1 /* 2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet 3 * driver for Linux. 4 * 5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 37 38 #include <linux/module.h> 39 #include <linux/moduleparam.h> 40 #include <linux/init.h> 41 #include <linux/pci.h> 42 #include <linux/dma-mapping.h> 43 #include <linux/netdevice.h> 44 #include <linux/etherdevice.h> 45 #include <linux/debugfs.h> 46 #include <linux/ethtool.h> 47 #include <linux/mdio.h> 48 49 #include "t4vf_common.h" 50 #include "t4vf_defs.h" 51 52 #include "../cxgb4/t4_regs.h" 53 #include "../cxgb4/t4_msg.h" 54 55 /* 56 * Generic information about the driver. 57 */ 58 #define DRV_VERSION "2.0.0-ko" 59 #define DRV_DESC "Chelsio T4/T5/T6 Virtual Function (VF) Network Driver" 60 61 /* 62 * Module Parameters. 63 * ================== 64 */ 65 66 /* 67 * Default ethtool "message level" for adapters. 68 */ 69 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 70 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 71 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 72 73 /* 74 * The driver uses the best interrupt scheme available on a platform in the 75 * order MSI-X then MSI. This parameter determines which of these schemes the 76 * driver may consider as follows: 77 * 78 * msi = 2: choose from among MSI-X and MSI 79 * msi = 1: only consider MSI interrupts 80 * 81 * Note that unlike the Physical Function driver, this Virtual Function driver 82 * does _not_ support legacy INTx interrupts (this limitation is mandated by 83 * the PCI-E SR-IOV standard). 84 */ 85 #define MSI_MSIX 2 86 #define MSI_MSI 1 87 #define MSI_DEFAULT MSI_MSIX 88 89 static int msi = MSI_DEFAULT; 90 91 module_param(msi, int, 0644); 92 MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI"); 93 94 /* 95 * Fundamental constants. 96 * ====================== 97 */ 98 99 enum { 100 MAX_TXQ_ENTRIES = 16384, 101 MAX_RSPQ_ENTRIES = 16384, 102 MAX_RX_BUFFERS = 16384, 103 104 MIN_TXQ_ENTRIES = 32, 105 MIN_RSPQ_ENTRIES = 128, 106 MIN_FL_ENTRIES = 16, 107 108 /* 109 * For purposes of manipulating the Free List size we need to 110 * recognize that Free Lists are actually Egress Queues (the host 111 * produces free buffers which the hardware consumes), Egress Queues 112 * indices are all in units of Egress Context Units bytes, and free 113 * list entries are 64-bit PCI DMA addresses. And since the state of 114 * the Producer Index == the Consumer Index implies an EMPTY list, we 115 * always have at least one Egress Unit's worth of Free List entries 116 * unused. See sge.c for more details ... 117 */ 118 EQ_UNIT = SGE_EQ_IDXSIZE, 119 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 120 MIN_FL_RESID = FL_PER_EQ_UNIT, 121 }; 122 123 /* 124 * Global driver state. 125 * ==================== 126 */ 127 128 static struct dentry *cxgb4vf_debugfs_root; 129 130 /* 131 * OS "Callback" functions. 132 * ======================== 133 */ 134 135 /* 136 * The link status has changed on the indicated "port" (Virtual Interface). 137 */ 138 void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok) 139 { 140 struct net_device *dev = adapter->port[pidx]; 141 142 /* 143 * If the port is disabled or the current recorded "link up" 144 * status matches the new status, just return. 145 */ 146 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev)) 147 return; 148 149 /* 150 * Tell the OS that the link status has changed and print a short 151 * informative message on the console about the event. 152 */ 153 if (link_ok) { 154 const char *s; 155 const char *fc; 156 const struct port_info *pi = netdev_priv(dev); 157 158 switch (pi->link_cfg.speed) { 159 case 100: 160 s = "100Mbps"; 161 break; 162 case 1000: 163 s = "1Gbps"; 164 break; 165 case 10000: 166 s = "10Gbps"; 167 break; 168 case 25000: 169 s = "25Gbps"; 170 break; 171 case 40000: 172 s = "40Gbps"; 173 break; 174 case 100000: 175 s = "100Gbps"; 176 break; 177 178 default: 179 s = "unknown"; 180 break; 181 } 182 183 switch ((int)pi->link_cfg.fc) { 184 case PAUSE_RX: 185 fc = "RX"; 186 break; 187 188 case PAUSE_TX: 189 fc = "TX"; 190 break; 191 192 case PAUSE_RX | PAUSE_TX: 193 fc = "RX/TX"; 194 break; 195 196 default: 197 fc = "no"; 198 break; 199 } 200 201 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc); 202 } else { 203 netdev_info(dev, "link down\n"); 204 } 205 } 206 207 /* 208 * THe port module type has changed on the indicated "port" (Virtual 209 * Interface). 210 */ 211 void t4vf_os_portmod_changed(struct adapter *adapter, int pidx) 212 { 213 static const char * const mod_str[] = { 214 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 215 }; 216 const struct net_device *dev = adapter->port[pidx]; 217 const struct port_info *pi = netdev_priv(dev); 218 219 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 220 dev_info(adapter->pdev_dev, "%s: port module unplugged\n", 221 dev->name); 222 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 223 dev_info(adapter->pdev_dev, "%s: %s port module inserted\n", 224 dev->name, mod_str[pi->mod_type]); 225 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 226 dev_info(adapter->pdev_dev, "%s: unsupported optical port " 227 "module inserted\n", dev->name); 228 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 229 dev_info(adapter->pdev_dev, "%s: unknown port module inserted," 230 "forcing TWINAX\n", dev->name); 231 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 232 dev_info(adapter->pdev_dev, "%s: transceiver module error\n", 233 dev->name); 234 else 235 dev_info(adapter->pdev_dev, "%s: unknown module type %d " 236 "inserted\n", dev->name, pi->mod_type); 237 } 238 239 /* 240 * Net device operations. 241 * ====================== 242 */ 243 244 245 246 247 /* 248 * Perform the MAC and PHY actions needed to enable a "port" (Virtual 249 * Interface). 250 */ 251 static int link_start(struct net_device *dev) 252 { 253 int ret; 254 struct port_info *pi = netdev_priv(dev); 255 256 /* 257 * We do not set address filters and promiscuity here, the stack does 258 * that step explicitly. Enable vlan accel. 259 */ 260 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1, 261 true); 262 if (ret == 0) { 263 ret = t4vf_change_mac(pi->adapter, pi->viid, 264 pi->xact_addr_filt, dev->dev_addr, true); 265 if (ret >= 0) { 266 pi->xact_addr_filt = ret; 267 ret = 0; 268 } 269 } 270 271 /* 272 * We don't need to actually "start the link" itself since the 273 * firmware will do that for us when the first Virtual Interface 274 * is enabled on a port. 275 */ 276 if (ret == 0) 277 ret = t4vf_enable_pi(pi->adapter, pi, true, true); 278 279 /* The Virtual Interfaces are connected to an internal switch on the 280 * chip which allows VIs attached to the same port to talk to each 281 * other even when the port link is down. As a result, we generally 282 * want to always report a VI's link as being "up", provided there are 283 * no errors in enabling vi. 284 */ 285 286 if (ret == 0) 287 netif_carrier_on(dev); 288 289 return ret; 290 } 291 292 /* 293 * Name the MSI-X interrupts. 294 */ 295 static void name_msix_vecs(struct adapter *adapter) 296 { 297 int namelen = sizeof(adapter->msix_info[0].desc) - 1; 298 int pidx; 299 300 /* 301 * Firmware events. 302 */ 303 snprintf(adapter->msix_info[MSIX_FW].desc, namelen, 304 "%s-FWeventq", adapter->name); 305 adapter->msix_info[MSIX_FW].desc[namelen] = 0; 306 307 /* 308 * Ethernet queues. 309 */ 310 for_each_port(adapter, pidx) { 311 struct net_device *dev = adapter->port[pidx]; 312 const struct port_info *pi = netdev_priv(dev); 313 int qs, msi; 314 315 for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) { 316 snprintf(adapter->msix_info[msi].desc, namelen, 317 "%s-%d", dev->name, qs); 318 adapter->msix_info[msi].desc[namelen] = 0; 319 } 320 } 321 } 322 323 /* 324 * Request all of our MSI-X resources. 325 */ 326 static int request_msix_queue_irqs(struct adapter *adapter) 327 { 328 struct sge *s = &adapter->sge; 329 int rxq, msi, err; 330 331 /* 332 * Firmware events. 333 */ 334 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix, 335 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq); 336 if (err) 337 return err; 338 339 /* 340 * Ethernet queues. 341 */ 342 msi = MSIX_IQFLINT; 343 for_each_ethrxq(s, rxq) { 344 err = request_irq(adapter->msix_info[msi].vec, 345 t4vf_sge_intr_msix, 0, 346 adapter->msix_info[msi].desc, 347 &s->ethrxq[rxq].rspq); 348 if (err) 349 goto err_free_irqs; 350 msi++; 351 } 352 return 0; 353 354 err_free_irqs: 355 while (--rxq >= 0) 356 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq); 357 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq); 358 return err; 359 } 360 361 /* 362 * Free our MSI-X resources. 363 */ 364 static void free_msix_queue_irqs(struct adapter *adapter) 365 { 366 struct sge *s = &adapter->sge; 367 int rxq, msi; 368 369 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq); 370 msi = MSIX_IQFLINT; 371 for_each_ethrxq(s, rxq) 372 free_irq(adapter->msix_info[msi++].vec, 373 &s->ethrxq[rxq].rspq); 374 } 375 376 /* 377 * Turn on NAPI and start up interrupts on a response queue. 378 */ 379 static void qenable(struct sge_rspq *rspq) 380 { 381 napi_enable(&rspq->napi); 382 383 /* 384 * 0-increment the Going To Sleep register to start the timer and 385 * enable interrupts. 386 */ 387 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 388 CIDXINC_V(0) | 389 SEINTARM_V(rspq->intr_params) | 390 INGRESSQID_V(rspq->cntxt_id)); 391 } 392 393 /* 394 * Enable NAPI scheduling and interrupt generation for all Receive Queues. 395 */ 396 static void enable_rx(struct adapter *adapter) 397 { 398 int rxq; 399 struct sge *s = &adapter->sge; 400 401 for_each_ethrxq(s, rxq) 402 qenable(&s->ethrxq[rxq].rspq); 403 qenable(&s->fw_evtq); 404 405 /* 406 * The interrupt queue doesn't use NAPI so we do the 0-increment of 407 * its Going To Sleep register here to get it started. 408 */ 409 if (adapter->flags & USING_MSI) 410 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 411 CIDXINC_V(0) | 412 SEINTARM_V(s->intrq.intr_params) | 413 INGRESSQID_V(s->intrq.cntxt_id)); 414 415 } 416 417 /* 418 * Wait until all NAPI handlers are descheduled. 419 */ 420 static void quiesce_rx(struct adapter *adapter) 421 { 422 struct sge *s = &adapter->sge; 423 int rxq; 424 425 for_each_ethrxq(s, rxq) 426 napi_disable(&s->ethrxq[rxq].rspq.napi); 427 napi_disable(&s->fw_evtq.napi); 428 } 429 430 /* 431 * Response queue handler for the firmware event queue. 432 */ 433 static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp, 434 const struct pkt_gl *gl) 435 { 436 /* 437 * Extract response opcode and get pointer to CPL message body. 438 */ 439 struct adapter *adapter = rspq->adapter; 440 u8 opcode = ((const struct rss_header *)rsp)->opcode; 441 void *cpl = (void *)(rsp + 1); 442 443 switch (opcode) { 444 case CPL_FW6_MSG: { 445 /* 446 * We've received an asynchronous message from the firmware. 447 */ 448 const struct cpl_fw6_msg *fw_msg = cpl; 449 if (fw_msg->type == FW6_TYPE_CMD_RPL) 450 t4vf_handle_fw_rpl(adapter, fw_msg->data); 451 break; 452 } 453 454 case CPL_FW4_MSG: { 455 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 456 */ 457 const struct cpl_sge_egr_update *p = (void *)(rsp + 3); 458 opcode = CPL_OPCODE_G(ntohl(p->opcode_qid)); 459 if (opcode != CPL_SGE_EGR_UPDATE) { 460 dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 461 , opcode); 462 break; 463 } 464 cpl = (void *)p; 465 /*FALLTHROUGH*/ 466 } 467 468 case CPL_SGE_EGR_UPDATE: { 469 /* 470 * We've received an Egress Queue Status Update message. We 471 * get these, if the SGE is configured to send these when the 472 * firmware passes certain points in processing our TX 473 * Ethernet Queue or if we make an explicit request for one. 474 * We use these updates to determine when we may need to 475 * restart a TX Ethernet Queue which was stopped for lack of 476 * free TX Queue Descriptors ... 477 */ 478 const struct cpl_sge_egr_update *p = cpl; 479 unsigned int qid = EGR_QID_G(be32_to_cpu(p->opcode_qid)); 480 struct sge *s = &adapter->sge; 481 struct sge_txq *tq; 482 struct sge_eth_txq *txq; 483 unsigned int eq_idx; 484 485 /* 486 * Perform sanity checking on the Queue ID to make sure it 487 * really refers to one of our TX Ethernet Egress Queues which 488 * is active and matches the queue's ID. None of these error 489 * conditions should ever happen so we may want to either make 490 * them fatal and/or conditionalized under DEBUG. 491 */ 492 eq_idx = EQ_IDX(s, qid); 493 if (unlikely(eq_idx >= MAX_EGRQ)) { 494 dev_err(adapter->pdev_dev, 495 "Egress Update QID %d out of range\n", qid); 496 break; 497 } 498 tq = s->egr_map[eq_idx]; 499 if (unlikely(tq == NULL)) { 500 dev_err(adapter->pdev_dev, 501 "Egress Update QID %d TXQ=NULL\n", qid); 502 break; 503 } 504 txq = container_of(tq, struct sge_eth_txq, q); 505 if (unlikely(tq->abs_id != qid)) { 506 dev_err(adapter->pdev_dev, 507 "Egress Update QID %d refers to TXQ %d\n", 508 qid, tq->abs_id); 509 break; 510 } 511 512 /* 513 * Restart a stopped TX Queue which has less than half of its 514 * TX ring in use ... 