupt check */
1229 	if (int_status & ISR_PTS)
1230 		dm9000_tx_done(dev, db);
1231 
1232 	if (db->type != TYPE_DM9000E) {
1233 		if (int_status & ISR_LNKCHNG) {
1234 			/* fire a link-change request */
1235 			schedule_delayed_work(&db->phy_poll, 1);
1236 		}
1237 	}
1238 
1239 	dm9000_unmask_interrupts(db);
1240 	/* Restore previous register address */
1241 	writeb(reg_save, db->io_addr);
1242 
1243 	spin_unlock_irqrestore(&db->lock, flags);
1244 
1245 	return IRQ_HANDLED;
1246 }
1247 
1248 static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1249 {
1250 	struct net_device *dev = dev_id;
1251 	struct board_info *db = netdev_priv(dev);
1252 	unsigned long flags;
1253 	unsigned nsr, wcr;
1254 
1255 	spin_lock_irqsave(&db->lock, flags);
1256 
1257 	nsr = ior(db, DM9000_NSR);
1258 	wcr = ior(db, DM9000_WCR);
1259 
1260 	dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1261 
1262 	if (nsr & NSR_WAKEST) {
1263 		/* clear, so we can avoid */
1264 		iow(db, DM9000_NSR, NSR_WAKEST);
1265 
1266 		if (wcr & WCR_LINKST)
1267 			dev_info(db->dev, "wake by link status change\n");
1268 		if (wcr & WCR_SAMPLEST)
1269 			dev_info(db->dev, "wake by sample packet\n");
1270 		if (wcr & WCR_MAGICST)
1271 			dev_info(db->dev, "wake by magic packet\n");
1272 		if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1273 			dev_err(db->dev, "wake signalled with no reason? "
1274 				"NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1275 	}
1276 
1277 	spin_unlock_irqrestore(&db->lock, flags);
1278 
1279 	return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1280 }
1281 
1282 #ifdef CONFIG_NET_POLL_CONTROLLER
1283 /*
1284  *Used by netconsole
1285  */
1286 static void dm9000_poll_controller(struct net_device *dev)
1287 {
1288 	disable_irq(dev->irq);
1289 	dm9000_interrupt(dev->irq, dev);
1290 	enable_irq(dev->irq);
1291 }
1292 #endif
1293 
1294 /*
1295  *  Open the interface.
1296  *  The interface is opened whenever "ifconfig" actives it.
1297  */
1298 static int
1299 dm9000_open(struct net_device *dev)
1300 {
1301 	struct board_info *db = netdev_priv(dev);
1302 
1303 	if (netif_msg_ifup(db))
1304 		dev_dbg(db->dev, "enabling %s\n", dev->name);
1305 
1306 	/* If there is no IRQ type specified, tell the user that this is a
1307 	 * problem
1308 	 */
1309 	if (irq_get_trigger_type(dev->irq) == IRQF_TRIGGER_NONE)
1310 		dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1311 
1312 	/* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1313 	iow(db, DM9000_GPR, 0);	/* REG_1F bit0 activate phyxcer */
1314 	mdelay(1); /* delay needs by DM9000B */
1315 
1316 	/* Initialize DM9000 board */
1317 	dm9000_init_dm9000(dev);
1318 
1319 	if (request_irq(dev->irq, dm9000_interrupt, IRQF_SHARED,
1320 			dev->name, dev))
1321 		return -EAGAIN;
1322 	/* Now that we have an interrupt handler hooked up we can unmask
1323 	 * our interrupts
1324 	 */
1325 	dm9000_unmask_interrupts(db);
1326 
1327 	/* Init driver variable */
1328 	db->dbug_cnt = 0;
1329 
1330 	mii_check_media(&db->mii, netif_msg_link(db), 1);
1331 	netif_start_queue(dev);
1332 
1333 	/* Poll initial link status */
1334 	schedule_delayed_work(&db->phy_poll, 1);
1335 
1336 	return 0;
1337 }
1338 
1339 static void
1340 dm9000_shutdown(struct net_device *dev)
1341 {
1342 	struct board_info *db = netdev_priv(dev);
1343 
1344 	/* RESET device */
1345 	dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);	/* PHY RESET */
1346 	iow(db, DM9000_GPR, 0x01);	/* Power-Down PHY */
1347 	dm9000_mask_interrupts(db);
1348 	iow(db, DM9000_RCR, 0x00);	/* Disable RX */
1349 }
1350 
1351 /*
1352  * Stop the interface.
