xref: /linux/drivers/net/ethernet/chelsio/cxgb4vf/cxgb4vf_main.c (revision 9fb29c734f9e98adc1f2f3c4629fe487cb93f2dd)
1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37 
38 #include <linux/module.h>
39 #include <linux/moduleparam.h>
40 #include <linux/init.h>
41 #include <linux/pci.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/netdevice.h>
44 #include <linux/etherdevice.h>
45 #include <linux/debugfs.h>
46 #include <linux/ethtool.h>
47 #include <linux/mdio.h>
48 
49 #include "t4vf_common.h"
50 #include "t4vf_defs.h"
51 
52 #include "../cxgb4/t4_regs.h"
53 #include "../cxgb4/t4_msg.h"
54 
55 /*
56  * Generic information about the driver.
57  */
58 #define DRV_VERSION "2.0.0-ko"
59 #define DRV_DESC "Chelsio T4/T5/T6 Virtual Function (VF) Network Driver"
60 
61 /*
62  * Module Parameters.
63  * ==================
64  */
65 
66 /*
67  * Default ethtool "message level" for adapters.
68  */
69 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
70 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
71 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
72 
73 /*
74  * The driver uses the best interrupt scheme available on a platform in the
75  * order MSI-X then MSI.  This parameter determines which of these schemes the
76  * driver may consider as follows:
77  *
78  *     msi = 2: choose from among MSI-X and MSI
79  *     msi = 1: only consider MSI interrupts
80  *
81  * Note that unlike the Physical Function driver, this Virtual Function driver
82  * does _not_ support legacy INTx interrupts (this limitation is mandated by
83  * the PCI-E SR-IOV standard).
84  */
85 #define MSI_MSIX	2
86 #define MSI_MSI		1
87 #define MSI_DEFAULT	MSI_MSIX
88 
89 static int msi = MSI_DEFAULT;
90 
91 module_param(msi, int, 0644);
92 MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
93 
94 /*
95  * Fundamental constants.
96  * ======================
97  */
98 
99 enum {
100 	MAX_TXQ_ENTRIES		= 16384,
101 	MAX_RSPQ_ENTRIES	= 16384,
102 	MAX_RX_BUFFERS		= 16384,
103 
104 	MIN_TXQ_ENTRIES		= 32,
105 	MIN_RSPQ_ENTRIES	= 128,
106 	MIN_FL_ENTRIES		= 16,
107 
108 	/*
109 	 * For purposes of manipulating the Free List size we need to
110 	 * recognize that Free Lists are actually Egress Queues (the host
111 	 * produces free buffers which the hardware consumes), Egress Queues
112 	 * indices are all in units of Egress Context Units bytes, and free
113 	 * list entries are 64-bit PCI DMA addresses.  And since the state of
114 	 * the Producer Index == the Consumer Index implies an EMPTY list, we
115 	 * always have at least one Egress Unit's worth of Free List entries
116 	 * unused.  See sge.c for more details ...
117 	 */
118 	EQ_UNIT = SGE_EQ_IDXSIZE,
119 	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
120 	MIN_FL_RESID = FL_PER_EQ_UNIT,
121 };
122 
123 /*
124  * Global driver state.
125  * ====================
126  */
127 
128 static struct dentry *cxgb4vf_debugfs_root;
129 
130 /*
131  * OS "Callback" functions.
132  * ========================
133  */
134 
135 /*
136  * The link status has changed on the indicated "port" (Virtual Interface).
137  */
138 void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
139 {
140 	struct net_device *dev = adapter->port[pidx];
141 
142 	/*
143 	 * If the port is disabled or the current recorded "link up"
144 	 * status matches the new status, just return.
145 	 */
146 	if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
147 		return;
148 
149 	/*
150 	 * Tell the OS that the link status has changed and print a short
151 	 * informative message on the console about the event.
152 	 */
153 	if (link_ok) {
154 		const char *s;
155 		const char *fc;
156 		const struct port_info *pi = netdev_priv(dev);
157 
158 		switch (pi->link_cfg.speed) {
159 		case 100:
160 			s = "100Mbps";
161 			break;
162 		case 1000:
163 			s = "1Gbps";
164 			break;
165 		case 10000:
166 			s = "10Gbps";
167 			break;
168 		case 25000:
169 			s = "25Gbps";
170 			break;
171 		case 40000:
172 			s = "40Gbps";
173 			break;
174 		case 100000:
175 			s = "100Gbps";
176 			break;
177 
178 		default:
179 			s = "unknown";
180 			break;
181 		}
182 
183 		switch ((int)pi->link_cfg.fc) {
184 		case PAUSE_RX:
185 			fc = "RX";
186 			break;
187 
188 		case PAUSE_TX:
189 			fc = "TX";
190 			break;
191 
192 		case PAUSE_RX | PAUSE_TX:
193 			fc = "RX/TX";
194 			break;
195 
196 		default:
197 			fc = "no";
198 			break;
199 		}
200 
201 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc);
202 	} else {
203 		netdev_info(dev, "link down\n");
204 	}
205 }
206 
207 /*
208  * THe port module type has changed on the indicated "port" (Virtual
209  * Interface).
210  */
211 void t4vf_os_portmod_changed(struct adapter *adapter, int pidx)
212 {
213 	static const char * const mod_str[] = {
214 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
215 	};
216 	const struct net_device *dev = adapter->port[pidx];
217 	const struct port_info *pi = netdev_priv(dev);
218 
219 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
220 		dev_info(adapter->pdev_dev, "%s: port module unplugged\n",
221 			 dev->name);
222 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
223 		dev_info(adapter->pdev_dev, "%s: %s port module inserted\n",
224 			 dev->name, mod_str[pi->mod_type]);
225 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
226 		dev_info(adapter->pdev_dev, "%s: unsupported optical port "
227 			 "module inserted\n", dev->name);
228 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
229 		dev_info(adapter->pdev_dev, "%s: unknown port module inserted,"
230 			 "forcing TWINAX\n", dev->name);
231 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
232 		dev_info(adapter->pdev_dev, "%s: transceiver module error\n",
233 			 dev->name);
234 	else
235 		dev_info(adapter->pdev_dev, "%s: unknown module type %d "
236 			 "inserted\n", dev->name, pi->mod_type);
237 }
238 
239 /*
240  * Net device operations.
241  * ======================
242  */
243 
244 
245 
246 
247 /*
248  * Perform the MAC and PHY actions needed to enable a "port" (Virtual
249  * Interface).
250  */
251 static int link_start(struct net_device *dev)
252 {
253 	int ret;
254 	struct port_info *pi = netdev_priv(dev);
255 
256 	/*
257 	 * We do not set address filters and promiscuity here, the stack does
258 	 * that step explicitly. Enable vlan accel.
259 	 */
260 	ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1,
261 			      true);
262 	if (ret == 0) {
263 		ret = t4vf_change_mac(pi->adapter, pi->viid,
264 				      pi->xact_addr_filt, dev->dev_addr, true);
265 		if (ret >= 0) {
266 			pi->xact_addr_filt = ret;
267 			ret = 0;
268 		}
269 	}
270 
271 	/*
272 	 * We don't need to actually "start the link" itself since the
273 	 * firmware will do that for us when the first Virtual Interface
274 	 * is enabled on a port.
275 	 */
276 	if (ret == 0)
277 		ret = t4vf_enable_pi(pi->adapter, pi, true, true);
278 
279 	/* The Virtual Interfaces are connected to an internal switch on the
280 	 * chip which allows VIs attached to the same port to talk to each
281 	 * other even when the port link is down.  As a result, we generally
282 	 * want to always report a VI's link as being "up", provided there are
283 	 * no errors in enabling vi.
284 	 */
285 
286 	if (ret == 0)
287 		netif_carrier_on(dev);
288 
289 	return ret;
290 }
291 
292 /*
293  * Name the MSI-X interrupts.
294  */
295 static void name_msix_vecs(struct adapter *adapter)
296 {
297 	int namelen = sizeof(adapter->msix_info[0].desc) - 1;
298 	int pidx;
299 
300 	/*
301 	 * Firmware events.
302 	 */
303 	snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
304 		 "%s-FWeventq", adapter->name);
305 	adapter->msix_info[MSIX_FW].desc[namelen] = 0;
306 
307 	/*
308 	 * Ethernet queues.
309 	 */
310 	for_each_port(adapter, pidx) {
311 		struct net_device *dev = adapter->port[pidx];
312 		const struct port_info *pi = netdev_priv(dev);
313 		int qs, msi;
314 
315 		for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) {
316 			snprintf(adapter->msix_info[msi].desc, namelen,
317 				 "%s-%d", dev->name, qs);
318 			adapter->msix_info[msi].desc[namelen] = 0;
319 		}
320 	}
321 }
322 
323 /*
324  * Request all of our MSI-X resources.
325  */
326 static int request_msix_queue_irqs(struct adapter *adapter)
327 {
328 	struct sge *s = &adapter->sge;
329 	int rxq, msi, err;
330 
331 	/*
332 	 * Firmware events.
333 	 */
334 	err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
335 			  0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
336 	if (err)
337 		return err;
338 
339 	/*
340 	 * Ethernet queues.
341 	 */
342 	msi = MSIX_IQFLINT;
343 	for_each_ethrxq(s, rxq) {
344 		err = request_irq(adapter->msix_info[msi].vec,
345 				  t4vf_sge_intr_msix, 0,
346 				  adapter->msix_info[msi].desc,
347 				  &s->ethrxq[rxq].rspq);
348 		if (err)
349 			goto err_free_irqs;
350 		msi++;
351 	}
352 	return 0;
353 
354 err_free_irqs:
355 	while (--rxq >= 0)
356 		free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
357 	free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
358 	return err;
359 }
360 
361 /*
362  * Free our MSI-X resources.
363  */
364 static void free_msix_queue_irqs(struct adapter *adapter)
365 {
366 	struct sge *s = &adapter->sge;
367 	int rxq, msi;
368 
369 	free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
370 	msi = MSIX_IQFLINT;
371 	for_each_ethrxq(s, rxq)
372 		free_irq(adapter->msix_info[msi++].vec,
373 			 &s->ethrxq[rxq].rspq);
374 }
375 
376 /*
377  * Turn on NAPI and start up interrupts on a response queue.
378  */
379 static void qenable(struct sge_rspq *rspq)
380 {
381 	napi_enable(&rspq->napi);
382 
383 	/*
384 	 * 0-increment the Going To Sleep register to start the timer and
385 	 * enable interrupts.
386 	 */
387 	t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
388 		     CIDXINC_V(0) |
389 		     SEINTARM_V(rspq->intr_params) |
390 		     INGRESSQID_V(rspq->cntxt_id));
391 }
392 
393 /*
394  * Enable NAPI scheduling and interrupt generation for all Receive Queues.
395  */
396 static void enable_rx(struct adapter *adapter)
397 {
398 	int rxq;
399 	struct sge *s = &adapter->sge;
400 
401 	for_each_ethrxq(s, rxq)
402 		qenable(&s->ethrxq[rxq].rspq);
403 	qenable(&s->fw_evtq);
404 
405 	/*
406 	 * The interrupt queue doesn't use NAPI so we do the 0-increment of
407 	 * its Going To Sleep register here to get it started.
408 	 */
409 	if (adapter->flags & USING_MSI)
410 		t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
411 			     CIDXINC_V(0) |
412 			     SEINTARM_V(s->intrq.intr_params) |
413 			     INGRESSQID_V(s->intrq.cntxt_id));
414 
415 }
416 
417 /*
418  * Wait until all NAPI handlers are descheduled.
419  */
420 static void quiesce_rx(struct adapter *adapter)
421 {
422 	struct sge *s = &adapter->sge;
423 	int rxq;
424 
425 	for_each_ethrxq(s, rxq)
426 		napi_disable(&s->ethrxq[rxq].rspq.napi);
427 	napi_disable(&s->fw_evtq.napi);
428 }
429 
430 /*
431  * Response queue handler for the firmware event queue.
432  */
433 static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
434 			  const struct pkt_gl *gl)
435 {
436 	/*
437 	 * Extract response opcode and get pointer to CPL message body.
438 	 */
439 	struct adapter *adapter = rspq->adapter;
440 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
441 	void *cpl = (void *)(rsp + 1);
442 
443 	switch (opcode) {
444 	case CPL_FW6_MSG: {
445 		/*
446 		 * We've received an asynchronous message from the firmware.
447 		 */
448 		const struct cpl_fw6_msg *fw_msg = cpl;
449 		if (fw_msg->type == FW6_TYPE_CMD_RPL)
450 			t4vf_handle_fw_rpl(adapter, fw_msg->data);
451 		break;
452 	}
453 
454 	case CPL_FW4_MSG: {
455 		/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
456 		 */
457 		const struct cpl_sge_egr_update *p = (void *)(rsp + 3);
458 		opcode = CPL_OPCODE_G(ntohl(p->opcode_qid));
459 		if (opcode != CPL_SGE_EGR_UPDATE) {
460 			dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
461 				, opcode);
462 			break;
463 		}
464 		cpl = (void *)p;
465 		/*FALLTHROUGH*/
466 	}
467 
468 	case CPL_SGE_EGR_UPDATE: {
469 		/*
470 		 * We've received an Egress Queue Status Update message.  We
471 		 * get these, if the SGE is configured to send these when the
472 		 * firmware passes certain points in processing our TX
473 		 * Ethernet Queue or if we make an explicit request for one.
474 		 * We use these updates to determine when we may need to
475 		 * restart a TX Ethernet Queue which was stopped for lack of
476 		 * free TX Queue Descriptors ...
477 		 */
478 		const struct cpl_sge_egr_update *p = cpl;
479 		unsigned int qid = EGR_QID_G(be32_to_cpu(p->opcode_qid));
480 		struct sge *s = &adapter->sge;
481 		struct sge_txq *tq;
482 		struct sge_eth_txq *txq;
483 		unsigned int eq_idx;
484 
485 		/*
486 		 * Perform sanity checking on the Queue ID to make sure it
487 		 * really refers to one of our TX Ethernet Egress Queues which
488 		 * is active and matches the queue's ID.  None of these error
489 		 * conditions should ever happen so we may want to either make
490 		 * them fatal and/or conditionalized under DEBUG.
491 		 */
492 		eq_idx = EQ_IDX(s, qid);
493 		if (unlikely(eq_idx >= MAX_EGRQ)) {
494 			dev_err(adapter->pdev_dev,
495 				"Egress Update QID %d out of range\n", qid);
496 			break;
497 		}
498 		tq = s->egr_map[eq_idx];
499 		if (unlikely(tq == NULL)) {
500 			dev_err(adapter->pdev_dev,
501 				"Egress Update QID %d TXQ=NULL\n", qid);
502 			break;
503 		}
504 		txq = container_of(tq, struct sge_eth_txq, q);
505 		if (unlikely(tq->abs_id != qid)) {
506 			dev_err(adapter->pdev_dev,
507 				"Egress Update QID %d refers to TXQ %d\n",
508 				qid, tq->abs_id);
509 			break;
510 		}
511 
512 		/*
513 		 * Restart a stopped TX Queue which has less than half of its
514 		 * TX ring in use ...
