xref: /linux/drivers/net/ethernet/chelsio/cxgb4vf/adapter.h (revision 8c994eff8fcfe8ecb1f1dbebed25b4d7bb75be12)
1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 /*
37  * This file should not be included directly.  Include t4vf_common.h instead.
38  */
39 
40 #ifndef __CXGB4VF_ADAPTER_H__
41 #define __CXGB4VF_ADAPTER_H__
42 
43 #include <linux/etherdevice.h>
44 #include <linux/interrupt.h>
45 #include <linux/pci.h>
46 #include <linux/spinlock.h>
47 #include <linux/skbuff.h>
48 #include <linux/if_ether.h>
49 #include <linux/netdevice.h>
50 
51 #include "../cxgb4/t4_hw.h"
52 
53 /*
54  * Constants of the implementation.
55  */
56 enum {
57 	MAX_NPORTS	= 1,		/* max # of "ports" */
58 	MAX_PORT_QSETS	= 8,		/* max # of Queue Sets / "port" */
59 	MAX_ETH_QSETS	= MAX_NPORTS*MAX_PORT_QSETS,
60 
61 	/*
62 	 * MSI-X interrupt index usage.
63 	 */
64 	MSIX_FW		= 0,		/* MSI-X index for firmware Q */
65 	MSIX_IQFLINT	= 1,		/* MSI-X index base for Ingress Qs */
66 	MSIX_EXTRAS	= 1,
67 	MSIX_ENTRIES	= MAX_ETH_QSETS + MSIX_EXTRAS,
68 
69 	/*
70 	 * The maximum number of Ingress and Egress Queues is determined by
71 	 * the maximum number of "Queue Sets" which we support plus any
72 	 * ancillary queues.  Each "Queue Set" requires one Ingress Queue
73 	 * for RX Packet Ingress Event notifications and two Egress Queues for
74 	 * a Free List and an Ethernet TX list.
75 	 */
76 	INGQ_EXTRAS	= 2,		/* firmware event queue and */
77 					/*   forwarded interrupts */
78 	MAX_INGQ	= MAX_ETH_QSETS+INGQ_EXTRAS,
79 	MAX_EGRQ	= MAX_ETH_QSETS*2,
80 };
81 
82 /*
83  * Forward structure definition references.
84  */
85 struct adapter;
86 struct sge_eth_rxq;
87 struct sge_rspq;
88 
89 /*
90  * Per-"port" information.  This is really per-Virtual Interface information
91  * but the use of the "port" nomanclature makes it easier to go back and forth
92  * between the PF and VF drivers ...
93  */
94 struct port_info {
95 	struct adapter *adapter;	/* our adapter */
96 	u32 vlan_id;			/* vlan id for VST */
97 	u16 viid;			/* virtual interface ID */
98 	int xact_addr_filt;		/* index of our MAC address filter */
99 	u16 rss_size;			/* size of VI's RSS table slice */
100 	u8 pidx;			/* index into adapter port[] */
101 	s8 mdio_addr;
102 	u8 port_type;			/* firmware port type */
103 	u8 mod_type;			/* firmware module type */
104 	u8 port_id;			/* physical port ID */
105 	u8 nqsets;			/* # of "Queue Sets" */
106 	u8 first_qset;			/* index of first "Queue Set" */
107 	struct link_config link_cfg;	/* physical port configuration */
108 };
109 
110 /*
111  * Scatter Gather Engine resources for the "adapter".  Our ingress and egress
112  * queues are organized into "Queue Sets" with one ingress and one egress
113  * queue per Queue Set.  These Queue Sets are aportionable between the "ports"
114  * (Virtual Interfaces).  One extra ingress queue is used to receive
115  * asynchronous messages from the firmware.  Note that the "Queue IDs" that we
116  * use here are really "Relative Queue IDs" which are returned as part of the
117  * firmware command to allocate queues.  These queue IDs are relative to the
118  * absolute Queue ID base of the section of the Queue ID space allocated to
119  * the PF/VF.
120  */
121 
122 /*
123  * SGE free-list queue state.
124  */
125 struct rx_sw_desc;
126 struct sge_fl {
127 	unsigned int avail;		/* # of available RX buffers */
128 	unsigned int pend_cred;		/* new buffers since last FL DB ring */
129 	unsigned int cidx;		/* consumer index */
130 	unsigned int pidx;		/* producer index */
131 	unsigned long alloc_failed;	/* # of buffer allocation failures */
132 	unsigned long large_alloc_failed;
133 	unsigned long starving;		/* # of times FL was found starving */
134 
135 	/*
136 	 * Write-once/infrequently fields.
