xref: /linux/drivers/net/ethernet/chelsio/inline_crypto/chtls/chtls_hw.c (revision c8bfe3fad4f86a029da7157bae9699c816f0c309)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2018 Chelsio Communications, Inc.
4  *
5  * Written by: Atul Gupta (atul.gupta@chelsio.com)
6  */
7 
8 #include <linux/module.h>
9 #include <linux/list.h>
10 #include <linux/workqueue.h>
11 #include <linux/skbuff.h>
12 #include <linux/timer.h>
13 #include <linux/notifier.h>
14 #include <linux/inetdevice.h>
15 #include <linux/ip.h>
16 #include <linux/tcp.h>
17 #include <linux/tls.h>
18 #include <net/tls.h>
19 
20 #include "chtls.h"
21 #include "chtls_cm.h"
22 
23 static void __set_tcb_field_direct(struct chtls_sock *csk,
24 				   struct cpl_set_tcb_field *req, u16 word,
25 				   u64 mask, u64 val, u8 cookie, int no_reply)
26 {
27 	struct ulptx_idata *sc;
28 
29 	INIT_TP_WR_CPL(req, CPL_SET_TCB_FIELD, csk->tid);
30 	req->wr.wr_mid |= htonl(FW_WR_FLOWID_V(csk->tid));
31 	req->reply_ctrl = htons(NO_REPLY_V(no_reply) |
32 				QUEUENO_V(csk->rss_qid));
33 	req->word_cookie = htons(TCB_WORD_V(word) | TCB_COOKIE_V(cookie));
34 	req->mask = cpu_to_be64(mask);
35 	req->val = cpu_to_be64(val);
36 	sc = (struct ulptx_idata *)(req + 1);
37 	sc->cmd_more = htonl(ULPTX_CMD_V(ULP_TX_SC_NOOP));
38 	sc->len = htonl(0);
39 }
40 
41 static void __set_tcb_field(struct sock *sk, struct sk_buff *skb, u16 word,
42 			    u64 mask, u64 val, u8 cookie, int no_reply)
43 {
44 	struct cpl_set_tcb_field *req;
45 	struct chtls_sock *csk;
46 	struct ulptx_idata *sc;
47 	unsigned int wrlen;
48 
49 	wrlen = roundup(sizeof(*req) + sizeof(*sc), 16);
50 	csk = rcu_dereference_sk_user_data(sk);
51 
52 	req = (struct cpl_set_tcb_field *)__skb_put(skb, wrlen);
53 	__set_tcb_field_direct(csk, req, word, mask, val, cookie, no_reply);
54 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, csk->port_id);
55 }
56 
57 /*
58  * Send control message to HW, message go as immediate data and packet
59  * is freed immediately.
60  */
61 static int chtls_set_tcb_field(struct sock *sk, u16 word, u64 mask, u64 val)
62 {
63 	struct cpl_set_tcb_field *req;
64 	unsigned int credits_needed;
65 	struct chtls_sock *csk;
66 	struct ulptx_idata *sc;
67 	struct sk_buff *skb;
68 	unsigned int wrlen;
69 	int ret;
70 
71 	wrlen = roundup(sizeof(*req) + sizeof(*sc), 16);
72 
73 	skb = alloc_skb(wrlen, GFP_ATOMIC);
74 	if (!skb)
75 		return -ENOMEM;
76 
77 	credits_needed = DIV_ROUND_UP(wrlen, 16);
78 	csk = rcu_dereference_sk_user_data(sk);
79 
80 	__set_tcb_field(sk, skb, word, mask, val, 0, 1);
81 	skb_set_queue_mapping(skb, (csk->txq_idx << 1) | CPL_PRIORITY_DATA);
82 	csk->wr_credits -= credits_needed;
83 	csk->wr_unacked += credits_needed;
84 	enqueue_wr(csk, skb);
85 	ret = cxgb4_ofld_send(csk->egress_dev, skb);
86 	if (ret < 0)
87 		kfree_skb(skb);
88 	return ret < 0 ? ret : 0;
89 }
90 
91 void chtls_set_tcb_field_rpl_skb(struct sock *sk, u16 word,
92 				 u64 mask, u64 val, u8 cookie,
93 				 int through_l2t)
94 {
95 	struct sk_buff *skb;
96 	unsigned int wrlen;
97 
98 	wrlen = sizeof(struct cpl_set_tcb_field) + sizeof(struct ulptx_idata);
99 	wrlen = roundup(wrlen, 16);
100 
101 	skb = alloc_skb(wrlen, GFP_KERNEL | __GFP_NOFAIL);
102 	if (!skb)
103 		return;
104 
105 	__set_tcb_field(sk, skb, word, mask, val, cookie, 0);
106 	send_or_defer(sk, tcp_sk(sk), skb, through_l2t);
107 }
108 
109 /*
110  * Set one of the t_flags bits in the TCB.
