xref: /linux/drivers/net/ethernet/chelsio/cxgb4/t4_hw.c (revision d96fc832bcb6269d96e33d506f33033d7ed08598)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41 
42 /**
43  *	t4_wait_op_done_val - wait until an operation is completed
44  *	@adapter: the adapter performing the operation
45  *	@reg: the register to check for completion
46  *	@mask: a single-bit field within @reg that indicates completion
47  *	@polarity: the value of the field when the operation is completed
48  *	@attempts: number of check iterations
49  *	@delay: delay in usecs between iterations
50  *	@valp: where to store the value of the register at completion time
51  *
52  *	Wait until an operation is completed by checking a bit in a register
53  *	up to @attempts times.  If @valp is not NULL the value of the register
54  *	at the time it indicated completion is stored there.  Returns 0 if the
55  *	operation completes and	-EAGAIN	otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 			       int polarity, int attempts, int delay, u32 *valp)
59 {
60 	while (1) {
61 		u32 val = t4_read_reg(adapter, reg);
62 
63 		if (!!(val & mask) == polarity) {
64 			if (valp)
65 				*valp = val;
66 			return 0;
67 		}
68 		if (--attempts == 0)
69 			return -EAGAIN;
70 		if (delay)
71 			udelay(delay);
72 	}
73 }
74 
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 				  int polarity, int attempts, int delay)
77 {
78 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 				   delay, NULL);
80 }
81 
82 /**
83  *	t4_set_reg_field - set a register field to a value
84  *	@adapter: the adapter to program
85  *	@addr: the register address
86  *	@mask: specifies the portion of the register to modify
87  *	@val: the new value for the register field
88  *
89  *	Sets a register field specified by the supplied mask to the
90  *	given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 		      u32 val)
94 {
95 	u32 v = t4_read_reg(adapter, addr) & ~mask;
96 
97 	t4_write_reg(adapter, addr, v | val);
98 	(void) t4_read_reg(adapter, addr);      /* flush */
99 }
100 
101 /**
102  *	t4_read_indirect - read indirectly addressed registers
103  *	@adap: the adapter
104  *	@addr_reg: register holding the indirect address
105  *	@data_reg: register holding the value of the indirect register
106  *	@vals: where the read register values are stored
107  *	@nregs: how many indirect registers to read
108  *	@start_idx: index of first indirect register to read
109  *
110  *	Reads registers that are accessed indirectly through an address/data
111  *	register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 			     unsigned int data_reg, u32 *vals,
115 			     unsigned int nregs, unsigned int start_idx)
116 {
117 	while (nregs--) {
118 		t4_write_reg(adap, addr_reg, start_idx);
119 		*vals++ = t4_read_reg(adap, data_reg);
120 		start_idx++;
121 	}
122 }
123 
124 /**
125  *	t4_write_indirect - write indirectly addressed registers
126  *	@adap: the adapter
127  *	@addr_reg: register holding the indirect addresses
128  *	@data_reg: register holding the value for the indirect registers
129  *	@vals: values to write
130  *	@nregs: how many indirect registers to write
131  *	@start_idx: address of first indirect register to write
132  *
133  *	Writes a sequential block of registers that are accessed indirectly
134  *	through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 		       unsigned int data_reg, const u32 *vals,
138 		       unsigned int nregs, unsigned int start_idx)
139 {
140 	while (nregs--) {
141 		t4_write_reg(adap, addr_reg, start_idx++);
142 		t4_write_reg(adap, data_reg, *vals++);
143 	}
144 }
145 
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 
156 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 		req |= ENABLE_F;
158 	else
159 		req |= T6_ENABLE_F;
160 
161 	if (is_t4(adap->params.chip))
162 		req |= LOCALCFG_F;
163 
164 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 
167 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 	 * Configuration Space read.  (None of the other fields matter when
169 	 * ENABLE is 0 so a simple register write is easier than a
170 	 * read-modify-write via t4_set_reg_field().)
171 	 */
172 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174 
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 	static const char *const reason[] = {
186 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 		"Reserved",                     /* reserved */
194 	};
195 	u32 pcie_fw;
196 
197 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 	if (pcie_fw & PCIE_FW_ERR_F) {
199 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 		adap->flags &= ~FW_OK;
202 	}
203 }
204 
205 /*
206  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
207  */
208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
209 			 u32 mbox_addr)
210 {
211 	for ( ; nflit; nflit--, mbox_addr += 8)
212 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
213 }
214 
215 /*
216  * Handle a FW assertion reported in a mailbox.
217  */
218 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
219 {
220 	struct fw_debug_cmd asrt;
221 
222 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
223 	dev_alert(adap->pdev_dev,
224 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
225 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
226 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
227 }
228 
229 /**
230  *	t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
231  *	@adapter: the adapter
232  *	@cmd: the Firmware Mailbox Command or Reply
233  *	@size: command length in bytes
234  *	@access: the time (ms) needed to access the Firmware Mailbox
235  *	@execute: the time (ms) the command spent being executed
236  */
237 static void t4_record_mbox(struct adapter *adapter,
238 			   const __be64 *cmd, unsigned int size,
239 			   int access, int execute)
240 {
241 	struct mbox_cmd_log *log = adapter->mbox_log;
242 	struct mbox_cmd *entry;
243 	int i;
244 
245 	entry = mbox_cmd_log_entry(log, log->cursor++);
246 	if (log->cursor == log->size)
247 		log->cursor = 0;
248 
249 	for (i = 0; i < size / 8; i++)
250 		entry->cmd[i] = be64_to_cpu(cmd[i]);
251 	while (i < MBOX_LEN / 8)
252 		entry->cmd[i++] = 0;
253 	entry->timestamp = jiffies;
254 	entry->seqno = log->seqno++;
255 	entry->access = access;
256 	entry->execute = execute;
257 }
258 
259 /**
260  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
261  *	@adap: the adapter
262  *	@mbox: index of the mailbox to use
263  *	@cmd: the command to write
264  *	@size: command length in bytes
265  *	@rpl: where to optionally store the reply
266  *	@sleep_ok: if true we may sleep while awaiting command completion
267  *	@timeout: time to wait for command to finish before timing out
268  *
269  *	Sends the given command to FW through the selected mailbox and waits
270  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
271  *	store the FW's reply to the command.  The command and its optional
272  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
273  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
274  *	the response.  If sleeping is allowed we use progressive backoff
275  *	otherwise we spin.
276  *
277  *	The return value is 0 on success or a negative errno on failure.  A
278  *	failure can happen either because we are not able to execute the
279  *	command or FW executes it but signals an error.  In the latter case
280  *	the return value is the error code indicated by FW (negated).
281  */
282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
283 			    int size, void *rpl, bool sleep_ok, int timeout)
284 {
285 	static const int delay[] = {
286 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
287 	};
288 
289 	struct mbox_list entry;
290 	u16 access = 0;
291 	u16 execute = 0;
292 	u32 v;
293 	u64 res;
294 	int i, ms, delay_idx, ret;
295 	const __be64 *p = cmd;
296 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
297 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
298 	__be64 cmd_rpl[MBOX_LEN / 8];
299 	u32 pcie_fw;
300 
301 	if ((size & 15) || size > MBOX_LEN)
302 		return -EINVAL;
303 
304 	/*
305 	 * If the device is off-line, as in EEH, commands will time out.
306 	 * Fail them early so we don't waste time waiting.
307 	 */
308 	if (adap->pdev->error_state != pci_channel_io_normal)
309 		return -EIO;
310 
311 	/* If we have a negative timeout, that implies that we can't sleep. */
312 	if (timeout < 0) {
313 		sleep_ok = false;
314 		timeout = -timeout;
315 	}
316 
317 	/* Queue ourselves onto the mailbox access list.  When our entry is at
318 	 * the front of the list, we have rights to access the mailbox.  So we
319 	 * wait [for a while] till we're at the front [or bail out with an
320 	 * EBUSY] ...
321 	 */
322 	spin_lock_bh(&adap->mbox_lock);
323 	list_add_tail(&entry.list, &adap->mlist.list);
324 	spin_unlock_bh(&adap->mbox_lock);
325 
326 	delay_idx = 0;
327 	ms = delay[0];
328 
329 	for (i = 0; ; i += ms) {
330 		/* If we've waited too long, return a busy indication.  This
331 		 * really ought to be based on our initial position in the
332 		 * mailbox access list but this is a start.  We very rearely
333 		 * contend on access to the mailbox ...
334 		 */
335 		pcie_fw = t4_read_reg(adap, PCIE_FW_A);
336 		if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
337 			spin_lock_bh(&adap->mbox_lock);
338 			list_del(&entry.list);
339 			spin_unlock_bh(&adap->mbox_lock);
340 			ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
341 			t4_record_mbox(adap, cmd, size, access, ret);
342 			return ret;
343 		}
344 
345 		/* If we're at the head, break out and start the mailbox
346 		 * protocol.
347 		 */
348 		if (list_first_entry(&adap->mlist.list, struct mbox_list,
349 				     list) == &entry)
350 			break;
351 
352 		/* Delay for a bit before checking again ... */
353 		if (sleep_ok) {
354 			ms = delay[delay_idx];  /* last element may repeat */
355 			if (delay_idx < ARRAY_SIZE(delay) - 1)
356 				delay_idx++;
357 			msleep(ms);
358 		} else {
359 			mdelay(ms);
360 		}
361 	}
362 
363 	/* Loop trying to get ownership of the mailbox.  Return an error
364 	 * if we can't gain ownership.
365 	 */
366 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
368 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
369 	if (v != MBOX_OWNER_DRV) {
370 		spin_lock_bh(&adap->mbox_lock);
371 		list_del(&entry.list);
372 		spin_unlock_bh(&adap->mbox_lock);
373 		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
374 		t4_record_mbox(adap, cmd, size, access, ret);
375 		return ret;
376 	}
377 
378 	/* Copy in the new mailbox command and send it on its way ... */
379 	t4_record_mbox(adap, cmd, size, access, 0);
380 	for (i = 0; i < size; i += 8)
381 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
382 
383 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
384 	t4_read_reg(adap, ctl_reg);          /* flush write */
385 
386 	delay_idx = 0;
387 	ms = delay[0];
388 
389 	for (i = 0;
390 	     !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
391 	     i < timeout;
392 	     i += ms) {
393 		if (sleep_ok) {
394 			ms = delay[delay_idx];  /* last element may repeat */
395 			if (delay_idx < ARRAY_SIZE(delay) - 1)
396 				delay_idx++;
397 			msleep(ms);
398 		} else
399 			mdelay(ms);
400 
401 		v = t4_read_reg(adap, ctl_reg);
402 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
403 			if (!(v & MBMSGVALID_F)) {
404 				t4_write_reg(adap, ctl_reg, 0);
405 				continue;
406 			}
407 
408 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
409 			res = be64_to_cpu(cmd_rpl[0]);
410 
411 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
412 				fw_asrt(adap, data_reg);
413 				res = FW_CMD_RETVAL_V(EIO);
414 			} else if (rpl) {
415 				memcpy(rpl, cmd_rpl, size);
416 			}
417 
418 			t4_write_reg(adap, ctl_reg, 0);
419 
420 			execute = i + ms;
421 			t4_record_mbox(adap, cmd_rpl,
422 				       MBOX_LEN, access, execute);
423 			spin_lock_bh(&adap->mbox_lock);
424 			list_del(&entry.list);
425 			spin_unlock_bh(&adap->mbox_lock);
426 			return -FW_CMD_RETVAL_G((int)res);
427 		}
428 	}
429 
430 	ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
431 	t4_record_mbox(adap, cmd, size, access, ret);
432 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
433 		*(const u8 *)cmd, mbox);
434 	t4_report_fw_error(adap);
435 	spin_lock_bh(&adap->mbox_lock);
436 	list_del(&entry.list);
437 	spin_unlock_bh(&adap->mbox_lock);
438 	t4_fatal_err(adap);
439 	return ret;
440 }
441 
442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
443 		    void *rpl, bool sleep_ok)
444 {
445 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
446 				       FW_CMD_MAX_TIMEOUT);
447 }
448 
449 static int t4_edc_err_read(struct adapter *adap, int idx)
450 {
451 	u32 edc_ecc_err_addr_reg;
452 	u32 rdata_reg;
453 
454 	if (is_t4(adap->params.chip)) {
455 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
456 		return 0;
457 	}
458 	if (idx != 0 && idx != 1) {
459 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
460 		return 0;
461 	}
462 
463 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
464 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
465 
466 	CH_WARN(adap,
467 		"edc%d err addr 0x%x: 0x%x.\n",
468 		idx, edc_ecc_err_addr_reg,
469 		t4_read_reg(adap, edc_ecc_err_addr_reg));
470 	CH_WARN(adap,
471 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
472 		rdata_reg,
473 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
474 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
475 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
476 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
477 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
478 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
479 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
480 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
481 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
482 
483 	return 0;
484 }
485 
486 /**
487  * t4_memory_rw_init - Get memory window relative offset, base, and size.
488  * @adap: the adapter
489  * @win: PCI-E Memory Window to use
490  * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
491  * @mem_off: memory relative offset with respect to @mtype.
492  * @mem_base: configured memory base address.
493  * @mem_aperture: configured memory window aperture.
494  *
495  * Get the configured memory window's relative offset, base, and size.
496  */
497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
498 		      u32 *mem_base, u32 *mem_aperture)
499 {
500 	u32 edc_size, mc_size, mem_reg;
501 
502 	/* Offset into the region of memory which is being accessed
503 	 * MEM_EDC0 = 0
504 	 * MEM_EDC1 = 1
505 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
506 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
507 	 * MEM_HMA  = 4
508 	 */
509 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
510 	if (mtype == MEM_HMA) {
511 		*mem_off = 2 * (edc_size * 1024 * 1024);
512 	} else if (mtype != MEM_MC1) {
513 		*mem_off = (mtype * (edc_size * 1024 * 1024));
514 	} else {
515 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
516 						      MA_EXT_MEMORY0_BAR_A));
517 		*mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
518 	}
519 
520 	/* Each PCI-E Memory Window is programmed with a window size -- or
521 	 * "aperture" -- which controls the granularity of its mapping onto
522 	 * adapter memory.  We need to grab that aperture in order to know
523 	 * how to use the specified window.  The window is also programmed
524 	 * with the base address of the Memory Window in BAR0's address
525 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
526 	 * the address is relative to BAR0.
527 	 */
528 	mem_reg = t4_read_reg(adap,
529 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
530 						  win));
531 	/* a dead adapter will return 0xffffffff for PIO reads */
532 	if (mem_reg == 0xffffffff)
533 		return -ENXIO;
534 
535 	*mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
536 	*mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
537 	if (is_t4(adap->params.chip))
538 		*mem_base -= adap->t4_bar0;
539 
540 	return 0;
541 }
542 
543 /**
544  * t4_memory_update_win - Move memory window to specified address.
545  * @adap: the adapter
546  * @win: PCI-E Memory Window to use
547  * @addr: location to move.
548  *
549  * Move memory window to specified address.
550  */
551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
552 {
553 	t4_write_reg(adap,
554 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
555 		     addr);
556 	/* Read it back to ensure that changes propagate before we
557 	 * attempt to use the new value.
558 	 */
559 	t4_read_reg(adap,
560 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
561 }
562 
563 /**
564  * t4_memory_rw_residual - Read/Write residual data.
565  * @adap: the adapter
566  * @off: relative offset within residual to start read/write.
567  * @addr: address within indicated memory type.
568  * @buf: host memory buffer
569  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
570  *
571  * Read/Write residual data less than 32-bits.
572  */
573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
574 			   int dir)
575 {
576 	union {
577 		u32 word;
578 		char byte[4];
579 	} last;
580 	unsigned char *bp;
581 	int i;
582 
583 	if (dir == T4_MEMORY_READ) {
584 		last.word = le32_to_cpu((__force __le32)
585 					t4_read_reg(adap, addr));
586 		for (bp = (unsigned char *)buf, i = off; i < 4; i++)
587 			bp[i] = last.byte[i];
588 	} else {
589 		last.word = *buf;
590 		for (i = off; i < 4; i++)
591 			last.byte[i] = 0;
592 		t4_write_reg(adap, addr,
593 			     (__force u32)cpu_to_le32(last.word));
594 	}
595 }
596 
597 /**
598  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
599  *	@adap: the adapter
600  *	@win: PCI-E Memory Window to use
601  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
602  *	@addr: address within indicated memory type
603  *	@len: amount of memory to transfer
604  *	@hbuf: host memory buffer
605  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
606  *
607  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
608  *	firmware memory address and host buffer must be aligned on 32-bit
609  *	boudaries; the length may be arbitrary.  The memory is transferred as
610  *	a raw byte sequence from/to the firmware's memory.  If this memory
611  *	contains data structures which contain multi-byte integers, it's the
612  *	caller's responsibility to perform appropriate byte order conversions.
613  */
614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
615 		 u32 len, void *hbuf, int dir)
616 {
617 	u32 pos, offset, resid, memoffset;
618 	u32 win_pf, mem_aperture, mem_base;
619 	u32 *buf;
620 	int ret;
621 
622 	/* Argument sanity checks ...
623 	 */
624 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
625 		return -EINVAL;
626 	buf = (u32 *)hbuf;
627 
628 	/* It's convenient to be able to handle lengths which aren't a
629 	 * multiple of 32-bits because we often end up transferring files to
630 	 * the firmware.  So we'll handle that by normalizing the length here
631 	 * and then handling any residual transfer at the end.
632 	 */
633 	resid = len & 0x3;
634 	len -= resid;
635 
636 	ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
637 				&mem_aperture);
638 	if (ret)
639 		return ret;
640 
641 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
642 	addr = addr + memoffset;
643 
644 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
645 
646 	/* Calculate our initial PCI-E Memory Window Position and Offset into
647 	 * that Window.
648 	 */
649 	pos = addr & ~(mem_aperture - 1);
650 	offset = addr - pos;
651 
652 	/* Set up initial PCI-E Memory Window to cover the start of our
653 	 * transfer.
654 	 */
655 	t4_memory_update_win(adap, win, pos | win_pf);
656 
657 	/* Transfer data to/from the adapter as long as there's an integral
658 	 * number of 32-bit transfers to complete.
659 	 *
660 	 * A note on Endianness issues:
661 	 *
662 	 * The "register" reads and writes below from/to the PCI-E Memory
663 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
664 	 * Little-Endian "swizzel."  As a result, if we have the following
665 	 * data in adapter memory:
666 	 *
667 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
668 	 *     Address:      i+0  i+1  i+2  i+3
669 	 *
670 	 * Then a read of the adapter memory via the PCI-E Memory Window
671 	 * will yield:
672 	 *
673 	 *     x = readl(i)
674 	 *         31                  0
675 	 *         [ b3 | b2 | b1 | b0 ]
676 	 *
677 	 * If this value is stored into local memory on a Little-Endian system
678 	 * it will show up correctly in local memory as:
679 	 *
680 	 *     ( ..., b0, b1, b2, b3, ... )
681 	 *
682 	 * But on a Big-Endian system, the store will show up in memory
683 	 * incorrectly swizzled as:
684 	 *
685 	 *     ( ..., b3, b2, b1, b0, ... )
686 	 *
687 	 * So we need to account for this in the reads and writes to the
688 	 * PCI-E Memory Window below by undoing the register read/write
689 	 * swizzels.
690 	 */
691 	while (len > 0) {
692 		if (dir == T4_MEMORY_READ)
693 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
694 						mem_base + offset));
695 		else
696 			t4_write_reg(adap, mem_base + offset,
697 				     (__force u32)cpu_to_le32(*buf++));
698 		offset += sizeof(__be32);
699 		len -= sizeof(__be32);
700 
701 		/* If we've reached the end of our current window aperture,
702 		 * move the PCI-E Memory Window on to the next.  Note that
703 		 * doing this here after "len" may be 0 allows us to set up
704 		 * the PCI-E Memory Window for a possible final residual
705 		 * transfer below ...
706 		 */
707 		if (offset == mem_aperture) {
708 			pos += mem_aperture;
709 			offset = 0;
710 			t4_memory_update_win(adap, win, pos | win_pf);
711 		}
712 	}
713 
714 	/* If the original transfer had a length which wasn't a multiple of
715 	 * 32-bits, now's where we need to finish off the transfer of the
716 	 * residual amount.  The PCI-E Memory Window has already been moved
717 	 * above (if necessary) to cover this final transfer.
718 	 */
719 	if (resid)
720 		t4_memory_rw_residual(adap, resid, mem_base + offset,
721 				      (u8 *)buf, dir);
722 
723 	return 0;
724 }
725 
726 /* Return the specified PCI-E Configuration Space register from our Physical
727  * Function.  We try first via a Firmware LDST Command since we prefer to let
728  * the firmware own all of these registers, but if that fails we go for it
729  * directly ourselves.
730  */
731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
732 {
733 	u32 val, ldst_addrspace;
734 
735 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
736 	 * retrieve the specified PCI-E Configuration Space register.
737 	 */
738 	struct fw_ldst_cmd ldst_cmd;
739 	int ret;
740 
741 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
742 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
743 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
744 					       FW_CMD_REQUEST_F |
745 					       FW_CMD_READ_F |
746 					       ldst_addrspace);
747 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
748 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
749 	ldst_cmd.u.pcie.ctrl_to_fn =
750 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
751 	ldst_cmd.u.pcie.r = reg;
752 
753 	/* If the LDST Command succeeds, return the result, otherwise
754 	 * fall through to reading it directly ourselves ...
755 	 */
756 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
757 			 &ldst_cmd);
758 	if (ret == 0)
759 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
760 	else
761 		/* Read the desired Configuration Space register via the PCI-E
762 		 * Backdoor mechanism.
763 		 */
764 		t4_hw_pci_read_cfg4(adap, reg, &val);
765 	return val;
766 }
767 
768 /* Get the window based on base passed to it.
769  * Window aperture is currently unhandled, but there is no use case for it
770  * right now
771  */
772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
773 			 u32 memwin_base)
774 {
775 	u32 ret;
776 
777 	if (is_t4(adap->params.chip)) {
778 		u32 bar0;
779 
780 		/* Truncation intentional: we only read the bottom 32-bits of
781 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
782 		 * mechanism to read BAR0 instead of using
783 		 * pci_resource_start() because we could be operating from
784 		 * within a Virtual Machine which is trapping our accesses to
785 		 * our Configuration Space and we need to set up the PCI-E
786 		 * Memory Window decoders with the actual addresses which will
787 		 * be coming across the PCI-E link.
788 		 */
789 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
790 		bar0 &= pci_mask;
791 		adap->t4_bar0 = bar0;
792 
793 		ret = bar0 + memwin_base;
794 	} else {
795 		/* For T5, only relative offset inside the PCIe BAR is passed */
796 		ret = memwin_base;
797 	}
798 	return ret;
799 }
800 
801 /* Get the default utility window (win0) used by everyone */
802 u32 t4_get_util_window(struct adapter *adap)
803 {
804 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
805 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
806 }
807 
808 /* Set up memory window for accessing adapter memory ranges.  (Read
809  * back MA register to ensure that changes propagate before we attempt
810  * to use the new values.)
811  */
812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
813 {
814 	t4_write_reg(adap,
815 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
816 		     memwin_base | BIR_V(0) |
817 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
818 	t4_read_reg(adap,
819 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
820 }
821 
822 /**
823  *	t4_get_regs_len - return the size of the chips register set
824  *	@adapter: the adapter
825  *
826  *	Returns the size of the chip's BAR0 register space.