515 */ 516 txq->q.restarts++; 517 netif_tx_wake_queue(txq->txq); 518 break; 519 } 520 521 default: 522 dev_err(adapter->pdev_dev, 523 "unexpected CPL %#x on FW event queue\n", opcode); 524 } 525 526 return 0; 527 } 528 529 /* 530 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues 531 * to use and initializes them. We support multiple "Queue Sets" per port if 532 * we have MSI-X, otherwise just one queue set per port. 533 */ 534 static int setup_sge_queues(struct adapter *adapter) 535 { 536 struct sge *s = &adapter->sge; 537 int err, pidx, msix; 538 539 /* 540 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error 541 * state. 542 */ 543 bitmap_zero(s->starving_fl, MAX_EGRQ); 544 545 /* 546 * If we're using MSI interrupt mode we need to set up a "forwarded 547 * interrupt" queue which we'll set up with our MSI vector. The rest 548 * of the ingress queues will be set up to forward their interrupts to 549 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses 550 * the intrq's queue ID as the interrupt forwarding queue for the 551 * subsequent calls ... 552 */ 553 if (adapter->flags & USING_MSI) { 554 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false, 555 adapter->port[0], 0, NULL, NULL); 556 if (err) 557 goto err_free_queues; 558 } 559 560 /* 561 * Allocate our ingress queue for asynchronous firmware messages. 562 */ 563 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0], 564 MSIX_FW, NULL, fwevtq_handler); 565 if (err) 566 goto err_free_queues; 567 568 /* 569 * Allocate each "port"'s initial Queue Sets. These can be changed 570 * later on ... up to the point where any interface on the adapter is 571 * brought up at which point lots of things get nailed down 572 * permanently ... 573 */ 574 msix = MSIX_IQFLINT; 575 for_each_port(adapter, pidx) { 576 struct net_device *dev = adapter->port[pidx]; 577 struct port_info *pi = netdev_priv(dev); 578 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset]; 579 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset]; 580 int qs; 581 582 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 583 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false, 584 dev, msix++, 585 &rxq->fl, t4vf_ethrx_handler); 586 if (err) 587 goto err_free_queues; 588 589 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev, 590 netdev_get_tx_queue(dev, qs), 591 s->fw_evtq.cntxt_id); 592 if (err) 593 goto err_free_queues; 594 595 rxq->rspq.idx = qs; 596 memset(&rxq->stats, 0, sizeof(rxq->stats)); 597 } 598 } 599 600 /* 601 * Create the reverse mappings for the queues. 602 */ 603 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id; 604 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id; 605 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq; 606 for_each_port(adapter, pidx) { 607 struct net_device *dev = adapter->port[pidx]; 608 struct port_info *pi = netdev_priv(dev); 609 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset]; 610 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset]; 611 int qs; 612 613 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 614 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq; 615 EQ_MAP(s, txq->q.abs_id) = &txq->q; 616 617 /* 618 * The FW_IQ_CMD doesn't return the Absolute Queue IDs 619 * for Free Lists but since all of the Egress Queues 620 * (including Free Lists) have Relative Queue IDs 621 * which are computed as Absolute - Base Queue ID, we 622 * can synthesize the Absolute Queue IDs for the Free 623 * Lists. This is useful for debugging purposes when 624 * we want to dump Queue Contexts via the PF Driver. 625 */ 626 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base; 627 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl; 628 } 629 } 630 return 0; 631 632 err_free_queues: 633 t4vf_free_sge_resources(adapter); 634 return err; 635 } 636 637 /* 638 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive 639 * queues. We configure the RSS CPU lookup table to distribute to the number 640 * of HW receive queues, and the response queue lookup table to narrow that 641 * down to the response queues actually configured for each "port" (Virtual 642 * Interface). We always configure the RSS mapping for all ports since the 643 * mapping table has plenty of entries. 644 */ 645 static int setup_rss(struct adapter *adapter) 646 { 647 int pidx; 648 649 for_each_port(adapter, pidx) { 650 struct port_info *pi = adap2pinfo(adapter, pidx); 651 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset]; 652 u16 rss[MAX_PORT_QSETS]; 653 int qs, err; 654 655 for (qs = 0; qs < pi->nqsets; qs++) 656 rss[qs] = rxq[qs].rspq.abs_id; 657 658 err = t4vf_config_rss_range(adapter, pi->viid, 659 0, pi->rss_size, rss, pi->nqsets); 660 if (err) 661 return err; 662 663 /* 664 * Perform Global RSS Mode-specific initialization. 665 */ 666 switch (adapter->params.rss.mode) { 667 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: 668 /* 669 * If Tunnel All Lookup isn't specified in the global 670 * RSS Configuration, then we need to specify a 671 * default Ingress Queue for any ingress packets which 672 * aren't hashed. We'll use our first ingress queue 673 * ... 674 */ 675 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) { 676 union rss_vi_config config; 677 err = t4vf_read_rss_vi_config(adapter, 678 pi->viid, 679 &config); 680 if (err) 681 return err; 682 config.basicvirtual.defaultq = 683 rxq[0].rspq.abs_id; 684 err = t4vf_write_rss_vi_config(adapter, 685 pi->viid, 686 &config); 687 if (err) 688 return err; 689 } 690 break; 691 } 692 } 693 694 return 0; 695 } 696 697 /* 698 * Bring the adapter up. Called whenever we go from no "ports" open to having 699 * one open. This function performs the actions necessary to make an adapter 700 * operational, such as completing the initialization of HW modules, and 701 * enabling interrupts. Must be called with the rtnl lock held. (Note that 702 * this is called "cxgb_up" in the PF Driver.) 703 */ 704 static int adapter_up(struct adapter *adapter) 705 { 706 int err; 707 708 /* 709 * If this is the first time we've been called, perform basic 710 * adapter setup. Once we've done this, many of our adapter 711 * parameters can no longer be changed ... 712 */ 713 if ((adapter->flags & FULL_INIT_DONE) == 0) { 714 err = setup_sge_queues(adapter); 715 if (err) 716 return err; 717 err = setup_rss(adapter); 718 if (err) { 719 t4vf_free_sge_resources(adapter); 720 return err; 721 } 722 723 if (adapter->flags & USING_MSIX) 724 name_msix_vecs(adapter); 725 adapter->flags |= FULL_INIT_DONE; 726 } 727 728 /* 729 * Acquire our interrupt resources. We only support MSI-X and MSI. 730 */ 731 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0); 732 if (adapter->flags & USING_MSIX) 733 err = request_msix_queue_irqs(adapter); 734 else 735 err = request_irq(adapter->pdev->irq, 736 t4vf_intr_handler(adapter), 0, 737 adapter->name, adapter); 738 if (err) { 739 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n", 740 err); 741 return err; 742 } 743 744 /* 745 * Enable NAPI ingress processing and return success. 746 */ 747 enable_rx(adapter); 748 t4vf_sge_start(adapter); 749 750 /* Initialize hash mac addr list*/ 751 INIT_LIST_HEAD(&adapter->mac_hlist); 752 return 0; 753 } 754 755 /* 756 * Bring the adapter down. Called whenever the last "port" (Virtual 757 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF 758 * Driver.) 759 */ 760 static void adapter_down(struct adapter *adapter) 761 { 762 /* 763 * Free interrupt resources. 764 */ 765 if (adapter->flags & USING_MSIX) 766 free_msix_queue_irqs(adapter); 767 else 768 free_irq(adapter->pdev->irq, adapter); 769 770 /* 771 * Wait for NAPI handlers to finish. 772 */ 773 quiesce_rx(adapter); 774 } 775 776 /* 777 * Start up a net device. 778 */ 779 static int cxgb4vf_open(struct net_device *dev) 780 { 781 int err; 782 struct port_info *pi = netdev_priv(dev); 783 struct adapter *adapter = pi->adapter; 784 785 /* 786 * If this is the first interface that we're opening on the "adapter", 787 * bring the "adapter" up now. 788 */ 789 if (adapter->open_device_map == 0) { 790 err = adapter_up(adapter); 791 if (err) 792 return err; 793 } 794 795 /* 796 * Note that this interface is up and start everything up ... 797 */ 798 err = link_start(dev); 799 if (err) 800 goto err_unwind; 801 802 pi->vlan_id = t4vf_get_vf_vlan_acl(adapter); 803 804 netif_tx_start_all_queues(dev); 805 set_bit(pi->port_id, &adapter->open_device_map); 806 return 0; 807 808 err_unwind: 809 if (adapter->open_device_map == 0) 810 adapter_down(adapter); 811 return err; 812 } 813 814 /* 815 * Shut down a net device. This routine is called "cxgb_close" in the PF 816 * Driver ... 817 */ 818 static int cxgb4vf_stop(struct net_device *dev) 819 { 820 struct port_info *pi = netdev_priv(dev); 821 struct adapter *adapter = pi->adapter; 822 823 netif_tx_stop_all_queues(dev); 824 netif_carrier_off(dev); 825 t4vf_enable_pi(adapter, pi, false, false); 826 827 clear_bit(pi->port_id, &adapter->open_device_map); 828 if (adapter->open_device_map == 0) 829 adapter_down(adapter); 830 return 0; 831 } 832 833 /* 834 * Translate our basic statistics into the standard "ifconfig" statistics. 835 */ 836 static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev) 837 { 838 struct t4vf_port_stats stats; 839 struct port_info *pi = netdev2pinfo(dev); 840 struct adapter *adapter = pi->adapter; 841 struct net_device_stats *ns = &dev->stats; 842 int err; 843 844 spin_lock(&adapter->stats_lock); 845 err = t4vf_get_port_stats(adapter, pi->pidx, &stats); 846 spin_unlock(&adapter->stats_lock); 847 848 memset(ns, 0, sizeof(*ns)); 849 if (err) 850 return ns; 851 852 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes + 853 stats.tx_ucast_bytes + stats.tx_offload_bytes); 854 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames + 855 stats.tx_ucast_frames + stats.tx_offload_frames); 856 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes + 857 stats.rx_ucast_bytes); 858 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames + 859 stats.rx_ucast_frames); 860 ns->multicast = stats.rx_mcast_frames; 861 ns->tx_errors = stats.tx_drop_frames; 862 ns->rx_errors = stats.rx_err_frames; 863 864 return ns; 865 } 866 867 static inline int cxgb4vf_set_addr_hash(struct port_info *pi) 868 { 869 struct adapter *adapter = pi->adapter; 870 u64 vec = 0; 871 bool ucast = false; 872 struct hash_mac_addr *entry; 873 874 /* Calculate the hash vector for the updated list and program it */ 875 list_for_each_entry(entry, &adapter->mac_hlist, list) { 876 ucast |= is_unicast_ether_addr(entry->addr); 877 vec |= (1ULL << hash_mac_addr(entry->addr)); 878 } 879 return t4vf_set_addr_hash(adapter, pi->viid, ucast, vec, false); 880 } 881 882 static int cxgb4vf_mac_sync(struct net_device *netdev, const u8 *mac_addr) 883 { 884 struct port_info *pi = netdev_priv(netdev); 885 struct adapter *adapter = pi->adapter; 886 int ret; 887 u64 mhash = 0; 888 u64 uhash = 0; 889 bool free = false; 890 bool ucast = is_unicast_ether_addr(mac_addr); 891 const u8 *maclist[1] = {mac_addr}; 892 struct hash_mac_addr *new_entry; 893 894 ret = t4vf_alloc_mac_filt(adapter, pi->viid, free, 1, maclist, 895 NULL, ucast ? &uhash : &mhash, false); 896 if (ret < 0) 897 goto out; 898 /* if hash != 0, then add the addr to hash addr list 899 * so on the end we will calculate the hash for the 900 * list and program it 901 */ 902 if (uhash || mhash) { 903 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 904 if (!new_entry) 905 return -ENOMEM; 906 ether_addr_copy(new_entry->addr, mac_addr); 907 list_add_tail(&new_entry->list, &adapter->mac_hlist); 908 ret = cxgb4vf_set_addr_hash(pi); 909 } 910 out: 911 return ret < 0 ? ret : 0; 912 } 913 914 static int cxgb4vf_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 915 { 916 struct port_info *pi = netdev_priv(netdev); 917 struct adapter *adapter = pi->adapter; 918 int ret; 919 const u8 *maclist[1] = {mac_addr}; 920 struct hash_mac_addr *entry, *tmp; 921 922 /* If the MAC address to be removed is in the hash addr 923 * list, delete it from the list and update hash vector 924 */ 925 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, list) { 926 if (ether_addr_equal(entry->addr, mac_addr)) { 927 list_del(&entry->list); 928 kfree(entry); 929 return cxgb4vf_set_addr_hash(pi); 930 } 931 } 932 933 ret = t4vf_free_mac_filt(adapter, pi->viid, 1, maclist, false); 934 return ret < 0 ? -EINVAL : 0; 935 } 936 937 /* 938 * Set RX properties of a port, such as promiscruity, address filters, and MTU. 939 * If @mtu is -1 it is left unchanged. 940 */ 941 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 942 { 943 struct port_info *pi = netdev_priv(dev); 944 945 __dev_uc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync); 946 __dev_mc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync); 947 return t4vf_set_rxmode(pi->adapter, pi->viid, -1, 948 (dev->flags & IFF_PROMISC) != 0, 949 (dev->flags & IFF_ALLMULTI) != 0, 950 1, -1, sleep_ok); 951 } 952 953 /* 954 * Set the current receive modes on the device. 