xref: /linux/drivers/net/ethernet/chelsio/cxgb4vf/sge.c (revision b2d0f5d5dc53532e6f07bc546a476a55ebdfe0f3)
1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #include <linux/skbuff.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/if_vlan.h>
40 #include <linux/ip.h>
41 #include <net/ipv6.h>
42 #include <net/tcp.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/prefetch.h>
45 
46 #include "t4vf_common.h"
47 #include "t4vf_defs.h"
48 
49 #include "../cxgb4/t4_regs.h"
50 #include "../cxgb4/t4_values.h"
51 #include "../cxgb4/t4fw_api.h"
52 #include "../cxgb4/t4_msg.h"
53 
54 /*
55  * Constants ...
56  */
57 enum {
58 	/*
59 	 * Egress Queue sizes, producer and consumer indices are all in units
60 	 * of Egress Context Units bytes.  Note that as far as the hardware is
61 	 * concerned, the free list is an Egress Queue (the host produces free
62 	 * buffers which the hardware consumes) and free list entries are
63 	 * 64-bit PCI DMA addresses.
64 	 */
65 	EQ_UNIT = SGE_EQ_IDXSIZE,
66 	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
67 	TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
68 
69 	/*
70 	 * Max number of TX descriptors we clean up at a time.  Should be
71 	 * modest as freeing skbs isn't cheap and it happens while holding
72 	 * locks.  We just need to free packets faster than they arrive, we
73 	 * eventually catch up and keep the amortized cost reasonable.
74 	 */
75 	MAX_TX_RECLAIM = 16,
76 
77 	/*
78 	 * Max number of Rx buffers we replenish at a time.  Again keep this
79 	 * modest, allocating buffers isn't cheap either.
80 	 */
81 	MAX_RX_REFILL = 16,
82 
83 	/*
84 	 * Period of the Rx queue check timer.  This timer is infrequent as it
85 	 * has something to do only when the system experiences severe memory
86 	 * shortage.
87 	 */
88 	RX_QCHECK_PERIOD = (HZ / 2),
89 
90 	/*
91 	 * Period of the TX queue check timer and the maximum number of TX
92 	 * descriptors to be reclaimed by the TX timer.
93 	 */
94 	TX_QCHECK_PERIOD = (HZ / 2),
95 	MAX_TIMER_TX_RECLAIM = 100,
96 
97 	/*
98 	 * Suspend an Ethernet TX queue with fewer available descriptors than
99 	 * this.  We always want to have room for a maximum sized packet:
100 	 * inline immediate data + MAX_SKB_FRAGS. This is the same as
101 	 * calc_tx_flits() for a TSO packet with nr_frags == MAX_SKB_FRAGS
102 	 * (see that function and its helpers for a description of the
103 	 * calculation).
104 	 */
105 	ETHTXQ_MAX_FRAGS = MAX_SKB_FRAGS + 1,
106 	ETHTXQ_MAX_SGL_LEN = ((3 * (ETHTXQ_MAX_FRAGS-1))/2 +
107 				   ((ETHTXQ_MAX_FRAGS-1) & 1) +
108 				   2),
109 	ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
110 			  sizeof(struct cpl_tx_pkt_lso_core) +
111 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
112 	ETHTXQ_MAX_FLITS = ETHTXQ_MAX_SGL_LEN + ETHTXQ_MAX_HDR,
113 
114 	ETHTXQ_STOP_THRES = 1 + DIV_ROUND_UP(ETHTXQ_MAX_FLITS, TXD_PER_EQ_UNIT),
115 
116 	/*
117 	 * Max TX descriptor space we allow for an Ethernet packet to be
118 	 * inlined into a WR.  This is limited by the maximum value which
119 	 * we can specify for immediate data in the firmware Ethernet TX
120 	 * Work Request.
121 	 */
122 	MAX_IMM_TX_PKT_LEN = FW_WR_IMMDLEN_M,
123 
124 	/*
125 	 * Max size of a WR sent through a control TX queue.
126 	 */
127 	MAX_CTRL_WR_LEN = 256,
128 
129 	/*
130 	 * Maximum amount of data which we'll ever need to inline into a
131 	 * TX ring: max(MAX_IMM_TX_PKT_LEN, MAX_CTRL_WR_LEN).
132 	 */
133 	MAX_IMM_TX_LEN = (MAX_IMM_TX_PKT_LEN > MAX_CTRL_WR_LEN
134 			  ? MAX_IMM_TX_PKT_LEN
135 			  : MAX_CTRL_WR_LEN),
136 
137 	/*
138 	 * For incoming packets less than RX_COPY_THRES, we copy the data into
139 	 * an skb rather than referencing the data.  We allocate enough
140 	 * in-line room in skb's to accommodate pulling in RX_PULL_LEN bytes
141 	 * of the data (header).
142 	 */
143 	RX_COPY_THRES = 256,
144 	RX_PULL_LEN = 128,
145 
146 	/*
147 	 * Main body length for sk_buffs used for RX Ethernet packets with
148 	 * fragments.  Should be >= RX_PULL_LEN but possibly bigger to give
149 	 * pskb_may_pull() some room.
150 	 */
151 	RX_SKB_LEN = 512,
152 };
153 
154 /*
155  * Software state per TX descriptor.
156  */
157 struct tx_sw_desc {
158 	struct sk_buff *skb;		/* socket buffer of TX data source */
159 	struct ulptx_sgl *sgl;		/* scatter/gather list in TX Queue */
160 };
161 
162 /*
163  * Software state per RX Free List descriptor.  We keep track of the allocated
164  * FL page, its size, and its PCI DMA address (if the page is mapped).  The FL
165  * page size and its PCI DMA mapped state are stored in the low bits of the
166  * PCI DMA address as per below.
167  */
168 struct rx_sw_desc {
169 	struct page *page;		/* Free List page buffer */
170 	dma_addr_t dma_addr;		/* PCI DMA address (if mapped) */
171 					/*   and flags (see below) */
172 };
173 
174 /*
175  * The low bits of rx_sw_desc.dma_addr have special meaning.  Note that the
176  * SGE also uses the low 4 bits to determine the size of the buffer.  It uses
177  * those bits to index into the SGE_FL_BUFFER_SIZE[index] register array.
178  * Since we only use SGE_FL_BUFFER_SIZE0 and SGE_FL_BUFFER_SIZE1, these low 4
179  * bits can only contain a 0 or a 1 to indicate which size buffer we're giving
180  * to the SGE.  Thus, our software state of "is the buffer mapped for DMA" is
181  * maintained in an inverse sense so the hardware never sees that bit high.
182  */
183 enum {
184 	RX_LARGE_BUF    = 1 << 0,	/* buffer is SGE_FL_BUFFER_SIZE[1] */
185 	RX_UNMAPPED_BUF = 1 << 1,	/* buffer is not mapped */
186 };
187 
188 /**
189  *	get_buf_addr - return DMA buffer address of software descriptor
190  *	@sdesc: pointer to the software buffer descriptor
191  *
192  *	Return the DMA buffer address of a software descriptor (stripping out
193  *	our low-order flag bits).
194  */
195 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *sdesc)
196 {
197 	return sdesc->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF);
198 }
199 
200 /**
201  *	is_buf_mapped - is buffer mapped for DMA?
202  *	@sdesc: pointer to the software buffer descriptor
203  *
204  *	Determine whether the buffer associated with a software descriptor in
205  *	mapped for DMA or not.
206  */
207 static inline bool is_buf_mapped(const struct rx_sw_desc *sdesc)
208 {
209 	return !(sdesc->dma_addr & RX_UNMAPPED_BUF);
210 }
211 
212 /**
213  *	need_skb_unmap - does the platform need unmapping of sk_buffs?
214  *
215  *	Returns true if the platform needs sk_buff unmapping.  The compiler
216  *	optimizes away unnecessary code if this returns true.
217  */
218 static inline int need_skb_unmap(void)
219 {
220 #ifdef CONFIG_NEED_DMA_MAP_STATE
221 	return 1;
222 #else
223 	return 0;
224 #endif
225 }
226 
227 /**
228  *	txq_avail - return the number of available slots in a TX queue
229  *	@tq: the TX queue
230  *
231  *	Returns the number of available descriptors in a TX queue.
232  */
233 static inline unsigned int txq_avail(const struct sge_txq *tq)
234 {
235 	return tq->size - 1 - tq->in_use;
236 }
237 
238 /**
239  *	fl_cap - return the capacity of a Free List
240  *	@fl: the Free List
241  *
242  *	Returns the capacity of a Free List.  The capacity is less than the
243  *	size because an Egress Queue Index Unit worth of descriptors needs to
244  *	be left unpopulated, otherwise the Producer and Consumer indices PIDX
245  *	and CIDX will match and the hardware will think the FL is empty.
246  */
247 static inline unsigned int fl_cap(const struct sge_fl *fl)
248 {
249 	return fl->size - FL_PER_EQ_UNIT;
250 }
251 
252 /**
253  *	fl_starving - return whether a Free List is starving.
254  *	@adapter: pointer to the adapter
255  *	@fl: the Free List
256  *
257  *	Tests specified Free List to see whether the number of buffers
258  *	available to the hardware has falled below our "starvation"
259  *	threshold.
260  */
261 static inline bool fl_starving(const struct adapter *adapter,
262 			       const struct sge_fl *fl)
263 {
264 	const struct sge *s = &adapter->sge;
265 
266 	return fl->avail - fl->pend_cred <= s->fl_starve_thres;
267 }
268 
269 /**
270  *	map_skb -  map an skb for DMA to the device
271  *	@dev: the egress net device
272  *	@skb: the packet to map
273  *	@addr: a pointer to the base of the DMA mapping array
274  *
275  *	Map an skb for DMA to the device and return an array of DMA addresses.
276  */
277 static int map_skb(struct device *dev, const struct sk_buff *skb,
278 		   dma_addr_t *addr)
279 {
280 	const skb_frag_t *fp, *end;
281 	const struct skb_shared_info *si;
282 
283 	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
284 	if (dma_mapping_error(dev, *addr))
285 		goto out_err;
286 
287 	si = skb_shinfo(skb);
288 	end = &si->frags[si->nr_frags];
289 	for (fp = si->frags; fp < end; fp++) {
290 		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
291 					   DMA_TO_DEVICE);
292 		if (dma_mapping_error(dev, *addr))
293 			goto unwind;
294 	}
295 	return 0;
296 
297 unwind:
298 	while (fp-- > si->frags)
299 		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
300 	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
301 
302 out_err:
303 	return -ENOMEM;
304 }
305 
306 static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
307 		      const struct ulptx_sgl *sgl, const struct sge_txq *tq)
308 {
309 	const struct ulptx_sge_pair *p;
310 	unsigned int nfrags = skb_shinfo(skb)->nr_frags;
311 
312 	if (likely(skb_headlen(skb)))
313 		dma_unmap_single(dev, be64_to_cpu(sgl->addr0),
314 				 be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
315 	else {
316 		dma_unmap_page(dev, be64_to_cpu(sgl->addr0),
317 			       be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
318 		nfrags--;
319 	}
320 
321 	/*
322 	 * the complexity below is because of the possibility of a wrap-around
323 	 * in the middle of an SGL
324 	 */
325 	for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
326 		if (likely((u8 *)(p + 1) <= (u8 *)tq->stat)) {
327 unmap:
328 			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
329 				       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
330 			dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
331 				       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
332 			p++;
333 		} else if ((u8 *)p == (u8 *)tq->stat) {
334 			p = (const struct ulptx_sge_pair *)tq->desc;
335 			goto unmap;
336 		} else if ((u8 *)p + 8 == (u8 *)tq->stat) {
337 			const __be64 *addr = (const __be64 *)tq->desc;
338 
339 			dma_unmap_page(dev, be64_to_cpu(addr[0]),
340 				       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
341 			dma_unmap_page(dev, be64_to_cpu(addr[1]),
342 				       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
343 			p = (const struct ulptx_sge_pair *)&addr[2];
344 		} else {
345 			const __be64 *addr = (const __be64 *)tq->desc;
346 
347 			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
348 				       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
349 			dma_unmap_page(dev, be64_to_cpu(addr[0]),
350 				       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
351 			p = (const struct ulptx_sge_pair *)&addr[1];
352 		}
353 	}
354 	if (nfrags) {
355 		__be64 addr;
356 
357 		if ((u8 *)p == (u8 *)tq->stat)
358 			p = (const struct ulptx_sge_pair *)tq->desc;
359 		addr = ((u8 *)p + 16 <= (u8 *)tq->stat
360 			? p->addr[0]
361 			: *(const __be64 *)tq->desc);
362 		dma_unmap_page(dev, be64_to_cpu(addr), be32_to_cpu(p->len[0]),
363 			       DMA_TO_DEVICE);
364 	}
365 }
366 
367 /**
368  *	free_tx_desc - reclaims TX descriptors and their buffers
369  *	@adapter: the adapter
370  *	@tq: the TX queue to reclaim descriptors from
371  *	@n: the number of descriptors to reclaim
372  *	@unmap: whether the buffers should be unmapped for DMA
373  *
374  *	Reclaims TX descriptors from an SGE TX queue and frees the associated
375  *	TX buffers.  Called with the TX queue lock held.