1353  * The interface is stopped when it is brought.
1354  */
1355 static int
1356 dm9000_stop(struct net_device *ndev)
1357 {
1358 	struct board_info *db = netdev_priv(ndev);
1359 
1360 	if (netif_msg_ifdown(db))
1361 		dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1362 
1363 	cancel_delayed_work_sync(&db->phy_poll);
1364 
1365 	netif_stop_queue(ndev);
1366 	netif_carrier_off(ndev);
1367 
1368 	/* free interrupt */
1369 	free_irq(ndev->irq, ndev);
1370 
1371 	dm9000_shutdown(ndev);
1372 
1373 	return 0;
1374 }
1375 
1376 static const struct net_device_ops dm9000_netdev_ops = {
1377 	.ndo_open		= dm9000_open,
1378 	.ndo_stop		= dm9000_stop,
1379 	.ndo_start_xmit		= dm9000_start_xmit,
1380 	.ndo_tx_timeout		= dm9000_timeout,
1381 	.ndo_set_rx_mode	= dm9000_hash_table,
1382 	.ndo_do_ioctl		= dm9000_ioctl,
1383 	.ndo_change_mtu		= eth_change_mtu,
1384 	.ndo_set_features	= dm9000_set_features,
1385 	.ndo_validate_addr	= eth_validate_addr,
1386 	.ndo_set_mac_address	= eth_mac_addr,
1387 #ifdef CONFIG_NET_POLL_CONTROLLER
1388 	.ndo_poll_controller	= dm9000_poll_controller,
1389 #endif
1390 };
1391 
1392 static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev)
1393 {
1394 	struct dm9000_plat_data *pdata;
1395 	struct device_node *np = dev->of_node;
1396 	const void *mac_addr;
1397 
1398 	if (!IS_ENABLED(CONFIG_OF) || !np)
1399 		return ERR_PTR(-ENXIO);
1400 
1401 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1402 	if (!pdata)
1403 		return ERR_PTR(-ENOMEM);
1404 
1405 	if (of_find_property(np, "davicom,ext-phy", NULL))
1406 		pdata->flags |= DM9000_PLATF_EXT_PHY;
1407 	if (of_find_property(np, "davicom,no-eeprom", NULL))
1408 		pdata->flags |= DM9000_PLATF_NO_EEPROM;
1409 
1410 	mac_addr = of_get_mac_address(np);
1411 	if (mac_addr)
1412 		memcpy(pdata->dev_addr, mac_addr, sizeof(pdata->dev_addr));
1413 
1414 	return pdata;
1415 }
1416 
1417 /*
1418  * Search DM9000 board, allocate space and register it
1419  */
1420 static int
1421 dm9000_probe(struct platform_device *pdev)
1422 {
1423 	struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev);
1424 	struct board_info *db;	/* Point a board information structure */
1425 	struct net_device *ndev;
1426 	struct device *dev = &pdev->dev;
1427 	const unsigned char *mac_src;
1428 	int ret = 0;
1429 	int iosize;
1430 	int i;
1431 	u32 id_val;
1432 	int reset_gpios;
1433 	enum of_gpio_flags flags;
1434 	struct regulator *power;
1435 	bool inv_mac_addr = false;
1436 
1437 	power = devm_regulator_get(dev, "vcc");
1438 	if (IS_ERR(power)) {
1439 		if (PTR_ERR(power) == -EPROBE_DEFER)
1440 			return -EPROBE_DEFER;
1441 		dev_dbg(dev, "no regulator provided\n");
1442 	} else {
1443 		ret = regulator_enable(power);
1444 		if (ret != 0) {
1445 			dev_err(dev,
1446 				"Failed to enable power regulator: %d\n", ret);
1447 			return ret;
1448 		}
1449 		dev_dbg(dev, "regulator enabled\n");
1450 	}
1451 
1452 	reset_gpios = of_get_named_gpio_flags(dev->of_node, "reset-gpios", 0,
1453 					      &flags);
1454 	if (gpio_is_valid(reset_gpios)) {
1455 		ret = devm_gpio_request_one(dev, reset_gpios, flags,
1456 					    "dm9000_reset");
1457 		if (ret) {
1458 			dev_err(dev, "failed to request reset gpio %d: %d\n",
1459 				reset_gpios, ret);
1460 			return -ENODEV;
1461 		}
1462 
