xref: /linux/drivers/net/ethernet/chelsio/inline_crypto/chtls/chtls_hw.c (revision 3ba84ac69b53e6ee07c31d54554e00793d7b144f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2018 Chelsio Communications, Inc.
4  *
5  * Written by: Atul Gupta (atul.gupta@chelsio.com)
6  */
7 
8 #include <linux/module.h>
9 #include <linux/list.h>
10 #include <linux/workqueue.h>
11 #include <linux/skbuff.h>
12 #include <linux/timer.h>
13 #include <linux/notifier.h>
14 #include <linux/inetdevice.h>
15 #include <linux/ip.h>
16 #include <linux/tcp.h>
17 #include <linux/tls.h>
18 #include <net/tls.h>
19 
20 #include "chtls.h"
21 #include "chtls_cm.h"
22 
23 static void __set_tcb_field_direct(struct chtls_sock *csk,
24 				   struct cpl_set_tcb_field *req, u16 word,
25 				   u64 mask, u64 val, u8 cookie, int no_reply)
26 {
27 	struct ulptx_idata *sc;
28 
29 	INIT_TP_WR_CPL(req, CPL_SET_TCB_FIELD, csk->tid);
30 	req->wr.wr_mid |= htonl(FW_WR_FLOWID_V(csk->tid));
31 	req->reply_ctrl = htons(NO_REPLY_V(no_reply) |
32 				QUEUENO_V(csk->rss_qid));
33 	req->word_cookie = htons(TCB_WORD_V(word) | TCB_COOKIE_V(cookie));
34 	req->mask = cpu_to_be64(mask);
35 	req->val = cpu_to_be64(val);
36 	sc = (struct ulptx_idata *)(req + 1);
37 	sc->cmd_more = htonl(ULPTX_CMD_V(ULP_TX_SC_NOOP));
38 	sc->len = htonl(0);
39 }
40 
41 static void __set_tcb_field(struct sock *sk, struct sk_buff *skb, u16 word,
42 			    u64 mask, u64 val, u8 cookie, int no_reply)
43 {
44 	struct cpl_set_tcb_field *req;
45 	struct chtls_sock *csk;
46 	struct ulptx_idata *sc;
47 	unsigned int wrlen;
48 
49 	wrlen = roundup(sizeof(*req) + sizeof(*sc), 16);
50 	csk = rcu_dereference_sk_user_data(sk);
51 
52 	req = (struct cpl_set_tcb_field *)__skb_put(skb, wrlen);
53 	__set_tcb_field_direct(csk, req, word, mask, val, cookie, no_reply);
54 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, csk->port_id);
55 }
56 
57 /*
58  * Send control message to HW, message go as immediate data and packet
59  * is freed immediately.
60  */
61 static int chtls_set_tcb_field(struct sock *sk, u16 word, u64 mask, u64 val)
62 {
63 	struct cpl_set_tcb_field *req;
64 	unsigned int credits_needed;
65 	struct chtls_sock *csk;
66 	struct ulptx_idata *sc;
67 	struct sk_buff *skb;
68 	unsigned int wrlen;
69 	int ret;
70 
71 	wrlen = roundup(sizeof(*req) + sizeof(*sc), 16);
72 
73 	skb = alloc_skb(wrlen, GFP_ATOMIC);
74 	if (!skb)
75 		return -ENOMEM;
76 
77 	credits_needed = DIV_ROUND_UP(wrlen, 16);
78 	csk = rcu_dereference_sk_user_data(sk);
79 
80 	__set_tcb_field(sk, skb, word, mask, val, 0, 1);
81 	skb_set_queue_mapping(skb, (csk->txq_idx << 1) | CPL_PRIORITY_DATA);
82 	csk->wr_credits -= credits_needed;
83 	csk->wr_unacked += credits_needed;
84 	enqueue_wr(csk, skb);
85 	ret = cxgb4_ofld_send(csk->egress_dev, skb);
86 	if (ret < 0)
87 		kfree_skb(skb);
88 	return ret < 0 ? ret : 0;
89 }
90 
91 void chtls_set_tcb_field_rpl_skb(struct sock *sk, u16 word,
92 				 u64 mask, u64 val, u8 cookie,
93 				 int through_l2t)
