xref: /linux/drivers/net/ethernet/cisco/enic/vnic_dev.c (revision ae22a94997b8a03dcb3c922857c203246711f9d4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2008-2010 Cisco Systems, Inc.  All rights reserved.
4  * Copyright 2007 Nuova Systems, Inc.  All rights reserved.
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/errno.h>
9 #include <linux/types.h>
10 #include <linux/pci.h>
11 #include <linux/delay.h>
12 #include <linux/if_ether.h>
13 
14 #include "vnic_resource.h"
15 #include "vnic_devcmd.h"
16 #include "vnic_dev.h"
17 #include "vnic_wq.h"
18 #include "vnic_stats.h"
19 #include "enic.h"
20 
21 #define VNIC_MAX_RES_HDR_SIZE \
22 	(sizeof(struct vnic_resource_header) + \
23 	sizeof(struct vnic_resource) * RES_TYPE_MAX)
24 #define VNIC_RES_STRIDE	128
25 
26 void *vnic_dev_priv(struct vnic_dev *vdev)
27 {
28 	return vdev->priv;
29 }
30 
31 static int vnic_dev_discover_res(struct vnic_dev *vdev,
32 	struct vnic_dev_bar *bar, unsigned int num_bars)
33 {
34 	struct vnic_resource_header __iomem *rh;
35 	struct mgmt_barmap_hdr __iomem *mrh;
36 	struct vnic_resource __iomem *r;
37 	u8 type;
38 
39 	if (num_bars == 0)
40 		return -EINVAL;
41 
42 	if (bar->len < VNIC_MAX_RES_HDR_SIZE) {
43 		vdev_err(vdev, "vNIC BAR0 res hdr length error\n");
44 		return -EINVAL;
45 	}
46 
47 	rh  = bar->vaddr;
48 	mrh = bar->vaddr;
49 	if (!rh) {
50 		vdev_err(vdev, "vNIC BAR0 res hdr not mem-mapped\n");
51 		return -EINVAL;
52 	}
53 
54 	/* Check for mgmt vnic in addition to normal vnic */
55 	if ((ioread32(&rh->magic) != VNIC_RES_MAGIC) ||
56 		(ioread32(&rh->version) != VNIC_RES_VERSION)) {
57 		if ((ioread32(&mrh->magic) != MGMTVNIC_MAGIC) ||
58 			(ioread32(&mrh->version) != MGMTVNIC_VERSION)) {
59 			vdev_err(vdev, "vNIC BAR0 res magic/version error exp (%lx/%lx) or (%lx/%lx), curr (%x/%x)\n",
60 				 VNIC_RES_MAGIC, VNIC_RES_VERSION,
61 				 MGMTVNIC_MAGIC, MGMTVNIC_VERSION,
62 				 ioread32(&rh->magic), ioread32(&rh->version));
63 			return -EINVAL;
64 		}
65 	}
66 
67 	if (ioread32(&mrh->magic) == MGMTVNIC_MAGIC)
68 		r = (struct vnic_resource __iomem *)(mrh + 1);
69 	else
70 		r = (struct vnic_resource __iomem *)(rh + 1);
71 
72 
73 	while ((type = ioread8(&r->type)) != RES_TYPE_EOL) {
74 
75 		u8 bar_num = ioread8(&r->bar);
76 		u32 bar_offset = ioread32(&r->bar_offset);
77 		u32 count = ioread32(&r->count);
78 		u32 len;
79 
80 		r++;
81 
82 		if (bar_num >= num_bars)
83 			continue;
84 
85 		if (!bar[bar_num].len || !bar[bar_num].vaddr)
86 			continue;
87 
88 		switch (type) {
89 		case RES_TYPE_WQ:
90 		case RES_TYPE_RQ:
91 		case RES_TYPE_CQ:
92 		case RES_TYPE_INTR_CTRL:
93 			/* each count is stride bytes long */
94 			len = count * VNIC_RES_STRIDE;
95 			if (len + bar_offset > bar[bar_num].len) {
96 				vdev_err(vdev, "vNIC BAR0 resource %d out-of-bounds, offset 0x%x + size 0x%x > bar len 0x%lx\n",
97 					 type, bar_offset, len,
98 					 bar[bar_num].len);
99 				return -EINVAL;
100 			}
101 			break;
102 		case RES_TYPE_INTR_PBA_LEGACY:
103 		case RES_TYPE_DEVCMD:
104 		case RES_TYPE_DEVCMD2:
105 			len = count;
106 			break;
107 		default:
108 			continue;
109 		}
110 
111 		vdev->res[type].count = count;
112 		vdev->res[type].vaddr = (char __iomem *)bar[bar_num].vaddr +
113 			bar_offset;
114 		vdev->res[type].bus_addr = bar[bar_num].bus_addr + bar_offset;
115 	}
116 
117 	return 0;
118 }
119 
120 unsigned int vnic_dev_get_res_count(struct vnic_dev *vdev,
121 	enum vnic_res_type type)
122 {
123 	return vdev->res[type].count;
124 }
125 EXPORT_SYMBOL(vnic_dev_get_res_count);
126 
127 void __iomem *vnic_dev_get_res(struct vnic_dev *vdev, enum vnic_res_type type,
128 	unsigned int index)
129 {
130 	if (!vdev->res[type].vaddr)
131 		return NULL;
132 
133 	switch (type) {
134 	case RES_TYPE_WQ:
135 	case RES_TYPE_RQ:
136 	case RES_TYPE_CQ:
137 	case RES_TYPE_INTR_CTRL:
138 		return (char __iomem *)vdev->res[type].vaddr +
139 			index * VNIC_RES_STRIDE;
140 	default:
141 		return (char __iomem *)vdev->res[type].vaddr;
142 	}
143 }
144 EXPORT_SYMBOL(vnic_dev_get_res);
145 
146 static unsigned int vnic_dev_desc_ring_size(struct vnic_dev_ring *ring,
147 	unsigned int desc_count, unsigned int desc_size)
148 {
149 	/* The base address of the desc rings must be 512 byte aligned.
150 	 * Descriptor count is aligned to groups of 32 descriptors.  A
151 	 * count of 0 means the maximum 4096 descriptors.  Descriptor
152 	 * size is aligned to 16 bytes.