955 */ 956 static void cxgb4vf_set_rxmode(struct net_device *dev) 957 { 958 /* unfortunately we can't return errors to the stack */ 959 set_rxmode(dev, -1, false); 960 } 961 962 /* 963 * Find the entry in the interrupt holdoff timer value array which comes 964 * closest to the specified interrupt holdoff value. 965 */ 966 static int closest_timer(const struct sge *s, int us) 967 { 968 int i, timer_idx = 0, min_delta = INT_MAX; 969 970 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 971 int delta = us - s->timer_val[i]; 972 if (delta < 0) 973 delta = -delta; 974 if (delta < min_delta) { 975 min_delta = delta; 976 timer_idx = i; 977 } 978 } 979 return timer_idx; 980 } 981 982 static int closest_thres(const struct sge *s, int thres) 983 { 984 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX; 985 986 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 987 delta = thres - s->counter_val[i]; 988 if (delta < 0) 989 delta = -delta; 990 if (delta < min_delta) { 991 min_delta = delta; 992 pktcnt_idx = i; 993 } 994 } 995 return pktcnt_idx; 996 } 997 998 /* 999 * Return a queue's interrupt hold-off time in us. 0 means no timer. 1000 */ 1001 static unsigned int qtimer_val(const struct adapter *adapter, 1002 const struct sge_rspq *rspq) 1003 { 1004 unsigned int timer_idx = QINTR_TIMER_IDX_G(rspq->intr_params); 1005 1006 return timer_idx < SGE_NTIMERS 1007 ? adapter->sge.timer_val[timer_idx] 1008 : 0; 1009 } 1010 1011 /** 1012 * set_rxq_intr_params - set a queue's interrupt holdoff parameters 1013 * @adapter: the adapter 1014 * @rspq: the RX response queue 1015 * @us: the hold-off time in us, or 0 to disable timer 1016 * @cnt: the hold-off packet count, or 0 to disable counter 1017 * 1018 * Sets an RX response queue's interrupt hold-off time and packet count. 1019 * At least one of the two needs to be enabled for the queue to generate 1020 * interrupts. 1021 */ 1022 static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq, 1023 unsigned int us, unsigned int cnt) 1024 { 1025 unsigned int timer_idx; 1026 1027 /* 1028 * If both the interrupt holdoff timer and count are specified as 1029 * zero, default to a holdoff count of 1 ... 1030 */ 1031 if ((us | cnt) == 0) 1032 cnt = 1; 1033 1034 /* 1035 * If an interrupt holdoff count has been specified, then find the 1036 * closest configured holdoff count and use that. If the response 1037 * queue has already been created, then update its queue context 1038 * parameters ... 1039 */ 1040 if (cnt) { 1041 int err; 1042 u32 v, pktcnt_idx; 1043 1044 pktcnt_idx = closest_thres(&adapter->sge, cnt); 1045 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) { 1046 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1047 FW_PARAMS_PARAM_X_V( 1048 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1049 FW_PARAMS_PARAM_YZ_V(rspq->cntxt_id); 1050 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx); 1051 if (err) 1052 return err; 1053 } 1054 rspq->pktcnt_idx = pktcnt_idx; 1055 } 1056 1057 /* 1058 * Compute the closest holdoff timer index from the supplied holdoff 1059 * timer value. 1060 */ 1061 timer_idx = (us == 0 1062 ? SGE_TIMER_RSTRT_CNTR 1063 : closest_timer(&adapter->sge, us)); 1064 1065 /* 1066 * Update the response queue's interrupt coalescing parameters and 1067 * return success. 1068 */ 1069 rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) | 1070 QINTR_CNT_EN_V(cnt > 0)); 1071 return 0; 1072 } 1073 1074 /* 1075 * Return a version number to identify the type of adapter. The scheme is: 1076 * - bits 0..9: chip version 1077 * - bits 10..15: chip revision 1078 */ 1079 static inline unsigned int mk_adap_vers(const struct adapter *adapter) 1080 { 1081 /* 1082 * Chip version 4, revision 0x3f (cxgb4vf). 1083 */ 1084 return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10); 1085 } 1086 1087 /* 1088 * Execute the specified ioctl command. 1089 */ 1090 static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 1091 { 1092 int ret = 0; 1093 1094 switch (cmd) { 1095 /* 1096 * The VF Driver doesn't have access to any of the other 1097 * common Ethernet device ioctl()'s (like reading/writing 1098 * PHY registers, etc. 1099 */ 1100 1101 default: 1102 ret = -EOPNOTSUPP; 1103 break; 1104 } 1105 return ret; 1106 } 1107 1108 /* 1109 * Change the device's MTU. 1110 */ 1111 static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu) 1112 { 1113 int ret; 1114 struct port_info *pi = netdev_priv(dev); 1115 1116 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu, 1117 -1, -1, -1, -1, true); 1118 if (!ret) 1119 dev->mtu = new_mtu; 1120 return ret; 1121 } 1122 1123 static netdev_features_t cxgb4vf_fix_features(struct net_device *dev, 1124 netdev_features_t features) 1125 { 1126 /* 1127 * Since there is no support for separate rx/tx vlan accel 1128 * enable/disable make sure tx flag is always in same state as rx. 1129 */ 1130 if (features & NETIF_F_HW_VLAN_CTAG_RX) 1131 features |= NETIF_F_HW_VLAN_CTAG_TX; 1132 else 1133 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 1134 1135 return features; 1136 } 1137 1138 static int cxgb4vf_set_features(struct net_device *dev, 1139 netdev_features_t features) 1140 { 1141 struct port_info *pi = netdev_priv(dev); 1142 netdev_features_t changed = dev->features ^ features; 1143 1144 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 1145 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1, 1146 features & NETIF_F_HW_VLAN_CTAG_TX, 0); 1147 1148 return 0; 1149 } 1150 1151 /* 1152 * Change the devices MAC address. 1153 */ 1154 static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr) 1155 { 1156 int ret; 1157 struct sockaddr *addr = _addr; 1158 struct port_info *pi = netdev_priv(dev); 1159 1160 if (!is_valid_ether_addr(addr->sa_data)) 1161 return -EADDRNOTAVAIL; 1162 1163 ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt, 1164 addr->sa_data, true); 1165 if (ret < 0) 1166 return ret; 1167 1168 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 1169 pi->xact_addr_filt = ret; 1170 return 0; 1171 } 1172 1173 #ifdef CONFIG_NET_POLL_CONTROLLER 1174 /* 1175 * Poll all of our receive queues. This is called outside of normal interrupt 1176 * context. 1177 */ 1178 static void cxgb4vf_poll_controller(struct net_device *dev) 1179 { 1180 struct port_info *pi = netdev_priv(dev); 1181 struct adapter *adapter = pi->adapter; 1182 1183 if (adapter->flags & USING_MSIX) { 1184 struct sge_eth_rxq *rxq; 1185 int nqsets; 1186 1187 rxq = &adapter->sge.ethrxq[pi->first_qset]; 1188 for (nqsets = pi->nqsets; nqsets; nqsets--) { 1189 t4vf_sge_intr_msix(0, &rxq->rspq); 1190 rxq++; 1191 } 1192 } else 1193 t4vf_intr_handler(adapter)(0, adapter); 1194 } 1195 #endif 1196 1197 /* 1198 * Ethtool operations. 1199 * =================== 1200 * 1201 * Note that we don't support any ethtool operations which change the physical 1202 * state of the port to which we're linked. 1203 */ 1204 1205 /** 1206 * from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool 1207 * @port_type: Firmware Port Type 1208 * @mod_type: Firmware Module Type 1209 * 1210 * Translate Firmware Port/Module type to Ethtool Port Type. 1211 */ 1212 static int from_fw_port_mod_type(enum fw_port_type port_type, 1213 enum fw_port_module_type mod_type) 1214 { 1215 if (port_type == FW_PORT_TYPE_BT_SGMII || 1216 port_type == FW_PORT_TYPE_BT_XFI || 1217 port_type == FW_PORT_TYPE_BT_XAUI) { 1218 return PORT_TP; 1219 } else if (port_type == FW_PORT_TYPE_FIBER_XFI || 1220 port_type == FW_PORT_TYPE_FIBER_XAUI) { 1221 return PORT_FIBRE; 1222 } else if (port_type == FW_PORT_TYPE_SFP || 1223 port_type == FW_PORT_TYPE_QSFP_10G || 1224 port_type == FW_PORT_TYPE_QSA || 1225 port_type == FW_PORT_TYPE_QSFP || 1226 port_type == FW_PORT_TYPE_CR4_QSFP || 1227 port_type == FW_PORT_TYPE_CR_QSFP || 1228 port_type == FW_PORT_TYPE_CR2_QSFP || 1229 port_type == FW_PORT_TYPE_SFP28) { 1230 if (mod_type == FW_PORT_MOD_TYPE_LR || 1231 mod_type == FW_PORT_MOD_TYPE_SR || 1232 mod_type == FW_PORT_MOD_TYPE_ER || 1233 mod_type == FW_PORT_MOD_TYPE_LRM) 1234 return PORT_FIBRE; 1235 else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE || 1236 mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE) 1237 return PORT_DA; 1238 else 1239 return PORT_OTHER; 1240 } else if (port_type == FW_PORT_TYPE_KR4_100G || 1241 port_type == FW_PORT_TYPE_KR_SFP28 || 1242 port_type == FW_PORT_TYPE_KR_XLAUI) { 1243 return PORT_NONE; 1244 } 1245 1246 return PORT_OTHER; 1247 } 1248 1249 /** 1250 * fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask 1251 * @port_type: Firmware Port Type 1252 * @fw_caps: Firmware Port Capabilities 1253 * @link_mode_mask: ethtool Link Mode Mask 1254 * 1255 * Translate a Firmware Port Capabilities specification to an ethtool 1256 * Link Mode Mask. 1257 */ 1258 static void fw_caps_to_lmm(enum fw_port_type port_type, 1259 unsigned int fw_caps, 1260 unsigned long *link_mode_mask) 1261 { 1262 #define SET_LMM(__lmm_name) \ 1263 __set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \ 1264 link_mode_mask) 1265 1266 #define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \ 1267 do { \ 1268 if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \ 1269 SET_LMM(__lmm_name); \ 1270 } while (0) 1271 1272 switch (port_type) { 1273 case FW_PORT_TYPE_BT_SGMII: 1274 case FW_PORT_TYPE_BT_XFI: 1275 case FW_PORT_TYPE_BT_XAUI: 1276 SET_LMM(TP); 1277 FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full); 1278 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1279 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1280 break; 1281 1282 case FW_PORT_TYPE_KX4: 1283 case FW_PORT_TYPE_KX: 1284 SET_LMM(Backplane); 1285 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1286 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full); 1287 break; 1288 1289 case FW_PORT_TYPE_KR: 1290 SET_LMM(Backplane); 1291 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1292 break; 1293 1294 case FW_PORT_TYPE_BP_AP: 1295 SET_LMM(Backplane); 1296 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1297 FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC); 1298 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1299 break; 1300 1301 case FW_PORT_TYPE_BP4_AP: 1302 SET_LMM(Backplane); 1303 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1304 FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC); 1305 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1306 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full); 1307 break; 1308 1309 case FW_PORT_TYPE_FIBER_XFI: 1310 case FW_PORT_TYPE_FIBER_XAUI: 1311 case FW_PORT_TYPE_SFP: 1312 case FW_PORT_TYPE_QSFP_10G: 1313 case FW_PORT_TYPE_QSA: 1314 SET_LMM(FIBRE); 1315 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1316 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1317 break; 1318 1319 case FW_PORT_TYPE_BP40_BA: 1320 case FW_PORT_TYPE_QSFP: 1321 SET_LMM(FIBRE); 1322 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1323 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1324 FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full); 1325 break; 1326 1327 case FW_PORT_TYPE_CR_QSFP: 1328 case FW_PORT_TYPE_SFP28: 1329 SET_LMM(FIBRE); 1330 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1331 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full); 1332 FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full); 1333 break; 1334 1335 case FW_PORT_TYPE_KR_SFP28: 1336 SET_LMM(Backplane); 1337 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1338 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1339 FW_CAPS_TO_LMM(SPEED_25G, 25000baseKR_Full); 1340 break; 1341 1342 case FW_PORT_TYPE_KR_XLAUI: 1343 SET_LMM(Backplane); 1344 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full); 1345 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full); 1346 FW_CAPS_TO_LMM(SPEED_40G, 40000baseKR4_Full); 1347 break; 1348 1349 case FW_PORT_TYPE_CR2_QSFP: 1350 SET_LMM(FIBRE); 1351 FW_CAPS_TO_LMM(SPEED_50G, 50000baseSR2_Full); 1352 break; 1353 1354 case FW_PORT_TYPE_KR4_100G: 1355 case FW_PORT_TYPE_CR4_QSFP: 1356 SET_LMM(FIBRE); 1357 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full); 1358 FW_CAPS_TO_LMM(SPEED_10G, 10000baseSR_Full); 1359 FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full); 1360 FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full); 1361 FW_CAPS_TO_LMM(SPEED_50G, 50000baseCR2_Full); 1362 FW_CAPS_TO_LMM(SPEED_100G, 100000baseCR4_Full); 1363 break; 1364 1365 default: 1366 break; 1367 } 1368 1369 FW_CAPS_TO_LMM(ANEG, Autoneg); 1370 FW_CAPS_TO_LMM(802_3_PAUSE, Pause); 1371 FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause); 1372 1373 #undef FW_CAPS_TO_LMM 1374 #undef SET_LMM 1375 } 1376 1377 static int cxgb4vf_get_link_ksettings(struct net_device *dev, 1378 struct ethtool_link_ksettings *link_ksettings) 1379 { 1380 struct port_info *pi = netdev_priv(dev); 1381 struct ethtool_link_settings *base = &link_ksettings->base; 1382 1383 /* For the nonce, the Firmware doesn't send up Port State changes 1384 * when the Virtual Interface attached to the Port is down. So 1385 * if it's down, let's grab any changes. 