137 	 * -------------------------------
138 	 */
139 
140 	unsigned int cntxt_id;		/* SGE relative QID for the free list */
141 	unsigned int abs_id;		/* SGE absolute QID for the free list */
142 	unsigned int size;		/* capacity of free list */
143 	struct rx_sw_desc *sdesc;	/* address of SW RX descriptor ring */
144 	__be64 *desc;			/* address of HW RX descriptor ring */
145 	dma_addr_t addr;		/* PCI bus address of hardware ring */
146 	void __iomem *bar2_addr;	/* address of BAR2 Queue registers */
147 	unsigned int bar2_qid;		/* Queue ID for BAR2 Queue registers */
148 };
149 
150 /*
151  * An ingress packet gather list.
152  */
153 struct pkt_gl {
154 	struct page_frag frags[MAX_SKB_FRAGS];
155 	void *va;			/* virtual address of first byte */
156 	unsigned int nfrags;		/* # of fragments */
157 	unsigned int tot_len;		/* total length of fragments */
158 };
159 
160 typedef int (*rspq_handler_t)(struct sge_rspq *, const __be64 *,
161 			      const struct pkt_gl *);
162 
163 /*
164  * State for an SGE Response Queue.
165  */
166 struct sge_rspq {
167 	struct napi_struct napi;	/* NAPI scheduling control */
168 	const __be64 *cur_desc;		/* current descriptor in queue */
169 	unsigned int cidx;		/* consumer index */
170 	u8 gen;				/* current generation bit */
171 	u8 next_intr_params;		/* holdoff params for next interrupt */
172 	int offset;			/* offset into current FL buffer */
173 
174 	unsigned int unhandled_irqs;	/* bogus interrupts */
175 
176 	/*
177 	 * Write-once/infrequently fields.
178 	 * -------------------------------
179 	 */
180 
181 	u8 intr_params;			/* interrupt holdoff parameters */
182 	u8 pktcnt_idx;			/* interrupt packet threshold */
183 	u8 idx;				/* queue index within its group */
184 	u16 cntxt_id;			/* SGE rel QID for the response Q */
185 	u16 abs_id;			/* SGE abs QID for the response Q */
186 	__be64 *desc;			/* address of hardware response ring */
187 	dma_addr_t phys_addr;		/* PCI bus address of ring */
188 	void __iomem *bar2_addr;	/* address of BAR2 Queue registers */
189 	unsigned int bar2_qid;		/* Queue ID for BAR2 Queue registers */
190 	unsigned int iqe_len;		/* entry size */
191 	unsigned int size;		/* capcity of response Q */
192 	struct adapter *adapter;	/* our adapter */
193 	struct net_device *netdev;	/* associated net device */
194 	rspq_handler_t handler;		/* the handler for this response Q */
195 };
196 
197 /*
198  * Ethernet queue statistics
199  */
200 struct sge_eth_stats {
201 	unsigned long pkts;		/* # of ethernet packets */
202 	unsigned long lro_pkts;		/* # of LRO super packets */
203 	unsigned long lro_merged;	/* # of wire packets merged by LRO */
204 	unsigned long rx_cso;		/* # of Rx checksum offloads */
205 	unsigned long vlan_ex;		/* # of Rx VLAN extractions */
206 	unsigned long rx_drops;		/* # of packets dropped due to no mem */
207 };
208 
209 /*
210  * State for an Ethernet Receive Queue.
211  */
212 struct sge_eth_rxq {
213 	struct sge_rspq rspq;		/* Response Queue */
214 	struct sge_fl fl;		/* Free List */
215 	struct sge_eth_stats stats;	/* receive statistics */
216 };
217 
218 /*
219  * SGE Transmit Queue state.  This contains all of the resources associated
220  * with the hardware status of a TX Queue which is a circular ring of hardware
221  * TX Descriptors.  For convenience, it also contains a pointer to a parallel
222  * "Software Descriptor" array but we don't know anything about it here other
223  * than its type name.
224  */
225 struct tx_desc {
226 	/*
227 	 * Egress Queues are measured in units of SGE_EQ_IDXSIZE by the
228 	 * hardware: Sizes, Producer and Consumer indices, etc.