153 	 */
154 
155 	unsigned int count_align = 32;
156 	unsigned int desc_align = 16;
157 
158 	ring->base_align = 512;
159 
160 	if (desc_count == 0)
161 		desc_count = 4096;
162 
163 	ring->desc_count = ALIGN(desc_count, count_align);
164 
165 	ring->desc_size = ALIGN(desc_size, desc_align);
166 
167 	ring->size = ring->desc_count * ring->desc_size;
168 	ring->size_unaligned = ring->size + ring->base_align;
169 
170 	return ring->size_unaligned;
171 }
172 
173 void vnic_dev_clear_desc_ring(struct vnic_dev_ring *ring)
174 {
175 	memset(ring->descs, 0, ring->size);
176 }
177 
178 int vnic_dev_alloc_desc_ring(struct vnic_dev *vdev, struct vnic_dev_ring *ring,
179 	unsigned int desc_count, unsigned int desc_size)
180 {
181 	vnic_dev_desc_ring_size(ring, desc_count, desc_size);
182 
183 	ring->descs_unaligned = dma_alloc_coherent(&vdev->pdev->dev,
184 						   ring->size_unaligned,
185 						   &ring->base_addr_unaligned,
186 						   GFP_KERNEL);
187 
188 	if (!ring->descs_unaligned) {
189 		vdev_err(vdev, "Failed to allocate ring (size=%d), aborting\n",
190 			 (int)ring->size);
191 		return -ENOMEM;
192 	}
193 
194 	ring->base_addr = ALIGN(ring->base_addr_unaligned,
195 		ring->base_align);
196 	ring->descs = (u8 *)ring->descs_unaligned +
197 		(ring->base_addr - ring->base_addr_unaligned);
198 
199 	vnic_dev_clear_desc_ring(ring);
200 
201 	ring->desc_avail = ring->desc_count - 1;
202 
203 	return 0;
204 }
205 
206 void vnic_dev_free_desc_ring(struct vnic_dev *vdev, struct vnic_dev_ring *ring)
207 {
208 	if (ring->descs) {
209 		dma_free_coherent(&vdev->pdev->dev, ring->size_unaligned,
210 				  ring->descs_unaligned,
211 				  ring->base_addr_unaligned);
212 		ring->descs = NULL;
213 	}
214 }
215 
216 static int _vnic_dev_cmd(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd,
217 	int wait)
218 {
219 	struct vnic_devcmd __iomem *devcmd = vdev->devcmd;
220 	unsigned int i;
221 	int delay;
222 	u32 status;
223 	int err;
224 
225 	status = ioread32(&devcmd->status);
226 	if (status == 0xFFFFFFFF) {
227 		/* PCI-e target device is gone */
228 		return -ENODEV;
229 	}
230 	if (status & STAT_BUSY) {
231 		vdev_neterr(vdev, "Busy devcmd %d\n", _CMD_N(cmd));
232 		return -EBUSY;
233 	}
234 
235 	if (_CMD_DIR(cmd) & _CMD_DIR_WRITE) {
236 		for (i = 0; i < VNIC_DEVCMD_NARGS; i++)
237 			writeq(vdev->args[i], &devcmd->args[i]);
238 		wmb();
239 	}
240 
241 	iowrite32(cmd, &devcmd->cmd);
242 
243 	if ((_CMD_FLAGS(cmd) & _CMD_FLAGS_NOWAIT))
244 		return 0;
245 
246 	for (delay = 0; delay < wait; delay++) {
247 
248 		udelay(100);
249 
250 		status = ioread32(&devcmd->status);
251 		if (status == 0xFFFFFFFF) {
252 			/* PCI-e target device is gone */
253 			return -ENODEV;
254 		}
255 
256 		if (!(status & STAT_BUSY)) {
257 
258 			if (status & STAT_ERROR) {
259 				err = (int)readq(&devcmd->args[0]);
260 				if (err == ERR_EINVAL &&
261 				    cmd == CMD_CAPABILITY)
262 					return -err;
263 				if (err != ERR_ECMDUNKNOWN ||
264 				    cmd != CMD_CAPABILITY)
265 					vdev_neterr(vdev, "Error %d devcmd %d\n",
266 						    err, _CMD_N(cmd));
267 				return -err;
268 			}
269 
270 			if (_CMD_DIR(cmd) & _CMD_DIR_READ) {
271 				rmb();
272 				for (i = 0; i < VNIC_DEVCMD_NARGS; i++)
273 					vdev->args[i] = readq(&devcmd->args[i]);
274 			}
275 
276 			return 0;
277 		}
278 	}
279 
280 	vdev_neterr(vdev, "Timedout devcmd %d\n", _CMD_N(cmd));
281 	return -ETIMEDOUT;
282 }
283 
284 static int _vnic_dev_cmd2(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd,
285 			  int wait)
286 {
287 	struct devcmd2_controller *dc2c = vdev->devcmd2;
288 	struct devcmd2_result *result;
289 	u8 color;
290 	unsigned int i;
291 	int delay, err;
292 	u32 fetch_index, new_posted;
293 	u32 posted = dc2c->posted;
294 
295 	fetch_index = ioread32(&dc2c->wq_ctrl->fetch_index);
296 
297 	if (fetch_index == 0xFFFFFFFF)
298 		return -ENODEV;
299 
300 	new_posted = (posted + 1) % DEVCMD2_RING_SIZE;
301 
302 	if (new_posted == fetch_index) {
303 		vdev_neterr(vdev, "devcmd2 %d: wq is full. fetch index: %u, posted index: %u\n",
304 			    _CMD_N(cmd), fetch_index, posted);
305 		return -EBUSY;
306 	}
307 	dc2c->cmd_ring[posted].cmd = cmd;
308 	dc2c->cmd_ring[posted].flags = 0;
309 
310 	if ((_CMD_FLAGS(cmd) & _CMD_FLAGS_NOWAIT))
311 		dc2c->cmd_ring[posted].flags |= DEVCMD2_FNORESULT;
312 	if (_CMD_DIR(cmd) & _CMD_DIR_WRITE)
313 		for (i = 0; i < VNIC_DEVCMD_NARGS; i++)
314 			dc2c->cmd_ring[posted].args[i] = vdev->args[i];
315 
316 	/* Adding write memory barrier prevents compiler and/or CPU reordering,
317 	 * thus avoiding descriptor posting before descriptor is initialized.
318 	 * Otherwise, hardware can read stale descriptor fields.