1386 */ 1387 if (!netif_running(dev)) 1388 (void)t4vf_update_port_info(pi); 1389 1390 ethtool_link_ksettings_zero_link_mode(link_ksettings, supported); 1391 ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising); 1392 ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising); 1393 1394 base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type); 1395 1396 if (pi->mdio_addr >= 0) { 1397 base->phy_address = pi->mdio_addr; 1398 base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII 1399 ? ETH_MDIO_SUPPORTS_C22 1400 : ETH_MDIO_SUPPORTS_C45); 1401 } else { 1402 base->phy_address = 255; 1403 base->mdio_support = 0; 1404 } 1405 1406 fw_caps_to_lmm(pi->port_type, pi->link_cfg.pcaps, 1407 link_ksettings->link_modes.supported); 1408 fw_caps_to_lmm(pi->port_type, pi->link_cfg.acaps, 1409 link_ksettings->link_modes.advertising); 1410 fw_caps_to_lmm(pi->port_type, pi->link_cfg.lpacaps, 1411 link_ksettings->link_modes.lp_advertising); 1412 1413 if (netif_carrier_ok(dev)) { 1414 base->speed = pi->link_cfg.speed; 1415 base->duplex = DUPLEX_FULL; 1416 } else { 1417 base->speed = SPEED_UNKNOWN; 1418 base->duplex = DUPLEX_UNKNOWN; 1419 } 1420 1421 if (pi->link_cfg.fc & PAUSE_RX) { 1422 if (pi->link_cfg.fc & PAUSE_TX) { 1423 ethtool_link_ksettings_add_link_mode(link_ksettings, 1424 advertising, 1425 Pause); 1426 } else { 1427 ethtool_link_ksettings_add_link_mode(link_ksettings, 1428 advertising, 1429 Asym_Pause); 1430 } 1431 } else if (pi->link_cfg.fc & PAUSE_TX) { 1432 ethtool_link_ksettings_add_link_mode(link_ksettings, 1433 advertising, 1434 Asym_Pause); 1435 } 1436 1437 base->autoneg = pi->link_cfg.autoneg; 1438 if (pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG) 1439 ethtool_link_ksettings_add_link_mode(link_ksettings, 1440 supported, Autoneg); 1441 if (pi->link_cfg.autoneg) 1442 ethtool_link_ksettings_add_link_mode(link_ksettings, 1443 advertising, Autoneg); 1444 1445 return 0; 1446 } 1447 1448 /* Translate the Firmware FEC value into the ethtool value. */ 1449 static inline unsigned int fwcap_to_eth_fec(unsigned int fw_fec) 1450 { 1451 unsigned int eth_fec = 0; 1452 1453 if (fw_fec & FW_PORT_CAP32_FEC_RS) 1454 eth_fec |= ETHTOOL_FEC_RS; 1455 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) 1456 eth_fec |= ETHTOOL_FEC_BASER; 1457 1458 /* if nothing is set, then FEC is off */ 1459 if (!eth_fec) 1460 eth_fec = ETHTOOL_FEC_OFF; 1461 1462 return eth_fec; 1463 } 1464 1465 /* Translate Common Code FEC value into ethtool value. */ 1466 static inline unsigned int cc_to_eth_fec(unsigned int cc_fec) 1467 { 1468 unsigned int eth_fec = 0; 1469 1470 if (cc_fec & FEC_AUTO) 1471 eth_fec |= ETHTOOL_FEC_AUTO; 1472 if (cc_fec & FEC_RS) 1473 eth_fec |= ETHTOOL_FEC_RS; 1474 if (cc_fec & FEC_BASER_RS) 1475 eth_fec |= ETHTOOL_FEC_BASER; 1476 1477 /* if nothing is set, then FEC is off */ 1478 if (!eth_fec) 1479 eth_fec = ETHTOOL_FEC_OFF; 1480 1481 return eth_fec; 1482 } 1483 1484 static int cxgb4vf_get_fecparam(struct net_device *dev, 1485 struct ethtool_fecparam *fec) 1486 { 1487 const struct port_info *pi = netdev_priv(dev); 1488 const struct link_config *lc = &pi->link_cfg; 1489 1490 /* Translate the Firmware FEC Support into the ethtool value. We 1491 * always support IEEE 802.3 "automatic" selection of Link FEC type if 1492 * any FEC is supported. 1493 */ 1494 fec->fec = fwcap_to_eth_fec(lc->pcaps); 1495 if (fec->fec != ETHTOOL_FEC_OFF) 1496 fec->fec |= ETHTOOL_FEC_AUTO; 1497 1498 /* Translate the current internal FEC parameters into the 1499 * ethtool values. 1500 */ 1501 fec->active_fec = cc_to_eth_fec(lc->fec); 1502 return 0; 1503 } 1504 1505 /* 1506 * Return our driver information. 1507 */ 1508 static void cxgb4vf_get_drvinfo(struct net_device *dev, 1509 struct ethtool_drvinfo *drvinfo) 1510 { 1511 struct adapter *adapter = netdev2adap(dev); 1512 1513 strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver)); 1514 strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version)); 1515 strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)), 1516 sizeof(drvinfo->bus_info)); 1517 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 1518 "%u.%u.%u.%u, TP %u.%u.%u.%u", 1519 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.fwrev), 1520 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.fwrev), 1521 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.fwrev), 1522 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.fwrev), 1523 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.tprev), 1524 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.tprev), 1525 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.tprev), 1526 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.tprev)); 1527 } 1528 1529 /* 1530 * Return current adapter message level. 1531 */ 1532 static u32 cxgb4vf_get_msglevel(struct net_device *dev) 1533 { 1534 return netdev2adap(dev)->msg_enable; 1535 } 1536 1537 /* 1538 * Set current adapter message level. 1539 */ 1540 static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel) 1541 { 1542 netdev2adap(dev)->msg_enable = msglevel; 1543 } 1544 1545 /* 1546 * Return the device's current Queue Set ring size parameters along with the 1547 * allowed maximum values. Since ethtool doesn't understand the concept of 1548 * multi-queue devices, we just return the current values associated with the 1549 * first Queue Set. 1550 */ 1551 static void cxgb4vf_get_ringparam(struct net_device *dev, 1552 struct ethtool_ringparam *rp) 1553 { 1554 const struct port_info *pi = netdev_priv(dev); 1555 const struct sge *s = &pi->adapter->sge; 1556 1557 rp->rx_max_pending = MAX_RX_BUFFERS; 1558 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES; 1559 rp->rx_jumbo_max_pending = 0; 1560 rp->tx_max_pending = MAX_TXQ_ENTRIES; 1561 1562 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID; 1563 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size; 1564 rp->rx_jumbo_pending = 0; 1565 rp->tx_pending = s->ethtxq[pi->first_qset].q.size; 1566 } 1567 1568 /* 1569 * Set the Queue Set ring size parameters for the device. Again, since 1570 * ethtool doesn't allow for the concept of multiple queues per device, we'll 1571 * apply these new values across all of the Queue Sets associated with the 1572 * device -- after vetting them of course! 1573 */ 1574 static int cxgb4vf_set_ringparam(struct net_device *dev, 1575 struct ethtool_ringparam *rp) 1576 { 1577 const struct port_info *pi = netdev_priv(dev); 1578 struct adapter *adapter = pi->adapter; 1579 struct sge *s = &adapter->sge; 1580 int qs; 1581 1582 if (rp->rx_pending > MAX_RX_BUFFERS || 1583 rp->rx_jumbo_pending || 1584 rp->tx_pending > MAX_TXQ_ENTRIES || 1585 rp->rx_mini_pending > MAX_RSPQ_ENTRIES || 1586 rp->rx_mini_pending < MIN_RSPQ_ENTRIES || 1587 rp->rx_pending < MIN_FL_ENTRIES || 1588 rp->tx_pending < MIN_TXQ_ENTRIES) 1589 return -EINVAL; 1590 1591 if (adapter->flags & FULL_INIT_DONE) 1592 return -EBUSY; 1593 1594 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) { 1595 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID; 1596 s->ethrxq[qs].rspq.size = rp->rx_mini_pending; 1597 s->ethtxq[qs].q.size = rp->tx_pending; 1598 } 1599 return 0; 1600 } 1601 1602 /* 1603 * Return the interrupt holdoff timer and count for the first Queue Set on the 1604 * device. Our extension ioctl() (the cxgbtool interface) allows the 1605 * interrupt holdoff timer to be read on all of the device's Queue Sets. 1606 */ 1607 static int cxgb4vf_get_coalesce(struct net_device *dev, 1608 struct ethtool_coalesce *coalesce) 1609 { 1610 const struct port_info *pi = netdev_priv(dev); 1611 const struct adapter *adapter = pi->adapter; 1612 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq; 1613 1614 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq); 1615 coalesce->rx_max_coalesced_frames = 1616 ((rspq->intr_params & QINTR_CNT_EN_F) 1617 ? adapter->sge.counter_val[rspq->pktcnt_idx] 1618 : 0); 1619 return 0; 1620 } 1621 1622 /* 1623 * Set the RX interrupt holdoff timer and count for the first Queue Set on the 1624 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set 1625 * the interrupt holdoff timer on any of the device's Queue Sets. 1626 */ 1627 static int cxgb4vf_set_coalesce(struct net_device *dev, 1628 struct ethtool_coalesce *coalesce) 1629 { 1630 const struct port_info *pi = netdev_priv(dev); 1631 struct adapter *adapter = pi->adapter; 1632 1633 return set_rxq_intr_params(adapter, 1634 &adapter->sge.ethrxq[pi->first_qset].rspq, 1635 coalesce->rx_coalesce_usecs, 1636 coalesce->rx_max_coalesced_frames); 1637 } 1638 1639 /* 1640 * Report current port link pause parameter settings. 1641 */ 1642 static void cxgb4vf_get_pauseparam(struct net_device *dev, 1643 struct ethtool_pauseparam *pauseparam) 1644 { 1645 struct port_info *pi = netdev_priv(dev); 1646 1647 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0; 1648 pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0; 1649 pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0; 1650 } 1651 1652 /* 1653 * Identify the port by blinking the port's LED. 1654 */ 1655 static int cxgb4vf_phys_id(struct net_device *dev, 1656 enum ethtool_phys_id_state state) 1657 { 1658 unsigned int val; 1659 struct port_info *pi = netdev_priv(dev); 1660 1661 if (state == ETHTOOL_ID_ACTIVE) 1662 val = 0xffff; 1663 else if (state == ETHTOOL_ID_INACTIVE) 1664 val = 0; 1665 else 1666 return -EINVAL; 1667 1668 return t4vf_identify_port(pi->adapter, pi->viid, val); 1669 } 1670 1671 /* 1672 * Port stats maintained per queue of the port. 1673 */ 1674 struct queue_port_stats { 1675 u64 tso; 1676 u64 tx_csum; 1677 u64 rx_csum; 1678 u64 vlan_ex; 1679 u64 vlan_ins; 1680 u64 lro_pkts; 1681 u64 lro_merged; 1682 }; 1683 1684 /* 1685 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that 1686 * these need to match the order of statistics returned by 1687 * t4vf_get_port_stats(). 1688 */ 1689 static const char stats_strings[][ETH_GSTRING_LEN] = { 1690 /* 1691 * These must match the layout of the t4vf_port_stats structure. 1692 */ 1693 "TxBroadcastBytes ", 1694 "TxBroadcastFrames ", 1695 "TxMulticastBytes ", 1696 "TxMulticastFrames ", 1697 "TxUnicastBytes ", 1698 "TxUnicastFrames ", 1699 "TxDroppedFrames ", 1700 "TxOffloadBytes ", 1701 "TxOffloadFrames ", 1702 "RxBroadcastBytes ", 1703 "RxBroadcastFrames ", 1704 "RxMulticastBytes ", 1705 "RxMulticastFrames ", 1706 "RxUnicastBytes ", 1707 "RxUnicastFrames ", 1708 "RxErrorFrames ", 1709 1710 /* 1711 * These are accumulated per-queue statistics and must match the 1712 * order of the fields in the queue_port_stats structure. 1713 */ 1714 "TSO ", 1715 "TxCsumOffload ", 1716 "RxCsumGood ", 1717 "VLANextractions ", 1718 "VLANinsertions ", 1719 "GROPackets ", 1720 "GROMerged ", 1721 }; 1722 1723 /* 1724 * Return the number of statistics in the specified statistics set. 1725 */ 1726 static int cxgb4vf_get_sset_count(struct net_device *dev, int sset) 1727 { 1728 switch (sset) { 1729 case ETH_SS_STATS: 1730 return ARRAY_SIZE(stats_strings); 1731 default: 1732 return -EOPNOTSUPP; 1733 } 1734 /*NOTREACHED*/ 1735 } 1736 1737 /* 1738 * Return the strings for the specified statistics set. 1739 */ 1740 static void cxgb4vf_get_strings(struct net_device *dev, 1741 u32 sset, 1742 u8 *data) 1743 { 1744 switch (sset) { 1745 case ETH_SS_STATS: 1746 memcpy(data, stats_strings, sizeof(stats_strings)); 1747 break; 1748 } 1749 } 1750 1751 /* 1752 * Small utility routine to accumulate queue statistics across the queues of 1753 * a "port". 1754 */ 1755 static void collect_sge_port_stats(const struct adapter *adapter, 1756 const struct port_info *pi, 1757 struct queue_port_stats *stats) 1758 { 1759 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset]; 1760 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset]; 1761 int qs; 1762 1763 memset(stats, 0, sizeof(*stats)); 1764 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { 1765 stats->tso += txq->tso; 1766 stats->tx_csum += txq->tx_cso; 1767 stats->rx_csum += rxq->stats.rx_cso; 1768 stats->vlan_ex += rxq->stats.vlan_ex; 1769 stats->vlan_ins += txq->vlan_ins; 1770 stats->lro_pkts += rxq->stats.lro_pkts; 1771 stats->lro_merged += rxq->stats.lro_merged; 1772 } 1773 } 1774 1775 /* 1776 * Return the ETH_SS_STATS statistics set. 1777 */ 1778 static void cxgb4vf_get_ethtool_stats(struct net_device *dev, 1779 struct ethtool_stats *stats, 1780 u64 *data) 1781 { 1782 struct port_info *pi = netdev2pinfo(dev); 1783 struct adapter *adapter = pi->adapter; 1784 int err = t4vf_get_port_stats(adapter, pi->pidx, 1785 (struct t4vf_port_stats *)data); 1786 if (err) 1787 memset(data, 0, sizeof(struct t4vf_port_stats)); 1788 1789 data += sizeof(struct t4vf_port_stats) / sizeof(u64); 1790 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data); 1791 } 1792 1793 /* 1794 * Return the size of our register map. 1795 */ 1796 static int cxgb4vf_get_regs_len(struct net_device *dev) 1797 { 1798 return T4VF_REGMAP_SIZE; 1799 } 1800 1801 /* 1802 * Dump a block of registers, start to end inclusive, into a buffer. 