515 		 */
516 		txq->q.restarts++;
517 		netif_tx_wake_queue(txq->txq);
518 		break;
519 	}
520 
521 	default:
522 		dev_err(adapter->pdev_dev,
523 			"unexpected CPL %#x on FW event queue\n", opcode);
524 	}
525 
526 	return 0;
527 }
528 
529 /*
530  * Allocate SGE TX/RX response queues.  Determine how many sets of SGE queues
531  * to use and initializes them.  We support multiple "Queue Sets" per port if
532  * we have MSI-X, otherwise just one queue set per port.
533  */
534 static int setup_sge_queues(struct adapter *adapter)
535 {
536 	struct sge *s = &adapter->sge;
537 	int err, pidx, msix;
538 
539 	/*
540 	 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
541 	 * state.
542 	 */
543 	bitmap_zero(s->starving_fl, MAX_EGRQ);
544 
545 	/*
546 	 * If we're using MSI interrupt mode we need to set up a "forwarded
547 	 * interrupt" queue which we'll set up with our MSI vector.  The rest
548 	 * of the ingress queues will be set up to forward their interrupts to
549 	 * this queue ...  This must be first since t4vf_sge_alloc_rxq() uses
550 	 * the intrq's queue ID as the interrupt forwarding queue for the
551 	 * subsequent calls ...
552 	 */
553 	if (adapter->flags & USING_MSI) {
554 		err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
555 					 adapter->port[0], 0, NULL, NULL);
556 		if (err)
557 			goto err_free_queues;
558 	}
559 
560 	/*
561 	 * Allocate our ingress queue for asynchronous firmware messages.
562 	 */
563 	err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
564 				 MSIX_FW, NULL, fwevtq_handler);
565 	if (err)
566 		goto err_free_queues;
567 
568 	/*
569 	 * Allocate each "port"'s initial Queue Sets.  These can be changed
570 	 * later on ... up to the point where any interface on the adapter is
571 	 * brought up at which point lots of things get nailed down
572 	 * permanently ...
573 	 */
574 	msix = MSIX_IQFLINT;
575 	for_each_port(adapter, pidx) {
576 		struct net_device *dev = adapter->port[pidx];
577 		struct port_info *pi = netdev_priv(dev);
578 		struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
579 		struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
580 		int qs;
581 
582 		for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
583 			err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
584 						 dev, msix++,
585 						 &rxq->fl, t4vf_ethrx_handler);
586 			if (err)
587 				goto err_free_queues;
588 
589 			err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
590 					     netdev_get_tx_queue(dev, qs),
591 					     s->fw_evtq.cntxt_id);
592 			if (err)
593 				goto err_free_queues;
594 
595 			rxq->rspq.idx = qs;
596 			memset(&rxq->stats, 0, sizeof(rxq->stats));
597 		}
598 	}
599 
600 	/*
601 	 * Create the reverse mappings for the queues.
602 	 */
603 	s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
604 	s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
605 	IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
606 	for_each_port(adapter, pidx) {
607 		struct net_device *dev = adapter->port[pidx];
608 		struct port_info *pi = netdev_priv(dev);
609 		struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
610 		struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
611 		int qs;
612 
613 		for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
614 			IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
615 			EQ_MAP(s, txq->q.abs_id) = &txq->q;
616 
617 			/*
618 			 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
619 			 * for Free Lists but since all of the Egress Queues
620 			 * (including Free Lists) have Relative Queue IDs
621 			 * which are computed as Absolute - Base Queue ID, we
622 			 * can synthesize the Absolute Queue IDs for the Free
623 			 * Lists.  This is useful for debugging purposes when
624 			 * we want to dump Queue Contexts via the PF Driver.
625 			 */
626 			rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
627 			EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
628 		}
629 	}
630 	return 0;
631 
632 err_free_queues:
633 	t4vf_free_sge_resources(adapter);
634 	return err;
635 }
636 
637 /*
638  * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
639  * queues.  We configure the RSS CPU lookup table to distribute to the number
640  * of HW receive queues, and the response queue lookup table to narrow that
641  * down to the response queues actually configured for each "port" (Virtual
642  * Interface).  We always configure the RSS mapping for all ports since the
643  * mapping table has plenty of entries.
644  */
645 static int setup_rss(struct adapter *adapter)
646 {
647 	int pidx;
648 
649 	for_each_port(adapter, pidx) {
650 		struct port_info *pi = adap2pinfo(adapter, pidx);
651 		struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
652 		u16 rss[MAX_PORT_QSETS];
653 		int qs, err;
654 
655 		for (qs = 0; qs < pi->nqsets; qs++)
656 			rss[qs] = rxq[qs].rspq.abs_id;
657 
658 		err = t4vf_config_rss_range(adapter, pi->viid,
659 					    0, pi->rss_size, rss, pi->nqsets);
660 		if (err)
661 			return err;
662 
663 		/*
664 		 * Perform Global RSS Mode-specific initialization.
665 		 */
666 		switch (adapter->params.rss.mode) {
667 		case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
668 			/*
669 			 * If Tunnel All Lookup isn't specified in the global
670 			 * RSS Configuration, then we need to specify a
671 			 * default Ingress Queue for any ingress packets which
672 			 * aren't hashed.  We'll use our first ingress queue
673 			 * ...
674 			 */
675 			if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
676 				union rss_vi_config config;
677 				err = t4vf_read_rss_vi_config(adapter,
678 							      pi->viid,
679 							      &config);
680 				if (err)
681 					return err;
682 				config.basicvirtual.defaultq =
683 					rxq[0].rspq.abs_id;
684 				err = t4vf_write_rss_vi_config(adapter,
685 							       pi->viid,
686 							       &config);
687 				if (err)
688 					return err;
689 			}
690 			break;
691 		}
692 	}
693 
694 	return 0;
695 }
696 
697 /*
698  * Bring the adapter up.  Called whenever we go from no "ports" open to having
699  * one open.  This function performs the actions necessary to make an adapter
700  * operational, such as completing the initialization of HW modules, and
701  * enabling interrupts.  Must be called with the rtnl lock held.  (Note that
702  * this is called "cxgb_up" in the PF Driver.)
703  */
704 static int adapter_up(struct adapter *adapter)
705 {
706 	int err;
707 
708 	/*
709 	 * If this is the first time we've been called, perform basic
710 	 * adapter setup.  Once we've done this, many of our adapter
711 	 * parameters can no longer be changed ...
712 	 */
713 	if ((adapter->flags & FULL_INIT_DONE) == 0) {
714 		err = setup_sge_queues(adapter);
715 		if (err)
716 			return err;
717 		err = setup_rss(adapter);
718 		if (err) {
719 			t4vf_free_sge_resources(adapter);
720 			return err;
721 		}
722 
723 		if (adapter->flags & USING_MSIX)
724 			name_msix_vecs(adapter);
725 
726 		adapter->flags |= FULL_INIT_DONE;
727 	}
728 
729 	/*
730 	 * Acquire our interrupt resources.  We only support MSI-X and MSI.
731 	 */
732 	BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
733 	if (adapter->flags & USING_MSIX)
734 		err = request_msix_queue_irqs(adapter);
735 	else
736 		err = request_irq(adapter->pdev->irq,
737 				  t4vf_intr_handler(adapter), 0,
738 				  adapter->name, adapter);
739 	if (err) {
740 		dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
741 			err);
742 		return err;
743 	}
744 
745 	/*
746 	 * Enable NAPI ingress processing and return success.
747 	 */
748 	enable_rx(adapter);
749 	t4vf_sge_start(adapter);
750 
751 	return 0;
752 }
753 
754 /*
755  * Bring the adapter down.  Called whenever the last "port" (Virtual
756  * Interface) closed.  (Note that this routine is called "cxgb_down" in the PF
757  * Driver.)
758  */
759 static void adapter_down(struct adapter *adapter)
760 {
761 	/*
762 	 * Free interrupt resources.
763 	 */
764 	if (adapter->flags & USING_MSIX)
765 		free_msix_queue_irqs(adapter);
766 	else
767 		free_irq(adapter->pdev->irq, adapter);
768 
769 	/*
770 	 * Wait for NAPI handlers to finish.
771 	 */
772 	quiesce_rx(adapter);
773 }
774 
775 /*
776  * Start up a net device.
777  */
778 static int cxgb4vf_open(struct net_device *dev)
779 {
780 	int err;
781 	struct port_info *pi = netdev_priv(dev);
782 	struct adapter *adapter = pi->adapter;
783 
784 	/*
785 	 * If this is the first interface that we're opening on the "adapter",
786 	 * bring the "adapter" up now.
787 	 */
788 	if (adapter->open_device_map == 0) {
789 		err = adapter_up(adapter);
790 		if (err)
791 			return err;
792 	}
793 
794 	/*
795 	 * Note that this interface is up and start everything up ...
796 	 */
797 	err = link_start(dev);
798 	if (err)
799 		goto err_unwind;
800 
801 	pi->vlan_id = t4vf_get_vf_vlan_acl(adapter);
802 
803 	netif_tx_start_all_queues(dev);
804 	set_bit(pi->port_id, &adapter->open_device_map);
805 	return 0;
806 
807 err_unwind:
808 	if (adapter->open_device_map == 0)
809 		adapter_down(adapter);
810 	return err;
811 }
812 
813 /*
814  * Shut down a net device.  This routine is called "cxgb_close" in the PF
815  * Driver ...
816  */
817 static int cxgb4vf_stop(struct net_device *dev)
818 {
819 	struct port_info *pi = netdev_priv(dev);
820 	struct adapter *adapter = pi->adapter;
821 
822 	netif_tx_stop_all_queues(dev);
823 	netif_carrier_off(dev);
824 	t4vf_enable_pi(adapter, pi, false, false);
825 
826 	clear_bit(pi->port_id, &adapter->open_device_map);
827 	if (adapter->open_device_map == 0)
828 		adapter_down(adapter);
829 	return 0;
830 }
831 
832 /*
833  * Translate our basic statistics into the standard "ifconfig" statistics.
834  */
835 static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
836 {
837 	struct t4vf_port_stats stats;
838 	struct port_info *pi = netdev2pinfo(dev);
839 	struct adapter *adapter = pi->adapter;
840 	struct net_device_stats *ns = &dev->stats;
841 	int err;
842 
843 	spin_lock(&adapter->stats_lock);
844 	err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
845 	spin_unlock(&adapter->stats_lock);
846 
847 	memset(ns, 0, sizeof(*ns));
848 	if (err)
849 		return ns;
850 
851 	ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
852 			stats.tx_ucast_bytes + stats.tx_offload_bytes);
853 	ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
854 			  stats.tx_ucast_frames + stats.tx_offload_frames);
855 	ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
856 			stats.rx_ucast_bytes);
857 	ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
858 			  stats.rx_ucast_frames);
859 	ns->multicast = stats.rx_mcast_frames;
860 	ns->tx_errors = stats.tx_drop_frames;
861 	ns->rx_errors = stats.rx_err_frames;
862 
863 	return ns;
864 }
865 
866 static inline int cxgb4vf_set_addr_hash(struct port_info *pi)
867 {
868 	struct adapter *adapter = pi->adapter;
869 	u64 vec = 0;
870 	bool ucast = false;
871 	struct hash_mac_addr *entry;
872 
873 	/* Calculate the hash vector for the updated list and program it */
874 	list_for_each_entry(entry, &adapter->mac_hlist, list) {
875 		ucast |= is_unicast_ether_addr(entry->addr);
876 		vec |= (1ULL << hash_mac_addr(entry->addr));
877 	}
878 	return t4vf_set_addr_hash(adapter, pi->viid, ucast, vec, false);
879 }
880 
881 static int cxgb4vf_mac_sync(struct net_device *netdev, const u8 *mac_addr)
882 {
883 	struct port_info *pi = netdev_priv(netdev);
884 	struct adapter *adapter = pi->adapter;
885 	int ret;
886 	u64 mhash = 0;
887 	u64 uhash = 0;
888 	bool free = false;
889 	bool ucast = is_unicast_ether_addr(mac_addr);
890 	const u8 *maclist[1] = {mac_addr};
891 	struct hash_mac_addr *new_entry;
892 
893 	ret = t4vf_alloc_mac_filt(adapter, pi->viid, free, 1, maclist,
894 				  NULL, ucast ? &uhash : &mhash, false);
895 	if (ret < 0)
896 		goto out;
897 	/* if hash != 0, then add the addr to hash addr list
898 	 * so on the end we will calculate the hash for the
899 	 * list and program it
900 	 */
901 	if (uhash || mhash) {
902 		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
903 		if (!new_entry)
904 			return -ENOMEM;
905 		ether_addr_copy(new_entry->addr, mac_addr);
906 		list_add_tail(&new_entry->list, &adapter->mac_hlist);
907 		ret = cxgb4vf_set_addr_hash(pi);
908 	}
909 out:
910 	return ret < 0 ? ret : 0;
911 }
912 
913 static int cxgb4vf_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
914 {
915 	struct port_info *pi = netdev_priv(netdev);
916 	struct adapter *adapter = pi->adapter;
917 	int ret;
918 	const u8 *maclist[1] = {mac_addr};
919 	struct hash_mac_addr *entry, *tmp;
920 
921 	/* If the MAC address to be removed is in the hash addr
922 	 * list, delete it from the list and update hash vector
923 	 */
924 	list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, list) {
925 		if (ether_addr_equal(entry->addr, mac_addr)) {
926 			list_del(&entry->list);
927 			kfree(entry);
928 			return cxgb4vf_set_addr_hash(pi);
929 		}
930 	}
931 
932 	ret = t4vf_free_mac_filt(adapter, pi->viid, 1, maclist, false);
933 	return ret < 0 ? -EINVAL : 0;
934 }
935 
936 /*
937  * Set RX properties of a port, such as promiscruity, address filters, and MTU.
938  * If @mtu is -1 it is left unchanged.
939  */
940 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
941 {
942 	struct port_info *pi = netdev_priv(dev);
943 
944 	__dev_uc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync);
945 	__dev_mc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync);
946 	return t4vf_set_rxmode(pi->adapter, pi->viid, -1,
947 			       (dev->flags & IFF_PROMISC) != 0,
948 			       (dev->flags & IFF_ALLMULTI) != 0,
949 			       1, -1, sleep_ok);
950 }
951 
952 /*
953  * Set the current receive modes on the device.
954  */
955 static void cxgb4vf_set_rxmode(struct net_device *dev)
956 {
957 	/* unfortunately we can't return errors to the stack */
958 	set_rxmode(dev, -1, false);
959 }
960 
961 /*
962  * Find the entry in the interrupt holdoff timer value array which comes
963  * closest to the specified interrupt holdoff value.
964  */
965 static int closest_timer(const struct sge *s, int us)
966 {
967 	int i, timer_idx = 0, min_delta = INT_MAX;
968 
969 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
970 		int delta = us - s->timer_val[i];
971 		if (delta < 0)
972 			delta = -delta;
973 		if (delta < min_delta) {
974 			min_delta = delta;
975 			timer_idx = i;
976 		}
977 	}
978 	return timer_idx;
979 }
980 
981 static int closest_thres(const struct sge *s, int thres)
982 {
983 	int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
984 
985 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
986 		delta = thres - s->counter_val[i];
987 		if (delta < 0)
988 			delta = -delta;
989 		if (delta < min_delta) {
990 			min_delta = delta;
991 			pktcnt_idx = i;
992 		}
993 	}
994 	return pktcnt_idx;
995 }
996 
997 /*
998  * Return a queue's interrupt hold-off time in us.  0 means no timer.