319 	 */
320 	wmb();
321 	iowrite32(new_posted, &dc2c->wq_ctrl->posted_index);
322 	dc2c->posted = new_posted;
323 
324 	if (dc2c->cmd_ring[posted].flags & DEVCMD2_FNORESULT)
325 		return 0;
326 
327 	result = dc2c->result + dc2c->next_result;
328 	color = dc2c->color;
329 
330 	dc2c->next_result++;
331 	if (dc2c->next_result == dc2c->result_size) {
332 		dc2c->next_result = 0;
333 		dc2c->color = dc2c->color ? 0 : 1;
334 	}
335 
336 	for (delay = 0; delay < wait; delay++) {
337 		if (result->color == color) {
338 			if (result->error) {
339 				err = result->error;
340 				if (err != ERR_ECMDUNKNOWN ||
341 				    cmd != CMD_CAPABILITY)
342 					vdev_neterr(vdev, "Error %d devcmd %d\n",
343 						    err, _CMD_N(cmd));
344 				return -err;
345 			}
346 			if (_CMD_DIR(cmd) & _CMD_DIR_READ)
347 				for (i = 0; i < VNIC_DEVCMD2_NARGS; i++)
348 					vdev->args[i] = result->results[i];
349 
350 			return 0;
351 		}
352 		udelay(100);
353 	}
354 
355 	vdev_neterr(vdev, "devcmd %d timed out\n", _CMD_N(cmd));
356 
357 	return -ETIMEDOUT;
358 }
359 
360 static int vnic_dev_init_devcmd1(struct vnic_dev *vdev)
361 {
362 	vdev->devcmd = vnic_dev_get_res(vdev, RES_TYPE_DEVCMD, 0);
363 	if (!vdev->devcmd)
364 		return -ENODEV;
365 	vdev->devcmd_rtn = _vnic_dev_cmd;
366 
367 	return 0;
368 }
369 
370 static int vnic_dev_init_devcmd2(struct vnic_dev *vdev)
371 {
372 	int err;
373 	unsigned int fetch_index;
374 
375 	if (vdev->devcmd2)
376 		return 0;
377 
378 	vdev->devcmd2 = kzalloc(sizeof(*vdev->devcmd2), GFP_KERNEL);
379 	if (!vdev->devcmd2)
380 		return -ENOMEM;
381 
382 	vdev->devcmd2->color = 1;
383 	vdev->devcmd2->result_size = DEVCMD2_RING_SIZE;
384 	err = enic_wq_devcmd2_alloc(vdev, &vdev->devcmd2->wq, DEVCMD2_RING_SIZE,
385 				    DEVCMD2_DESC_SIZE);
386 	if (err)
387 		goto err_free_devcmd2;
388 
389 	fetch_index = ioread32(&vdev->devcmd2->wq.ctrl->fetch_index);
390 	if (fetch_index == 0xFFFFFFFF) { /* check for hardware gone  */
391 		vdev_err(vdev, "Fatal error in devcmd2 init - hardware surprise removal\n");
392 		err = -ENODEV;
393 		goto err_free_wq;
394 	}
395 
396 	enic_wq_init_start(&vdev->devcmd2->wq, 0, fetch_index, fetch_index, 0,
397 			   0);
398 	vdev->devcmd2->posted = fetch_index;
399 	vnic_wq_enable(&vdev->devcmd2->wq);
400 
401 	err = vnic_dev_alloc_desc_ring(vdev, &vdev->devcmd2->results_ring,
402 				       DEVCMD2_RING_SIZE, DEVCMD2_DESC_SIZE);
403 	if (err)
404 		goto err_disable_wq;
405 
406 	vdev->devcmd2->result = vdev->devcmd2->results_ring.descs;
407 	vdev->devcmd2->cmd_ring = vdev->devcmd2->wq.ring.descs;
408 	vdev->devcmd2->wq_ctrl = vdev->devcmd2->wq.ctrl;
409 	vdev->args[0] = (u64)vdev->devcmd2->results_ring.base_addr |
410 			VNIC_PADDR_TARGET;
411 	vdev->args[1] = DEVCMD2_RING_SIZE;
412 
413 	err = _vnic_dev_cmd2(vdev, CMD_INITIALIZE_DEVCMD2, 1000);
414 	if (err)
415 		goto err_free_desc_ring;
416 
417 	vdev->devcmd_rtn = _vnic_dev_cmd2;
418 
419 	return 0;
420 
421 err_free_desc_ring:
422 	vnic_dev_free_desc_ring(vdev, &vdev->devcmd2->results_ring);
423 err_disable_wq:
424 	vnic_wq_disable(&vdev->devcmd2->wq);
425 err_free_wq:
426 	vnic_wq_free(&vdev->devcmd2->wq);
427 err_free_devcmd2:
428 	kfree(vdev->devcmd2);
429 	vdev->devcmd2 = NULL;
430 
431 	return err;
432 }
433 
434 static void vnic_dev_deinit_devcmd2(struct vnic_dev *vdev)
435 {
436 	vnic_dev_free_desc_ring(vdev, &vdev->devcmd2->results_ring);
437 	vnic_wq_disable(&vdev->devcmd2->wq);
438 	vnic_wq_free(&vdev->devcmd2->wq);
439 	kfree(vdev->devcmd2);
440 }
441 
442 static int vnic_dev_cmd_proxy(struct vnic_dev *vdev,
443 	enum vnic_devcmd_cmd proxy_cmd, enum vnic_devcmd_cmd cmd,
444 	u64 *a0, u64 *a1, int wait)
445 {
446 	u32 status;
447 	int err;
448 
449 	memset(vdev->args, 0, sizeof(vdev->args));
450 
451 	vdev->args[0] = vdev->proxy_index;
452 	vdev->args[1] = cmd;
453 	vdev->args[2] = *a0;
454 	vdev->args[3] = *a1;
455 
456 	err = vdev->devcmd_rtn(vdev, proxy_cmd, wait);
457 	if (err)
458 		return err;
459 
460 	status = (u32)vdev->args[0];
461 	if (status & STAT_ERROR) {
462 		err = (int)vdev->args[1];
463 		if (err != ERR_ECMDUNKNOWN ||
464 		    cmd != CMD_CAPABILITY)
465 			vdev_neterr(vdev, "Error %d proxy devcmd %d\n",
466 				    err, _CMD_N(cmd));
467 		return err;
468 	}
469 
470 	*a0 = vdev->args[1];
471 	*a1 = vdev->args[2];
472 
473 	return 0;
474 }
475 
476 static int vnic_dev_cmd_no_proxy(struct vnic_dev *vdev,
477 	enum vnic_devcmd_cmd cmd, u64 *a0, u64 *a1, int wait)
478 {
479 	int err;
480 
481 	vdev->args[0] = *a0;