1463 		/* According to manual PWRST# Low Period Min 1ms */
1464 		msleep(2);
1465 		gpio_set_value(reset_gpios, 1);
1466 		/* Needs 3ms to read eeprom when PWRST is deasserted */
1467 		msleep(4);
1468 	}
1469 
1470 	if (!pdata) {
1471 		pdata = dm9000_parse_dt(&pdev->dev);
1472 		if (IS_ERR(pdata))
1473 			return PTR_ERR(pdata);
1474 	}
1475 
1476 	/* Init network device */
1477 	ndev = alloc_etherdev(sizeof(struct board_info));
1478 	if (!ndev)
1479 		return -ENOMEM;
1480 
1481 	SET_NETDEV_DEV(ndev, &pdev->dev);
1482 
1483 	dev_dbg(&pdev->dev, "dm9000_probe()\n");
1484 
1485 	/* setup board info structure */
1486 	db = netdev_priv(ndev);
1487 
1488 	db->dev = &pdev->dev;
1489 	db->ndev = ndev;
1490 
1491 	spin_lock_init(&db->lock);
1492 	mutex_init(&db->addr_lock);
1493 
1494 	INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1495 
1496 	db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1497 	db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1498 
1499 	if (!db->addr_res || !db->data_res) {
1500 		dev_err(db->dev, "insufficient resources addr=%p data=%p\n",
1501 			db->addr_res, db->data_res);
1502 		ret = -ENOENT;
1503 		goto out;
1504 	}
1505 
1506 	ndev->irq = platform_get_irq(pdev, 0);
1507 	if (ndev->irq < 0) {
1508 		dev_err(db->dev, "interrupt resource unavailable: %d\n",
1509 			ndev->irq);
1510 		ret = ndev->irq;
1511 		goto out;
1512 	}
1513 
1514 	db->irq_wake = platform_get_irq(pdev, 1);
1515 	if (db->irq_wake >= 0) {
1516 		dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1517 
1518 		ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1519 				  IRQF_SHARED, dev_name(db->dev), ndev);
1520 		if (ret) {
1521 			dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1522 		} else {
1523 
1524 			/* test to see if irq is really wakeup capable */
1525 			ret = irq_set_irq_wake(db->irq_wake, 1);
1526 			if (ret) {
1527 				dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1528 					db->irq_wake, ret);
1529 				ret = 0;
1530 			} else {
1531 				irq_set_irq_wake(db->irq_wake, 0);
1532 				db->wake_supported = 1;
1533 			}
1534 		}
1535 	}
1536 
1537 	iosize = resource_size(db->addr_res);
1538 	db->addr_req = request_mem_region(db->addr_res->start, iosize,
1539 					  pdev->name);
1540 
1541 	if (db->addr_req == NULL) {
1542 		dev_err(db->dev, "cannot claim address reg area\n");
1543 		ret = -EIO;
1544 		goto out;
1545 	}
1546 
1547 	db->io_addr = ioremap(db->addr_res->start, iosize);
1548 
1549 	if (db->io_addr == NULL) {
1550 		dev_err(db->dev, "failed to ioremap address reg\n");
1551 		ret = -EINVAL;
1552 		goto out;
1553 	}
1554 
1555 	iosize = resource_size(db->data_res);
1556 	db->data_req = request_mem_region(db->data_res->start, iosize,
1557 					  pdev->name);
1558 
1559 	if (db->data_req == NULL) {
1560 		dev_err(db->dev, "cannot claim data reg area\n");
1561 		ret = -EIO;
1562 		goto out;
1563 	}
1564 
1565 	db->io_data = ioremap(db->data_res->start, iosize);
1566 
1567 	if (db->io_data == NULL) {
1568 		dev_err(db->dev, "failed to ioremap data reg\n");
1569 		ret = -EINVAL;
1570 		goto out;
1571 	}
1572 
1573 	/* fill in parameters for net-dev structure */
1574 	ndev->base_addr = (unsigned long)db->io_addr;
1575 
1576 	/* ensure at least we have a default set of IO routines */
1577 	dm9000_set_io(db, iosize);
1578 