376  */
377 static void free_tx_desc(struct adapter *adapter, struct sge_txq *tq,
378 			 unsigned int n, bool unmap)
379 {
380 	struct tx_sw_desc *sdesc;
381 	unsigned int cidx = tq->cidx;
382 	struct device *dev = adapter->pdev_dev;
383 
384 	const int need_unmap = need_skb_unmap() && unmap;
385 
386 	sdesc = &tq->sdesc[cidx];
387 	while (n--) {
388 		/*
389 		 * If we kept a reference to the original TX skb, we need to
390 		 * unmap it from PCI DMA space (if required) and free it.
391 		 */
392 		if (sdesc->skb) {
393 			if (need_unmap)
394 				unmap_sgl(dev, sdesc->skb, sdesc->sgl, tq);
395 			dev_consume_skb_any(sdesc->skb);
396 			sdesc->skb = NULL;
397 		}
398 
399 		sdesc++;
400 		if (++cidx == tq->size) {
401 			cidx = 0;
402 			sdesc = tq->sdesc;
403 		}
404 	}
405 	tq->cidx = cidx;
406 }
407 
408 /*
409  * Return the number of reclaimable descriptors in a TX queue.
410  */
411 static inline int reclaimable(const struct sge_txq *tq)
412 {
413 	int hw_cidx = be16_to_cpu(tq->stat->cidx);
414 	int reclaimable = hw_cidx - tq->cidx;
415 	if (reclaimable < 0)
416 		reclaimable += tq->size;
417 	return reclaimable;
418 }
419 
420 /**
421  *	reclaim_completed_tx - reclaims completed TX descriptors
422  *	@adapter: the adapter
423  *	@tq: the TX queue to reclaim completed descriptors from
424  *	@unmap: whether the buffers should be unmapped for DMA
425  *
426  *	Reclaims TX descriptors that the SGE has indicated it has processed,
427  *	and frees the associated buffers if possible.  Called with the TX
428  *	queue locked.
429  */
430 static inline void reclaim_completed_tx(struct adapter *adapter,
431 					struct sge_txq *tq,
432 					bool unmap)
433 {
434 	int avail = reclaimable(tq);
435 
436 	if (avail) {
437 		/*
438 		 * Limit the amount of clean up work we do at a time to keep
439 		 * the TX lock hold time O(1).
440 		 */
441 		if (avail > MAX_TX_RECLAIM)
442 			avail = MAX_TX_RECLAIM;
443 
444 		free_tx_desc(adapter, tq, avail, unmap);
445 		tq->in_use -= avail;
446 	}
447 }
448 
449 /**
450  *	get_buf_size - return the size of an RX Free List buffer.
451  *	@adapter: pointer to the associated adapter
452  *	@sdesc: pointer to the software buffer descriptor
453  */
454 static inline int get_buf_size(const struct adapter *adapter,
455 			       const struct rx_sw_desc *sdesc)
456 {
457 	const struct sge *s = &adapter->sge;
458 
459 	return (s->fl_pg_order > 0 && (sdesc->dma_addr & RX_LARGE_BUF)
460 		? (PAGE_SIZE << s->fl_pg_order) : PAGE_SIZE);
461 }
462 
463 /**
464  *	free_rx_bufs - free RX buffers on an SGE Free List
465  *	@adapter: the adapter
466  *	@fl: the SGE Free List to free buffers from
467  *	@n: how many buffers to free
468  *
469  *	Release the next @n buffers on an SGE Free List RX queue.   The
470  *	buffers must be made inaccessible to hardware before calling this
471  *	function.
472  */
473 static void free_rx_bufs(struct adapter *adapter, struct sge_fl *fl, int n)
474 {
475 	while (n--) {
476 		struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
477 
478 		if (is_buf_mapped(sdesc))
479 			dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
480 				       get_buf_size(adapter, sdesc),
481 				       PCI_DMA_FROMDEVICE);
482 		put_page(sdesc->page);
483 		sdesc->page = NULL;
484 		if (++fl->cidx == fl->size)
485 			fl->cidx = 0;
486 		fl->avail--;
487 	}
488 }
489 
490 /**
491  *	unmap_rx_buf - unmap the current RX buffer on an SGE Free List
492  *	@adapter: the adapter
493  *	@fl: the SGE Free List
494  *
495  *	Unmap the current buffer on an SGE Free List RX queue.   The
496  *	buffer must be made inaccessible to HW before calling this function.
497  *
498  *	This is similar to @free_rx_bufs above but does not free the buffer.
499  *	Do note that the FL still loses any further access to the buffer.
500  *	This is used predominantly to "transfer ownership" of an FL buffer
501  *	to another entity (typically an skb's fragment list).
502  */
503 static void unmap_rx_buf(struct adapter *adapter, struct sge_fl *fl)
504 {
505 	struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
506 
507 	if (is_buf_mapped(sdesc))
508 		dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
509 			       get_buf_size(adapter, sdesc),
510 			       PCI_DMA_FROMDEVICE);
511 	sdesc->page = NULL;
512 	if (++fl->cidx == fl->size)
513 		fl->cidx = 0;
514 	fl->avail--;
515 }
516 
517 /**
518  *	ring_fl_db - righ doorbell on free list
519  *	@adapter: the adapter
520  *	@fl: the Free List whose doorbell should be rung ...
521  *
522  *	Tell the Scatter Gather Engine that there are new free list entries
523  *	available.
524  */
525 static inline void ring_fl_db(struct adapter *adapter, struct sge_fl *fl)
526 {
527 	u32 val = adapter->params.arch.sge_fl_db;
528 
529 	/* The SGE keeps track of its Producer and Consumer Indices in terms
530 	 * of Egress Queue Units so we can only tell it about integral numbers
531 	 * of multiples of Free List Entries per Egress Queue Units ...
532 	 */
533 	if (fl->pend_cred >= FL_PER_EQ_UNIT) {
534 		if (is_t4(adapter->params.chip))
535 			val |= PIDX_V(fl->pend_cred / FL_PER_EQ_UNIT);
536 		else
537 			val |= PIDX_T5_V(fl->pend_cred / FL_PER_EQ_UNIT);
538 
539 		/* Make sure all memory writes to the Free List queue are
540 		 * committed before we tell the hardware about them.
541 		 */
542 		wmb();
543 
544 		/* If we don't have access to the new User Doorbell (T5+), use
545 		 * the old doorbell mechanism; otherwise use the new BAR2
546 		 * mechanism.
547 		 */
548 		if (unlikely(fl->bar2_addr == NULL)) {
549 			t4_write_reg(adapter,
550 				     T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
551 				     QID_V(fl->cntxt_id) | val);
552 		} else {
553 			writel(val | QID_V(fl->bar2_qid),
554 			       fl->bar2_addr + SGE_UDB_KDOORBELL);
555 
556 			/* This Write memory Barrier will force the write to
557 			 * the User Doorbell area to be flushed.
558 			 */
559 			wmb();
560 		}
561 		fl->pend_cred %= FL_PER_EQ_UNIT;
562 	}
563 }
564 
565 /**
566  *	set_rx_sw_desc - initialize software RX buffer descriptor
567  *	@sdesc: pointer to the softwore RX buffer descriptor
568  *	@page: pointer to the page data structure backing the RX buffer
569  *	@dma_addr: PCI DMA address (possibly with low-bit flags)
570  */
571 static inline void set_rx_sw_desc(struct rx_sw_desc *sdesc, struct page *page,
572 				  dma_addr_t dma_addr)
573 {
574 	sdesc->page = page;
575 	sdesc->dma_addr = dma_addr;
576 }
577 
578 /*
579  * Support for poisoning RX buffers ...
580  */
581 #define POISON_BUF_VAL -1
582 
583 static inline void poison_buf(struct page *page, size_t sz)
584 {
585 #if POISON_BUF_VAL >= 0
586 	memset(page_address(page), POISON_BUF_VAL, sz);
587 #endif
588 }
589 
590 /**
591  *	refill_fl - refill an SGE RX buffer ring
592  *	@adapter: the adapter
593  *	@fl: the Free List ring to refill
594  *	@n: the number of new buffers to allocate
595  *	@gfp: the gfp flags for the allocations
596  *
597  *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
598  *	allocated with the supplied gfp flags.  The caller must assure that
599  *	@n does not exceed the queue's capacity -- i.e. (cidx == pidx) _IN
600  *	EGRESS QUEUE UNITS_ indicates an empty Free List!  Returns the number
601  *	of buffers allocated.  If afterwards the queue is found critically low,
602  *	mark it as starving in the bitmap of starving FLs.
603  */
604 static unsigned int refill_fl(struct adapter *adapter, struct sge_fl *fl,
605 			      int n, gfp_t gfp)
606 {
607 	struct sge *s = &adapter->sge;
608 	struct page *page;
609 	dma_addr_t dma_addr;
610 	unsigned int cred = fl->avail;
611 	__be64 *d = &fl->desc[fl->pidx];
612 	struct rx_sw_desc *sdesc = &fl->sdesc[fl->pidx];
613 
614 	/*
615 	 * Sanity: ensure that the result of adding n Free List buffers
616 	 * won't result in wrapping the SGE's Producer Index around to
617 	 * it's Consumer Index thereby indicating an empty Free List ...
618 	 */
619 	BUG_ON(fl->avail + n > fl->size - FL_PER_EQ_UNIT);
620 
621 	gfp |= __GFP_NOWARN;
622 
623 	/*
624 	 * If we support large pages, prefer large buffers and fail over to
625 	 * small pages if we can't allocate large pages to satisfy the refill.
626 	 * If we don't support large pages, drop directly into the small page
627 	 * allocation code.
628 	 */
629 	if (s->fl_pg_order == 0)
630 		goto alloc_small_pages;
631 
632 	while (n) {
633 		page = __dev_alloc_pages(gfp, s->fl_pg_order);
634 		if (unlikely(!page)) {
635 			/*
636 			 * We've failed inour attempt to allocate a "large
637 			 * page".  Fail over to the "small page" allocation
638 			 * below.
639 			 */
640 			fl->large_alloc_failed++;
641 			break;
642 		}
643 		poison_buf(page, PAGE_SIZE << s->fl_pg_order);
644 
645 		dma_addr = dma_map_page(adapter->pdev_dev, page, 0,
646 					PAGE_SIZE << s->fl_pg_order,
647 					PCI_DMA_FROMDEVICE);
648 		if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
649 			/*
650 			 * We've run out of DMA mapping space.  Free up the
651 			 * buffer and return with what we've managed to put
652 			 * into the free list.  We don't want to fail over to
653 			 * the small page allocation below in this case
654 			 * because DMA mapping resources are typically
655 			 * critical resources once they become scarse.
656 			 */
657 			__free_pages(page, s->fl_pg_order);
658 			goto out;
659 		}
660 		dma_addr |= RX_LARGE_BUF;
661 		*d++ = cpu_to_be64(dma_addr);
662 
663 		set_rx_sw_desc(sdesc, page, dma_addr);
664 		sdesc++;
665 
666 		fl->avail++;
667 		if (++fl->pidx == fl->size) {
668 			fl->pidx = 0;
669 			sdesc = fl->sdesc;
670 			d = fl->desc;
671 		}
672 		n--;
673 	}
674 
675 alloc_small_pages:
676 	while (n--) {
677 		page = __dev_alloc_page(gfp);
678 		if (unlikely(!page)) {
679 			fl->alloc_failed++;
680 			break;
681 		}
682 		poison_buf(page, PAGE_SIZE);
683 
684 		dma_addr = dma_map_page(adapter->pdev_dev, page, 0, PAGE_SIZE,
685 				       PCI_DMA_FROMDEVICE);
686 		if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
687 			put_page(page);
688 			break;
689 		}
690 		*d++ = cpu_to_be64(dma_addr);
691 
692 		set_rx_sw_desc(sdesc, page, dma_addr);
693 		sdesc++;
694 
695 		fl->avail++;
696 		if (++fl->pidx == fl->size) {
697 			fl->pidx = 0;
698 			sdesc = fl->sdesc;
699 			d = fl->desc;
700 		}
701 	}
702 
703 out:
704 	/*
705 	 * Update our accounting state to incorporate the new Free List
706 	 * buffers, tell the hardware about them and return the number of
707 	 * buffers which we were able to allocate.
708 	 */
709 	cred = fl->avail - cred;
710 	fl->pend_cred += cred;
711 	ring_fl_db(adapter, fl);
712 
713 	if (unlikely(fl_starving(adapter, fl))) {
714 		smp_wmb();
715 		set_bit(fl->cntxt_id, adapter->sge.starving_fl);
716 	}
717 
718 	return cred;
719 }
720 
721 /*
722  * Refill a Free List to its capacity or the Maximum Refill Increment,
723  * whichever is smaller ...
724  */
725 static inline void __refill_fl(struct adapter *adapter, struct sge_fl *fl)
726 {
727 	refill_fl(adapter, fl,
728 		  min((unsigned int)MAX_RX_REFILL, fl_cap(fl) - fl->avail),
729 		  GFP_ATOMIC);
730 }
731 
732 /**
733  *	alloc_ring - allocate resources for an SGE descriptor ring
734  *	@dev: the PCI device's core device
735  *	@nelem: the number of descriptors
736  *	@hwsize: the size of each hardware descriptor
737  *	@swsize: the size of each software descriptor
738  *	@busaddrp: the physical PCI bus address of the allocated ring
739  *	@swringp: return address pointer for software ring
740  *	@stat_size: extra space in hardware ring for status information
741  *
742  *	Allocates resources for an SGE descriptor ring, such as TX queues,
743  *	free buffer lists, response queues, etc.  Each SGE ring requires
744  *	space for its hardware descriptors plus, optionally, space for software
745  *	state associated with each hardware entry (the metadata).  The function
746  *	returns three values: the virtual address for the hardware ring (the
747  *	return value of the function), the PCI bus address of the hardware
748  *	ring (in *busaddrp), and the address of the software ring (in swringp).