999  */
1000 static unsigned int qtimer_val(const struct adapter *adapter,
1001 			       const struct sge_rspq *rspq)
1002 {
1003 	unsigned int timer_idx = QINTR_TIMER_IDX_G(rspq->intr_params);
1004 
1005 	return timer_idx < SGE_NTIMERS
1006 		? adapter->sge.timer_val[timer_idx]
1007 		: 0;
1008 }
1009 
1010 /**
1011  *	set_rxq_intr_params - set a queue's interrupt holdoff parameters
1012  *	@adapter: the adapter
1013  *	@rspq: the RX response queue
1014  *	@us: the hold-off time in us, or 0 to disable timer
1015  *	@cnt: the hold-off packet count, or 0 to disable counter
1016  *
1017  *	Sets an RX response queue's interrupt hold-off time and packet count.
1018  *	At least one of the two needs to be enabled for the queue to generate
1019  *	interrupts.
1020  */
1021 static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
1022 			       unsigned int us, unsigned int cnt)
1023 {
1024 	unsigned int timer_idx;
1025 
1026 	/*
1027 	 * If both the interrupt holdoff timer and count are specified as
1028 	 * zero, default to a holdoff count of 1 ...
1029 	 */
1030 	if ((us | cnt) == 0)
1031 		cnt = 1;
1032 
1033 	/*
1034 	 * If an interrupt holdoff count has been specified, then find the
1035 	 * closest configured holdoff count and use that.  If the response
1036 	 * queue has already been created, then update its queue context
1037 	 * parameters ...
1038 	 */
1039 	if (cnt) {
1040 		int err;
1041 		u32 v, pktcnt_idx;
1042 
1043 		pktcnt_idx = closest_thres(&adapter->sge, cnt);
1044 		if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1045 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1046 			    FW_PARAMS_PARAM_X_V(
1047 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1048 			    FW_PARAMS_PARAM_YZ_V(rspq->cntxt_id);
1049 			err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1050 			if (err)
1051 				return err;
1052 		}
1053 		rspq->pktcnt_idx = pktcnt_idx;
1054 	}
1055 
1056 	/*
1057 	 * Compute the closest holdoff timer index from the supplied holdoff
1058 	 * timer value.
1059 	 */
1060 	timer_idx = (us == 0
1061 		     ? SGE_TIMER_RSTRT_CNTR
1062 		     : closest_timer(&adapter->sge, us));
1063 
1064 	/*
1065 	 * Update the response queue's interrupt coalescing parameters and
1066 	 * return success.
1067 	 */
1068 	rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) |
1069 			     QINTR_CNT_EN_V(cnt > 0));
1070 	return 0;
1071 }
1072 
1073 /*
1074  * Return a version number to identify the type of adapter.  The scheme is:
1075  * - bits 0..9: chip version
1076  * - bits 10..15: chip revision
1077  */
1078 static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1079 {
1080 	/*
1081 	 * Chip version 4, revision 0x3f (cxgb4vf).
1082 	 */
1083 	return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10);
1084 }
1085 
1086 /*
1087  * Execute the specified ioctl command.
1088  */
1089 static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1090 {
1091 	int ret = 0;
1092 
1093 	switch (cmd) {
1094 	    /*
1095 	     * The VF Driver doesn't have access to any of the other
1096 	     * common Ethernet device ioctl()'s (like reading/writing
1097 	     * PHY registers, etc.
1098 	     */
1099 
1100 	default:
1101 		ret = -EOPNOTSUPP;
1102 		break;
1103 	}
1104 	return ret;
1105 }
1106 
1107 /*
1108  * Change the device's MTU.
1109  */
1110 static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1111 {
1112 	int ret;
1113 	struct port_info *pi = netdev_priv(dev);
1114 
1115 	ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1116 			      -1, -1, -1, -1, true);
1117 	if (!ret)
1118 		dev->mtu = new_mtu;
1119 	return ret;
1120 }
1121 
1122 static netdev_features_t cxgb4vf_fix_features(struct net_device *dev,
1123 	netdev_features_t features)
1124 {
1125 	/*
1126 	 * Since there is no support for separate rx/tx vlan accel
1127 	 * enable/disable make sure tx flag is always in same state as rx.
1128 	 */
1129 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
1130 		features |= NETIF_F_HW_VLAN_CTAG_TX;
1131 	else
1132 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1133 
1134 	return features;
1135 }
1136 
1137 static int cxgb4vf_set_features(struct net_device *dev,
1138 	netdev_features_t features)
1139 {
1140 	struct port_info *pi = netdev_priv(dev);
1141 	netdev_features_t changed = dev->features ^ features;
1142 
1143 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1144 		t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1,
1145 				features & NETIF_F_HW_VLAN_CTAG_TX, 0);
1146 
1147 	return 0;
1148 }
1149 
1150 /*
1151  * Change the devices MAC address.
1152  */
1153 static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1154 {
1155 	int ret;
1156 	struct sockaddr *addr = _addr;
1157 	struct port_info *pi = netdev_priv(dev);
1158 
1159 	if (!is_valid_ether_addr(addr->sa_data))
1160 		return -EADDRNOTAVAIL;
1161 
1162 	ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt,
1163 			      addr->sa_data, true);
1164 	if (ret < 0)
1165 		return ret;
1166 
1167 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1168 	pi->xact_addr_filt = ret;
1169 	return 0;
1170 }
1171 
1172 #ifdef CONFIG_NET_POLL_CONTROLLER
1173 /*
1174  * Poll all of our receive queues.  This is called outside of normal interrupt
1175  * context.
1176  */
1177 static void cxgb4vf_poll_controller(struct net_device *dev)
1178 {
1179 	struct port_info *pi = netdev_priv(dev);
1180 	struct adapter *adapter = pi->adapter;
1181 
1182 	if (adapter->flags & USING_MSIX) {
1183 		struct sge_eth_rxq *rxq;
1184 		int nqsets;
1185 
1186 		rxq = &adapter->sge.ethrxq[pi->first_qset];
1187 		for (nqsets = pi->nqsets; nqsets; nqsets--) {
1188 			t4vf_sge_intr_msix(0, &rxq->rspq);
1189 			rxq++;
1190 		}
1191 	} else
1192 		t4vf_intr_handler(adapter)(0, adapter);
1193 }
1194 #endif
1195 
1196 /*
1197  * Ethtool operations.
1198  * ===================
1199  *
1200  * Note that we don't support any ethtool operations which change the physical
1201  * state of the port to which we're linked.
1202  */
1203 
1204 /**
1205  *	from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool
1206  *	@port_type: Firmware Port Type
1207  *	@mod_type: Firmware Module Type
1208  *
1209  *	Translate Firmware Port/Module type to Ethtool Port Type.
1210  */
1211 static int from_fw_port_mod_type(enum fw_port_type port_type,
1212 				 enum fw_port_module_type mod_type)
1213 {
1214 	if (port_type == FW_PORT_TYPE_BT_SGMII ||
1215 	    port_type == FW_PORT_TYPE_BT_XFI ||
1216 	    port_type == FW_PORT_TYPE_BT_XAUI) {
1217 		return PORT_TP;
1218 	} else if (port_type == FW_PORT_TYPE_FIBER_XFI ||
1219 		   port_type == FW_PORT_TYPE_FIBER_XAUI) {
1220 		return PORT_FIBRE;
1221 	} else if (port_type == FW_PORT_TYPE_SFP ||
1222 		   port_type == FW_PORT_TYPE_QSFP_10G ||
1223 		   port_type == FW_PORT_TYPE_QSA ||
1224 		   port_type == FW_PORT_TYPE_QSFP ||
1225 		   port_type == FW_PORT_TYPE_CR4_QSFP ||
1226 		   port_type == FW_PORT_TYPE_CR_QSFP ||
1227 		   port_type == FW_PORT_TYPE_CR2_QSFP ||
1228 		   port_type == FW_PORT_TYPE_SFP28) {
1229 		if (mod_type == FW_PORT_MOD_TYPE_LR ||
1230 		    mod_type == FW_PORT_MOD_TYPE_SR ||
1231 		    mod_type == FW_PORT_MOD_TYPE_ER ||
1232 		    mod_type == FW_PORT_MOD_TYPE_LRM)
1233 			return PORT_FIBRE;
1234 		else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
1235 			 mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
1236 			return PORT_DA;
1237 		else
1238 			return PORT_OTHER;
1239 	} else if (port_type == FW_PORT_TYPE_KR4_100G ||
1240 		   port_type == FW_PORT_TYPE_KR_SFP28 ||
1241 		   port_type == FW_PORT_TYPE_KR_XLAUI) {
1242 		return PORT_NONE;
1243 	}
1244 
1245 	return PORT_OTHER;
1246 }
1247 
1248 /**
1249  *	fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask
1250  *	@port_type: Firmware Port Type
1251  *	@fw_caps: Firmware Port Capabilities
1252  *	@link_mode_mask: ethtool Link Mode Mask
1253  *
1254  *	Translate a Firmware Port Capabilities specification to an ethtool
1255  *	Link Mode Mask.
1256  */
1257 static void fw_caps_to_lmm(enum fw_port_type port_type,
1258 			   unsigned int fw_caps,
1259 			   unsigned long *link_mode_mask)
1260 {
1261 	#define SET_LMM(__lmm_name) \
1262 		__set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \
1263 			  link_mode_mask)
1264 
1265 	#define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \
1266 		do { \
1267 			if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1268 				SET_LMM(__lmm_name); \
1269 		} while (0)
1270 
1271 	switch (port_type) {
1272 	case FW_PORT_TYPE_BT_SGMII:
1273 	case FW_PORT_TYPE_BT_XFI:
1274 	case FW_PORT_TYPE_BT_XAUI:
1275 		SET_LMM(TP);
1276 		FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full);
1277 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1278 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1279 		break;
1280 
1281 	case FW_PORT_TYPE_KX4:
1282 	case FW_PORT_TYPE_KX:
1283 		SET_LMM(Backplane);
1284 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1285 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
1286 		break;
1287 
1288 	case FW_PORT_TYPE_KR:
1289 		SET_LMM(Backplane);
1290 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1291 		break;
1292 
1293 	case FW_PORT_TYPE_BP_AP:
1294 		SET_LMM(Backplane);
1295 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1296 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
1297 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1298 		break;
1299 
1300 	case FW_PORT_TYPE_BP4_AP:
1301 		SET_LMM(Backplane);
1302 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1303 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
1304 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1305 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
1306 		break;
1307 
1308 	case FW_PORT_TYPE_FIBER_XFI:
1309 	case FW_PORT_TYPE_FIBER_XAUI:
1310 	case FW_PORT_TYPE_SFP:
1311 	case FW_PORT_TYPE_QSFP_10G:
1312 	case FW_PORT_TYPE_QSA:
1313 		SET_LMM(FIBRE);
1314 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1315 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1316 		break;
1317 
1318 	case FW_PORT_TYPE_BP40_BA:
1319 	case FW_PORT_TYPE_QSFP:
1320 		SET_LMM(FIBRE);
1321 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1322 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1323 		FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
1324 		break;
1325 
1326 	case FW_PORT_TYPE_CR_QSFP:
1327 	case FW_PORT_TYPE_SFP28:
1328 		SET_LMM(FIBRE);
1329 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1330 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1331 		FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
1332 		break;
1333 
1334 	case FW_PORT_TYPE_KR_SFP28:
1335 		SET_LMM(Backplane);
1336 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1337 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1338 		FW_CAPS_TO_LMM(SPEED_25G, 25000baseKR_Full);
1339 		break;
1340 
1341 	case FW_PORT_TYPE_KR_XLAUI:
1342 		SET_LMM(Backplane);
1343 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1344 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1345 		FW_CAPS_TO_LMM(SPEED_40G, 40000baseKR4_Full);
1346 		break;
1347 
1348 	case FW_PORT_TYPE_CR2_QSFP:
1349 		SET_LMM(FIBRE);
1350 		FW_CAPS_TO_LMM(SPEED_50G, 50000baseSR2_Full);
1351 		break;
1352 
1353 	case FW_PORT_TYPE_KR4_100G:
1354 	case FW_PORT_TYPE_CR4_QSFP:
1355 		SET_LMM(FIBRE);
1356 		FW_CAPS_TO_LMM(SPEED_1G,  1000baseT_Full);
1357 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseSR_Full);
1358 		FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
1359 		FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
1360 		FW_CAPS_TO_LMM(SPEED_50G, 50000baseCR2_Full);
1361 		FW_CAPS_TO_LMM(SPEED_100G, 100000baseCR4_Full);
1362 		break;
1363 
1364 	default:
1365 		break;
1366 	}
1367 
1368 	FW_CAPS_TO_LMM(ANEG, Autoneg);
1369 	FW_CAPS_TO_LMM(802_3_PAUSE, Pause);
1370 	FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause);
1371 
1372 	#undef FW_CAPS_TO_LMM
1373 	#undef SET_LMM
1374 }
1375 
1376 static int cxgb4vf_get_link_ksettings(struct net_device *dev,
1377 				  struct ethtool_link_ksettings *link_ksettings)
1378 {
1379 	struct port_info *pi = netdev_priv(dev);
1380 	struct ethtool_link_settings *base = &link_ksettings->base;
1381 
1382 	/* For the nonce, the Firmware doesn't send up Port State changes
1383 	 * when the Virtual Interface attached to the Port is down.  So
1384 	 * if it's down, let's grab any changes.
