xref: /linux/drivers/net/ethernet/chelsio/cxgb4vf/t4vf_hw.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #include <linux/pci.h>
37 
38 #include "t4vf_common.h"
39 #include "t4vf_defs.h"
40 
41 #include "../cxgb4/t4_regs.h"
42 #include "../cxgb4/t4_values.h"
43 #include "../cxgb4/t4fw_api.h"
44 
45 /*
46  * Wait for the device to become ready (signified by our "who am I" register
47  * returning a value other than all 1's).  Return an error if it doesn't
48  * become ready ...
49  */
50 int t4vf_wait_dev_ready(struct adapter *adapter)
51 {
52 	const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
53 	const u32 notready1 = 0xffffffff;
54 	const u32 notready2 = 0xeeeeeeee;
55 	u32 val;
56 
57 	val = t4_read_reg(adapter, whoami);
58 	if (val != notready1 && val != notready2)
59 		return 0;
60 	msleep(500);
61 	val = t4_read_reg(adapter, whoami);
62 	if (val != notready1 && val != notready2)
63 		return 0;
64 	else
65 		return -EIO;
66 }
67 
68 /*
69  * Get the reply to a mailbox command and store it in @rpl in big-endian order
70  * (since the firmware data structures are specified in a big-endian layout).
71  */
72 static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
73 			 u32 mbox_data)
74 {
75 	for ( ; size; size -= 8, mbox_data += 8)
76 		*rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
77 }
78 
79 /**
80  *	t4vf_record_mbox - record a Firmware Mailbox Command/Reply in the log
81  *	@adapter: the adapter
82  *	@cmd: the Firmware Mailbox Command or Reply
83  *	@size: command length in bytes
84  *	@access: the time (ms) needed to access the Firmware Mailbox
85  *	@execute: the time (ms) the command spent being executed
86  */
87 static void t4vf_record_mbox(struct adapter *adapter, const __be64 *cmd,
88 			     int size, int access, int execute)
89 {
90 	struct mbox_cmd_log *log = adapter->mbox_log;
91 	struct mbox_cmd *entry;
92 	int i;
93 
94 	entry = mbox_cmd_log_entry(log, log->cursor++);
95 	if (log->cursor == log->size)
96 		log->cursor = 0;
97 
98 	for (i = 0; i < size / 8; i++)
99 		entry->cmd[i] = be64_to_cpu(cmd[i]);
100 	while (i < MBOX_LEN / 8)
101 		entry->cmd[i++] = 0;
102 	entry->timestamp = jiffies;
103 	entry->seqno = log->seqno++;
104 	entry->access = access;
105 	entry->execute = execute;
106 }
107 
108 /**
109  *	t4vf_wr_mbox_core - send a command to FW through the mailbox
110  *	@adapter: the adapter
111  *	@cmd: the command to write
112  *	@size: command length in bytes
113  *	@rpl: where to optionally store the reply
114  *	@sleep_ok: if true we may sleep while awaiting command completion
115  *
116  *	Sends the given command to FW through the mailbox and waits for the
117  *	FW to execute the command.  If @rpl is not %NULL it is used to store
118  *	the FW's reply to the command.  The command and its optional reply
119  *	are of the same length.  FW can take up to 500 ms to respond.
120  *	@sleep_ok determines whether we may sleep while awaiting the response.
121  *	If sleeping is allowed we use progressive backoff otherwise we spin.
122  *
123  *	The return value is 0 on success or a negative errno on failure.  A
124  *	failure can happen either because we are not able to execute the
125  *	command or FW executes it but signals an error.  In the latter case
126  *	the return value is the error code indicated by FW (negated).
127  */
128 int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
129 		      void *rpl, bool sleep_ok)
130 {
131 	static const int delay[] = {
132 		1, 1, 3, 5, 10, 10, 20, 50, 100
133 	};
134 
135 	u16 access = 0, execute = 0;
136 	u32 v, mbox_data;
137 	int i, ms, delay_idx, ret;
138 	const __be64 *p;
139 	u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
140 	u32 cmd_op = FW_CMD_OP_G(be32_to_cpu(((struct fw_cmd_hdr *)cmd)->hi));
141 	__be64 cmd_rpl[MBOX_LEN / 8];
142 
143 	/* In T6, mailbox size is changed to 128 bytes to avoid
144 	 * invalidating the entire prefetch buffer.
145 	 */
146 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
147 		mbox_data = T4VF_MBDATA_BASE_ADDR;
148 	else
149 		mbox_data = T6VF_MBDATA_BASE_ADDR;
150 
151 	/*
152 	 * Commands must be multiples of 16 bytes in length and may not be
153 	 * larger than the size of the Mailbox Data register array.
154 	 */
155 	if ((size % 16) != 0 ||
156 	    size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
157 		return -EINVAL;
158 
159 	/*
160 	 * Loop trying to get ownership of the mailbox.  Return an error
161 	 * if we can't gain ownership.
162 	 */
163 	v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
164 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
165 		v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
166 	if (v != MBOX_OWNER_DRV) {
167 		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
168 		t4vf_record_mbox(adapter, cmd, size, access, ret);
169 		return ret;
170 	}
171 
172 	/*
173 	 * Write the command array into the Mailbox Data register array and
174 	 * transfer ownership of the mailbox to the firmware.
175 	 *
176 	 * For the VFs, the Mailbox Data "registers" are actually backed by
177 	 * T4's "MA" interface rather than PL Registers (as is the case for
178 	 * the PFs).  Because these are in different coherency domains, the
179 	 * write to the VF's PL-register-backed Mailbox Control can race in
180 	 * front of the writes to the MA-backed VF Mailbox Data "registers".
181 	 * So we need to do a read-back on at least one byte of the VF Mailbox
182 	 * Data registers before doing the write to the VF Mailbox Control
183 	 * register.
184 	 */
185 	if (cmd_op != FW_VI_STATS_CMD)
186 		t4vf_record_mbox(adapter, cmd, size, access, 0);
187 	for (i = 0, p = cmd; i < size; i += 8)
188 		t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
189 	t4_read_reg(adapter, mbox_data);         /* flush write */
190 
191 	t4_write_reg(adapter, mbox_ctl,
192 		     MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
193 	t4_read_reg(adapter, mbox_ctl);          /* flush write */
194 
195 	/*
196 	 * Spin waiting for firmware to acknowledge processing our command.
197 	 */
198 	delay_idx = 0;
199 	ms = delay[0];
200 
201 	for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
202 		if (sleep_ok) {
203 			ms = delay[delay_idx];
204 			if (delay_idx < ARRAY_SIZE(delay) - 1)
205 				delay_idx++;
206 			msleep(ms);
207 		} else
208 			mdelay(ms);
209 
210 		/*
211 		 * If we're the owner, see if this is the reply we wanted.
212 		 */
213 		v = t4_read_reg(adapter, mbox_ctl);
214 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
215 			/*
216 			 * If the Message Valid bit isn't on, revoke ownership
217 			 * of the mailbox and continue waiting for our reply.
218 			 */
219 			if ((v & MBMSGVALID_F) == 0) {
220 				t4_write_reg(adapter, mbox_ctl,
221 					     MBOWNER_V(MBOX_OWNER_NONE));
222 				continue;
223 			}
224 
225 			/*
226 			 * We now have our reply.  Extract the command return
227 			 * value, copy the reply back to our caller's buffer
228 			 * (if specified) and revoke ownership of the mailbox.