229 	 */
230 	__be64 flit[SGE_EQ_IDXSIZE/sizeof(__be64)];
231 };
232 struct tx_sw_desc;
233 struct sge_txq {
234 	unsigned int in_use;		/* # of in-use TX descriptors */
235 	unsigned int size;		/* # of descriptors */
236 	unsigned int cidx;		/* SW consumer index */
237 	unsigned int pidx;		/* producer index */
238 	unsigned long stops;		/* # of times queue has been stopped */
239 	unsigned long restarts;		/* # of queue restarts */
240 
241 	/*
242 	 * Write-once/infrequently fields.
243 	 * -------------------------------
244 	 */
245 
246 	unsigned int cntxt_id;		/* SGE relative QID for the TX Q */
247 	unsigned int abs_id;		/* SGE absolute QID for the TX Q */
248 	struct tx_desc *desc;		/* address of HW TX descriptor ring */
249 	struct tx_sw_desc *sdesc;	/* address of SW TX descriptor ring */
250 	struct sge_qstat *stat;		/* queue status entry */
251 	dma_addr_t phys_addr;		/* PCI bus address of hardware ring */
252 	void __iomem *bar2_addr;	/* address of BAR2 Queue registers */
253 	unsigned int bar2_qid;		/* Queue ID for BAR2 Queue registers */
254 };
255 
256 /*
257  * State for an Ethernet Transmit Queue.
258  */
259 struct sge_eth_txq {
260 	struct sge_txq q;		/* SGE TX Queue */
261 	struct netdev_queue *txq;	/* associated netdev TX queue */
262 	unsigned long tso;		/* # of TSO requests */
263 	unsigned long tx_cso;		/* # of TX checksum offloads */
264 	unsigned long vlan_ins;		/* # of TX VLAN insertions */
265 	unsigned long mapping_err;	/* # of I/O MMU packet mapping errors */
266 };
267 
268 /*
269  * The complete set of Scatter/Gather Engine resources.
270  */
271 struct sge {
272 	/*
273 	 * Our "Queue Sets" ...
274 	 */
275 	struct sge_eth_txq ethtxq[MAX_ETH_QSETS];
276 	struct sge_eth_rxq ethrxq[MAX_ETH_QSETS];
277 
278 	/*
279 	 * Extra ingress queues for asynchronous firmware events and
280 	 * forwarded interrupts (when in MSI mode).
281 	 */
282 	struct sge_rspq fw_evtq ____cacheline_aligned_in_smp;
283 
284 	struct sge_rspq intrq ____cacheline_aligned_in_smp;
285 	spinlock_t intrq_lock;
286 
287 	/*
288 	 * State for managing "starving Free Lists" -- Free Lists which have
289 	 * fallen below a certain threshold of buffers available to the
290 	 * hardware and attempts to refill them up to that threshold have
291 	 * failed.  We have a regular "slow tick" timer process which will
292 	 * make periodic attempts to refill these starving Free Lists ...
293 	 */
294 	DECLARE_BITMAP(starving_fl, MAX_EGRQ);
295 	struct timer_list rx_timer;
296 
297 	/*
298 	 * State for cleaning up completed TX descriptors.
299 	 */
300 	struct timer_list tx_timer;
301 
302 	/*
303 	 * Write-once/infrequently fields.
304 	 * -------------------------------
305 	 */
306 
307 	u16 max_ethqsets;		/* # of available Ethernet queue sets */
308 	u16 ethqsets;			/* # of active Ethernet queue sets */
309 	u16 ethtxq_rover;		/* Tx queue to clean up next */
310 	u16 timer_val[SGE_NTIMERS];	/* interrupt holdoff timer array */
311 	u8 counter_val[SGE_NCOUNTERS];	/* interrupt RX threshold array */
312 
313 	/* Decoded Adapter Parameters.
314 	 */
315 	u32 fl_pg_order;		/* large page allocation size */
316 	u32 stat_len;			/* length of status page at ring end */
317 	u32 pktshift;			/* padding between CPL & packet data */
318 	u32 fl_align;			/* response queue message alignment */
319 	u32 fl_starve_thres;		/* Free List starvation threshold */
320 
321 	/*
322 	 * Reverse maps from Absolute Queue IDs to associated queue pointers.
323 	 * The absolute Queue IDs are in a compact range which start at a
324 	 * [potentially large] Base Queue ID.  We perform the reverse map by
325 	 * first converting the Absolute Queue ID into a Relative Queue ID by
326 	 * subtracting off the Base Queue ID and then use a Relative Queue ID
327 	 * indexed table to get the pointer to the corresponding software
328 	 * queue structure.