1385 	 */
1386 	if (!netif_running(dev))
1387 		(void)t4vf_update_port_info(pi);
1388 
1389 	ethtool_link_ksettings_zero_link_mode(link_ksettings, supported);
1390 	ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising);
1391 	ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising);
1392 
1393 	base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type);
1394 
1395 	if (pi->mdio_addr >= 0) {
1396 		base->phy_address = pi->mdio_addr;
1397 		base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII
1398 				      ? ETH_MDIO_SUPPORTS_C22
1399 				      : ETH_MDIO_SUPPORTS_C45);
1400 	} else {
1401 		base->phy_address = 255;
1402 		base->mdio_support = 0;
1403 	}
1404 
1405 	fw_caps_to_lmm(pi->port_type, pi->link_cfg.pcaps,
1406 		       link_ksettings->link_modes.supported);
1407 	fw_caps_to_lmm(pi->port_type, pi->link_cfg.acaps,
1408 		       link_ksettings->link_modes.advertising);
1409 	fw_caps_to_lmm(pi->port_type, pi->link_cfg.lpacaps,
1410 		       link_ksettings->link_modes.lp_advertising);
1411 
1412 	if (netif_carrier_ok(dev)) {
1413 		base->speed = pi->link_cfg.speed;
1414 		base->duplex = DUPLEX_FULL;
1415 	} else {
1416 		base->speed = SPEED_UNKNOWN;
1417 		base->duplex = DUPLEX_UNKNOWN;
1418 	}
1419 
1420 	if (pi->link_cfg.fc & PAUSE_RX) {
1421 		if (pi->link_cfg.fc & PAUSE_TX) {
1422 			ethtool_link_ksettings_add_link_mode(link_ksettings,
1423 							     advertising,
1424 							     Pause);
1425 		} else {
1426 			ethtool_link_ksettings_add_link_mode(link_ksettings,
1427 							     advertising,
1428 							     Asym_Pause);
1429 		}
1430 	} else if (pi->link_cfg.fc & PAUSE_TX) {
1431 		ethtool_link_ksettings_add_link_mode(link_ksettings,
1432 						     advertising,
1433 						     Asym_Pause);
1434 	}
1435 
1436 	base->autoneg = pi->link_cfg.autoneg;
1437 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG)
1438 		ethtool_link_ksettings_add_link_mode(link_ksettings,
1439 						     supported, Autoneg);
1440 	if (pi->link_cfg.autoneg)
1441 		ethtool_link_ksettings_add_link_mode(link_ksettings,
1442 						     advertising, Autoneg);
1443 
1444 	return 0;
1445 }
1446 
1447 /* Translate the Firmware FEC value into the ethtool value. */
1448 static inline unsigned int fwcap_to_eth_fec(unsigned int fw_fec)
1449 {
1450 	unsigned int eth_fec = 0;
1451 
1452 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
1453 		eth_fec |= ETHTOOL_FEC_RS;
1454 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
1455 		eth_fec |= ETHTOOL_FEC_BASER;
1456 
1457 	/* if nothing is set, then FEC is off */
1458 	if (!eth_fec)
1459 		eth_fec = ETHTOOL_FEC_OFF;
1460 
1461 	return eth_fec;
1462 }
1463 
1464 /* Translate Common Code FEC value into ethtool value. */
1465 static inline unsigned int cc_to_eth_fec(unsigned int cc_fec)
1466 {
1467 	unsigned int eth_fec = 0;
1468 
1469 	if (cc_fec & FEC_AUTO)
1470 		eth_fec |= ETHTOOL_FEC_AUTO;
1471 	if (cc_fec & FEC_RS)
1472 		eth_fec |= ETHTOOL_FEC_RS;
1473 	if (cc_fec & FEC_BASER_RS)
1474 		eth_fec |= ETHTOOL_FEC_BASER;
1475 
1476 	/* if nothing is set, then FEC is off */
1477 	if (!eth_fec)
1478 		eth_fec = ETHTOOL_FEC_OFF;
1479 
1480 	return eth_fec;
1481 }
1482 
1483 static int cxgb4vf_get_fecparam(struct net_device *dev,
1484 				struct ethtool_fecparam *fec)
1485 {
1486 	const struct port_info *pi = netdev_priv(dev);
1487 	const struct link_config *lc = &pi->link_cfg;
1488 
1489 	/* Translate the Firmware FEC Support into the ethtool value.  We
1490 	 * always support IEEE 802.3 "automatic" selection of Link FEC type if
1491 	 * any FEC is supported.
1492 	 */
1493 	fec->fec = fwcap_to_eth_fec(lc->pcaps);
1494 	if (fec->fec != ETHTOOL_FEC_OFF)
1495 		fec->fec |= ETHTOOL_FEC_AUTO;
1496 
1497 	/* Translate the current internal FEC parameters into the
1498 	 * ethtool values.
1499 	 */
1500 	fec->active_fec = cc_to_eth_fec(lc->fec);
1501 	return 0;
1502 }
1503 
1504 /*
1505  * Return our driver information.
1506  */
1507 static void cxgb4vf_get_drvinfo(struct net_device *dev,
1508 				struct ethtool_drvinfo *drvinfo)
1509 {
1510 	struct adapter *adapter = netdev2adap(dev);
1511 
1512 	strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver));
1513 	strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version));
1514 	strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)),
1515 		sizeof(drvinfo->bus_info));
1516 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1517 		 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1518 		 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.fwrev),
1519 		 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.fwrev),
1520 		 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.fwrev),
1521 		 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.fwrev),
1522 		 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.tprev),
1523 		 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.tprev),
1524 		 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.tprev),
1525 		 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.tprev));
1526 }
1527 
1528 /*
1529  * Return current adapter message level.
1530  */
1531 static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1532 {
1533 	return netdev2adap(dev)->msg_enable;
1534 }
1535 
1536 /*
1537  * Set current adapter message level.
1538  */
1539 static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1540 {
1541 	netdev2adap(dev)->msg_enable = msglevel;
1542 }
1543 
1544 /*
1545  * Return the device's current Queue Set ring size parameters along with the
1546  * allowed maximum values.  Since ethtool doesn't understand the concept of
1547  * multi-queue devices, we just return the current values associated with the
1548  * first Queue Set.
1549  */
1550 static void cxgb4vf_get_ringparam(struct net_device *dev,
1551 				  struct ethtool_ringparam *rp)
1552 {
1553 	const struct port_info *pi = netdev_priv(dev);
1554 	const struct sge *s = &pi->adapter->sge;
1555 
1556 	rp->rx_max_pending = MAX_RX_BUFFERS;
1557 	rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1558 	rp->rx_jumbo_max_pending = 0;
1559 	rp->tx_max_pending = MAX_TXQ_ENTRIES;
1560 
1561 	rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1562 	rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1563 	rp->rx_jumbo_pending = 0;
1564 	rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1565 }
1566 
1567 /*
1568  * Set the Queue Set ring size parameters for the device.  Again, since
1569  * ethtool doesn't allow for the concept of multiple queues per device, we'll
1570  * apply these new values across all of the Queue Sets associated with the
1571  * device -- after vetting them of course!
1572  */
1573 static int cxgb4vf_set_ringparam(struct net_device *dev,
1574 				 struct ethtool_ringparam *rp)
1575 {
1576 	const struct port_info *pi = netdev_priv(dev);
1577 	struct adapter *adapter = pi->adapter;
1578 	struct sge *s = &adapter->sge;
1579 	int qs;
1580 
1581 	if (rp->rx_pending > MAX_RX_BUFFERS ||
1582 	    rp->rx_jumbo_pending ||
1583 	    rp->tx_pending > MAX_TXQ_ENTRIES ||
1584 	    rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1585 	    rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1586 	    rp->rx_pending < MIN_FL_ENTRIES ||
1587 	    rp->tx_pending < MIN_TXQ_ENTRIES)
1588 		return -EINVAL;
1589 
1590 	if (adapter->flags & FULL_INIT_DONE)
1591 		return -EBUSY;
1592 
1593 	for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1594 		s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1595 		s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1596 		s->ethtxq[qs].q.size = rp->tx_pending;
1597 	}
1598 	return 0;
1599 }
1600 
1601 /*
1602  * Return the interrupt holdoff timer and count for the first Queue Set on the
1603  * device.  Our extension ioctl() (the cxgbtool interface) allows the
1604  * interrupt holdoff timer to be read on all of the device's Queue Sets.
1605  */
1606 static int cxgb4vf_get_coalesce(struct net_device *dev,
1607 				struct ethtool_coalesce *coalesce)
1608 {
1609 	const struct port_info *pi = netdev_priv(dev);
1610 	const struct adapter *adapter = pi->adapter;
1611 	const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1612 
1613 	coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1614 	coalesce->rx_max_coalesced_frames =
1615 		((rspq->intr_params & QINTR_CNT_EN_F)
1616 		 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1617 		 : 0);
1618 	return 0;
1619 }
1620 
1621 /*
1622  * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1623  * interface.  Our extension ioctl() (the cxgbtool interface) allows us to set
1624  * the interrupt holdoff timer on any of the device's Queue Sets.
1625  */
1626 static int cxgb4vf_set_coalesce(struct net_device *dev,
1627 				struct ethtool_coalesce *coalesce)
1628 {
1629 	const struct port_info *pi = netdev_priv(dev);
1630 	struct adapter *adapter = pi->adapter;
1631 
1632 	return set_rxq_intr_params(adapter,
1633 				   &adapter->sge.ethrxq[pi->first_qset].rspq,
1634 				   coalesce->rx_coalesce_usecs,
1635 				   coalesce->rx_max_coalesced_frames);
1636 }
1637 
1638 /*
1639  * Report current port link pause parameter settings.
1640  */
1641 static void cxgb4vf_get_pauseparam(struct net_device *dev,
1642 				   struct ethtool_pauseparam *pauseparam)
1643 {
1644 	struct port_info *pi = netdev_priv(dev);
1645 
1646 	pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1647 	pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0;
1648 	pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0;
1649 }
1650 
1651 /*
1652  * Identify the port by blinking the port's LED.
1653  */
1654 static int cxgb4vf_phys_id(struct net_device *dev,
1655 			   enum ethtool_phys_id_state state)
1656 {
1657 	unsigned int val;
1658 	struct port_info *pi = netdev_priv(dev);
1659 
1660 	if (state == ETHTOOL_ID_ACTIVE)
1661 		val = 0xffff;
1662 	else if (state == ETHTOOL_ID_INACTIVE)
1663 		val = 0;
1664 	else
1665 		return -EINVAL;
1666 
1667 	return t4vf_identify_port(pi->adapter, pi->viid, val);
1668 }
1669 
1670 /*
1671  * Port stats maintained per queue of the port.
1672  */
1673 struct queue_port_stats {
1674 	u64 tso;
1675 	u64 tx_csum;
1676 	u64 rx_csum;
1677 	u64 vlan_ex;
1678 	u64 vlan_ins;
1679 	u64 lro_pkts;
1680 	u64 lro_merged;
1681 };
1682 
1683 /*
1684  * Strings for the ETH_SS_STATS statistics set ("ethtool -S").  Note that
1685  * these need to match the order of statistics returned by
1686  * t4vf_get_port_stats().
1687  */
1688 static const char stats_strings[][ETH_GSTRING_LEN] = {
1689 	/*
1690 	 * These must match the layout of the t4vf_port_stats structure.
1691 	 */
1692 	"TxBroadcastBytes  ",
1693 	"TxBroadcastFrames ",
1694 	"TxMulticastBytes  ",
1695 	"TxMulticastFrames ",
1696 	"TxUnicastBytes    ",
1697 	"TxUnicastFrames   ",
1698 	"TxDroppedFrames   ",
1699 	"TxOffloadBytes    ",
1700 	"TxOffloadFrames   ",
1701 	"RxBroadcastBytes  ",
1702 	"RxBroadcastFrames ",
1703 	"RxMulticastBytes  ",
1704 	"RxMulticastFrames ",
1705 	"RxUnicastBytes    ",
1706 	"RxUnicastFrames   ",
1707 	"RxErrorFrames     ",
1708 
1709 	/*
1710 	 * These are accumulated per-queue statistics and must match the
1711 	 * order of the fields in the queue_port_stats structure.
1712 	 */
1713 	"TSO               ",
1714 	"TxCsumOffload     ",
1715 	"RxCsumGood        ",
1716 	"VLANextractions   ",
1717 	"VLANinsertions    ",
1718 	"GROPackets        ",
1719 	"GROMerged         ",
1720 };
1721 
1722 /*
1723  * Return the number of statistics in the specified statistics set.
1724  */
1725 static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1726 {
1727 	switch (sset) {
1728 	case ETH_SS_STATS:
1729 		return ARRAY_SIZE(stats_strings);
1730 	default:
1731 		return -EOPNOTSUPP;
1732 	}
1733 	/*NOTREACHED*/
1734 }
1735 
1736 /*
1737  * Return the strings for the specified statistics set.
1738  */
1739 static void cxgb4vf_get_strings(struct net_device *dev,
1740 				u32 sset,
1741 				u8 *data)
1742 {
1743 	switch (sset) {
1744 	case ETH_SS_STATS:
1745 		memcpy(data, stats_strings, sizeof(stats_strings));
1746 		break;
1747 	}
1748 }
1749 
1750 /*
1751  * Small utility routine to accumulate queue statistics across the queues of
1752  * a "port".
1753  */
1754 static void collect_sge_port_stats(const struct adapter *adapter,
1755 				   const struct port_info *pi,
1756 				   struct queue_port_stats *stats)
1757 {
1758 	const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1759 	const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1760 	int qs;
1761 
1762 	memset(stats, 0, sizeof(*stats));
1763 	for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1764 		stats->tso += txq->tso;
1765 		stats->tx_csum += txq->tx_cso;
1766 		stats->rx_csum += rxq->stats.rx_cso;
1767 		stats->vlan_ex += rxq->stats.vlan_ex;
1768 		stats->vlan_ins += txq->vlan_ins;
1769 		stats->lro_pkts += rxq->stats.lro_pkts;
1770 		stats->lro_merged += rxq->stats.lro_merged;
1771 	}
1772 }
1773 
1774 /*
1775  * Return the ETH_SS_STATS statistics set.
1776  */
1777 static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1778 				      struct ethtool_stats *stats,
1779 				      u64 *data)
1780 {
1781 	struct port_info *pi = netdev2pinfo(dev);
1782 	struct adapter *adapter = pi->adapter;
1783 	int err = t4vf_get_port_stats(adapter, pi->pidx,
1784 				      (struct t4vf_port_stats *)data);
1785 	if (err)
1786 		memset(data, 0, sizeof(struct t4vf_port_stats));
1787 
1788 	data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1789 	collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1790 }
1791 
1792 /*
1793  * Return the size of our register map.
1794  */
1795 static int cxgb4vf_get_regs_len(struct net_device *dev)
1796 {
1797 	return T4VF_REGMAP_SIZE;
1798 }
1799 
1800 /*
1801  * Dump a block of registers, start to end inclusive, into a buffer.
1802  */
1803 static void reg_block_dump(struct adapter *adapter, void *regbuf,
1804 			   unsigned int start, unsigned int end)
1805 {
1806 	u32 *bp = regbuf + start - T4VF_REGMAP_START;
1807 
1808 	for ( ; start <= end; start += sizeof(u32)) {
1809 		/*
1810 		 * Avoid reading the Mailbox Control register since that
1811 		 * can trigger a Mailbox Ownership Arbitration cycle and
1812 		 * interfere with communication with the firmware.
1813 		 */
1814 		if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1815 			*bp++ = 0xffff;
1816 		else
1817 			*bp++ = t4_read_reg(adapter, start);
1818 	}
1819 }
1820 
1821 /*
1822  * Copy our entire register map into the provided buffer.
1823  */
1824 static void cxgb4vf_get_regs(struct net_device *dev,
1825 			     struct ethtool_regs *regs,
1826 			     void *regbuf)
1827 {
1828 	struct adapter *adapter = netdev2adap(dev);
1829 
1830 	regs->version = mk_adap_vers(adapter);
1831 
1832 	/*
1833 	 * Fill in register buffer with our register map.
1834 	 */
1835 	memset(regbuf, 0, T4VF_REGMAP_SIZE);
1836 
1837 	reg_block_dump(adapter, regbuf,
1838 		       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1839 		       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1840 	reg_block_dump(adapter, regbuf,
1841 		       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1842 		       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1843 
1844 	/* T5 adds new registers in the PL Register map.