827  */
828 unsigned int t4_get_regs_len(struct adapter *adapter)
829 {
830 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
831 
832 	switch (chip_version) {
833 	case CHELSIO_T4:
834 		return T4_REGMAP_SIZE;
835 
836 	case CHELSIO_T5:
837 	case CHELSIO_T6:
838 		return T5_REGMAP_SIZE;
839 	}
840 
841 	dev_err(adapter->pdev_dev,
842 		"Unsupported chip version %d\n", chip_version);
843 	return 0;
844 }
845 
846 /**
847  *	t4_get_regs - read chip registers into provided buffer
848  *	@adap: the adapter
849  *	@buf: register buffer
850  *	@buf_size: size (in bytes) of register buffer
851  *
852  *	If the provided register buffer isn't large enough for the chip's
853  *	full register range, the register dump will be truncated to the
854  *	register buffer's size.
855  */
856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
857 {
858 	static const unsigned int t4_reg_ranges[] = {
859 		0x1008, 0x1108,
860 		0x1180, 0x1184,
861 		0x1190, 0x1194,
862 		0x11a0, 0x11a4,
863 		0x11b0, 0x11b4,
864 		0x11fc, 0x123c,
865 		0x1300, 0x173c,
866 		0x1800, 0x18fc,
867 		0x3000, 0x30d8,
868 		0x30e0, 0x30e4,
869 		0x30ec, 0x5910,
870 		0x5920, 0x5924,
871 		0x5960, 0x5960,
872 		0x5968, 0x5968,
873 		0x5970, 0x5970,
874 		0x5978, 0x5978,
875 		0x5980, 0x5980,
876 		0x5988, 0x5988,
877 		0x5990, 0x5990,
878 		0x5998, 0x5998,
879 		0x59a0, 0x59d4,
880 		0x5a00, 0x5ae0,
881 		0x5ae8, 0x5ae8,
882 		0x5af0, 0x5af0,
883 		0x5af8, 0x5af8,
884 		0x6000, 0x6098,
885 		0x6100, 0x6150,
886 		0x6200, 0x6208,
887 		0x6240, 0x6248,
888 		0x6280, 0x62b0,
889 		0x62c0, 0x6338,
890 		0x6370, 0x638c,
891 		0x6400, 0x643c,
892 		0x6500, 0x6524,
893 		0x6a00, 0x6a04,
894 		0x6a14, 0x6a38,
895 		0x6a60, 0x6a70,
896 		0x6a78, 0x6a78,
897 		0x6b00, 0x6b0c,
898 		0x6b1c, 0x6b84,
899 		0x6bf0, 0x6bf8,
900 		0x6c00, 0x6c0c,
901 		0x6c1c, 0x6c84,
902 		0x6cf0, 0x6cf8,
903 		0x6d00, 0x6d0c,
904 		0x6d1c, 0x6d84,
905 		0x6df0, 0x6df8,
906 		0x6e00, 0x6e0c,
907 		0x6e1c, 0x6e84,
908 		0x6ef0, 0x6ef8,
909 		0x6f00, 0x6f0c,
910 		0x6f1c, 0x6f84,
911 		0x6ff0, 0x6ff8,
912 		0x7000, 0x700c,
913 		0x701c, 0x7084,
914 		0x70f0, 0x70f8,
915 		0x7100, 0x710c,
916 		0x711c, 0x7184,
917 		0x71f0, 0x71f8,
918 		0x7200, 0x720c,
919 		0x721c, 0x7284,
920 		0x72f0, 0x72f8,
921 		0x7300, 0x730c,
922 		0x731c, 0x7384,
923 		0x73f0, 0x73f8,
924 		0x7400, 0x7450,
925 		0x7500, 0x7530,
926 		0x7600, 0x760c,
927 		0x7614, 0x761c,
928 		0x7680, 0x76cc,
929 		0x7700, 0x7798,
930 		0x77c0, 0x77fc,
931 		0x7900, 0x79fc,
932 		0x7b00, 0x7b58,
933 		0x7b60, 0x7b84,
934 		0x7b8c, 0x7c38,
935 		0x7d00, 0x7d38,
936 		0x7d40, 0x7d80,
937 		0x7d8c, 0x7ddc,
938 		0x7de4, 0x7e04,
939 		0x7e10, 0x7e1c,
940 		0x7e24, 0x7e38,
941 		0x7e40, 0x7e44,
942 		0x7e4c, 0x7e78,
943 		0x7e80, 0x7ea4,
944 		0x7eac, 0x7edc,
945 		0x7ee8, 0x7efc,
946 		0x8dc0, 0x8e04,
947 		0x8e10, 0x8e1c,
948 		0x8e30, 0x8e78,
949 		0x8ea0, 0x8eb8,
950 		0x8ec0, 0x8f6c,
951 		0x8fc0, 0x9008,
952 		0x9010, 0x9058,
953 		0x9060, 0x9060,
954 		0x9068, 0x9074,
955 		0x90fc, 0x90fc,
956 		0x9400, 0x9408,
957 		0x9410, 0x9458,
958 		0x9600, 0x9600,
959 		0x9608, 0x9638,
960 		0x9640, 0x96bc,
961 		0x9800, 0x9808,
962 		0x9820, 0x983c,
963 		0x9850, 0x9864,
964 		0x9c00, 0x9c6c,
965 		0x9c80, 0x9cec,
966 		0x9d00, 0x9d6c,
967 		0x9d80, 0x9dec,
968 		0x9e00, 0x9e6c,
969 		0x9e80, 0x9eec,
970 		0x9f00, 0x9f6c,
971 		0x9f80, 0x9fec,
972 		0xd004, 0xd004,
973 		0xd010, 0xd03c,
974 		0xdfc0, 0xdfe0,
975 		0xe000, 0xea7c,
976 		0xf000, 0x11110,
977 		0x11118, 0x11190,
978 		0x19040, 0x1906c,
979 		0x19078, 0x19080,
980 		0x1908c, 0x190e4,
981 		0x190f0, 0x190f8,
982 		0x19100, 0x19110,
983 		0x19120, 0x19124,
984 		0x19150, 0x19194,
985 		0x1919c, 0x191b0,
986 		0x191d0, 0x191e8,
987 		0x19238, 0x1924c,
988 		0x193f8, 0x1943c,
989 		0x1944c, 0x19474,
990 		0x19490, 0x194e0,
991 		0x194f0, 0x194f8,
992 		0x19800, 0x19c08,
993 		0x19c10, 0x19c90,
994 		0x19ca0, 0x19ce4,
995 		0x19cf0, 0x19d40,
996 		0x19d50, 0x19d94,
997 		0x19da0, 0x19de8,
998 		0x19df0, 0x19e40,
999 		0x19e50, 0x19e90,
1000 		0x19ea0, 0x19f4c,
1001 		0x1a000, 0x1a004,
1002 		0x1a010, 0x1a06c,
1003 		0x1a0b0, 0x1a0e4,
1004 		0x1a0ec, 0x1a0f4,
1005 		0x1a100, 0x1a108,
1006 		0x1a114, 0x1a120,
1007 		0x1a128, 0x1a130,
1008 		0x1a138, 0x1a138,
1009 		0x1a190, 0x1a1c4,
1010 		0x1a1fc, 0x1a1fc,
1011 		0x1e040, 0x1e04c,
1012 		0x1e284, 0x1e28c,
1013 		0x1e2c0, 0x1e2c0,
1014 		0x1e2e0, 0x1e2e0,
1015 		0x1e300, 0x1e384,
1016 		0x1e3c0, 0x1e3c8,
1017 		0x1e440, 0x1e44c,
1018 		0x1e684, 0x1e68c,
1019 		0x1e6c0, 0x1e6c0,
1020 		0x1e6e0, 0x1e6e0,
1021 		0x1e700, 0x1e784,
1022 		0x1e7c0, 0x1e7c8,
1023 		0x1e840, 0x1e84c,
1024 		0x1ea84, 0x1ea8c,
1025 		0x1eac0, 0x1eac0,
1026 		0x1eae0, 0x1eae0,
1027 		0x1eb00, 0x1eb84,
1028 		0x1ebc0, 0x1ebc8,
1029 		0x1ec40, 0x1ec4c,
1030 		0x1ee84, 0x1ee8c,
1031 		0x1eec0, 0x1eec0,
1032 		0x1eee0, 0x1eee0,
1033 		0x1ef00, 0x1ef84,
1034 		0x1efc0, 0x1efc8,
1035 		0x1f040, 0x1f04c,
1036 		0x1f284, 0x1f28c,
1037 		0x1f2c0, 0x1f2c0,
1038 		0x1f2e0, 0x1f2e0,
1039 		0x1f300, 0x1f384,
1040 		0x1f3c0, 0x1f3c8,
1041 		0x1f440, 0x1f44c,
1042 		0x1f684, 0x1f68c,
1043 		0x1f6c0, 0x1f6c0,
1044 		0x1f6e0, 0x1f6e0,
1045 		0x1f700, 0x1f784,
1046 		0x1f7c0, 0x1f7c8,
1047 		0x1f840, 0x1f84c,
1048 		0x1fa84, 0x1fa8c,
1049 		0x1fac0, 0x1fac0,
1050 		0x1fae0, 0x1fae0,
1051 		0x1fb00, 0x1fb84,
1052 		0x1fbc0, 0x1fbc8,
1053 		0x1fc40, 0x1fc4c,
1054 		0x1fe84, 0x1fe8c,
1055 		0x1fec0, 0x1fec0,
1056 		0x1fee0, 0x1fee0,
1057 		0x1ff00, 0x1ff84,
1058 		0x1ffc0, 0x1ffc8,
1059 		0x20000, 0x2002c,
1060 		0x20100, 0x2013c,
1061 		0x20190, 0x201a0,
1062 		0x201a8, 0x201b8,
1063 		0x201c4, 0x201c8,
1064 		0x20200, 0x20318,
1065 		0x20400, 0x204b4,
1066 		0x204c0, 0x20528,
1067 		0x20540, 0x20614,
1068 		0x21000, 0x21040,
1069 		0x2104c, 0x21060,
1070 		0x210c0, 0x210ec,
1071 		0x21200, 0x21268,
1072 		0x21270, 0x21284,
1073 		0x212fc, 0x21388,
1074 		0x21400, 0x21404,
1075 		0x21500, 0x21500,
1076 		0x21510, 0x21518,
1077 		0x2152c, 0x21530,
1078 		0x2153c, 0x2153c,
1079 		0x21550, 0x21554,
1080 		0x21600, 0x21600,
1081 		0x21608, 0x2161c,
1082 		0x21624, 0x21628,
1083 		0x21630, 0x21634,
1084 		0x2163c, 0x2163c,
1085 		0x21700, 0x2171c,
1086 		0x21780, 0x2178c,
1087 		0x21800, 0x21818,
1088 		0x21820, 0x21828,
1089 		0x21830, 0x21848,
1090 		0x21850, 0x21854,
1091 		0x21860, 0x21868,
1092 		0x21870, 0x21870,
1093 		0x21878, 0x21898,
1094 		0x218a0, 0x218a8,
1095 		0x218b0, 0x218c8,
1096 		0x218d0, 0x218d4,
1097 		0x218e0, 0x218e8,
1098 		0x218f0, 0x218f0,
1099 		0x218f8, 0x21a18,
1100 		0x21a20, 0x21a28,
1101 		0x21a30, 0x21a48,
1102 		0x21a50, 0x21a54,
1103 		0x21a60, 0x21a68,
1104 		0x21a70, 0x21a70,
1105 		0x21a78, 0x21a98,
1106 		0x21aa0, 0x21aa8,
1107 		0x21ab0, 0x21ac8,
1108 		0x21ad0, 0x21ad4,
1109 		0x21ae0, 0x21ae8,
1110 		0x21af0, 0x21af0,
1111 		0x21af8, 0x21c18,
1112 		0x21c20, 0x21c20,
1113 		0x21c28, 0x21c30,
1114 		0x21c38, 0x21c38,
1115 		0x21c80, 0x21c98,
1116 		0x21ca0, 0x21ca8,
1117 		0x21cb0, 0x21cc8,
1118 		0x21cd0, 0x21cd4,
1119 		0x21ce0, 0x21ce8,
1120 		0x21cf0, 0x21cf0,
1121 		0x21cf8, 0x21d7c,
1122 		0x21e00, 0x21e04,
1123 		0x22000, 0x2202c,
1124 		0x22100, 0x2213c,
1125 		0x22190, 0x221a0,
1126 		0x221a8, 0x221b8,
1127 		0x221c4, 0x221c8,
1128 		0x22200, 0x22318,
1129 		0x22400, 0x224b4,
1130 		0x224c0, 0x22528,
1131 		0x22540, 0x22614,
1132 		0x23000, 0x23040,
1133 		0x2304c, 0x23060,
1134 		0x230c0, 0x230ec,
1135 		0x23200, 0x23268,
1136 		0x23270, 0x23284,
1137 		0x232fc, 0x23388,
1138 		0x23400, 0x23404,
1139 		0x23500, 0x23500,
1140 		0x23510, 0x23518,
1141 		0x2352c, 0x23530,
1142 		0x2353c, 0x2353c,
1143 		0x23550, 0x23554,
1144 		0x23600, 0x23600,
1145 		0x23608, 0x2361c,
1146 		0x23624, 0x23628,
1147 		0x23630, 0x23634,
1148 		0x2363c, 0x2363c,
1149 		0x23700, 0x2371c,
1150 		0x23780, 0x2378c,
1151 		0x23800, 0x23818,
1152 		0x23820, 0x23828,
1153 		0x23830, 0x23848,
1154 		0x23850, 0x23854,
1155 		0x23860, 0x23868,
1156 		0x23870, 0x23870,
1157 		0x23878, 0x23898,
1158 		0x238a0, 0x238a8,
1159 		0x238b0, 0x238c8,
1160 		0x238d0, 0x238d4,
1161 		0x238e0, 0x238e8,
1162 		0x238f0, 0x238f0,
1163 		0x238f8, 0x23a18,
1164 		0x23a20, 0x23a28,
1165 		0x23a30, 0x23a48,
1166 		0x23a50, 0x23a54,
1167 		0x23a60, 0x23a68,
1168 		0x23a70, 0x23a70,
1169 		0x23a78, 0x23a98,
1170 		0x23aa0, 0x23aa8,
1171 		0x23ab0, 0x23ac8,
1172 		0x23ad0, 0x23ad4,
1173 		0x23ae0, 0x23ae8,
1174 		0x23af0, 0x23af0,
1175 		0x23af8, 0x23c18,
1176 		0x23c20, 0x23c20,
1177 		0x23c28, 0x23c30,
1178 		0x23c38, 0x23c38,
1179 		0x23c80, 0x23c98,
1180 		0x23ca0, 0x23ca8,
1181 		0x23cb0, 0x23cc8,
1182 		0x23cd0, 0x23cd4,
1183 		0x23ce0, 0x23ce8,
1184 		0x23cf0, 0x23cf0,
1185 		0x23cf8, 0x23d7c,
1186 		0x23e00, 0x23e04,
1187 		0x24000, 0x2402c,
1188 		0x24100, 0x2413c,
1189 		0x24190, 0x241a0,
1190 		0x241a8, 0x241b8,
1191 		0x241c4, 0x241c8,
1192 		0x24200, 0x24318,
1193 		0x24400, 0x244b4,
1194 		0x244c0, 0x24528,
1195 		0x24540, 0x24614,
1196 		0x25000, 0x25040,
1197 		0x2504c, 0x25060,
1198 		0x250c0, 0x250ec,
1199 		0x25200, 0x25268,
1200 		0x25270, 0x25284,
1201 		0x252fc, 0x25388,
1202 		0x25400, 0x25404,
1203 		0x25500, 0x25500,
1204 		0x25510, 0x25518,
1205 		0x2552c, 0x25530,
1206 		0x2553c, 0x2553c,
1207 		0x25550, 0x25554,
1208 		0x25600, 0x25600,
1209 		0x25608, 0x2561c,
1210 		0x25624, 0x25628,
1211 		0x25630, 0x25634,
1212 		0x2563c, 0x2563c,
1213 		0x25700, 0x2571c,
1214 		0x25780, 0x2578c,
1215 		0x25800, 0x25818,
1216 		0x25820, 0x25828,
1217 		0x25830, 0x25848,
1218 		0x25850, 0x25854,
1219 		0x25860, 0x25868,
1220 		0x25870, 0x25870,
1221 		0x25878, 0x25898,
1222 		0x258a0, 0x258a8,
1223 		0x258b0, 0x258c8,
1224 		0x258d0, 0x258d4,
1225 		0x258e0, 0x258e8,
1226 		0x258f0, 0x258f0,
1227 		0x258f8, 0x25a18,
1228 		0x25a20, 0x25a28,
1229 		0x25a30, 0x25a48,
1230 		0x25a50, 0x25a54,
1231 		0x25a60, 0x25a68,
1232 		0x25a70, 0x25a70,
1233 		0x25a78, 0x25a98,
1234 		0x25aa0, 0x25aa8,
1235 		0x25ab0, 0x25ac8,
1236 		0x25ad0, 0x25ad4,
1237 		0x25ae0, 0x25ae8,
1238 		0x25af0, 0x25af0,
1239 		0x25af8, 0x25c18,
1240 		0x25c20, 0x25c20,
1241 		0x25c28, 0x25c30,
1242 		0x25c38, 0x25c38,
1243 		0x25c80, 0x25c98,
1244 		0x25ca0, 0x25ca8,
1245 		0x25cb0, 0x25cc8,
1246 		0x25cd0, 0x25cd4,
1247 		0x25ce0, 0x25ce8,
1248 		0x25cf0, 0x25cf0,
1249 		0x25cf8, 0x25d7c,
1250 		0x25e00, 0x25e04,
1251 		0x26000, 0x2602c,
1252 		0x26100, 0x2613c,
1253 		0x26190, 0x261a0,
1254 		0x261a8, 0x261b8,
1255 		0x261c4, 0x261c8,
1256 		0x26200, 0x26318,
1257 		0x26400, 0x264b4,
1258 		0x264c0, 0x26528,
1259 		0x26540, 0x26614,
1260 		0x27000, 0x27040,
1261 		0x2704c, 0x27060,
1262 		0x270c0, 0x270ec,
1263 		0x27200, 0x27268,
1264 		0x27270, 0x27284,
1265 		0x272fc, 0x27388,
1266 		0x27400, 0x27404,
1267 		0x27500, 0x27500,
1268 		0x27510, 0x27518,
1269 		0x2752c, 0x27530,
1270 		0x2753c, 0x2753c,
1271 		0x27550, 0x27554,
1272 		0x27600, 0x27600,
1273 		0x27608, 0x2761c,
1274 		0x27624, 0x27628,
1275 		0x27630, 0x27634,
1276 		0x2763c, 0x2763c,
1277 		0x27700, 0x2771c,
1278 		0x27780, 0x2778c,
1279 		0x27800, 0x27818,
1280 		0x27820, 0x27828,
1281 		0x27830, 0x27848,
1282 		0x27850, 0x27854,
1283 		0x27860, 0x27868,
1284 		0x27870, 0x27870,
1285 		0x27878, 0x27898,
1286 		0x278a0, 0x278a8,
1287 		0x278b0, 0x278c8,
1288 		0x278d0, 0x278d4,
1289 		0x278e0, 0x278e8,
1290 		0x278f0, 0x278f0,
1291 		0x278f8, 0x27a18,
1292 		0x27a20, 0x27a28,
1293 		0x27a30, 0x27a48,
1294 		0x27a50, 0x27a54,
1295 		0x27a60, 0x27a68,
1296 		0x27a70, 0x27a70,
1297 		0x27a78, 0x27a98,
1298 		0x27aa0, 0x27aa8,
1299 		0x27ab0, 0x27ac8,
1300 		0x27ad0, 0x27ad4,
1301 		0x27ae0, 0x27ae8,
1302 		0x27af0, 0x27af0,
1303 		0x27af8, 0x27c18,
1304 		0x27c20, 0x27c20,
1305 		0x27c28, 0x27c30,
1306 		0x27c38, 0x27c38,
1307 		0x27c80, 0x27c98,
1308 		0x27ca0, 0x27ca8,
1309 		0x27cb0, 0x27cc8,
1310 		0x27cd0, 0x27cd4,
1311 		0x27ce0, 0x27ce8,
1312 		0x27cf0, 0x27cf0,
1313 		0x27cf8, 0x27d7c,
1314 		0x27e00, 0x27e04,
1315 	};
1316 
1317 	static const unsigned int t5_reg_ranges[] = {
1318 		0x1008, 0x10c0,
1319 		0x10cc, 0x10f8,
1320 		0x1100, 0x1100,
1321 		0x110c, 0x1148,
1322 		0x1180, 0x1184,
1323 		0x1190, 0x1194,
1324 		0x11a0, 0x11a4,
1325 		0x11b0, 0x11b4,
1326 		0x11fc, 0x123c,
1327 		0x1280, 0x173c,
1328 		0x1800, 0x18fc,
1329 		0x3000, 0x3028,
1330 		0x3060, 0x30b0,
1331 		0x30b8, 0x30d8,
1332 		0x30e0, 0x30fc,
1333 		0x3140, 0x357c,
1334 		0x35a8, 0x35cc,
1335 		0x35ec, 0x35ec,
1336 		0x3600, 0x5624,
1337 		0x56cc, 0x56ec,
1338 		0x56f4, 0x5720,
1339 		0x5728, 0x575c,
1340 		0x580c, 0x5814,
1341 		0x5890, 0x589c,
1342 		0x58a4, 0x58ac,
1343 		0x58b8, 0x58bc,
1344 		0x5940, 0x59c8,
1345 		0x59d0, 0x59dc,
1346 		0x59fc, 0x5a18,
1347 		0x5a60, 0x5a70,
1348 		0x5a80, 0x5a9c,
1349 		0x5b94, 0x5bfc,
1350 		0x6000, 0x6020,
1351 		0x6028, 0x6040,
1352 		0x6058, 0x609c,
1353 		0x60a8, 0x614c,
1354 		0x7700, 0x7798,
1355 		0x77c0, 0x78fc,
1356 		0x7b00, 0x7b58,
1357 		0x7b60, 0x7b84,
1358 		0x7b8c, 0x7c54,
1359 		0x7d00, 0x7d38,
1360 		0x7d40, 0x7d80,
1361 		0x7d8c, 0x7ddc,
1362 		0x7de4, 0x7e04,
1363 		0x7e10, 0x7e1c,
1364 		0x7e24, 0x7e38,
1365 		0x7e40, 0x7e44,
1366 		0x7e4c, 0x7e78,
1367 		0x7e80, 0x7edc,
1368 		0x7ee8, 0x7efc,
1369 		0x8dc0, 0x8de0,
1370 		0x8df8, 0x8e04,
1371 		0x8e10, 0x8e84,
1372 		0x8ea0, 0x8f84,
1373 		0x8fc0, 0x9058,
1374 		0x9060, 0x9060,
1375 		0x9068, 0x90f8,
1376 		0x9400, 0x9408,
1377 		0x9410, 0x9470,
1378 		0x9600, 0x9600,
1379 		0x9608, 0x9638,
1380 		0x9640, 0x96f4,
1381 		0x9800, 0x9808,
1382 		0x9820, 0x983c,
1383 		0x9850, 0x9864,
1384 		0x9c00, 0x9c6c,
1385 		0x9c80, 0x9cec,
1386 		0x9d00, 0x9d6c,
1387 		0x9d80, 0x9dec,
1388 		0x9e00, 0x9e6c,
1389 		0x9e80, 0x9eec,
1390 		0x9f00, 0x9f6c,
1391 		0x9f80, 0xa020,
1392 		0xd004, 0xd004,
1393 		0xd010, 0xd03c,
1394 		0xdfc0, 0xdfe0,
1395 		0xe000, 0x1106c,
1396 		0x11074, 0x11088,
1397 		0x1109c, 0x1117c,
1398 		0x11190, 0x11204,
1399 		0x19040, 0x1906c,
1400 		0x19078, 0x19080,
1401 		0x1908c, 0x190e8,
1402 		0x190f0, 0x190f8,
1403 		0x19100, 0x19110,
1404 		0x19120, 0x19124,
1405 		0x19150, 0x19194,
1406 		0x1919c, 0x191b0,
1407 		0x191d0, 0x191e8,
1408 		0x19238, 0x19290,
1409 		0x193f8, 0x19428,
1410 		0x19430, 0x19444,
1411 		0x1944c, 0x1946c,
1412 		0x19474, 0x19474,
1413 		0x19490, 0x194cc,
1414 		0x194f0, 0x194f8,
1415 		0x19c00, 0x19c08,
1416 		0x19c10, 0x19c60,
1417 		0x19c94, 0x19ce4,
1418 		0x19cf0, 0x19d40,
1419 		0x19d50, 0x19d94,
1420 		0x19da0, 0x19de8,
1421 		0x19df0, 0x19e10,
1422 		0x19e50, 0x19e90,
1423 		0x19ea0, 0x19f24,
1424 		0x19f34, 0x19f34,
1425 		0x19f40, 0x19f50,
1426 		0x19f90, 0x19fb4,
1427 		0x19fc4, 0x19fe4,
1428 		0x1a000, 0x1a004,
1429 		0x1a010, 0x1a06c,
1430 		0x1a0b0, 0x1a0e4,
1431 		0x1a0ec, 0x1a0f8,
1432 		0x1a100, 0x1a108,
1433 		0x1a114, 0x1a120,
1434 		0x1a128, 0x1a130,
1435 		0x1a138, 0x1a138,
1436 		0x1a190, 0x1a1c4,
1437 		0x1a1fc, 0x1a1fc,
1438 		0x1e008, 0x1e00c,
1439 		0x1e040, 0x1e044,
1440 		0x1e04c, 0x1e04c,
1441 		0x1e284, 0x1e290,
1442 		0x1e2c0, 0x1e2c0,
1443 		0x1e2e0, 0x1e2e0,
1444 		0x1e300, 0x1e384,
1445 		0x1e3c0, 0x1e3c8,
1446 		0x1e408, 0x1e40c,
1447 		0x1e440, 0x1e444,
1448 		0x1e44c, 0x1e44c,
1449 		0x1e684, 0x1e690,
1450 		0x1e6c0, 0x1e6c0,
1451 		0x1e6e0, 0x1e6e0,
1452 		0x1e700, 0x1e784,
1453 		0x1e7c0, 0x1e7c8,
1454 		0x1e808, 0x1e80c,
1455 		0x1e840, 0x1e844,
1456 		0x1e84c, 0x1e84c,
1457 		0x1ea84, 0x1ea90,
1458 		0x1eac0, 0x1eac0,
1459 		0x1eae0, 0x1eae0,
1460 		0x1eb00, 0x1eb84,
1461 		0x1ebc0, 0x1ebc8,
1462 		0x1ec08, 0x1ec0c,
1463 		0x1ec40, 0x1ec44,
1464 		0x1ec4c, 0x1ec4c,
1465 		0x1ee84, 0x1ee90,