749  *	Both the hardware and software rings are returned zeroed out.
750  */
751 static void *alloc_ring(struct device *dev, size_t nelem, size_t hwsize,
752 			size_t swsize, dma_addr_t *busaddrp, void *swringp,
753 			size_t stat_size)
754 {
755 	/*
756 	 * Allocate the hardware ring and PCI DMA bus address space for said.
757 	 */
758 	size_t hwlen = nelem * hwsize + stat_size;
759 	void *hwring = dma_alloc_coherent(dev, hwlen, busaddrp, GFP_KERNEL);
760 
761 	if (!hwring)
762 		return NULL;
763 
764 	/*
765 	 * If the caller wants a software ring, allocate it and return a
766 	 * pointer to it in *swringp.
767 	 */
768 	BUG_ON((swsize != 0) != (swringp != NULL));
769 	if (swsize) {
770 		void *swring = kcalloc(nelem, swsize, GFP_KERNEL);
771 
772 		if (!swring) {
773 			dma_free_coherent(dev, hwlen, hwring, *busaddrp);
774 			return NULL;
775 		}
776 		*(void **)swringp = swring;
777 	}
778 
779 	/*
780 	 * Zero out the hardware ring and return its address as our function
781 	 * value.
782 	 */
783 	memset(hwring, 0, hwlen);
784 	return hwring;
785 }
786 
787 /**
788  *	sgl_len - calculates the size of an SGL of the given capacity
789  *	@n: the number of SGL entries
790  *
791  *	Calculates the number of flits (8-byte units) needed for a Direct
792  *	Scatter/Gather List that can hold the given number of entries.
793  */
794 static inline unsigned int sgl_len(unsigned int n)
795 {
796 	/*
797 	 * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
798 	 * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
799 	 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
800 	 * repeated sequences of { Length[i], Length[i+1], Address[i],
801 	 * Address[i+1] } (this ensures that all addresses are on 64-bit
802 	 * boundaries).  If N is even, then Length[N+1] should be set to 0 and
803 	 * Address[N+1] is omitted.
804 	 *
805 	 * The following calculation incorporates all of the above.  It's
806 	 * somewhat hard to follow but, briefly: the "+2" accounts for the
807 	 * first two flits which include the DSGL header, Length0 and
808 	 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
809 	 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
810 	 * finally the "+((n-1)&1)" adds the one remaining flit needed if
811 	 * (n-1) is odd ...
812 	 */
813 	n--;
814 	return (3 * n) / 2 + (n & 1) + 2;
815 }
816 
817 /**
818  *	flits_to_desc - returns the num of TX descriptors for the given flits
819  *	@flits: the number of flits
820  *
821  *	Returns the number of TX descriptors needed for the supplied number
822  *	of flits.
823  */
824 static inline unsigned int flits_to_desc(unsigned int flits)
825 {
826 	BUG_ON(flits > SGE_MAX_WR_LEN / sizeof(__be64));
827 	return DIV_ROUND_UP(flits, TXD_PER_EQ_UNIT);
828 }
829 
830 /**
831  *	is_eth_imm - can an Ethernet packet be sent as immediate data?
832  *	@skb: the packet
833  *
834  *	Returns whether an Ethernet packet is small enough to fit completely as
835  *	immediate data.
836  */
837 static inline int is_eth_imm(const struct sk_buff *skb)
838 {
839 	/*
840 	 * The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
841 	 * which does not accommodate immediate data.  We could dike out all
842 	 * of the support code for immediate data but that would tie our hands
843 	 * too much if we ever want to enhace the firmware.  It would also
844 	 * create more differences between the PF and VF Drivers.
845 	 */
846 	return false;
847 }
848 
849 /**
850  *	calc_tx_flits - calculate the number of flits for a packet TX WR
851  *	@skb: the packet
852  *
853  *	Returns the number of flits needed for a TX Work Request for the
854  *	given Ethernet packet, including the needed WR and CPL headers.
855  */
856 static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
857 {
858 	unsigned int flits;
859 
860 	/*
861 	 * If the skb is small enough, we can pump it out as a work request
862 	 * with only immediate data.  In that case we just have to have the
863 	 * TX Packet header plus the skb data in the Work Request.
864 	 */
865 	if (is_eth_imm(skb))
866 		return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
867 				    sizeof(__be64));
868 
869 	/*
870 	 * Otherwise, we're going to have to construct a Scatter gather list
871 	 * of the skb body and fragments.  We also include the flits necessary
872 	 * for the TX Packet Work Request and CPL.  We always have a firmware
873 	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
874 	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
875 	 * message or, if we're doing a Large Send Offload, an LSO CPL message
876 	 * with an embedded TX Packet Write CPL message.
877 	 */
878 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
879 	if (skb_shinfo(skb)->gso_size)
880 		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
881 			  sizeof(struct cpl_tx_pkt_lso_core) +
882 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
883 	else
884 		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
885 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
886 	return flits;
887 }
888 
889 /**
890  *	write_sgl - populate a Scatter/Gather List for a packet
891  *	@skb: the packet
892  *	@tq: the TX queue we are writing into
893  *	@sgl: starting location for writing the SGL
894  *	@end: points right after the end of the SGL
895  *	@start: start offset into skb main-body data to include in the SGL
896  *	@addr: the list of DMA bus addresses for the SGL elements
897  *
898  *	Generates a Scatter/Gather List for the buffers that make up a packet.
899  *	The caller must provide adequate space for the SGL that will be written.
900  *	The SGL includes all of the packet's page fragments and the data in its
901  *	main body except for the first @start bytes.  @pos must be 16-byte
902  *	aligned and within a TX descriptor with available space.  @end points
903  *	write after the end of the SGL but does not account for any potential
904  *	wrap around, i.e., @end > @tq->stat.
905  */
906 static void write_sgl(const struct sk_buff *skb, struct sge_txq *tq,
907 		      struct ulptx_sgl *sgl, u64 *end, unsigned int start,
908 		      const dma_addr_t *addr)
909 {
910 	unsigned int i, len;
911 	struct ulptx_sge_pair *to;
912 	const struct skb_shared_info *si = skb_shinfo(skb);
913 	unsigned int nfrags = si->nr_frags;
914 	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
915 
916 	len = skb_headlen(skb) - start;
917 	if (likely(len)) {
918 		sgl->len0 = htonl(len);
919 		sgl->addr0 = cpu_to_be64(addr[0] + start);
920 		nfrags++;
921 	} else {
922 		sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
923 		sgl->addr0 = cpu_to_be64(addr[1]);
924 	}
925 
926 	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
927 			      ULPTX_NSGE_V(nfrags));
928 	if (likely(--nfrags == 0))
929 		return;
930 	/*
931 	 * Most of the complexity below deals with the possibility we hit the
932 	 * end of the queue in the middle of writing the SGL.  For this case
933 	 * only we create the SGL in a temporary buffer and then copy it.
934 	 */
935 	to = (u8 *)end > (u8 *)tq->stat ? buf : sgl->sge;
936 
937 	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
938 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
939 		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
940 		to->addr[0] = cpu_to_be64(addr[i]);
941 		to->addr[1] = cpu_to_be64(addr[++i]);
942 	}
943 	if (nfrags) {
944 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
945 		to->len[1] = cpu_to_be32(0);
946 		to->addr[0] = cpu_to_be64(addr[i + 1]);
947 	}
948 	if (unlikely((u8 *)end > (u8 *)tq->stat)) {
949 		unsigned int part0 = (u8 *)tq->stat - (u8 *)sgl->sge, part1;
950 
951 		if (likely(part0))
952 			memcpy(sgl->sge, buf, part0);
953 		part1 = (u8 *)end - (u8 *)tq->stat;
954 		memcpy(tq->desc, (u8 *)buf + part0, part1);
955 		end = (void *)tq->desc + part1;
956 	}
957 	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
958 		*end = 0;
959 }
960 
961 /**
962  *	check_ring_tx_db - check and potentially ring a TX queue's doorbell
963  *	@adapter: the adapter
964  *	@tq: the TX queue
965  *	@n: number of new descriptors to give to HW
966  *
967  *	Ring the doorbel for a TX queue.
968  */
969 static inline void ring_tx_db(struct adapter *adapter, struct sge_txq *tq,
970 			      int n)
971 {
972 	/* Make sure that all writes to the TX Descriptors are committed
973 	 * before we tell the hardware about them.
974 	 */
975 	wmb();
976 
977 	/* If we don't have access to the new User Doorbell (T5+), use the old
978 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
979 	 */
980 	if (unlikely(tq->bar2_addr == NULL)) {
981 		u32 val = PIDX_V(n);
982 
983 		t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
984 			     QID_V(tq->cntxt_id) | val);
985 	} else {
986 		u32 val = PIDX_T5_V(n);
987 
988 		/* T4 and later chips share the same PIDX field offset within
989 		 * the doorbell, but T5 and later shrank the field in order to
990 		 * gain a bit for Doorbell Priority.  The field was absurdly
991 		 * large in the first place (14 bits) so we just use the T5
992 		 * and later limits and warn if a Queue ID is too large.
993 		 */
994 		WARN_ON(val & DBPRIO_F);
995 
996 		/* If we're only writing a single Egress Unit and the BAR2
997 		 * Queue ID is 0, we can use the Write Combining Doorbell
998 		 * Gather Buffer; otherwise we use the simple doorbell.
999 		 */
1000 		if (n == 1 && tq->bar2_qid == 0) {
1001 			unsigned int index = (tq->pidx
1002 					      ? (tq->pidx - 1)
1003 					      : (tq->size - 1));
1004 			__be64 *src = (__be64 *)&tq->desc[index];
1005 			__be64 __iomem *dst = (__be64 __iomem *)(tq->bar2_addr +
1006 							 SGE_UDB_WCDOORBELL);
1007 			unsigned int count = EQ_UNIT / sizeof(__be64);
1008 
1009 			/* Copy the TX Descriptor in a tight loop in order to
1010 			 * try to get it to the adapter in a single Write
1011 			 * Combined transfer on the PCI-E Bus.  If the Write
1012 			 * Combine fails (say because of an interrupt, etc.)
1013 			 * the hardware will simply take the last write as a
1014 			 * simple doorbell write with a PIDX Increment of 1
1015 			 * and will fetch the TX Descriptor from memory via
1016 			 * DMA.
1017 			 */
1018 			while (count) {
1019 				/* the (__force u64) is because the compiler
1020 				 * doesn't understand the endian swizzling
1021 				 * going on
1022 				 */
1023 				writeq((__force u64)*src, dst);
1024 				src++;
1025 				dst++;
1026 				count--;
1027 			}
1028 		} else
1029 			writel(val | QID_V(tq->bar2_qid),
1030 			       tq->bar2_addr + SGE_UDB_KDOORBELL);
1031 
1032 		/* This Write Memory Barrier will force the write to the User
1033 		 * Doorbell area to be flushed.  This is needed to prevent
1034 		 * writes on different CPUs for the same queue from hitting
1035 		 * the adapter out of order.  This is required when some Work
1036 		 * Requests take the Write Combine Gather Buffer path (user
1037 		 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
1038 		 * take the traditional path where we simply increment the
1039 		 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
1040 		 * hardware DMA read the actual Work Request.
1041 		 */
1042 		wmb();
1043 	}
1044 }
1045 
1046 /**
1047  *	inline_tx_skb - inline a packet's data into TX descriptors
1048  *	@skb: the packet
1049  *	@tq: the TX queue where the packet will be inlined
1050  *	@pos: starting position in the TX queue to inline the packet
1051  *
1052  *	Inline a packet's contents directly into TX descriptors, starting at
1053  *	the given position within the TX DMA ring.
1054  *	Most of the complexity of this operation is dealing with wrap arounds
1055  *	in the middle of the packet we want to inline.
1056  */
1057 static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *tq,
1058 			  void *pos)
1059 {
1060 	u64 *p;
1061 	int left = (void *)tq->stat - pos;
1062 
1063 	if (likely(skb->len <= left)) {
1064 		if (likely(!skb->data_len))
1065 			skb_copy_from_linear_data(skb, pos, skb->len);
1066 		else
1067 			skb_copy_bits(skb, 0, pos, skb->len);
1068 		pos += skb->len;
1069 	} else {
1070 		skb_copy_bits(skb, 0, pos, left);
1071 		skb_copy_bits(skb, left, tq->desc, skb->len - left);
1072 		pos = (void *)tq->desc + (skb->len - left);
1073 	}
1074 
1075 	/* 0-pad to multiple of 16 */
1076 	p = PTR_ALIGN(pos, 8);
1077 	if ((uintptr_t)p & 8)
1078 		*p = 0;
1079 }
1080 
1081 /*
1082  * Figure out what HW csum a packet wants and return the appropriate control
1083  * bits.