329 	 */
330 	unsigned int egr_base;
331 	unsigned int ingr_base;
332 	void *egr_map[MAX_EGRQ];
333 	struct sge_rspq *ingr_map[MAX_INGQ];
334 };
335 
336 /*
337  * Utility macros to convert Absolute- to Relative-Queue indices and Egress-
338  * and Ingress-Queues.  The EQ_MAP() and IQ_MAP() macros which provide
339  * pointers to Ingress- and Egress-Queues can be used as both L- and R-values
340  */
341 #define EQ_IDX(s, abs_id) ((unsigned int)((abs_id) - (s)->egr_base))
342 #define IQ_IDX(s, abs_id) ((unsigned int)((abs_id) - (s)->ingr_base))
343 
344 #define EQ_MAP(s, abs_id) ((s)->egr_map[EQ_IDX(s, abs_id)])
345 #define IQ_MAP(s, abs_id) ((s)->ingr_map[IQ_IDX(s, abs_id)])
346 
347 /*
348  * Macro to iterate across Queue Sets ("rxq" is a historic misnomer).
349  */
350 #define for_each_ethrxq(sge, iter) \
351 	for (iter = 0; iter < (sge)->ethqsets; iter++)
352 
353 struct hash_mac_addr {
354 	struct list_head list;
355 	u8 addr[ETH_ALEN];
356 	unsigned int iface_mac;
357 };
358 
359 struct mbox_list {
360 	struct list_head list;
361 };
362 
363 /*
364  * Per-"adapter" (Virtual Function) information.
365  */
366 struct adapter {
367 	/* PCI resources */
368 	void __iomem *regs;
369 	void __iomem *bar2;
370 	struct pci_dev *pdev;
371 	struct device *pdev_dev;
372 
373 	/* "adapter" resources */
374 	unsigned long registered_device_map;
375 	unsigned long open_device_map;
376 	unsigned long flags;
377 	struct adapter_params params;
378 
379 	/* queue and interrupt resources */
380 	struct {
381 		unsigned short vec;
382 		char desc[22];
383 	} msix_info[MSIX_ENTRIES];
384 	struct sge sge;
385 
386 	/* Linux network device resources */
387 	struct net_device *port[MAX_NPORTS];
388 	const char *name;
389 	unsigned int msg_enable;
390 
391 	/* debugfs resources */
392 	struct dentry *debugfs_root;
393 
394 	/* various locks */
395 	spinlock_t stats_lock;
396 
397 	/* lock for mailbox cmd list */
398 	spinlock_t mbox_lock;
399 	struct mbox_list mlist;
400 
401 	/* support for mailbox command/reply logging */
402 #define T4VF_OS_LOG_MBOX_CMDS 256
403 	struct mbox_cmd_log *mbox_log;
404 
405 	/* list of MAC addresses in MPS Hash */
406 	struct list_head mac_hlist;
407 };
408 
409 enum { /* adapter flags */
410 	CXGB4VF_FULL_INIT_DONE			= (1UL << 0),
411 	CXGB4VF_USING_MSI			= (1UL << 1),
412 	CXGB4VF_USING_MSIX			= (1UL << 2),
413 	CXGB4VF_QUEUES_BOUND			= (1UL << 3),
414 	CXGB4VF_ROOT_NO_RELAXED_ORDERING	= (1UL << 4),
415 	CXGB4VF_FW_OK				= (1UL << 5),
416 };
417 
418 /*
419  * The following register read/write routine definitions are required by
420  * the common code.
421  */
422 
423 /**
424  * t4_read_reg - read a HW register
425  * @adapter: the adapter
426  * @reg_addr: the register address
427  *
428  * Returns the 32-bit value of the given HW register.
429  */
430 static inline u32 t4_read_reg(struct adapter *adapter, u32 reg_addr)
431 {
432 	return readl(adapter->regs + reg_addr);
433 }
434 
435 /**
436  * t4_write_reg - write a HW register
437  * @adapter: the adapter
438  * @reg_addr: the register address
439  * @val: the value to write
440  *
441  * Write a 32-bit value into the given HW register.