1845 	 */
1846 	reg_block_dump(adapter, regbuf,
1847 		       T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1848 		       T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip)
1849 		       ? PL_VF_WHOAMI_A : PL_VF_REVISION_A));
1850 	reg_block_dump(adapter, regbuf,
1851 		       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1852 		       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1853 
1854 	reg_block_dump(adapter, regbuf,
1855 		       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1856 		       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1857 }
1858 
1859 /*
1860  * Report current Wake On LAN settings.
1861  */
1862 static void cxgb4vf_get_wol(struct net_device *dev,
1863 			    struct ethtool_wolinfo *wol)
1864 {
1865 	wol->supported = 0;
1866 	wol->wolopts = 0;
1867 	memset(&wol->sopass, 0, sizeof(wol->sopass));
1868 }
1869 
1870 /*
1871  * TCP Segmentation Offload flags which we support.
1872  */
1873 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1874 
1875 static const struct ethtool_ops cxgb4vf_ethtool_ops = {
1876 	.get_link_ksettings	= cxgb4vf_get_link_ksettings,
1877 	.get_fecparam		= cxgb4vf_get_fecparam,
1878 	.get_drvinfo		= cxgb4vf_get_drvinfo,
1879 	.get_msglevel		= cxgb4vf_get_msglevel,
1880 	.set_msglevel		= cxgb4vf_set_msglevel,
1881 	.get_ringparam		= cxgb4vf_get_ringparam,
1882 	.set_ringparam		= cxgb4vf_set_ringparam,
1883 	.get_coalesce		= cxgb4vf_get_coalesce,
1884 	.set_coalesce		= cxgb4vf_set_coalesce,
1885 	.get_pauseparam		= cxgb4vf_get_pauseparam,
1886 	.get_link		= ethtool_op_get_link,
1887 	.get_strings		= cxgb4vf_get_strings,
1888 	.set_phys_id		= cxgb4vf_phys_id,
1889 	.get_sset_count		= cxgb4vf_get_sset_count,
1890 	.get_ethtool_stats	= cxgb4vf_get_ethtool_stats,
1891 	.get_regs_len		= cxgb4vf_get_regs_len,
1892 	.get_regs		= cxgb4vf_get_regs,
1893 	.get_wol		= cxgb4vf_get_wol,
1894 };
1895 
1896 /*
1897  * /sys/kernel/debug/cxgb4vf support code and data.
1898  * ================================================
1899  */
1900 
1901 /*
1902  * Show Firmware Mailbox Command/Reply Log
1903  *
1904  * Note that we don't do any locking when dumping the Firmware Mailbox Log so
1905  * it's possible that we can catch things during a log update and therefore
1906  * see partially corrupted log entries.  But i9t's probably Good Enough(tm).
1907  * If we ever decide that we want to make sure that we're dumping a coherent
1908  * log, we'd need to perform locking in the mailbox logging and in
1909  * mboxlog_open() where we'd need to grab the entire mailbox log in one go
1910  * like we do for the Firmware Device Log.  But as stated above, meh ...
1911  */
1912 static int mboxlog_show(struct seq_file *seq, void *v)
1913 {
1914 	struct adapter *adapter = seq->private;
1915 	struct mbox_cmd_log *log = adapter->mbox_log;
1916 	struct mbox_cmd *entry;
1917 	int entry_idx, i;
1918 
1919 	if (v == SEQ_START_TOKEN) {
1920 		seq_printf(seq,
1921 			   "%10s  %15s  %5s  %5s  %s\n",
1922 			   "Seq#", "Tstamp", "Atime", "Etime",
1923 			   "Command/Reply");
1924 		return 0;
1925 	}
1926 
1927 	entry_idx = log->cursor + ((uintptr_t)v - 2);
1928 	if (entry_idx >= log->size)
1929 		entry_idx -= log->size;
1930 	entry = mbox_cmd_log_entry(log, entry_idx);
1931 
1932 	/* skip over unused entries */
1933 	if (entry->timestamp == 0)
1934 		return 0;
1935 
1936 	seq_printf(seq, "%10u  %15llu  %5d  %5d",
1937 		   entry->seqno, entry->timestamp,
1938 		   entry->access, entry->execute);
1939 	for (i = 0; i < MBOX_LEN / 8; i++) {
1940 		u64 flit = entry->cmd[i];
1941 		u32 hi = (u32)(flit >> 32);
1942 		u32 lo = (u32)flit;
1943 
1944 		seq_printf(seq, "  %08x %08x", hi, lo);
1945 	}
1946 	seq_puts(seq, "\n");
1947 	return 0;
1948 }
1949 
1950 static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos)
1951 {
1952 	struct adapter *adapter = seq->private;
1953 	struct mbox_cmd_log *log = adapter->mbox_log;
1954 
1955 	return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL);
1956 }
1957 
1958 static void *mboxlog_start(struct seq_file *seq, loff_t *pos)
1959 {
1960 	return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN;
1961 }
1962 
1963 static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos)
1964 {
1965 	++*pos;
1966 	return mboxlog_get_idx(seq, *pos);
1967 }
1968 
1969 static void mboxlog_stop(struct seq_file *seq, void *v)
1970 {
1971 }
1972 
1973 static const struct seq_operations mboxlog_seq_ops = {
1974 	.start = mboxlog_start,
1975 	.next  = mboxlog_next,
1976 	.stop  = mboxlog_stop,
1977 	.show  = mboxlog_show
1978 };
1979 
1980 static int mboxlog_open(struct inode *inode, struct file *file)
1981 {
1982 	int res = seq_open(file, &mboxlog_seq_ops);
1983 
1984 	if (!res) {
1985 		struct seq_file *seq = file->private_data;
1986 
1987 		seq->private = inode->i_private;
1988 	}
1989 	return res;
1990 }
1991 
1992 static const struct file_operations mboxlog_fops = {
1993 	.owner   = THIS_MODULE,
1994 	.open    = mboxlog_open,
1995 	.read    = seq_read,
1996 	.llseek  = seq_lseek,
1997 	.release = seq_release,
1998 };
1999 
2000 /*
2001  * Show SGE Queue Set information.  We display QPL Queues Sets per line.
2002  */
2003 #define QPL	4
2004 
2005 static int sge_qinfo_show(struct seq_file *seq, void *v)
2006 {
2007 	struct adapter *adapter = seq->private;
2008 	int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
2009 	int qs, r = (uintptr_t)v - 1;
2010 
2011 	if (r)
2012 		seq_putc(seq, '\n');
2013 
2014 	#define S3(fmt_spec, s, v) \
2015 		do {\
2016 			seq_printf(seq, "%-12s", s); \
2017 			for (qs = 0; qs < n; ++qs) \
2018 				seq_printf(seq, " %16" fmt_spec, v); \
2019 			seq_putc(seq, '\n'); \
2020 		} while (0)
2021 	#define S(s, v)		S3("s", s, v)
2022 	#define T(s, v)		S3("u", s, txq[qs].v)
2023 	#define R(s, v)		S3("u", s, rxq[qs].v)
2024 
2025 	if (r < eth_entries) {
2026 		const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
2027 		const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
2028 		int n = min(QPL, adapter->sge.ethqsets - QPL * r);
2029 
2030 		S("QType:", "Ethernet");
2031 		S("Interface:",
2032 		  (rxq[qs].rspq.netdev
2033 		   ? rxq[qs].rspq.netdev->name
2034 		   : "N/A"));
2035 		S3("d", "Port:",
2036 		   (rxq[qs].rspq.netdev
2037 		    ? ((struct port_info *)
2038 		       netdev_priv(rxq[qs].rspq.netdev))->port_id
2039 		    : -1));
2040 		T("TxQ ID:", q.abs_id);
2041 		T("TxQ size:", q.size);
2042 		T("TxQ inuse:", q.in_use);
2043 		T("TxQ PIdx:", q.pidx);
2044 		T("TxQ CIdx:", q.cidx);
2045 		R("RspQ ID:", rspq.abs_id);
2046 		R("RspQ size:", rspq.size);
2047 		R("RspQE size:", rspq.iqe_len);
2048 		S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
2049 		S3("u", "Intr pktcnt:",
2050 		   adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
2051 		R("RspQ CIdx:", rspq.cidx);
2052 		R("RspQ Gen:", rspq.gen);
2053 		R("FL ID:", fl.abs_id);
2054 		R("FL size:", fl.size - MIN_FL_RESID);
2055 		R("FL avail:", fl.avail);
2056 		R("FL PIdx:", fl.pidx);
2057 		R("FL CIdx:", fl.cidx);
2058 		return 0;
2059 	}
2060 
2061 	r -= eth_entries;
2062 	if (r == 0) {
2063 		const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
2064 
2065 		seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
2066 		seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
2067 		seq_printf(seq, "%-12s %16u\n", "Intr delay:",
2068 			   qtimer_val(adapter, evtq));
2069 		seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
2070 			   adapter->sge.counter_val[evtq->pktcnt_idx]);
2071 		seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
2072 		seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
2073 	} else if (r == 1) {
2074 		const struct sge_rspq *intrq = &adapter->sge.intrq;
2075 
2076 		seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
2077 		seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
2078 		seq_printf(seq, "%-12s %16u\n", "Intr delay:",
2079 			   qtimer_val(adapter, intrq));
2080 		seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
2081 			   adapter->sge.counter_val[intrq->pktcnt_idx]);
2082 		seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
2083 		seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
2084 	}
2085 
2086 	#undef R
2087 	#undef T
2088 	#undef S
2089 	#undef S3
2090 
2091 	return 0;
2092 }
2093 
2094 /*
2095  * Return the number of "entries" in our "file".  We group the multi-Queue
2096  * sections with QPL Queue Sets per "entry".  The sections of the output are:
2097  *
2098  *     Ethernet RX/TX Queue Sets
2099  *     Firmware Event Queue
2100  *     Forwarded Interrupt Queue (if in MSI mode)
2101  */
2102 static int sge_queue_entries(const struct adapter *adapter)
2103 {
2104 	return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
2105 		((adapter->flags & USING_MSI) != 0);
2106 }
2107 
2108 static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
2109 {
2110 	int entries = sge_queue_entries(seq->private);
2111 
2112 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2113 }
2114 
2115 static void sge_queue_stop(struct seq_file *seq, void *v)
2116 {
2117 }
2118 
2119 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
2120 {
2121 	int entries = sge_queue_entries(seq->private);
2122 
2123 	++*pos;
2124 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2125 }
2126 
2127 static const struct seq_operations sge_qinfo_seq_ops = {
2128 	.start = sge_queue_start,
2129 	.next  = sge_queue_next,
2130 	.stop  = sge_queue_stop,
2131 	.show  = sge_qinfo_show
2132 };
2133 
2134 static int sge_qinfo_open(struct inode *inode, struct file *file)
2135 {
2136 	int res = seq_open(file, &sge_qinfo_seq_ops);
2137 
2138 	if (!res) {
2139 		struct seq_file *seq = file->private_data;
2140 		seq->private = inode->i_private;
2141 	}
2142 	return res;
2143 }
2144 
2145 static const struct file_operations sge_qinfo_debugfs_fops = {
2146 	.owner   = THIS_MODULE,
2147 	.open    = sge_qinfo_open,
2148 	.read    = seq_read,
2149 	.llseek  = seq_lseek,
2150 	.release = seq_release,
2151 };
2152 
2153 /*
2154  * Show SGE Queue Set statistics.  We display QPL Queues Sets per line.
2155  */
2156 #define QPL	4
2157 
2158 static int sge_qstats_show(struct seq_file *seq, void *v)
2159 {
2160 	struct adapter *adapter = seq->private;
2161 	int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
2162 	int qs, r = (uintptr_t)v - 1;
2163 
2164 	if (r)
2165 		seq_putc(seq, '\n');
2166 
2167 	#define S3(fmt, s, v) \
2168 		do { \
2169 			seq_printf(seq, "%-16s", s); \
2170 			for (qs = 0; qs < n; ++qs) \
2171 				seq_printf(seq, " %8" fmt, v); \
2172 			seq_putc(seq, '\n'); \
2173 		} while (0)
2174 	#define S(s, v)		S3("s", s, v)
2175 
2176 	#define T3(fmt, s, v)	S3(fmt, s, txq[qs].v)
2177 	#define T(s, v)		T3("lu", s, v)
2178 
2179 	#define R3(fmt, s, v)	S3(fmt, s, rxq[qs].v)
2180 	#define R(s, v)		R3("lu", s, v)
2181 
2182 	if (r < eth_entries) {
2183 		const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
2184 		const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
2185 		int n = min(QPL, adapter->sge.ethqsets - QPL * r);
2186 
2187 		S("QType:", "Ethernet");
2188 		S("Interface:",
2189 		  (rxq[qs].rspq.netdev
2190 		   ? rxq[qs].rspq.netdev->name
2191 		   : "N/A"));
2192 		R3("u", "RspQNullInts:", rspq.unhandled_irqs);
2193 		R("RxPackets:", stats.pkts);
2194 		R("RxCSO:", stats.rx_cso);
2195 		R("VLANxtract:", stats.vlan_ex);
2196 		R("LROmerged:", stats.lro_merged);
2197 		R("LROpackets:", stats.lro_pkts);
2198 		R("RxDrops:", stats.rx_drops);
2199 		T("TSO:", tso);
2200 		T("TxCSO:", tx_cso);
2201 		T("VLANins:", vlan_ins);
2202 		T("TxQFull:", q.stops);
2203 		T("TxQRestarts:", q.restarts);
2204 		T("TxMapErr:", mapping_err);
2205 		R("FLAllocErr:", fl.alloc_failed);
2206 		R("FLLrgAlcErr:", fl.large_alloc_failed);
2207 		R("FLStarving:", fl.starving);
2208 		return 0;
2209 	}
2210 
2211 	r -= eth_entries;
2212 	if (r == 0) {
2213 		const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
2214 
2215 		seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
2216 		seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
2217 			   evtq->unhandled_irqs);
2218 		seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
2219 		seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
2220 	} else if (r == 1) {
2221 		const struct sge_rspq *intrq = &adapter->sge.intrq;
2222 
2223 		seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
2224 		seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
2225 			   intrq->unhandled_irqs);
2226 		seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
2227 		seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
2228 	}
2229 
2230 	#undef R
2231 	#undef T
2232 	#undef S
2233 	#undef R3
2234 	#undef T3
2235 	#undef S3
2236 
2237 	return 0;
2238 }
2239 
2240 /*
2241  * Return the number of "entries" in our "file".  We group the multi-Queue
2242  * sections with QPL Queue Sets per "entry".  The sections of the output are:
2243  *
2244  *     Ethernet RX/TX Queue Sets
2245  *     Firmware Event Queue
2246  *     Forwarded Interrupt Queue (if in MSI mode)
2247  */
2248 static int sge_qstats_entries(const struct adapter *adapter)
2249 {
2250 	return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
2251 		((adapter->flags & USING_MSI) != 0);
2252 }
2253 
2254 static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
2255 {
2256 	int entries = sge_qstats_entries(seq->private);
2257 
2258 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2259 }
2260 
2261 static void sge_qstats_stop(struct seq_file *seq, void *v)
2262 {
2263 }
2264 
2265 static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
2266 {
2267 	int entries = sge_qstats_entries(seq->private);
2268 
2269 	(*pos)++;
2270 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2271 }
2272 
2273 static const struct seq_operations sge_qstats_seq_ops = {
2274 	.start = sge_qstats_start,
2275 	.next  = sge_qstats_next,
2276 	.stop  = sge_qstats_stop,
2277 	.show  = sge_qstats_show
2278 };
2279 
2280 static int sge_qstats_open(struct inode *inode, struct file *file)
2281 {
2282 	int res = seq_open(file, &sge_qstats_seq_ops);
2283 
2284 	if (res == 0) {
2285 		struct seq_file *seq = file->private_data;
2286 		seq->private = inode->i_private;
2287 	}
2288 	return res;
2289 }
2290 
2291 static const struct file_operations sge_qstats_proc_fops = {
2292 	.owner   = THIS_MODULE,
2293 	.open    = sge_qstats_open,
2294 	.read    = seq_read,
2295 	.llseek  = seq_lseek,
2296 	.release = seq_release,
2297 };
2298 
2299 /*
2300  * Show PCI-E SR-IOV Virtual Function Resource Limits.