1466 		0x1eec0, 0x1eec0,
1467 		0x1eee0, 0x1eee0,
1468 		0x1ef00, 0x1ef84,
1469 		0x1efc0, 0x1efc8,
1470 		0x1f008, 0x1f00c,
1471 		0x1f040, 0x1f044,
1472 		0x1f04c, 0x1f04c,
1473 		0x1f284, 0x1f290,
1474 		0x1f2c0, 0x1f2c0,
1475 		0x1f2e0, 0x1f2e0,
1476 		0x1f300, 0x1f384,
1477 		0x1f3c0, 0x1f3c8,
1478 		0x1f408, 0x1f40c,
1479 		0x1f440, 0x1f444,
1480 		0x1f44c, 0x1f44c,
1481 		0x1f684, 0x1f690,
1482 		0x1f6c0, 0x1f6c0,
1483 		0x1f6e0, 0x1f6e0,
1484 		0x1f700, 0x1f784,
1485 		0x1f7c0, 0x1f7c8,
1486 		0x1f808, 0x1f80c,
1487 		0x1f840, 0x1f844,
1488 		0x1f84c, 0x1f84c,
1489 		0x1fa84, 0x1fa90,
1490 		0x1fac0, 0x1fac0,
1491 		0x1fae0, 0x1fae0,
1492 		0x1fb00, 0x1fb84,
1493 		0x1fbc0, 0x1fbc8,
1494 		0x1fc08, 0x1fc0c,
1495 		0x1fc40, 0x1fc44,
1496 		0x1fc4c, 0x1fc4c,
1497 		0x1fe84, 0x1fe90,
1498 		0x1fec0, 0x1fec0,
1499 		0x1fee0, 0x1fee0,
1500 		0x1ff00, 0x1ff84,
1501 		0x1ffc0, 0x1ffc8,
1502 		0x30000, 0x30030,
1503 		0x30100, 0x30144,
1504 		0x30190, 0x301a0,
1505 		0x301a8, 0x301b8,
1506 		0x301c4, 0x301c8,
1507 		0x301d0, 0x301d0,
1508 		0x30200, 0x30318,
1509 		0x30400, 0x304b4,
1510 		0x304c0, 0x3052c,
1511 		0x30540, 0x3061c,
1512 		0x30800, 0x30828,
1513 		0x30834, 0x30834,
1514 		0x308c0, 0x30908,
1515 		0x30910, 0x309ac,
1516 		0x30a00, 0x30a14,
1517 		0x30a1c, 0x30a2c,
1518 		0x30a44, 0x30a50,
1519 		0x30a74, 0x30a74,
1520 		0x30a7c, 0x30afc,
1521 		0x30b08, 0x30c24,
1522 		0x30d00, 0x30d00,
1523 		0x30d08, 0x30d14,
1524 		0x30d1c, 0x30d20,
1525 		0x30d3c, 0x30d3c,
1526 		0x30d48, 0x30d50,
1527 		0x31200, 0x3120c,
1528 		0x31220, 0x31220,
1529 		0x31240, 0x31240,
1530 		0x31600, 0x3160c,
1531 		0x31a00, 0x31a1c,
1532 		0x31e00, 0x31e20,
1533 		0x31e38, 0x31e3c,
1534 		0x31e80, 0x31e80,
1535 		0x31e88, 0x31ea8,
1536 		0x31eb0, 0x31eb4,
1537 		0x31ec8, 0x31ed4,
1538 		0x31fb8, 0x32004,
1539 		0x32200, 0x32200,
1540 		0x32208, 0x32240,
1541 		0x32248, 0x32280,
1542 		0x32288, 0x322c0,
1543 		0x322c8, 0x322fc,
1544 		0x32600, 0x32630,
1545 		0x32a00, 0x32abc,
1546 		0x32b00, 0x32b10,
1547 		0x32b20, 0x32b30,
1548 		0x32b40, 0x32b50,
1549 		0x32b60, 0x32b70,
1550 		0x33000, 0x33028,
1551 		0x33030, 0x33048,
1552 		0x33060, 0x33068,
1553 		0x33070, 0x3309c,
1554 		0x330f0, 0x33128,
1555 		0x33130, 0x33148,
1556 		0x33160, 0x33168,
1557 		0x33170, 0x3319c,
1558 		0x331f0, 0x33238,
1559 		0x33240, 0x33240,
1560 		0x33248, 0x33250,
1561 		0x3325c, 0x33264,
1562 		0x33270, 0x332b8,
1563 		0x332c0, 0x332e4,
1564 		0x332f8, 0x33338,
1565 		0x33340, 0x33340,
1566 		0x33348, 0x33350,
1567 		0x3335c, 0x33364,
1568 		0x33370, 0x333b8,
1569 		0x333c0, 0x333e4,
1570 		0x333f8, 0x33428,
1571 		0x33430, 0x33448,
1572 		0x33460, 0x33468,
1573 		0x33470, 0x3349c,
1574 		0x334f0, 0x33528,
1575 		0x33530, 0x33548,
1576 		0x33560, 0x33568,
1577 		0x33570, 0x3359c,
1578 		0x335f0, 0x33638,
1579 		0x33640, 0x33640,
1580 		0x33648, 0x33650,
1581 		0x3365c, 0x33664,
1582 		0x33670, 0x336b8,
1583 		0x336c0, 0x336e4,
1584 		0x336f8, 0x33738,
1585 		0x33740, 0x33740,
1586 		0x33748, 0x33750,
1587 		0x3375c, 0x33764,
1588 		0x33770, 0x337b8,
1589 		0x337c0, 0x337e4,
1590 		0x337f8, 0x337fc,
1591 		0x33814, 0x33814,
1592 		0x3382c, 0x3382c,
1593 		0x33880, 0x3388c,
1594 		0x338e8, 0x338ec,
1595 		0x33900, 0x33928,
1596 		0x33930, 0x33948,
1597 		0x33960, 0x33968,
1598 		0x33970, 0x3399c,
1599 		0x339f0, 0x33a38,
1600 		0x33a40, 0x33a40,
1601 		0x33a48, 0x33a50,
1602 		0x33a5c, 0x33a64,
1603 		0x33a70, 0x33ab8,
1604 		0x33ac0, 0x33ae4,
1605 		0x33af8, 0x33b10,
1606 		0x33b28, 0x33b28,
1607 		0x33b3c, 0x33b50,
1608 		0x33bf0, 0x33c10,
1609 		0x33c28, 0x33c28,
1610 		0x33c3c, 0x33c50,
1611 		0x33cf0, 0x33cfc,
1612 		0x34000, 0x34030,
1613 		0x34100, 0x34144,
1614 		0x34190, 0x341a0,
1615 		0x341a8, 0x341b8,
1616 		0x341c4, 0x341c8,
1617 		0x341d0, 0x341d0,
1618 		0x34200, 0x34318,
1619 		0x34400, 0x344b4,
1620 		0x344c0, 0x3452c,
1621 		0x34540, 0x3461c,
1622 		0x34800, 0x34828,
1623 		0x34834, 0x34834,
1624 		0x348c0, 0x34908,
1625 		0x34910, 0x349ac,
1626 		0x34a00, 0x34a14,
1627 		0x34a1c, 0x34a2c,
1628 		0x34a44, 0x34a50,
1629 		0x34a74, 0x34a74,
1630 		0x34a7c, 0x34afc,
1631 		0x34b08, 0x34c24,
1632 		0x34d00, 0x34d00,
1633 		0x34d08, 0x34d14,
1634 		0x34d1c, 0x34d20,
1635 		0x34d3c, 0x34d3c,
1636 		0x34d48, 0x34d50,
1637 		0x35200, 0x3520c,
1638 		0x35220, 0x35220,
1639 		0x35240, 0x35240,
1640 		0x35600, 0x3560c,
1641 		0x35a00, 0x35a1c,
1642 		0x35e00, 0x35e20,
1643 		0x35e38, 0x35e3c,
1644 		0x35e80, 0x35e80,
1645 		0x35e88, 0x35ea8,
1646 		0x35eb0, 0x35eb4,
1647 		0x35ec8, 0x35ed4,
1648 		0x35fb8, 0x36004,
1649 		0x36200, 0x36200,
1650 		0x36208, 0x36240,
1651 		0x36248, 0x36280,
1652 		0x36288, 0x362c0,
1653 		0x362c8, 0x362fc,
1654 		0x36600, 0x36630,
1655 		0x36a00, 0x36abc,
1656 		0x36b00, 0x36b10,
1657 		0x36b20, 0x36b30,
1658 		0x36b40, 0x36b50,
1659 		0x36b60, 0x36b70,
1660 		0x37000, 0x37028,
1661 		0x37030, 0x37048,
1662 		0x37060, 0x37068,
1663 		0x37070, 0x3709c,
1664 		0x370f0, 0x37128,
1665 		0x37130, 0x37148,
1666 		0x37160, 0x37168,
1667 		0x37170, 0x3719c,
1668 		0x371f0, 0x37238,
1669 		0x37240, 0x37240,
1670 		0x37248, 0x37250,
1671 		0x3725c, 0x37264,
1672 		0x37270, 0x372b8,
1673 		0x372c0, 0x372e4,
1674 		0x372f8, 0x37338,
1675 		0x37340, 0x37340,
1676 		0x37348, 0x37350,
1677 		0x3735c, 0x37364,
1678 		0x37370, 0x373b8,
1679 		0x373c0, 0x373e4,
1680 		0x373f8, 0x37428,
1681 		0x37430, 0x37448,
1682 		0x37460, 0x37468,
1683 		0x37470, 0x3749c,
1684 		0x374f0, 0x37528,
1685 		0x37530, 0x37548,
1686 		0x37560, 0x37568,
1687 		0x37570, 0x3759c,
1688 		0x375f0, 0x37638,
1689 		0x37640, 0x37640,
1690 		0x37648, 0x37650,
1691 		0x3765c, 0x37664,
1692 		0x37670, 0x376b8,
1693 		0x376c0, 0x376e4,
1694 		0x376f8, 0x37738,
1695 		0x37740, 0x37740,
1696 		0x37748, 0x37750,
1697 		0x3775c, 0x37764,
1698 		0x37770, 0x377b8,
1699 		0x377c0, 0x377e4,
1700 		0x377f8, 0x377fc,
1701 		0x37814, 0x37814,
1702 		0x3782c, 0x3782c,
1703 		0x37880, 0x3788c,
1704 		0x378e8, 0x378ec,
1705 		0x37900, 0x37928,
1706 		0x37930, 0x37948,
1707 		0x37960, 0x37968,
1708 		0x37970, 0x3799c,
1709 		0x379f0, 0x37a38,
1710 		0x37a40, 0x37a40,
1711 		0x37a48, 0x37a50,
1712 		0x37a5c, 0x37a64,
1713 		0x37a70, 0x37ab8,
1714 		0x37ac0, 0x37ae4,
1715 		0x37af8, 0x37b10,
1716 		0x37b28, 0x37b28,
1717 		0x37b3c, 0x37b50,
1718 		0x37bf0, 0x37c10,
1719 		0x37c28, 0x37c28,
1720 		0x37c3c, 0x37c50,
1721 		0x37cf0, 0x37cfc,
1722 		0x38000, 0x38030,
1723 		0x38100, 0x38144,
1724 		0x38190, 0x381a0,
1725 		0x381a8, 0x381b8,
1726 		0x381c4, 0x381c8,
1727 		0x381d0, 0x381d0,
1728 		0x38200, 0x38318,
1729 		0x38400, 0x384b4,
1730 		0x384c0, 0x3852c,
1731 		0x38540, 0x3861c,
1732 		0x38800, 0x38828,
1733 		0x38834, 0x38834,
1734 		0x388c0, 0x38908,
1735 		0x38910, 0x389ac,
1736 		0x38a00, 0x38a14,
1737 		0x38a1c, 0x38a2c,
1738 		0x38a44, 0x38a50,
1739 		0x38a74, 0x38a74,
1740 		0x38a7c, 0x38afc,
1741 		0x38b08, 0x38c24,
1742 		0x38d00, 0x38d00,
1743 		0x38d08, 0x38d14,
1744 		0x38d1c, 0x38d20,
1745 		0x38d3c, 0x38d3c,
1746 		0x38d48, 0x38d50,
1747 		0x39200, 0x3920c,
1748 		0x39220, 0x39220,
1749 		0x39240, 0x39240,
1750 		0x39600, 0x3960c,
1751 		0x39a00, 0x39a1c,
1752 		0x39e00, 0x39e20,
1753 		0x39e38, 0x39e3c,
1754 		0x39e80, 0x39e80,
1755 		0x39e88, 0x39ea8,
1756 		0x39eb0, 0x39eb4,
1757 		0x39ec8, 0x39ed4,
1758 		0x39fb8, 0x3a004,
1759 		0x3a200, 0x3a200,
1760 		0x3a208, 0x3a240,
1761 		0x3a248, 0x3a280,
1762 		0x3a288, 0x3a2c0,
1763 		0x3a2c8, 0x3a2fc,
1764 		0x3a600, 0x3a630,
1765 		0x3aa00, 0x3aabc,
1766 		0x3ab00, 0x3ab10,
1767 		0x3ab20, 0x3ab30,
1768 		0x3ab40, 0x3ab50,
1769 		0x3ab60, 0x3ab70,
1770 		0x3b000, 0x3b028,
1771 		0x3b030, 0x3b048,
1772 		0x3b060, 0x3b068,
1773 		0x3b070, 0x3b09c,
1774 		0x3b0f0, 0x3b128,
1775 		0x3b130, 0x3b148,
1776 		0x3b160, 0x3b168,
1777 		0x3b170, 0x3b19c,
1778 		0x3b1f0, 0x3b238,
1779 		0x3b240, 0x3b240,
1780 		0x3b248, 0x3b250,
1781 		0x3b25c, 0x3b264,
1782 		0x3b270, 0x3b2b8,
1783 		0x3b2c0, 0x3b2e4,
1784 		0x3b2f8, 0x3b338,
1785 		0x3b340, 0x3b340,
1786 		0x3b348, 0x3b350,
1787 		0x3b35c, 0x3b364,
1788 		0x3b370, 0x3b3b8,
1789 		0x3b3c0, 0x3b3e4,
1790 		0x3b3f8, 0x3b428,
1791 		0x3b430, 0x3b448,
1792 		0x3b460, 0x3b468,
1793 		0x3b470, 0x3b49c,
1794 		0x3b4f0, 0x3b528,
1795 		0x3b530, 0x3b548,
1796 		0x3b560, 0x3b568,
1797 		0x3b570, 0x3b59c,
1798 		0x3b5f0, 0x3b638,
1799 		0x3b640, 0x3b640,
1800 		0x3b648, 0x3b650,
1801 		0x3b65c, 0x3b664,
1802 		0x3b670, 0x3b6b8,
1803 		0x3b6c0, 0x3b6e4,
1804 		0x3b6f8, 0x3b738,
1805 		0x3b740, 0x3b740,
1806 		0x3b748, 0x3b750,
1807 		0x3b75c, 0x3b764,
1808 		0x3b770, 0x3b7b8,
1809 		0x3b7c0, 0x3b7e4,
1810 		0x3b7f8, 0x3b7fc,
1811 		0x3b814, 0x3b814,
1812 		0x3b82c, 0x3b82c,
1813 		0x3b880, 0x3b88c,
1814 		0x3b8e8, 0x3b8ec,
1815 		0x3b900, 0x3b928,
1816 		0x3b930, 0x3b948,
1817 		0x3b960, 0x3b968,
1818 		0x3b970, 0x3b99c,
1819 		0x3b9f0, 0x3ba38,
1820 		0x3ba40, 0x3ba40,
1821 		0x3ba48, 0x3ba50,
1822 		0x3ba5c, 0x3ba64,
1823 		0x3ba70, 0x3bab8,
1824 		0x3bac0, 0x3bae4,
1825 		0x3baf8, 0x3bb10,
1826 		0x3bb28, 0x3bb28,
1827 		0x3bb3c, 0x3bb50,
1828 		0x3bbf0, 0x3bc10,
1829 		0x3bc28, 0x3bc28,
1830 		0x3bc3c, 0x3bc50,
1831 		0x3bcf0, 0x3bcfc,
1832 		0x3c000, 0x3c030,
1833 		0x3c100, 0x3c144,
1834 		0x3c190, 0x3c1a0,
1835 		0x3c1a8, 0x3c1b8,
1836 		0x3c1c4, 0x3c1c8,
1837 		0x3c1d0, 0x3c1d0,
1838 		0x3c200, 0x3c318,
1839 		0x3c400, 0x3c4b4,
1840 		0x3c4c0, 0x3c52c,
1841 		0x3c540, 0x3c61c,
1842 		0x3c800, 0x3c828,
1843 		0x3c834, 0x3c834,
1844 		0x3c8c0, 0x3c908,
1845 		0x3c910, 0x3c9ac,
1846 		0x3ca00, 0x3ca14,
1847 		0x3ca1c, 0x3ca2c,
1848 		0x3ca44, 0x3ca50,
1849 		0x3ca74, 0x3ca74,
1850 		0x3ca7c, 0x3cafc,
1851 		0x3cb08, 0x3cc24,
1852 		0x3cd00, 0x3cd00,
1853 		0x3cd08, 0x3cd14,
1854 		0x3cd1c, 0x3cd20,
1855 		0x3cd3c, 0x3cd3c,
1856 		0x3cd48, 0x3cd50,
1857 		0x3d200, 0x3d20c,
1858 		0x3d220, 0x3d220,
1859 		0x3d240, 0x3d240,
1860 		0x3d600, 0x3d60c,
1861 		0x3da00, 0x3da1c,
1862 		0x3de00, 0x3de20,
1863 		0x3de38, 0x3de3c,
1864 		0x3de80, 0x3de80,
1865 		0x3de88, 0x3dea8,
1866 		0x3deb0, 0x3deb4,
1867 		0x3dec8, 0x3ded4,
1868 		0x3dfb8, 0x3e004,
1869 		0x3e200, 0x3e200,
1870 		0x3e208, 0x3e240,
1871 		0x3e248, 0x3e280,
1872 		0x3e288, 0x3e2c0,
1873 		0x3e2c8, 0x3e2fc,
1874 		0x3e600, 0x3e630,
1875 		0x3ea00, 0x3eabc,
1876 		0x3eb00, 0x3eb10,
1877 		0x3eb20, 0x3eb30,
1878 		0x3eb40, 0x3eb50,
1879 		0x3eb60, 0x3eb70,
1880 		0x3f000, 0x3f028,
1881 		0x3f030, 0x3f048,
1882 		0x3f060, 0x3f068,
1883 		0x3f070, 0x3f09c,
1884 		0x3f0f0, 0x3f128,
1885 		0x3f130, 0x3f148,
1886 		0x3f160, 0x3f168,
1887 		0x3f170, 0x3f19c,
1888 		0x3f1f0, 0x3f238,
1889 		0x3f240, 0x3f240,
1890 		0x3f248, 0x3f250,
1891 		0x3f25c, 0x3f264,
1892 		0x3f270, 0x3f2b8,
1893 		0x3f2c0, 0x3f2e4,
1894 		0x3f2f8, 0x3f338,
1895 		0x3f340, 0x3f340,
1896 		0x3f348, 0x3f350,
1897 		0x3f35c, 0x3f364,
1898 		0x3f370, 0x3f3b8,
1899 		0x3f3c0, 0x3f3e4,
1900 		0x3f3f8, 0x3f428,
1901 		0x3f430, 0x3f448,
1902 		0x3f460, 0x3f468,
1903 		0x3f470, 0x3f49c,
1904 		0x3f4f0, 0x3f528,
1905 		0x3f530, 0x3f548,
1906 		0x3f560, 0x3f568,
1907 		0x3f570, 0x3f59c,
1908 		0x3f5f0, 0x3f638,
1909 		0x3f640, 0x3f640,
1910 		0x3f648, 0x3f650,
1911 		0x3f65c, 0x3f664,
1912 		0x3f670, 0x3f6b8,
1913 		0x3f6c0, 0x3f6e4,
1914 		0x3f6f8, 0x3f738,
1915 		0x3f740, 0x3f740,
1916 		0x3f748, 0x3f750,
1917 		0x3f75c, 0x3f764,
1918 		0x3f770, 0x3f7b8,
1919 		0x3f7c0, 0x3f7e4,
1920 		0x3f7f8, 0x3f7fc,
1921 		0x3f814, 0x3f814,
1922 		0x3f82c, 0x3f82c,
1923 		0x3f880, 0x3f88c,
1924 		0x3f8e8, 0x3f8ec,
1925 		0x3f900, 0x3f928,
1926 		0x3f930, 0x3f948,
1927 		0x3f960, 0x3f968,
1928 		0x3f970, 0x3f99c,
1929 		0x3f9f0, 0x3fa38,
1930 		0x3fa40, 0x3fa40,
1931 		0x3fa48, 0x3fa50,
1932 		0x3fa5c, 0x3fa64,
1933 		0x3fa70, 0x3fab8,
1934 		0x3fac0, 0x3fae4,
1935 		0x3faf8, 0x3fb10,
1936 		0x3fb28, 0x3fb28,
1937 		0x3fb3c, 0x3fb50,
1938 		0x3fbf0, 0x3fc10,
1939 		0x3fc28, 0x3fc28,
1940 		0x3fc3c, 0x3fc50,
1941 		0x3fcf0, 0x3fcfc,
1942 		0x40000, 0x4000c,
1943 		0x40040, 0x40050,
1944 		0x40060, 0x40068,
1945 		0x4007c, 0x4008c,
1946 		0x40094, 0x400b0,
1947 		0x400c0, 0x40144,
1948 		0x40180, 0x4018c,
1949 		0x40200, 0x40254,
1950 		0x40260, 0x40264,
1951 		0x40270, 0x40288,
1952 		0x40290, 0x40298,
1953 		0x402ac, 0x402c8,
1954 		0x402d0, 0x402e0,
1955 		0x402f0, 0x402f0,
1956 		0x40300, 0x4033c,
1957 		0x403f8, 0x403fc,
1958 		0x41304, 0x413c4,
1959 		0x41400, 0x4140c,
1960 		0x41414, 0x4141c,
1961 		0x41480, 0x414d0,
1962 		0x44000, 0x44054,
1963 		0x4405c, 0x44078,
1964 		0x440c0, 0x44174,
1965 		0x44180, 0x441ac,
1966 		0x441b4, 0x441b8,
1967 		0x441c0, 0x44254,
1968 		0x4425c, 0x44278,
1969 		0x442c0, 0x44374,
1970 		0x44380, 0x443ac,
1971 		0x443b4, 0x443b8,
1972 		0x443c0, 0x44454,
1973 		0x4445c, 0x44478,
1974 		0x444c0, 0x44574,
1975 		0x44580, 0x445ac,
1976 		0x445b4, 0x445b8,
1977 		0x445c0, 0x44654,
1978 		0x4465c, 0x44678,
1979 		0x446c0, 0x44774,
1980 		0x44780, 0x447ac,
1981 		0x447b4, 0x447b8,
1982 		0x447c0, 0x44854,
1983 		0x4485c, 0x44878,
1984 		0x448c0, 0x44974,
1985 		0x44980, 0x449ac,
1986 		0x449b4, 0x449b8,
1987 		0x449c0, 0x449fc,
1988 		0x45000, 0x45004,
1989 		0x45010, 0x45030,
1990 		0x45040, 0x45060,
1991 		0x45068, 0x45068,
1992 		0x45080, 0x45084,
1993 		0x450a0, 0x450b0,
1994 		0x45200, 0x45204,
1995 		0x45210, 0x45230,
1996 		0x45240, 0x45260,
1997 		0x45268, 0x45268,
1998 		0x45280, 0x45284,
1999 		0x452a0, 0x452b0,
2000 		0x460c0, 0x460e4,
2001 		0x47000, 0x4703c,
2002 		0x47044, 0x4708c,
2003 		0x47200, 0x47250,
2004 		0x47400, 0x47408,
2005 		0x47414, 0x47420,
2006 		0x47600, 0x47618,
2007 		0x47800, 0x47814,
2008 		0x48000, 0x4800c,
2009 		0x48040, 0x48050,
2010 		0x48060, 0x48068,
2011 		0x4807c, 0x4808c,
2012 		0x48094, 0x480b0,
2013 		0x480c0, 0x48144,
2014 		0x48180, 0x4818c,
2015 		0x48200, 0x48254,
2016 		0x48260, 0x48264,
2017 		0x48270, 0x48288,
2018 		0x48290, 0x48298,
2019 		0x482ac, 0x482c8,
2020 		0x482d0, 0x482e0,
2021 		0x482f0, 0x482f0,
2022 		0x48300, 0x4833c,
2023 		0x483f8, 0x483fc,
2024 		0x49304, 0x493c4,
2025 		0x49400, 0x4940c,
2026 		0x49414, 0x4941c,
2027 		0x49480, 0x494d0,
2028 		0x4c000, 0x4c054,
2029 		0x4c05c, 0x4c078,
2030 		0x4c0c0, 0x4c174,
2031 		0x4c180, 0x4c1ac,
2032 		0x4c1b4, 0x4c1b8,
2033 		0x4c1c0, 0x4c254,
2034 		0x4c25c, 0x4c278,
2035 		0x4c2c0, 0x4c374,
2036 		0x4c380, 0x4c3ac,
2037 		0x4c3b4, 0x4c3b8,
2038 		0x4c3c0, 0x4c454,
2039 		0x4c45c, 0x4c478,
2040 		0x4c4c0, 0x4c574,
2041 		0x4c580, 0x4c5ac,
2042 		0x4c5b4, 0x4c5b8,
2043 		0x4c5c0, 0x4c654,
2044 		0x4c65c, 0x4c678,
2045 		0x4c6c0, 0x4c774,
2046 		0x4c780, 0x4c7ac,
2047 		0x4c7b4, 0x4c7b8,
2048 		0x4c7c0, 0x4c854,
2049 		0x4c85c, 0x4c878,
2050 		0x4c8c0, 0x4c974,
2051 		0x4c980, 0x4c9ac,
2052 		0x4c9b4, 0x4c9b8,
2053 		0x4c9c0, 0x4c9fc,
2054 		0x4d000, 0x4d004,
2055 		0x4d010, 0x4d030,
2056 		0x4d040, 0x4d060,
2057 		0x4d068, 0x4d068,
2058 		0x4d080, 0x4d084,
2059 		0x4d0a0, 0x4d0b0,
2060 		0x4d200, 0x4d204,
2061 		0x4d210, 0x4d230,
2062 		0x4d240, 0x4d260,
2063 		0x4d268, 0x4d268,
2064 		0x4d280, 0x4d284,
2065 		0x4d2a0, 0x4d2b0,
2066 		0x4e0c0, 0x4e0e4,
2067 		0x4f000, 0x4f03c,
2068 		0x4f044, 0x4f08c,
2069 		0x4f200, 0x4f250,
2070 		0x4f400, 0x4f408,
2071 		0x4f414, 0x4f420,
2072 		0x4f600, 0x4f618,
2073 		0x4f800, 0x4f814,
2074 		0x50000, 0x50084,
2075 		0x50090, 0x500cc,
2076 		0x50400, 0x50400,
2077 		0x50800, 0x50884,
2078 		0x50890, 0x508cc,
2079 		0x50c00, 0x50c00,
2080 		0x51000, 0x5101c,
2081 		0x51300, 0x51308,
2082 	};
2083 
2084 	static const unsigned int t6_reg_ranges[] = {
2085 		0x1008, 0x101c,
2086 		0x1024, 0x10a8,
2087 		0x10b4, 0x10f8,