1803 */ 1804 static void reg_block_dump(struct adapter *adapter, void *regbuf, 1805 unsigned int start, unsigned int end) 1806 { 1807 u32 *bp = regbuf + start - T4VF_REGMAP_START; 1808 1809 for ( ; start <= end; start += sizeof(u32)) { 1810 /* 1811 * Avoid reading the Mailbox Control register since that 1812 * can trigger a Mailbox Ownership Arbitration cycle and 1813 * interfere with communication with the firmware. 1814 */ 1815 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL) 1816 *bp++ = 0xffff; 1817 else 1818 *bp++ = t4_read_reg(adapter, start); 1819 } 1820 } 1821 1822 /* 1823 * Copy our entire register map into the provided buffer. 1824 */ 1825 static void cxgb4vf_get_regs(struct net_device *dev, 1826 struct ethtool_regs *regs, 1827 void *regbuf) 1828 { 1829 struct adapter *adapter = netdev2adap(dev); 1830 1831 regs->version = mk_adap_vers(adapter); 1832 1833 /* 1834 * Fill in register buffer with our register map. 1835 */ 1836 memset(regbuf, 0, T4VF_REGMAP_SIZE); 1837 1838 reg_block_dump(adapter, regbuf, 1839 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST, 1840 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST); 1841 reg_block_dump(adapter, regbuf, 1842 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST, 1843 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST); 1844 1845 /* T5 adds new registers in the PL Register map. 1846 */ 1847 reg_block_dump(adapter, regbuf, 1848 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST, 1849 T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip) 1850 ? PL_VF_WHOAMI_A : PL_VF_REVISION_A)); 1851 reg_block_dump(adapter, regbuf, 1852 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST, 1853 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST); 1854 1855 reg_block_dump(adapter, regbuf, 1856 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST, 1857 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST); 1858 } 1859 1860 /* 1861 * Report current Wake On LAN settings. 1862 */ 1863 static void cxgb4vf_get_wol(struct net_device *dev, 1864 struct ethtool_wolinfo *wol) 1865 { 1866 wol->supported = 0; 1867 wol->wolopts = 0; 1868 memset(&wol->sopass, 0, sizeof(wol->sopass)); 1869 } 1870 1871 /* 1872 * TCP Segmentation Offload flags which we support. 1873 */ 1874 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 1875 1876 static const struct ethtool_ops cxgb4vf_ethtool_ops = { 1877 .get_link_ksettings = cxgb4vf_get_link_ksettings, 1878 .get_fecparam = cxgb4vf_get_fecparam, 1879 .get_drvinfo = cxgb4vf_get_drvinfo, 1880 .get_msglevel = cxgb4vf_get_msglevel, 1881 .set_msglevel = cxgb4vf_set_msglevel, 1882 .get_ringparam = cxgb4vf_get_ringparam, 1883 .set_ringparam = cxgb4vf_set_ringparam, 1884 .get_coalesce = cxgb4vf_get_coalesce, 1885 .set_coalesce = cxgb4vf_set_coalesce, 1886 .get_pauseparam = cxgb4vf_get_pauseparam, 1887 .get_link = ethtool_op_get_link, 1888 .get_strings = cxgb4vf_get_strings, 1889 .set_phys_id = cxgb4vf_phys_id, 1890 .get_sset_count = cxgb4vf_get_sset_count, 1891 .get_ethtool_stats = cxgb4vf_get_ethtool_stats, 1892 .get_regs_len = cxgb4vf_get_regs_len, 1893 .get_regs = cxgb4vf_get_regs, 1894 .get_wol = cxgb4vf_get_wol, 1895 }; 1896 1897 /* 1898 * /sys/kernel/debug/cxgb4vf support code and data. 1899 * ================================================ 1900 */ 1901 1902 /* 1903 * Show Firmware Mailbox Command/Reply Log 1904 * 1905 * Note that we don't do any locking when dumping the Firmware Mailbox Log so 1906 * it's possible that we can catch things during a log update and therefore 1907 * see partially corrupted log entries. But i9t's probably Good Enough(tm). 1908 * If we ever decide that we want to make sure that we're dumping a coherent 1909 * log, we'd need to perform locking in the mailbox logging and in 1910 * mboxlog_open() where we'd need to grab the entire mailbox log in one go 1911 * like we do for the Firmware Device Log. But as stated above, meh ... 1912 */ 1913 static int mboxlog_show(struct seq_file *seq, void *v) 1914 { 1915 struct adapter *adapter = seq->private; 1916 struct mbox_cmd_log *log = adapter->mbox_log; 1917 struct mbox_cmd *entry; 1918 int entry_idx, i; 1919 1920 if (v == SEQ_START_TOKEN) { 1921 seq_printf(seq, 1922 "%10s %15s %5s %5s %s\n", 1923 "Seq#", "Tstamp", "Atime", "Etime", 1924 "Command/Reply"); 1925 return 0; 1926 } 1927 1928 entry_idx = log->cursor + ((uintptr_t)v - 2); 1929 if (entry_idx >= log->size) 1930 entry_idx -= log->size; 1931 entry = mbox_cmd_log_entry(log, entry_idx); 1932 1933 /* skip over unused entries */ 1934 if (entry->timestamp == 0) 1935 return 0; 1936 1937 seq_printf(seq, "%10u %15llu %5d %5d", 1938 entry->seqno, entry->timestamp, 1939 entry->access, entry->execute); 1940 for (i = 0; i < MBOX_LEN / 8; i++) { 1941 u64 flit = entry->cmd[i]; 1942 u32 hi = (u32)(flit >> 32); 1943 u32 lo = (u32)flit; 1944 1945 seq_printf(seq, " %08x %08x", hi, lo); 1946 } 1947 seq_puts(seq, "\n"); 1948 return 0; 1949 } 1950 1951 static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos) 1952 { 1953 struct adapter *adapter = seq->private; 1954 struct mbox_cmd_log *log = adapter->mbox_log; 1955 1956 return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL); 1957 } 1958 1959 static void *mboxlog_start(struct seq_file *seq, loff_t *pos) 1960 { 1961 return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN; 1962 } 1963 1964 static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos) 1965 { 1966 ++*pos; 1967 return mboxlog_get_idx(seq, *pos); 1968 } 1969 1970 static void mboxlog_stop(struct seq_file *seq, void *v) 1971 { 1972 } 1973 1974 static const struct seq_operations mboxlog_seq_ops = { 1975 .start = mboxlog_start, 1976 .next = mboxlog_next, 1977 .stop = mboxlog_stop, 1978 .show = mboxlog_show 1979 }; 1980 1981 static int mboxlog_open(struct inode *inode, struct file *file) 1982 { 1983 int res = seq_open(file, &mboxlog_seq_ops); 1984 1985 if (!res) { 1986 struct seq_file *seq = file->private_data; 1987 1988 seq->private = inode->i_private; 1989 } 1990 return res; 1991 } 1992 1993 static const struct file_operations mboxlog_fops = { 1994 .owner = THIS_MODULE, 1995 .open = mboxlog_open, 1996 .read = seq_read, 1997 .llseek = seq_lseek, 1998 .release = seq_release, 1999 }; 2000 2001 /* 2002 * Show SGE Queue Set information. We display QPL Queues Sets per line. 2003 */ 2004 #define QPL 4 2005 2006 static int sge_qinfo_show(struct seq_file *seq, void *v) 2007 { 2008 struct adapter *adapter = seq->private; 2009 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL); 2010 int qs, r = (uintptr_t)v - 1; 2011 2012 if (r) 2013 seq_putc(seq, '\n'); 2014 2015 #define S3(fmt_spec, s, v) \ 2016 do {\ 2017 seq_printf(seq, "%-12s", s); \ 2018 for (qs = 0; qs < n; ++qs) \ 2019 seq_printf(seq, " %16" fmt_spec, v); \ 2020 seq_putc(seq, '\n'); \ 2021 } while (0) 2022 #define S(s, v) S3("s", s, v) 2023 #define T(s, v) S3("u", s, txq[qs].v) 2024 #define R(s, v) S3("u", s, rxq[qs].v) 2025 2026 if (r < eth_entries) { 2027 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL]; 2028 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL]; 2029 int n = min(QPL, adapter->sge.ethqsets - QPL * r); 2030 2031 S("QType:", "Ethernet"); 2032 S("Interface:", 2033 (rxq[qs].rspq.netdev 2034 ? rxq[qs].rspq.netdev->name 2035 : "N/A")); 2036 S3("d", "Port:", 2037 (rxq[qs].rspq.netdev 2038 ? ((struct port_info *) 2039 netdev_priv(rxq[qs].rspq.netdev))->port_id 2040 : -1)); 2041 T("TxQ ID:", q.abs_id); 2042 T("TxQ size:", q.size); 2043 T("TxQ inuse:", q.in_use); 2044 T("TxQ PIdx:", q.pidx); 2045 T("TxQ CIdx:", q.cidx); 2046 R("RspQ ID:", rspq.abs_id); 2047 R("RspQ size:", rspq.size); 2048 R("RspQE size:", rspq.iqe_len); 2049 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq)); 2050 S3("u", "Intr pktcnt:", 2051 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]); 2052 R("RspQ CIdx:", rspq.cidx); 2053 R("RspQ Gen:", rspq.gen); 2054 R("FL ID:", fl.abs_id); 2055 R("FL size:", fl.size - MIN_FL_RESID); 2056 R("FL avail:", fl.avail); 2057 R("FL PIdx:", fl.pidx); 2058 R("FL CIdx:", fl.cidx); 2059 return 0; 2060 } 2061 2062 r -= eth_entries; 2063 if (r == 0) { 2064 const struct sge_rspq *evtq = &adapter->sge.fw_evtq; 2065 2066 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue"); 2067 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id); 2068 seq_printf(seq, "%-12s %16u\n", "Intr delay:", 2069 qtimer_val(adapter, evtq)); 2070 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", 2071 adapter->sge.counter_val[evtq->pktcnt_idx]); 2072 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx); 2073 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen); 2074 } else if (r == 1) { 2075 const struct sge_rspq *intrq = &adapter->sge.intrq; 2076 2077 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue"); 2078 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id); 2079 seq_printf(seq, "%-12s %16u\n", "Intr delay:", 2080 qtimer_val(adapter, intrq)); 2081 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", 2082 adapter->sge.counter_val[intrq->pktcnt_idx]); 2083 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx); 2084 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen); 2085 } 2086 2087 #undef R 2088 #undef T 2089 #undef S 2090 #undef S3 2091 2092 return 0; 2093 } 2094 2095 /* 2096 * Return the number of "entries" in our "file". We group the multi-Queue 2097 * sections with QPL Queue Sets per "entry". The sections of the output are: 2098 * 2099 * Ethernet RX/TX Queue Sets 2100 * Firmware Event Queue 2101 * Forwarded Interrupt Queue (if in MSI mode) 2102 */ 2103 static int sge_queue_entries(const struct adapter *adapter) 2104 { 2105 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 + 2106 ((adapter->flags & USING_MSI) != 0); 2107 } 2108 2109 static void *sge_queue_start(struct seq_file *seq, loff_t *pos) 2110 { 2111 int entries = sge_queue_entries(seq->private); 2112 2113 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2114 } 2115 2116 static void sge_queue_stop(struct seq_file *seq, void *v) 2117 { 2118 } 2119 2120 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos) 2121 { 2122 int entries = sge_queue_entries(seq->private); 2123 2124 ++*pos; 2125 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2126 } 2127 2128 static const struct seq_operations sge_qinfo_seq_ops = { 2129 .start = sge_queue_start, 2130 .next = sge_queue_next, 2131 .stop = sge_queue_stop, 2132 .show = sge_qinfo_show 2133 }; 2134 2135 static int sge_qinfo_open(struct inode *inode, struct file *file) 2136 { 2137 int res = seq_open(file, &sge_qinfo_seq_ops); 2138 2139 if (!res) { 2140 struct seq_file *seq = file->private_data; 2141 seq->private = inode->i_private; 2142 } 2143 return res; 2144 } 2145 2146 static const struct file_operations sge_qinfo_debugfs_fops = { 2147 .owner = THIS_MODULE, 2148 .open = sge_qinfo_open, 2149 .read = seq_read, 2150 .llseek = seq_lseek, 2151 .release = seq_release, 2152 }; 2153 2154 /* 2155 * Show SGE Queue Set statistics. We display QPL Queues Sets per line. 2156 */ 2157 #define QPL 4 2158 2159 static int sge_qstats_show(struct seq_file *seq, void *v) 2160 { 2161 struct adapter *adapter = seq->private; 2162 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL); 2163 int qs, r = (uintptr_t)v - 1; 2164 2165 if (r) 2166 seq_putc(seq, '\n'); 2167 2168 #define S3(fmt, s, v) \ 2169 do { \ 2170 seq_printf(seq, "%-16s", s); \ 2171 for (qs = 0; qs < n; ++qs) \ 2172 seq_printf(seq, " %8" fmt, v); \ 2173 seq_putc(seq, '\n'); \ 2174 } while (0) 2175 #define S(s, v) S3("s", s, v) 2176 2177 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v) 2178 #define T(s, v) T3("lu", s, v) 2179 2180 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v) 2181 #define R(s, v) R3("lu", s, v) 2182 2183 if (r < eth_entries) { 2184 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL]; 2185 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL]; 2186 int n = min(QPL, adapter->sge.ethqsets - QPL * r); 2187 2188 S("QType:", "Ethernet"); 2189 S("Interface:", 2190 (rxq[qs].rspq.netdev 2191 ? rxq[qs].rspq.netdev->name 2192 : "N/A")); 2193 R3("u", "RspQNullInts:", rspq.unhandled_irqs); 2194 R("RxPackets:", stats.pkts); 2195 R("RxCSO:", stats.rx_cso); 2196 R("VLANxtract:", stats.vlan_ex); 2197 R("LROmerged:", stats.lro_merged); 2198 R("LROpackets:", stats.lro_pkts); 2199 R("RxDrops:", stats.rx_drops); 2200 T("TSO:", tso); 2201 T("TxCSO:", tx_cso); 2202 T("VLANins:", vlan_ins); 2203 T("TxQFull:", q.stops); 2204 T("TxQRestarts:", q.restarts); 2205 T("TxMapErr:", mapping_err); 2206 R("FLAllocErr:", fl.alloc_failed); 2207 R("FLLrgAlcErr:", fl.large_alloc_failed); 2208 R("FLStarving:", fl.starving); 2209 return 0; 2210 } 2211 2212 r -= eth_entries; 2213 if (r == 0) { 2214 const struct sge_rspq *evtq = &adapter->sge.fw_evtq; 2215 2216 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue"); 2217 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:", 2218 evtq->unhandled_irqs); 2219 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx); 2220 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen); 