229 			 * We return the (negated) firmware command return
230 			 * code (this depends on FW_SUCCESS == 0).
231 			 */
232 			get_mbox_rpl(adapter, cmd_rpl, size, mbox_data);
233 
234 			/* return value in low-order little-endian word */
235 			v = be64_to_cpu(cmd_rpl[0]);
236 
237 			if (rpl) {
238 				/* request bit in high-order BE word */
239 				WARN_ON((be32_to_cpu(*(const __be32 *)cmd)
240 					 & FW_CMD_REQUEST_F) == 0);
241 				memcpy(rpl, cmd_rpl, size);
242 				WARN_ON((be32_to_cpu(*(__be32 *)rpl)
243 					 & FW_CMD_REQUEST_F) != 0);
244 			}
245 			t4_write_reg(adapter, mbox_ctl,
246 				     MBOWNER_V(MBOX_OWNER_NONE));
247 			execute = i + ms;
248 			if (cmd_op != FW_VI_STATS_CMD)
249 				t4vf_record_mbox(adapter, cmd_rpl, size, access,
250 						 execute);
251 			return -FW_CMD_RETVAL_G(v);
252 		}
253 	}
254 
255 	/* We timed out.  Return the error ... */
256 	ret = -ETIMEDOUT;
257 	t4vf_record_mbox(adapter, cmd, size, access, ret);
258 	return ret;
259 }
260 
261 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
262 		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
263 		     FW_PORT_CAP_SPEED_100G | FW_PORT_CAP_ANEG)
264 
265 /**
266  *	init_link_config - initialize a link's SW state
267  *	@lc: structure holding the link state
268  *	@caps: link capabilities
269  *
270  *	Initializes the SW state maintained for each link, including the link's
271  *	capabilities and default speed/flow-control/autonegotiation settings.
272  */
273 static void init_link_config(struct link_config *lc, unsigned int caps)
274 {
275 	lc->supported = caps;
276 	lc->requested_speed = 0;
277 	lc->speed = 0;
278 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
279 	if (lc->supported & FW_PORT_CAP_ANEG) {
280 		lc->advertising = lc->supported & ADVERT_MASK;
281 		lc->autoneg = AUTONEG_ENABLE;
282 		lc->requested_fc |= PAUSE_AUTONEG;
283 	} else {
284 		lc->advertising = 0;
285 		lc->autoneg = AUTONEG_DISABLE;
286 	}
287 }
288 
289 /**
290  *	t4vf_port_init - initialize port hardware/software state
291  *	@adapter: the adapter
292  *	@pidx: the adapter port index
293  */
294 int t4vf_port_init(struct adapter *adapter, int pidx)
295 {
296 	struct port_info *pi = adap2pinfo(adapter, pidx);
297 	struct fw_vi_cmd vi_cmd, vi_rpl;
298 	struct fw_port_cmd port_cmd, port_rpl;
299 	int v;
300 
301 	/*
302 	 * Execute a VI Read command to get our Virtual Interface information
303 	 * like MAC address, etc.
304 	 */
305 	memset(&vi_cmd, 0, sizeof(vi_cmd));
306 	vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
307 				       FW_CMD_REQUEST_F |
308 				       FW_CMD_READ_F);
309 	vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
310 	vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
311 	v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
312 	if (v)
313 		return v;
314 
315 	BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
316 	pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
317 	t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
318 
319 	/*
320 	 * If we don't have read access to our port information, we're done
321 	 * now.  Otherwise, execute a PORT Read command to get it ...
322 	 */
323 	if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
324 		return 0;
325 
326 	memset(&port_cmd, 0, sizeof(port_cmd));
327 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
328 					    FW_CMD_REQUEST_F |
329 					    FW_CMD_READ_F |
330 					    FW_PORT_CMD_PORTID_V(pi->port_id));
331 	port_cmd.action_to_len16 =
332 		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
333 			    FW_LEN16(port_cmd));
334 	v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
335 	if (v)
336 		return v;
337 
338 	v = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
339 	pi->mdio_addr = (v & FW_PORT_CMD_MDIOCAP_F) ?
340 			FW_PORT_CMD_MDIOADDR_G(v) : -1;
341 	pi->port_type = FW_PORT_CMD_PTYPE_G(v);
342 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
343 
344 	init_link_config(&pi->link_cfg, be16_to_cpu(port_rpl.u.info.pcap));
345 
346 	return 0;
347 }
348 
349 /**
350  *      t4vf_fw_reset - issue a reset to FW
351  *      @adapter: the adapter
352  *
353  *	Issues a reset command to FW.  For a Physical Function this would
354  *	result in the Firmware resetting all of its state.  For a Virtual
355  *	Function this just resets the state associated with the VF.
356  */
357 int t4vf_fw_reset(struct adapter *adapter)
358 {
359 	struct fw_reset_cmd cmd;
360 
361 	memset(&cmd, 0, sizeof(cmd));
362 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
363 				      FW_CMD_WRITE_F);
364 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
365 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
366 }
367 
368 /**
369  *	t4vf_query_params - query FW or device parameters
370  *	@adapter: the adapter
371  *	@nparams: the number of parameters
372  *	@params: the parameter names
373  *	@vals: the parameter values
374  *
375  *	Reads the values of firmware or device parameters.  Up to 7 parameters
376  *	can be queried at once.
377  */
378 static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
379 			     const u32 *params, u32 *vals)
380 {
381 	int i, ret;
382 	struct fw_params_cmd cmd, rpl;
383 	struct fw_params_param *p;
384 	size_t len16;
385 
386 	if (nparams > 7)
387 		return -EINVAL;
388 
389 	memset(&cmd, 0, sizeof(cmd));
390 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
391 				    FW_CMD_REQUEST_F |
392 				    FW_CMD_READ_F);
393 	len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
394 				      param[nparams].mnem), 16);
395 	cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
396 	for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
397 		p->mnem = htonl(*params++);
398 
399 	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
400 	if (ret == 0)
401 		for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
402 			*vals++ = be32_to_cpu(p->val);
403 	return ret;
404 }
405 
406 /**
407  *	t4vf_set_params - sets FW or device parameters
408  *	@adapter: the adapter
409  *	@nparams: the number of parameters
410  *	@params: the parameter names
411  *	@vals: the parameter values
412  *
413  *	Sets the values of firmware or device parameters.  Up to 7 parameters
414  *	can be specified at once.
415  */
416 int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
417 		    const u32 *params, const u32 *vals)
418 {
419 	int i;
420 	struct fw_params_cmd cmd;
421 	struct fw_params_param *p;
422 	size_t len16;
423 
424 	if (nparams > 7)
425 		return -EINVAL;
426 
427 	memset(&cmd, 0, sizeof(cmd));
428 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
429 				    FW_CMD_REQUEST_F |
430 				    FW_CMD_WRITE_F);
431 	len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
432 				      param[nparams]), 16);
433 	cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
434 	for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
435 		p->mnem = cpu_to_be32(*params++);
436 		p->val = cpu_to_be32(*vals++);
437 	}
438 
439 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
440 }
441 
442 /**
443  *	t4vf_fl_pkt_align - return the fl packet alignment
444  *	@adapter: the adapter
445  *
446  *	T4 has a single field to specify the packing and padding boundary.