2088 		0x1100, 0x1114,
2089 		0x111c, 0x112c,
2090 		0x1138, 0x113c,
2091 		0x1144, 0x114c,
2092 		0x1180, 0x1184,
2093 		0x1190, 0x1194,
2094 		0x11a0, 0x11a4,
2095 		0x11b0, 0x11b4,
2096 		0x11fc, 0x1274,
2097 		0x1280, 0x133c,
2098 		0x1800, 0x18fc,
2099 		0x3000, 0x302c,
2100 		0x3060, 0x30b0,
2101 		0x30b8, 0x30d8,
2102 		0x30e0, 0x30fc,
2103 		0x3140, 0x357c,
2104 		0x35a8, 0x35cc,
2105 		0x35ec, 0x35ec,
2106 		0x3600, 0x5624,
2107 		0x56cc, 0x56ec,
2108 		0x56f4, 0x5720,
2109 		0x5728, 0x575c,
2110 		0x580c, 0x5814,
2111 		0x5890, 0x589c,
2112 		0x58a4, 0x58ac,
2113 		0x58b8, 0x58bc,
2114 		0x5940, 0x595c,
2115 		0x5980, 0x598c,
2116 		0x59b0, 0x59c8,
2117 		0x59d0, 0x59dc,
2118 		0x59fc, 0x5a18,
2119 		0x5a60, 0x5a6c,
2120 		0x5a80, 0x5a8c,
2121 		0x5a94, 0x5a9c,
2122 		0x5b94, 0x5bfc,
2123 		0x5c10, 0x5e48,
2124 		0x5e50, 0x5e94,
2125 		0x5ea0, 0x5eb0,
2126 		0x5ec0, 0x5ec0,
2127 		0x5ec8, 0x5ed0,
2128 		0x5ee0, 0x5ee0,
2129 		0x5ef0, 0x5ef0,
2130 		0x5f00, 0x5f00,
2131 		0x6000, 0x6020,
2132 		0x6028, 0x6040,
2133 		0x6058, 0x609c,
2134 		0x60a8, 0x619c,
2135 		0x7700, 0x7798,
2136 		0x77c0, 0x7880,
2137 		0x78cc, 0x78fc,
2138 		0x7b00, 0x7b58,
2139 		0x7b60, 0x7b84,
2140 		0x7b8c, 0x7c54,
2141 		0x7d00, 0x7d38,
2142 		0x7d40, 0x7d84,
2143 		0x7d8c, 0x7ddc,
2144 		0x7de4, 0x7e04,
2145 		0x7e10, 0x7e1c,
2146 		0x7e24, 0x7e38,
2147 		0x7e40, 0x7e44,
2148 		0x7e4c, 0x7e78,
2149 		0x7e80, 0x7edc,
2150 		0x7ee8, 0x7efc,
2151 		0x8dc0, 0x8de4,
2152 		0x8df8, 0x8e04,
2153 		0x8e10, 0x8e84,
2154 		0x8ea0, 0x8f88,
2155 		0x8fb8, 0x9058,
2156 		0x9060, 0x9060,
2157 		0x9068, 0x90f8,
2158 		0x9100, 0x9124,
2159 		0x9400, 0x9470,
2160 		0x9600, 0x9600,
2161 		0x9608, 0x9638,
2162 		0x9640, 0x9704,
2163 		0x9710, 0x971c,
2164 		0x9800, 0x9808,
2165 		0x9820, 0x983c,
2166 		0x9850, 0x9864,
2167 		0x9c00, 0x9c6c,
2168 		0x9c80, 0x9cec,
2169 		0x9d00, 0x9d6c,
2170 		0x9d80, 0x9dec,
2171 		0x9e00, 0x9e6c,
2172 		0x9e80, 0x9eec,
2173 		0x9f00, 0x9f6c,
2174 		0x9f80, 0xa020,
2175 		0xd004, 0xd03c,
2176 		0xd100, 0xd118,
2177 		0xd200, 0xd214,
2178 		0xd220, 0xd234,
2179 		0xd240, 0xd254,
2180 		0xd260, 0xd274,
2181 		0xd280, 0xd294,
2182 		0xd2a0, 0xd2b4,
2183 		0xd2c0, 0xd2d4,
2184 		0xd2e0, 0xd2f4,
2185 		0xd300, 0xd31c,
2186 		0xdfc0, 0xdfe0,
2187 		0xe000, 0xf008,
2188 		0xf010, 0xf018,
2189 		0xf020, 0xf028,
2190 		0x11000, 0x11014,
2191 		0x11048, 0x1106c,
2192 		0x11074, 0x11088,
2193 		0x11098, 0x11120,
2194 		0x1112c, 0x1117c,
2195 		0x11190, 0x112e0,
2196 		0x11300, 0x1130c,
2197 		0x12000, 0x1206c,
2198 		0x19040, 0x1906c,
2199 		0x19078, 0x19080,
2200 		0x1908c, 0x190e8,
2201 		0x190f0, 0x190f8,
2202 		0x19100, 0x19110,
2203 		0x19120, 0x19124,
2204 		0x19150, 0x19194,
2205 		0x1919c, 0x191b0,
2206 		0x191d0, 0x191e8,
2207 		0x19238, 0x19290,
2208 		0x192a4, 0x192b0,
2209 		0x192bc, 0x192bc,
2210 		0x19348, 0x1934c,
2211 		0x193f8, 0x19418,
2212 		0x19420, 0x19428,
2213 		0x19430, 0x19444,
2214 		0x1944c, 0x1946c,
2215 		0x19474, 0x19474,
2216 		0x19490, 0x194cc,
2217 		0x194f0, 0x194f8,
2218 		0x19c00, 0x19c48,
2219 		0x19c50, 0x19c80,
2220 		0x19c94, 0x19c98,
2221 		0x19ca0, 0x19cbc,
2222 		0x19ce4, 0x19ce4,
2223 		0x19cf0, 0x19cf8,
2224 		0x19d00, 0x19d28,
2225 		0x19d50, 0x19d78,
2226 		0x19d94, 0x19d98,
2227 		0x19da0, 0x19dc8,
2228 		0x19df0, 0x19e10,
2229 		0x19e50, 0x19e6c,
2230 		0x19ea0, 0x19ebc,
2231 		0x19ec4, 0x19ef4,
2232 		0x19f04, 0x19f2c,
2233 		0x19f34, 0x19f34,
2234 		0x19f40, 0x19f50,
2235 		0x19f90, 0x19fac,
2236 		0x19fc4, 0x19fc8,
2237 		0x19fd0, 0x19fe4,
2238 		0x1a000, 0x1a004,
2239 		0x1a010, 0x1a06c,
2240 		0x1a0b0, 0x1a0e4,
2241 		0x1a0ec, 0x1a0f8,
2242 		0x1a100, 0x1a108,
2243 		0x1a114, 0x1a120,
2244 		0x1a128, 0x1a130,
2245 		0x1a138, 0x1a138,
2246 		0x1a190, 0x1a1c4,
2247 		0x1a1fc, 0x1a1fc,
2248 		0x1e008, 0x1e00c,
2249 		0x1e040, 0x1e044,
2250 		0x1e04c, 0x1e04c,
2251 		0x1e284, 0x1e290,
2252 		0x1e2c0, 0x1e2c0,
2253 		0x1e2e0, 0x1e2e0,
2254 		0x1e300, 0x1e384,
2255 		0x1e3c0, 0x1e3c8,
2256 		0x1e408, 0x1e40c,
2257 		0x1e440, 0x1e444,
2258 		0x1e44c, 0x1e44c,
2259 		0x1e684, 0x1e690,
2260 		0x1e6c0, 0x1e6c0,
2261 		0x1e6e0, 0x1e6e0,
2262 		0x1e700, 0x1e784,
2263 		0x1e7c0, 0x1e7c8,
2264 		0x1e808, 0x1e80c,
2265 		0x1e840, 0x1e844,
2266 		0x1e84c, 0x1e84c,
2267 		0x1ea84, 0x1ea90,
2268 		0x1eac0, 0x1eac0,
2269 		0x1eae0, 0x1eae0,
2270 		0x1eb00, 0x1eb84,
2271 		0x1ebc0, 0x1ebc8,
2272 		0x1ec08, 0x1ec0c,
2273 		0x1ec40, 0x1ec44,
2274 		0x1ec4c, 0x1ec4c,
2275 		0x1ee84, 0x1ee90,
2276 		0x1eec0, 0x1eec0,
2277 		0x1eee0, 0x1eee0,
2278 		0x1ef00, 0x1ef84,
2279 		0x1efc0, 0x1efc8,
2280 		0x1f008, 0x1f00c,
2281 		0x1f040, 0x1f044,
2282 		0x1f04c, 0x1f04c,
2283 		0x1f284, 0x1f290,
2284 		0x1f2c0, 0x1f2c0,
2285 		0x1f2e0, 0x1f2e0,
2286 		0x1f300, 0x1f384,
2287 		0x1f3c0, 0x1f3c8,
2288 		0x1f408, 0x1f40c,
2289 		0x1f440, 0x1f444,
2290 		0x1f44c, 0x1f44c,
2291 		0x1f684, 0x1f690,
2292 		0x1f6c0, 0x1f6c0,
2293 		0x1f6e0, 0x1f6e0,
2294 		0x1f700, 0x1f784,
2295 		0x1f7c0, 0x1f7c8,
2296 		0x1f808, 0x1f80c,
2297 		0x1f840, 0x1f844,
2298 		0x1f84c, 0x1f84c,
2299 		0x1fa84, 0x1fa90,
2300 		0x1fac0, 0x1fac0,
2301 		0x1fae0, 0x1fae0,
2302 		0x1fb00, 0x1fb84,
2303 		0x1fbc0, 0x1fbc8,
2304 		0x1fc08, 0x1fc0c,
2305 		0x1fc40, 0x1fc44,
2306 		0x1fc4c, 0x1fc4c,
2307 		0x1fe84, 0x1fe90,
2308 		0x1fec0, 0x1fec0,
2309 		0x1fee0, 0x1fee0,
2310 		0x1ff00, 0x1ff84,
2311 		0x1ffc0, 0x1ffc8,
2312 		0x30000, 0x30030,
2313 		0x30100, 0x30168,
2314 		0x30190, 0x301a0,
2315 		0x301a8, 0x301b8,
2316 		0x301c4, 0x301c8,
2317 		0x301d0, 0x301d0,
2318 		0x30200, 0x30320,
2319 		0x30400, 0x304b4,
2320 		0x304c0, 0x3052c,
2321 		0x30540, 0x3061c,
2322 		0x30800, 0x308a0,
2323 		0x308c0, 0x30908,
2324 		0x30910, 0x309b8,
2325 		0x30a00, 0x30a04,
2326 		0x30a0c, 0x30a14,
2327 		0x30a1c, 0x30a2c,
2328 		0x30a44, 0x30a50,
2329 		0x30a74, 0x30a74,
2330 		0x30a7c, 0x30afc,
2331 		0x30b08, 0x30c24,
2332 		0x30d00, 0x30d14,
2333 		0x30d1c, 0x30d3c,
2334 		0x30d44, 0x30d4c,
2335 		0x30d54, 0x30d74,
2336 		0x30d7c, 0x30d7c,
2337 		0x30de0, 0x30de0,
2338 		0x30e00, 0x30ed4,
2339 		0x30f00, 0x30fa4,
2340 		0x30fc0, 0x30fc4,
2341 		0x31000, 0x31004,
2342 		0x31080, 0x310fc,
2343 		0x31208, 0x31220,
2344 		0x3123c, 0x31254,
2345 		0x31300, 0x31300,
2346 		0x31308, 0x3131c,
2347 		0x31338, 0x3133c,
2348 		0x31380, 0x31380,
2349 		0x31388, 0x313a8,
2350 		0x313b4, 0x313b4,
2351 		0x31400, 0x31420,
2352 		0x31438, 0x3143c,
2353 		0x31480, 0x31480,
2354 		0x314a8, 0x314a8,
2355 		0x314b0, 0x314b4,
2356 		0x314c8, 0x314d4,
2357 		0x31a40, 0x31a4c,
2358 		0x31af0, 0x31b20,
2359 		0x31b38, 0x31b3c,
2360 		0x31b80, 0x31b80,
2361 		0x31ba8, 0x31ba8,
2362 		0x31bb0, 0x31bb4,
2363 		0x31bc8, 0x31bd4,
2364 		0x32140, 0x3218c,
2365 		0x321f0, 0x321f4,
2366 		0x32200, 0x32200,
2367 		0x32218, 0x32218,
2368 		0x32400, 0x32400,
2369 		0x32408, 0x3241c,
2370 		0x32618, 0x32620,
2371 		0x32664, 0x32664,
2372 		0x326a8, 0x326a8,
2373 		0x326ec, 0x326ec,
2374 		0x32a00, 0x32abc,
2375 		0x32b00, 0x32b18,
2376 		0x32b20, 0x32b38,
2377 		0x32b40, 0x32b58,
2378 		0x32b60, 0x32b78,
2379 		0x32c00, 0x32c00,
2380 		0x32c08, 0x32c3c,
2381 		0x33000, 0x3302c,
2382 		0x33034, 0x33050,
2383 		0x33058, 0x33058,
2384 		0x33060, 0x3308c,
2385 		0x3309c, 0x330ac,
2386 		0x330c0, 0x330c0,
2387 		0x330c8, 0x330d0,
2388 		0x330d8, 0x330e0,
2389 		0x330ec, 0x3312c,
2390 		0x33134, 0x33150,
2391 		0x33158, 0x33158,
2392 		0x33160, 0x3318c,
2393 		0x3319c, 0x331ac,
2394 		0x331c0, 0x331c0,
2395 		0x331c8, 0x331d0,
2396 		0x331d8, 0x331e0,
2397 		0x331ec, 0x33290,
2398 		0x33298, 0x332c4,
2399 		0x332e4, 0x33390,
2400 		0x33398, 0x333c4,
2401 		0x333e4, 0x3342c,
2402 		0x33434, 0x33450,
2403 		0x33458, 0x33458,
2404 		0x33460, 0x3348c,
2405 		0x3349c, 0x334ac,
2406 		0x334c0, 0x334c0,
2407 		0x334c8, 0x334d0,
2408 		0x334d8, 0x334e0,
2409 		0x334ec, 0x3352c,
2410 		0x33534, 0x33550,
2411 		0x33558, 0x33558,
2412 		0x33560, 0x3358c,
2413 		0x3359c, 0x335ac,
2414 		0x335c0, 0x335c0,
2415 		0x335c8, 0x335d0,
2416 		0x335d8, 0x335e0,
2417 		0x335ec, 0x33690,
2418 		0x33698, 0x336c4,
2419 		0x336e4, 0x33790,
2420 		0x33798, 0x337c4,
2421 		0x337e4, 0x337fc,
2422 		0x33814, 0x33814,
2423 		0x33854, 0x33868,
2424 		0x33880, 0x3388c,
2425 		0x338c0, 0x338d0,
2426 		0x338e8, 0x338ec,
2427 		0x33900, 0x3392c,
2428 		0x33934, 0x33950,
2429 		0x33958, 0x33958,
2430 		0x33960, 0x3398c,
2431 		0x3399c, 0x339ac,
2432 		0x339c0, 0x339c0,
2433 		0x339c8, 0x339d0,
2434 		0x339d8, 0x339e0,
2435 		0x339ec, 0x33a90,
2436 		0x33a98, 0x33ac4,
2437 		0x33ae4, 0x33b10,
2438 		0x33b24, 0x33b28,
2439 		0x33b38, 0x33b50,
2440 		0x33bf0, 0x33c10,
2441 		0x33c24, 0x33c28,
2442 		0x33c38, 0x33c50,
2443 		0x33cf0, 0x33cfc,
2444 		0x34000, 0x34030,
2445 		0x34100, 0x34168,
2446 		0x34190, 0x341a0,
2447 		0x341a8, 0x341b8,
2448 		0x341c4, 0x341c8,
2449 		0x341d0, 0x341d0,
2450 		0x34200, 0x34320,
2451 		0x34400, 0x344b4,
2452 		0x344c0, 0x3452c,
2453 		0x34540, 0x3461c,
2454 		0x34800, 0x348a0,
2455 		0x348c0, 0x34908,
2456 		0x34910, 0x349b8,
2457 		0x34a00, 0x34a04,
2458 		0x34a0c, 0x34a14,
2459 		0x34a1c, 0x34a2c,
2460 		0x34a44, 0x34a50,
2461 		0x34a74, 0x34a74,
2462 		0x34a7c, 0x34afc,
2463 		0x34b08, 0x34c24,
2464 		0x34d00, 0x34d14,
2465 		0x34d1c, 0x34d3c,
2466 		0x34d44, 0x34d4c,
2467 		0x34d54, 0x34d74,
2468 		0x34d7c, 0x34d7c,
2469 		0x34de0, 0x34de0,
2470 		0x34e00, 0x34ed4,
2471 		0x34f00, 0x34fa4,
2472 		0x34fc0, 0x34fc4,
2473 		0x35000, 0x35004,
2474 		0x35080, 0x350fc,
2475 		0x35208, 0x35220,
2476 		0x3523c, 0x35254,
2477 		0x35300, 0x35300,
2478 		0x35308, 0x3531c,
2479 		0x35338, 0x3533c,
2480 		0x35380, 0x35380,
2481 		0x35388, 0x353a8,
2482 		0x353b4, 0x353b4,
2483 		0x35400, 0x35420,
2484 		0x35438, 0x3543c,
2485 		0x35480, 0x35480,
2486 		0x354a8, 0x354a8,
2487 		0x354b0, 0x354b4,
2488 		0x354c8, 0x354d4,
2489 		0x35a40, 0x35a4c,
2490 		0x35af0, 0x35b20,
2491 		0x35b38, 0x35b3c,
2492 		0x35b80, 0x35b80,
2493 		0x35ba8, 0x35ba8,
2494 		0x35bb0, 0x35bb4,
2495 		0x35bc8, 0x35bd4,
2496 		0x36140, 0x3618c,
2497 		0x361f0, 0x361f4,
2498 		0x36200, 0x36200,
2499 		0x36218, 0x36218,
2500 		0x36400, 0x36400,
2501 		0x36408, 0x3641c,
2502 		0x36618, 0x36620,
2503 		0x36664, 0x36664,
2504 		0x366a8, 0x366a8,
2505 		0x366ec, 0x366ec,
2506 		0x36a00, 0x36abc,
2507 		0x36b00, 0x36b18,
2508 		0x36b20, 0x36b38,
2509 		0x36b40, 0x36b58,
2510 		0x36b60, 0x36b78,
2511 		0x36c00, 0x36c00,
2512 		0x36c08, 0x36c3c,
2513 		0x37000, 0x3702c,
2514 		0x37034, 0x37050,
2515 		0x37058, 0x37058,
2516 		0x37060, 0x3708c,
2517 		0x3709c, 0x370ac,
2518 		0x370c0, 0x370c0,
2519 		0x370c8, 0x370d0,
2520 		0x370d8, 0x370e0,
2521 		0x370ec, 0x3712c,
2522 		0x37134, 0x37150,
2523 		0x37158, 0x37158,
2524 		0x37160, 0x3718c,
2525 		0x3719c, 0x371ac,
2526 		0x371c0, 0x371c0,
2527 		0x371c8, 0x371d0,
2528 		0x371d8, 0x371e0,
2529 		0x371ec, 0x37290,
2530 		0x37298, 0x372c4,
2531 		0x372e4, 0x37390,
2532 		0x37398, 0x373c4,
2533 		0x373e4, 0x3742c,
2534 		0x37434, 0x37450,
2535 		0x37458, 0x37458,
2536 		0x37460, 0x3748c,
2537 		0x3749c, 0x374ac,
2538 		0x374c0, 0x374c0,
2539 		0x374c8, 0x374d0,
2540 		0x374d8, 0x374e0,
2541 		0x374ec, 0x3752c,
2542 		0x37534, 0x37550,
2543 		0x37558, 0x37558,
2544 		0x37560, 0x3758c,
2545 		0x3759c, 0x375ac,
2546 		0x375c0, 0x375c0,
2547 		0x375c8, 0x375d0,
2548 		0x375d8, 0x375e0,
2549 		0x375ec, 0x37690,
2550 		0x37698, 0x376c4,
2551 		0x376e4, 0x37790,
2552 		0x37798, 0x377c4,
2553 		0x377e4, 0x377fc,
2554 		0x37814, 0x37814,
2555 		0x37854, 0x37868,
2556 		0x37880, 0x3788c,
2557 		0x378c0, 0x378d0,
2558 		0x378e8, 0x378ec,
2559 		0x37900, 0x3792c,
2560 		0x37934, 0x37950,
2561 		0x37958, 0x37958,
2562 		0x37960, 0x3798c,
2563 		0x3799c, 0x379ac,
2564 		0x379c0, 0x379c0,
2565 		0x379c8, 0x379d0,
2566 		0x379d8, 0x379e0,
2567 		0x379ec, 0x37a90,
2568 		0x37a98, 0x37ac4,
2569 		0x37ae4, 0x37b10,
2570 		0x37b24, 0x37b28,
2571 		0x37b38, 0x37b50,
2572 		0x37bf0, 0x37c10,
2573 		0x37c24, 0x37c28,
2574 		0x37c38, 0x37c50,
2575 		0x37cf0, 0x37cfc,
2576 		0x40040, 0x40040,
2577 		0x40080, 0x40084,
2578 		0x40100, 0x40100,
2579 		0x40140, 0x401bc,
2580 		0x40200, 0x40214,
2581 		0x40228, 0x40228,
2582 		0x40240, 0x40258,
2583 		0x40280, 0x40280,
2584 		0x40304, 0x40304,
2585 		0x40330, 0x4033c,
2586 		0x41304, 0x413c8,
2587 		0x413d0, 0x413dc,
2588 		0x413f0, 0x413f0,
2589 		0x41400, 0x4140c,
2590 		0x41414, 0x4141c,
2591 		0x41480, 0x414d0,
2592 		0x44000, 0x4407c,
2593 		0x440c0, 0x441ac,
2594 		0x441b4, 0x4427c,
2595 		0x442c0, 0x443ac,
2596 		0x443b4, 0x4447c,
2597 		0x444c0, 0x445ac,
2598 		0x445b4, 0x4467c,
2599 		0x446c0, 0x447ac,
2600 		0x447b4, 0x4487c,
2601 		0x448c0, 0x449ac,
2602 		0x449b4, 0x44a7c,
2603 		0x44ac0, 0x44bac,
2604 		0x44bb4, 0x44c7c,
2605 		0x44cc0, 0x44dac,
2606 		0x44db4, 0x44e7c,
2607 		0x44ec0, 0x44fac,
2608 		0x44fb4, 0x4507c,
2609 		0x450c0, 0x451ac,
2610 		0x451b4, 0x451fc,
2611 		0x45800, 0x45804,
2612 		0x45810, 0x45830,
2613 		0x45840, 0x45860,
2614 		0x45868, 0x45868,
2615 		0x45880, 0x45884,
2616 		0x458a0, 0x458b0,
2617 		0x45a00, 0x45a04,
2618 		0x45a10, 0x45a30,
2619 		0x45a40, 0x45a60,
2620 		0x45a68, 0x45a68,
2621 		0x45a80, 0x45a84,
2622 		0x45aa0, 0x45ab0,
2623 		0x460c0, 0x460e4,
2624 		0x47000, 0x4703c,
2625 		0x47044, 0x4708c,
2626 		0x47200, 0x47250,
2627 		0x47400, 0x47408,
2628 		0x47414, 0x47420,
2629 		0x47600, 0x47618,
2630 		0x47800, 0x47814,
2631 		0x47820, 0x4782c,
2632 		0x50000, 0x50084,
2633 		0x50090, 0x500cc,
2634 		0x50300, 0x50384,
2635 		0x50400, 0x50400,
2636 		0x50800, 0x50884,
2637 		0x50890, 0x508cc,
2638 		0x50b00, 0x50b84,
2639 		0x50c00, 0x50c00,
2640 		0x51000, 0x51020,
2641 		0x51028, 0x510b0,
2642 		0x51300, 0x51324,
2643 	};
2644 
2645 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2646 	const unsigned int *reg_ranges;
2647 	int reg_ranges_size, range;
2648 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2649 
2650 	/* Select the right set of register ranges to dump depending on the
2651 	 * adapter chip type.
2652 	 */
2653 	switch (chip_version) {
2654 	case CHELSIO_T4:
2655 		reg_ranges = t4_reg_ranges;
2656 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2657 		break;
2658 
2659 	case CHELSIO_T5:
2660 		reg_ranges = t5_reg_ranges;
2661 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2662 		break;
2663 
2664 	case CHELSIO_T6:
2665 		reg_ranges = t6_reg_ranges;
2666 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2667 		break;
2668 
2669 	default:
2670 		dev_err(adap->pdev_dev,
2671 			"Unsupported chip version %d\n", chip_version);
2672 		return;
2673 	}
2674 
2675 	/* Clear the register buffer and insert the appropriate register
2676 	 * values selected by the above register ranges.
2677 	 */
2678 	memset(buf, 0, buf_size);
2679 	for (range = 0; range < reg_ranges_size; range += 2) {
2680 		unsigned int reg = reg_ranges[range];
2681 		unsigned int last_reg = reg_ranges[range + 1];
2682 		u32 *bufp = (u32 *)((char *)buf + reg);
2683 
2684 		/* Iterate across the register range filling in the register
2685 		 * buffer but don't write past the end of the register buffer.
2686 		 */
2687 		while (reg <= last_reg && bufp < buf_end) {
2688 			*bufp++ = t4_read_reg(adap, reg);
2689 			reg += sizeof(u32);
2690 		}
2691 	}
2692 }
2693 
2694 #define EEPROM_STAT_ADDR   0x7bfc
2695 #define VPD_BASE           0x400
2696 #define VPD_BASE_OLD       0
2697 #define VPD_LEN            1024
2698 #define CHELSIO_VPD_UNIQUE_ID 0x82
2699 
2700 /**
2701  * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2702  * @phys_addr: the physical EEPROM address