2301  */
2302 static int resources_show(struct seq_file *seq, void *v)
2303 {
2304 	struct adapter *adapter = seq->private;
2305 	struct vf_resources *vfres = &adapter->params.vfres;
2306 
2307 	#define S(desc, fmt, var) \
2308 		seq_printf(seq, "%-60s " fmt "\n", \
2309 			   desc " (" #var "):", vfres->var)
2310 
2311 	S("Virtual Interfaces", "%d", nvi);
2312 	S("Egress Queues", "%d", neq);
2313 	S("Ethernet Control", "%d", nethctrl);
2314 	S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
2315 	S("Ingress Queues", "%d", niq);
2316 	S("Traffic Class", "%d", tc);
2317 	S("Port Access Rights Mask", "%#x", pmask);
2318 	S("MAC Address Filters", "%d", nexactf);
2319 	S("Firmware Command Read Capabilities", "%#x", r_caps);
2320 	S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
2321 
2322 	#undef S
2323 
2324 	return 0;
2325 }
2326 DEFINE_SHOW_ATTRIBUTE(resources);
2327 
2328 /*
2329  * Show Virtual Interfaces.
2330  */
2331 static int interfaces_show(struct seq_file *seq, void *v)
2332 {
2333 	if (v == SEQ_START_TOKEN) {
2334 		seq_puts(seq, "Interface  Port   VIID\n");
2335 	} else {
2336 		struct adapter *adapter = seq->private;
2337 		int pidx = (uintptr_t)v - 2;
2338 		struct net_device *dev = adapter->port[pidx];
2339 		struct port_info *pi = netdev_priv(dev);
2340 
2341 		seq_printf(seq, "%9s  %4d  %#5x\n",
2342 			   dev->name, pi->port_id, pi->viid);
2343 	}
2344 	return 0;
2345 }
2346 
2347 static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
2348 {
2349 	return pos <= adapter->params.nports
2350 		? (void *)(uintptr_t)(pos + 1)
2351 		: NULL;
2352 }
2353 
2354 static void *interfaces_start(struct seq_file *seq, loff_t *pos)
2355 {
2356 	return *pos
2357 		? interfaces_get_idx(seq->private, *pos)
2358 		: SEQ_START_TOKEN;
2359 }
2360 
2361 static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
2362 {
2363 	(*pos)++;
2364 	return interfaces_get_idx(seq->private, *pos);
2365 }
2366 
2367 static void interfaces_stop(struct seq_file *seq, void *v)
2368 {
2369 }
2370 
2371 static const struct seq_operations interfaces_seq_ops = {
2372 	.start = interfaces_start,
2373 	.next  = interfaces_next,
2374 	.stop  = interfaces_stop,
2375 	.show  = interfaces_show
2376 };
2377 
2378 static int interfaces_open(struct inode *inode, struct file *file)
2379 {
2380 	int res = seq_open(file, &interfaces_seq_ops);
2381 
2382 	if (res == 0) {
2383 		struct seq_file *seq = file->private_data;
2384 		seq->private = inode->i_private;
2385 	}
2386 	return res;
2387 }
2388 
2389 static const struct file_operations interfaces_proc_fops = {
2390 	.owner   = THIS_MODULE,
2391 	.open    = interfaces_open,
2392 	.read    = seq_read,
2393 	.llseek  = seq_lseek,
2394 	.release = seq_release,
2395 };
2396 
2397 /*
2398  * /sys/kernel/debugfs/cxgb4vf/ files list.
2399  */
2400 struct cxgb4vf_debugfs_entry {
2401 	const char *name;		/* name of debugfs node */
2402 	umode_t mode;			/* file system mode */
2403 	const struct file_operations *fops;
2404 };
2405 
2406 static struct cxgb4vf_debugfs_entry debugfs_files[] = {
2407 	{ "mboxlog",    0444, &mboxlog_fops },
2408 	{ "sge_qinfo",  0444, &sge_qinfo_debugfs_fops },
2409 	{ "sge_qstats", 0444, &sge_qstats_proc_fops },
2410 	{ "resources",  0444, &resources_fops },
2411 	{ "interfaces", 0444, &interfaces_proc_fops },
2412 };
2413 
2414 /*
2415  * Module and device initialization and cleanup code.
2416  * ==================================================
2417  */
2418 
2419 /*
2420  * Set up out /sys/kernel/debug/cxgb4vf sub-nodes.  We assume that the
2421  * directory (debugfs_root) has already been set up.
2422  */
2423 static int setup_debugfs(struct adapter *adapter)
2424 {
2425 	int i;
2426 
2427 	BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2428 
2429 	/*
2430 	 * Debugfs support is best effort.
2431 	 */
2432 	for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2433 		(void)debugfs_create_file(debugfs_files[i].name,
2434 				  debugfs_files[i].mode,
2435 				  adapter->debugfs_root,
2436 				  (void *)adapter,
2437 				  debugfs_files[i].fops);
2438 
2439 	return 0;
2440 }
2441 
2442 /*
2443  * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above.  We leave
2444  * it to our caller to tear down the directory (debugfs_root).
2445  */
2446 static void cleanup_debugfs(struct adapter *adapter)
2447 {
2448 	BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2449 
2450 	/*
2451 	 * Unlike our sister routine cleanup_proc(), we don't need to remove
2452 	 * individual entries because a call will be made to
2453 	 * debugfs_remove_recursive().  We just need to clean up any ancillary
2454 	 * persistent state.
2455 	 */
2456 	/* nothing to do */
2457 }
2458 
2459 /* Figure out how many Ports and Queue Sets we can support.  This depends on
2460  * knowing our Virtual Function Resources and may be called a second time if
2461  * we fall back from MSI-X to MSI Interrupt Mode.
2462  */
2463 static void size_nports_qsets(struct adapter *adapter)
2464 {
2465 	struct vf_resources *vfres = &adapter->params.vfres;
2466 	unsigned int ethqsets, pmask_nports;
2467 
2468 	/* The number of "ports" which we support is equal to the number of
2469 	 * Virtual Interfaces with which we've been provisioned.
2470 	 */
2471 	adapter->params.nports = vfres->nvi;
2472 	if (adapter->params.nports > MAX_NPORTS) {
2473 		dev_warn(adapter->pdev_dev, "only using %d of %d maximum"
2474 			 " allowed virtual interfaces\n", MAX_NPORTS,
2475 			 adapter->params.nports);
2476 		adapter->params.nports = MAX_NPORTS;
2477 	}
2478 
2479 	/* We may have been provisioned with more VIs than the number of
2480 	 * ports we're allowed to access (our Port Access Rights Mask).
2481 	 * This is obviously a configuration conflict but we don't want to
2482 	 * crash the kernel or anything silly just because of that.
2483 	 */
2484 	pmask_nports = hweight32(adapter->params.vfres.pmask);
2485 	if (pmask_nports < adapter->params.nports) {
2486 		dev_warn(adapter->pdev_dev, "only using %d of %d provisioned"
2487 			 " virtual interfaces; limited by Port Access Rights"
2488 			 " mask %#x\n", pmask_nports, adapter->params.nports,
2489 			 adapter->params.vfres.pmask);
2490 		adapter->params.nports = pmask_nports;
2491 	}
2492 
2493 	/* We need to reserve an Ingress Queue for the Asynchronous Firmware
2494 	 * Event Queue.  And if we're using MSI Interrupts, we'll also need to
2495 	 * reserve an Ingress Queue for a Forwarded Interrupts.
2496 	 *
2497 	 * The rest of the FL/Intr-capable ingress queues will be matched up
2498 	 * one-for-one with Ethernet/Control egress queues in order to form
2499 	 * "Queue Sets" which will be aportioned between the "ports".  For
2500 	 * each Queue Set, we'll need the ability to allocate two Egress
2501 	 * Contexts -- one for the Ingress Queue Free List and one for the TX
2502 	 * Ethernet Queue.
2503 	 *
2504 	 * Note that even if we're currently configured to use MSI-X
2505 	 * Interrupts (module variable msi == MSI_MSIX) we may get downgraded
2506 	 * to MSI Interrupts if we can't get enough MSI-X Interrupts.  If that
2507 	 * happens we'll need to adjust things later.
2508 	 */
2509 	ethqsets = vfres->niqflint - 1 - (msi == MSI_MSI);
2510 	if (vfres->nethctrl != ethqsets)
2511 		ethqsets = min(vfres->nethctrl, ethqsets);
2512 	if (vfres->neq < ethqsets*2)
2513 		ethqsets = vfres->neq/2;
2514 	if (ethqsets > MAX_ETH_QSETS)
2515 		ethqsets = MAX_ETH_QSETS;
2516 	adapter->sge.max_ethqsets = ethqsets;
2517 
2518 	if (adapter->sge.max_ethqsets < adapter->params.nports) {
2519 		dev_warn(adapter->pdev_dev, "only using %d of %d available"
2520 			 " virtual interfaces (too few Queue Sets)\n",
2521 			 adapter->sge.max_ethqsets, adapter->params.nports);
2522 		adapter->params.nports = adapter->sge.max_ethqsets;
2523 	}
2524 }
2525 
2526 /*
2527  * Perform early "adapter" initialization.  This is where we discover what
2528  * adapter parameters we're going to be using and initialize basic adapter
2529  * hardware support.
2530  */
2531 static int adap_init0(struct adapter *adapter)
2532 {
2533 	struct sge_params *sge_params = &adapter->params.sge;
2534 	struct sge *s = &adapter->sge;
2535 	int err;
2536 	u32 param, val = 0;
2537 
2538 	/*
2539 	 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2540 	 * 2.6.31 and later we can't call pci_reset_function() in order to
2541 	 * issue an FLR because of a self- deadlock on the device semaphore.
2542 	 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2543 	 * cases where they're needed -- for instance, some versions of KVM
2544 	 * fail to reset "Assigned Devices" when the VM reboots.  Therefore we
2545 	 * use the firmware based reset in order to reset any per function
2546 	 * state.
2547 	 */
2548 	err = t4vf_fw_reset(adapter);
2549 	if (err < 0) {
2550 		dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2551 		return err;
2552 	}
2553 
2554 	/*
2555 	 * Grab basic operational parameters.  These will predominantly have
2556 	 * been set up by the Physical Function Driver or will be hard coded
2557 	 * into the adapter.  We just have to live with them ...  Note that
2558 	 * we _must_ get our VPD parameters before our SGE parameters because
2559 	 * we need to know the adapter's core clock from the VPD in order to
2560 	 * properly decode the SGE Timer Values.
2561 	 */
2562 	err = t4vf_get_dev_params(adapter);
2563 	if (err) {
2564 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2565 			" device parameters: err=%d\n", err);
2566 		return err;
2567 	}
2568 	err = t4vf_get_vpd_params(adapter);
2569 	if (err) {
2570 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2571 			" VPD parameters: err=%d\n", err);
2572 		return err;
2573 	}
2574 	err = t4vf_get_sge_params(adapter);
2575 	if (err) {
2576 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2577 			" SGE parameters: err=%d\n", err);
2578 		return err;
2579 	}
2580 	err = t4vf_get_rss_glb_config(adapter);
2581 	if (err) {
2582 		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2583 			" RSS parameters: err=%d\n", err);
2584 		return err;
2585 	}
2586 	if (adapter->params.rss.mode !=
2587 	    FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2588 		dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2589 			" mode %d\n", adapter->params.rss.mode);
2590 		return -EINVAL;
2591 	}
2592 	err = t4vf_sge_init(adapter);
2593 	if (err) {
2594 		dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2595 			" err=%d\n", err);
2596 		return err;
2597 	}
2598 
2599 	/* If we're running on newer firmware, let it know that we're
2600 	 * prepared to deal with encapsulated CPL messages.  Older
2601 	 * firmware won't understand this and we'll just get
2602 	 * unencapsulated messages ...
2603 	 */
2604 	param = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2605 		FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP);
2606 	val = 1;
2607 	(void) t4vf_set_params(adapter, 1, &param, &val);
2608 
2609 	/*
2610 	 * Retrieve our RX interrupt holdoff timer values and counter
2611 	 * threshold values from the SGE parameters.
2612 	 */
2613 	s->timer_val[0] = core_ticks_to_us(adapter,
2614 		TIMERVALUE0_G(sge_params->sge_timer_value_0_and_1));
2615 	s->timer_val[1] = core_ticks_to_us(adapter,
2616 		TIMERVALUE1_G(sge_params->sge_timer_value_0_and_1));
2617 	s->timer_val[2] = core_ticks_to_us(adapter,
2618 		TIMERVALUE0_G(sge_params->sge_timer_value_2_and_3));
2619 	s->timer_val[3] = core_ticks_to_us(adapter,
2620 		TIMERVALUE1_G(sge_params->sge_timer_value_2_and_3));
2621 	s->timer_val[4] = core_ticks_to_us(adapter,
2622 		TIMERVALUE0_G(sge_params->sge_timer_value_4_and_5));
2623 	s->timer_val[5] = core_ticks_to_us(adapter,
2624 		TIMERVALUE1_G(sge_params->sge_timer_value_4_and_5));
2625 
2626 	s->counter_val[0] = THRESHOLD_0_G(sge_params->sge_ingress_rx_threshold);
2627 	s->counter_val[1] = THRESHOLD_1_G(sge_params->sge_ingress_rx_threshold);
2628 	s->counter_val[2] = THRESHOLD_2_G(sge_params->sge_ingress_rx_threshold);
2629 	s->counter_val[3] = THRESHOLD_3_G(sge_params->sge_ingress_rx_threshold);
2630 
2631 	/*
2632 	 * Grab our Virtual Interface resource allocation, extract the
2633 	 * features that we're interested in and do a bit of sanity testing on
2634 	 * what we discover.