447  *	T5 onwards has separate fields for this and hence the alignment for
448  *	next packet offset is maximum of these two.  And T6 changes the
449  *	Ingress Padding Boundary Shift, so it's all a mess and it's best
450  *	if we put this in low-level Common Code ...
451  *
452  */
453 int t4vf_fl_pkt_align(struct adapter *adapter)
454 {
455 	u32 sge_control, sge_control2;
456 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
457 
458 	sge_control = adapter->params.sge.sge_control;
459 
460 	/* T4 uses a single control field to specify both the PCIe Padding and
461 	 * Packing Boundary.  T5 introduced the ability to specify these
462 	 * separately.  The actual Ingress Packet Data alignment boundary
463 	 * within Packed Buffer Mode is the maximum of these two
464 	 * specifications.  (Note that it makes no real practical sense to
465 	 * have the Pading Boudary be larger than the Packing Boundary but you
466 	 * could set the chip up that way and, in fact, legacy T4 code would
467 	 * end doing this because it would initialize the Padding Boundary and
468 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
469 	 * Padding Boundary values in T6 starts from 8B,
470 	 * where as it is 32B for T4 and T5.
471 	 */
472 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
473 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
474 	else
475 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
476 
477 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
478 
479 	fl_align = ingpadboundary;
480 	if (!is_t4(adapter->params.chip)) {
481 		/* T5 has a different interpretation of one of the PCIe Packing
482 		 * Boundary values.
483 		 */
484 		sge_control2 = adapter->params.sge.sge_control2;
485 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
486 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
487 			ingpackboundary = 16;
488 		else
489 			ingpackboundary = 1 << (ingpackboundary +
490 						INGPACKBOUNDARY_SHIFT_X);
491 
492 		fl_align = max(ingpadboundary, ingpackboundary);
493 	}
494 	return fl_align;
495 }
496 
497 /**
498  *	t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information
499  *	@adapter: the adapter
500  *	@qid: the Queue ID
501  *	@qtype: the Ingress or Egress type for @qid
502  *	@pbar2_qoffset: BAR2 Queue Offset
503  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
504  *
505  *	Returns the BAR2 SGE Queue Registers information associated with the
506  *	indicated Absolute Queue ID.  These are passed back in return value
507  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
508  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
509  *
510  *	This may return an error which indicates that BAR2 SGE Queue
511  *	registers aren't available.  If an error is not returned, then the
512  *	following values are returned:
513  *
514  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
515  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
516  *
517  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
518  *	require the "Inferred Queue ID" ability may be used.  E.g. the
519  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
520  *	then these "Inferred Queue ID" register may not be used.
521  */
522 int t4vf_bar2_sge_qregs(struct adapter *adapter,
523 			unsigned int qid,
524 			enum t4_bar2_qtype qtype,
525 			u64 *pbar2_qoffset,
526 			unsigned int *pbar2_qid)
527 {
528 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
529 	u64 bar2_page_offset, bar2_qoffset;
530 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
531 
532 	/* T4 doesn't support BAR2 SGE Queue registers.
533 	 */
534 	if (is_t4(adapter->params.chip))
535 		return -EINVAL;
536 
537 	/* Get our SGE Page Size parameters.
538 	 */
539 	page_shift = adapter->params.sge.sge_vf_hps + 10;
540 	page_size = 1 << page_shift;
541 
542 	/* Get the right Queues per Page parameters for our Queue.
543 	 */
544 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
545 		     ? adapter->params.sge.sge_vf_eq_qpp
546 		     : adapter->params.sge.sge_vf_iq_qpp);
547 	qpp_mask = (1 << qpp_shift) - 1;
548 
549 	/* Calculate the basics of the BAR2 SGE Queue register area:
550 	 *  o The BAR2 page the Queue registers will be in.
551 	 *  o The BAR2 Queue ID.
552 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
553 	 */
554 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
555 	bar2_qid = qid & qpp_mask;
556 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
557 
558 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
559 	 * hardware will infer the Absolute Queue ID simply from the writes to
560 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
561 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
562 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
563 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
564 	 * from the BAR2 Page and BAR2 Queue ID.
565 	 *
566 	 * One important censequence of this is that some BAR2 SGE registers
567 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
568 	 * there.  But other registers synthesize the SGE Queue ID purely
569 	 * from the writes to the registers -- the Write Combined Doorbell
570 	 * Buffer is a good example.  These BAR2 SGE Registers are only
571 	 * available for those BAR2 SGE Register areas where the SGE Absolute
572 	 * Queue ID can be inferred from simple writes.
573 	 */
574 	bar2_qoffset = bar2_page_offset;
575 	bar2_qinferred = (bar2_qid_offset < page_size);
576 	if (bar2_qinferred) {
577 		bar2_qoffset += bar2_qid_offset;
578 		bar2_qid = 0;
579 	}
580 
581 	*pbar2_qoffset = bar2_qoffset;
582 	*pbar2_qid = bar2_qid;
583 	return 0;
584 }
585 
586 /**
587  *	t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
588  *	@adapter: the adapter
589  *
590  *	Retrieves various core SGE parameters in the form of hardware SGE
591  *	register values.  The caller is responsible for decoding these as
592  *	needed.  The SGE parameters are stored in @adapter->params.sge.
593  */
594 int t4vf_get_sge_params(struct adapter *adapter)
595 {
596 	struct sge_params *sge_params = &adapter->params.sge;
597 	u32 params[7], vals[7];
598 	int v;
599 
600 	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
601 		     FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A));
602 	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
603 		     FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A));
604 	params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
605 		     FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A));
606 	params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
607 		     FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A));
608 	params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
609 		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A));
610 	params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
611 		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A));
612 	params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
613 		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A));
614 	v = t4vf_query_params(adapter, 7, params, vals);
615 	if (v)
616 		return v;
617 	sge_params->sge_control = vals[0];
618 	sge_params->sge_host_page_size = vals[1];
619 	sge_params->sge_fl_buffer_size[0] = vals[2];
620 	sge_params->sge_fl_buffer_size[1] = vals[3];
621 	sge_params->sge_timer_value_0_and_1 = vals[4];
622 	sge_params->sge_timer_value_2_and_3 = vals[5];
623 	sge_params->sge_timer_value_4_and_5 = vals[6];
624 
625 	/* T4 uses a single control field to specify both the PCIe Padding and
626 	 * Packing Boundary.  T5 introduced the ability to specify these
627 	 * separately with the Padding Boundary in SGE_CONTROL and and Packing
628 	 * Boundary in SGE_CONTROL2.  So for T5 and later we need to grab
629 	 * SGE_CONTROL in order to determine how ingress packet data will be
630 	 * laid out in Packed Buffer Mode.  Unfortunately, older versions of
631 	 * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
632 	 * failure grabbing it we throw an error since we can't figure out the
633 	 * right value.
634 	 */
635 	if (!is_t4(adapter->params.chip)) {
636 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
637 			     FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
638 		v = t4vf_query_params(adapter, 1, params, vals);
639 		if (v != FW_SUCCESS) {
640 			dev_err(adapter->pdev_dev,
641 				"Unable to get SGE Control2; "
642 				"probably old firmware.\n");
643 			return v;
644 		}
645 		sge_params->sge_control2 = vals[0];
646 	}
647 
648 	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
649 		     FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A));
650 	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
651 		     FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A));
652 	v = t4vf_query_params(adapter, 2, params, vals);
653 	if (v)
654 		return v;
655 	sge_params->sge_ingress_rx_threshold = vals[0];
656 	sge_params->sge_congestion_control = vals[1];
657 
658 	/* For T5 and later we want to use the new BAR2 Doorbells.