2703  * @fn: the PCI function number
2704  * @sz: size of function-specific area
2705  *
2706  * Translate a physical EEPROM address to virtual.  The first 1K is
2707  * accessed through virtual addresses starting at 31K, the rest is
2708  * accessed through virtual addresses starting at 0.
2709  *
2710  * The mapping is as follows:
2711  * [0..1K) -> [31K..32K)
2712  * [1K..1K+A) -> [31K-A..31K)
2713  * [1K+A..ES) -> [0..ES-A-1K)
2714  *
2715  * where A = @fn * @sz, and ES = EEPROM size.
2716  */
2717 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2718 {
2719 	fn *= sz;
2720 	if (phys_addr < 1024)
2721 		return phys_addr + (31 << 10);
2722 	if (phys_addr < 1024 + fn)
2723 		return 31744 - fn + phys_addr - 1024;
2724 	if (phys_addr < EEPROMSIZE)
2725 		return phys_addr - 1024 - fn;
2726 	return -EINVAL;
2727 }
2728 
2729 /**
2730  *	t4_seeprom_wp - enable/disable EEPROM write protection
2731  *	@adapter: the adapter
2732  *	@enable: whether to enable or disable write protection
2733  *
2734  *	Enables or disables write protection on the serial EEPROM.
2735  */
2736 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2737 {
2738 	unsigned int v = enable ? 0xc : 0;
2739 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2740 	return ret < 0 ? ret : 0;
2741 }
2742 
2743 /**
2744  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2745  *	@adapter: adapter to read
2746  *	@p: where to store the parameters
2747  *
2748  *	Reads card parameters stored in VPD EEPROM.
2749  */
2750 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2751 {
2752 	int i, ret = 0, addr;
2753 	int ec, sn, pn, na;
2754 	u8 *vpd, csum;
2755 	unsigned int vpdr_len, kw_offset, id_len;
2756 
2757 	vpd = vmalloc(VPD_LEN);
2758 	if (!vpd)
2759 		return -ENOMEM;
2760 
2761 	/* Card information normally starts at VPD_BASE but early cards had
2762 	 * it at 0.
2763 	 */
2764 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2765 	if (ret < 0)
2766 		goto out;
2767 
2768 	/* The VPD shall have a unique identifier specified by the PCI SIG.
2769 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2770 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2771 	 * is expected to automatically put this entry at the
2772 	 * beginning of the VPD.
2773 	 */
2774 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2775 
2776 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2777 	if (ret < 0)
2778 		goto out;
2779 
2780 	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2781 		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2782 		ret = -EINVAL;
2783 		goto out;
2784 	}
2785 
2786 	id_len = pci_vpd_lrdt_size(vpd);
2787 	if (id_len > ID_LEN)
2788 		id_len = ID_LEN;
2789 
2790 	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2791 	if (i < 0) {
2792 		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2793 		ret = -EINVAL;
2794 		goto out;
2795 	}
2796 
2797 	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2798 	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2799 	if (vpdr_len + kw_offset > VPD_LEN) {
2800 		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2801 		ret = -EINVAL;
2802 		goto out;
2803 	}
2804 
2805 #define FIND_VPD_KW(var, name) do { \
2806 	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2807 	if (var < 0) { \
2808 		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2809 		ret = -EINVAL; \
2810 		goto out; \
2811 	} \
2812 	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2813 } while (0)
2814 
2815 	FIND_VPD_KW(i, "RV");
2816 	for (csum = 0; i >= 0; i--)
2817 		csum += vpd[i];
2818 
2819 	if (csum) {
2820 		dev_err(adapter->pdev_dev,
2821 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2822 		ret = -EINVAL;
2823 		goto out;
2824 	}
2825 
2826 	FIND_VPD_KW(ec, "EC");
2827 	FIND_VPD_KW(sn, "SN");
2828 	FIND_VPD_KW(pn, "PN");
2829 	FIND_VPD_KW(na, "NA");
2830 #undef FIND_VPD_KW
2831 
2832 	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2833 	strim(p->id);
2834 	memcpy(p->ec, vpd + ec, EC_LEN);
2835 	strim(p->ec);
2836 	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2837 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2838 	strim(p->sn);
2839 	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2840 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2841 	strim(p->pn);
2842 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2843 	strim((char *)p->na);
2844 
2845 out:
2846 	vfree(vpd);
2847 	return ret < 0 ? ret : 0;
2848 }
2849 
2850 /**
2851  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2852  *	@adapter: adapter to read
2853  *	@p: where to store the parameters
2854  *
2855  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2856  *	Clock.  This can only be called after a connection to the firmware
2857  *	is established.
2858  */
2859 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2860 {
2861 	u32 cclk_param, cclk_val;
2862 	int ret;
2863 
2864 	/* Grab the raw VPD parameters.
2865 	 */
2866 	ret = t4_get_raw_vpd_params(adapter, p);
2867 	if (ret)
2868 		return ret;
2869 
2870 	/* Ask firmware for the Core Clock since it knows how to translate the
2871 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2872 	 */
2873 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2874 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2875 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2876 			      1, &cclk_param, &cclk_val);
2877 
2878 	if (ret)
2879 		return ret;
2880 	p->cclk = cclk_val;
2881 
2882 	return 0;
2883 }
2884 
2885 /* serial flash and firmware constants */
2886 enum {
2887 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2888 
2889 	/* flash command opcodes */
2890 	SF_PROG_PAGE    = 2,          /* program page */
2891 	SF_WR_DISABLE   = 4,          /* disable writes */
2892 	SF_RD_STATUS    = 5,          /* read status register */
2893 	SF_WR_ENABLE    = 6,          /* enable writes */
2894 	SF_RD_DATA_FAST = 0xb,        /* read flash */
2895 	SF_RD_ID        = 0x9f,       /* read ID */
2896 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2897 };
2898 
2899 /**
2900  *	sf1_read - read data from the serial flash
2901  *	@adapter: the adapter
2902  *	@byte_cnt: number of bytes to read
2903  *	@cont: whether another operation will be chained
2904  *	@lock: whether to lock SF for PL access only
2905  *	@valp: where to store the read data
2906  *
2907  *	Reads up to 4 bytes of data from the serial flash.  The location of
2908  *	the read needs to be specified prior to calling this by issuing the
2909  *	appropriate commands to the serial flash.
2910  */
2911 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2912 		    int lock, u32 *valp)
2913 {
2914 	int ret;
2915 
2916 	if (!byte_cnt || byte_cnt > 4)
2917 		return -EINVAL;
2918 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2919 		return -EBUSY;
2920 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2921 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2922 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2923 	if (!ret)
2924 		*valp = t4_read_reg(adapter, SF_DATA_A);
2925 	return ret;
2926 }
2927 
2928 /**
2929  *	sf1_write - write data to the serial flash
2930  *	@adapter: the adapter
2931  *	@byte_cnt: number of bytes to write
2932  *	@cont: whether another operation will be chained
2933  *	@lock: whether to lock SF for PL access only
2934  *	@val: value to write
2935  *
2936  *	Writes up to 4 bytes of data to the serial flash.  The location of
2937  *	the write needs to be specified prior to calling this by issuing the
2938  *	appropriate commands to the serial flash.
2939  */
2940 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2941 		     int lock, u32 val)
2942 {
2943 	if (!byte_cnt || byte_cnt > 4)
2944 		return -EINVAL;
2945 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2946 		return -EBUSY;
2947 	t4_write_reg(adapter, SF_DATA_A, val);
2948 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2949 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2950 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2951 }
2952 
2953 /**
2954  *	flash_wait_op - wait for a flash operation to complete
2955  *	@adapter: the adapter
2956  *	@attempts: max number of polls of the status register
2957  *	@delay: delay between polls in ms
2958  *
2959  *	Wait for a flash operation to complete by polling the status register.
2960  */
2961 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2962 {
2963 	int ret;
2964 	u32 status;
2965 
2966 	while (1) {
2967 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2968 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2969 			return ret;
2970 		if (!(status & 1))
2971 			return 0;
2972 		if (--attempts == 0)
2973 			return -EAGAIN;
2974 		if (delay)
2975 			msleep(delay);
2976 	}
2977 }
2978 
2979 /**
2980  *	t4_read_flash - read words from serial flash
2981  *	@adapter: the adapter
2982  *	@addr: the start address for the read
2983  *	@nwords: how many 32-bit words to read
2984  *	@data: where to store the read data
2985  *	@byte_oriented: whether to store data as bytes or as words
2986  *
2987  *	Read the specified number of 32-bit words from the serial flash.
2988  *	If @byte_oriented is set the read data is stored as a byte array
2989  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
2990  *	natural endianness.
2991  */
2992 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2993 		  unsigned int nwords, u32 *data, int byte_oriented)
2994 {
2995 	int ret;
2996 
2997 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2998 		return -EINVAL;
2999 
3000 	addr = swab32(addr) | SF_RD_DATA_FAST;
3001 
3002 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3003 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3004 		return ret;
3005 
3006 	for ( ; nwords; nwords--, data++) {
3007 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3008 		if (nwords == 1)
3009 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3010 		if (ret)
3011 			return ret;
3012 		if (byte_oriented)
3013 			*data = (__force __u32)(cpu_to_be32(*data));
3014 	}
3015 	return 0;
3016 }
3017 
3018 /**
3019  *	t4_write_flash - write up to a page of data to the serial flash
3020  *	@adapter: the adapter
3021  *	@addr: the start address to write
3022  *	@n: length of data to write in bytes
3023  *	@data: the data to write
3024  *
3025  *	Writes up to a page of data (256 bytes) to the serial flash starting
3026  *	at the given address.  All the data must be written to the same page.
3027  */
3028 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3029 			  unsigned int n, const u8 *data)
3030 {
3031 	int ret;
3032 	u32 buf[64];
3033 	unsigned int i, c, left, val, offset = addr & 0xff;
3034 
3035 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3036 		return -EINVAL;
3037 
3038 	val = swab32(addr) | SF_PROG_PAGE;
3039 
3040 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3041 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3042 		goto unlock;
3043 
3044 	for (left = n; left; left -= c) {
3045 		c = min(left, 4U);
3046 		for (val = 0, i = 0; i < c; ++i)
3047 			val = (val << 8) + *data++;
3048 
3049 		ret = sf1_write(adapter, c, c != left, 1, val);
3050 		if (ret)
3051 			goto unlock;
3052 	}
3053 	ret = flash_wait_op(adapter, 8, 1);
3054 	if (ret)
3055 		goto unlock;
3056 
3057 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3058 
3059 	/* Read the page to verify the write succeeded */
3060 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
3061 	if (ret)
3062 		return ret;
3063 
3064 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3065 		dev_err(adapter->pdev_dev,
3066 			"failed to correctly write the flash page at %#x\n",
3067 			addr);
3068 		return -EIO;
3069 	}
3070 	return 0;
3071 
3072 unlock:
3073 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3074 	return ret;
3075 }
3076 
3077 /**
3078  *	t4_get_fw_version - read the firmware version
3079  *	@adapter: the adapter
3080  *	@vers: where to place the version
3081  *
3082  *	Reads the FW version from flash.
3083  */
3084 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3085 {
3086 	return t4_read_flash(adapter, FLASH_FW_START +
3087 			     offsetof(struct fw_hdr, fw_ver), 1,
3088 			     vers, 0);
3089 }
3090 
3091 /**
3092  *	t4_get_bs_version - read the firmware bootstrap version
3093  *	@adapter: the adapter
3094  *	@vers: where to place the version
3095  *
3096  *	Reads the FW Bootstrap version from flash.
3097  */
3098 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3099 {
3100 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3101 			     offsetof(struct fw_hdr, fw_ver), 1,
3102 			     vers, 0);
3103 }
3104 
3105 /**
3106  *	t4_get_tp_version - read the TP microcode version
3107  *	@adapter: the adapter
3108  *	@vers: where to place the version
3109  *
3110  *	Reads the TP microcode version from flash.
3111  */
3112 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3113 {
3114 	return t4_read_flash(adapter, FLASH_FW_START +
3115 			     offsetof(struct fw_hdr, tp_microcode_ver),
3116 			     1, vers, 0);
3117 }
3118 
3119 /**
3120  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3121  *	@adapter: the adapter
3122  *	@vers: where to place the version
3123  *
3124  *	Reads the Expansion ROM header from FLASH and returns the version
3125  *	number (if present) through the @vers return value pointer.  We return
3126  *	this in the Firmware Version Format since it's convenient.  Return
3127  *	0 on success, -ENOENT if no Expansion ROM is present.
3128  */
3129 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3130 {
3131 	struct exprom_header {
3132 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3133 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3134 	} *hdr;
3135 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3136 					   sizeof(u32))];
3137 	int ret;
3138 
3139 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3140 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3141 			    0);
3142 	if (ret)
3143 		return ret;
3144 
3145 	hdr = (struct exprom_header *)exprom_header_buf;
3146 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3147 		return -ENOENT;
3148 
3149 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3150 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3151 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3152 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3153 	return 0;
3154 }
3155 
3156 /**
3157  *      t4_get_vpd_version - return the VPD version
3158  *      @adapter: the adapter
3159  *      @vers: where to place the version
3160  *
3161  *      Reads the VPD via the Firmware interface (thus this can only be called
3162  *      once we're ready to issue Firmware commands).  The format of the
3163  *      VPD version is adapter specific.  Returns 0 on success, an error on
3164  *      failure.
3165  *
3166  *      Note that early versions of the Firmware didn't include the ability
3167  *      to retrieve the VPD version, so we zero-out the return-value parameter
3168  *      in that case to avoid leaving it with garbage in it.
3169  *
3170  *      Also note that the Firmware will return its cached copy of the VPD
3171  *      Revision ID, not the actual Revision ID as written in the Serial
3172  *      EEPROM.  This is only an issue if a new VPD has been written and the
3173  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3174  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3175  *      if the Host Driver will be performing a full adapter initialization.