2221 } else if (r == 1) { 2222 const struct sge_rspq *intrq = &adapter->sge.intrq; 2223 2224 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue"); 2225 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:", 2226 intrq->unhandled_irqs); 2227 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx); 2228 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen); 2229 } 2230 2231 #undef R 2232 #undef T 2233 #undef S 2234 #undef R3 2235 #undef T3 2236 #undef S3 2237 2238 return 0; 2239 } 2240 2241 /* 2242 * Return the number of "entries" in our "file". We group the multi-Queue 2243 * sections with QPL Queue Sets per "entry". The sections of the output are: 2244 * 2245 * Ethernet RX/TX Queue Sets 2246 * Firmware Event Queue 2247 * Forwarded Interrupt Queue (if in MSI mode) 2248 */ 2249 static int sge_qstats_entries(const struct adapter *adapter) 2250 { 2251 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 + 2252 ((adapter->flags & USING_MSI) != 0); 2253 } 2254 2255 static void *sge_qstats_start(struct seq_file *seq, loff_t *pos) 2256 { 2257 int entries = sge_qstats_entries(seq->private); 2258 2259 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2260 } 2261 2262 static void sge_qstats_stop(struct seq_file *seq, void *v) 2263 { 2264 } 2265 2266 static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos) 2267 { 2268 int entries = sge_qstats_entries(seq->private); 2269 2270 (*pos)++; 2271 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 2272 } 2273 2274 static const struct seq_operations sge_qstats_seq_ops = { 2275 .start = sge_qstats_start, 2276 .next = sge_qstats_next, 2277 .stop = sge_qstats_stop, 2278 .show = sge_qstats_show 2279 }; 2280 2281 static int sge_qstats_open(struct inode *inode, struct file *file) 2282 { 2283 int res = seq_open(file, &sge_qstats_seq_ops); 2284 2285 if (res == 0) { 2286 struct seq_file *seq = file->private_data; 2287 seq->private = inode->i_private; 2288 } 2289 return res; 2290 } 2291 2292 static const struct file_operations sge_qstats_proc_fops = { 2293 .owner = THIS_MODULE, 2294 .open = sge_qstats_open, 2295 .read = seq_read, 2296 .llseek = seq_lseek, 2297 .release = seq_release, 2298 }; 2299 2300 /* 2301 * Show PCI-E SR-IOV Virtual Function Resource Limits. 2302 */ 2303 static int resources_show(struct seq_file *seq, void *v) 2304 { 2305 struct adapter *adapter = seq->private; 2306 struct vf_resources *vfres = &adapter->params.vfres; 2307 2308 #define S(desc, fmt, var) \ 2309 seq_printf(seq, "%-60s " fmt "\n", \ 2310 desc " (" #var "):", vfres->var) 2311 2312 S("Virtual Interfaces", "%d", nvi); 2313 S("Egress Queues", "%d", neq); 2314 S("Ethernet Control", "%d", nethctrl); 2315 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint); 2316 S("Ingress Queues", "%d", niq); 2317 S("Traffic Class", "%d", tc); 2318 S("Port Access Rights Mask", "%#x", pmask); 2319 S("MAC Address Filters", "%d", nexactf); 2320 S("Firmware Command Read Capabilities", "%#x", r_caps); 2321 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps); 2322 2323 #undef S 2324 2325 return 0; 2326 } 2327 2328 static int resources_open(struct inode *inode, struct file *file) 2329 { 2330 return single_open(file, resources_show, inode->i_private); 2331 } 2332 2333 static const struct file_operations resources_proc_fops = { 2334 .owner = THIS_MODULE, 2335 .open = resources_open, 2336 .read = seq_read, 2337 .llseek = seq_lseek, 2338 .release = single_release, 2339 }; 2340 2341 /* 2342 * Show Virtual Interfaces. 2343 */ 2344 static int interfaces_show(struct seq_file *seq, void *v) 2345 { 2346 if (v == SEQ_START_TOKEN) { 2347 seq_puts(seq, "Interface Port VIID\n"); 2348 } else { 2349 struct adapter *adapter = seq->private; 2350 int pidx = (uintptr_t)v - 2; 2351 struct net_device *dev = adapter->port[pidx]; 2352 struct port_info *pi = netdev_priv(dev); 2353 2354 seq_printf(seq, "%9s %4d %#5x\n", 2355 dev->name, pi->port_id, pi->viid); 2356 } 2357 return 0; 2358 } 2359 2360 static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos) 2361 { 2362 return pos <= adapter->params.nports 2363 ? (void *)(uintptr_t)(pos + 1) 2364 : NULL; 2365 } 2366 2367 static void *interfaces_start(struct seq_file *seq, loff_t *pos) 2368 { 2369 return *pos 2370 ? interfaces_get_idx(seq->private, *pos) 2371 : SEQ_START_TOKEN; 2372 } 2373 2374 static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos) 2375 { 2376 (*pos)++; 2377 return interfaces_get_idx(seq->private, *pos); 2378 } 2379 2380 static void interfaces_stop(struct seq_file *seq, void *v) 2381 { 2382 } 2383 2384 static const struct seq_operations interfaces_seq_ops = { 2385 .start = interfaces_start, 2386 .next = interfaces_next, 2387 .stop = interfaces_stop, 2388 .show = interfaces_show 2389 }; 2390 2391 static int interfaces_open(struct inode *inode, struct file *file) 2392 { 2393 int res = seq_open(file, &interfaces_seq_ops); 2394 2395 if (res == 0) { 2396 struct seq_file *seq = file->private_data; 2397 seq->private = inode->i_private; 2398 } 2399 return res; 2400 } 2401 2402 static const struct file_operations interfaces_proc_fops = { 2403 .owner = THIS_MODULE, 2404 .open = interfaces_open, 2405 .read = seq_read, 2406 .llseek = seq_lseek, 2407 .release = seq_release, 2408 }; 2409 2410 /* 2411 * /sys/kernel/debugfs/cxgb4vf/ files list. 2412 */ 2413 struct cxgb4vf_debugfs_entry { 2414 const char *name; /* name of debugfs node */ 2415 umode_t mode; /* file system mode */ 2416 const struct file_operations *fops; 2417 }; 2418 2419 static struct cxgb4vf_debugfs_entry debugfs_files[] = { 2420 { "mboxlog", 0444, &mboxlog_fops }, 2421 { "sge_qinfo", 0444, &sge_qinfo_debugfs_fops }, 2422 { "sge_qstats", 0444, &sge_qstats_proc_fops }, 2423 { "resources", 0444, &resources_proc_fops }, 2424 { "interfaces", 0444, &interfaces_proc_fops }, 2425 }; 2426 2427 /* 2428 * Module and device initialization and cleanup code. 2429 * ================================================== 2430 */ 2431 2432 /* 2433 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the 2434 * directory (debugfs_root) has already been set up. 2435 */ 2436 static int setup_debugfs(struct adapter *adapter) 2437 { 2438 int i; 2439 2440 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root)); 2441 2442 /* 2443 * Debugfs support is best effort. 2444 */ 2445 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++) 2446 (void)debugfs_create_file(debugfs_files[i].name, 2447 debugfs_files[i].mode, 2448 adapter->debugfs_root, 2449 (void *)adapter, 2450 debugfs_files[i].fops); 2451 2452 return 0; 2453 } 2454 2455 /* 2456 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave 2457 * it to our caller to tear down the directory (debugfs_root). 2458 */ 2459 static void cleanup_debugfs(struct adapter *adapter) 2460 { 2461 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root)); 2462 2463 /* 2464 * Unlike our sister routine cleanup_proc(), we don't need to remove 2465 * individual entries because a call will be made to 2466 * debugfs_remove_recursive(). We just need to clean up any ancillary 2467 * persistent state. 2468 */ 2469 /* nothing to do */ 2470 } 2471 2472 /* Figure out how many Ports and Queue Sets we can support. This depends on 2473 * knowing our Virtual Function Resources and may be called a second time if 2474 * we fall back from MSI-X to MSI Interrupt Mode. 2475 */ 2476 static void size_nports_qsets(struct adapter *adapter) 2477 { 2478 struct vf_resources *vfres = &adapter->params.vfres; 2479 unsigned int ethqsets, pmask_nports; 2480 2481 /* The number of "ports" which we support is equal to the number of 2482 * Virtual Interfaces with which we've been provisioned. 2483 */ 2484 adapter->params.nports = vfres->nvi; 2485 if (adapter->params.nports > MAX_NPORTS) { 2486 dev_warn(adapter->pdev_dev, "only using %d of %d maximum" 2487 " allowed virtual interfaces\n", MAX_NPORTS, 2488 adapter->params.nports); 2489 adapter->params.nports = MAX_NPORTS; 2490 } 2491 2492 /* We may have been provisioned with more VIs than the number of 2493 * ports we're allowed to access (our Port Access Rights Mask). 2494 * This is obviously a configuration conflict but we don't want to 2495 * crash the kernel or anything silly just because of that. 2496 */ 2497 pmask_nports = hweight32(adapter->params.vfres.pmask); 2498 if (pmask_nports < adapter->params.nports) { 2499 dev_warn(adapter->pdev_dev, "only using %d of %d provisioned" 2500 " virtual interfaces; limited by Port Access Rights" 2501 " mask %#x\n", pmask_nports, adapter->params.nports, 2502 adapter->params.vfres.pmask); 2503 adapter->params.nports = pmask_nports; 2504 } 2505 2506 /* We need to reserve an Ingress Queue for the Asynchronous Firmware 2507 * Event Queue. And if we're using MSI Interrupts, we'll also need to 2508 * reserve an Ingress Queue for a Forwarded Interrupts. 2509 * 2510 * The rest of the FL/Intr-capable ingress queues will be matched up 2511 * one-for-one with Ethernet/Control egress queues in order to form 2512 * "Queue Sets" which will be aportioned between the "ports". For 2513 * each Queue Set, we'll need the ability to allocate two Egress 2514 * Contexts -- one for the Ingress Queue Free List and one for the TX 2515 * Ethernet Queue. 2516 * 2517 * Note that even if we're currently configured to use MSI-X 2518 * Interrupts (module variable msi == MSI_MSIX) we may get downgraded 2519 * to MSI Interrupts if we can't get enough MSI-X Interrupts. If that 2520 * happens we'll need to adjust things later. 2521 */ 2522 ethqsets = vfres->niqflint - 1 - (msi == MSI_MSI); 2523 if (vfres->nethctrl != ethqsets) 2524 ethqsets = min(vfres->nethctrl, ethqsets); 2525 if (vfres->neq < ethqsets*2) 2526 ethqsets = vfres->neq/2; 2527 if (ethqsets > MAX_ETH_QSETS) 2528 ethqsets = MAX_ETH_QSETS; 2529 adapter->sge.max_ethqsets = ethqsets; 2530 2531 if (adapter->sge.max_ethqsets < adapter->params.nports) { 2532 dev_warn(adapter->pdev_dev, "only using %d of %d available" 2533 " virtual interfaces (too few Queue Sets)\n", 2534 adapter->sge.max_ethqsets, adapter->params.nports); 2535 adapter->params.nports = adapter->sge.max_ethqsets; 2536 } 2537 } 2538 2539 /* 2540 * Perform early "adapter" initialization. This is where we discover what 2541 * adapter parameters we're going to be using and initialize basic adapter 2542 * hardware support. 2543 */ 2544 static int adap_init0(struct adapter *adapter) 2545 { 2546 struct sge_params *sge_params = &adapter->params.sge; 2547 struct sge *s = &adapter->sge; 2548 int err; 2549 u32 param, val = 0; 2550 2551 /* 2552 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux 2553 * 2.6.31 and later we can't call pci_reset_function() in order to 2554 * issue an FLR because of a self- deadlock on the device semaphore. 2555 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the 2556 * cases where they're needed -- for instance, some versions of KVM 2557 * fail to reset "Assigned Devices" when the VM reboots. Therefore we 2558 * use the firmware based reset in order to reset any per function 2559 * state. 2560 */ 2561 err = t4vf_fw_reset(adapter); 2562 if (err < 0) { 2563 dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err); 2564 return err; 2565 } 2566 2567 /* 2568 * Grab basic operational parameters. These will predominantly have 2569 * been set up by the Physical Function Driver or will be hard coded 2570 * into the adapter. We just have to live with them ... Note that 2571 * we _must_ get our VPD parameters before our SGE parameters because 2572 * we need to know the adapter's core clock from the VPD in order to 2573 * properly decode the SGE Timer Values. 2574 */ 2575 err = t4vf_get_dev_params(adapter); 2576 if (err) { 2577 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2578 " device parameters: err=%d\n", err); 2579 return err; 2580 } 2581 err = t4vf_get_vpd_params(adapter); 2582 if (err) { 2583 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2584 " VPD parameters: err=%d\n", err); 2585 return err; 2586 } 2587 err = t4vf_get_sge_params(adapter); 2588 if (err) { 2589 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2590 " SGE parameters: err=%d\n", err); 2591 return err; 2592 } 2593 err = t4vf_get_rss_glb_config(adapter); 2594 if (err) { 2595 dev_err(adapter->pdev_dev, "unable to retrieve adapter" 2596 " RSS parameters: err=%d\n", err); 2597 return err; 2598 } 2599 if (adapter->params.rss.mode != 2600 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 2601 dev_err(adapter->pdev_dev, "unable to operate with global RSS" 2602 " mode %d\n", adapter->params.rss.mode); 2603 return -EINVAL; 2604 } 2605 err = t4vf_sge_init(adapter); 2606 if (err) { 2607 dev_err(adapter->pdev_dev, "unable to use adapter parameters:" 2608 " err=%d\n", err); 2609 return err; 2610 } 2611 2612 /* If we're running on newer firmware, let it know that we're 2613 * prepared to deal with encapsulated CPL messages. Older 2614 * firmware won't understand this and we'll just get 2615 * unencapsulated messages ... 