659 	 * Unfortunately, older firmware didn't allow the this register to be
660 	 * read.
661 	 */
662 	if (!is_t4(adapter->params.chip)) {
663 		u32 whoami;
664 		unsigned int pf, s_hps, s_qpp;
665 
666 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
667 			     FW_PARAMS_PARAM_XYZ_V(
668 				     SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
669 		params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
670 			     FW_PARAMS_PARAM_XYZ_V(
671 				     SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
672 		v = t4vf_query_params(adapter, 2, params, vals);
673 		if (v != FW_SUCCESS) {
674 			dev_warn(adapter->pdev_dev,
675 				 "Unable to get VF SGE Queues/Page; "
676 				 "probably old firmware.\n");
677 			return v;
678 		}
679 		sge_params->sge_egress_queues_per_page = vals[0];
680 		sge_params->sge_ingress_queues_per_page = vals[1];
681 
682 		/* We need the Queues/Page for our VF.  This is based on the
683 		 * PF from which we're instantiated and is indexed in the
684 		 * register we just read. Do it once here so other code in
685 		 * the driver can just use it.
686 		 */
687 		whoami = t4_read_reg(adapter,
688 				     T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A);
689 		pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
690 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
691 
692 		s_hps = (HOSTPAGESIZEPF0_S +
693 			 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
694 		sge_params->sge_vf_hps =
695 			((sge_params->sge_host_page_size >> s_hps)
696 			 & HOSTPAGESIZEPF0_M);
697 
698 		s_qpp = (QUEUESPERPAGEPF0_S +
699 			 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
700 		sge_params->sge_vf_eq_qpp =
701 			((sge_params->sge_egress_queues_per_page >> s_qpp)
702 			 & QUEUESPERPAGEPF0_M);
703 		sge_params->sge_vf_iq_qpp =
704 			((sge_params->sge_ingress_queues_per_page >> s_qpp)
705 			 & QUEUESPERPAGEPF0_M);
706 	}
707 
708 	return 0;
709 }
710 
711 /**
712  *	t4vf_get_vpd_params - retrieve device VPD paremeters
713  *	@adapter: the adapter
714  *
715  *	Retrives various device Vital Product Data parameters.  The parameters
716  *	are stored in @adapter->params.vpd.
717  */
718 int t4vf_get_vpd_params(struct adapter *adapter)
719 {
720 	struct vpd_params *vpd_params = &adapter->params.vpd;
721 	u32 params[7], vals[7];
722 	int v;
723 
724 	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
725 		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
726 	v = t4vf_query_params(adapter, 1, params, vals);
727 	if (v)
728 		return v;
729 	vpd_params->cclk = vals[0];
730 
731 	return 0;
732 }
733 
734 /**
735  *	t4vf_get_dev_params - retrieve device paremeters
736  *	@adapter: the adapter
737  *
738  *	Retrives various device parameters.  The parameters are stored in
739  *	@adapter->params.dev.
740  */
741 int t4vf_get_dev_params(struct adapter *adapter)
742 {
743 	struct dev_params *dev_params = &adapter->params.dev;
744 	u32 params[7], vals[7];
745 	int v;
746 
747 	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
748 		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
749 	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
750 		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
751 	v = t4vf_query_params(adapter, 2, params, vals);
752 	if (v)
753 		return v;
754 	dev_params->fwrev = vals[0];
755 	dev_params->tprev = vals[1];
756 
757 	return 0;
758 }
759 
760 /**
761  *	t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
762  *	@adapter: the adapter
763  *
764  *	Retrieves global RSS mode and parameters with which we have to live
765  *	and stores them in the @adapter's RSS parameters.
766  */
767 int t4vf_get_rss_glb_config(struct adapter *adapter)
768 {
769 	struct rss_params *rss = &adapter->params.rss;
770 	struct fw_rss_glb_config_cmd cmd, rpl;
771 	int v;
772 
773 	/*
774 	 * Execute an RSS Global Configuration read command to retrieve
775 	 * our RSS configuration.
776 	 */
777 	memset(&cmd, 0, sizeof(cmd));
778 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
779 				      FW_CMD_REQUEST_F |
780 				      FW_CMD_READ_F);
781 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
782 	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
783 	if (v)
784 		return v;
785 
786 	/*
787 	 * Transate the big-endian RSS Global Configuration into our
788 	 * cpu-endian format based on the RSS mode.  We also do first level
789 	 * filtering at this point to weed out modes which don't support
790 	 * VF Drivers ...
791 	 */
792 	rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
793 			be32_to_cpu(rpl.u.manual.mode_pkd));
794 	switch (rss->mode) {
795 	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
796 		u32 word = be32_to_cpu(
797 				rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
798 
799 		rss->u.basicvirtual.synmapen =
800 			((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
801 		rss->u.basicvirtual.syn4tupenipv6 =
802 			((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
803 		rss->u.basicvirtual.syn2tupenipv6 =
804 			((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
805 		rss->u.basicvirtual.syn4tupenipv4 =
806 			((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
807 		rss->u.basicvirtual.syn2tupenipv4 =
808 			((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);
809 
810 		rss->u.basicvirtual.ofdmapen =
811 			((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);
812 
813 		rss->u.basicvirtual.tnlmapen =
814 			((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
815 		rss->u.basicvirtual.tnlalllookup =
816 			((word  & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);
817 
818 		rss->u.basicvirtual.hashtoeplitz =
819 			((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);
820 
821 		/* we need at least Tunnel Map Enable to be set */
822 		if (!rss->u.basicvirtual.tnlmapen)
823 			return -EINVAL;
824 		break;
825 	}
826 
827 	default:
828 		/* all unknown/unsupported RSS modes result in an error */
829 		return -EINVAL;
830 	}
831 
832 	return 0;
833 }
834 
835 /**
836  *	t4vf_get_vfres - retrieve VF resource limits
837  *	@adapter: the adapter
838  *
839  *	Retrieves configured resource limits and capabilities for a virtual
840  *	function.  The results are stored in @adapter->vfres.
841  */
842 int t4vf_get_vfres(struct adapter *adapter)
843 {
844 	struct vf_resources *vfres = &adapter->params.vfres;
845 	struct fw_pfvf_cmd cmd, rpl;
846 	int v;
847 	u32 word;
848 
849 	/*
850 	 * Execute PFVF Read command to get VF resource limits; bail out early
851 	 * with error on command failure.
852 	 */
853 	memset(&cmd, 0, sizeof(cmd));
854 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
855 				    FW_CMD_REQUEST_F |
856 				    FW_CMD_READ_F);
857 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
858 	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
859 	if (v)
860 		return v;
861 
862 	/*
863 	 * Extract VF resource limits and return success.