482 	vdev->args[1] = *a1;
483 
484 	err = vdev->devcmd_rtn(vdev, cmd, wait);
485 
486 	*a0 = vdev->args[0];
487 	*a1 = vdev->args[1];
488 
489 	return err;
490 }
491 
492 void vnic_dev_cmd_proxy_by_index_start(struct vnic_dev *vdev, u16 index)
493 {
494 	vdev->proxy = PROXY_BY_INDEX;
495 	vdev->proxy_index = index;
496 }
497 
498 void vnic_dev_cmd_proxy_end(struct vnic_dev *vdev)
499 {
500 	vdev->proxy = PROXY_NONE;
501 	vdev->proxy_index = 0;
502 }
503 
504 int vnic_dev_cmd(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd,
505 	u64 *a0, u64 *a1, int wait)
506 {
507 	memset(vdev->args, 0, sizeof(vdev->args));
508 
509 	switch (vdev->proxy) {
510 	case PROXY_BY_INDEX:
511 		return vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_INDEX, cmd,
512 				a0, a1, wait);
513 	case PROXY_BY_BDF:
514 		return vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_BDF, cmd,
515 				a0, a1, wait);
516 	case PROXY_NONE:
517 	default:
518 		return vnic_dev_cmd_no_proxy(vdev, cmd, a0, a1, wait);
519 	}
520 }
521 
522 static int vnic_dev_capable(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd)
523 {
524 	u64 a0 = (u32)cmd, a1 = 0;
525 	int wait = 1000;
526 	int err;
527 
528 	err = vnic_dev_cmd(vdev, CMD_CAPABILITY, &a0, &a1, wait);
529 
530 	return !(err || a0);
531 }
532 
533 int vnic_dev_fw_info(struct vnic_dev *vdev,
534 	struct vnic_devcmd_fw_info **fw_info)
535 {
536 	u64 a0, a1 = 0;
537 	int wait = 1000;
538 	int err = 0;
539 
540 	if (!vdev->fw_info) {
541 		vdev->fw_info = dma_alloc_coherent(&vdev->pdev->dev,
542 						   sizeof(struct vnic_devcmd_fw_info),
543 						   &vdev->fw_info_pa, GFP_ATOMIC);
544 		if (!vdev->fw_info)
545 			return -ENOMEM;
546 
547 		a0 = vdev->fw_info_pa;
548 		a1 = sizeof(struct vnic_devcmd_fw_info);
549 
550 		/* only get fw_info once and cache it */
551 		if (vnic_dev_capable(vdev, CMD_MCPU_FW_INFO))
552 			err = vnic_dev_cmd(vdev, CMD_MCPU_FW_INFO,
553 				&a0, &a1, wait);
554 		else
555 			err = vnic_dev_cmd(vdev, CMD_MCPU_FW_INFO_OLD,
556 				&a0, &a1, wait);
557 	}
558 
559 	*fw_info = vdev->fw_info;
560 
561 	return err;
562 }
563 
564 int vnic_dev_spec(struct vnic_dev *vdev, unsigned int offset, unsigned int size,
565 	void *value)
566 {
567 	u64 a0, a1;
568 	int wait = 1000;
569 	int err;
570 
571 	a0 = offset;
572 	a1 = size;
573 
574 	err = vnic_dev_cmd(vdev, CMD_DEV_SPEC, &a0, &a1, wait);
575 
576 	switch (size) {
577 	case 1: *(u8 *)value = (u8)a0; break;
578 	case 2: *(u16 *)value = (u16)a0; break;
579 	case 4: *(u32 *)value = (u32)a0; break;
580 	case 8: *(u64 *)value = a0; break;
581 	default: BUG(); break;
582 	}
583 
584 	return err;
585 }
586 
587 int vnic_dev_stats_dump(struct vnic_dev *vdev, struct vnic_stats **stats)
588 {
589 	u64 a0, a1;
590 	int wait = 1000;
591 
592 	if (!vdev->stats) {
593 		vdev->stats = dma_alloc_coherent(&vdev->pdev->dev,
594 						 sizeof(struct vnic_stats),
595 						 &vdev->stats_pa, GFP_ATOMIC);
596 		if (!vdev->stats)
597 			return -ENOMEM;
598 	}
599 
600 	*stats = vdev->stats;
601 	a0 = vdev->stats_pa;
602 	a1 = sizeof(struct vnic_stats);
603 
604 	return vnic_dev_cmd(vdev, CMD_STATS_DUMP, &a0, &a1, wait);
605 }
606 
607 int vnic_dev_close(struct vnic_dev *vdev)
608 {
609 	u64 a0 = 0, a1 = 0;
610 	int wait = 1000;
611 	return vnic_dev_cmd(vdev, CMD_CLOSE, &a0, &a1, wait);
612 }
613 
614 int vnic_dev_enable_wait(struct vnic_dev *vdev)
615 {
616 	u64 a0 = 0, a1 = 0;
617 	int wait = 1000;
618 
619 	if (vnic_dev_capable(vdev, CMD_ENABLE_WAIT))
620 		return vnic_dev_cmd(vdev, CMD_ENABLE_WAIT, &a0, &a1, wait);
621 	else
622 		return vnic_dev_cmd(vdev, CMD_ENABLE, &a0, &a1, wait);
623 }
624 
625 int vnic_dev_disable(struct vnic_dev *vdev)
626 {
627 	u64 a0 = 0, a1 = 0;
628 	int wait = 1000;
629 	return vnic_dev_cmd(vdev, CMD_DISABLE, &a0, &a1, wait);
630 }
631 
632 int vnic_dev_open(struct vnic_dev *vdev, int arg)
633 {
634 	u64 a0 = (u32)arg, a1 = 0;
635 	int wait = 1000;
636 	return vnic_dev_cmd(vdev, CMD_OPEN, &a0, &a1, wait);
637 }
638 
639 int vnic_dev_open_done(struct vnic_dev *vdev, int *done)
640 {
641 	u64 a0 = 0, a1 = 0;
642 	int wait = 1000;
643 	int err;
644 
645 	*done = 0;
646 
647 	err = vnic_dev_cmd(vdev, CMD_OPEN_STATUS, &a0, &a1, wait);
648 	if (err)
649 		return err;
650 
651 	*done = (a0 == 0);
652 
653 	return 0;
654 }
655 
656 int vnic_dev_soft_reset(struct vnic_dev *vdev, int arg)
657 {
658 	u64 a0 = (u32)arg, a1 = 0;
659 	int wait = 1000;
660 	return vnic_dev_cmd(vdev, CMD_SOFT_RESET, &a0, &a1, wait);
661 }
662 