2616 */ 2617 param = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2618 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP); 2619 val = 1; 2620 (void) t4vf_set_params(adapter, 1, ¶m, &val); 2621 2622 /* 2623 * Retrieve our RX interrupt holdoff timer values and counter 2624 * threshold values from the SGE parameters. 2625 */ 2626 s->timer_val[0] = core_ticks_to_us(adapter, 2627 TIMERVALUE0_G(sge_params->sge_timer_value_0_and_1)); 2628 s->timer_val[1] = core_ticks_to_us(adapter, 2629 TIMERVALUE1_G(sge_params->sge_timer_value_0_and_1)); 2630 s->timer_val[2] = core_ticks_to_us(adapter, 2631 TIMERVALUE0_G(sge_params->sge_timer_value_2_and_3)); 2632 s->timer_val[3] = core_ticks_to_us(adapter, 2633 TIMERVALUE1_G(sge_params->sge_timer_value_2_and_3)); 2634 s->timer_val[4] = core_ticks_to_us(adapter, 2635 TIMERVALUE0_G(sge_params->sge_timer_value_4_and_5)); 2636 s->timer_val[5] = core_ticks_to_us(adapter, 2637 TIMERVALUE1_G(sge_params->sge_timer_value_4_and_5)); 2638 2639 s->counter_val[0] = THRESHOLD_0_G(sge_params->sge_ingress_rx_threshold); 2640 s->counter_val[1] = THRESHOLD_1_G(sge_params->sge_ingress_rx_threshold); 2641 s->counter_val[2] = THRESHOLD_2_G(sge_params->sge_ingress_rx_threshold); 2642 s->counter_val[3] = THRESHOLD_3_G(sge_params->sge_ingress_rx_threshold); 2643 2644 /* 2645 * Grab our Virtual Interface resource allocation, extract the 2646 * features that we're interested in and do a bit of sanity testing on 2647 * what we discover. 2648 */ 2649 err = t4vf_get_vfres(adapter); 2650 if (err) { 2651 dev_err(adapter->pdev_dev, "unable to get virtual interface" 2652 " resources: err=%d\n", err); 2653 return err; 2654 } 2655 2656 /* Check for various parameter sanity issues */ 2657 if (adapter->params.vfres.pmask == 0) { 2658 dev_err(adapter->pdev_dev, "no port access configured\n" 2659 "usable!\n"); 2660 return -EINVAL; 2661 } 2662 if (adapter->params.vfres.nvi == 0) { 2663 dev_err(adapter->pdev_dev, "no virtual interfaces configured/" 2664 "usable!\n"); 2665 return -EINVAL; 2666 } 2667 2668 /* Initialize nports and max_ethqsets now that we have our Virtual 2669 * Function Resources. 2670 */ 2671 size_nports_qsets(adapter); 2672 2673 return 0; 2674 } 2675 2676 static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx, 2677 u8 pkt_cnt_idx, unsigned int size, 2678 unsigned int iqe_size) 2679 { 2680 rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) | 2681 (pkt_cnt_idx < SGE_NCOUNTERS ? 2682 QINTR_CNT_EN_F : 0)); 2683 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS 2684 ? pkt_cnt_idx 2685 : 0); 2686 rspq->iqe_len = iqe_size; 2687 rspq->size = size; 2688 } 2689 2690 /* 2691 * Perform default configuration of DMA queues depending on the number and 2692 * type of ports we found and the number of available CPUs. Most settings can 2693 * be modified by the admin via ethtool and cxgbtool prior to the adapter 2694 * being brought up for the first time. 2695 */ 2696 static void cfg_queues(struct adapter *adapter) 2697 { 2698 struct sge *s = &adapter->sge; 2699 int q10g, n10g, qidx, pidx, qs; 2700 size_t iqe_size; 2701 2702 /* 2703 * We should not be called till we know how many Queue Sets we can 2704 * support. In particular, this means that we need to know what kind 2705 * of interrupts we'll be using ... 2706 */ 2707 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0); 2708 2709 /* 2710 * Count the number of 10GbE Virtual Interfaces that we have. 2711 */ 2712 n10g = 0; 2713 for_each_port(adapter, pidx) 2714 n10g += is_x_10g_port(&adap2pinfo(adapter, pidx)->link_cfg); 2715 2716 /* 2717 * We default to 1 queue per non-10G port and up to # of cores queues 2718 * per 10G port. 2719 */ 2720 if (n10g == 0) 2721 q10g = 0; 2722 else { 2723 int n1g = (adapter->params.nports - n10g); 2724 q10g = (adapter->sge.max_ethqsets - n1g) / n10g; 2725 if (q10g > num_online_cpus()) 2726 q10g = num_online_cpus(); 2727 } 2728 2729 /* 2730 * Allocate the "Queue Sets" to the various Virtual Interfaces. 2731 * The layout will be established in setup_sge_queues() when the 2732 * adapter is brough up for the first time. 2733 */ 2734 qidx = 0; 2735 for_each_port(adapter, pidx) { 2736 struct port_info *pi = adap2pinfo(adapter, pidx); 2737 2738 pi->first_qset = qidx; 2739 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 2740 qidx += pi->nqsets; 2741 } 2742 s->ethqsets = qidx; 2743 2744 /* 2745 * The Ingress Queue Entry Size for our various Response Queues needs 2746 * to be big enough to accommodate the largest message we can receive 2747 * from the chip/firmware; which is 64 bytes ... 2748 */ 2749 iqe_size = 64; 2750 2751 /* 2752 * Set up default Queue Set parameters ... Start off with the 2753 * shortest interrupt holdoff timer. 2754 */ 2755 for (qs = 0; qs < s->max_ethqsets; qs++) { 2756 struct sge_eth_rxq *rxq = &s->ethrxq[qs]; 2757 struct sge_eth_txq *txq = &s->ethtxq[qs]; 2758 2759 init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size); 2760 rxq->fl.size = 72; 2761 txq->q.size = 1024; 2762 } 2763 2764 /* 2765 * The firmware event queue is used for link state changes and 2766 * notifications of TX DMA completions. 2767 */ 2768 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size); 2769 2770 /* 2771 * The forwarded interrupt queue is used when we're in MSI interrupt 2772 * mode. In this mode all interrupts associated with RX queues will 2773 * be forwarded to a single queue which we'll associate with our MSI 2774 * interrupt vector. The messages dropped in the forwarded interrupt 2775 * queue will indicate which ingress queue needs servicing ... This 2776 * queue needs to be large enough to accommodate all of the ingress 2777 * queues which are forwarding their interrupt (+1 to prevent the PIDX 2778 * from equalling the CIDX if every ingress queue has an outstanding 2779 * interrupt). The queue doesn't need to be any larger because no 2780 * ingress queue will ever have more than one outstanding interrupt at 2781 * any time ... 2782 */ 2783 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1, 2784 iqe_size); 2785 } 2786 2787 /* 2788 * Reduce the number of Ethernet queues across all ports to at most n. 2789 * n provides at least one queue per port. 2790 */ 2791 static void reduce_ethqs(struct adapter *adapter, int n) 2792 { 2793 int i; 2794 struct port_info *pi; 2795 2796 /* 2797 * While we have too many active Ether Queue Sets, interate across the 2798 * "ports" and reduce their individual Queue Set allocations. 2799 */ 2800 BUG_ON(n < adapter->params.nports); 2801 while (n < adapter->sge.ethqsets) 2802 for_each_port(adapter, i) { 2803 pi = adap2pinfo(adapter, i); 2804 if (pi->nqsets > 1) { 2805 pi->nqsets--; 2806 adapter->sge.ethqsets--; 2807 if (adapter->sge.ethqsets <= n) 2808 break; 2809 } 2810 } 2811 2812 /* 2813 * Reassign the starting Queue Sets for each of the "ports" ... 2814 */ 2815 n = 0; 2816 for_each_port(adapter, i) { 2817 pi = adap2pinfo(adapter, i); 2818 pi->first_qset = n; 2819 n += pi->nqsets; 2820 } 2821 } 2822 2823 /* 2824 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally 2825 * we get a separate MSI-X vector for every "Queue Set" plus any extras we 2826 * need. Minimally we need one for every Virtual Interface plus those needed 2827 * for our "extras". Note that this process may lower the maximum number of 2828 * allowed Queue Sets ... 2829 */ 2830 static int enable_msix(struct adapter *adapter) 2831 { 2832 int i, want, need, nqsets; 2833 struct msix_entry entries[MSIX_ENTRIES]; 2834 struct sge *s = &adapter->sge; 2835 2836 for (i = 0; i < MSIX_ENTRIES; ++i) 2837 entries[i].entry = i; 2838 2839 /* 2840 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets" 2841 * plus those needed for our "extras" (for example, the firmware 2842 * message queue). We _need_ at least one "Queue Set" per Virtual 2843 * Interface plus those needed for our "extras". So now we get to see 2844 * if the song is right ... 2845 */ 2846 want = s->max_ethqsets + MSIX_EXTRAS; 2847 need = adapter->params.nports + MSIX_EXTRAS; 2848 2849 want = pci_enable_msix_range(adapter->pdev, entries, need, want); 2850 if (want < 0) 2851 return want; 2852 2853 nqsets = want - MSIX_EXTRAS; 2854 if (nqsets < s->max_ethqsets) { 2855 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors" 2856 " for %d Queue Sets\n", nqsets); 2857 s->max_ethqsets = nqsets; 2858 if (nqsets < s->ethqsets) 2859 reduce_ethqs(adapter, nqsets); 2860 } 2861 for (i = 0; i < want; ++i) 2862 adapter->msix_info[i].vec = entries[i].vector; 2863 2864 return 0; 2865 } 2866 2867 static const struct net_device_ops cxgb4vf_netdev_ops = { 2868 .ndo_open = cxgb4vf_open, 2869 .ndo_stop = cxgb4vf_stop, 2870 .ndo_start_xmit = t4vf_eth_xmit, 2871 .ndo_get_stats = cxgb4vf_get_stats, 2872 .ndo_set_rx_mode = cxgb4vf_set_rxmode, 2873 .ndo_set_mac_address = cxgb4vf_set_mac_addr, 2874 .ndo_validate_addr = eth_validate_addr, 2875 .ndo_do_ioctl = cxgb4vf_do_ioctl, 2876 .ndo_change_mtu = cxgb4vf_change_mtu, 2877 .ndo_fix_features = cxgb4vf_fix_features, 2878 .ndo_set_features = cxgb4vf_set_features, 2879 #ifdef CONFIG_NET_POLL_CONTROLLER 2880 .ndo_poll_controller = cxgb4vf_poll_controller, 2881 #endif 2882 }; 2883 2884 /* 2885 * "Probe" a device: initialize a device and construct all kernel and driver 2886 * state needed to manage the device. This routine is called "init_one" in 2887 * the PF Driver ... 2888 */ 2889 static int cxgb4vf_pci_probe(struct pci_dev *pdev, 2890 const struct pci_device_id *ent) 2891 { 2892 int pci_using_dac; 2893 int err, pidx; 2894 unsigned int pmask; 2895 struct adapter *adapter; 2896 struct port_info *pi; 2897 struct net_device *netdev; 2898 unsigned int pf; 2899 2900 /* 2901 * Print our driver banner the first time we're called to initialize a 2902 * device. 2903 */ 2904 pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION); 2905 2906 /* 2907 * Initialize generic PCI device state. 2908 */ 2909 err = pci_enable_device(pdev); 2910 if (err) { 2911 dev_err(&pdev->dev, "cannot enable PCI device\n"); 2912 return err; 2913 } 2914 2915 /* 2916 * Reserve PCI resources for the device. If we can't get them some 2917 * other driver may have already claimed the device ... 2918 */ 2919 err = pci_request_regions(pdev, KBUILD_MODNAME); 2920 if (err) { 2921 dev_err(&pdev->dev, "cannot obtain PCI resources\n"); 2922 goto err_disable_device; 2923 } 2924 2925 /* 2926 * Set up our DMA mask: try for 64-bit address masking first and 2927 * fall back to 32-bit if we can't get 64 bits ... 2928 */ 2929 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); 2930 if (err == 0) { 2931 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 2932 if (err) { 2933 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for" 2934 " coherent allocations\n"); 2935 goto err_release_regions; 2936 } 2937 pci_using_dac = 1; 2938 } else { 2939 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 2940 if (err != 0) { 2941 dev_err(&pdev->dev, "no usable DMA configuration\n"); 2942 goto err_release_regions; 2943 } 2944 pci_using_dac = 0; 2945 } 2946 2947 /* 2948 * Enable bus mastering for the device ... 2949 */ 2950 pci_set_master(pdev); 2951 2952 /* 2953 * Allocate our adapter data structure and attach it to the device. 2954 */ 2955 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 2956 if (!adapter) { 2957 err = -ENOMEM; 2958 goto err_release_regions; 2959 } 2960 pci_set_drvdata(pdev, adapter); 2961 adapter->pdev = pdev; 2962 adapter->pdev_dev = &pdev->dev; 2963 2964 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 2965 (sizeof(struct mbox_cmd) * 2966 T4VF_OS_LOG_MBOX_CMDS), 2967 GFP_KERNEL); 2968 if (!adapter->mbox_log) { 2969 err = -ENOMEM; 2970 goto err_free_adapter; 2971 } 2972 adapter->mbox_log->size = T4VF_OS_LOG_MBOX_CMDS; 2973 2974 /* 2975 * Initialize SMP data synchronization resources. 2976 */ 2977 spin_lock_init(&adapter->stats_lock); 2978 spin_lock_init(&adapter->mbox_lock); 2979 INIT_LIST_HEAD(&adapter->mlist.list); 2980 2981 /* 2982 * Map our I/O registers in BAR0. 2983 */ 2984 adapter->regs = pci_ioremap_bar(pdev, 0); 2985 if (!adapter->regs) { 2986 dev_err(&pdev->dev, "cannot map device registers\n"); 2987 err = -ENOMEM; 2988 goto err_free_adapter; 2989 } 2990 2991 /* Wait for the device to become ready before proceeding ... 2992 */ 2993 err = t4vf_prep_adapter(adapter); 2994 if (err) { 2995 dev_err(adapter->pdev_dev, "device didn't become ready:" 2996 " err=%d\n", err); 2997 goto err_unmap_bar0; 2998 } 2999 3000 /* For T5 and later we want to use the new BAR-based User Doorbells, 3001 * so we need to map BAR2 here ... 3002 */ 3003 if (!is_t4(adapter->params.chip)) { 3004 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 3005 pci_resource_len(pdev, 2)); 3006 if (!adapter->bar2) { 3007 dev_err(adapter->pdev_dev, "cannot map BAR2 doorbells\n"); 3008 err = -ENOMEM; 3009 goto err_unmap_bar0; 3010 } 3011 } 3012 /* 3013 * Initialize adapter level features. 