1084  */
1085 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1086 {
1087 	int csum_type;
1088 	const struct iphdr *iph = ip_hdr(skb);
1089 
1090 	if (iph->version == 4) {
1091 		if (iph->protocol == IPPROTO_TCP)
1092 			csum_type = TX_CSUM_TCPIP;
1093 		else if (iph->protocol == IPPROTO_UDP)
1094 			csum_type = TX_CSUM_UDPIP;
1095 		else {
1096 nocsum:
1097 			/*
1098 			 * unknown protocol, disable HW csum
1099 			 * and hope a bad packet is detected
1100 			 */
1101 			return TXPKT_L4CSUM_DIS_F;
1102 		}
1103 	} else {
1104 		/*
1105 		 * this doesn't work with extension headers
1106 		 */
1107 		const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
1108 
1109 		if (ip6h->nexthdr == IPPROTO_TCP)
1110 			csum_type = TX_CSUM_TCPIP6;
1111 		else if (ip6h->nexthdr == IPPROTO_UDP)
1112 			csum_type = TX_CSUM_UDPIP6;
1113 		else
1114 			goto nocsum;
1115 	}
1116 
1117 	if (likely(csum_type >= TX_CSUM_TCPIP)) {
1118 		u64 hdr_len = TXPKT_IPHDR_LEN_V(skb_network_header_len(skb));
1119 		int eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
1120 
1121 		if (chip <= CHELSIO_T5)
1122 			hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1123 		else
1124 			hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1125 		return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
1126 	} else {
1127 		int start = skb_transport_offset(skb);
1128 
1129 		return TXPKT_CSUM_TYPE_V(csum_type) |
1130 			TXPKT_CSUM_START_V(start) |
1131 			TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1132 	}
1133 }
1134 
1135 /*
1136  * Stop an Ethernet TX queue and record that state change.
1137  */
1138 static void txq_stop(struct sge_eth_txq *txq)
1139 {
1140 	netif_tx_stop_queue(txq->txq);
1141 	txq->q.stops++;
1142 }
1143 
1144 /*
1145  * Advance our software state for a TX queue by adding n in use descriptors.
1146  */
1147 static inline void txq_advance(struct sge_txq *tq, unsigned int n)
1148 {
1149 	tq->in_use += n;
1150 	tq->pidx += n;
1151 	if (tq->pidx >= tq->size)
1152 		tq->pidx -= tq->size;
1153 }
1154 
1155 /**
1156  *	t4vf_eth_xmit - add a packet to an Ethernet TX queue
1157  *	@skb: the packet
1158  *	@dev: the egress net device
1159  *
1160  *	Add a packet to an SGE Ethernet TX queue.  Runs with softirqs disabled.
1161  */
1162 int t4vf_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1163 {
1164 	u32 wr_mid;
1165 	u64 cntrl, *end;
1166 	int qidx, credits, max_pkt_len;
1167 	unsigned int flits, ndesc;
1168 	struct adapter *adapter;
1169 	struct sge_eth_txq *txq;
1170 	const struct port_info *pi;
1171 	struct fw_eth_tx_pkt_vm_wr *wr;
1172 	struct cpl_tx_pkt_core *cpl;
1173 	const struct skb_shared_info *ssi;
1174 	dma_addr_t addr[MAX_SKB_FRAGS + 1];
1175 	const size_t fw_hdr_copy_len = (sizeof(wr->ethmacdst) +
1176 					sizeof(wr->ethmacsrc) +
1177 					sizeof(wr->ethtype) +
1178 					sizeof(wr->vlantci));
1179 
1180 	/*
1181 	 * The chip minimum packet length is 10 octets but the firmware
1182 	 * command that we are using requires that we copy the Ethernet header
1183 	 * (including the VLAN tag) into the header so we reject anything
1184 	 * smaller than that ...
1185 	 */
1186 	if (unlikely(skb->len < fw_hdr_copy_len))
1187 		goto out_free;
1188 
1189 	/* Discard the packet if the length is greater than mtu */
1190 	max_pkt_len = ETH_HLEN + dev->mtu;
1191 	if (skb_vlan_tagged(skb))
1192 		max_pkt_len += VLAN_HLEN;
1193 	if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1194 		goto out_free;
1195 
1196 	/*
1197 	 * Figure out which TX Queue we're going to use.
1198 	 */
1199 	pi = netdev_priv(dev);
1200 	adapter = pi->adapter;
1201 	qidx = skb_get_queue_mapping(skb);
1202 	BUG_ON(qidx >= pi->nqsets);
1203 	txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1204 
1205 	/*
1206 	 * Take this opportunity to reclaim any TX Descriptors whose DMA
1207 	 * transfers have completed.
1208 	 */
1209 	reclaim_completed_tx(adapter, &txq->q, true);
1210 
1211 	/*
1212 	 * Calculate the number of flits and TX Descriptors we're going to
1213 	 * need along with how many TX Descriptors will be left over after
1214 	 * we inject our Work Request.
1215 	 */
1216 	flits = calc_tx_flits(skb);
1217 	ndesc = flits_to_desc(flits);
1218 	credits = txq_avail(&txq->q) - ndesc;
1219 
1220 	if (unlikely(credits < 0)) {
1221 		/*
1222 		 * Not enough room for this packet's Work Request.  Stop the
1223 		 * TX Queue and return a "busy" condition.  The queue will get
1224 		 * started later on when the firmware informs us that space
1225 		 * has opened up.
1226 		 */
1227 		txq_stop(txq);
1228 		dev_err(adapter->pdev_dev,
1229 			"%s: TX ring %u full while queue awake!\n",
1230 			dev->name, qidx);
1231 		return NETDEV_TX_BUSY;
1232 	}
1233 
1234 	if (!is_eth_imm(skb) &&
1235 	    unlikely(map_skb(adapter->pdev_dev, skb, addr) < 0)) {
1236 		/*
1237 		 * We need to map the skb into PCI DMA space (because it can't
1238 		 * be in-lined directly into the Work Request) and the mapping
1239 		 * operation failed.  Record the error and drop the packet.
1240 		 */
1241 		txq->mapping_err++;
1242 		goto out_free;
1243 	}
1244 
1245 	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1246 	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1247 		/*
1248 		 * After we're done injecting the Work Request for this
1249 		 * packet, we'll be below our "stop threshold" so stop the TX
1250 		 * Queue now and schedule a request for an SGE Egress Queue
1251 		 * Update message.  The queue will get started later on when
1252 		 * the firmware processes this Work Request and sends us an
1253 		 * Egress Queue Status Update message indicating that space
1254 		 * has opened up.
1255 		 */
1256 		txq_stop(txq);
1257 		wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1258 	}
1259 
1260 	/*
1261 	 * Start filling in our Work Request.  Note that we do _not_ handle
1262 	 * the WR Header wrapping around the TX Descriptor Ring.  If our
1263 	 * maximum header size ever exceeds one TX Descriptor, we'll need to
1264 	 * do something else here.
1265 	 */
1266 	BUG_ON(DIV_ROUND_UP(ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1267 	wr = (void *)&txq->q.desc[txq->q.pidx];
1268 	wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1269 	wr->r3[0] = cpu_to_be32(0);
1270 	wr->r3[1] = cpu_to_be32(0);
1271 	skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
1272 	end = (u64 *)wr + flits;
1273 
1274 	/*
1275 	 * If this is a Large Send Offload packet we'll put in an LSO CPL
1276 	 * message with an encapsulated TX Packet CPL message.  Otherwise we
1277 	 * just use a TX Packet CPL message.
1278 	 */
1279 	ssi = skb_shinfo(skb);
1280 	if (ssi->gso_size) {
1281 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1282 		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1283 		int l3hdr_len = skb_network_header_len(skb);
1284 		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1285 
1286 		wr->op_immdlen =
1287 			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1288 				    FW_WR_IMMDLEN_V(sizeof(*lso) +
1289 						    sizeof(*cpl)));
1290 		/*
1291 		 * Fill in the LSO CPL message.
1292 		 */
1293 		lso->lso_ctrl =
1294 			cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1295 				    LSO_FIRST_SLICE_F |
1296 				    LSO_LAST_SLICE_F |
1297 				    LSO_IPV6_V(v6) |
1298 				    LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1299 				    LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1300 				    LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1301 		lso->ipid_ofst = cpu_to_be16(0);
1302 		lso->mss = cpu_to_be16(ssi->gso_size);
1303 		lso->seqno_offset = cpu_to_be32(0);
1304 		if (is_t4(adapter->params.chip))
1305 			lso->len = cpu_to_be32(skb->len);
1306 		else
1307 			lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len));
1308 
1309 		/*
1310 		 * Set up TX Packet CPL pointer, control word and perform
1311 		 * accounting.
1312 		 */
1313 		cpl = (void *)(lso + 1);
1314 
1315 		if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
1316 			cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1317 		else
1318 			cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1319 
1320 		cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1321 					   TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1322 			 TXPKT_IPHDR_LEN_V(l3hdr_len);
1323 		txq->tso++;
1324 		txq->tx_cso += ssi->gso_segs;
1325 	} else {
1326 		int len;
1327 
1328 		len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl);
1329 		wr->op_immdlen =
1330 			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1331 				    FW_WR_IMMDLEN_V(len));
1332 
1333 		/*
1334 		 * Set up TX Packet CPL pointer, control word and perform
1335 		 * accounting.
1336 		 */
1337 		cpl = (void *)(wr + 1);
1338 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1339 			cntrl = hwcsum(adapter->params.chip, skb) |
1340 				TXPKT_IPCSUM_DIS_F;
1341 			txq->tx_cso++;
1342 		} else
1343 			cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1344 	}
1345 
1346 	/*
1347 	 * If there's a VLAN tag present, add that to the list of things to
1348 	 * do in this Work Request.
1349 	 */
1350 	if (skb_vlan_tag_present(skb)) {
1351 		txq->vlan_ins++;
1352 		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1353 	}
1354 
1355 	/*
1356 	 * Fill in the TX Packet CPL message header.
1357 	 */
1358 	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
1359 				 TXPKT_INTF_V(pi->port_id) |
1360 				 TXPKT_PF_V(0));
1361 	cpl->pack = cpu_to_be16(0);
1362 	cpl->len = cpu_to_be16(skb->len);
1363 	cpl->ctrl1 = cpu_to_be64(cntrl);
1364 
1365 #ifdef T4_TRACE
1366 	T4_TRACE5(adapter->tb[txq->q.cntxt_id & 7],
1367 		  "eth_xmit: ndesc %u, credits %u, pidx %u, len %u, frags %u",
1368 		  ndesc, credits, txq->q.pidx, skb->len, ssi->nr_frags);
1369 #endif
1370 
1371 	/*
1372 	 * Fill in the body of the TX Packet CPL message with either in-lined
1373 	 * data or a Scatter/Gather List.
1374 	 */
1375 	if (is_eth_imm(skb)) {
1376 		/*
1377 		 * In-line the packet's data and free the skb since we don't
1378 		 * need it any longer.
1379 		 */
1380 		inline_tx_skb(skb, &txq->q, cpl + 1);
1381 		dev_consume_skb_any(skb);
1382 	} else {
1383 		/*
1384 		 * Write the skb's Scatter/Gather list into the TX Packet CPL
1385 		 * message and retain a pointer to the skb so we can free it
1386 		 * later when its DMA completes.  (We store the skb pointer
1387 		 * in the Software Descriptor corresponding to the last TX
1388 		 * Descriptor used by the Work Request.)
1389 		 *
1390 		 * The retained skb will be freed when the corresponding TX
1391 		 * Descriptors are reclaimed after their DMAs complete.
1392 		 * However, this could take quite a while since, in general,
1393 		 * the hardware is set up to be lazy about sending DMA
1394 		 * completion notifications to us and we mostly perform TX
1395 		 * reclaims in the transmit routine.
1396 		 *
1397 		 * This is good for performamce but means that we rely on new
1398 		 * TX packets arriving to run the destructors of completed
1399 		 * packets, which open up space in their sockets' send queues.
1400 		 * Sometimes we do not get such new packets causing TX to
1401 		 * stall.  A single UDP transmitter is a good example of this
1402 		 * situation.  We have a clean up timer that periodically
1403 		 * reclaims completed packets but it doesn't run often enough
1404 		 * (nor do we want it to) to prevent lengthy stalls.  A
1405 		 * solution to this problem is to run the destructor early,
1406 		 * after the packet is queued but before it's DMAd.  A con is
1407 		 * that we lie to socket memory accounting, but the amount of
1408 		 * extra memory is reasonable (limited by the number of TX
1409 		 * descriptors), the packets do actually get freed quickly by
1410 		 * new packets almost always, and for protocols like TCP that
1411 		 * wait for acks to really free up the data the extra memory
1412 		 * is even less.  On the positive side we run the destructors
1413 		 * on the sending CPU rather than on a potentially different
1414 		 * completing CPU, usually a good thing.
1415 		 *
1416 		 * Run the destructor before telling the DMA engine about the
1417 		 * packet to make sure it doesn't complete and get freed
1418 		 * prematurely.
1419 		 */
1420 		struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
1421 		struct sge_txq *tq = &txq->q;
1422 		int last_desc;
1423 
1424 		/*
1425 		 * If the Work Request header was an exact multiple of our TX
1426 		 * Descriptor length, then it's possible that the starting SGL
1427 		 * pointer lines up exactly with the end of our TX Descriptor
1428 		 * ring.  If that's the case, wrap around to the beginning
1429 		 * here ...