663 int vnic_dev_soft_reset_done(struct vnic_dev *vdev, int *done)
664 {
665 	u64 a0 = 0, a1 = 0;
666 	int wait = 1000;
667 	int err;
668 
669 	*done = 0;
670 
671 	err = vnic_dev_cmd(vdev, CMD_SOFT_RESET_STATUS, &a0, &a1, wait);
672 	if (err)
673 		return err;
674 
675 	*done = (a0 == 0);
676 
677 	return 0;
678 }
679 
680 int vnic_dev_hang_reset(struct vnic_dev *vdev, int arg)
681 {
682 	u64 a0 = (u32)arg, a1 = 0;
683 	int wait = 1000;
684 	int err;
685 
686 	if (vnic_dev_capable(vdev, CMD_HANG_RESET)) {
687 		return vnic_dev_cmd(vdev, CMD_HANG_RESET,
688 				&a0, &a1, wait);
689 	} else {
690 		err = vnic_dev_soft_reset(vdev, arg);
691 		if (err)
692 			return err;
693 		return vnic_dev_init(vdev, 0);
694 	}
695 }
696 
697 int vnic_dev_hang_reset_done(struct vnic_dev *vdev, int *done)
698 {
699 	u64 a0 = 0, a1 = 0;
700 	int wait = 1000;
701 	int err;
702 
703 	*done = 0;
704 
705 	if (vnic_dev_capable(vdev, CMD_HANG_RESET_STATUS)) {
706 		err = vnic_dev_cmd(vdev, CMD_HANG_RESET_STATUS,
707 				&a0, &a1, wait);
708 		if (err)
709 			return err;
710 	} else {
711 		return vnic_dev_soft_reset_done(vdev, done);
712 	}
713 
714 	*done = (a0 == 0);
715 
716 	return 0;
717 }
718 
719 int vnic_dev_hang_notify(struct vnic_dev *vdev)
720 {
721 	u64 a0, a1;
722 	int wait = 1000;
723 	return vnic_dev_cmd(vdev, CMD_HANG_NOTIFY, &a0, &a1, wait);
724 }
725 
726 int vnic_dev_get_mac_addr(struct vnic_dev *vdev, u8 *mac_addr)
727 {
728 	u64 a0, a1;
729 	int wait = 1000;
730 	int err, i;
731 
732 	for (i = 0; i < ETH_ALEN; i++)
733 		mac_addr[i] = 0;
734 
735 	err = vnic_dev_cmd(vdev, CMD_GET_MAC_ADDR, &a0, &a1, wait);
736 	if (err)
737 		return err;
738 
739 	for (i = 0; i < ETH_ALEN; i++)
740 		mac_addr[i] = ((u8 *)&a0)[i];
741 
742 	return 0;
743 }
744 
745 int vnic_dev_packet_filter(struct vnic_dev *vdev, int directed, int multicast,
746 	int broadcast, int promisc, int allmulti)
747 {
748 	u64 a0, a1 = 0;
749 	int wait = 1000;
750 	int err;
751 
752 	a0 = (directed ? CMD_PFILTER_DIRECTED : 0) |
753 	     (multicast ? CMD_PFILTER_MULTICAST : 0) |
754 	     (broadcast ? CMD_PFILTER_BROADCAST : 0) |
755 	     (promisc ? CMD_PFILTER_PROMISCUOUS : 0) |
756 	     (allmulti ? CMD_PFILTER_ALL_MULTICAST : 0);
757 
758 	err = vnic_dev_cmd(vdev, CMD_PACKET_FILTER, &a0, &a1, wait);
759 	if (err)
760 		vdev_neterr(vdev, "Can't set packet filter\n");
761 
762 	return err;
763 }
764 
765 int vnic_dev_add_addr(struct vnic_dev *vdev, const u8 *addr)
766 {
767 	u64 a0 = 0, a1 = 0;
768 	int wait = 1000;
769 	int err;
770 	int i;
771 
772 	for (i = 0; i < ETH_ALEN; i++)
773 		((u8 *)&a0)[i] = addr[i];
774 
775 	err = vnic_dev_cmd(vdev, CMD_ADDR_ADD, &a0, &a1, wait);
776 	if (err)
777 		vdev_neterr(vdev, "Can't add addr [%pM], %d\n", addr, err);
778 
779 	return err;
780 }
781 
782 int vnic_dev_del_addr(struct vnic_dev *vdev, const u8 *addr)
783 {
784 	u64 a0 = 0, a1 = 0;
785 	int wait = 1000;
786 	int err;
787 	int i;
788 
789 	for (i = 0; i < ETH_ALEN; i++)
790 		((u8 *)&a0)[i] = addr[i];
791 
792 	err = vnic_dev_cmd(vdev, CMD_ADDR_DEL, &a0, &a1, wait);
793 	if (err)
794 		vdev_neterr(vdev, "Can't del addr [%pM], %d\n", addr, err);
795 
796 	return err;
797 }
798 
799 int vnic_dev_set_ig_vlan_rewrite_mode(struct vnic_dev *vdev,
800 	u8 ig_vlan_rewrite_mode)
801 {
802 	u64 a0 = ig_vlan_rewrite_mode, a1 = 0;
803 	int wait = 1000;
804 
805 	if (vnic_dev_capable(vdev, CMD_IG_VLAN_REWRITE_MODE))
806 		return vnic_dev_cmd(vdev, CMD_IG_VLAN_REWRITE_MODE,
807 				&a0, &a1, wait);
808 	else
809 		return 0;
810 }
811 
812 static int vnic_dev_notify_setcmd(struct vnic_dev *vdev,
813 	void *notify_addr, dma_addr_t notify_pa, u16 intr)
814 {
815 	u64 a0, a1;
816 	int wait = 1000;
817 	int r;
818 
819 	memset(notify_addr, 0, sizeof(struct vnic_devcmd_notify));
820 	vdev->notify = notify_addr;
821 	vdev->notify_pa = notify_pa;
822 
823 	a0 = (u64)notify_pa;
824 	a1 = ((u64)intr << 32) & 0x0000ffff00000000ULL;
825 	a1 += sizeof(struct vnic_devcmd_notify);
826 
827 	r = vnic_dev_cmd(vdev, CMD_NOTIFY, &a0, &a1, wait);
828 	vdev->notify_sz = (r == 0) ? (u32)a1 : 0;
829 	return r;
830 }
831 
832 int vnic_dev_notify_set(struct vnic_dev *vdev, u16 intr)
833 {
834 	void *notify_addr;
835 	dma_addr_t notify_pa;
836 
837 	if (vdev->notify || vdev->notify_pa) {
838 		vdev_neterr(vdev, "notify block %p still allocated\n",
839 			    vdev->notify);
840 		return -EINVAL;
841 	}
842 
843 	notify_addr = dma_alloc_coherent(&vdev->pdev->dev,
844 					 sizeof(struct vnic_devcmd_notify),