2635 	 */
2636 	err = t4vf_get_vfres(adapter);
2637 	if (err) {
2638 		dev_err(adapter->pdev_dev, "unable to get virtual interface"
2639 			" resources: err=%d\n", err);
2640 		return err;
2641 	}
2642 
2643 	/* Check for various parameter sanity issues */
2644 	if (adapter->params.vfres.pmask == 0) {
2645 		dev_err(adapter->pdev_dev, "no port access configured\n"
2646 			"usable!\n");
2647 		return -EINVAL;
2648 	}
2649 	if (adapter->params.vfres.nvi == 0) {
2650 		dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2651 			"usable!\n");
2652 		return -EINVAL;
2653 	}
2654 
2655 	/* Initialize nports and max_ethqsets now that we have our Virtual
2656 	 * Function Resources.
2657 	 */
2658 	size_nports_qsets(adapter);
2659 
2660 	return 0;
2661 }
2662 
2663 static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2664 			     u8 pkt_cnt_idx, unsigned int size,
2665 			     unsigned int iqe_size)
2666 {
2667 	rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) |
2668 			     (pkt_cnt_idx < SGE_NCOUNTERS ?
2669 			      QINTR_CNT_EN_F : 0));
2670 	rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2671 			    ? pkt_cnt_idx
2672 			    : 0);
2673 	rspq->iqe_len = iqe_size;
2674 	rspq->size = size;
2675 }
2676 
2677 /*
2678  * Perform default configuration of DMA queues depending on the number and
2679  * type of ports we found and the number of available CPUs.  Most settings can
2680  * be modified by the admin via ethtool and cxgbtool prior to the adapter
2681  * being brought up for the first time.
2682  */
2683 static void cfg_queues(struct adapter *adapter)
2684 {
2685 	struct sge *s = &adapter->sge;
2686 	int q10g, n10g, qidx, pidx, qs;
2687 	size_t iqe_size;
2688 
2689 	/*
2690 	 * We should not be called till we know how many Queue Sets we can
2691 	 * support.  In particular, this means that we need to know what kind
2692 	 * of interrupts we'll be using ...
2693 	 */
2694 	BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2695 
2696 	/*
2697 	 * Count the number of 10GbE Virtual Interfaces that we have.
2698 	 */
2699 	n10g = 0;
2700 	for_each_port(adapter, pidx)
2701 		n10g += is_x_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2702 
2703 	/*
2704 	 * We default to 1 queue per non-10G port and up to # of cores queues
2705 	 * per 10G port.
2706 	 */
2707 	if (n10g == 0)
2708 		q10g = 0;
2709 	else {
2710 		int n1g = (adapter->params.nports - n10g);
2711 		q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2712 		if (q10g > num_online_cpus())
2713 			q10g = num_online_cpus();
2714 	}
2715 
2716 	/*
2717 	 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2718 	 * The layout will be established in setup_sge_queues() when the
2719 	 * adapter is brough up for the first time.
2720 	 */
2721 	qidx = 0;
2722 	for_each_port(adapter, pidx) {
2723 		struct port_info *pi = adap2pinfo(adapter, pidx);
2724 
2725 		pi->first_qset = qidx;
2726 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
2727 		qidx += pi->nqsets;
2728 	}
2729 	s->ethqsets = qidx;
2730 
2731 	/*
2732 	 * The Ingress Queue Entry Size for our various Response Queues needs
2733 	 * to be big enough to accommodate the largest message we can receive
2734 	 * from the chip/firmware; which is 64 bytes ...
2735 	 */
2736 	iqe_size = 64;
2737 
2738 	/*
2739 	 * Set up default Queue Set parameters ...  Start off with the
2740 	 * shortest interrupt holdoff timer.
2741 	 */
2742 	for (qs = 0; qs < s->max_ethqsets; qs++) {
2743 		struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2744 		struct sge_eth_txq *txq = &s->ethtxq[qs];
2745 
2746 		init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size);
2747 		rxq->fl.size = 72;
2748 		txq->q.size = 1024;
2749 	}
2750 
2751 	/*
2752 	 * The firmware event queue is used for link state changes and
2753 	 * notifications of TX DMA completions.
2754 	 */
2755 	init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size);
2756 
2757 	/*
2758 	 * The forwarded interrupt queue is used when we're in MSI interrupt
2759 	 * mode.  In this mode all interrupts associated with RX queues will
2760 	 * be forwarded to a single queue which we'll associate with our MSI
2761 	 * interrupt vector.  The messages dropped in the forwarded interrupt
2762 	 * queue will indicate which ingress queue needs servicing ...  This
2763 	 * queue needs to be large enough to accommodate all of the ingress
2764 	 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2765 	 * from equalling the CIDX if every ingress queue has an outstanding
2766 	 * interrupt).  The queue doesn't need to be any larger because no
2767 	 * ingress queue will ever have more than one outstanding interrupt at
2768 	 * any time ...
2769 	 */
2770 	init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2771 		  iqe_size);
2772 }
2773 
2774 /*
2775  * Reduce the number of Ethernet queues across all ports to at most n.
2776  * n provides at least one queue per port.
2777  */
2778 static void reduce_ethqs(struct adapter *adapter, int n)
2779 {
2780 	int i;
2781 	struct port_info *pi;
2782 
2783 	/*
2784 	 * While we have too many active Ether Queue Sets, interate across the
2785 	 * "ports" and reduce their individual Queue Set allocations.
2786 	 */
2787 	BUG_ON(n < adapter->params.nports);
2788 	while (n < adapter->sge.ethqsets)
2789 		for_each_port(adapter, i) {
2790 			pi = adap2pinfo(adapter, i);
2791 			if (pi->nqsets > 1) {
2792 				pi->nqsets--;
2793 				adapter->sge.ethqsets--;
2794 				if (adapter->sge.ethqsets <= n)
2795 					break;
2796 			}
2797 		}
2798 
2799 	/*
2800 	 * Reassign the starting Queue Sets for each of the "ports" ...
2801 	 */
2802 	n = 0;
2803 	for_each_port(adapter, i) {
2804 		pi = adap2pinfo(adapter, i);
2805 		pi->first_qset = n;
2806 		n += pi->nqsets;
2807 	}
2808 }
2809 
2810 /*
2811  * We need to grab enough MSI-X vectors to cover our interrupt needs.  Ideally
2812  * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2813  * need.  Minimally we need one for every Virtual Interface plus those needed
2814  * for our "extras".  Note that this process may lower the maximum number of
2815  * allowed Queue Sets ...
2816  */
2817 static int enable_msix(struct adapter *adapter)
2818 {
2819 	int i, want, need, nqsets;
2820 	struct msix_entry entries[MSIX_ENTRIES];
2821 	struct sge *s = &adapter->sge;
2822 
2823 	for (i = 0; i < MSIX_ENTRIES; ++i)
2824 		entries[i].entry = i;
2825 
2826 	/*
2827 	 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2828 	 * plus those needed for our "extras" (for example, the firmware
2829 	 * message queue).  We _need_ at least one "Queue Set" per Virtual
2830 	 * Interface plus those needed for our "extras".  So now we get to see
2831 	 * if the song is right ...
2832 	 */
2833 	want = s->max_ethqsets + MSIX_EXTRAS;
2834 	need = adapter->params.nports + MSIX_EXTRAS;
2835 
2836 	want = pci_enable_msix_range(adapter->pdev, entries, need, want);
2837 	if (want < 0)
2838 		return want;
2839 
2840 	nqsets = want - MSIX_EXTRAS;
2841 	if (nqsets < s->max_ethqsets) {
2842 		dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2843 			 " for %d Queue Sets\n", nqsets);
2844 		s->max_ethqsets = nqsets;
2845 		if (nqsets < s->ethqsets)
2846 			reduce_ethqs(adapter, nqsets);
2847 	}
2848 	for (i = 0; i < want; ++i)
2849 		adapter->msix_info[i].vec = entries[i].vector;
2850 
2851 	return 0;
2852 }
2853 
2854 static const struct net_device_ops cxgb4vf_netdev_ops	= {
2855 	.ndo_open		= cxgb4vf_open,
2856 	.ndo_stop		= cxgb4vf_stop,
2857 	.ndo_start_xmit		= t4vf_eth_xmit,
2858 	.ndo_get_stats		= cxgb4vf_get_stats,
2859 	.ndo_set_rx_mode	= cxgb4vf_set_rxmode,
2860 	.ndo_set_mac_address	= cxgb4vf_set_mac_addr,
2861 	.ndo_validate_addr	= eth_validate_addr,
2862 	.ndo_do_ioctl		= cxgb4vf_do_ioctl,
2863 	.ndo_change_mtu		= cxgb4vf_change_mtu,
2864 	.ndo_fix_features	= cxgb4vf_fix_features,
2865 	.ndo_set_features	= cxgb4vf_set_features,
2866 #ifdef CONFIG_NET_POLL_CONTROLLER
2867 	.ndo_poll_controller	= cxgb4vf_poll_controller,
2868 #endif
2869 };
2870 
2871 /*
2872  * "Probe" a device: initialize a device and construct all kernel and driver
2873  * state needed to manage the device.  This routine is called "init_one" in
2874  * the PF Driver ...
2875  */
2876 static int cxgb4vf_pci_probe(struct pci_dev *pdev,
2877 			     const struct pci_device_id *ent)
2878 {
2879 	int pci_using_dac;
2880 	int err, pidx;
2881 	unsigned int pmask;
2882 	struct adapter *adapter;
2883 	struct port_info *pi;
2884 	struct net_device *netdev;
2885 	unsigned int pf;
2886 
2887 	/*
2888 	 * Print our driver banner the first time we're called to initialize a
2889 	 * device.
2890 	 */
2891 	pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION);
2892 
2893 	/*
2894 	 * Initialize generic PCI device state.
2895 	 */
2896 	err = pci_enable_device(pdev);
2897 	if (err) {
2898 		dev_err(&pdev->dev, "cannot enable PCI device\n");
2899 		return err;
2900 	}
2901 
2902 	/*
2903 	 * Reserve PCI resources for the device.  If we can't get them some
2904 	 * other driver may have already claimed the device ...
2905 	 */
2906 	err = pci_request_regions(pdev, KBUILD_MODNAME);
2907 	if (err) {
2908 		dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2909 		goto err_disable_device;
2910 	}
2911 
2912 	/*
2913 	 * Set up our DMA mask: try for 64-bit address masking first and
2914 	 * fall back to 32-bit if we can't get 64 bits ...
2915 	 */
2916 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2917 	if (err == 0) {
2918 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2919 		if (err) {
2920 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2921 				" coherent allocations\n");
2922 			goto err_release_regions;
2923 		}
2924 		pci_using_dac = 1;
2925 	} else {
2926 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2927 		if (err != 0) {
2928 			dev_err(&pdev->dev, "no usable DMA configuration\n");
2929 			goto err_release_regions;
2930 		}
2931 		pci_using_dac = 0;
2932 	}
2933 
2934 	/*
2935 	 * Enable bus mastering for the device ...
2936 	 */
2937 	pci_set_master(pdev);
2938 
2939 	/*
2940 	 * Allocate our adapter data structure and attach it to the device.
2941 	 */
2942 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2943 	if (!adapter) {
2944 		err = -ENOMEM;
2945 		goto err_release_regions;
2946 	}
2947 	pci_set_drvdata(pdev, adapter);
2948 	adapter->pdev = pdev;
2949 	adapter->pdev_dev = &pdev->dev;
2950 
2951 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
2952 				    (sizeof(struct mbox_cmd) *
2953 				     T4VF_OS_LOG_MBOX_CMDS),
2954 				    GFP_KERNEL);
2955 	if (!adapter->mbox_log) {
2956 		err = -ENOMEM;
2957 		goto err_free_adapter;
2958 	}
2959 	adapter->mbox_log->size = T4VF_OS_LOG_MBOX_CMDS;
2960 
2961 	/*
2962 	 * Initialize SMP data synchronization resources.
2963 	 */
2964 	spin_lock_init(&adapter->stats_lock);
2965 	spin_lock_init(&adapter->mbox_lock);
2966 	INIT_LIST_HEAD(&adapter->mlist.list);
2967 
2968 	/*
2969 	 * Map our I/O registers in BAR0.
2970 	 */
2971 	adapter->regs = pci_ioremap_bar(pdev, 0);
2972 	if (!adapter->regs) {
2973 		dev_err(&pdev->dev, "cannot map device registers\n");
2974 		err = -ENOMEM;
2975 		goto err_free_adapter;
2976 	}
2977 
2978 	/* Wait for the device to become ready before proceeding ...
2979 	 */
2980 	err = t4vf_prep_adapter(adapter);
2981 	if (err) {
2982 		dev_err(adapter->pdev_dev, "device didn't become ready:"
2983 			" err=%d\n", err);
2984 		goto err_unmap_bar0;
2985 	}
2986 
2987 	/* For T5 and later we want to use the new BAR-based User Doorbells,
2988 	 * so we need to map BAR2 here ...
2989 	 */
2990 	if (!is_t4(adapter->params.chip)) {
2991 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
2992 					   pci_resource_len(pdev, 2));
2993 		if (!adapter->bar2) {
2994 			dev_err(adapter->pdev_dev, "cannot map BAR2 doorbells\n");
2995 			err = -ENOMEM;
2996 			goto err_unmap_bar0;
2997 		}
2998 	}
2999 	/*
3000 	 * Initialize adapter level features.
3001 	 */
3002 	adapter->name = pci_name(pdev);
3003 	adapter->msg_enable = DFLT_MSG_ENABLE;
3004 
3005 	/* If possible, we use PCIe Relaxed Ordering Attribute to deliver
3006 	 * Ingress Packet Data to Free List Buffers in order to allow for
3007 	 * chipset performance optimizations between the Root Complex and
3008 	 * Memory Controllers.  (Messages to the associated Ingress Queue
3009 	 * notifying new Packet Placement in the Free Lists Buffers will be
3010 	 * send without the Relaxed Ordering Attribute thus guaranteeing that
3011 	 * all preceding PCIe Transaction Layer Packets will be processed
3012 	 * first.)  But some Root Complexes have various issues with Upstream
3013 	 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
3014 	 * The PCIe devices which under the Root Complexes will be cleared the
3015 	 * Relaxed Ordering bit in the configuration space, So we check our
3016 	 * PCIe configuration space to see if it's flagged with advice against
3017 	 * using Relaxed Ordering.
3018 	 */
3019 	if (!pcie_relaxed_ordering_enabled(pdev))
3020 		adapter->flags |= ROOT_NO_RELAXED_ORDERING;
3021 
3022 	err = adap_init0(adapter);
3023 	if (err)
3024 		goto err_unmap_bar;
3025 
3026 	/* Initialize hash mac addr list */
3027 	INIT_LIST_HEAD(&adapter->mac_hlist);
3028 
3029 	/*
3030 	 * Allocate our "adapter ports" and stitch everything together.
3031 	 */
3032 	pmask = adapter->params.vfres.pmask;
3033 	pf = t4vf_get_pf_from_vf(adapter);
3034 	for_each_port(adapter, pidx) {
3035 		int port_id, viid;
3036 		u8 mac[ETH_ALEN];
3037 		unsigned int naddr = 1;
3038 
3039 		/*
3040 		 * We simplistically allocate our virtual interfaces
3041 		 * sequentially across the port numbers to which we have
3042 		 * access rights.  This should be configurable in some manner
3043 		 * ...