864 	 */
865 	word = be32_to_cpu(rpl.niqflint_niq);
866 	vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
867 	vfres->niq = FW_PFVF_CMD_NIQ_G(word);
868 
869 	word = be32_to_cpu(rpl.type_to_neq);
870 	vfres->neq = FW_PFVF_CMD_NEQ_G(word);
871 	vfres->pmask = FW_PFVF_CMD_PMASK_G(word);
872 
873 	word = be32_to_cpu(rpl.tc_to_nexactf);
874 	vfres->tc = FW_PFVF_CMD_TC_G(word);
875 	vfres->nvi = FW_PFVF_CMD_NVI_G(word);
876 	vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
877 
878 	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
879 	vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
880 	vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
881 	vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
882 
883 	return 0;
884 }
885 
886 /**
887  *	t4vf_read_rss_vi_config - read a VI's RSS configuration
888  *	@adapter: the adapter
889  *	@viid: Virtual Interface ID
890  *	@config: pointer to host-native VI RSS Configuration buffer
891  *
892  *	Reads the Virtual Interface's RSS configuration information and
893  *	translates it into CPU-native format.
894  */
895 int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
896 			    union rss_vi_config *config)
897 {
898 	struct fw_rss_vi_config_cmd cmd, rpl;
899 	int v;
900 
901 	memset(&cmd, 0, sizeof(cmd));
902 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
903 				     FW_CMD_REQUEST_F |
904 				     FW_CMD_READ_F |
905 				     FW_RSS_VI_CONFIG_CMD_VIID(viid));
906 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
907 	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
908 	if (v)
909 		return v;
910 
911 	switch (adapter->params.rss.mode) {
912 	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
913 		u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
914 
915 		config->basicvirtual.ip6fourtupen =
916 			((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
917 		config->basicvirtual.ip6twotupen =
918 			((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
919 		config->basicvirtual.ip4fourtupen =
920 			((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
921 		config->basicvirtual.ip4twotupen =
922 			((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
923 		config->basicvirtual.udpen =
924 			((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
925 		config->basicvirtual.defaultq =
926 			FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
927 		break;
928 	}
929 
930 	default:
931 		return -EINVAL;
932 	}
933 
934 	return 0;
935 }
936 
937 /**
938  *	t4vf_write_rss_vi_config - write a VI's RSS configuration
939  *	@adapter: the adapter
940  *	@viid: Virtual Interface ID
941  *	@config: pointer to host-native VI RSS Configuration buffer
942  *
943  *	Write the Virtual Interface's RSS configuration information
944  *	(translating it into firmware-native format before writing).
945  */
946 int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
947 			     union rss_vi_config *config)
948 {
949 	struct fw_rss_vi_config_cmd cmd, rpl;
950 
951 	memset(&cmd, 0, sizeof(cmd));
952 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
953 				     FW_CMD_REQUEST_F |
954 				     FW_CMD_WRITE_F |
955 				     FW_RSS_VI_CONFIG_CMD_VIID(viid));
956 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
957 	switch (adapter->params.rss.mode) {
958 	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
959 		u32 word = 0;
960 
961 		if (config->basicvirtual.ip6fourtupen)
962 			word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
963 		if (config->basicvirtual.ip6twotupen)
964 			word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
965 		if (config->basicvirtual.ip4fourtupen)
966 			word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
967 		if (config->basicvirtual.ip4twotupen)
968 			word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
969 		if (config->basicvirtual.udpen)
970 			word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
971 		word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
972 				config->basicvirtual.defaultq);
973 		cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
974 		break;
975 	}
976 
977 	default:
978 		return -EINVAL;
979 	}
980 
981 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
982 }
983 
984 /**
985  *	t4vf_config_rss_range - configure a portion of the RSS mapping table
986  *	@adapter: the adapter
987  *	@viid: Virtual Interface of RSS Table Slice
988  *	@start: starting entry in the table to write
989  *	@n: how many table entries to write
990  *	@rspq: values for the "Response Queue" (Ingress Queue) lookup table
991  *	@nrspq: number of values in @rspq
992  *
993  *	Programs the selected part of the VI's RSS mapping table with the
994  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
995  *	until the full table range is populated.
996  *
997  *	The caller must ensure the values in @rspq are in the range 0..1023.
998  */
999 int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
1000 			  int start, int n, const u16 *rspq, int nrspq)
1001 {
1002 	const u16 *rsp = rspq;
1003 	const u16 *rsp_end = rspq+nrspq;
1004 	struct fw_rss_ind_tbl_cmd cmd;
1005 
1006 	/*
1007 	 * Initialize firmware command template to write the RSS table.
1008 	 */
1009 	memset(&cmd, 0, sizeof(cmd));
1010 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
1011 				     FW_CMD_REQUEST_F |
1012 				     FW_CMD_WRITE_F |
1013 				     FW_RSS_IND_TBL_CMD_VIID_V(viid));
1014 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1015 
1016 	/*
1017 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
1018 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
1019 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
1020 	 * reserved.
1021 	 */
1022 	while (n > 0) {
1023 		__be32 *qp = &cmd.iq0_to_iq2;
1024 		int nq = min(n, 32);
1025 		int ret;
1026 
1027 		/*
1028 		 * Set up the firmware RSS command header to send the next
1029 		 * "nq" Ingress Queue IDs to the firmware.
1030 		 */
1031 		cmd.niqid = cpu_to_be16(nq);
1032 		cmd.startidx = cpu_to_be16(start);
1033 
1034 		/*
1035 		 * "nq" more done for the start of the next loop.
1036 		 */
1037 		start += nq;
1038 		n -= nq;
1039 
1040 		/*
1041 		 * While there are still Ingress Queue IDs to stuff into the
1042 		 * current firmware RSS command, retrieve them from the
1043 		 * Ingress Queue ID array and insert them into the command.
1044 		 */
1045 		while (nq > 0) {
1046 			/*
1047 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
1048 			 * around the Ingress Queue ID array if necessary) and
1049 			 * insert them into the firmware RSS command at the
1050 			 * current 3-tuple position within the commad.
1051 			 */
1052 			u16 qbuf[3];
1053 			u16 *qbp = qbuf;
1054 			int nqbuf = min(3, nq);
1055 
1056 			nq -= nqbuf;
1057 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
1058 			while (nqbuf) {
1059 				nqbuf--;
1060 				*qbp++ = *rsp++;
1061 				if (rsp >= rsp_end)
1062 					rsp = rspq;
1063 			}
1064 			*qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
1065 					    FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
1066 					    FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
1067 		}
1068 
1069 		/*
1070 		 * Send this portion of the RRS table update to the firmware;
1071 		 * bail out on any errors.
1072 		 */
1073 		ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1074 		if (ret)
1075 			return ret;
1076 	}
1077 	return 0;
1078 }
1079 
1080 /**
1081  *	t4vf_alloc_vi - allocate a virtual interface on a port
1082  *	@adapter: the adapter
1083  *	@port_id: physical port associated with the VI
1084  *
1085  *	Allocate a new Virtual Interface and bind it to the indicated
1086  *	physical port.  Return the new Virtual Interface Identifier on
1087  *	success, or a [negative] error number on failure.
1088  */
1089 int t4vf_alloc_vi(struct adapter *adapter, int port_id)
1090 {
1091 	struct fw_vi_cmd cmd, rpl;
1092 	int v;
1093 
1094 	/*
1095 	 * Execute a VI command to allocate Virtual Interface and return its
1096 	 * VIID.