845 					 &notify_pa, GFP_ATOMIC);
846 	if (!notify_addr)
847 		return -ENOMEM;
848 
849 	return vnic_dev_notify_setcmd(vdev, notify_addr, notify_pa, intr);
850 }
851 
852 static int vnic_dev_notify_unsetcmd(struct vnic_dev *vdev)
853 {
854 	u64 a0, a1;
855 	int wait = 1000;
856 	int err;
857 
858 	a0 = 0;  /* paddr = 0 to unset notify buffer */
859 	a1 = 0x0000ffff00000000ULL; /* intr num = -1 to unreg for intr */
860 	a1 += sizeof(struct vnic_devcmd_notify);
861 
862 	err = vnic_dev_cmd(vdev, CMD_NOTIFY, &a0, &a1, wait);
863 	vdev->notify = NULL;
864 	vdev->notify_pa = 0;
865 	vdev->notify_sz = 0;
866 
867 	return err;
868 }
869 
870 int vnic_dev_notify_unset(struct vnic_dev *vdev)
871 {
872 	if (vdev->notify) {
873 		dma_free_coherent(&vdev->pdev->dev,
874 				  sizeof(struct vnic_devcmd_notify),
875 				  vdev->notify, vdev->notify_pa);
876 	}
877 
878 	return vnic_dev_notify_unsetcmd(vdev);
879 }
880 
881 static int vnic_dev_notify_ready(struct vnic_dev *vdev)
882 {
883 	u32 *words;
884 	unsigned int nwords = vdev->notify_sz / 4;
885 	unsigned int i;
886 	u32 csum;
887 
888 	if (!vdev->notify || !vdev->notify_sz)
889 		return 0;
890 
891 	do {
892 		csum = 0;
893 		memcpy(&vdev->notify_copy, vdev->notify, vdev->notify_sz);
894 		words = (u32 *)&vdev->notify_copy;
895 		for (i = 1; i < nwords; i++)
896 			csum += words[i];
897 	} while (csum != words[0]);
898 
899 	return 1;
900 }
901 
902 int vnic_dev_init(struct vnic_dev *vdev, int arg)
903 {
904 	u64 a0 = (u32)arg, a1 = 0;
905 	int wait = 1000;
906 	int r = 0;
907 
908 	if (vnic_dev_capable(vdev, CMD_INIT))
909 		r = vnic_dev_cmd(vdev, CMD_INIT, &a0, &a1, wait);
910 	else {
911 		vnic_dev_cmd(vdev, CMD_INIT_v1, &a0, &a1, wait);
912 		if (a0 & CMD_INITF_DEFAULT_MAC) {
913 			/* Emulate these for old CMD_INIT_v1 which
914 			 * didn't pass a0 so no CMD_INITF_*.
915 			 */
916 			vnic_dev_cmd(vdev, CMD_GET_MAC_ADDR, &a0, &a1, wait);
917 			vnic_dev_cmd(vdev, CMD_ADDR_ADD, &a0, &a1, wait);
918 		}
919 	}
920 	return r;
921 }
922 
923 int vnic_dev_deinit(struct vnic_dev *vdev)
924 {
925 	u64 a0 = 0, a1 = 0;
926 	int wait = 1000;
927 
928 	return vnic_dev_cmd(vdev, CMD_DEINIT, &a0, &a1, wait);
929 }
930 
931 void vnic_dev_intr_coal_timer_info_default(struct vnic_dev *vdev)
932 {
933 	/* Default: hardware intr coal timer is in units of 1.5 usecs */
934 	vdev->intr_coal_timer_info.mul = 2;
935 	vdev->intr_coal_timer_info.div = 3;
936 	vdev->intr_coal_timer_info.max_usec =
937 		vnic_dev_intr_coal_timer_hw_to_usec(vdev, 0xffff);
938 }
939 
940 int vnic_dev_intr_coal_timer_info(struct vnic_dev *vdev)
941 {
942 	int wait = 1000;
943 	int err;
944 
945 	memset(vdev->args, 0, sizeof(vdev->args));
946 
947 	if (vnic_dev_capable(vdev, CMD_INTR_COAL_CONVERT))
948 		err = vdev->devcmd_rtn(vdev, CMD_INTR_COAL_CONVERT, wait);
949 	else
950 		err = ERR_ECMDUNKNOWN;
951 
952 	/* Use defaults when firmware doesn't support the devcmd at all or
953 	 * supports it for only specific hardware
954 	 */
955 	if ((err == ERR_ECMDUNKNOWN) ||
956 		(!err && !(vdev->args[0] && vdev->args[1] && vdev->args[2]))) {
957 		vdev_netwarn(vdev, "Using default conversion factor for interrupt coalesce timer\n");
958 		vnic_dev_intr_coal_timer_info_default(vdev);
959 		return 0;
960 	}
961 
962 	if (!err) {
963 		vdev->intr_coal_timer_info.mul = (u32) vdev->args[0];
964 		vdev->intr_coal_timer_info.div = (u32) vdev->args[1];
965 		vdev->intr_coal_timer_info.max_usec = (u32) vdev->args[2];
966 	}
967 
968 	return err;
969 }
970 
971 int vnic_dev_link_status(struct vnic_dev *vdev)
972 {
973 	if (!vnic_dev_notify_ready(vdev))
974 		return 0;
975 
976 	return vdev->notify_copy.link_state;
977 }
978 
979 u32 vnic_dev_port_speed(struct vnic_dev *vdev)
980 {
981 	if (!vnic_dev_notify_ready(vdev))
982 		return 0;
983 
984 	return vdev->notify_copy.port_speed;
985 }
986 
987 u32 vnic_dev_msg_lvl(struct vnic_dev *vdev)
988 {
989 	if (!vnic_dev_notify_ready(vdev))
990 		return 0;
991 
992 	return vdev->notify_copy.msglvl;
993 }
994 
995 u32 vnic_dev_mtu(struct vnic_dev *vdev)
996 {
997 	if (!vnic_dev_notify_ready(vdev))
998 		return 0;
999 
1000 	return vdev->notify_copy.mtu;
1001 }
1002 
1003 void vnic_dev_set_intr_mode(struct vnic_dev *vdev,
1004 	enum vnic_dev_intr_mode intr_mode)
1005 {
1006 	vdev->intr_mode = intr_mode;
1007 }
1008 
1009 enum vnic_dev_intr_mode vnic_dev_get_intr_mode(
1010 	struct vnic_dev *vdev)
1011 {
1012 	return vdev->intr_mode;
1013 }
1014 
1015 u32 vnic_dev_intr_coal_timer_usec_to_hw(struct vnic_dev *vdev, u32 usec)