94 {
95 	struct sk_buff *skb;
96 	unsigned int wrlen;
97 
98 	wrlen = sizeof(struct cpl_set_tcb_field) + sizeof(struct ulptx_idata);
99 	wrlen = roundup(wrlen, 16);
100 
101 	skb = alloc_skb(wrlen, GFP_KERNEL | __GFP_NOFAIL);
102 	if (!skb)
103 		return;
104 
105 	__set_tcb_field(sk, skb, word, mask, val, cookie, 0);
106 	send_or_defer(sk, tcp_sk(sk), skb, through_l2t);
107 }
108 
109 static int chtls_set_tcb_keyid(struct sock *sk, int keyid)
110 {
111 	return chtls_set_tcb_field(sk, 31, 0xFFFFFFFFULL, keyid);
112 }
113 
114 static int chtls_set_tcb_seqno(struct sock *sk)
115 {
116 	return chtls_set_tcb_field(sk, 28, ~0ULL, 0);
117 }
118 
119 static int chtls_set_tcb_quiesce(struct sock *sk, int val)
120 {
121 	return chtls_set_tcb_field(sk, 1, (1ULL << TF_RX_QUIESCE_S),
122 				   TF_RX_QUIESCE_V(val));
123 }
124 
125 void chtls_set_quiesce_ctrl(struct sock *sk, int val)
126 {
127 	struct chtls_sock *csk;
128 	struct sk_buff *skb;
129 	unsigned int wrlen;
130 	int ret;
131 
132 	wrlen = sizeof(struct cpl_set_tcb_field) + sizeof(struct ulptx_idata);
133 	wrlen = roundup(wrlen, 16);
134 
135 	skb = alloc_skb(wrlen, GFP_ATOMIC);
136 	if (!skb)
137 		return;
138 
139 	csk = rcu_dereference_sk_user_data(sk);
140 
141 	__set_tcb_field(sk, skb, 1, TF_RX_QUIESCE_V(1), 0, 0, 1);
142 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, csk->port_id);
143 	ret = cxgb4_ofld_send(csk->egress_dev, skb);
144 	if (ret < 0)
145 		kfree_skb(skb);
146 }
147 
148 /* TLS Key bitmap processing */
149 int chtls_init_kmap(struct chtls_dev *cdev, struct cxgb4_lld_info *lldi)
150 {
151 	unsigned int num_key_ctx, bsize;
152 	int ksize;
153 
154 	num_key_ctx = (lldi->vr->key.size / TLS_KEY_CONTEXT_SZ);
155 	bsize = BITS_TO_LONGS(num_key_ctx);
156 
157 	cdev->kmap.size = num_key_ctx;
158 	cdev->kmap.available = bsize;
159 	ksize = sizeof(*cdev->kmap.addr) * bsize;
160 	cdev->kmap.addr = kvzalloc(ksize, GFP_KERNEL);
161 	if (!cdev->kmap.addr)
162 		return -ENOMEM;
163 
164 	cdev->kmap.start = lldi->vr->key.start;
165 	spin_lock_init(&cdev->kmap.lock);
166 	return 0;
167 }
168 
169 static int get_new_keyid(struct chtls_sock *csk, u32 optname)
170 {
171 	struct net_device *dev = csk->egress_dev;
172 	struct chtls_dev *cdev = csk->cdev;
173 	struct chtls_hws *hws;
174 	struct adapter *adap;
175 	int keyid;
176 
177 	adap = netdev2adap(dev);
178 	hws = &csk->tlshws;
179 
180 	spin_lock_bh(&cdev->kmap.lock);
181 	keyid = find_first_zero_bit(cdev->kmap.addr, cdev->kmap.size);
182 	if (keyid < cdev->kmap.size) {
183 		__set_bit(keyid, cdev->kmap.addr);
184 		if (optname == TLS_RX)
185 			hws->rxkey = keyid;
186 		else
187 			hws->txkey = keyid;
188 		atomic_inc(&adap->chcr_stats.tls_key);
189 	} else {
190 		keyid = -1;
191 	}
192 	spin_unlock_bh(&cdev->kmap.lock);
193 	return keyid;
194 }
195 
196 void free_tls_keyid(struct sock *sk)
197 {
198 	struct chtls_sock *csk = rcu_dereference_sk_user_data(sk);
199 	struct net_device *dev = csk->egress_dev;