3014 */ 3015 adapter->name = pci_name(pdev); 3016 adapter->msg_enable = DFLT_MSG_ENABLE; 3017 3018 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver 3019 * Ingress Packet Data to Free List Buffers in order to allow for 3020 * chipset performance optimizations between the Root Complex and 3021 * Memory Controllers. (Messages to the associated Ingress Queue 3022 * notifying new Packet Placement in the Free Lists Buffers will be 3023 * send without the Relaxed Ordering Attribute thus guaranteeing that 3024 * all preceding PCIe Transaction Layer Packets will be processed 3025 * first.) But some Root Complexes have various issues with Upstream 3026 * Transaction Layer Packets with the Relaxed Ordering Attribute set. 3027 * The PCIe devices which under the Root Complexes will be cleared the 3028 * Relaxed Ordering bit in the configuration space, So we check our 3029 * PCIe configuration space to see if it's flagged with advice against 3030 * using Relaxed Ordering. 3031 */ 3032 if (!pcie_relaxed_ordering_enabled(pdev)) 3033 adapter->flags |= ROOT_NO_RELAXED_ORDERING; 3034 3035 err = adap_init0(adapter); 3036 if (err) 3037 goto err_unmap_bar; 3038 3039 /* 3040 * Allocate our "adapter ports" and stitch everything together. 3041 */ 3042 pmask = adapter->params.vfres.pmask; 3043 pf = t4vf_get_pf_from_vf(adapter); 3044 for_each_port(adapter, pidx) { 3045 int port_id, viid; 3046 u8 mac[ETH_ALEN]; 3047 unsigned int naddr = 1; 3048 3049 /* 3050 * We simplistically allocate our virtual interfaces 3051 * sequentially across the port numbers to which we have 3052 * access rights. This should be configurable in some manner 3053 * ... 3054 */ 3055 if (pmask == 0) 3056 break; 3057 port_id = ffs(pmask) - 1; 3058 pmask &= ~(1 << port_id); 3059 viid = t4vf_alloc_vi(adapter, port_id); 3060 if (viid < 0) { 3061 dev_err(&pdev->dev, "cannot allocate VI for port %d:" 3062 " err=%d\n", port_id, viid); 3063 err = viid; 3064 goto err_free_dev; 3065 } 3066 3067 /* 3068 * Allocate our network device and stitch things together. 3069 */ 3070 netdev = alloc_etherdev_mq(sizeof(struct port_info), 3071 MAX_PORT_QSETS); 3072 if (netdev == NULL) { 3073 t4vf_free_vi(adapter, viid); 3074 err = -ENOMEM; 3075 goto err_free_dev; 3076 } 3077 adapter->port[pidx] = netdev; 3078 SET_NETDEV_DEV(netdev, &pdev->dev); 3079 pi = netdev_priv(netdev); 3080 pi->adapter = adapter; 3081 pi->pidx = pidx; 3082 pi->port_id = port_id; 3083 pi->viid = viid; 3084 3085 /* 3086 * Initialize the starting state of our "port" and register 3087 * it. 3088 */ 3089 pi->xact_addr_filt = -1; 3090 netif_carrier_off(netdev); 3091 netdev->irq = pdev->irq; 3092 3093 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 3094 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 3095 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_RXCSUM; 3096 netdev->vlan_features = NETIF_F_SG | TSO_FLAGS | 3097 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 3098 NETIF_F_HIGHDMA; 3099 netdev->features = netdev->hw_features | 3100 NETIF_F_HW_VLAN_CTAG_TX; 3101 if (pci_using_dac) 3102 netdev->features |= NETIF_F_HIGHDMA; 3103 3104 netdev->priv_flags |= IFF_UNICAST_FLT; 3105 netdev->min_mtu = 81; 3106 netdev->max_mtu = ETH_MAX_MTU; 3107 3108 netdev->netdev_ops = &cxgb4vf_netdev_ops; 3109 netdev->ethtool_ops = &cxgb4vf_ethtool_ops; 3110 netdev->dev_port = pi->port_id; 3111 3112 /* 3113 * Initialize the hardware/software state for the port. 3114 */ 3115 err = t4vf_port_init(adapter, pidx); 3116 if (err) { 3117 dev_err(&pdev->dev, "cannot initialize port %d\n", 3118 pidx); 3119 goto err_free_dev; 3120 } 3121 3122 err = t4vf_get_vf_mac_acl(adapter, pf, &naddr, mac); 3123 if (err) { 3124 dev_err(&pdev->dev, 3125 "unable to determine MAC ACL address, " 3126 "continuing anyway.. (status %d)\n", err); 3127 } else if (naddr && adapter->params.vfres.nvi == 1) { 3128 struct sockaddr addr; 3129 3130 ether_addr_copy(addr.sa_data, mac); 3131 err = cxgb4vf_set_mac_addr(netdev, &addr); 3132 if (err) { 3133 dev_err(&pdev->dev, 3134 "unable to set MAC address %pM\n", 3135 mac); 3136 goto err_free_dev; 3137 } 3138 dev_info(&pdev->dev, 3139 "Using assigned MAC ACL: %pM\n", mac); 3140 } 3141 } 3142 3143 /* See what interrupts we'll be using. If we've been configured to 3144 * use MSI-X interrupts, try to enable them but fall back to using 3145 * MSI interrupts if we can't enable MSI-X interrupts. If we can't 3146 * get MSI interrupts we bail with the error. 3147 */ 3148 if (msi == MSI_MSIX && enable_msix(adapter) == 0) 3149 adapter->flags |= USING_MSIX; 3150 else { 3151 if (msi == MSI_MSIX) { 3152 dev_info(adapter->pdev_dev, 3153 "Unable to use MSI-X Interrupts; falling " 3154 "back to MSI Interrupts\n"); 3155 3156 /* We're going to need a Forwarded Interrupt Queue so 3157 * that may cut into how many Queue Sets we can 3158 * support. 3159 */ 3160 msi = MSI_MSI; 3161 size_nports_qsets(adapter); 3162 } 3163 err = pci_enable_msi(pdev); 3164 if (err) { 3165 dev_err(&pdev->dev, "Unable to allocate MSI Interrupts;" 3166 " err=%d\n", err); 3167 goto err_free_dev; 3168 } 3169 adapter->flags |= USING_MSI; 3170 } 3171 3172 /* Now that we know how many "ports" we have and what interrupt 3173 * mechanism we're going to use, we can configure our queue resources. 3174 */ 3175 cfg_queues(adapter); 3176 3177 /* 3178 * The "card" is now ready to go. If any errors occur during device 3179 * registration we do not fail the whole "card" but rather proceed 3180 * only with the ports we manage to register successfully. However we 3181 * must register at least one net device. 3182 */ 3183 for_each_port(adapter, pidx) { 3184 struct port_info *pi = netdev_priv(adapter->port[pidx]); 3185 netdev = adapter->port[pidx]; 3186 if (netdev == NULL) 3187 continue; 3188 3189 netif_set_real_num_tx_queues(netdev, pi->nqsets); 3190 netif_set_real_num_rx_queues(netdev, pi->nqsets); 3191 3192 err = register_netdev(netdev); 3193 if (err) { 3194 dev_warn(&pdev->dev, "cannot register net device %s," 3195 " skipping\n", netdev->name); 3196 continue; 3197 } 3198 3199 set_bit(pidx, &adapter->registered_device_map); 3200 } 3201 if (adapter->registered_device_map == 0) { 3202 dev_err(&pdev->dev, "could not register any net devices\n"); 3203 goto err_disable_interrupts; 3204 } 3205 3206 /* 3207 * Set up our debugfs entries. 3208 */ 3209 if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) { 3210 adapter->debugfs_root = 3211 debugfs_create_dir(pci_name(pdev), 3212 cxgb4vf_debugfs_root); 3213 if (IS_ERR_OR_NULL(adapter->debugfs_root)) 3214 dev_warn(&pdev->dev, "could not create debugfs" 3215 " directory"); 3216 else 3217 setup_debugfs(adapter); 3218 } 3219 3220 /* 3221 * Print a short notice on the existence and configuration of the new 3222 * VF network device ... 3223 */ 3224 for_each_port(adapter, pidx) { 3225 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n", 3226 adapter->port[pidx]->name, 3227 (adapter->flags & USING_MSIX) ? "MSI-X" : 3228 (adapter->flags & USING_MSI) ? "MSI" : ""); 3229 } 3230 3231 /* 3232 * Return success! 3233 */ 3234 return 0; 3235 3236 /* 3237 * Error recovery and exit code. Unwind state that's been created 3238 * so far and return the error. 3239 */ 3240 err_disable_interrupts: 3241 if (adapter->flags & USING_MSIX) { 3242 pci_disable_msix(adapter->pdev); 3243 adapter->flags &= ~USING_MSIX; 3244 } else if (adapter->flags & USING_MSI) { 3245 pci_disable_msi(adapter->pdev); 3246 adapter->flags &= ~USING_MSI; 3247 } 3248 3249 err_free_dev: 3250 for_each_port(adapter, pidx) { 3251 netdev = adapter->port[pidx]; 3252 if (netdev == NULL) 3253 continue; 3254 pi = netdev_priv(netdev); 3255 t4vf_free_vi(adapter, pi->viid); 3256 if (test_bit(pidx, &adapter->registered_device_map)) 3257 unregister_netdev(netdev); 3258 free_netdev(netdev); 3259 } 3260 3261 err_unmap_bar: 3262 if (!is_t4(adapter->params.chip)) 3263 iounmap(adapter->bar2); 3264 3265 err_unmap_bar0: 3266 iounmap(adapter->regs); 3267 3268 err_free_adapter: 3269 kfree(adapter->mbox_log); 3270 kfree(adapter); 3271 3272 err_release_regions: 3273 pci_release_regions(pdev); 3274 pci_clear_master(pdev); 3275 3276 err_disable_device: 3277 pci_disable_device(pdev); 3278 3279 return err; 3280 } 3281 3282 /* 3283 * "Remove" a device: tear down all kernel and driver state created in the 3284 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note 3285 * that this is called "remove_one" in the PF Driver.) 3286 */ 3287 static void cxgb4vf_pci_remove(struct pci_dev *pdev) 3288 { 3289 struct adapter *adapter = pci_get_drvdata(pdev); 3290 3291 /* 3292 * Tear down driver state associated with device. 3293 */ 3294 if (adapter) { 3295 int pidx; 3296 3297 /* 3298 * Stop all of our activity. Unregister network port, 3299 * disable interrupts, etc. 3300 */ 3301 for_each_port(adapter, pidx) 3302 if (test_bit(pidx, &adapter->registered_device_map)) 3303 unregister_netdev(adapter->port[pidx]); 3304 t4vf_sge_stop(adapter); 3305 if (adapter->flags & USING_MSIX) { 3306 pci_disable_msix(adapter->pdev); 3307 adapter->flags &= ~USING_MSIX; 3308 } else if (adapter->flags & USING_MSI) { 3309 pci_disable_msi(adapter->pdev); 3310 adapter->flags &= ~USING_MSI; 3311 } 3312 3313 /* 3314 * Tear down our debugfs entries. 3315 */ 3316 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) { 3317 cleanup_debugfs(adapter); 3318 debugfs_remove_recursive(adapter->debugfs_root); 3319 } 3320 3321 /* 3322 * Free all of the various resources which we've acquired ... 3323 */ 3324 t4vf_free_sge_resources(adapter); 3325 for_each_port(adapter, pidx) { 3326 struct net_device *netdev = adapter->port[pidx]; 3327 struct port_info *pi; 3328 3329 if (netdev == NULL) 3330 continue; 3331 3332 pi = netdev_priv(netdev); 3333 t4vf_free_vi(adapter, pi->viid); 3334 free_netdev(netdev); 3335 } 3336 iounmap(adapter->regs); 3337 if (!is_t4(adapter->params.chip)) 3338 iounmap(adapter->bar2); 3339 kfree(adapter->mbox_log); 3340 kfree(adapter); 3341 } 3342 3343 /* 3344 * Disable the device and release its PCI resources. 3345 */ 3346 pci_disable_device(pdev); 3347 pci_clear_master(pdev); 3348 pci_release_regions(pdev); 3349 } 3350 3351 /* 3352 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt 3353 * delivery. 3354 */ 3355 static void cxgb4vf_pci_shutdown(struct pci_dev *pdev) 3356 { 3357 struct adapter *adapter; 3358 int pidx; 3359 3360 adapter = pci_get_drvdata(pdev); 3361 if (!adapter) 3362 return; 3363 3364 /* Disable all Virtual Interfaces. This will shut down the 3365 * delivery of all ingress packets into the chip for these 3366 * Virtual Interfaces. 3367 */ 3368 for_each_port(adapter, pidx) 3369 if (test_bit(pidx, &adapter->registered_device_map)) 3370 unregister_netdev(adapter->port[pidx]); 3371 3372 /* Free up all Queues which will prevent further DMA and 3373 * Interrupts allowing various internal pathways to drain. 3374 */ 3375 t4vf_sge_stop(adapter); 3376 if (adapter->flags & USING_MSIX) { 3377 pci_disable_msix(adapter->pdev); 3378 adapter->flags &= ~USING_MSIX; 3379 } else if (adapter->flags & USING_MSI) { 3380 pci_disable_msi(adapter->pdev); 3381 adapter->flags &= ~USING_MSI; 3382 } 3383 3384 /* 3385 * Free up all Queues which will prevent further DMA and 3386 * Interrupts allowing various internal pathways to drain. 3387 */ 3388 t4vf_free_sge_resources(adapter); 3389 pci_set_drvdata(pdev, NULL); 3390 } 3391 3392 /* Macros needed to support the PCI Device ID Table ... 3393 */ 3394 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 3395 static const struct pci_device_id cxgb4vf_pci_tbl[] = { 3396 #define CH_PCI_DEVICE_ID_FUNCTION 0x8 3397 3398 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 3399 { PCI_VDEVICE(CHELSIO, (devid)), 0 } 3400 3401 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } } 3402 3403 #include "../cxgb4/t4_pci_id_tbl.h" 3404 3405 MODULE_DESCRIPTION(DRV_DESC); 3406 MODULE_AUTHOR("Chelsio Communications"); 3407 MODULE_LICENSE("Dual BSD/GPL"); 3408 MODULE_VERSION(DRV_VERSION); 3409 MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl); 3410 3411 static struct pci_driver cxgb4vf_driver = { 3412 .name = KBUILD_MODNAME, 3413 .id_table = cxgb4vf_pci_tbl, 3414 .probe = cxgb4vf_pci_probe, 3415 .remove = cxgb4vf_pci_remove, 3416 .shutdown = cxgb4vf_pci_shutdown, 3417 }; 3418 3419 /* 3420 * Initialize global driver state. 3421 */ 3422 static int __init cxgb4vf_module_init(void) 3423 { 3424 int ret; 3425 3426 /* 3427 * Vet our module parameters. 3428 */ 3429 if (msi != MSI_MSIX && msi != MSI_MSI) { 3430 pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n", 3431 msi, MSI_MSIX, MSI_MSI); 3432 return -EINVAL; 3433 } 3434 3435 /* Debugfs support is optional, just warn if this fails */ 3436 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 3437 if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) 3438 pr_warn("could not create debugfs entry, continuing\n"); 3439 3440 ret = pci_register_driver(&cxgb4vf_driver); 3441 if (ret < 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) 3442 debugfs_remove(cxgb4vf_debugfs_root); 3443 return ret; 3444 } 3445 3446 /* 3447 * Tear down global driver state. 3448 */ 3449 static void __exit cxgb4vf_module_exit(void) 3450 { 3451 pci_unregister_driver(&cxgb4vf_driver); 3452 debugfs_remove(cxgb4vf_debugfs_root); 3453 } 3454 3455 module_init(cxgb4vf_module_init); 3456 module_exit(cxgb4vf_module_exit); 3457