111  */
112 int chtls_set_tcb_tflag(struct sock *sk, unsigned int bit_pos, int val)
113 {
114 	return chtls_set_tcb_field(sk, 1, 1ULL << bit_pos,
115 				   (u64)val << bit_pos);
116 }
117 
118 static int chtls_set_tcb_keyid(struct sock *sk, int keyid)
119 {
120 	return chtls_set_tcb_field(sk, 31, 0xFFFFFFFFULL, keyid);
121 }
122 
123 static int chtls_set_tcb_seqno(struct sock *sk)
124 {
125 	return chtls_set_tcb_field(sk, 28, ~0ULL, 0);
126 }
127 
128 static int chtls_set_tcb_quiesce(struct sock *sk, int val)
129 {
130 	return chtls_set_tcb_field(sk, 1, (1ULL << TF_RX_QUIESCE_S),
131 				   TF_RX_QUIESCE_V(val));
132 }
133 
134 void chtls_set_quiesce_ctrl(struct sock *sk, int val)
135 {
136 	struct chtls_sock *csk;
137 	struct sk_buff *skb;
138 	unsigned int wrlen;
139 	int ret;
140 
141 	wrlen = sizeof(struct cpl_set_tcb_field) + sizeof(struct ulptx_idata);
142 	wrlen = roundup(wrlen, 16);
143 
144 	skb = alloc_skb(wrlen, GFP_ATOMIC);
145 	if (!skb)
146 		return;
147 
148 	csk = rcu_dereference_sk_user_data(sk);
149 
150 	__set_tcb_field(sk, skb, 1, TF_RX_QUIESCE_V(1), 0, 0, 1);
151 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, csk->port_id);
152 	ret = cxgb4_ofld_send(csk->egress_dev, skb);
153 	if (ret < 0)
154 		kfree_skb(skb);
155 }
156 
157 /* TLS Key bitmap processing */
158 int chtls_init_kmap(struct chtls_dev *cdev, struct cxgb4_lld_info *lldi)
159 {
160 	unsigned int num_key_ctx, bsize;
161 	int ksize;
162 
163 	num_key_ctx = (lldi->vr->key.size / TLS_KEY_CONTEXT_SZ);
164 	bsize = BITS_TO_LONGS(num_key_ctx);
165 
166 	cdev->kmap.size = num_key_ctx;
167 	cdev->kmap.available = bsize;
168 	ksize = sizeof(*cdev->kmap.addr) * bsize;
169 	cdev->kmap.addr = kvzalloc(ksize, GFP_KERNEL);
170 	if (!cdev->kmap.addr)
171 		return -ENOMEM;
172 
173 	cdev->kmap.start = lldi->vr->key.start;
174 	spin_lock_init(&cdev->kmap.lock);
175 	return 0;
176 }
177 
178 static int get_new_keyid(struct chtls_sock *csk, u32 optname)
179 {
180 	struct net_device *dev = csk->egress_dev;
181 	struct chtls_dev *cdev = csk->cdev;
182 	struct chtls_hws *hws;
183 	struct adapter *adap;
184 	int keyid;
185 
186 	adap = netdev2adap(dev);
187 	hws = &csk->tlshws;
188 
189 	spin_lock_bh(&cdev->kmap.lock);
190 	keyid = find_first_zero_bit(cdev->kmap.addr, cdev->kmap.size);
191 	if (keyid < cdev->kmap.size) {
192 		__set_bit(keyid, cdev->kmap.addr);
193 		if (optname == TLS_RX)
194 			hws->rxkey = keyid;
195 		else
196 			hws->txkey = keyid;
197 		atomic_inc(&adap->chcr_stats.tls_key);
198 	} else {
199 		keyid = -1;
200 	}
201 	spin_unlock_bh(&cdev->kmap.lock);
202 	return keyid;
203 }
204 
205 void free_tls_keyid(struct sock *sk)
206 {
207 	struct chtls_sock *csk = rcu_dereference_sk_user_data(sk);
208 	struct net_device *dev = csk->egress_dev;
209 	struct chtls_dev *cdev = csk->cdev;
210 	struct chtls_hws *hws;
211 	struct adapter *adap;
212 