1579 	/* check to see if anything is being over-ridden */
1580 	if (pdata != NULL) {
1581 		/* check to see if the driver wants to over-ride the
1582 		 * default IO width */
1583 
1584 		if (pdata->flags & DM9000_PLATF_8BITONLY)
1585 			dm9000_set_io(db, 1);
1586 
1587 		if (pdata->flags & DM9000_PLATF_16BITONLY)
1588 			dm9000_set_io(db, 2);
1589 
1590 		if (pdata->flags & DM9000_PLATF_32BITONLY)
1591 			dm9000_set_io(db, 4);
1592 
1593 		/* check to see if there are any IO routine
1594 		 * over-rides */
1595 
1596 		if (pdata->inblk != NULL)
1597 			db->inblk = pdata->inblk;
1598 
1599 		if (pdata->outblk != NULL)
1600 			db->outblk = pdata->outblk;
1601 
1602 		if (pdata->dumpblk != NULL)
1603 			db->dumpblk = pdata->dumpblk;
1604 
1605 		db->flags = pdata->flags;
1606 	}
1607 
1608 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1609 	db->flags |= DM9000_PLATF_SIMPLE_PHY;
1610 #endif
1611 
1612 	dm9000_reset(db);
1613 
1614 	/* try multiple times, DM9000 sometimes gets the read wrong */
1615 	for (i = 0; i < 8; i++) {
1616 		id_val  = ior(db, DM9000_VIDL);
1617 		id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1618 		id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1619 		id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1620 
1621 		if (id_val == DM9000_ID)
1622 			break;
1623 		dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1624 	}
1625 
1626 	if (id_val != DM9000_ID) {
1627 		dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1628 		ret = -ENODEV;
1629 		goto out;
1630 	}
1631 
1632 	/* Identify what type of DM9000 we are working on */
1633 
1634 	id_val = ior(db, DM9000_CHIPR);
1635 	dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1636 
1637 	switch (id_val) {
1638 	case CHIPR_DM9000A:
1639 		db->type = TYPE_DM9000A;
1640 		break;
1641 	case CHIPR_DM9000B:
1642 		db->type = TYPE_DM9000B;
1643 		break;
1644 	default:
1645 		dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1646 		db->type = TYPE_DM9000E;
1647 	}
1648 
1649 	/* dm9000a/b are capable of hardware checksum offload */
1650 	if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1651 		ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1652 		ndev->features |= ndev->hw_features;
1653 	}
1654 
1655 	/* from this point we assume that we have found a DM9000 */
1656 
1657 	ndev->netdev_ops	= &dm9000_netdev_ops;
1658 	ndev->watchdog_timeo	= msecs_to_jiffies(watchdog);
1659 	ndev->ethtool_ops	= &dm9000_ethtool_ops;
1660 
1661 	db->msg_enable       = NETIF_MSG_LINK;
1662 	db->mii.phy_id_mask  = 0x1f;
1663 	db->mii.reg_num_mask = 0x1f;
1664 	db->mii.force_media  = 0;
1665 	db->mii.full_duplex  = 0;
1666 	db->mii.dev	     = ndev;
1667 	db->mii.mdio_read    = dm9000_phy_read;
1668 	db->mii.mdio_write   = dm9000_phy_write;
1669 
1670 	mac_src = "eeprom";
1671 
1672 	/* try reading the node address from the attached EEPROM */
1673 	for (i = 0; i < 6; i += 2)
1674 		dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
1675 
1676 	if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1677 		mac_src = "platform data";
1678 		memcpy(ndev->dev_addr, pdata->dev_addr, ETH_ALEN);
1679 	}
1680 
1681 	if (!is_valid_ether_addr(ndev->dev_addr)) {
1682 		/* try reading from mac */
1683 
1684 		mac_src = "chip";
1685 		for (i = 0; i < 6; i++)