442  */
443 static inline void t4_write_reg(struct adapter *adapter, u32 reg_addr, u32 val)
444 {
445 	writel(val, adapter->regs + reg_addr);
446 }
447 
448 #ifndef readq
449 static inline u64 readq(const volatile void __iomem *addr)
450 {
451 	return readl(addr) + ((u64)readl(addr + 4) << 32);
452 }
453 
454 static inline void writeq(u64 val, volatile void __iomem *addr)
455 {
456 	writel(val, addr);
457 	writel(val >> 32, addr + 4);
458 }
459 #endif
460 
461 /**
462  * t4_read_reg64 - read a 64-bit HW register
463  * @adapter: the adapter
464  * @reg_addr: the register address
465  *
466  * Returns the 64-bit value of the given HW register.
467  */
468 static inline u64 t4_read_reg64(struct adapter *adapter, u32 reg_addr)
469 {
470 	return readq(adapter->regs + reg_addr);
471 }
472 
473 /**
474  * t4_write_reg64 - write a 64-bit HW register
475  * @adapter: the adapter
476  * @reg_addr: the register address
477  * @val: the value to write
478  *
479  * Write a 64-bit value into the given HW register.
480  */
481 static inline void t4_write_reg64(struct adapter *adapter, u32 reg_addr,
482 				  u64 val)
483 {
484 	writeq(val, adapter->regs + reg_addr);
485 }
486 
487 /**
488  * port_name - return the string name of a port
489  * @adapter: the adapter
490  * @pidx: the port index
491  *
492  * Return the string name of the selected port.
493  */
494 static inline const char *port_name(struct adapter *adapter, int pidx)
495 {
496 	return adapter->port[pidx]->name;
497 }
498 
499 /**
500  * t4_os_set_hw_addr - store a port's MAC address in SW
501  * @adapter: the adapter
502  * @pidx: the port index
503  * @hw_addr: the Ethernet address
504  *
505  * Store the Ethernet address of the given port in SW.  Called by the common
506  * code when it retrieves a port's Ethernet address from EEPROM.
507  */
508 static inline void t4_os_set_hw_addr(struct adapter *adapter, int pidx,
509 				     u8 hw_addr[])
510 {
511 	eth_hw_addr_set(adapter->port[pidx], hw_addr);
512 }
513 
514 /**
515  * netdev2pinfo - return the port_info structure associated with a net_device
516  * @dev: the netdev
517  *
518  * Return the struct port_info associated with a net_device
519  */
520 static inline struct port_info *netdev2pinfo(const struct net_device *dev)
521 {
522 	return netdev_priv(dev);
523 }
524 
525 /**
526  * adap2pinfo - return the port_info of a port
527  * @adap: the adapter
528  * @pidx: the port index
529  *
530  * Return the port_info structure for the adapter.
531  */
532 static inline struct port_info *adap2pinfo(struct adapter *adapter, int pidx)
533 {
534 	return netdev_priv(adapter->port[pidx]);
535 }
536 
537 /**
538  * netdev2adap - return the adapter structure associated with a net_device
539  * @dev: the netdev
540  *
541  * Return the struct adapter associated with a net_device
542  */
543 static inline struct adapter *netdev2adap(const struct net_device *dev)
544 {
545 	return netdev2pinfo(dev)->adapter;
546 }
547 
548 /*
549  * OS "Callback" function declarations.  These are functions that the OS code
550  * is "contracted" to provide for the common code.
551  */
552 void t4vf_os_link_changed(struct adapter *, int, int);
553 void t4vf_os_portmod_changed(struct adapter *, int);
554 
555 /*
556  * SGE function prototype declarations.
557  */
558 int t4vf_sge_alloc_rxq(struct adapter *, struct sge_rspq *, bool,
559 		       struct net_device *, int,
560 		       struct sge_fl *, rspq_handler_t);
561 int t4vf_sge_alloc_eth_txq(struct adapter *, struct sge_eth_txq *,
562 			   struct net_device *, struct netdev_queue *,
563 			   unsigned int);
564 void t4vf_free_sge_resources(struct adapter *);
565 
566 netdev_tx_t t4vf_eth_xmit(struct sk_buff *, struct net_device *);
567 int t4vf_ethrx_handler(struct sge_rspq *, const __be64 *,
568 		       const struct pkt_gl *);
569 
570 irq_handler_t t4vf_intr_handler(struct adapter *);
571 irqreturn_t t4vf_sge_intr_msix(int, void *);
572 
573 int t4vf_sge_init(struct adapter *);
574 void t4vf_sge_start(struct adapter *);
575 void t4vf_sge_stop(struct adapter *);
576 
577 #endif /* __CXGB4VF_ADAPTER_H__ */
578