1097 	 */
1098 	memset(&cmd, 0, sizeof(cmd));
1099 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1100 				    FW_CMD_REQUEST_F |
1101 				    FW_CMD_WRITE_F |
1102 				    FW_CMD_EXEC_F);
1103 	cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1104 					 FW_VI_CMD_ALLOC_F);
1105 	cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
1106 	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1107 	if (v)
1108 		return v;
1109 
1110 	return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
1111 }
1112 
1113 /**
1114  *	t4vf_free_vi -- free a virtual interface
1115  *	@adapter: the adapter
1116  *	@viid: the virtual interface identifier
1117  *
1118  *	Free a previously allocated Virtual Interface.  Return an error on
1119  *	failure.
1120  */
1121 int t4vf_free_vi(struct adapter *adapter, int viid)
1122 {
1123 	struct fw_vi_cmd cmd;
1124 
1125 	/*
1126 	 * Execute a VI command to free the Virtual Interface.
1127 	 */
1128 	memset(&cmd, 0, sizeof(cmd));
1129 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1130 				    FW_CMD_REQUEST_F |
1131 				    FW_CMD_EXEC_F);
1132 	cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1133 					 FW_VI_CMD_FREE_F);
1134 	cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
1135 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1136 }
1137 
1138 /**
1139  *	t4vf_enable_vi - enable/disable a virtual interface
1140  *	@adapter: the adapter
1141  *	@viid: the Virtual Interface ID
1142  *	@rx_en: 1=enable Rx, 0=disable Rx
1143  *	@tx_en: 1=enable Tx, 0=disable Tx
1144  *
1145  *	Enables/disables a virtual interface.
1146  */
1147 int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
1148 		   bool rx_en, bool tx_en)
1149 {
1150 	struct fw_vi_enable_cmd cmd;
1151 
1152 	memset(&cmd, 0, sizeof(cmd));
1153 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1154 				     FW_CMD_REQUEST_F |
1155 				     FW_CMD_EXEC_F |
1156 				     FW_VI_ENABLE_CMD_VIID_V(viid));
1157 	cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
1158 				       FW_VI_ENABLE_CMD_EEN_V(tx_en) |
1159 				       FW_LEN16(cmd));
1160 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1161 }
1162 
1163 /**
1164  *	t4vf_identify_port - identify a VI's port by blinking its LED
1165  *	@adapter: the adapter
1166  *	@viid: the Virtual Interface ID
1167  *	@nblinks: how many times to blink LED at 2.5 Hz
1168  *
1169  *	Identifies a VI's port by blinking its LED.
1170  */
1171 int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
1172 		       unsigned int nblinks)
1173 {
1174 	struct fw_vi_enable_cmd cmd;
1175 
1176 	memset(&cmd, 0, sizeof(cmd));
1177 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1178 				     FW_CMD_REQUEST_F |
1179 				     FW_CMD_EXEC_F |
1180 				     FW_VI_ENABLE_CMD_VIID_V(viid));
1181 	cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
1182 				       FW_LEN16(cmd));
1183 	cmd.blinkdur = cpu_to_be16(nblinks);
1184 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1185 }
1186 
1187 /**
1188  *	t4vf_set_rxmode - set Rx properties of a virtual interface
1189  *	@adapter: the adapter
1190  *	@viid: the VI id
1191  *	@mtu: the new MTU or -1 for no change
1192  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
1193  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
1194  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
1195  *	@vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
1196  *		-1 no change
1197  *
1198  *	Sets Rx properties of a virtual interface.
1199  */
1200 int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
1201 		    int mtu, int promisc, int all_multi, int bcast, int vlanex,
1202 		    bool sleep_ok)
1203 {
1204 	struct fw_vi_rxmode_cmd cmd;
1205 
1206 	/* convert to FW values */
1207 	if (mtu < 0)
1208 		mtu = FW_VI_RXMODE_CMD_MTU_M;
1209 	if (promisc < 0)
1210 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
1211 	if (all_multi < 0)
1212 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
1213 	if (bcast < 0)
1214 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
1215 	if (vlanex < 0)
1216 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
1217 
1218 	memset(&cmd, 0, sizeof(cmd));
1219 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
1220 				     FW_CMD_REQUEST_F |
1221 				     FW_CMD_WRITE_F |
1222 				     FW_VI_RXMODE_CMD_VIID_V(viid));
1223 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1224 	cmd.mtu_to_vlanexen =
1225 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
1226 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
1227 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
1228 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
1229 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
1230 	return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1231 }
1232 
1233 /**
1234  *	t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1235  *	@adapter: the adapter
1236  *	@viid: the Virtual Interface Identifier
1237  *	@free: if true any existing filters for this VI id are first removed
1238  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
1239  *	@addr: the MAC address(es)
1240  *	@idx: where to store the index of each allocated filter
1241  *	@hash: pointer to hash address filter bitmap
1242  *	@sleep_ok: call is allowed to sleep
1243  *
1244  *	Allocates an exact-match filter for each of the supplied addresses and
1245  *	sets it to the corresponding address.  If @idx is not %NULL it should
1246  *	have at least @naddr entries, each of which will be set to the index of
1247  *	the filter allocated for the corresponding MAC address.  If a filter
1248  *	could not be allocated for an address its index is set to 0xffff.
1249  *	If @hash is not %NULL addresses that fail to allocate an exact filter
1250  *	are hashed and update the hash filter bitmap pointed at by @hash.
1251  *
1252  *	Returns a negative error number or the number of filters allocated.
1253  */
1254 int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1255 			unsigned int naddr, const u8 **addr, u16 *idx,
1256 			u64 *hash, bool sleep_ok)
1257 {
1258 	int offset, ret = 0;
1259 	unsigned nfilters = 0;
1260 	unsigned int rem = naddr;
1261 	struct fw_vi_mac_cmd cmd, rpl;
1262 	unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1263 
1264 	if (naddr > max_naddr)
1265 		return -EINVAL;
1266 
1267 	for (offset = 0; offset < naddr; /**/) {
1268 		unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1269 					 ? rem
1270 					 : ARRAY_SIZE(cmd.u.exact));
1271 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1272 						     u.exact[fw_naddr]), 16);
1273 		struct fw_vi_mac_exact *p;
1274 		int i;
1275 
1276 		memset(&cmd, 0, sizeof(cmd));
1277 		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1278 					     FW_CMD_REQUEST_F |
1279 					     FW_CMD_WRITE_F |
1280 					     (free ? FW_CMD_EXEC_F : 0) |
1281 					     FW_VI_MAC_CMD_VIID_V(viid));
1282 		cmd.freemacs_to_len16 =
1283 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
1284 				    FW_CMD_LEN16_V(len16));
1285 
1286 		for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1287 			p->valid_to_idx = cpu_to_be16(
1288 				FW_VI_MAC_CMD_VALID_F |
1289 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
1290 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1291 		}
1292 
1293 
1294 		ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1295 					sleep_ok);
1296 		if (ret && ret != -ENOMEM)
1297 			break;
1298 
1299 		for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1300 			u16 index = FW_VI_MAC_CMD_IDX_G(
1301 				be16_to_cpu(p->valid_to_idx));
1302 
1303 			if (idx)
1304 				idx[offset+i] =
1305 					(index >= max_naddr
1306 					 ? 0xffff
1307 					 : index);
1308 			if (index < max_naddr)
1309 				nfilters++;
1310 			else if (hash)
1311 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1312 		}
1313 
1314 		free = false;
1315 		offset += fw_naddr;
1316 		rem -= fw_naddr;
1317 	}
1318 
1319 	/*
1320 	 * If there were no errors or we merely ran out of room in our MAC
1321 	 * address arena, return the number of filters actually written.