1430 		 */
1431 		if (unlikely((void *)sgl == (void *)tq->stat)) {
1432 			sgl = (void *)tq->desc;
1433 			end = ((void *)tq->desc + ((void *)end - (void *)tq->stat));
1434 		}
1435 
1436 		write_sgl(skb, tq, sgl, end, 0, addr);
1437 		skb_orphan(skb);
1438 
1439 		last_desc = tq->pidx + ndesc - 1;
1440 		if (last_desc >= tq->size)
1441 			last_desc -= tq->size;
1442 		tq->sdesc[last_desc].skb = skb;
1443 		tq->sdesc[last_desc].sgl = sgl;
1444 	}
1445 
1446 	/*
1447 	 * Advance our internal TX Queue state, tell the hardware about
1448 	 * the new TX descriptors and return success.
1449 	 */
1450 	txq_advance(&txq->q, ndesc);
1451 	netif_trans_update(dev);
1452 	ring_tx_db(adapter, &txq->q, ndesc);
1453 	return NETDEV_TX_OK;
1454 
1455 out_free:
1456 	/*
1457 	 * An error of some sort happened.  Free the TX skb and tell the
1458 	 * OS that we've "dealt" with the packet ...
1459 	 */
1460 	dev_kfree_skb_any(skb);
1461 	return NETDEV_TX_OK;
1462 }
1463 
1464 /**
1465  *	copy_frags - copy fragments from gather list into skb_shared_info
1466  *	@skb: destination skb
1467  *	@gl: source internal packet gather list
1468  *	@offset: packet start offset in first page
1469  *
1470  *	Copy an internal packet gather list into a Linux skb_shared_info
1471  *	structure.
1472  */
1473 static inline void copy_frags(struct sk_buff *skb,
1474 			      const struct pkt_gl *gl,
1475 			      unsigned int offset)
1476 {
1477 	int i;
1478 
1479 	/* usually there's just one frag */
1480 	__skb_fill_page_desc(skb, 0, gl->frags[0].page,
1481 			     gl->frags[0].offset + offset,
1482 			     gl->frags[0].size - offset);
1483 	skb_shinfo(skb)->nr_frags = gl->nfrags;
1484 	for (i = 1; i < gl->nfrags; i++)
1485 		__skb_fill_page_desc(skb, i, gl->frags[i].page,
1486 				     gl->frags[i].offset,
1487 				     gl->frags[i].size);
1488 
1489 	/* get a reference to the last page, we don't own it */
1490 	get_page(gl->frags[gl->nfrags - 1].page);
1491 }
1492 
1493 /**
1494  *	t4vf_pktgl_to_skb - build an sk_buff from a packet gather list
1495  *	@gl: the gather list
1496  *	@skb_len: size of sk_buff main body if it carries fragments
1497  *	@pull_len: amount of data to move to the sk_buff's main body
1498  *
1499  *	Builds an sk_buff from the given packet gather list.  Returns the
1500  *	sk_buff or %NULL if sk_buff allocation failed.
1501  */
1502 static struct sk_buff *t4vf_pktgl_to_skb(const struct pkt_gl *gl,
1503 					 unsigned int skb_len,
1504 					 unsigned int pull_len)
1505 {
1506 	struct sk_buff *skb;
1507 
1508 	/*
1509 	 * If the ingress packet is small enough, allocate an skb large enough
1510 	 * for all of the data and copy it inline.  Otherwise, allocate an skb
1511 	 * with enough room to pull in the header and reference the rest of
1512 	 * the data via the skb fragment list.
1513 	 *
1514 	 * Below we rely on RX_COPY_THRES being less than the smallest Rx
1515 	 * buff!  size, which is expected since buffers are at least
1516 	 * PAGE_SIZEd.  In this case packets up to RX_COPY_THRES have only one
1517 	 * fragment.
1518 	 */
1519 	if (gl->tot_len <= RX_COPY_THRES) {
1520 		/* small packets have only one fragment */
1521 		skb = alloc_skb(gl->tot_len, GFP_ATOMIC);
1522 		if (unlikely(!skb))
1523 			goto out;
1524 		__skb_put(skb, gl->tot_len);
1525 		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1526 	} else {
1527 		skb = alloc_skb(skb_len, GFP_ATOMIC);
1528 		if (unlikely(!skb))
1529 			goto out;
1530 		__skb_put(skb, pull_len);
1531 		skb_copy_to_linear_data(skb, gl->va, pull_len);
1532 
1533 		copy_frags(skb, gl, pull_len);
1534 		skb->len = gl->tot_len;
1535 		skb->data_len = skb->len - pull_len;
1536 		skb->truesize += skb->data_len;
1537 	}
1538 
1539 out:
1540 	return skb;
1541 }
1542 
1543 /**
1544  *	t4vf_pktgl_free - free a packet gather list
1545  *	@gl: the gather list
1546  *
1547  *	Releases the pages of a packet gather list.  We do not own the last
1548  *	page on the list and do not free it.
1549  */
1550 static void t4vf_pktgl_free(const struct pkt_gl *gl)
1551 {
1552 	int frag;
1553 
1554 	frag = gl->nfrags - 1;
1555 	while (frag--)
1556 		put_page(gl->frags[frag].page);
1557 }
1558 
1559 /**
1560  *	do_gro - perform Generic Receive Offload ingress packet processing
1561  *	@rxq: ingress RX Ethernet Queue
1562  *	@gl: gather list for ingress packet
1563  *	@pkt: CPL header for last packet fragment
1564  *
1565  *	Perform Generic Receive Offload (GRO) ingress packet processing.
1566  *	We use the standard Linux GRO interfaces for this.
1567  */
1568 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1569 		   const struct cpl_rx_pkt *pkt)
1570 {
1571 	struct adapter *adapter = rxq->rspq.adapter;
1572 	struct sge *s = &adapter->sge;
1573 	int ret;
1574 	struct sk_buff *skb;
1575 
1576 	skb = napi_get_frags(&rxq->rspq.napi);
1577 	if (unlikely(!skb)) {
1578 		t4vf_pktgl_free(gl);
1579 		rxq->stats.rx_drops++;
1580 		return;
1581 	}
1582 
1583 	copy_frags(skb, gl, s->pktshift);
1584 	skb->len = gl->tot_len - s->pktshift;
1585 	skb->data_len = skb->len;
1586 	skb->truesize += skb->data_len;
1587 	skb->ip_summed = CHECKSUM_UNNECESSARY;
1588 	skb_record_rx_queue(skb, rxq->rspq.idx);
1589 
1590 	if (pkt->vlan_ex) {
1591 		__vlan_hwaccel_put_tag(skb, cpu_to_be16(ETH_P_8021Q),
1592 					be16_to_cpu(pkt->vlan));
1593 		rxq->stats.vlan_ex++;
1594 	}
1595 	ret = napi_gro_frags(&rxq->rspq.napi);
1596 
1597 	if (ret == GRO_HELD)
1598 		rxq->stats.lro_pkts++;
1599 	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1600 		rxq->stats.lro_merged++;
1601 	rxq->stats.pkts++;
1602 	rxq->stats.rx_cso++;
1603 }
1604 
1605 /**
1606  *	t4vf_ethrx_handler - process an ingress ethernet packet
1607  *	@rspq: the response queue that received the packet
1608  *	@rsp: the response queue descriptor holding the RX_PKT message
1609  *	@gl: the gather list of packet fragments
1610  *
1611  *	Process an ingress ethernet packet and deliver it to the stack.
1612  */
1613 int t4vf_ethrx_handler(struct sge_rspq *rspq, const __be64 *rsp,
1614 		       const struct pkt_gl *gl)
1615 {
1616 	struct sk_buff *skb;
1617 	const struct cpl_rx_pkt *pkt = (void *)rsp;
1618 	bool csum_ok = pkt->csum_calc && !pkt->err_vec &&
1619 		       (rspq->netdev->features & NETIF_F_RXCSUM);
1620 	struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1621 	struct adapter *adapter = rspq->adapter;
1622 	struct sge *s = &adapter->sge;
1623 
1624 	/*
1625 	 * If this is a good TCP packet and we have Generic Receive Offload
1626 	 * enabled, handle the packet in the GRO path.
1627 	 */
1628 	if ((pkt->l2info & cpu_to_be32(RXF_TCP_F)) &&
1629 	    (rspq->netdev->features & NETIF_F_GRO) && csum_ok &&
1630 	    !pkt->ip_frag) {
1631 		do_gro(rxq, gl, pkt);
1632 		return 0;
1633 	}
1634 
1635 	/*
1636 	 * Convert the Packet Gather List into an skb.
1637 	 */
1638 	skb = t4vf_pktgl_to_skb(gl, RX_SKB_LEN, RX_PULL_LEN);
1639 	if (unlikely(!skb)) {
1640 		t4vf_pktgl_free(gl);
1641 		rxq->stats.rx_drops++;
1642 		return 0;
1643 	}
1644 	__skb_pull(skb, s->pktshift);
1645 	skb->protocol = eth_type_trans(skb, rspq->netdev);
1646 	skb_record_rx_queue(skb, rspq->idx);
1647 	rxq->stats.pkts++;
1648 
1649 	if (csum_ok && !pkt->err_vec &&
1650 	    (be32_to_cpu(pkt->l2info) & (RXF_UDP_F | RXF_TCP_F))) {
1651 		if (!pkt->ip_frag) {
1652 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1653 			rxq->stats.rx_cso++;
1654 		} else if (pkt->l2info & htonl(RXF_IP_F)) {
1655 			__sum16 c = (__force __sum16)pkt->csum;
1656 			skb->csum = csum_unfold(c);
1657 			skb->ip_summed = CHECKSUM_COMPLETE;
1658 			rxq->stats.rx_cso++;
1659 		}
1660 	} else
1661 		skb_checksum_none_assert(skb);
1662 
1663 	if (pkt->vlan_ex) {
1664 		rxq->stats.vlan_ex++;
1665 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), be16_to_cpu(pkt->vlan));
1666 	}
1667 
1668 	netif_receive_skb(skb);
1669 
1670 	return 0;
1671 }
1672 
1673 /**
1674  *	is_new_response - check if a response is newly written
1675  *	@rc: the response control descriptor
1676  *	@rspq: the response queue
1677  *
1678  *	Returns true if a response descriptor contains a yet unprocessed
1679  *	response.
1680  */
1681 static inline bool is_new_response(const struct rsp_ctrl *rc,
1682 				   const struct sge_rspq *rspq)
1683 {
1684 	return ((rc->type_gen >> RSPD_GEN_S) & 0x1) == rspq->gen;
1685 }
1686 
1687 /**
1688  *	restore_rx_bufs - put back a packet's RX buffers
1689  *	@gl: the packet gather list
1690  *	@fl: the SGE Free List
1691  *	@nfrags: how many fragments in @si
1692  *
1693  *	Called when we find out that the current packet, @si, can't be
1694  *	processed right away for some reason.  This is a very rare event and
1695  *	there's no effort to make this suspension/resumption process
1696  *	particularly efficient.
1697  *
1698  *	We implement the suspension by putting all of the RX buffers associated
1699  *	with the current packet back on the original Free List.  The buffers
1700  *	have already been unmapped and are left unmapped, we mark them as
1701  *	unmapped in order to prevent further unmapping attempts.  (Effectively
1702  *	this function undoes the series of @unmap_rx_buf calls which were done
1703  *	to create the current packet's gather list.)  This leaves us ready to
1704  *	restart processing of the packet the next time we start processing the
1705  *	RX Queue ...
1706  */
1707 static void restore_rx_bufs(const struct pkt_gl *gl, struct sge_fl *fl,
1708 			    int frags)
1709 {
1710 	struct rx_sw_desc *sdesc;
1711 
1712 	while (frags--) {
1713 		if (fl->cidx == 0)
1714 			fl->cidx = fl->size - 1;
1715 		else
1716 			fl->cidx--;
1717 		sdesc = &fl->sdesc[fl->cidx];
1718 		sdesc->page = gl->frags[frags].page;
1719 		sdesc->dma_addr |= RX_UNMAPPED_BUF;
1720 		fl->avail++;
1721 	}
1722 }
1723 
1724 /**
1725  *	rspq_next - advance to the next entry in a response queue
1726  *	@rspq: the queue
1727  *
1728  *	Updates the state of a response queue to advance it to the next entry.
1729  */
1730 static inline void rspq_next(struct sge_rspq *rspq)
1731 {
1732 	rspq->cur_desc = (void *)rspq->cur_desc + rspq->iqe_len;
1733 	if (unlikely(++rspq->cidx == rspq->size)) {
1734 		rspq->cidx = 0;
1735 		rspq->gen ^= 1;
1736 		rspq->cur_desc = rspq->desc;
1737 	}
1738 }
1739 
1740 /**
1741  *	process_responses - process responses from an SGE response queue
1742  *	@rspq: the ingress response queue to process
1743  *	@budget: how many responses can be processed in this round
1744  *
1745  *	Process responses from a Scatter Gather Engine response queue up to
1746  *	the supplied budget.  Responses include received packets as well as
1747  *	control messages from firmware or hardware.
1748  *
1749  *	Additionally choose the interrupt holdoff time for the next interrupt
1750  *	on this queue.  If the system is under memory shortage use a fairly
1751  *	long delay to help recovery.