200 	struct chtls_dev *cdev = csk->cdev;
201 	struct chtls_hws *hws;
202 	struct adapter *adap;
203 
204 	if (!cdev->kmap.addr)
205 		return;
206 
207 	adap = netdev2adap(dev);
208 	hws = &csk->tlshws;
209 
210 	spin_lock_bh(&cdev->kmap.lock);
211 	if (hws->rxkey >= 0) {
212 		__clear_bit(hws->rxkey, cdev->kmap.addr);
213 		atomic_dec(&adap->chcr_stats.tls_key);
214 		hws->rxkey = -1;
215 	}
216 	if (hws->txkey >= 0) {
217 		__clear_bit(hws->txkey, cdev->kmap.addr);
218 		atomic_dec(&adap->chcr_stats.tls_key);
219 		hws->txkey = -1;
220 	}
221 	spin_unlock_bh(&cdev->kmap.lock);
222 }
223 
224 unsigned int keyid_to_addr(int start_addr, int keyid)
225 {
226 	return (start_addr + (keyid * TLS_KEY_CONTEXT_SZ)) >> 5;
227 }
228 
229 static void chtls_rxkey_ivauth(struct _key_ctx *kctx)
230 {
231 	kctx->iv_to_auth = cpu_to_be64(KEYCTX_TX_WR_IV_V(6ULL) |
232 				  KEYCTX_TX_WR_AAD_V(1ULL) |
233 				  KEYCTX_TX_WR_AADST_V(5ULL) |
234 				  KEYCTX_TX_WR_CIPHER_V(14ULL) |
235 				  KEYCTX_TX_WR_CIPHERST_V(0ULL) |
236 				  KEYCTX_TX_WR_AUTH_V(14ULL) |
237 				  KEYCTX_TX_WR_AUTHST_V(16ULL) |
238 				  KEYCTX_TX_WR_AUTHIN_V(16ULL));
239 }
240 
241 static int chtls_key_info(struct chtls_sock *csk,
242 			  struct _key_ctx *kctx,
243 			  u32 keylen, u32 optname,
244 			  int cipher_type)
245 {
246 	unsigned char key[AES_MAX_KEY_SIZE];
247 	unsigned char *key_p, *salt;
248 	unsigned char ghash_h[AEAD_H_SIZE];
249 	int ck_size, key_ctx_size, kctx_mackey_size, salt_size;
250 	struct crypto_aes_ctx aes;
251 	int ret;
252 
253 	key_ctx_size = sizeof(struct _key_ctx) +
254 		       roundup(keylen, 16) + AEAD_H_SIZE;
255 
256 	/* GCM mode of AES supports 128 and 256 bit encryption, so
257 	 * prepare key context base on GCM cipher type
258 	 */
259 	switch (cipher_type) {
260 	case TLS_CIPHER_AES_GCM_128: {
261 		struct tls12_crypto_info_aes_gcm_128 *gcm_ctx_128 =
262 			(struct tls12_crypto_info_aes_gcm_128 *)
263 					&csk->tlshws.crypto_info;
264 		memcpy(key, gcm_ctx_128->key, keylen);
265 
266 		key_p            = gcm_ctx_128->key;
267 		salt             = gcm_ctx_128->salt;
268 		ck_size          = CHCR_KEYCTX_CIPHER_KEY_SIZE_128;
269 		salt_size        = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
270 		kctx_mackey_size = CHCR_KEYCTX_MAC_KEY_SIZE_128;
271 		break;
272 	}
273 	case TLS_CIPHER_AES_GCM_256: {
274 		struct tls12_crypto_info_aes_gcm_256 *gcm_ctx_256 =
275 			(struct tls12_crypto_info_aes_gcm_256 *)
276 					&csk->tlshws.crypto_info;
277 		memcpy(key, gcm_ctx_256->key, keylen);
278 
279 		key_p            = gcm_ctx_256->key;
280 		salt             = gcm_ctx_256->salt;
281 		ck_size          = CHCR_KEYCTX_CIPHER_KEY_SIZE_256;
282 		salt_size        = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
283 		kctx_mackey_size = CHCR_KEYCTX_MAC_KEY_SIZE_256;
284 		break;
285 	}
286 	default:
287 		pr_err("GCM: Invalid key length %d\n", keylen);
288 		return -EINVAL;
289 	}
290 
291 	/* Calculate the H = CIPH(K, 0 repeated 16 times).