213 	if (!cdev->kmap.addr)
214 		return;
215 
216 	adap = netdev2adap(dev);
217 	hws = &csk->tlshws;
218 
219 	spin_lock_bh(&cdev->kmap.lock);
220 	if (hws->rxkey >= 0) {
221 		__clear_bit(hws->rxkey, cdev->kmap.addr);
222 		atomic_dec(&adap->chcr_stats.tls_key);
223 		hws->rxkey = -1;
224 	}
225 	if (hws->txkey >= 0) {
226 		__clear_bit(hws->txkey, cdev->kmap.addr);
227 		atomic_dec(&adap->chcr_stats.tls_key);
228 		hws->txkey = -1;
229 	}
230 	spin_unlock_bh(&cdev->kmap.lock);
231 }
232 
233 unsigned int keyid_to_addr(int start_addr, int keyid)
234 {
235 	return (start_addr + (keyid * TLS_KEY_CONTEXT_SZ)) >> 5;
236 }
237 
238 static void chtls_rxkey_ivauth(struct _key_ctx *kctx)
239 {
240 	kctx->iv_to_auth = cpu_to_be64(KEYCTX_TX_WR_IV_V(6ULL) |
241 				  KEYCTX_TX_WR_AAD_V(1ULL) |
242 				  KEYCTX_TX_WR_AADST_V(5ULL) |
243 				  KEYCTX_TX_WR_CIPHER_V(14ULL) |
244 				  KEYCTX_TX_WR_CIPHERST_V(0ULL) |
245 				  KEYCTX_TX_WR_AUTH_V(14ULL) |
246 				  KEYCTX_TX_WR_AUTHST_V(16ULL) |
247 				  KEYCTX_TX_WR_AUTHIN_V(16ULL));
248 }
249 
250 static int chtls_key_info(struct chtls_sock *csk,
251 			  struct _key_ctx *kctx,
252 			  u32 keylen, u32 optname,
253 			  int cipher_type)
254 {
255 	unsigned char key[AES_MAX_KEY_SIZE];
256 	unsigned char *key_p, *salt;
257 	unsigned char ghash_h[AEAD_H_SIZE];
258 	int ck_size, key_ctx_size, kctx_mackey_size, salt_size;
259 	struct crypto_aes_ctx aes;
260 	int ret;
261 
262 	key_ctx_size = sizeof(struct _key_ctx) +
263 		       roundup(keylen, 16) + AEAD_H_SIZE;
264 
265 	/* GCM mode of AES supports 128 and 256 bit encryption, so
266 	 * prepare key context base on GCM cipher type
267 	 */
268 	switch (cipher_type) {
269 	case TLS_CIPHER_AES_GCM_128: {
270 		struct tls12_crypto_info_aes_gcm_128 *gcm_ctx_128 =
271 			(struct tls12_crypto_info_aes_gcm_128 *)
272 					&csk->tlshws.crypto_info;
273 		memcpy(key, gcm_ctx_128->key, keylen);
274 
275 		key_p            = gcm_ctx_128->key;
276 		salt             = gcm_ctx_128->salt;
277 		ck_size          = CHCR_KEYCTX_CIPHER_KEY_SIZE_128;
278 		salt_size        = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
279 		kctx_mackey_size = CHCR_KEYCTX_MAC_KEY_SIZE_128;
280 		break;
281 	}
282 	case TLS_CIPHER_AES_GCM_256: {
283 		struct tls12_crypto_info_aes_gcm_256 *gcm_ctx_256 =
284 			(struct tls12_crypto_info_aes_gcm_256 *)
285 					&csk->tlshws.crypto_info;
286 		memcpy(key, gcm_ctx_256->key, keylen);
287 
288 		key_p            = gcm_ctx_256->key;
289 		salt             = gcm_ctx_256->salt;
290 		ck_size          = CHCR_KEYCTX_CIPHER_KEY_SIZE_256;
291 		salt_size        = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
292 		kctx_mackey_size = CHCR_KEYCTX_MAC_KEY_SIZE_256;
293 		break;
294 	}
295 	default:
296 		pr_err("GCM: Invalid key length %d\n", keylen);
297 		return -EINVAL;
298 	}
299 
300 	/* Calculate the H = CIPH(K, 0 repeated 16 times).