1752  */
1753 static int process_responses(struct sge_rspq *rspq, int budget)
1754 {
1755 	struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1756 	struct adapter *adapter = rspq->adapter;
1757 	struct sge *s = &adapter->sge;
1758 	int budget_left = budget;
1759 
1760 	while (likely(budget_left)) {
1761 		int ret, rsp_type;
1762 		const struct rsp_ctrl *rc;
1763 
1764 		rc = (void *)rspq->cur_desc + (rspq->iqe_len - sizeof(*rc));
1765 		if (!is_new_response(rc, rspq))
1766 			break;
1767 
1768 		/*
1769 		 * Figure out what kind of response we've received from the
1770 		 * SGE.
1771 		 */
1772 		dma_rmb();
1773 		rsp_type = RSPD_TYPE_G(rc->type_gen);
1774 		if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
1775 			struct page_frag *fp;
1776 			struct pkt_gl gl;
1777 			const struct rx_sw_desc *sdesc;
1778 			u32 bufsz, frag;
1779 			u32 len = be32_to_cpu(rc->pldbuflen_qid);
1780 
1781 			/*
1782 			 * If we get a "new buffer" message from the SGE we
1783 			 * need to move on to the next Free List buffer.
1784 			 */
1785 			if (len & RSPD_NEWBUF_F) {
1786 				/*
1787 				 * We get one "new buffer" message when we
1788 				 * first start up a queue so we need to ignore
1789 				 * it when our offset into the buffer is 0.
1790 				 */
1791 				if (likely(rspq->offset > 0)) {
1792 					free_rx_bufs(rspq->adapter, &rxq->fl,
1793 						     1);
1794 					rspq->offset = 0;
1795 				}
1796 				len = RSPD_LEN_G(len);
1797 			}
1798 			gl.tot_len = len;
1799 
1800 			/*
1801 			 * Gather packet fragments.
1802 			 */
1803 			for (frag = 0, fp = gl.frags; /**/; frag++, fp++) {
1804 				BUG_ON(frag >= MAX_SKB_FRAGS);
1805 				BUG_ON(rxq->fl.avail == 0);
1806 				sdesc = &rxq->fl.sdesc[rxq->fl.cidx];
1807 				bufsz = get_buf_size(adapter, sdesc);
1808 				fp->page = sdesc->page;
1809 				fp->offset = rspq->offset;
1810 				fp->size = min(bufsz, len);
1811 				len -= fp->size;
1812 				if (!len)
1813 					break;
1814 				unmap_rx_buf(rspq->adapter, &rxq->fl);
1815 			}
1816 			gl.nfrags = frag+1;
1817 
1818 			/*
1819 			 * Last buffer remains mapped so explicitly make it
1820 			 * coherent for CPU access and start preloading first
1821 			 * cache line ...
1822 			 */
1823 			dma_sync_single_for_cpu(rspq->adapter->pdev_dev,
1824 						get_buf_addr(sdesc),
1825 						fp->size, DMA_FROM_DEVICE);
1826 			gl.va = (page_address(gl.frags[0].page) +
1827 				 gl.frags[0].offset);
1828 			prefetch(gl.va);
1829 
1830 			/*
1831 			 * Hand the new ingress packet to the handler for
1832 			 * this Response Queue.
1833 			 */
1834 			ret = rspq->handler(rspq, rspq->cur_desc, &gl);
1835 			if (likely(ret == 0))
1836 				rspq->offset += ALIGN(fp->size, s->fl_align);
1837 			else
1838 				restore_rx_bufs(&gl, &rxq->fl, frag);
1839 		} else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
1840 			ret = rspq->handler(rspq, rspq->cur_desc, NULL);
1841 		} else {
1842 			WARN_ON(rsp_type > RSPD_TYPE_CPL_X);
1843 			ret = 0;
1844 		}
1845 
1846 		if (unlikely(ret)) {
1847 			/*
1848 			 * Couldn't process descriptor, back off for recovery.
1849 			 * We use the SGE's last timer which has the longest
1850 			 * interrupt coalescing value ...
1851 			 */
1852 			const int NOMEM_TIMER_IDX = SGE_NTIMERS-1;
1853 			rspq->next_intr_params =
1854 				QINTR_TIMER_IDX_V(NOMEM_TIMER_IDX);
1855 			break;
1856 		}
1857 
1858 		rspq_next(rspq);
1859 		budget_left--;
1860 	}
1861 
1862 	/*
1863 	 * If this is a Response Queue with an associated Free List and
1864 	 * at least two Egress Queue units available in the Free List
1865 	 * for new buffer pointers, refill the Free List.
1866 	 */
1867 	if (rspq->offset >= 0 &&
1868 	    fl_cap(&rxq->fl) - rxq->fl.avail >= 2*FL_PER_EQ_UNIT)
1869 		__refill_fl(rspq->adapter, &rxq->fl);
1870 	return budget - budget_left;
1871 }
1872 
1873 /**
1874  *	napi_rx_handler - the NAPI handler for RX processing
1875  *	@napi: the napi instance
1876  *	@budget: how many packets we can process in this round
1877  *
1878  *	Handler for new data events when using NAPI.  This does not need any
1879  *	locking or protection from interrupts as data interrupts are off at
1880  *	this point and other adapter interrupts do not interfere (the latter
1881  *	in not a concern at all with MSI-X as non-data interrupts then have
1882  *	a separate handler).
1883  */
1884 static int napi_rx_handler(struct napi_struct *napi, int budget)
1885 {
1886 	unsigned int intr_params;
1887 	struct sge_rspq *rspq = container_of(napi, struct sge_rspq, napi);
1888 	int work_done = process_responses(rspq, budget);
1889 	u32 val;
1890 
1891 	if (likely(work_done < budget)) {
1892 		napi_complete_done(napi, work_done);
1893 		intr_params = rspq->next_intr_params;
1894 		rspq->next_intr_params = rspq->intr_params;
1895 	} else
1896 		intr_params = QINTR_TIMER_IDX_V(SGE_TIMER_UPD_CIDX);
1897 
1898 	if (unlikely(work_done == 0))
1899 		rspq->unhandled_irqs++;
1900 
1901 	val = CIDXINC_V(work_done) | SEINTARM_V(intr_params);
1902 	/* If we don't have access to the new User GTS (T5+), use the old
1903 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
1904 	 */
1905 	if (unlikely(!rspq->bar2_addr)) {
1906 		t4_write_reg(rspq->adapter,
1907 			     T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
1908 			     val | INGRESSQID_V((u32)rspq->cntxt_id));
1909 	} else {
1910 		writel(val | INGRESSQID_V(rspq->bar2_qid),
1911 		       rspq->bar2_addr + SGE_UDB_GTS);
1912 		wmb();
1913 	}
1914 	return work_done;
1915 }
1916 
1917 /*
1918  * The MSI-X interrupt handler for an SGE response queue for the NAPI case
1919  * (i.e., response queue serviced by NAPI polling).
1920  */
1921 irqreturn_t t4vf_sge_intr_msix(int irq, void *cookie)
1922 {
1923 	struct sge_rspq *rspq = cookie;
1924 
1925 	napi_schedule(&rspq->napi);
1926 	return IRQ_HANDLED;
1927 }
1928 
1929 /*
1930  * Process the indirect interrupt entries in the interrupt queue and kick off
1931  * NAPI for each queue that has generated an entry.
1932  */
1933 static unsigned int process_intrq(struct adapter *adapter)
1934 {
1935 	struct sge *s = &adapter->sge;
1936 	struct sge_rspq *intrq = &s->intrq;
1937 	unsigned int work_done;
1938 	u32 val;
1939 
1940 	spin_lock(&adapter->sge.intrq_lock);
1941 	for (work_done = 0; ; work_done++) {
1942 		const struct rsp_ctrl *rc;
1943 		unsigned int qid, iq_idx;
1944 		struct sge_rspq *rspq;
1945 
1946 		/*
1947 		 * Grab the next response from the interrupt queue and bail
1948 		 * out if it's not a new response.
1949 		 */
1950 		rc = (void *)intrq->cur_desc + (intrq->iqe_len - sizeof(*rc));
1951 		if (!is_new_response(rc, intrq))
1952 			break;
1953 
1954 		/*
1955 		 * If the response isn't a forwarded interrupt message issue a
1956 		 * error and go on to the next response message.  This should
1957 		 * never happen ...
1958 		 */
1959 		dma_rmb();
1960 		if (unlikely(RSPD_TYPE_G(rc->type_gen) != RSPD_TYPE_INTR_X)) {
1961 			dev_err(adapter->pdev_dev,
1962 				"Unexpected INTRQ response type %d\n",
1963 				RSPD_TYPE_G(rc->type_gen));
1964 			continue;
1965 		}
1966 
1967 		/*
1968 		 * Extract the Queue ID from the interrupt message and perform
1969 		 * sanity checking to make sure it really refers to one of our
1970 		 * Ingress Queues which is active and matches the queue's ID.
1971 		 * None of these error conditions should ever happen so we may
1972 		 * want to either make them fatal and/or conditionalized under
1973 		 * DEBUG.
1974 		 */
1975 		qid = RSPD_QID_G(be32_to_cpu(rc->pldbuflen_qid));
1976 		iq_idx = IQ_IDX(s, qid);
1977 		if (unlikely(iq_idx >= MAX_INGQ)) {
1978 			dev_err(adapter->pdev_dev,
1979 				"Ingress QID %d out of range\n", qid);
1980 			continue;
1981 		}
1982 		rspq = s->ingr_map[iq_idx];
1983 		if (unlikely(rspq == NULL)) {
1984 			dev_err(adapter->pdev_dev,
1985 				"Ingress QID %d RSPQ=NULL\n", qid);
1986 			continue;
1987 		}
1988 		if (unlikely(rspq->abs_id != qid)) {
1989 			dev_err(adapter->pdev_dev,
1990 				"Ingress QID %d refers to RSPQ %d\n",
1991 				qid, rspq->abs_id);
1992 			continue;
1993 		}
1994 
1995 		/*
1996 		 * Schedule NAPI processing on the indicated Response Queue
1997 		 * and move on to the next entry in the Forwarded Interrupt
1998 		 * Queue.
1999 		 */
2000 		napi_schedule(&rspq->napi);
2001 		rspq_next(intrq);
2002 	}
2003 
2004 	val = CIDXINC_V(work_done) | SEINTARM_V(intrq->intr_params);
2005 	/* If we don't have access to the new User GTS (T5+), use the old
2006 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
2007 	 */
2008 	if (unlikely(!intrq->bar2_addr)) {
2009 		t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
2010 			     val | INGRESSQID_V(intrq->cntxt_id));
2011 	} else {
2012 		writel(val | INGRESSQID_V(intrq->bar2_qid),
2013 		       intrq->bar2_addr + SGE_UDB_GTS);
2014 		wmb();
2015 	}
2016 
2017 	spin_unlock(&adapter->sge.intrq_lock);
2018 
2019 	return work_done;
2020 }
2021 
2022 /*
2023  * The MSI interrupt handler handles data events from SGE response queues as
2024  * well as error and other async events as they all use the same MSI vector.
2025  */
2026 static irqreturn_t t4vf_intr_msi(int irq, void *cookie)
2027 {
2028 	struct adapter *adapter = cookie;
2029 
2030 	process_intrq(adapter);
2031 	return IRQ_HANDLED;
2032 }
2033 
2034 /**
2035  *	t4vf_intr_handler - select the top-level interrupt handler
2036  *	@adapter: the adapter
2037  *
2038  *	Selects the top-level interrupt handler based on the type of interrupts
2039  *	(MSI-X or MSI).
2040  */
2041 irq_handler_t t4vf_intr_handler(struct adapter *adapter)
2042 {
2043 	BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2044 	if (adapter->flags & USING_MSIX)
2045 		return t4vf_sge_intr_msix;
2046 	else
2047 		return t4vf_intr_msi;
2048 }
2049 
2050 /**
2051  *	sge_rx_timer_cb - perform periodic maintenance of SGE RX queues
2052  *	@data: the adapter
2053  *
2054  *	Runs periodically from a timer to perform maintenance of SGE RX queues.
2055  *
2056  *	a) Replenishes RX queues that have run out due to memory shortage.
2057  *	Normally new RX buffers are added when existing ones are consumed but
2058  *	when out of memory a queue can become empty.  We schedule NAPI to do
2059  *	the actual refill.
2060  */
2061 static void sge_rx_timer_cb(struct timer_list *t)
2062 {
2063 	struct adapter *adapter = from_timer(adapter, t, sge.rx_timer);
2064 	struct sge *s = &adapter->sge;
2065 	unsigned int i;
2066 
2067 	/*
2068 	 * Scan the "Starving Free Lists" flag array looking for any Free
2069 	 * Lists in need of more free buffers.  If we find one and it's not
2070 	 * being actively polled, then bump its "starving" counter and attempt
2071 	 * to refill it.  If we're successful in adding enough buffers to push
2072 	 * the Free List over the starving threshold, then we can clear its
2073 	 * "starving" status.
2074 	 */
2075 	for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) {
2076 		unsigned long m;
2077 
2078 		for (m = s->starving_fl[i]; m; m &= m - 1) {
2079 			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
2080 			struct sge_fl *fl = s->egr_map[id];
2081 
2082 			clear_bit(id, s->starving_fl);
2083 			smp_mb__after_atomic();
2084 
2085 			/*
2086 			 * Since we are accessing fl without a lock there's a
2087 			 * small probability of a false positive where we
2088 			 * schedule napi but the FL is no longer starving.
2089 			 * No biggie.