292 	 * It will go in key context
293 	 */
294 	ret = aes_expandkey(&aes, key, keylen);
295 	if (ret)
296 		return ret;
297 
298 	memset(ghash_h, 0, AEAD_H_SIZE);
299 	aes_encrypt(&aes, ghash_h, ghash_h);
300 	memzero_explicit(&aes, sizeof(aes));
301 	csk->tlshws.keylen = key_ctx_size;
302 
303 	/* Copy the Key context */
304 	if (optname == TLS_RX) {
305 		int key_ctx;
306 
307 		key_ctx = ((key_ctx_size >> 4) << 3);
308 		kctx->ctx_hdr = FILL_KEY_CRX_HDR(ck_size,
309 						 kctx_mackey_size,
310 						 0, 0, key_ctx);
311 		chtls_rxkey_ivauth(kctx);
312 	} else {
313 		kctx->ctx_hdr = FILL_KEY_CTX_HDR(ck_size,
314 						 kctx_mackey_size,
315 						 0, 0, key_ctx_size >> 4);
316 	}
317 
318 	memcpy(kctx->salt, salt, salt_size);
319 	memcpy(kctx->key, key_p, keylen);
320 	memcpy(kctx->key + keylen, ghash_h, AEAD_H_SIZE);
321 	/* erase key info from driver */
322 	memset(key_p, 0, keylen);
323 
324 	return 0;
325 }
326 
327 static void chtls_set_scmd(struct chtls_sock *csk)
328 {
329 	struct chtls_hws *hws = &csk->tlshws;
330 
331 	hws->scmd.seqno_numivs =
332 		SCMD_SEQ_NO_CTRL_V(3) |
333 		SCMD_PROTO_VERSION_V(0) |
334 		SCMD_ENC_DEC_CTRL_V(0) |
335 		SCMD_CIPH_AUTH_SEQ_CTRL_V(1) |
336 		SCMD_CIPH_MODE_V(2) |
337 		SCMD_AUTH_MODE_V(4) |
338 		SCMD_HMAC_CTRL_V(0) |
339 		SCMD_IV_SIZE_V(4) |
340 		SCMD_NUM_IVS_V(1);
341 
342 	hws->scmd.ivgen_hdrlen =
343 		SCMD_IV_GEN_CTRL_V(1) |
344 		SCMD_KEY_CTX_INLINE_V(0) |
345 		SCMD_TLS_FRAG_ENABLE_V(1);
346 }
347 
348 int chtls_setkey(struct chtls_sock *csk, u32 keylen,
349 		 u32 optname, int cipher_type)
350 {
351 	struct tls_key_req *kwr;
352 	struct chtls_dev *cdev;
353 	struct _key_ctx *kctx;
354 	int wrlen, klen, len;
355 	struct sk_buff *skb;
356 	struct sock *sk;
357 	int keyid;
358 	int kaddr;
359 	int ret;
360 
361 	cdev = csk->cdev;
362 	sk = csk->sk;
363 
364 	klen = roundup((keylen + AEAD_H_SIZE) + sizeof(*kctx), 32);
365 	wrlen = roundup(sizeof(*kwr), 16);
366 	len = klen + wrlen;
367 
368 	/* Flush out-standing data before new key takes effect */
369 	if (optname == TLS_TX) {
370 		lock_sock(sk);
371 		if (skb_queue_len(&csk->txq))
372 			chtls_push_frames(csk, 0);
373 		release_sock(sk);
374 	}
375 
376 	skb = alloc_skb(len, GFP_KERNEL);
377 	if (!skb)
378 		return -ENOMEM;
379 
380 	keyid = get_new_keyid(csk, optname);
381 	if (keyid < 0) {
382 		ret = -ENOSPC;
383 		goto out_nokey;
384 	}
385 
386 	kaddr = keyid_to_addr(cdev->kmap.start, keyid);