3044 		 */
3045 		if (pmask == 0)
3046 			break;
3047 		port_id = ffs(pmask) - 1;
3048 		pmask &= ~(1 << port_id);
3049 		viid = t4vf_alloc_vi(adapter, port_id);
3050 		if (viid < 0) {
3051 			dev_err(&pdev->dev, "cannot allocate VI for port %d:"
3052 				" err=%d\n", port_id, viid);
3053 			err = viid;
3054 			goto err_free_dev;
3055 		}
3056 
3057 		/*
3058 		 * Allocate our network device and stitch things together.
3059 		 */
3060 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
3061 					   MAX_PORT_QSETS);
3062 		if (netdev == NULL) {
3063 			t4vf_free_vi(adapter, viid);
3064 			err = -ENOMEM;
3065 			goto err_free_dev;
3066 		}
3067 		adapter->port[pidx] = netdev;
3068 		SET_NETDEV_DEV(netdev, &pdev->dev);
3069 		pi = netdev_priv(netdev);
3070 		pi->adapter = adapter;
3071 		pi->pidx = pidx;
3072 		pi->port_id = port_id;
3073 		pi->viid = viid;
3074 
3075 		/*
3076 		 * Initialize the starting state of our "port" and register
3077 		 * it.
3078 		 */
3079 		pi->xact_addr_filt = -1;
3080 		netif_carrier_off(netdev);
3081 		netdev->irq = pdev->irq;
3082 
3083 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
3084 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3085 			NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_RXCSUM;
3086 		netdev->vlan_features = NETIF_F_SG | TSO_FLAGS |
3087 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3088 			NETIF_F_HIGHDMA;
3089 		netdev->features = netdev->hw_features |
3090 				   NETIF_F_HW_VLAN_CTAG_TX;
3091 		if (pci_using_dac)
3092 			netdev->features |= NETIF_F_HIGHDMA;
3093 
3094 		netdev->priv_flags |= IFF_UNICAST_FLT;
3095 		netdev->min_mtu = 81;
3096 		netdev->max_mtu = ETH_MAX_MTU;
3097 
3098 		netdev->netdev_ops = &cxgb4vf_netdev_ops;
3099 		netdev->ethtool_ops = &cxgb4vf_ethtool_ops;
3100 		netdev->dev_port = pi->port_id;
3101 
3102 		/*
3103 		 * Initialize the hardware/software state for the port.
3104 		 */
3105 		err = t4vf_port_init(adapter, pidx);
3106 		if (err) {
3107 			dev_err(&pdev->dev, "cannot initialize port %d\n",
3108 				pidx);
3109 			goto err_free_dev;
3110 		}
3111 
3112 		err = t4vf_get_vf_mac_acl(adapter, pf, &naddr, mac);
3113 		if (err) {
3114 			dev_err(&pdev->dev,
3115 				"unable to determine MAC ACL address, "
3116 				"continuing anyway.. (status %d)\n", err);
3117 		} else if (naddr && adapter->params.vfres.nvi == 1) {
3118 			struct sockaddr addr;
3119 
3120 			ether_addr_copy(addr.sa_data, mac);
3121 			err = cxgb4vf_set_mac_addr(netdev, &addr);
3122 			if (err) {
3123 				dev_err(&pdev->dev,
3124 					"unable to set MAC address %pM\n",
3125 					mac);
3126 				goto err_free_dev;
3127 			}
3128 			dev_info(&pdev->dev,
3129 				 "Using assigned MAC ACL: %pM\n", mac);
3130 		}
3131 	}
3132 
3133 	/* See what interrupts we'll be using.  If we've been configured to
3134 	 * use MSI-X interrupts, try to enable them but fall back to using
3135 	 * MSI interrupts if we can't enable MSI-X interrupts.  If we can't
3136 	 * get MSI interrupts we bail with the error.
3137 	 */
3138 	if (msi == MSI_MSIX && enable_msix(adapter) == 0)
3139 		adapter->flags |= USING_MSIX;
3140 	else {
3141 		if (msi == MSI_MSIX) {
3142 			dev_info(adapter->pdev_dev,
3143 				 "Unable to use MSI-X Interrupts; falling "
3144 				 "back to MSI Interrupts\n");
3145 
3146 			/* We're going to need a Forwarded Interrupt Queue so
3147 			 * that may cut into how many Queue Sets we can
3148 			 * support.
3149 			 */
3150 			msi = MSI_MSI;
3151 			size_nports_qsets(adapter);
3152 		}
3153 		err = pci_enable_msi(pdev);
3154 		if (err) {
3155 			dev_err(&pdev->dev, "Unable to allocate MSI Interrupts;"
3156 				" err=%d\n", err);
3157 			goto err_free_dev;
3158 		}
3159 		adapter->flags |= USING_MSI;
3160 	}
3161 
3162 	/* Now that we know how many "ports" we have and what interrupt
3163 	 * mechanism we're going to use, we can configure our queue resources.
3164 	 */
3165 	cfg_queues(adapter);
3166 
3167 	/*
3168 	 * The "card" is now ready to go.  If any errors occur during device
3169 	 * registration we do not fail the whole "card" but rather proceed
3170 	 * only with the ports we manage to register successfully.  However we
3171 	 * must register at least one net device.
3172 	 */
3173 	for_each_port(adapter, pidx) {
3174 		struct port_info *pi = netdev_priv(adapter->port[pidx]);
3175 		netdev = adapter->port[pidx];
3176 		if (netdev == NULL)
3177 			continue;
3178 
3179 		netif_set_real_num_tx_queues(netdev, pi->nqsets);
3180 		netif_set_real_num_rx_queues(netdev, pi->nqsets);
3181 
3182 		err = register_netdev(netdev);
3183 		if (err) {
3184 			dev_warn(&pdev->dev, "cannot register net device %s,"
3185 				 " skipping\n", netdev->name);
3186 			continue;
3187 		}
3188 
3189 		set_bit(pidx, &adapter->registered_device_map);
3190 	}
3191 	if (adapter->registered_device_map == 0) {
3192 		dev_err(&pdev->dev, "could not register any net devices\n");
3193 		goto err_disable_interrupts;
3194 	}
3195 
3196 	/*
3197 	 * Set up our debugfs entries.
3198 	 */
3199 	if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) {
3200 		adapter->debugfs_root =
3201 			debugfs_create_dir(pci_name(pdev),
3202 					   cxgb4vf_debugfs_root);
3203 		if (IS_ERR_OR_NULL(adapter->debugfs_root))
3204 			dev_warn(&pdev->dev, "could not create debugfs"
3205 				 " directory");
3206 		else
3207 			setup_debugfs(adapter);
3208 	}
3209 
3210 	/*
3211 	 * Print a short notice on the existence and configuration of the new
3212 	 * VF network device ...
3213 	 */
3214 	for_each_port(adapter, pidx) {
3215 		dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
3216 			 adapter->port[pidx]->name,
3217 			 (adapter->flags & USING_MSIX) ? "MSI-X" :
3218 			 (adapter->flags & USING_MSI)  ? "MSI" : "");
3219 	}
3220 
3221 	/*
3222 	 * Return success!
3223 	 */
3224 	return 0;
3225 
3226 	/*
3227 	 * Error recovery and exit code.  Unwind state that's been created
3228 	 * so far and return the error.
3229 	 */
3230 err_disable_interrupts:
3231 	if (adapter->flags & USING_MSIX) {
3232 		pci_disable_msix(adapter->pdev);
3233 		adapter->flags &= ~USING_MSIX;
3234 	} else if (adapter->flags & USING_MSI) {
3235 		pci_disable_msi(adapter->pdev);
3236 		adapter->flags &= ~USING_MSI;
3237 	}
3238 
3239 err_free_dev:
3240 	for_each_port(adapter, pidx) {
3241 		netdev = adapter->port[pidx];
3242 		if (netdev == NULL)
3243 			continue;
3244 		pi = netdev_priv(netdev);
3245 		t4vf_free_vi(adapter, pi->viid);
3246 		if (test_bit(pidx, &adapter->registered_device_map))
3247 			unregister_netdev(netdev);
3248 		free_netdev(netdev);
3249 	}
3250 
3251 err_unmap_bar:
3252 	if (!is_t4(adapter->params.chip))
3253 		iounmap(adapter->bar2);
3254 
3255 err_unmap_bar0:
3256 	iounmap(adapter->regs);
3257 
3258 err_free_adapter:
3259 	kfree(adapter->mbox_log);
3260 	kfree(adapter);
3261 
3262 err_release_regions:
3263 	pci_release_regions(pdev);
3264 	pci_clear_master(pdev);
3265 
3266 err_disable_device:
3267 	pci_disable_device(pdev);
3268 
3269 	return err;
3270 }
3271 
3272 /*
3273  * "Remove" a device: tear down all kernel and driver state created in the
3274  * "probe" routine and quiesce the device (disable interrupts, etc.).  (Note
3275  * that this is called "remove_one" in the PF Driver.)
3276  */
3277 static void cxgb4vf_pci_remove(struct pci_dev *pdev)
3278 {
3279 	struct adapter *adapter = pci_get_drvdata(pdev);
3280 	struct hash_mac_addr *entry, *tmp;
3281 
3282 	/*
3283 	 * Tear down driver state associated with device.
3284 	 */
3285 	if (adapter) {
3286 		int pidx;
3287 
3288 		/*
3289 		 * Stop all of our activity.  Unregister network port,
3290 		 * disable interrupts, etc.
3291 		 */
3292 		for_each_port(adapter, pidx)
3293 			if (test_bit(pidx, &adapter->registered_device_map))
3294 				unregister_netdev(adapter->port[pidx]);
3295 		t4vf_sge_stop(adapter);
3296 		if (adapter->flags & USING_MSIX) {
3297 			pci_disable_msix(adapter->pdev);
3298 			adapter->flags &= ~USING_MSIX;
3299 		} else if (adapter->flags & USING_MSI) {
3300 			pci_disable_msi(adapter->pdev);
3301 			adapter->flags &= ~USING_MSI;
3302 		}
3303 
3304 		/*
3305 		 * Tear down our debugfs entries.
3306 		 */
3307 		if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
3308 			cleanup_debugfs(adapter);
3309 			debugfs_remove_recursive(adapter->debugfs_root);
3310 		}
3311 
3312 		/*
3313 		 * Free all of the various resources which we've acquired ...
3314 		 */
3315 		t4vf_free_sge_resources(adapter);
3316 		for_each_port(adapter, pidx) {
3317 			struct net_device *netdev = adapter->port[pidx];
3318 			struct port_info *pi;
3319 
3320 			if (netdev == NULL)
3321 				continue;
3322 
3323 			pi = netdev_priv(netdev);
3324 			t4vf_free_vi(adapter, pi->viid);
3325 			free_netdev(netdev);
3326 		}
3327 		iounmap(adapter->regs);
3328 		if (!is_t4(adapter->params.chip))
3329 			iounmap(adapter->bar2);
3330 		kfree(adapter->mbox_log);
3331 		list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
3332 					 list) {
3333 			list_del(&entry->list);
3334 			kfree(entry);
3335 		}
3336 		kfree(adapter);
3337 	}
3338 
3339 	/*
3340 	 * Disable the device and release its PCI resources.
3341 	 */
3342 	pci_disable_device(pdev);
3343 	pci_clear_master(pdev);
3344 	pci_release_regions(pdev);
3345 }
3346 
3347 /*
3348  * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt
3349  * delivery.
3350  */
3351 static void cxgb4vf_pci_shutdown(struct pci_dev *pdev)
3352 {
3353 	struct adapter *adapter;
3354 	int pidx;
3355 
3356 	adapter = pci_get_drvdata(pdev);
3357 	if (!adapter)
3358 		return;
3359 
3360 	/* Disable all Virtual Interfaces.  This will shut down the
3361 	 * delivery of all ingress packets into the chip for these
3362 	 * Virtual Interfaces.
3363 	 */
3364 	for_each_port(adapter, pidx)
3365 		if (test_bit(pidx, &adapter->registered_device_map))
3366 			unregister_netdev(adapter->port[pidx]);
3367 
3368 	/* Free up all Queues which will prevent further DMA and
3369 	 * Interrupts allowing various internal pathways to drain.
3370 	 */
3371 	t4vf_sge_stop(adapter);
3372 	if (adapter->flags & USING_MSIX) {
3373 		pci_disable_msix(adapter->pdev);
3374 		adapter->flags &= ~USING_MSIX;
3375 	} else if (adapter->flags & USING_MSI) {
3376 		pci_disable_msi(adapter->pdev);
3377 		adapter->flags &= ~USING_MSI;
3378 	}
3379 
3380 	/*
3381 	 * Free up all Queues which will prevent further DMA and
3382 	 * Interrupts allowing various internal pathways to drain.
3383 	 */
3384 	t4vf_free_sge_resources(adapter);
3385 	pci_set_drvdata(pdev, NULL);
3386 }
3387 
3388 /* Macros needed to support the PCI Device ID Table ...
3389  */
3390 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
3391 	static const struct pci_device_id cxgb4vf_pci_tbl[] = {
3392 #define CH_PCI_DEVICE_ID_FUNCTION	0x8
3393 
3394 #define CH_PCI_ID_TABLE_ENTRY(devid) \
3395 		{ PCI_VDEVICE(CHELSIO, (devid)), 0 }
3396 
3397 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } }
3398 
3399 #include "../cxgb4/t4_pci_id_tbl.h"
3400 
3401 MODULE_DESCRIPTION(DRV_DESC);
3402 MODULE_AUTHOR("Chelsio Communications");
3403 MODULE_LICENSE("Dual BSD/GPL");
3404 MODULE_VERSION(DRV_VERSION);
3405 MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
3406 
3407 static struct pci_driver cxgb4vf_driver = {
3408 	.name		= KBUILD_MODNAME,
3409 	.id_table	= cxgb4vf_pci_tbl,
3410 	.probe		= cxgb4vf_pci_probe,
3411 	.remove		= cxgb4vf_pci_remove,
3412 	.shutdown	= cxgb4vf_pci_shutdown,
3413 };
3414 
3415 /*
3416  * Initialize global driver state.
3417  */
3418 static int __init cxgb4vf_module_init(void)
3419 {
3420 	int ret;
3421 
3422 	/*
3423 	 * Vet our module parameters.
3424 	 */
3425 	if (msi != MSI_MSIX && msi != MSI_MSI) {
3426 		pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n",
3427 			msi, MSI_MSIX, MSI_MSI);
3428 		return -EINVAL;
3429 	}
3430 
3431 	/* Debugfs support is optional, just warn if this fails */
3432 	cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
3433 	if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
3434 		pr_warn("could not create debugfs entry, continuing\n");
3435 
3436 	ret = pci_register_driver(&cxgb4vf_driver);
3437 	if (ret < 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
3438 		debugfs_remove(cxgb4vf_debugfs_root);
3439 	return ret;
3440 }
3441 
3442 /*
3443  * Tear down global driver state.
3444  */
3445 static void __exit cxgb4vf_module_exit(void)
3446 {
3447 	pci_unregister_driver(&cxgb4vf_driver);
3448 	debugfs_remove(cxgb4vf_debugfs_root);
3449 }
3450 
3451 module_init(cxgb4vf_module_init);
3452 module_exit(cxgb4vf_module_exit);
3453