2090 			 */
2091 			if (fl_starving(adapter, fl)) {
2092 				struct sge_eth_rxq *rxq;
2093 
2094 				rxq = container_of(fl, struct sge_eth_rxq, fl);
2095 				if (napi_reschedule(&rxq->rspq.napi))
2096 					fl->starving++;
2097 				else
2098 					set_bit(id, s->starving_fl);
2099 			}
2100 		}
2101 	}
2102 
2103 	/*
2104 	 * Reschedule the next scan for starving Free Lists ...
2105 	 */
2106 	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
2107 }
2108 
2109 /**
2110  *	sge_tx_timer_cb - perform periodic maintenance of SGE Tx queues
2111  *	@data: the adapter
2112  *
2113  *	Runs periodically from a timer to perform maintenance of SGE TX queues.
2114  *
2115  *	b) Reclaims completed Tx packets for the Ethernet queues.  Normally
2116  *	packets are cleaned up by new Tx packets, this timer cleans up packets
2117  *	when no new packets are being submitted.  This is essential for pktgen,
2118  *	at least.
2119  */
2120 static void sge_tx_timer_cb(struct timer_list *t)
2121 {
2122 	struct adapter *adapter = from_timer(adapter, t, sge.tx_timer);
2123 	struct sge *s = &adapter->sge;
2124 	unsigned int i, budget;
2125 
2126 	budget = MAX_TIMER_TX_RECLAIM;
2127 	i = s->ethtxq_rover;
2128 	do {
2129 		struct sge_eth_txq *txq = &s->ethtxq[i];
2130 
2131 		if (reclaimable(&txq->q) && __netif_tx_trylock(txq->txq)) {
2132 			int avail = reclaimable(&txq->q);
2133 
2134 			if (avail > budget)
2135 				avail = budget;
2136 
2137 			free_tx_desc(adapter, &txq->q, avail, true);
2138 			txq->q.in_use -= avail;
2139 			__netif_tx_unlock(txq->txq);
2140 
2141 			budget -= avail;
2142 			if (!budget)
2143 				break;
2144 		}
2145 
2146 		i++;
2147 		if (i >= s->ethqsets)
2148 			i = 0;
2149 	} while (i != s->ethtxq_rover);
2150 	s->ethtxq_rover = i;
2151 
2152 	/*
2153 	 * If we found too many reclaimable packets schedule a timer in the
2154 	 * near future to continue where we left off.  Otherwise the next timer
2155 	 * will be at its normal interval.
2156 	 */
2157 	mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2158 }
2159 
2160 /**
2161  *	bar2_address - return the BAR2 address for an SGE Queue's Registers
2162  *	@adapter: the adapter
2163  *	@qid: the SGE Queue ID
2164  *	@qtype: the SGE Queue Type (Egress or Ingress)
2165  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
2166  *
2167  *	Returns the BAR2 address for the SGE Queue Registers associated with
2168  *	@qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
2169  *	returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
2170  *	Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
2171  *	Registers are supported (e.g. the Write Combining Doorbell Buffer).
2172  */
2173 static void __iomem *bar2_address(struct adapter *adapter,
2174 				  unsigned int qid,
2175 				  enum t4_bar2_qtype qtype,
2176 				  unsigned int *pbar2_qid)
2177 {
2178 	u64 bar2_qoffset;
2179 	int ret;
2180 
2181 	ret = t4vf_bar2_sge_qregs(adapter, qid, qtype,
2182 				  &bar2_qoffset, pbar2_qid);
2183 	if (ret)
2184 		return NULL;
2185 
2186 	return adapter->bar2 + bar2_qoffset;
2187 }
2188 
2189 /**
2190  *	t4vf_sge_alloc_rxq - allocate an SGE RX Queue
2191  *	@adapter: the adapter
2192  *	@rspq: pointer to to the new rxq's Response Queue to be filled in
2193  *	@iqasynch: if 0, a normal rspq; if 1, an asynchronous event queue
2194  *	@dev: the network device associated with the new rspq
2195  *	@intr_dest: MSI-X vector index (overriden in MSI mode)
2196  *	@fl: pointer to the new rxq's Free List to be filled in
2197  *	@hnd: the interrupt handler to invoke for the rspq
2198  */
2199 int t4vf_sge_alloc_rxq(struct adapter *adapter, struct sge_rspq *rspq,
2200 		       bool iqasynch, struct net_device *dev,
2201 		       int intr_dest,
2202 		       struct sge_fl *fl, rspq_handler_t hnd)
2203 {
2204 	struct sge *s = &adapter->sge;
2205 	struct port_info *pi = netdev_priv(dev);
2206 	struct fw_iq_cmd cmd, rpl;
2207 	int ret, iqandst, flsz = 0;
2208 	int relaxed = !(adapter->flags & ROOT_NO_RELAXED_ORDERING);
2209 
2210 	/*
2211 	 * If we're using MSI interrupts and we're not initializing the
2212 	 * Forwarded Interrupt Queue itself, then set up this queue for
2213 	 * indirect interrupts to the Forwarded Interrupt Queue.  Obviously
2214 	 * the Forwarded Interrupt Queue must be set up before any other
2215 	 * ingress queue ...
2216 	 */
2217 	if ((adapter->flags & USING_MSI) && rspq != &adapter->sge.intrq) {
2218 		iqandst = SGE_INTRDST_IQ;
2219 		intr_dest = adapter->sge.intrq.abs_id;
2220 	} else
2221 		iqandst = SGE_INTRDST_PCI;
2222 
2223 	/*
2224 	 * Allocate the hardware ring for the Response Queue.  The size needs
2225 	 * to be a multiple of 16 which includes the mandatory status entry
2226 	 * (regardless of whether the Status Page capabilities are enabled or
2227 	 * not).
2228 	 */
2229 	rspq->size = roundup(rspq->size, 16);
2230 	rspq->desc = alloc_ring(adapter->pdev_dev, rspq->size, rspq->iqe_len,
2231 				0, &rspq->phys_addr, NULL, 0);
2232 	if (!rspq->desc)
2233 		return -ENOMEM;
2234 
2235 	/*
2236 	 * Fill in the Ingress Queue Command.  Note: Ideally this code would
2237 	 * be in t4vf_hw.c but there are so many parameters and dependencies
2238 	 * on our Linux SGE state that we would end up having to pass tons of
2239 	 * parameters.  We'll have to think about how this might be migrated
2240 	 * into OS-independent common code ...
2241 	 */
2242 	memset(&cmd, 0, sizeof(cmd));
2243 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
2244 				    FW_CMD_REQUEST_F |
2245 				    FW_CMD_WRITE_F |
2246 				    FW_CMD_EXEC_F);
2247 	cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_ALLOC_F |
2248 					 FW_IQ_CMD_IQSTART_F |
2249 					 FW_LEN16(cmd));
2250 	cmd.type_to_iqandstindex =
2251 		cpu_to_be32(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
2252 			    FW_IQ_CMD_IQASYNCH_V(iqasynch) |
2253 			    FW_IQ_CMD_VIID_V(pi->viid) |
2254 			    FW_IQ_CMD_IQANDST_V(iqandst) |
2255 			    FW_IQ_CMD_IQANUS_V(1) |
2256 			    FW_IQ_CMD_IQANUD_V(SGE_UPDATEDEL_INTR) |
2257 			    FW_IQ_CMD_IQANDSTINDEX_V(intr_dest));
2258 	cmd.iqdroprss_to_iqesize =
2259 		cpu_to_be16(FW_IQ_CMD_IQPCIECH_V(pi->port_id) |
2260 			    FW_IQ_CMD_IQGTSMODE_F |
2261 			    FW_IQ_CMD_IQINTCNTTHRESH_V(rspq->pktcnt_idx) |
2262 			    FW_IQ_CMD_IQESIZE_V(ilog2(rspq->iqe_len) - 4));
2263 	cmd.iqsize = cpu_to_be16(rspq->size);
2264 	cmd.iqaddr = cpu_to_be64(rspq->phys_addr);
2265 
2266 	if (fl) {
2267 		enum chip_type chip =
2268 			CHELSIO_CHIP_VERSION(adapter->params.chip);
2269 		/*
2270 		 * Allocate the ring for the hardware free list (with space
2271 		 * for its status page) along with the associated software
2272 		 * descriptor ring.  The free list size needs to be a multiple
2273 		 * of the Egress Queue Unit and at least 2 Egress Units larger
2274 		 * than the SGE's Egress Congrestion Threshold
2275 		 * (fl_starve_thres - 1).
2276 		 */
2277 		if (fl->size < s->fl_starve_thres - 1 + 2 * FL_PER_EQ_UNIT)
2278 			fl->size = s->fl_starve_thres - 1 + 2 * FL_PER_EQ_UNIT;
2279 		fl->size = roundup(fl->size, FL_PER_EQ_UNIT);
2280 		fl->desc = alloc_ring(adapter->pdev_dev, fl->size,
2281 				      sizeof(__be64), sizeof(struct rx_sw_desc),
2282 				      &fl->addr, &fl->sdesc, s->stat_len);
2283 		if (!fl->desc) {
2284 			ret = -ENOMEM;
2285 			goto err;
2286 		}
2287 
2288 		/*
2289 		 * Calculate the size of the hardware free list ring plus
2290 		 * Status Page (which the SGE will place after the end of the
2291 		 * free list ring) in Egress Queue Units.
2292 		 */
2293 		flsz = (fl->size / FL_PER_EQ_UNIT +
2294 			s->stat_len / EQ_UNIT);
2295 
2296 		/*
2297 		 * Fill in all the relevant firmware Ingress Queue Command
2298 		 * fields for the free list.
2299 		 */
2300 		cmd.iqns_to_fl0congen =
2301 			cpu_to_be32(
2302 				FW_IQ_CMD_FL0HOSTFCMODE_V(SGE_HOSTFCMODE_NONE) |
2303 				FW_IQ_CMD_FL0PACKEN_F |
2304 				FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
2305 				FW_IQ_CMD_FL0DATARO_V(relaxed) |
2306 				FW_IQ_CMD_FL0PADEN_F);
2307 
2308 		/* In T6, for egress queue type FL there is internal overhead
2309 		 * of 16B for header going into FLM module.  Hence the maximum
2310 		 * allowed burst size is 448 bytes.  For T4/T5, the hardware
2311 		 * doesn't coalesce fetch requests if more than 64 bytes of
2312 		 * Free List pointers are provided, so we use a 128-byte Fetch
2313 		 * Burst Minimum there (T6 implements coalescing so we can use
2314 		 * the smaller 64-byte value there).
2315 		 */
2316 		cmd.fl0dcaen_to_fl0cidxfthresh =
2317 			cpu_to_be16(
2318 				FW_IQ_CMD_FL0FBMIN_V(chip <= CHELSIO_T5 ?
2319 						     FETCHBURSTMIN_128B_X :
2320 						     FETCHBURSTMIN_64B_X) |
2321 				FW_IQ_CMD_FL0FBMAX_V((chip <= CHELSIO_T5) ?
2322 						     FETCHBURSTMAX_512B_X :
2323 						     FETCHBURSTMAX_256B_X));
2324 		cmd.fl0size = cpu_to_be16(flsz);
2325 		cmd.fl0addr = cpu_to_be64(fl->addr);
2326 	}
2327 
2328 	/*
2329 	 * Issue the firmware Ingress Queue Command and extract the results if
2330 	 * it completes successfully.
2331 	 */
2332 	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2333 	if (ret)
2334 		goto err;
2335 
2336 	netif_napi_add(dev, &rspq->napi, napi_rx_handler, 64);
2337 	rspq->cur_desc = rspq->desc;
2338 	rspq->cidx = 0;
2339 	rspq->gen = 1;
2340 	rspq->next_intr_params = rspq->intr_params;
2341 	rspq->cntxt_id = be16_to_cpu(rpl.iqid);
2342 	rspq->bar2_addr = bar2_address(adapter,
2343 				       rspq->cntxt_id,
2344 				       T4_BAR2_QTYPE_INGRESS,
2345 				       &rspq->bar2_qid);
2346 	rspq->abs_id = be16_to_cpu(rpl.physiqid);
2347 	rspq->size--;			/* subtract status entry */
2348 	rspq->adapter = adapter;
2349 	rspq->netdev = dev;
2350 	rspq->handler = hnd;
2351 
2352 	/* set offset to -1 to distinguish ingress queues without FL */
2353 	rspq->offset = fl ? 0 : -1;
2354 
2355 	if (fl) {
2356 		fl->cntxt_id = be16_to_cpu(rpl.fl0id);
2357 		fl->avail = 0;
2358 		fl->pend_cred = 0;
2359 		fl->pidx = 0;
2360 		fl->cidx = 0;
2361 		fl->alloc_failed = 0;
2362 		fl->large_alloc_failed = 0;
2363 		fl->starving = 0;
2364 
2365 		/* Note, we must initialize the BAR2 Free List User Doorbell
2366 		 * information before refilling the Free List!
2367 		 */
2368 		fl->bar2_addr = bar2_address(adapter,
2369 					     fl->cntxt_id,
2370 					     T4_BAR2_QTYPE_EGRESS,
2371 					     &fl->bar2_qid);
2372 
2373 		refill_fl(adapter, fl, fl_cap(fl), GFP_KERNEL);
2374 	}
2375 
2376 	return 0;
2377 
2378 err:
2379 	/*
2380 	 * An error occurred.  Clean up our partial allocation state and
2381 	 * return the error.