3176  */
3177 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3178 {
3179 	u32 vpdrev_param;
3180 	int ret;
3181 
3182 	vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3183 			FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3184 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3185 			      1, &vpdrev_param, vers);
3186 	if (ret)
3187 		*vers = 0;
3188 	return ret;
3189 }
3190 
3191 /**
3192  *      t4_get_scfg_version - return the Serial Configuration version
3193  *      @adapter: the adapter
3194  *      @vers: where to place the version
3195  *
3196  *      Reads the Serial Configuration Version via the Firmware interface
3197  *      (thus this can only be called once we're ready to issue Firmware
3198  *      commands).  The format of the Serial Configuration version is
3199  *      adapter specific.  Returns 0 on success, an error on failure.
3200  *
3201  *      Note that early versions of the Firmware didn't include the ability
3202  *      to retrieve the Serial Configuration version, so we zero-out the
3203  *      return-value parameter in that case to avoid leaving it with
3204  *      garbage in it.
3205  *
3206  *      Also note that the Firmware will return its cached copy of the Serial
3207  *      Initialization Revision ID, not the actual Revision ID as written in
3208  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3209  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3210  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3211  *      been issued if the Host Driver will be performing a full adapter
3212  *      initialization.
3213  */
3214 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3215 {
3216 	u32 scfgrev_param;
3217 	int ret;
3218 
3219 	scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3220 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3221 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3222 			      1, &scfgrev_param, vers);
3223 	if (ret)
3224 		*vers = 0;
3225 	return ret;
3226 }
3227 
3228 /**
3229  *      t4_get_version_info - extract various chip/firmware version information
3230  *      @adapter: the adapter
3231  *
3232  *      Reads various chip/firmware version numbers and stores them into the
3233  *      adapter Adapter Parameters structure.  If any of the efforts fails
3234  *      the first failure will be returned, but all of the version numbers
3235  *      will be read.
3236  */
3237 int t4_get_version_info(struct adapter *adapter)
3238 {
3239 	int ret = 0;
3240 
3241 	#define FIRST_RET(__getvinfo) \
3242 	do { \
3243 		int __ret = __getvinfo; \
3244 		if (__ret && !ret) \
3245 			ret = __ret; \
3246 	} while (0)
3247 
3248 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3249 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3250 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3251 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3252 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3253 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3254 
3255 	#undef FIRST_RET
3256 	return ret;
3257 }
3258 
3259 /**
3260  *      t4_dump_version_info - dump all of the adapter configuration IDs
3261  *      @adapter: the adapter
3262  *
3263  *      Dumps all of the various bits of adapter configuration version/revision
3264  *      IDs information.  This is typically called at some point after
3265  *      t4_get_version_info() has been called.
3266  */
3267 void t4_dump_version_info(struct adapter *adapter)
3268 {
3269 	/* Device information */
3270 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3271 		 adapter->params.vpd.id,
3272 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
3273 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3274 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
3275 
3276 	/* Firmware Version */
3277 	if (!adapter->params.fw_vers)
3278 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3279 	else
3280 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3281 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3282 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3283 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3284 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3285 
3286 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3287 	 * Firmware, so dev_info() is more appropriate here.)
3288 	 */
3289 	if (!adapter->params.bs_vers)
3290 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3291 	else
3292 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3293 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3294 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3295 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3296 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3297 
3298 	/* TP Microcode Version */
3299 	if (!adapter->params.tp_vers)
3300 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3301 	else
3302 		dev_info(adapter->pdev_dev,
3303 			 "TP Microcode version: %u.%u.%u.%u\n",
3304 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3305 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3306 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3307 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3308 
3309 	/* Expansion ROM version */
3310 	if (!adapter->params.er_vers)
3311 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3312 	else
3313 		dev_info(adapter->pdev_dev,
3314 			 "Expansion ROM version: %u.%u.%u.%u\n",
3315 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3316 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3317 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3318 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3319 
3320 	/* Serial Configuration version */
3321 	dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3322 		 adapter->params.scfg_vers);
3323 
3324 	/* VPD Version */
3325 	dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3326 		 adapter->params.vpd_vers);
3327 }
3328 
3329 /**
3330  *	t4_check_fw_version - check if the FW is supported with this driver
3331  *	@adap: the adapter
3332  *
3333  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
3334  *	if there's exact match, a negative error if the version could not be
3335  *	read or there's a major version mismatch
3336  */
3337 int t4_check_fw_version(struct adapter *adap)
3338 {
3339 	int i, ret, major, minor, micro;
3340 	int exp_major, exp_minor, exp_micro;
3341 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3342 
3343 	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3344 	/* Try multiple times before returning error */
3345 	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3346 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3347 
3348 	if (ret)
3349 		return ret;
3350 
3351 	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3352 	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3353 	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3354 
3355 	switch (chip_version) {
3356 	case CHELSIO_T4:
3357 		exp_major = T4FW_MIN_VERSION_MAJOR;
3358 		exp_minor = T4FW_MIN_VERSION_MINOR;
3359 		exp_micro = T4FW_MIN_VERSION_MICRO;
3360 		break;
3361 	case CHELSIO_T5:
3362 		exp_major = T5FW_MIN_VERSION_MAJOR;
3363 		exp_minor = T5FW_MIN_VERSION_MINOR;
3364 		exp_micro = T5FW_MIN_VERSION_MICRO;
3365 		break;
3366 	case CHELSIO_T6:
3367 		exp_major = T6FW_MIN_VERSION_MAJOR;
3368 		exp_minor = T6FW_MIN_VERSION_MINOR;
3369 		exp_micro = T6FW_MIN_VERSION_MICRO;
3370 		break;
3371 	default:
3372 		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3373 			adap->chip);
3374 		return -EINVAL;
3375 	}
3376 
3377 	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3378 	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3379 		dev_err(adap->pdev_dev,
3380 			"Card has firmware version %u.%u.%u, minimum "
3381 			"supported firmware is %u.%u.%u.\n", major, minor,
3382 			micro, exp_major, exp_minor, exp_micro);
3383 		return -EFAULT;
3384 	}
3385 	return 0;
3386 }
3387 
3388 /* Is the given firmware API compatible with the one the driver was compiled
3389  * with?
3390  */
3391 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3392 {
3393 
3394 	/* short circuit if it's the exact same firmware version */
3395 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3396 		return 1;
3397 
3398 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3399 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3400 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3401 		return 1;
3402 #undef SAME_INTF
3403 
3404 	return 0;
3405 }
3406 
3407 /* The firmware in the filesystem is usable, but should it be installed?
3408  * This routine explains itself in detail if it indicates the filesystem
3409  * firmware should be installed.
3410  */
3411 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3412 				int k, int c)
3413 {
3414 	const char *reason;
3415 
3416 	if (!card_fw_usable) {
3417 		reason = "incompatible or unusable";
3418 		goto install;
3419 	}
3420 
3421 	if (k > c) {
3422 		reason = "older than the version supported with this driver";
3423 		goto install;
3424 	}
3425 
3426 	return 0;
3427 
3428 install:
3429 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3430 		"installing firmware %u.%u.%u.%u on card.\n",
3431 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3432 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3433 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3434 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3435 
3436 	return 1;
3437 }
3438 
3439 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3440 	       const u8 *fw_data, unsigned int fw_size,
3441 	       struct fw_hdr *card_fw, enum dev_state state,
3442 	       int *reset)
3443 {
3444 	int ret, card_fw_usable, fs_fw_usable;
3445 	const struct fw_hdr *fs_fw;
3446 	const struct fw_hdr *drv_fw;
3447 
3448 	drv_fw = &fw_info->fw_hdr;
3449 
3450 	/* Read the header of the firmware on the card */
3451 	ret = -t4_read_flash(adap, FLASH_FW_START,
3452 			    sizeof(*card_fw) / sizeof(uint32_t),
3453 			    (uint32_t *)card_fw, 1);
3454 	if (ret == 0) {
3455 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3456 	} else {
3457 		dev_err(adap->pdev_dev,
3458 			"Unable to read card's firmware header: %d\n", ret);
3459 		card_fw_usable = 0;
3460 	}
3461 
3462 	if (fw_data != NULL) {
3463 		fs_fw = (const void *)fw_data;
3464 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3465 	} else {
3466 		fs_fw = NULL;
3467 		fs_fw_usable = 0;
3468 	}
3469 
3470 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3471 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3472 		/* Common case: the firmware on the card is an exact match and
3473 		 * the filesystem one is an exact match too, or the filesystem
3474 		 * one is absent/incompatible.
3475 		 */
3476 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3477 		   should_install_fs_fw(adap, card_fw_usable,
3478 					be32_to_cpu(fs_fw->fw_ver),
3479 					be32_to_cpu(card_fw->fw_ver))) {
3480 		ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3481 				     fw_size, 0);
3482 		if (ret != 0) {
3483 			dev_err(adap->pdev_dev,
3484 				"failed to install firmware: %d\n", ret);
3485 			goto bye;
3486 		}
3487 
3488 		/* Installed successfully, update the cached header too. */
3489 		*card_fw = *fs_fw;
3490 		card_fw_usable = 1;
3491 		*reset = 0;	/* already reset as part of load_fw */
3492 	}
3493 
3494 	if (!card_fw_usable) {
3495 		uint32_t d, c, k;
3496 
3497 		d = be32_to_cpu(drv_fw->fw_ver);
3498 		c = be32_to_cpu(card_fw->fw_ver);
3499 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3500 
3501 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3502 			"chip state %d, "
3503 			"driver compiled with %d.%d.%d.%d, "
3504 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3505 			state,
3506 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3507 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3508 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3509 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3510 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3511 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3512 		ret = EINVAL;
3513 		goto bye;
3514 	}
3515 
3516 	/* We're using whatever's on the card and it's known to be good. */
3517 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3518 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3519 
3520 bye:
3521 	return ret;
3522 }
3523 
3524 /**
3525  *	t4_flash_erase_sectors - erase a range of flash sectors
3526  *	@adapter: the adapter
3527  *	@start: the first sector to erase
3528  *	@end: the last sector to erase
3529  *
3530  *	Erases the sectors in the given inclusive range.
3531  */
3532 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3533 {
3534 	int ret = 0;
3535 
3536 	if (end >= adapter->params.sf_nsec)
3537 		return -EINVAL;
3538 
3539 	while (start <= end) {
3540 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3541 		    (ret = sf1_write(adapter, 4, 0, 1,
3542 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3543 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3544 			dev_err(adapter->pdev_dev,
3545 				"erase of flash sector %d failed, error %d\n",
3546 				start, ret);
3547 			break;
3548 		}
3549 		start++;
3550 	}
3551 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3552 	return ret;
3553 }
3554 
3555 /**
3556  *	t4_flash_cfg_addr - return the address of the flash configuration file
3557  *	@adapter: the adapter
3558  *
3559  *	Return the address within the flash where the Firmware Configuration
3560  *	File is stored.
3561  */
3562 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3563 {
3564 	if (adapter->params.sf_size == 0x100000)
3565 		return FLASH_FPGA_CFG_START;
3566 	else
3567 		return FLASH_CFG_START;
3568 }
3569 
3570 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3571  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3572  * and emit an error message for mismatched firmware to save our caller the
3573  * effort ...
3574  */
3575 static bool t4_fw_matches_chip(const struct adapter *adap,
3576 			       const struct fw_hdr *hdr)
3577 {
3578 	/* The expression below will return FALSE for any unsupported adapter
3579 	 * which will keep us "honest" in the future ...
3580 	 */
3581 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3582 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3583 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3584 		return true;
3585 
3586 	dev_err(adap->pdev_dev,
3587 		"FW image (%d) is not suitable for this adapter (%d)\n",
3588 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3589 	return false;
3590 }
3591 
3592 /**
3593  *	t4_load_fw - download firmware
3594  *	@adap: the adapter
3595  *	@fw_data: the firmware image to write
3596  *	@size: image size
3597  *
3598  *	Write the supplied firmware image to the card's serial flash.
3599  */
3600 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3601 {
3602 	u32 csum;
3603 	int ret, addr;
3604 	unsigned int i;
3605 	u8 first_page[SF_PAGE_SIZE];
3606 	const __be32 *p = (const __be32 *)fw_data;
3607 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3608 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3609 	unsigned int fw_start_sec = FLASH_FW_START_SEC;
3610 	unsigned int fw_size = FLASH_FW_MAX_SIZE;
3611 	unsigned int fw_start = FLASH_FW_START;
3612 
3613 	if (!size) {
3614 		dev_err(adap->pdev_dev, "FW image has no data\n");
3615 		return -EINVAL;
3616 	}
3617 	if (size & 511) {
3618 		dev_err(adap->pdev_dev,
3619 			"FW image size not multiple of 512 bytes\n");
3620 		return -EINVAL;
3621 	}
3622 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3623 		dev_err(adap->pdev_dev,
3624 			"FW image size differs from size in FW header\n");
3625 		return -EINVAL;
3626 	}
3627 	if (size > fw_size) {
3628 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3629 			fw_size);
3630 		return -EFBIG;
3631 	}
3632 	if (!t4_fw_matches_chip(adap, hdr))
3633 		return -EINVAL;
3634 
3635 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3636 		csum += be32_to_cpu(p[i]);
3637 
3638 	if (csum != 0xffffffff) {
3639 		dev_err(adap->pdev_dev,
3640 			"corrupted firmware image, checksum %#x\n", csum);
3641 		return -EINVAL;
3642 	}
3643 
3644 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3645 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3646 	if (ret)
3647 		goto out;
3648 
3649 	/*
3650 	 * We write the correct version at the end so the driver can see a bad
3651 	 * version if the FW write fails.  Start by writing a copy of the
3652 	 * first page with a bad version.
3653 	 */
3654 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3655 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3656 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page);
3657 	if (ret)
3658 		goto out;
3659 
3660 	addr = fw_start;
3661 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3662 		addr += SF_PAGE_SIZE;
3663 		fw_data += SF_PAGE_SIZE;
3664 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3665 		if (ret)
3666 			goto out;
3667 	}
3668 
3669 	ret = t4_write_flash(adap,
3670 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3671 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3672 out:
3673 	if (ret)
3674 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3675 			ret);
3676 	else
3677 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3678 	return ret;
3679 }
3680 
3681 /**
3682  *	t4_phy_fw_ver - return current PHY firmware version
3683  *	@adap: the adapter
3684  *	@phy_fw_ver: return value buffer for PHY firmware version
3685  *
3686  *	Returns the current version of external PHY firmware on the
3687  *	adapter.
3688  */
3689 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3690 {
3691 	u32 param, val;
3692 	int ret;
3693 
3694 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3695 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3696 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3697 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3698 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3699 			      &param, &val);
3700 	if (ret < 0)
3701 		return ret;
3702 	*phy_fw_ver = val;
3703 	return 0;
3704 }
3705 
3706 /**
3707  *	t4_load_phy_fw - download port PHY firmware
3708  *	@adap: the adapter
3709  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3710  *	@win_lock: the lock to use to guard the memory copy
3711  *	@phy_fw_version: function to check PHY firmware versions
3712  *	@phy_fw_data: the PHY firmware image to write
3713  *	@phy_fw_size: image size
3714  *
3715  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3716  *	@phy_fw_version is supplied, then it will be used to determine if
3717  *	it's necessary to perform the transfer by comparing the version
3718  *	of any existing adapter PHY firmware with that of the passed in
3719  *	PHY firmware image.  If @win_lock is non-NULL then it will be used
3720  *	around the call to t4_memory_rw() which transfers the PHY firmware
3721  *	to the adapter.
3722  *
3723  *	A negative error number will be returned if an error occurs.  If
3724  *	version number support is available and there's no need to upgrade
3725  *	the firmware, 0 will be returned.  If firmware is successfully
3726  *	transferred to the adapter, 1 will be retured.
3727  *
3728  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3729  *	a result, a RESET of the adapter would cause that RAM to lose its
3730  *	contents.  Thus, loading PHY firmware on such adapters must happen
3731  *	after any FW_RESET_CMDs ...
3732  */
3733 int t4_load_phy_fw(struct adapter *adap,
3734 		   int win, spinlock_t *win_lock,
3735 		   int (*phy_fw_version)(const u8 *, size_t),
3736 		   const u8 *phy_fw_data, size_t phy_fw_size)
3737 {
3738 	unsigned long mtype = 0, maddr = 0;
3739 	u32 param, val;
3740 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3741 	int ret;
3742 
3743 	/* If we have version number support, then check to see if the adapter
3744 	 * already has up-to-date PHY firmware loaded.
3745 	 */
3746 	 if (phy_fw_version) {
3747 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3748 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3749 		if (ret < 0)
3750 			return ret;
3751 
3752 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3753 			CH_WARN(adap, "PHY Firmware already up-to-date, "
3754 				"version %#x\n", cur_phy_fw_ver);
3755 			return 0;
3756 		}
3757 	}
3758 
3759 	/* Ask the firmware where it wants us to copy the PHY firmware image.
3760 	 * The size of the file requires a special version of the READ coommand
3761 	 * which will pass the file size via the values field in PARAMS_CMD and
3762 	 * retrieve the return value from firmware and place it in the same
3763 	 * buffer values
3764 	 */
3765 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3766 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3767 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3768 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3769 	val = phy_fw_size;
3770 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3771 				 &param, &val, 1, true);
3772 	if (ret < 0)
3773 		return ret;
3774 	mtype = val >> 8;
3775 	maddr = (val & 0xff) << 16;
3776 
3777 	/* Copy the supplied PHY Firmware image to the adapter memory location
3778 	 * allocated by the adapter firmware.
3779 	 */
3780 	if (win_lock)
3781 		spin_lock_bh(win_lock);
3782 	ret = t4_memory_rw(adap, win, mtype, maddr,
3783 			   phy_fw_size, (__be32 *)phy_fw_data,
3784 			   T4_MEMORY_WRITE);
3785 	if (win_lock)
3786 		spin_unlock_bh(win_lock);
3787 	if (ret)
3788 		return ret;
3789 
3790 	/* Tell the firmware that the PHY firmware image has been written to
3791 	 * RAM and it can now start copying it over to the PHYs.  The chip
3792 	 * firmware will RESET the affected PHYs as part of this operation
3793 	 * leaving them running the new PHY firmware image.
3794 	 */
3795 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3796 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3797 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3798 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3799 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3800 				    &param, &val, 30000);
3801 
3802 	/* If we have version number support, then check to see that the new
3803 	 * firmware got loaded properly.
3804 	 */
3805 	if (phy_fw_version) {
3806 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3807 		if (ret < 0)
3808 			return ret;
3809 
3810 		if (cur_phy_fw_ver != new_phy_fw_vers) {
3811 			CH_WARN(adap, "PHY Firmware did not update: "
3812 				"version on adapter %#x, "
3813 				"version flashed %#x\n",
3814 				cur_phy_fw_ver, new_phy_fw_vers);
3815 			return -ENXIO;
3816 		}
3817 	}
3818 
3819 	return 1;
3820 }
3821 
3822 /**
3823  *	t4_fwcache - firmware cache operation
3824  *	@adap: the adapter
3825  *	@op  : the operation (flush or flush and invalidate)
3826  */
3827 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3828 {
3829 	struct fw_params_cmd c;
3830 
3831 	memset(&c, 0, sizeof(c));
3832 	c.op_to_vfn =
3833 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3834 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3835 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3836 			    FW_PARAMS_CMD_VFN_V(0));
3837 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3838 	c.param[0].mnem =
3839 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3840 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3841 	c.param[0].val = (__force __be32)op;
3842 
3843 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3844 }
3845 
3846 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3847 			unsigned int *pif_req_wrptr,
3848 			unsigned int *pif_rsp_wrptr)
3849 {
3850 	int i, j;
3851 	u32 cfg, val, req, rsp;
3852 
3853 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3854 	if (cfg & LADBGEN_F)
3855 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3856 
3857 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3858 	req = POLADBGWRPTR_G(val);
3859 	rsp = PILADBGWRPTR_G(val);
3860 	if (pif_req_wrptr)
3861 		*pif_req_wrptr = req;
3862 	if (pif_rsp_wrptr)
3863 		*pif_rsp_wrptr = rsp;
3864 
3865 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3866 		for (j = 0; j < 6; j++) {
3867 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3868 				     PILADBGRDPTR_V(rsp));
3869 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3870 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3871 			req++;
3872 			rsp++;
3873 		}
3874 		req = (req + 2) & POLADBGRDPTR_M;
3875 		rsp = (rsp + 2) & PILADBGRDPTR_M;
3876 	}
3877 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3878 }
3879 
3880 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3881 {
3882 	u32 cfg;
3883 	int i, j, idx;
3884 
3885 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3886 	if (cfg & LADBGEN_F)
3887 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3888 
3889 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3890 		for (j = 0; j < 5; j++) {
3891 			idx = 8 * i + j;
3892 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3893 				     PILADBGRDPTR_V(idx));
3894 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3895 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3896 		}
3897 	}
3898 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3899 }
3900 
3901 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3902 {
3903 	unsigned int i, j;
3904 
3905 	for (i = 0; i < 8; i++) {
3906 		u32 *p = la_buf + i;
3907 
3908 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3909 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3910 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3911 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3912 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3913 	}
3914 }
3915 
3916 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3917 		     FW_PORT_CAP32_ANEG)
3918 
3919 /**
3920  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3921  *	@caps16: a 16-bit Port Capabilities value
3922  *
3923  *	Returns the equivalent 32-bit Port Capabilities value.
3924  */
3925 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3926 {
3927 	fw_port_cap32_t caps32 = 0;
3928 
3929 	#define CAP16_TO_CAP32(__cap) \
3930 		do { \
3931 			if (caps16 & FW_PORT_CAP_##__cap) \
3932 				caps32 |= FW_PORT_CAP32_##__cap; \
3933 		} while (0)
3934 
3935 	CAP16_TO_CAP32(SPEED_100M);
3936 	CAP16_TO_CAP32(SPEED_1G);
3937 	CAP16_TO_CAP32(SPEED_25G);
3938 	CAP16_TO_CAP32(SPEED_10G);
3939 	CAP16_TO_CAP32(SPEED_40G);
3940 	CAP16_TO_CAP32(SPEED_100G);
3941 	CAP16_TO_CAP32(FC_RX);
3942 	CAP16_TO_CAP32(FC_TX);
3943 	CAP16_TO_CAP32(ANEG);
3944 	CAP16_TO_CAP32(MDIX);
3945 	CAP16_TO_CAP32(MDIAUTO);
3946 	CAP16_TO_CAP32(FEC_RS);
3947 	CAP16_TO_CAP32(FEC_BASER_RS);
3948 	CAP16_TO_CAP32(802_3_PAUSE);
3949 	CAP16_TO_CAP32(802_3_ASM_DIR);
3950 
3951 	#undef CAP16_TO_CAP32
3952 
3953 	return caps32;
3954 }
3955 
3956 /**
3957  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3958  *	@caps32: a 32-bit Port Capabilities value
3959  *
3960  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
3961  *	not all 32-bit Port Capabilities can be represented in the 16-bit
3962  *	Port Capabilities and some fields/values may not make it.