301 	 * It will go in key context
302 	 */
303 	ret = aes_expandkey(&aes, key, keylen);
304 	if (ret)
305 		return ret;
306 
307 	memset(ghash_h, 0, AEAD_H_SIZE);
308 	aes_encrypt(&aes, ghash_h, ghash_h);
309 	memzero_explicit(&aes, sizeof(aes));
310 	csk->tlshws.keylen = key_ctx_size;
311 
312 	/* Copy the Key context */
313 	if (optname == TLS_RX) {
314 		int key_ctx;
315 
316 		key_ctx = ((key_ctx_size >> 4) << 3);
317 		kctx->ctx_hdr = FILL_KEY_CRX_HDR(ck_size,
318 						 kctx_mackey_size,
319 						 0, 0, key_ctx);
320 		chtls_rxkey_ivauth(kctx);
321 	} else {
322 		kctx->ctx_hdr = FILL_KEY_CTX_HDR(ck_size,
323 						 kctx_mackey_size,
324 						 0, 0, key_ctx_size >> 4);
325 	}
326 
327 	memcpy(kctx->salt, salt, salt_size);
328 	memcpy(kctx->key, key_p, keylen);
329 	memcpy(kctx->key + keylen, ghash_h, AEAD_H_SIZE);
330 	/* erase key info from driver */
331 	memset(key_p, 0, keylen);
332 
333 	return 0;
334 }
335 
336 static void chtls_set_scmd(struct chtls_sock *csk)
337 {
338 	struct chtls_hws *hws = &csk->tlshws;
339 
340 	hws->scmd.seqno_numivs =
341 		SCMD_SEQ_NO_CTRL_V(3) |
342 		SCMD_PROTO_VERSION_V(0) |
343 		SCMD_ENC_DEC_CTRL_V(0) |
344 		SCMD_CIPH_AUTH_SEQ_CTRL_V(1) |
345 		SCMD_CIPH_MODE_V(2) |
346 		SCMD_AUTH_MODE_V(4) |
347 		SCMD_HMAC_CTRL_V(0) |
348 		SCMD_IV_SIZE_V(4) |
349 		SCMD_NUM_IVS_V(1);
350 
351 	hws->scmd.ivgen_hdrlen =
352 		SCMD_IV_GEN_CTRL_V(1) |
353 		SCMD_KEY_CTX_INLINE_V(0) |
354 		SCMD_TLS_FRAG_ENABLE_V(1);
355 }
356 
357 int chtls_setkey(struct chtls_sock *csk, u32 keylen,
358 		 u32 optname, int cipher_type)
359 {
360 	struct tls_key_req *kwr;
361 	struct chtls_dev *cdev;
362 	struct _key_ctx *kctx;
363 	int wrlen, klen, len;
364 	struct sk_buff *skb;
365 	struct sock *sk;
366 	int keyid;
367 	int kaddr;
368 	int ret;
369 
370 	cdev = csk->cdev;
371 	sk = csk->sk;
372 
373 	klen = roundup((keylen + AEAD_H_SIZE) + sizeof(*kctx), 32);
374 	wrlen = roundup(sizeof(*kwr), 16);
375 	len = klen + wrlen;
376 
377 	/* Flush out-standing data before new key takes effect */
378 	if (optname == TLS_TX) {
379 		lock_sock(sk);
380 		if (skb_queue_len(&csk->txq))
381 			chtls_push_frames(csk, 0);
382 		release_sock(sk);
383 	}
384 
385 	skb = alloc_skb(len, GFP_KERNEL);
386 	if (!skb)
387 		return -ENOMEM;
388 
389 	keyid = get_new_keyid(csk, optname);
390 	if (keyid < 0) {
391 		ret = -ENOSPC;
392 		goto out_nokey;
393 	}
394 
395 	kaddr = keyid_to_addr(cdev->kmap.start, keyid);