1322 	 */
1323 	if (ret == 0 || ret == -ENOMEM)
1324 		ret = nfilters;
1325 	return ret;
1326 }
1327 
1328 /**
1329  *	t4vf_free_mac_filt - frees exact-match filters of given MAC addresses
1330  *	@adapter: the adapter
1331  *	@viid: the VI id
1332  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
1333  *	@addr: the MAC address(es)
1334  *	@sleep_ok: call is allowed to sleep
1335  *
1336  *	Frees the exact-match filter for each of the supplied addresses
1337  *
1338  *	Returns a negative error number or the number of filters freed.
1339  */
1340 int t4vf_free_mac_filt(struct adapter *adapter, unsigned int viid,
1341 		       unsigned int naddr, const u8 **addr, bool sleep_ok)
1342 {
1343 	int offset, ret = 0;
1344 	struct fw_vi_mac_cmd cmd;
1345 	unsigned int nfilters = 0;
1346 	unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1347 	unsigned int rem = naddr;
1348 
1349 	if (naddr > max_naddr)
1350 		return -EINVAL;
1351 
1352 	for (offset = 0; offset < (int)naddr ; /**/) {
1353 		unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) ?
1354 					 rem : ARRAY_SIZE(cmd.u.exact));
1355 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1356 						     u.exact[fw_naddr]), 16);
1357 		struct fw_vi_mac_exact *p;
1358 		int i;
1359 
1360 		memset(&cmd, 0, sizeof(cmd));
1361 		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1362 				     FW_CMD_REQUEST_F |
1363 				     FW_CMD_WRITE_F |
1364 				     FW_CMD_EXEC_V(0) |
1365 				     FW_VI_MAC_CMD_VIID_V(viid));
1366 		cmd.freemacs_to_len16 =
1367 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
1368 					    FW_CMD_LEN16_V(len16));
1369 
1370 		for (i = 0, p = cmd.u.exact; i < (int)fw_naddr; i++, p++) {
1371 			p->valid_to_idx = cpu_to_be16(
1372 				FW_VI_MAC_CMD_VALID_F |
1373 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
1374 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1375 		}
1376 
1377 		ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &cmd,
1378 					sleep_ok);
1379 		if (ret)
1380 			break;
1381 
1382 		for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1383 			u16 index = FW_VI_MAC_CMD_IDX_G(
1384 						be16_to_cpu(p->valid_to_idx));
1385 
1386 			if (index < max_naddr)
1387 				nfilters++;
1388 		}
1389 
1390 		offset += fw_naddr;
1391 		rem -= fw_naddr;
1392 	}
1393 
1394 	if (ret == 0)
1395 		ret = nfilters;
1396 	return ret;
1397 }
1398 
1399 /**
1400  *	t4vf_change_mac - modifies the exact-match filter for a MAC address
1401  *	@adapter: the adapter
1402  *	@viid: the Virtual Interface ID
1403  *	@idx: index of existing filter for old value of MAC address, or -1
1404  *	@addr: the new MAC address value
1405  *	@persist: if idx < 0, the new MAC allocation should be persistent
1406  *
1407  *	Modifies an exact-match filter and sets it to the new MAC address.
1408  *	Note that in general it is not possible to modify the value of a given
1409  *	filter so the generic way to modify an address filter is to free the
1410  *	one being used by the old address value and allocate a new filter for
1411  *	the new address value.  @idx can be -1 if the address is a new
1412  *	addition.
1413  *
1414  *	Returns a negative error number or the index of the filter with the new
1415  *	MAC value.
1416  */
1417 int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1418 		    int idx, const u8 *addr, bool persist)
1419 {
1420 	int ret;
1421 	struct fw_vi_mac_cmd cmd, rpl;
1422 	struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1423 	size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1424 					     u.exact[1]), 16);
1425 	unsigned int max_mac_addr = adapter->params.arch.mps_tcam_size;
1426 
1427 	/*
1428 	 * If this is a new allocation, determine whether it should be
1429 	 * persistent (across a "freemacs" operation) or not.
1430 	 */
1431 	if (idx < 0)
1432 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1433 
1434 	memset(&cmd, 0, sizeof(cmd));
1435 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1436 				     FW_CMD_REQUEST_F |
1437 				     FW_CMD_WRITE_F |
1438 				     FW_VI_MAC_CMD_VIID_V(viid));
1439 	cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1440 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
1441 				      FW_VI_MAC_CMD_IDX_V(idx));
1442 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
1443 
1444 	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1445 	if (ret == 0) {
1446 		p = &rpl.u.exact[0];
1447 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
1448 		if (ret >= max_mac_addr)
1449 			ret = -ENOMEM;
1450 	}
1451 	return ret;
1452 }
1453 
1454 /**
1455  *	t4vf_set_addr_hash - program the MAC inexact-match hash filter
1456  *	@adapter: the adapter
1457  *	@viid: the Virtual Interface Identifier
1458  *	@ucast: whether the hash filter should also match unicast addresses
1459  *	@vec: the value to be written to the hash filter
1460  *	@sleep_ok: call is allowed to sleep
1461  *
1462  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
1463  */
1464 int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1465 		       bool ucast, u64 vec, bool sleep_ok)
1466 {
1467 	struct fw_vi_mac_cmd cmd;
1468 	size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1469 					     u.exact[0]), 16);
1470 
1471 	memset(&cmd, 0, sizeof(cmd));
1472 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1473 				     FW_CMD_REQUEST_F |
1474 				     FW_CMD_WRITE_F |
1475 				     FW_VI_ENABLE_CMD_VIID_V(viid));
1476 	cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
1477 					    FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
1478 					    FW_CMD_LEN16_V(len16));
1479 	cmd.u.hash.hashvec = cpu_to_be64(vec);
1480 	return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1481 }
1482 
1483 /**
1484  *	t4vf_get_port_stats - collect "port" statistics
1485  *	@adapter: the adapter
1486  *	@pidx: the port index
1487  *	@s: the stats structure to fill
1488  *
1489  *	Collect statistics for the "port"'s Virtual Interface.
1490  */
1491 int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1492 			struct t4vf_port_stats *s)
1493 {
1494 	struct port_info *pi = adap2pinfo(adapter, pidx);
1495 	struct fw_vi_stats_vf fwstats;
1496 	unsigned int rem = VI_VF_NUM_STATS;
1497 	__be64 *fwsp = (__be64 *)&fwstats;
1498 
1499 	/*
1500 	 * Grab the Virtual Interface statistics a chunk at a time via mailbox
1501 	 * commands.  We could use a Work Request and get all of them at once
1502 	 * but that's an asynchronous interface which is awkward to use.
1503 	 */
1504 	while (rem) {
1505 		unsigned int ix = VI_VF_NUM_STATS - rem;
1506 		unsigned int nstats = min(6U, rem);
1507 		struct fw_vi_stats_cmd cmd, rpl;
1508 		size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1509 			      sizeof(struct fw_vi_stats_ctl));
1510 		size_t len16 = DIV_ROUND_UP(len, 16);
1511 		int ret;
1512 
1513 		memset(&cmd, 0, sizeof(cmd));
1514 		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
1515 					     FW_VI_STATS_CMD_VIID_V(pi->viid) |
1516 					     FW_CMD_REQUEST_F |
1517 					     FW_CMD_READ_F);
1518 		cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1519 		cmd.u.ctl.nstats_ix =
1520 			cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
1521 				    FW_VI_STATS_CMD_NSTATS_V(nstats));
1522 		ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1523 		if (ret)
1524 			return ret;
1525 
1526 		memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1527 
1528 		rem -= nstats;
1529 		fwsp += nstats;
1530 	}
1531 
1532 	/*
1533 	 * Translate firmware statistics into host native statistics.