2382 	 */
2383 	if (rspq->desc) {
2384 		dma_free_coherent(adapter->pdev_dev, rspq->size * rspq->iqe_len,
2385 				  rspq->desc, rspq->phys_addr);
2386 		rspq->desc = NULL;
2387 	}
2388 	if (fl && fl->desc) {
2389 		kfree(fl->sdesc);
2390 		fl->sdesc = NULL;
2391 		dma_free_coherent(adapter->pdev_dev, flsz * EQ_UNIT,
2392 				  fl->desc, fl->addr);
2393 		fl->desc = NULL;
2394 	}
2395 	return ret;
2396 }
2397 
2398 /**
2399  *	t4vf_sge_alloc_eth_txq - allocate an SGE Ethernet TX Queue
2400  *	@adapter: the adapter
2401  *	@txq: pointer to the new txq to be filled in
2402  *	@devq: the network TX queue associated with the new txq
2403  *	@iqid: the relative ingress queue ID to which events relating to
2404  *		the new txq should be directed
2405  */
2406 int t4vf_sge_alloc_eth_txq(struct adapter *adapter, struct sge_eth_txq *txq,
2407 			   struct net_device *dev, struct netdev_queue *devq,
2408 			   unsigned int iqid)
2409 {
2410 	struct sge *s = &adapter->sge;
2411 	int ret, nentries;
2412 	struct fw_eq_eth_cmd cmd, rpl;
2413 	struct port_info *pi = netdev_priv(dev);
2414 
2415 	/*
2416 	 * Calculate the size of the hardware TX Queue (including the Status
2417 	 * Page on the end of the TX Queue) in units of TX Descriptors.
2418 	 */
2419 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2420 
2421 	/*
2422 	 * Allocate the hardware ring for the TX ring (with space for its
2423 	 * status page) along with the associated software descriptor ring.
2424 	 */
2425 	txq->q.desc = alloc_ring(adapter->pdev_dev, txq->q.size,
2426 				 sizeof(struct tx_desc),
2427 				 sizeof(struct tx_sw_desc),
2428 				 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len);
2429 	if (!txq->q.desc)
2430 		return -ENOMEM;
2431 
2432 	/*
2433 	 * Fill in the Egress Queue Command.  Note: As with the direct use of
2434 	 * the firmware Ingress Queue COmmand above in our RXQ allocation
2435 	 * routine, ideally, this code would be in t4vf_hw.c.  Again, we'll
2436 	 * have to see if there's some reasonable way to parameterize it
2437 	 * into the common code ...
2438 	 */
2439 	memset(&cmd, 0, sizeof(cmd));
2440 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
2441 				    FW_CMD_REQUEST_F |
2442 				    FW_CMD_WRITE_F |
2443 				    FW_CMD_EXEC_F);
2444 	cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_ALLOC_F |
2445 					 FW_EQ_ETH_CMD_EQSTART_F |
2446 					 FW_LEN16(cmd));
2447 	cmd.viid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
2448 				   FW_EQ_ETH_CMD_VIID_V(pi->viid));
2449 	cmd.fetchszm_to_iqid =
2450 		cpu_to_be32(FW_EQ_ETH_CMD_HOSTFCMODE_V(SGE_HOSTFCMODE_STPG) |
2451 			    FW_EQ_ETH_CMD_PCIECHN_V(pi->port_id) |
2452 			    FW_EQ_ETH_CMD_IQID_V(iqid));
2453 	cmd.dcaen_to_eqsize =
2454 		cpu_to_be32(FW_EQ_ETH_CMD_FBMIN_V(SGE_FETCHBURSTMIN_64B) |
2455 			    FW_EQ_ETH_CMD_FBMAX_V(SGE_FETCHBURSTMAX_512B) |
2456 			    FW_EQ_ETH_CMD_CIDXFTHRESH_V(
2457 						SGE_CIDXFLUSHTHRESH_32) |
2458 			    FW_EQ_ETH_CMD_EQSIZE_V(nentries));
2459 	cmd.eqaddr = cpu_to_be64(txq->q.phys_addr);
2460 
2461 	/*
2462 	 * Issue the firmware Egress Queue Command and extract the results if
2463 	 * it completes successfully.
2464 	 */
2465 	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2466 	if (ret) {
2467 		/*
2468 		 * The girmware Ingress Queue Command failed for some reason.
2469 		 * Free up our partial allocation state and return the error.
2470 		 */
2471 		kfree(txq->q.sdesc);
2472 		txq->q.sdesc = NULL;
2473 		dma_free_coherent(adapter->pdev_dev,
2474 				  nentries * sizeof(struct tx_desc),
2475 				  txq->q.desc, txq->q.phys_addr);
2476 		txq->q.desc = NULL;
2477 		return ret;
2478 	}
2479 
2480 	txq->q.in_use = 0;
2481 	txq->q.cidx = 0;
2482 	txq->q.pidx = 0;
2483 	txq->q.stat = (void *)&txq->q.desc[txq->q.size];
2484 	txq->q.cntxt_id = FW_EQ_ETH_CMD_EQID_G(be32_to_cpu(rpl.eqid_pkd));
2485 	txq->q.bar2_addr = bar2_address(adapter,
2486 					txq->q.cntxt_id,
2487 					T4_BAR2_QTYPE_EGRESS,
2488 					&txq->q.bar2_qid);
2489 	txq->q.abs_id =
2490 		FW_EQ_ETH_CMD_PHYSEQID_G(be32_to_cpu(rpl.physeqid_pkd));
2491 	txq->txq = devq;
2492 	txq->tso = 0;
2493 	txq->tx_cso = 0;
2494 	txq->vlan_ins = 0;
2495 	txq->q.stops = 0;
2496 	txq->q.restarts = 0;
2497 	txq->mapping_err = 0;
2498 	return 0;
2499 }
2500 
2501 /*
2502  * Free the DMA map resources associated with a TX queue.
2503  */
2504 static void free_txq(struct adapter *adapter, struct sge_txq *tq)
2505 {
2506 	struct sge *s = &adapter->sge;
2507 
2508 	dma_free_coherent(adapter->pdev_dev,
2509 			  tq->size * sizeof(*tq->desc) + s->stat_len,
2510 			  tq->desc, tq->phys_addr);
2511 	tq->cntxt_id = 0;
2512 	tq->sdesc = NULL;
2513 	tq->desc = NULL;
2514 }
2515 
2516 /*
2517  * Free the resources associated with a response queue (possibly including a
2518  * free list).
2519  */
2520 static void free_rspq_fl(struct adapter *adapter, struct sge_rspq *rspq,
2521 			 struct sge_fl *fl)
2522 {
2523 	struct sge *s = &adapter->sge;
2524 	unsigned int flid = fl ? fl->cntxt_id : 0xffff;
2525 
2526 	t4vf_iq_free(adapter, FW_IQ_TYPE_FL_INT_CAP,
2527 		     rspq->cntxt_id, flid, 0xffff);
2528 	dma_free_coherent(adapter->pdev_dev, (rspq->size + 1) * rspq->iqe_len,
2529 			  rspq->desc, rspq->phys_addr);
2530 	netif_napi_del(&rspq->napi);
2531 	rspq->netdev = NULL;
2532 	rspq->cntxt_id = 0;
2533 	rspq->abs_id = 0;
2534 	rspq->desc = NULL;
2535 
2536 	if (fl) {
2537 		free_rx_bufs(adapter, fl, fl->avail);
2538 		dma_free_coherent(adapter->pdev_dev,
2539 				  fl->size * sizeof(*fl->desc) + s->stat_len,
2540 				  fl->desc, fl->addr);
2541 		kfree(fl->sdesc);
2542 		fl->sdesc = NULL;
2543 		fl->cntxt_id = 0;
2544 		fl->desc = NULL;
2545 	}
2546 }
2547 
2548 /**
2549  *	t4vf_free_sge_resources - free SGE resources
2550  *	@adapter: the adapter
2551  *
2552  *	Frees resources used by the SGE queue sets.
2553  */
2554 void t4vf_free_sge_resources(struct adapter *adapter)
2555 {
2556 	struct sge *s = &adapter->sge;
2557 	struct sge_eth_rxq *rxq = s->ethrxq;
2558 	struct sge_eth_txq *txq = s->ethtxq;
2559 	struct sge_rspq *evtq = &s->fw_evtq;
2560 	struct sge_rspq *intrq = &s->intrq;
2561 	int qs;
2562 
2563 	for (qs = 0; qs < adapter->sge.ethqsets; qs++, rxq++, txq++) {
2564 		if (rxq->rspq.desc)
2565 			free_rspq_fl(adapter, &rxq->rspq, &rxq->fl);
2566 		if (txq->q.desc) {
2567 			t4vf_eth_eq_free(adapter, txq->q.cntxt_id);
2568 			free_tx_desc(adapter, &txq->q, txq->q.in_use, true);
2569 			kfree(txq->q.sdesc);
2570 			free_txq(adapter, &txq->q);
2571 		}
2572 	}
2573 	if (evtq->desc)
2574 		free_rspq_fl(adapter, evtq, NULL);
2575 	if (intrq->desc)
2576 		free_rspq_fl(adapter, intrq, NULL);
2577 }
2578 
2579 /**
2580  *	t4vf_sge_start - enable SGE operation
2581  *	@adapter: the adapter
2582  *
2583  *	Start tasklets and timers associated with the DMA engine.
2584  */
2585 void t4vf_sge_start(struct adapter *adapter)
2586 {
2587 	adapter->sge.ethtxq_rover = 0;
2588 	mod_timer(&adapter->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2589 	mod_timer(&adapter->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2590 }
2591 
2592 /**
2593  *	t4vf_sge_stop - disable SGE operation
2594  *	@adapter: the adapter
2595  *
2596  *	Stop tasklets and timers associated with the DMA engine.  Note that
2597  *	this is effective only if measures have been taken to disable any HW
2598  *	events that may restart them.
2599  */
2600 void t4vf_sge_stop(struct adapter *adapter)
2601 {
2602 	struct sge *s = &adapter->sge;
2603 
2604 	if (s->rx_timer.function)
2605 		del_timer_sync(&s->rx_timer);
2606 	if (s->tx_timer.function)
2607 		del_timer_sync(&s->tx_timer);
2608 }
2609 
2610 /**
2611  *	t4vf_sge_init - initialize SGE
2612  *	@adapter: the adapter
2613  *
2614  *	Performs SGE initialization needed every time after a chip reset.
2615  *	We do not initialize any of the queue sets here, instead the driver
2616  *	top-level must request those individually.  We also do not enable DMA
2617  *	here, that should be done after the queues have been set up.
2618  */
2619 int t4vf_sge_init(struct adapter *adapter)
2620 {
2621 	struct sge_params *sge_params = &adapter->params.sge;
2622 	u32 fl0 = sge_params->sge_fl_buffer_size[0];
2623 	u32 fl1 = sge_params->sge_fl_buffer_size[1];
2624 	struct sge *s = &adapter->sge;
2625 
2626 	/*
2627 	 * Start by vetting the basic SGE parameters which have been set up by
2628 	 * the Physical Function Driver.  Ideally we should be able to deal
2629 	 * with _any_ configuration.  Practice is different ...
2630 	 */
2631 	if (fl0 != PAGE_SIZE || (fl1 != 0 && fl1 <= fl0)) {
2632 		dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n",
2633 			fl0, fl1);
2634 		return -EINVAL;
2635 	}
2636 	if ((sge_params->sge_control & RXPKTCPLMODE_F) !=
2637 	    RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
2638 		dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n");
2639 		return -EINVAL;
2640 	}
2641 
2642 	/*
2643 	 * Now translate the adapter parameters into our internal forms.
2644 	 */
2645 	if (fl1)
2646 		s->fl_pg_order = ilog2(fl1) - PAGE_SHIFT;
2647 	s->stat_len = ((sge_params->sge_control & EGRSTATUSPAGESIZE_F)
2648 			? 128 : 64);
2649 	s->pktshift = PKTSHIFT_G(sge_params->sge_control);
2650 	s->fl_align = t4vf_fl_pkt_align(adapter);
2651 
2652 	/* A FL with <= fl_starve_thres buffers is starving and a periodic
2653 	 * timer will attempt to refill it.  This needs to be larger than the
2654 	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
2655 	 * stuck waiting for new packets while the SGE is waiting for us to
2656 	 * give it more Free List entries.  (Note that the SGE's Egress
2657 	 * Congestion Threshold is in units of 2 Free List pointers.)
2658 	 */
2659 	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
2660 	case CHELSIO_T4:
2661 		s->fl_starve_thres =
2662 		   EGRTHRESHOLD_G(sge_params->sge_congestion_control);
2663 		break;
2664 	case CHELSIO_T5:
2665 		s->fl_starve_thres =
2666 		   EGRTHRESHOLDPACKING_G(sge_params->sge_congestion_control);
2667 		break;
2668 	case CHELSIO_T6:
2669 	default:
2670 		s->fl_starve_thres =
2671 		   T6_EGRTHRESHOLDPACKING_G(sge_params->sge_congestion_control);
2672 		break;
2673 	}
2674 	s->fl_starve_thres = s->fl_starve_thres * 2 + 1;
2675 
2676 	/*
2677 	 * Set up tasklet timers.
2678 	 */
2679 	timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
2680 	timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
2681 
2682 	/*
2683 	 * Initialize Forwarded Interrupt Queue lock.
2684 	 */
2685 	spin_lock_init(&s->intrq_lock);
2686 
2687 	return 0;
2688 }
2689