1016 {
1017 	return (usec * vdev->intr_coal_timer_info.mul) /
1018 		vdev->intr_coal_timer_info.div;
1019 }
1020 
1021 u32 vnic_dev_intr_coal_timer_hw_to_usec(struct vnic_dev *vdev, u32 hw_cycles)
1022 {
1023 	return (hw_cycles * vdev->intr_coal_timer_info.div) /
1024 		vdev->intr_coal_timer_info.mul;
1025 }
1026 
1027 u32 vnic_dev_get_intr_coal_timer_max(struct vnic_dev *vdev)
1028 {
1029 	return vdev->intr_coal_timer_info.max_usec;
1030 }
1031 
1032 void vnic_dev_unregister(struct vnic_dev *vdev)
1033 {
1034 	if (vdev) {
1035 		if (vdev->notify)
1036 			dma_free_coherent(&vdev->pdev->dev,
1037 					  sizeof(struct vnic_devcmd_notify),
1038 					  vdev->notify, vdev->notify_pa);
1039 		if (vdev->stats)
1040 			dma_free_coherent(&vdev->pdev->dev,
1041 					  sizeof(struct vnic_stats),
1042 					  vdev->stats, vdev->stats_pa);
1043 		if (vdev->fw_info)
1044 			dma_free_coherent(&vdev->pdev->dev,
1045 					  sizeof(struct vnic_devcmd_fw_info),
1046 					  vdev->fw_info, vdev->fw_info_pa);
1047 		if (vdev->devcmd2)
1048 			vnic_dev_deinit_devcmd2(vdev);
1049 
1050 		kfree(vdev);
1051 	}
1052 }
1053 EXPORT_SYMBOL(vnic_dev_unregister);
1054 
1055 struct vnic_dev *vnic_dev_register(struct vnic_dev *vdev,
1056 	void *priv, struct pci_dev *pdev, struct vnic_dev_bar *bar,
1057 	unsigned int num_bars)
1058 {
1059 	if (!vdev) {
1060 		vdev = kzalloc(sizeof(struct vnic_dev), GFP_KERNEL);
1061 		if (!vdev)
1062 			return NULL;
1063 	}
1064 
1065 	vdev->priv = priv;
1066 	vdev->pdev = pdev;
1067 
1068 	if (vnic_dev_discover_res(vdev, bar, num_bars))
1069 		goto err_out;
1070 
1071 	return vdev;
1072 
1073 err_out:
1074 	vnic_dev_unregister(vdev);
1075 	return NULL;
1076 }
1077 EXPORT_SYMBOL(vnic_dev_register);
1078 
1079 struct pci_dev *vnic_dev_get_pdev(struct vnic_dev *vdev)
1080 {
1081 	return vdev->pdev;
1082 }
1083 EXPORT_SYMBOL(vnic_dev_get_pdev);
1084 
1085 int vnic_devcmd_init(struct vnic_dev *vdev)
1086 {
1087 	void __iomem *res;
1088 	int err;
1089 
1090 	res = vnic_dev_get_res(vdev, RES_TYPE_DEVCMD2, 0);
1091 	if (res) {
1092 		err = vnic_dev_init_devcmd2(vdev);
1093 		if (err)
1094 			vdev_warn(vdev, "DEVCMD2 init failed: %d, Using DEVCMD1\n",
1095 				  err);
1096 		else
1097 			return 0;
1098 	} else {
1099 		vdev_warn(vdev, "DEVCMD2 resource not found (old firmware?) Using DEVCMD1\n");
1100 	}
1101 	err = vnic_dev_init_devcmd1(vdev);
1102 	if (err)
1103 		vdev_err(vdev, "DEVCMD1 initialization failed: %d\n", err);
1104 
1105 	return err;
1106 }
1107 
1108 int vnic_dev_init_prov2(struct vnic_dev *vdev, u8 *buf, u32 len)
1109 {
1110 	u64 a0, a1 = len;
1111 	int wait = 1000;
1112 	dma_addr_t prov_pa;
1113 	void *prov_buf;
1114 	int ret;
1115 
1116 	prov_buf = dma_alloc_coherent(&vdev->pdev->dev, len, &prov_pa, GFP_ATOMIC);
1117 	if (!prov_buf)
1118 		return -ENOMEM;
1119 
1120 	memcpy(prov_buf, buf, len);
1121 
1122 	a0 = prov_pa;
1123 
1124 	ret = vnic_dev_cmd(vdev, CMD_INIT_PROV_INFO2, &a0, &a1, wait);
1125 
1126 	dma_free_coherent(&vdev->pdev->dev, len, prov_buf, prov_pa);
1127 
1128 	return ret;
1129 }
1130 
1131 int vnic_dev_enable2(struct vnic_dev *vdev, int active)
1132 {
1133 	u64 a0, a1 = 0;
1134 	int wait = 1000;
1135 
1136 	a0 = (active ? CMD_ENABLE2_ACTIVE : 0);
1137 
1138 	return vnic_dev_cmd(vdev, CMD_ENABLE2, &a0, &a1, wait);
1139 }
1140 
1141 static int vnic_dev_cmd_status(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd,
1142 	int *status)
1143 {
1144 	u64 a0 = cmd, a1 = 0;
1145 	int wait = 1000;
1146 	int ret;
1147 
1148 	ret = vnic_dev_cmd(vdev, CMD_STATUS, &a0, &a1, wait);
1149 	if (!ret)
1150 		*status = (int)a0;
1151 
1152 	return ret;
1153 }
1154 
1155 int vnic_dev_enable2_done(struct vnic_dev *vdev, int *status)
1156 {
1157 	return vnic_dev_cmd_status(vdev, CMD_ENABLE2, status);
1158 }
1159 
1160 int vnic_dev_deinit_done(struct vnic_dev *vdev, int *status)
1161 {
1162 	return vnic_dev_cmd_status(vdev, CMD_DEINIT, status);
1163 }
1164 
1165 int vnic_dev_set_mac_addr(struct vnic_dev *vdev, u8 *mac_addr)
1166 {
1167 	u64 a0, a1;
1168 	int wait = 1000;
1169 	int i;
1170 
1171 	for (i = 0; i < ETH_ALEN; i++)
1172 		((u8 *)&a0)[i] = mac_addr[i];
1173 
1174 	return vnic_dev_cmd(vdev, CMD_SET_MAC_ADDR, &a0, &a1, wait);
1175 }
1176 
1177 /* vnic_dev_classifier: Add/Delete classifier entries
1178  * @vdev: vdev of the device
1179  * @cmd: CLSF_ADD for Add filter
1180  *	 CLSF_DEL for Delete filter
1181  * @entry: In case of ADD filter, the caller passes the RQ number in this
1182  *	   variable.