1686 			ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
1687 	}
1688 
1689 	if (!is_valid_ether_addr(ndev->dev_addr)) {
1690 		inv_mac_addr = true;
1691 		eth_hw_addr_random(ndev);
1692 		mac_src = "random";
1693 	}
1694 
1695 
1696 	platform_set_drvdata(pdev, ndev);
1697 	ret = register_netdev(ndev);
1698 
1699 	if (ret == 0) {
1700 		if (inv_mac_addr)
1701 			dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please set using ip\n",
1702 				 ndev->name);
1703 		printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1704 		       ndev->name, dm9000_type_to_char(db->type),
1705 		       db->io_addr, db->io_data, ndev->irq,
1706 		       ndev->dev_addr, mac_src);
1707 	}
1708 	return 0;
1709 
1710 out:
1711 	dev_err(db->dev, "not found (%d).\n", ret);
1712 
1713 	dm9000_release_board(pdev, db);
1714 	free_netdev(ndev);
1715 
1716 	return ret;
1717 }
1718 
1719 static int
1720 dm9000_drv_suspend(struct device *dev)
1721 {
1722 	struct platform_device *pdev = to_platform_device(dev);
1723 	struct net_device *ndev = platform_get_drvdata(pdev);
1724 	struct board_info *db;
1725 
1726 	if (ndev) {
1727 		db = netdev_priv(ndev);
1728 		db->in_suspend = 1;
1729 
1730 		if (!netif_running(ndev))
1731 			return 0;
1732 
1733 		netif_device_detach(ndev);
1734 
1735 		/* only shutdown if not using WoL */
1736 		if (!db->wake_state)
1737 			dm9000_shutdown(ndev);
1738 	}
1739 	return 0;
1740 }
1741 
1742 static int
1743 dm9000_drv_resume(struct device *dev)
1744 {
1745 	struct platform_device *pdev = to_platform_device(dev);
1746 	struct net_device *ndev = platform_get_drvdata(pdev);
1747 	struct board_info *db = netdev_priv(ndev);
1748 
1749 	if (ndev) {
1750 		if (netif_running(ndev)) {
1751 			/* reset if we were not in wake mode to ensure if
1752 			 * the device was powered off it is in a known state */
1753 			if (!db->wake_state) {
1754 				dm9000_init_dm9000(ndev);
1755 				dm9000_unmask_interrupts(db);
1756 			}
1757 
1758 			netif_device_attach(ndev);
1759 		}
1760 
1761 		db->in_suspend = 0;
1762 	}
1763 	return 0;
1764 }
1765 
1766 static const struct dev_pm_ops dm9000_drv_pm_ops = {
1767 	.suspend	= dm9000_drv_suspend,
1768 	.resume		= dm9000_drv_resume,
1769 };
1770 
1771 static int
1772 dm9000_drv_remove(struct platform_device *pdev)
1773 {
1774 	struct net_device *ndev = platform_get_drvdata(pdev);
1775 
1776 	unregister_netdev(ndev);
1777 	dm9000_release_board(pdev, netdev_priv(ndev));
1778 	free_netdev(ndev);		/* free device structure */
1779 
1780 	dev_dbg(&pdev->dev, "released and freed device\n");
1781 	return 0;
1782 }
1783 
1784 #ifdef CONFIG_OF
1785 static const struct of_device_id dm9000_of_matches[] = {
1786 	{ .compatible = "davicom,dm9000", },
1787 	{ /* sentinel */ }
1788 };
1789 MODULE_DEVICE_TABLE(of, dm9000_of_matches);
1790 #endif
1791 
1792 static struct platform_driver dm9000_driver = {
1793 	.driver	= {
1794 		.name    = "dm9000",
1795 		.pm	 = &dm9000_drv_pm_ops,
1796 		.of_match_table = of_match_ptr(dm9000_of_matches),
1797 	},
1798 	.probe   = dm9000_probe,
1799 	.remove  = dm9000_drv_remove,
1800 };
1801 
1802 module_platform_driver(dm9000_driver);
1803 
1804 MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1805 MODULE_DESCRIPTION("Davicom DM9000 network driver");
1806 MODULE_LICENSE("GPL");
1807 MODULE_ALIAS("platform:dm9000");
1808