3963  */
3964 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
3965 {
3966 	fw_port_cap16_t caps16 = 0;
3967 
3968 	#define CAP32_TO_CAP16(__cap) \
3969 		do { \
3970 			if (caps32 & FW_PORT_CAP32_##__cap) \
3971 				caps16 |= FW_PORT_CAP_##__cap; \
3972 		} while (0)
3973 
3974 	CAP32_TO_CAP16(SPEED_100M);
3975 	CAP32_TO_CAP16(SPEED_1G);
3976 	CAP32_TO_CAP16(SPEED_10G);
3977 	CAP32_TO_CAP16(SPEED_25G);
3978 	CAP32_TO_CAP16(SPEED_40G);
3979 	CAP32_TO_CAP16(SPEED_100G);
3980 	CAP32_TO_CAP16(FC_RX);
3981 	CAP32_TO_CAP16(FC_TX);
3982 	CAP32_TO_CAP16(802_3_PAUSE);
3983 	CAP32_TO_CAP16(802_3_ASM_DIR);
3984 	CAP32_TO_CAP16(ANEG);
3985 	CAP32_TO_CAP16(MDIX);
3986 	CAP32_TO_CAP16(MDIAUTO);
3987 	CAP32_TO_CAP16(FEC_RS);
3988 	CAP32_TO_CAP16(FEC_BASER_RS);
3989 
3990 	#undef CAP32_TO_CAP16
3991 
3992 	return caps16;
3993 }
3994 
3995 /* Translate Firmware Port Capabilities Pause specification to Common Code */
3996 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
3997 {
3998 	enum cc_pause cc_pause = 0;
3999 
4000 	if (fw_pause & FW_PORT_CAP32_FC_RX)
4001 		cc_pause |= PAUSE_RX;
4002 	if (fw_pause & FW_PORT_CAP32_FC_TX)
4003 		cc_pause |= PAUSE_TX;
4004 
4005 	return cc_pause;
4006 }
4007 
4008 /* Translate Common Code Pause specification into Firmware Port Capabilities */
4009 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4010 {
4011 	fw_port_cap32_t fw_pause = 0;
4012 
4013 	if (cc_pause & PAUSE_RX)
4014 		fw_pause |= FW_PORT_CAP32_FC_RX;
4015 	if (cc_pause & PAUSE_TX)
4016 		fw_pause |= FW_PORT_CAP32_FC_TX;
4017 
4018 	return fw_pause;
4019 }
4020 
4021 /* Translate Firmware Forward Error Correction specification to Common Code */
4022 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4023 {
4024 	enum cc_fec cc_fec = 0;
4025 
4026 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
4027 		cc_fec |= FEC_RS;
4028 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4029 		cc_fec |= FEC_BASER_RS;
4030 
4031 	return cc_fec;
4032 }
4033 
4034 /* Translate Common Code Forward Error Correction specification to Firmware */
4035 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4036 {
4037 	fw_port_cap32_t fw_fec = 0;
4038 
4039 	if (cc_fec & FEC_RS)
4040 		fw_fec |= FW_PORT_CAP32_FEC_RS;
4041 	if (cc_fec & FEC_BASER_RS)
4042 		fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4043 
4044 	return fw_fec;
4045 }
4046 
4047 /**
4048  *	t4_link_l1cfg - apply link configuration to MAC/PHY
4049  *	@adapter: the adapter
4050  *	@mbox: the Firmware Mailbox to use
4051  *	@port: the Port ID
4052  *	@lc: the Port's Link Configuration
4053  *
4054  *	Set up a port's MAC and PHY according to a desired link configuration.
4055  *	- If the PHY can auto-negotiate first decide what to advertise, then
4056  *	  enable/disable auto-negotiation as desired, and reset.
4057  *	- If the PHY does not auto-negotiate just reset it.
4058  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4059  *	  otherwise do it later based on the outcome of auto-negotiation.
4060  */
4061 int t4_link_l1cfg(struct adapter *adapter, unsigned int mbox,
4062 		  unsigned int port, struct link_config *lc)
4063 {
4064 	unsigned int fw_caps = adapter->params.fw_caps_support;
4065 	struct fw_port_cmd cmd;
4066 	unsigned int fw_mdi = FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO);
4067 	fw_port_cap32_t fw_fc, cc_fec, fw_fec, rcap;
4068 
4069 	lc->link_ok = 0;
4070 
4071 	/* Convert driver coding of Pause Frame Flow Control settings into the
4072 	 * Firmware's API.
4073 	 */
4074 	fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4075 
4076 	/* Convert Common Code Forward Error Control settings into the
4077 	 * Firmware's API.  If the current Requested FEC has "Automatic"
4078 	 * (IEEE 802.3) specified, then we use whatever the Firmware
4079 	 * sent us as part of it's IEEE 802.3-based interpratation of
4080 	 * the Transceiver Module EPROM FEC parameters.  Otherwise we
4081 	 * use whatever is in the current Requested FEC settings.
4082 	 */
4083 	if (lc->requested_fec & FEC_AUTO)
4084 		cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4085 	else
4086 		cc_fec = lc->requested_fec;
4087 	fw_fec = cc_to_fwcap_fec(cc_fec);
4088 
4089 	/* Figure out what our Requested Port Capabilities are going to be.
4090 	 */
4091 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4092 		rcap = (lc->pcaps & ADVERT_MASK) | fw_fc | fw_fec;
4093 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4094 		lc->fec = cc_fec;
4095 	} else if (lc->autoneg == AUTONEG_DISABLE) {
4096 		rcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4097 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4098 		lc->fec = cc_fec;
4099 	} else {
4100 		rcap = lc->acaps | fw_fc | fw_fec | fw_mdi;
4101 	}
4102 
4103 	/* And send that on to the Firmware ...
4104 	 */
4105 	memset(&cmd, 0, sizeof(cmd));
4106 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4107 				       FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4108 				       FW_PORT_CMD_PORTID_V(port));
4109 	cmd.action_to_len16 =
4110 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4111 						 ? FW_PORT_ACTION_L1_CFG
4112 						 : FW_PORT_ACTION_L1_CFG32) |
4113 			    FW_LEN16(cmd));
4114 	if (fw_caps == FW_CAPS16)
4115 		cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4116 	else
4117 		cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4118 	return t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4119 }
4120 
4121 /**
4122  *	t4_restart_aneg - restart autonegotiation
4123  *	@adap: the adapter
4124  *	@mbox: mbox to use for the FW command
4125  *	@port: the port id
4126  *
4127  *	Restarts autonegotiation for the selected port.
4128  */
4129 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4130 {
4131 	struct fw_port_cmd c;
4132 
4133 	memset(&c, 0, sizeof(c));
4134 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4135 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4136 				     FW_PORT_CMD_PORTID_V(port));
4137 	c.action_to_len16 =
4138 		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
4139 			    FW_LEN16(c));
4140 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP32_ANEG);
4141 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4142 }
4143 
4144 typedef void (*int_handler_t)(struct adapter *adap);
4145 
4146 struct intr_info {
4147 	unsigned int mask;       /* bits to check in interrupt status */
4148 	const char *msg;         /* message to print or NULL */
4149 	short stat_idx;          /* stat counter to increment or -1 */
4150 	unsigned short fatal;    /* whether the condition reported is fatal */
4151 	int_handler_t int_handler; /* platform-specific int handler */
4152 };
4153 
4154 /**
4155  *	t4_handle_intr_status - table driven interrupt handler
4156  *	@adapter: the adapter that generated the interrupt
4157  *	@reg: the interrupt status register to process
4158  *	@acts: table of interrupt actions
4159  *
4160  *	A table driven interrupt handler that applies a set of masks to an
4161  *	interrupt status word and performs the corresponding actions if the
4162  *	interrupts described by the mask have occurred.  The actions include
4163  *	optionally emitting a warning or alert message.  The table is terminated
4164  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
4165  *	conditions.
4166  */
4167 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4168 				 const struct intr_info *acts)
4169 {
4170 	int fatal = 0;
4171 	unsigned int mask = 0;
4172 	unsigned int status = t4_read_reg(adapter, reg);
4173 
4174 	for ( ; acts->mask; ++acts) {
4175 		if (!(status & acts->mask))
4176 			continue;
4177 		if (acts->fatal) {
4178 			fatal++;
4179 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4180 				  status & acts->mask);
4181 		} else if (acts->msg && printk_ratelimit())
4182 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4183 				 status & acts->mask);
4184 		if (acts->int_handler)
4185 			acts->int_handler(adapter);
4186 		mask |= acts->mask;
4187 	}
4188 	status &= mask;
4189 	if (status)                           /* clear processed interrupts */
4190 		t4_write_reg(adapter, reg, status);
4191 	return fatal;
4192 }
4193 
4194 /*
4195  * Interrupt handler for the PCIE module.
4196  */
4197 static void pcie_intr_handler(struct adapter *adapter)
4198 {
4199 	static const struct intr_info sysbus_intr_info[] = {
4200 		{ RNPP_F, "RXNP array parity error", -1, 1 },
4201 		{ RPCP_F, "RXPC array parity error", -1, 1 },
4202 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
4203 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
4204 		{ RFTP_F, "RXFT array parity error", -1, 1 },
4205 		{ 0 }
4206 	};
4207 	static const struct intr_info pcie_port_intr_info[] = {
4208 		{ TPCP_F, "TXPC array parity error", -1, 1 },
4209 		{ TNPP_F, "TXNP array parity error", -1, 1 },
4210 		{ TFTP_F, "TXFT array parity error", -1, 1 },
4211 		{ TCAP_F, "TXCA array parity error", -1, 1 },
4212 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
4213 		{ RCAP_F, "RXCA array parity error", -1, 1 },
4214 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
4215 		{ RDPE_F, "Rx data parity error", -1, 1 },
4216 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
4217 		{ 0 }
4218 	};
4219 	static const struct intr_info pcie_intr_info[] = {
4220 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4221 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4222 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4223 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4224 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4225 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4226 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4227 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4228 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4229 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4230 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4231 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4232 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4233 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4234 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4235 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4236 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4237 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4238 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4239 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4240 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4241 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4242 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4243 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4244 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4245 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4246 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4247 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
4248 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
4249 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
4250 		  -1, 0 },
4251 		{ 0 }
4252 	};
4253 
4254 	static struct intr_info t5_pcie_intr_info[] = {
4255 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
4256 		  -1, 1 },
4257 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4258 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4259 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4260 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4261 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4262 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4263 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4264 		  -1, 1 },
4265 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4266 		  -1, 1 },
4267 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4268 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4269 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4270 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4271 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
4272 		  -1, 1 },
4273 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4274 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4275 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4276 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4277 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4278 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4279 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4280 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4281 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4282 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4283 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4284 		  -1, 1 },
4285 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4286 		  -1, 1 },
4287 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4288 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4289 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4290 		{ READRSPERR_F, "Outbound read error", -1, 0 },
4291 		{ 0 }
4292 	};
4293 
4294 	int fat;
4295 
4296 	if (is_t4(adapter->params.chip))
4297 		fat = t4_handle_intr_status(adapter,
4298 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4299 				sysbus_intr_info) +
4300 			t4_handle_intr_status(adapter,
4301 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4302 					pcie_port_intr_info) +
4303 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4304 					      pcie_intr_info);
4305 	else
4306 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4307 					    t5_pcie_intr_info);
4308 
4309 	if (fat)
4310 		t4_fatal_err(adapter);
4311 }
4312 
4313 /*
4314  * TP interrupt handler.
4315  */
4316 static void tp_intr_handler(struct adapter *adapter)
4317 {
4318 	static const struct intr_info tp_intr_info[] = {
4319 		{ 0x3fffffff, "TP parity error", -1, 1 },
4320 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4321 		{ 0 }
4322 	};
4323 
4324 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4325 		t4_fatal_err(adapter);
4326 }
4327 
4328 /*
4329  * SGE interrupt handler.
4330  */
4331 static void sge_intr_handler(struct adapter *adapter)
4332 {
4333 	u64 v;
4334 	u32 err;
4335 
4336 	static const struct intr_info sge_intr_info[] = {
4337 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
4338 		  "SGE received CPL exceeding IQE size", -1, 1 },
4339 		{ ERR_INVALID_CIDX_INC_F,
4340 		  "SGE GTS CIDX increment too large", -1, 0 },
4341 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4342 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4343 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4344 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4345 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4346 		  0 },
4347 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4348 		  0 },
4349 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4350 		  0 },
4351 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4352 		  0 },
4353 		{ ERR_ING_CTXT_PRIO_F,
4354 		  "SGE too many priority ingress contexts", -1, 0 },
4355 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4356 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4357 		{ 0 }
4358 	};
4359 
4360 	static struct intr_info t4t5_sge_intr_info[] = {
4361 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4362 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4363 		{ ERR_EGR_CTXT_PRIO_F,
4364 		  "SGE too many priority egress contexts", -1, 0 },
4365 		{ 0 }
4366 	};
4367 
4368 	v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
4369 		((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
4370 	if (v) {
4371 		dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
4372 				(unsigned long long)v);
4373 		t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
4374 		t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
4375 	}
4376 
4377 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4378 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4379 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4380 					   t4t5_sge_intr_info);
4381 
4382 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4383 	if (err & ERROR_QID_VALID_F) {
4384 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4385 			ERROR_QID_G(err));
4386 		if (err & UNCAPTURED_ERROR_F)
4387 			dev_err(adapter->pdev_dev,
4388 				"SGE UNCAPTURED_ERROR set (clearing)\n");
4389 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4390 			     UNCAPTURED_ERROR_F);
4391 	}
4392 
4393 	if (v != 0)
4394 		t4_fatal_err(adapter);
4395 }
4396 
4397 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4398 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4399 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4400 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4401 
4402 /*
4403  * CIM interrupt handler.
4404  */
4405 static void cim_intr_handler(struct adapter *adapter)
4406 {
4407 	static const struct intr_info cim_intr_info[] = {
4408 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4409 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4410 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4411 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4412 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4413 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4414 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4415 		{ TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4416 		{ 0 }
4417 	};
4418 	static const struct intr_info cim_upintr_info[] = {
4419 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4420 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4421 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
4422 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
4423 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4424 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4425 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4426 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4427 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4428 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4429 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4430 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4431 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4432 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4433 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4434 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4435 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4436 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4437 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4438 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4439 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4440 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4441 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4442 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4443 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4444 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4445 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4446 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4447 		{ 0 }
4448 	};
4449 
4450 	u32 val, fw_err;
4451 	int fat;
4452 
4453 	fw_err = t4_read_reg(adapter, PCIE_FW_A);
4454 	if (fw_err & PCIE_FW_ERR_F)
4455 		t4_report_fw_error(adapter);
4456 
4457 	/* When the Firmware detects an internal error which normally
4458 	 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4459 	 * in order to make sure the Host sees the Firmware Crash.  So
4460 	 * if we have a Timer0 interrupt and don't see a Firmware Crash,
4461 	 * ignore the Timer0 interrupt.
4462 	 */
4463 
4464 	val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4465 	if (val & TIMER0INT_F)
4466 		if (!(fw_err & PCIE_FW_ERR_F) ||
4467 		    (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4468 			t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4469 				     TIMER0INT_F);
4470 
4471 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4472 				    cim_intr_info) +
4473 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4474 				    cim_upintr_info);
4475 	if (fat)
4476 		t4_fatal_err(adapter);
4477 }
4478 
4479 /*
4480  * ULP RX interrupt handler.
4481  */
4482 static void ulprx_intr_handler(struct adapter *adapter)
4483 {
4484 	static const struct intr_info ulprx_intr_info[] = {
4485 		{ 0x1800000, "ULPRX context error", -1, 1 },
4486 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4487 		{ 0 }
4488 	};
4489 
4490 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4491 		t4_fatal_err(adapter);
4492 }
4493 
4494 /*
4495  * ULP TX interrupt handler.
4496  */
4497 static void ulptx_intr_handler(struct adapter *adapter)
4498 {
4499 	static const struct intr_info ulptx_intr_info[] = {
4500 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4501 		  0 },
4502 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4503 		  0 },
4504 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4505 		  0 },
4506 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4507 		  0 },
4508 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4509 		{ 0 }
4510 	};
4511 
4512 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4513 		t4_fatal_err(adapter);
4514 }
4515 
4516 /*
4517  * PM TX interrupt handler.
4518  */
4519 static void pmtx_intr_handler(struct adapter *adapter)
4520 {
4521 	static const struct intr_info pmtx_intr_info[] = {
4522 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4523 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4524 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4525 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4526 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4527 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4528 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4529 		  -1, 1 },
4530 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4531 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4532 		{ 0 }
4533 	};
4534 
4535 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4536 		t4_fatal_err(adapter);
4537 }
4538 
4539 /*
4540  * PM RX interrupt handler.
4541  */
4542 static void pmrx_intr_handler(struct adapter *adapter)
4543 {
4544 	static const struct intr_info pmrx_intr_info[] = {
4545 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4546 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4547 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4548 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4549 		  -1, 1 },
4550 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4551 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4552 		{ 0 }
4553 	};
4554 
4555 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4556 		t4_fatal_err(adapter);
4557 }
4558 
4559 /*
4560  * CPL switch interrupt handler.
4561  */
4562 static void cplsw_intr_handler(struct adapter *adapter)
4563 {
4564 	static const struct intr_info cplsw_intr_info[] = {
4565 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4566 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4567 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4568 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4569 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4570 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4571 		{ 0 }
4572 	};
4573 
4574 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4575 		t4_fatal_err(adapter);
4576 }
4577 
4578 /*
4579  * LE interrupt handler.
4580  */
4581 static void le_intr_handler(struct adapter *adap)
4582 {
4583 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4584 	static const struct intr_info le_intr_info[] = {
4585 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4586 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4587 		{ PARITYERR_F, "LE parity error", -1, 1 },
4588 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4589 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4590 		{ 0 }
4591 	};
4592 
4593 	static struct intr_info t6_le_intr_info[] = {
4594 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4595 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4596 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4597 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4598 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4599 		{ 0 }
4600 	};
4601 
4602 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4603 				  (chip <= CHELSIO_T5) ?
4604 				  le_intr_info : t6_le_intr_info))
4605 		t4_fatal_err(adap);
4606 }
4607 
4608 /*
4609  * MPS interrupt handler.
4610  */
4611 static void mps_intr_handler(struct adapter *adapter)
4612 {
4613 	static const struct intr_info mps_rx_intr_info[] = {
4614 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4615 		{ 0 }
4616 	};
4617 	static const struct intr_info mps_tx_intr_info[] = {
4618 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4619 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4620 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4621 		  -1, 1 },
4622 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4623 		  -1, 1 },
4624 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4625 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4626 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4627 		{ 0 }
4628 	};
4629 	static const struct intr_info t6_mps_tx_intr_info[] = {
4630 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4631 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4632 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4633 		  -1, 1 },
4634 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4635 		  -1, 1 },
4636 		/* MPS Tx Bubble is normal for T6 */
4637 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4638 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4639 		{ 0 }
4640 	};
4641 	static const struct intr_info mps_trc_intr_info[] = {
4642 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4643 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4644 		  -1, 1 },
4645 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4646 		{ 0 }
4647 	};
4648 	static const struct intr_info mps_stat_sram_intr_info[] = {
4649 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4650 		{ 0 }
4651 	};
4652 	static const struct intr_info mps_stat_tx_intr_info[] = {
4653 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4654 		{ 0 }
4655 	};
4656 	static const struct intr_info mps_stat_rx_intr_info[] = {
4657 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4658 		{ 0 }
4659 	};
4660 	static const struct intr_info mps_cls_intr_info[] = {
4661 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4662 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4663 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4664 		{ 0 }
4665 	};
4666 
4667 	int fat;
4668 
4669 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4670 				    mps_rx_intr_info) +
4671 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4672 				    is_t6(adapter->params.chip)
4673 				    ? t6_mps_tx_intr_info
4674 				    : mps_tx_intr_info) +
4675 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4676 				    mps_trc_intr_info) +
4677 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4678 				    mps_stat_sram_intr_info) +
4679 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4680 				    mps_stat_tx_intr_info) +
4681 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4682 				    mps_stat_rx_intr_info) +
4683 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4684 				    mps_cls_intr_info);
4685 
4686 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4687 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4688 	if (fat)
4689 		t4_fatal_err(adapter);
4690 }
4691 
4692 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4693 		      ECC_UE_INT_CAUSE_F)
4694 
4695 /*
4696  * EDC/MC interrupt handler.
4697  */
4698 static void mem_intr_handler(struct adapter *adapter, int idx)
4699 {
4700 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4701 
4702 	unsigned int addr, cnt_addr, v;
4703 
4704 	if (idx <= MEM_EDC1) {
4705 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4706 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4707 	} else if (idx == MEM_MC) {
4708 		if (is_t4(adapter->params.chip)) {
4709 			addr = MC_INT_CAUSE_A;
4710 			cnt_addr = MC_ECC_STATUS_A;
4711 		} else {
4712 			addr = MC_P_INT_CAUSE_A;
4713 			cnt_addr = MC_P_ECC_STATUS_A;
4714 		}
4715 	} else {
4716 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4717 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4718 	}
4719 
4720 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4721 	if (v & PERR_INT_CAUSE_F)
4722 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4723 			  name[idx]);
4724 	if (v & ECC_CE_INT_CAUSE_F) {
4725 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4726 
4727 		t4_edc_err_read(adapter, idx);
4728 
4729 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4730 		if (printk_ratelimit())
4731 			dev_warn(adapter->pdev_dev,
4732 				 "%u %s correctable ECC data error%s\n",
4733 				 cnt, name[idx], cnt > 1 ? "s" : "");
4734 	}
4735 	if (v & ECC_UE_INT_CAUSE_F)
4736 		dev_alert(adapter->pdev_dev,
4737 			  "%s uncorrectable ECC data error\n", name[idx]);
4738 
4739 	t4_write_reg(adapter, addr, v);
4740 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4741 		t4_fatal_err(adapter);
4742 }
4743 
4744 /*
4745  * MA interrupt handler.
4746  */
4747 static void ma_intr_handler(struct adapter *adap)
4748 {
4749 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4750 
4751 	if (status & MEM_PERR_INT_CAUSE_F) {
4752 		dev_alert(adap->pdev_dev,
4753 			  "MA parity error, parity status %#x\n",
4754 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4755 		if (is_t5(adap->params.chip))
4756 			dev_alert(adap->pdev_dev,
4757 				  "MA parity error, parity status %#x\n",
4758 				  t4_read_reg(adap,
4759 					      MA_PARITY_ERROR_STATUS2_A));
4760 	}
4761 	if (status & MEM_WRAP_INT_CAUSE_F) {
4762 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4763 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4764 			  "client %u to address %#x\n",
4765 			  MEM_WRAP_CLIENT_NUM_G(v),
4766 			  MEM_WRAP_ADDRESS_G(v) << 4);
4767 	}
4768 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4769 	t4_fatal_err(adap);
4770 }
4771 
4772 /*
4773  * SMB interrupt handler.
4774  */
4775 static void smb_intr_handler(struct adapter *adap)
4776 {
4777 	static const struct intr_info smb_intr_info[] = {
4778 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4779 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4780 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4781 		{ 0 }
4782 	};
4783 
4784 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4785 		t4_fatal_err(adap);
4786 }
4787 
4788 /*
4789  * NC-SI interrupt handler.
4790  */
4791 static void ncsi_intr_handler(struct adapter *adap)
4792 {
4793 	static const struct intr_info ncsi_intr_info[] = {
4794 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4795 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4796 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4797 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4798 		{ 0 }
4799 	};
4800 
4801 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4802 		t4_fatal_err(adap);
4803 }
4804 
4805 /*
4806  * XGMAC interrupt handler.
4807  */
4808 static void xgmac_intr_handler(struct adapter *adap, int port)
4809 {
4810 	u32 v, int_cause_reg;
4811 
4812 	if (is_t4(adap->params.chip))
4813 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4814 	else
4815 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4816 
4817 	v = t4_read_reg(adap, int_cause_reg);
4818 
4819 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4820 	if (!v)
4821 		return;
4822 
4823 	if (v & TXFIFO_PRTY_ERR_F)
4824 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4825 			  port);
4826 	if (v & RXFIFO_PRTY_ERR_F)
4827 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4828 			  port);
4829 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4830 	t4_fatal_err(adap);
4831 }
4832 
4833 /*
4834  * PL interrupt handler.