1183  *
1184  *	   This function stores the filter_id returned by the firmware in the
1185  *	   same variable before return;
1186  *
1187  *	   In case of DEL filter, the caller passes the RQ number. Return
1188  *	   value is irrelevant.
1189  * @data: filter data
1190  */
1191 int vnic_dev_classifier(struct vnic_dev *vdev, u8 cmd, u16 *entry,
1192 			struct filter *data)
1193 {
1194 	u64 a0, a1;
1195 	int wait = 1000;
1196 	dma_addr_t tlv_pa;
1197 	int ret = -EINVAL;
1198 	struct filter_tlv *tlv, *tlv_va;
1199 	struct filter_action *action;
1200 	u64 tlv_size;
1201 
1202 	if (cmd == CLSF_ADD) {
1203 		tlv_size = sizeof(struct filter) +
1204 			   sizeof(struct filter_action) +
1205 			   2 * sizeof(struct filter_tlv);
1206 		tlv_va = dma_alloc_coherent(&vdev->pdev->dev, tlv_size,
1207 					    &tlv_pa, GFP_ATOMIC);
1208 		if (!tlv_va)
1209 			return -ENOMEM;
1210 		tlv = tlv_va;
1211 		a0 = tlv_pa;
1212 		a1 = tlv_size;
1213 		memset(tlv, 0, tlv_size);
1214 		tlv->type = CLSF_TLV_FILTER;
1215 		tlv->length = sizeof(struct filter);
1216 		*(struct filter *)&tlv->val = *data;
1217 
1218 		tlv = (struct filter_tlv *)((char *)tlv +
1219 					    sizeof(struct filter_tlv) +
1220 					    sizeof(struct filter));
1221 
1222 		tlv->type = CLSF_TLV_ACTION;
1223 		tlv->length = sizeof(struct filter_action);
1224 		action = (struct filter_action *)&tlv->val;
1225 		action->type = FILTER_ACTION_RQ_STEERING;
1226 		action->u.rq_idx = *entry;
1227 
1228 		ret = vnic_dev_cmd(vdev, CMD_ADD_FILTER, &a0, &a1, wait);
1229 		*entry = (u16)a0;
1230 		dma_free_coherent(&vdev->pdev->dev, tlv_size, tlv_va, tlv_pa);
1231 	} else if (cmd == CLSF_DEL) {
1232 		a0 = *entry;
1233 		ret = vnic_dev_cmd(vdev, CMD_DEL_FILTER, &a0, &a1, wait);
1234 	}
1235 
1236 	return ret;
1237 }
1238 
1239 int vnic_dev_overlay_offload_ctrl(struct vnic_dev *vdev, u8 overlay, u8 config)
1240 {
1241 	u64 a0 = overlay;
1242 	u64 a1 = config;
1243 	int wait = 1000;
1244 
1245 	return vnic_dev_cmd(vdev, CMD_OVERLAY_OFFLOAD_CTRL, &a0, &a1, wait);
1246 }
1247 
1248 int vnic_dev_overlay_offload_cfg(struct vnic_dev *vdev, u8 overlay,
1249 				 u16 vxlan_udp_port_number)
1250 {
1251 	u64 a1 = vxlan_udp_port_number;
1252 	u64 a0 = overlay;
1253 	int wait = 1000;
1254 
1255 	return vnic_dev_cmd(vdev, CMD_OVERLAY_OFFLOAD_CFG, &a0, &a1, wait);
1256 }
1257 
1258 int vnic_dev_get_supported_feature_ver(struct vnic_dev *vdev, u8 feature,
1259 				       u64 *supported_versions, u64 *a1)
1260 {
1261 	u64 a0 = feature;
1262 	int wait = 1000;
1263 	int ret;
1264 
1265 	ret = vnic_dev_cmd(vdev, CMD_GET_SUPP_FEATURE_VER, &a0, a1, wait);
1266 	if (!ret)
1267 		*supported_versions = a0;
1268 
1269 	return ret;
1270 }
1271 
1272 int vnic_dev_capable_rss_hash_type(struct vnic_dev *vdev, u8 *rss_hash_type)
1273 {
1274 	u64 a0 = CMD_NIC_CFG, a1 = 0;
1275 	int wait = 1000;
1276 	int err;
1277 
1278 	err = vnic_dev_cmd(vdev, CMD_CAPABILITY, &a0, &a1, wait);
1279 	/* rss_hash_type is valid only when a0 is 1. Adapter which does not
1280 	 * support CMD_CAPABILITY for rss_hash_type has a0 = 0
1281 	 */
1282 	if (err || (a0 != 1))
1283 		return -EOPNOTSUPP;
1284 
1285 	a1 = (a1 >> NIC_CFG_RSS_HASH_TYPE_SHIFT) &
1286 	     NIC_CFG_RSS_HASH_TYPE_MASK_FIELD;
1287 
1288 	*rss_hash_type = (u8)a1;
1289 
1290 	return 0;
1291 }
1292