1534 	 */
1535 	s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1536 	s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1537 	s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1538 	s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1539 	s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1540 	s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1541 	s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1542 	s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1543 	s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1544 
1545 	s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1546 	s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1547 	s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1548 	s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1549 	s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1550 	s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1551 
1552 	s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1553 
1554 	return 0;
1555 }
1556 
1557 /**
1558  *	t4vf_iq_free - free an ingress queue and its free lists
1559  *	@adapter: the adapter
1560  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1561  *	@iqid: ingress queue ID
1562  *	@fl0id: FL0 queue ID or 0xffff if no attached FL0
1563  *	@fl1id: FL1 queue ID or 0xffff if no attached FL1
1564  *
1565  *	Frees an ingress queue and its associated free lists, if any.
1566  */
1567 int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1568 		 unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1569 {
1570 	struct fw_iq_cmd cmd;
1571 
1572 	memset(&cmd, 0, sizeof(cmd));
1573 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
1574 				    FW_CMD_REQUEST_F |
1575 				    FW_CMD_EXEC_F);
1576 	cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
1577 					 FW_LEN16(cmd));
1578 	cmd.type_to_iqandstindex =
1579 		cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
1580 
1581 	cmd.iqid = cpu_to_be16(iqid);
1582 	cmd.fl0id = cpu_to_be16(fl0id);
1583 	cmd.fl1id = cpu_to_be16(fl1id);
1584 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1585 }
1586 
1587 /**
1588  *	t4vf_eth_eq_free - free an Ethernet egress queue
1589  *	@adapter: the adapter
1590  *	@eqid: egress queue ID
1591  *
1592  *	Frees an Ethernet egress queue.
1593  */
1594 int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1595 {
1596 	struct fw_eq_eth_cmd cmd;
1597 
1598 	memset(&cmd, 0, sizeof(cmd));
1599 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
1600 				    FW_CMD_REQUEST_F |
1601 				    FW_CMD_EXEC_F);
1602 	cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
1603 					 FW_LEN16(cmd));
1604 	cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
1605 	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1606 }
1607 
1608 /**
1609  *	t4vf_handle_fw_rpl - process a firmware reply message
1610  *	@adapter: the adapter
1611  *	@rpl: start of the firmware message
1612  *
1613  *	Processes a firmware message, such as link state change messages.
1614  */
1615 int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
1616 {
1617 	const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
1618 	u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));
1619 
1620 	switch (opcode) {
1621 	case FW_PORT_CMD: {
1622 		/*
1623 		 * Link/module state change message.
1624 		 */
1625 		const struct fw_port_cmd *port_cmd =
1626 			(const struct fw_port_cmd *)rpl;
1627 		u32 stat, mod;
1628 		int action, port_id, link_ok, speed, fc, pidx;
1629 
1630 		/*
1631 		 * Extract various fields from port status change message.
1632 		 */
1633 		action = FW_PORT_CMD_ACTION_G(
1634 			be32_to_cpu(port_cmd->action_to_len16));
1635 		if (action != FW_PORT_ACTION_GET_PORT_INFO) {
1636 			dev_err(adapter->pdev_dev,
1637 				"Unknown firmware PORT reply action %x\n",
1638 				action);
1639 			break;
1640 		}
1641 
1642 		port_id = FW_PORT_CMD_PORTID_G(
1643 			be32_to_cpu(port_cmd->op_to_portid));
1644 
1645 		stat = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype);
1646 		link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
1647 		speed = 0;
1648 		fc = 0;
1649 		if (stat & FW_PORT_CMD_RXPAUSE_F)
1650 			fc |= PAUSE_RX;
1651 		if (stat & FW_PORT_CMD_TXPAUSE_F)
1652 			fc |= PAUSE_TX;
1653 		if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1654 			speed = 100;
1655 		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1656 			speed = 1000;
1657 		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1658 			speed = 10000;
1659 		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1660 			speed = 40000;
1661 
1662 		/*
1663 		 * Scan all of our "ports" (Virtual Interfaces) looking for
1664 		 * those bound to the physical port which has changed.  If
1665 		 * our recorded state doesn't match the current state,
1666 		 * signal that change to the OS code.
1667 		 */
1668 		for_each_port(adapter, pidx) {
1669 			struct port_info *pi = adap2pinfo(adapter, pidx);
1670 			struct link_config *lc;
1671 
1672 			if (pi->port_id != port_id)
1673 				continue;
1674 
1675 			lc = &pi->link_cfg;
1676 
1677 			mod = FW_PORT_CMD_MODTYPE_G(stat);
1678 			if (mod != pi->mod_type) {
1679 				pi->mod_type = mod;
1680 				t4vf_os_portmod_changed(adapter, pidx);
1681 			}
1682 
1683 			if (link_ok != lc->link_ok || speed != lc->speed ||
1684 			    fc != lc->fc) {
1685 				/* something changed */
1686 				lc->link_ok = link_ok;
1687 				lc->speed = speed;
1688 				lc->fc = fc;
1689 				lc->supported =
1690 					be16_to_cpu(port_cmd->u.info.pcap);
1691 				t4vf_os_link_changed(adapter, pidx, link_ok);
1692 			}
1693 		}
1694 		break;
1695 	}
1696 
1697 	default:
1698 		dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
1699 			opcode);
1700 	}
1701 	return 0;
1702 }
1703 
1704 /**
1705  */
1706 int t4vf_prep_adapter(struct adapter *adapter)
1707 {
1708 	int err;
1709 	unsigned int chipid;
1710 
1711 	/* Wait for the device to become ready before proceeding ...
1712 	 */
1713 	err = t4vf_wait_dev_ready(adapter);
1714 	if (err)
1715 		return err;
1716 
1717 	/* Default port and clock for debugging in case we can't reach
1718 	 * firmware.
1719 	 */
1720 	adapter->params.nports = 1;
1721 	adapter->params.vfres.pmask = 1;
1722 	adapter->params.vpd.cclk = 50000;
1723 
1724 	adapter->params.chip = 0;
1725 	switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
1726 	case CHELSIO_T4:
1727 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
1728 		adapter->params.arch.sge_fl_db = DBPRIO_F;
1729 		adapter->params.arch.mps_tcam_size =
1730 				NUM_MPS_CLS_SRAM_L_INSTANCES;
1731 		break;
1732 
1733 	case CHELSIO_T5:
1734 		chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
1735 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
1736 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
1737 		adapter->params.arch.mps_tcam_size =
1738 				NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1739 		break;
1740 
1741 	case CHELSIO_T6:
1742 		chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
1743 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, chipid);
1744 		adapter->params.arch.sge_fl_db = 0;
1745 		adapter->params.arch.mps_tcam_size =
1746 				NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1747 		break;
1748 	}
1749 
1750 	return 0;
1751 }
1752