387 	kwr = (struct tls_key_req *)__skb_put_zero(skb, len);
388 	kwr->wr.op_to_compl =
389 		cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR) | FW_WR_COMPL_F |
390 		      FW_WR_ATOMIC_V(1U));
391 	kwr->wr.flowid_len16 =
392 		cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(len, 16) |
393 			    FW_WR_FLOWID_V(csk->tid)));
394 	kwr->wr.protocol = 0;
395 	kwr->wr.mfs = htons(TLS_MFS);
396 	kwr->wr.reneg_to_write_rx = optname;
397 
398 	/* ulptx command */
399 	kwr->req.cmd = cpu_to_be32(ULPTX_CMD_V(ULP_TX_MEM_WRITE) |
400 			    T5_ULP_MEMIO_ORDER_V(1) |
401 			    T5_ULP_MEMIO_IMM_V(1));
402 	kwr->req.len16 = cpu_to_be32((csk->tid << 8) |
403 			      DIV_ROUND_UP(len - sizeof(kwr->wr), 16));
404 	kwr->req.dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN_V(klen >> 5));
405 	kwr->req.lock_addr = cpu_to_be32(ULP_MEMIO_ADDR_V(kaddr));
406 
407 	/* sub command */
408 	kwr->sc_imm.cmd_more = cpu_to_be32(ULPTX_CMD_V(ULP_TX_SC_IMM));
409 	kwr->sc_imm.len = cpu_to_be32(klen);
410 
411 	lock_sock(sk);
412 	/* key info */
413 	kctx = (struct _key_ctx *)(kwr + 1);
414 	ret = chtls_key_info(csk, kctx, keylen, optname, cipher_type);
415 	if (ret)
416 		goto out_notcb;
417 
418 	if (unlikely(csk_flag(sk, CSK_ABORT_SHUTDOWN)))
419 		goto out_notcb;
420 
421 	set_wr_txq(skb, CPL_PRIORITY_DATA, csk->tlshws.txqid);
422 	csk->wr_credits -= DIV_ROUND_UP(len, 16);
423 	csk->wr_unacked += DIV_ROUND_UP(len, 16);
424 	enqueue_wr(csk, skb);
425 	cxgb4_ofld_send(csk->egress_dev, skb);
426 	skb = NULL;
427 
428 	chtls_set_scmd(csk);
429 	/* Clear quiesce for Rx key */
430 	if (optname == TLS_RX) {
431 		ret = chtls_set_tcb_keyid(sk, keyid);
432 		if (ret)
433 			goto out_notcb;
434 		ret = chtls_set_tcb_field(sk, 0,
435 					  TCB_ULP_RAW_V(TCB_ULP_RAW_M),
436 					  TCB_ULP_RAW_V((TF_TLS_KEY_SIZE_V(1) |
437 					  TF_TLS_CONTROL_V(1) |
438 					  TF_TLS_ACTIVE_V(1) |
439 					  TF_TLS_ENABLE_V(1))));
440 		if (ret)
441 			goto out_notcb;
442 		ret = chtls_set_tcb_seqno(sk);
443 		if (ret)
444 			goto out_notcb;
445 		ret = chtls_set_tcb_quiesce(sk, 0);
446 		if (ret)
447 			goto out_notcb;
448 		csk->tlshws.rxkey = keyid;
449 	} else {
450 		csk->tlshws.tx_seq_no = 0;
451 		csk->tlshws.txkey = keyid;
452 	}
453 
454 	release_sock(sk);
455 	return ret;
456 out_notcb:
457 	release_sock(sk);
458 	free_tls_keyid(sk);
459 out_nokey:
460 	kfree_skb(skb);
461 	return ret;
462 }
463