396 	kwr = (struct tls_key_req *)__skb_put_zero(skb, len);
397 	kwr->wr.op_to_compl =
398 		cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR) | FW_WR_COMPL_F |
399 		      FW_WR_ATOMIC_V(1U));
400 	kwr->wr.flowid_len16 =
401 		cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(len, 16) |
402 			    FW_WR_FLOWID_V(csk->tid)));
403 	kwr->wr.protocol = 0;
404 	kwr->wr.mfs = htons(TLS_MFS);
405 	kwr->wr.reneg_to_write_rx = optname;
406 
407 	/* ulptx command */
408 	kwr->req.cmd = cpu_to_be32(ULPTX_CMD_V(ULP_TX_MEM_WRITE) |
409 			    T5_ULP_MEMIO_ORDER_V(1) |
410 			    T5_ULP_MEMIO_IMM_V(1));
411 	kwr->req.len16 = cpu_to_be32((csk->tid << 8) |
412 			      DIV_ROUND_UP(len - sizeof(kwr->wr), 16));
413 	kwr->req.dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN_V(klen >> 5));
414 	kwr->req.lock_addr = cpu_to_be32(ULP_MEMIO_ADDR_V(kaddr));
415 
416 	/* sub command */
417 	kwr->sc_imm.cmd_more = cpu_to_be32(ULPTX_CMD_V(ULP_TX_SC_IMM));
418 	kwr->sc_imm.len = cpu_to_be32(klen);
419 
420 	lock_sock(sk);
421 	/* key info */
422 	kctx = (struct _key_ctx *)(kwr + 1);
423 	ret = chtls_key_info(csk, kctx, keylen, optname, cipher_type);
424 	if (ret)
425 		goto out_notcb;
426 
427 	if (unlikely(csk_flag(sk, CSK_ABORT_SHUTDOWN)))
428 		goto out_notcb;
429 
430 	set_wr_txq(skb, CPL_PRIORITY_DATA, csk->tlshws.txqid);
431 	csk->wr_credits -= DIV_ROUND_UP(len, 16);
432 	csk->wr_unacked += DIV_ROUND_UP(len, 16);
433 	enqueue_wr(csk, skb);
434 	cxgb4_ofld_send(csk->egress_dev, skb);
435 	skb = NULL;
436 
437 	chtls_set_scmd(csk);
438 	/* Clear quiesce for Rx key */
439 	if (optname == TLS_RX) {
440 		ret = chtls_set_tcb_keyid(sk, keyid);
441 		if (ret)
442 			goto out_notcb;
443 		ret = chtls_set_tcb_field(sk, 0,
444 					  TCB_ULP_RAW_V(TCB_ULP_RAW_M),
445 					  TCB_ULP_RAW_V((TF_TLS_KEY_SIZE_V(1) |
446 					  TF_TLS_CONTROL_V(1) |
447 					  TF_TLS_ACTIVE_V(1) |
448 					  TF_TLS_ENABLE_V(1))));
449 		if (ret)
450 			goto out_notcb;
451 		ret = chtls_set_tcb_seqno(sk);
452 		if (ret)
453 			goto out_notcb;
454 		ret = chtls_set_tcb_quiesce(sk, 0);
455 		if (ret)
456 			goto out_notcb;
457 		csk->tlshws.rxkey = keyid;
458 	} else {
459 		csk->tlshws.tx_seq_no = 0;
460 		csk->tlshws.txkey = keyid;
461 	}
462 
463 	release_sock(sk);
464 	return ret;
465 out_notcb:
466 	release_sock(sk);
467 	free_tls_keyid(sk);
468 out_nokey:
469 	kfree_skb(skb);
470 	return ret;
471 }
472