4835  */
4836 static void pl_intr_handler(struct adapter *adap)
4837 {
4838 	static const struct intr_info pl_intr_info[] = {
4839 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
4840 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4841 		{ 0 }
4842 	};
4843 
4844 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4845 		t4_fatal_err(adap);
4846 }
4847 
4848 #define PF_INTR_MASK (PFSW_F)
4849 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4850 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4851 		CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
4852 
4853 /**
4854  *	t4_slow_intr_handler - control path interrupt handler
4855  *	@adapter: the adapter
4856  *
4857  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4858  *	The designation 'slow' is because it involves register reads, while
4859  *	data interrupts typically don't involve any MMIOs.
4860  */
4861 int t4_slow_intr_handler(struct adapter *adapter)
4862 {
4863 	u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4864 
4865 	if (!(cause & GLBL_INTR_MASK))
4866 		return 0;
4867 	if (cause & CIM_F)
4868 		cim_intr_handler(adapter);
4869 	if (cause & MPS_F)
4870 		mps_intr_handler(adapter);
4871 	if (cause & NCSI_F)
4872 		ncsi_intr_handler(adapter);
4873 	if (cause & PL_F)
4874 		pl_intr_handler(adapter);
4875 	if (cause & SMB_F)
4876 		smb_intr_handler(adapter);
4877 	if (cause & XGMAC0_F)
4878 		xgmac_intr_handler(adapter, 0);
4879 	if (cause & XGMAC1_F)
4880 		xgmac_intr_handler(adapter, 1);
4881 	if (cause & XGMAC_KR0_F)
4882 		xgmac_intr_handler(adapter, 2);
4883 	if (cause & XGMAC_KR1_F)
4884 		xgmac_intr_handler(adapter, 3);
4885 	if (cause & PCIE_F)
4886 		pcie_intr_handler(adapter);
4887 	if (cause & MC_F)
4888 		mem_intr_handler(adapter, MEM_MC);
4889 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
4890 		mem_intr_handler(adapter, MEM_MC1);
4891 	if (cause & EDC0_F)
4892 		mem_intr_handler(adapter, MEM_EDC0);
4893 	if (cause & EDC1_F)
4894 		mem_intr_handler(adapter, MEM_EDC1);
4895 	if (cause & LE_F)
4896 		le_intr_handler(adapter);
4897 	if (cause & TP_F)
4898 		tp_intr_handler(adapter);
4899 	if (cause & MA_F)
4900 		ma_intr_handler(adapter);
4901 	if (cause & PM_TX_F)
4902 		pmtx_intr_handler(adapter);
4903 	if (cause & PM_RX_F)
4904 		pmrx_intr_handler(adapter);
4905 	if (cause & ULP_RX_F)
4906 		ulprx_intr_handler(adapter);
4907 	if (cause & CPL_SWITCH_F)
4908 		cplsw_intr_handler(adapter);
4909 	if (cause & SGE_F)
4910 		sge_intr_handler(adapter);
4911 	if (cause & ULP_TX_F)
4912 		ulptx_intr_handler(adapter);
4913 
4914 	/* Clear the interrupts just processed for which we are the master. */
4915 	t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4916 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4917 	return 1;
4918 }
4919 
4920 /**
4921  *	t4_intr_enable - enable interrupts
4922  *	@adapter: the adapter whose interrupts should be enabled
4923  *
4924  *	Enable PF-specific interrupts for the calling function and the top-level
4925  *	interrupt concentrator for global interrupts.  Interrupts are already
4926  *	enabled at each module,	here we just enable the roots of the interrupt
4927  *	hierarchies.
4928  *
4929  *	Note: this function should be called only when the driver manages
4930  *	non PF-specific interrupts from the various HW modules.  Only one PCI
4931  *	function at a time should be doing this.
4932  */
4933 void t4_intr_enable(struct adapter *adapter)
4934 {
4935 	u32 val = 0;
4936 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4937 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4938 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4939 
4940 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4941 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
4942 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4943 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
4944 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
4945 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4946 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4947 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
4948 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
4949 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4950 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
4951 }
4952 
4953 /**
4954  *	t4_intr_disable - disable interrupts
4955  *	@adapter: the adapter whose interrupts should be disabled
4956  *
4957  *	Disable interrupts.  We only disable the top-level interrupt
4958  *	concentrators.  The caller must be a PCI function managing global
4959  *	interrupts.
4960  */
4961 void t4_intr_disable(struct adapter *adapter)
4962 {
4963 	u32 whoami, pf;
4964 
4965 	if (pci_channel_offline(adapter->pdev))
4966 		return;
4967 
4968 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4969 	pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4970 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4971 
4972 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4973 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
4974 }
4975 
4976 unsigned int t4_chip_rss_size(struct adapter *adap)
4977 {
4978 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
4979 		return RSS_NENTRIES;
4980 	else
4981 		return T6_RSS_NENTRIES;
4982 }
4983 
4984 /**
4985  *	t4_config_rss_range - configure a portion of the RSS mapping table
4986  *	@adapter: the adapter
4987  *	@mbox: mbox to use for the FW command
4988  *	@viid: virtual interface whose RSS subtable is to be written
4989  *	@start: start entry in the table to write
4990  *	@n: how many table entries to write
4991  *	@rspq: values for the response queue lookup table
4992  *	@nrspq: number of values in @rspq
4993  *
4994  *	Programs the selected part of the VI's RSS mapping table with the
4995  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4996  *	until the full table range is populated.
4997  *
4998  *	The caller must ensure the values in @rspq are in the range allowed for
4999  *	@viid.
5000  */
5001 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5002 			int start, int n, const u16 *rspq, unsigned int nrspq)
5003 {
5004 	int ret;
5005 	const u16 *rsp = rspq;
5006 	const u16 *rsp_end = rspq + nrspq;
5007 	struct fw_rss_ind_tbl_cmd cmd;
5008 
5009 	memset(&cmd, 0, sizeof(cmd));
5010 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5011 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5012 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
5013 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5014 
5015 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5016 	while (n > 0) {
5017 		int nq = min(n, 32);
5018 		__be32 *qp = &cmd.iq0_to_iq2;
5019 
5020 		cmd.niqid = cpu_to_be16(nq);
5021 		cmd.startidx = cpu_to_be16(start);
5022 
5023 		start += nq;
5024 		n -= nq;
5025 
5026 		while (nq > 0) {
5027 			unsigned int v;
5028 
5029 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5030 			if (++rsp >= rsp_end)
5031 				rsp = rspq;
5032 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5033 			if (++rsp >= rsp_end)
5034 				rsp = rspq;
5035 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5036 			if (++rsp >= rsp_end)
5037 				rsp = rspq;
5038 
5039 			*qp++ = cpu_to_be32(v);
5040 			nq -= 3;
5041 		}
5042 
5043 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5044 		if (ret)
5045 			return ret;
5046 	}
5047 	return 0;
5048 }
5049 
5050 /**
5051  *	t4_config_glbl_rss - configure the global RSS mode
5052  *	@adapter: the adapter
5053  *	@mbox: mbox to use for the FW command
5054  *	@mode: global RSS mode
5055  *	@flags: mode-specific flags
5056  *
5057  *	Sets the global RSS mode.
5058  */
5059 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5060 		       unsigned int flags)
5061 {
5062 	struct fw_rss_glb_config_cmd c;
5063 
5064 	memset(&c, 0, sizeof(c));
5065 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5066 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5067 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5068 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5069 		c.u.manual.mode_pkd =
5070 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5071 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5072 		c.u.basicvirtual.mode_pkd =
5073 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5074 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5075 	} else
5076 		return -EINVAL;
5077 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5078 }
5079 
5080 /**
5081  *	t4_config_vi_rss - configure per VI RSS settings
5082  *	@adapter: the adapter
5083  *	@mbox: mbox to use for the FW command
5084  *	@viid: the VI id
5085  *	@flags: RSS flags
5086  *	@defq: id of the default RSS queue for the VI.
5087  *
5088  *	Configures VI-specific RSS properties.
5089  */
5090 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5091 		     unsigned int flags, unsigned int defq)
5092 {
5093 	struct fw_rss_vi_config_cmd c;
5094 
5095 	memset(&c, 0, sizeof(c));
5096 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5097 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5098 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5099 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5100 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5101 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5102 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5103 }
5104 
5105 /* Read an RSS table row */
5106 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5107 {
5108 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5109 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5110 				   5, 0, val);
5111 }
5112 
5113 /**
5114  *	t4_read_rss - read the contents of the RSS mapping table
5115  *	@adapter: the adapter
5116  *	@map: holds the contents of the RSS mapping table
5117  *
5118  *	Reads the contents of the RSS hash->queue mapping table.
5119  */
5120 int t4_read_rss(struct adapter *adapter, u16 *map)
5121 {
5122 	int i, ret, nentries;
5123 	u32 val;
5124 
5125 	nentries = t4_chip_rss_size(adapter);
5126 	for (i = 0; i < nentries / 2; ++i) {
5127 		ret = rd_rss_row(adapter, i, &val);
5128 		if (ret)
5129 			return ret;
5130 		*map++ = LKPTBLQUEUE0_G(val);
5131 		*map++ = LKPTBLQUEUE1_G(val);
5132 	}
5133 	return 0;
5134 }
5135 
5136 static unsigned int t4_use_ldst(struct adapter *adap)
5137 {
5138 	return (adap->flags & FW_OK) && !adap->use_bd;
5139 }
5140 
5141 /**
5142  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5143  * @adap: the adapter
5144  * @cmd: TP fw ldst address space type
5145  * @vals: where the indirect register values are stored/written
5146  * @nregs: how many indirect registers to read/write
5147  * @start_idx: index of first indirect register to read/write
5148  * @rw: Read (1) or Write (0)
5149  * @sleep_ok: if true we may sleep while awaiting command completion
5150  *
5151  * Access TP indirect registers through LDST
5152  */
5153 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5154 			    unsigned int nregs, unsigned int start_index,
5155 			    unsigned int rw, bool sleep_ok)
5156 {
5157 	int ret = 0;
5158 	unsigned int i;
5159 	struct fw_ldst_cmd c;
5160 
5161 	for (i = 0; i < nregs; i++) {
5162 		memset(&c, 0, sizeof(c));
5163 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5164 						FW_CMD_REQUEST_F |
5165 						(rw ? FW_CMD_READ_F :
5166 						      FW_CMD_WRITE_F) |
5167 						FW_LDST_CMD_ADDRSPACE_V(cmd));
5168 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5169 
5170 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5171 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5172 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5173 				      sleep_ok);
5174 		if (ret)
5175 			return ret;
5176 
5177 		if (rw)
5178 			vals[i] = be32_to_cpu(c.u.addrval.val);
5179 	}
5180 	return 0;
5181 }
5182 
5183 /**
5184  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5185  * @adap: the adapter
5186  * @reg_addr: Address Register
5187  * @reg_data: Data register
5188  * @buff: where the indirect register values are stored/written
5189  * @nregs: how many indirect registers to read/write
5190  * @start_index: index of first indirect register to read/write
5191  * @rw: READ(1) or WRITE(0)
5192  * @sleep_ok: if true we may sleep while awaiting command completion
5193  *
5194  * Read/Write TP indirect registers through LDST if possible.
5195  * Else, use backdoor access
5196  **/
5197 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5198 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5199 			      bool sleep_ok)
5200 {
5201 	int rc = -EINVAL;
5202 	int cmd;
5203 
5204 	switch (reg_addr) {
5205 	case TP_PIO_ADDR_A:
5206 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5207 		break;
5208 	case TP_TM_PIO_ADDR_A:
5209 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5210 		break;
5211 	case TP_MIB_INDEX_A:
5212 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5213 		break;
5214 	default:
5215 		goto indirect_access;
5216 	}
5217 
5218 	if (t4_use_ldst(adap))
5219 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5220 				      sleep_ok);
5221 
5222 indirect_access:
5223 
5224 	if (rc) {
5225 		if (rw)
5226 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5227 					 start_index);
5228 		else
5229 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5230 					  start_index);
5231 	}
5232 }
5233 
5234 /**
5235  * t4_tp_pio_read - Read TP PIO registers
5236  * @adap: the adapter
5237  * @buff: where the indirect register values are written
5238  * @nregs: how many indirect registers to read
5239  * @start_index: index of first indirect register to read
5240  * @sleep_ok: if true we may sleep while awaiting command completion
5241  *
5242  * Read TP PIO Registers
5243  **/
5244 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5245 		    u32 start_index, bool sleep_ok)
5246 {
5247 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5248 			  start_index, 1, sleep_ok);
5249 }
5250 
5251 /**
5252  * t4_tp_pio_write - Write TP PIO registers
5253  * @adap: the adapter
5254  * @buff: where the indirect register values are stored
5255  * @nregs: how many indirect registers to write
5256  * @start_index: index of first indirect register to write
5257  * @sleep_ok: if true we may sleep while awaiting command completion
5258  *
5259  * Write TP PIO Registers
5260  **/
5261 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5262 			    u32 start_index, bool sleep_ok)
5263 {
5264 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5265 			  start_index, 0, sleep_ok);
5266 }
5267 
5268 /**
5269  * t4_tp_tm_pio_read - Read TP TM PIO registers
5270  * @adap: the adapter
5271  * @buff: where the indirect register values are written
5272  * @nregs: how many indirect registers to read
5273  * @start_index: index of first indirect register to read
5274  * @sleep_ok: if true we may sleep while awaiting command completion
5275  *
5276  * Read TP TM PIO Registers
5277  **/
5278 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5279 		       u32 start_index, bool sleep_ok)
5280 {
5281 	t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5282 			  nregs, start_index, 1, sleep_ok);
5283 }
5284 
5285 /**
5286  * t4_tp_mib_read - Read TP MIB registers
5287  * @adap: the adapter
5288  * @buff: where the indirect register values are written
5289  * @nregs: how many indirect registers to read
5290  * @start_index: index of first indirect register to read
5291  * @sleep_ok: if true we may sleep while awaiting command completion
5292  *
5293  * Read TP MIB Registers
5294  **/
5295 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5296 		    bool sleep_ok)
5297 {
5298 	t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5299 			  start_index, 1, sleep_ok);
5300 }
5301 
5302 /**
5303  *	t4_read_rss_key - read the global RSS key
5304  *	@adap: the adapter
5305  *	@key: 10-entry array holding the 320-bit RSS key
5306  *      @sleep_ok: if true we may sleep while awaiting command completion
5307  *
5308  *	Reads the global 320-bit RSS key.
5309  */
5310 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5311 {
5312 	t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5313 }
5314 
5315 /**
5316  *	t4_write_rss_key - program one of the RSS keys
5317  *	@adap: the adapter
5318  *	@key: 10-entry array holding the 320-bit RSS key
5319  *	@idx: which RSS key to write
5320  *      @sleep_ok: if true we may sleep while awaiting command completion
5321  *
5322  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5323  *	0..15 the corresponding entry in the RSS key table is written,
5324  *	otherwise the global RSS key is written.
5325  */
5326 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5327 		      bool sleep_ok)
5328 {
5329 	u8 rss_key_addr_cnt = 16;
5330 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5331 
5332 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5333 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5334 	 * as index[5:4](upper 2) into key table
5335 	 */
5336 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5337 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5338 		rss_key_addr_cnt = 32;
5339 
5340 	t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5341 
5342 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5343 		if (rss_key_addr_cnt > 16)
5344 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5345 				     KEYWRADDRX_V(idx >> 4) |
5346 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
5347 		else
5348 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5349 				     KEYWRADDR_V(idx) | KEYWREN_F);
5350 	}
5351 }
5352 
5353 /**
5354  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5355  *	@adapter: the adapter
5356  *	@index: the entry in the PF RSS table to read
5357  *	@valp: where to store the returned value
5358  *      @sleep_ok: if true we may sleep while awaiting command completion
5359  *
5360  *	Reads the PF RSS Configuration Table at the specified index and returns
5361  *	the value found there.
5362  */
5363 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5364 			   u32 *valp, bool sleep_ok)
5365 {
5366 	t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5367 }
5368 
5369 /**
5370  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5371  *	@adapter: the adapter
5372  *	@index: the entry in the VF RSS table to read
5373  *	@vfl: where to store the returned VFL
5374  *	@vfh: where to store the returned VFH
5375  *      @sleep_ok: if true we may sleep while awaiting command completion
5376  *
5377  *	Reads the VF RSS Configuration Table at the specified index and returns
5378  *	the (VFL, VFH) values found there.
5379  */
5380 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5381 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5382 {
5383 	u32 vrt, mask, data;
5384 
5385 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5386 		mask = VFWRADDR_V(VFWRADDR_M);
5387 		data = VFWRADDR_V(index);
5388 	} else {
5389 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5390 		 data = T6_VFWRADDR_V(index);
5391 	}
5392 
5393 	/* Request that the index'th VF Table values be read into VFL/VFH.
5394 	 */
5395 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5396 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5397 	vrt |= data | VFRDEN_F;
5398 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5399 
5400 	/* Grab the VFL/VFH values ...
5401 	 */
5402 	t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5403 	t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5404 }
5405 
5406 /**
5407  *	t4_read_rss_pf_map - read PF RSS Map
5408  *	@adapter: the adapter
5409  *      @sleep_ok: if true we may sleep while awaiting command completion
5410  *
5411  *	Reads the PF RSS Map register and returns its value.
5412  */
5413 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5414 {
5415 	u32 pfmap;
5416 
5417 	t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5418 	return pfmap;
5419 }
5420 
5421 /**
5422  *	t4_read_rss_pf_mask - read PF RSS Mask
5423  *	@adapter: the adapter
5424  *      @sleep_ok: if true we may sleep while awaiting command completion
5425  *
5426  *	Reads the PF RSS Mask register and returns its value.
5427  */
5428 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5429 {
5430 	u32 pfmask;
5431 
5432 	t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5433 	return pfmask;
5434 }
5435 
5436 /**
5437  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5438  *	@adap: the adapter
5439  *	@v4: holds the TCP/IP counter values
5440  *	@v6: holds the TCP/IPv6 counter values
5441  *      @sleep_ok: if true we may sleep while awaiting command completion
5442  *
5443  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5444  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5445  */
5446 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5447 			 struct tp_tcp_stats *v6, bool sleep_ok)
5448 {
5449 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5450 
5451 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5452 #define STAT(x)     val[STAT_IDX(x)]
5453 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5454 
5455 	if (v4) {
5456 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5457 			       TP_MIB_TCP_OUT_RST_A, sleep_ok);
5458 		v4->tcp_out_rsts = STAT(OUT_RST);
5459 		v4->tcp_in_segs  = STAT64(IN_SEG);
5460 		v4->tcp_out_segs = STAT64(OUT_SEG);
5461 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5462 	}
5463 	if (v6) {
5464 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5465 			       TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5466 		v6->tcp_out_rsts = STAT(OUT_RST);
5467 		v6->tcp_in_segs  = STAT64(IN_SEG);
5468 		v6->tcp_out_segs = STAT64(OUT_SEG);
5469 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5470 	}
5471 #undef STAT64
5472 #undef STAT
5473 #undef STAT_IDX
5474 }
5475 
5476 /**
5477  *	t4_tp_get_err_stats - read TP's error MIB counters
5478  *	@adap: the adapter
5479  *	@st: holds the counter values
5480  *      @sleep_ok: if true we may sleep while awaiting command completion
5481  *
5482  *	Returns the values of TP's error counters.
5483  */
5484 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5485 			 bool sleep_ok)
5486 {
5487 	int nchan = adap->params.arch.nchan;
5488 
5489 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5490 		       sleep_ok);
5491 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5492 		       sleep_ok);
5493 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5494 		       sleep_ok);
5495 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5496 		       TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5497 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5498 		       TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5499 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5500 		       sleep_ok);
5501 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5502 		       TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5503 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5504 		       TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5505 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5506 		       sleep_ok);
5507 }
5508 
5509 /**
5510  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5511  *	@adap: the adapter
5512  *	@st: holds the counter values
5513  *      @sleep_ok: if true we may sleep while awaiting command completion
5514  *
5515  *	Returns the values of TP's CPL counters.
5516  */
5517 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5518 			 bool sleep_ok)
5519 {
5520 	int nchan = adap->params.arch.nchan;
5521 
5522 	t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5523 
5524 	t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5525 }
5526 
5527 /**
5528  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5529  *	@adap: the adapter
5530  *	@st: holds the counter values
5531  *      @sleep_ok: if true we may sleep while awaiting command completion
5532  *
5533  *	Returns the values of TP's RDMA counters.
5534  */
5535 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5536 			  bool sleep_ok)
5537 {
5538 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5539 		       sleep_ok);
5540 }
5541 
5542 /**
5543  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5544  *	@adap: the adapter
5545  *	@idx: the port index
5546  *	@st: holds the counter values
5547  *      @sleep_ok: if true we may sleep while awaiting command completion
5548  *
5549  *	Returns the values of TP's FCoE counters for the selected port.
5550  */
5551 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5552 		       struct tp_fcoe_stats *st, bool sleep_ok)
5553 {
5554 	u32 val[2];
5555 
5556 	t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5557 		       sleep_ok);
5558 
5559 	t4_tp_mib_read(adap, &st->frames_drop, 1,
5560 		       TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5561 
5562 	t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5563 		       sleep_ok);
5564 
5565 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5566 }
5567 
5568 /**
5569  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5570  *	@adap: the adapter
5571  *	@st: holds the counter values
5572  *      @sleep_ok: if true we may sleep while awaiting command completion
5573  *
5574  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5575  */
5576 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5577 		      bool sleep_ok)
5578 {
5579 	u32 val[4];
5580 
5581 	t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5582 	st->frames = val[0];
5583 	st->drops = val[1];
5584 	st->octets = ((u64)val[2] << 32) | val[3];
5585 }
5586 
5587 /**
5588  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5589  *	@adap: the adapter
5590  *	@mtus: where to store the MTU values
5591  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5592  *
5593  *	Reads the HW path MTU table.
5594  */
5595 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5596 {
5597 	u32 v;
5598 	int i;
5599 
5600 	for (i = 0; i < NMTUS; ++i) {
5601 		t4_write_reg(adap, TP_MTU_TABLE_A,
5602 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
5603 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
5604 		mtus[i] = MTUVALUE_G(v);
5605 		if (mtu_log)
5606 			mtu_log[i] = MTUWIDTH_G(v);
5607 	}
5608 }
5609 
5610 /**
5611  *	t4_read_cong_tbl - reads the congestion control table
5612  *	@adap: the adapter
5613  *	@incr: where to store the alpha values
5614  *
5615  *	Reads the additive increments programmed into the HW congestion
5616  *	control table.
5617  */
5618 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5619 {
5620 	unsigned int mtu, w;
5621 
5622 	for (mtu = 0; mtu < NMTUS; ++mtu)
5623 		for (w = 0; w < NCCTRL_WIN; ++w) {
5624 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
5625 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5626 			incr[mtu][w] = (u16)t4_read_reg(adap,
5627 						TP_CCTRL_TABLE_A) & 0x1fff;
5628 		}
5629 }
5630 
5631 /**
5632  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5633  *	@adap: the adapter
5634  *	@addr: the indirect TP register address
5635  *	@mask: specifies the field within the register to modify
5636  *	@val: new value for the field
5637  *
5638  *	Sets a field of an indirect TP register to the given value.
5639  */
5640 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5641 			    unsigned int mask, unsigned int val)
5642 {
5643 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5644 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5645 	t4_write_reg(adap, TP_PIO_DATA_A, val);
5646 }
5647 
5648 /**
5649  *	init_cong_ctrl - initialize congestion control parameters
5650  *	@a: the alpha values for congestion control
5651  *	@b: the beta values for congestion control
5652  *
5653  *	Initialize the congestion control parameters.
5654  */
5655 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5656 {
5657 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5658 	a[9] = 2;
5659 	a[10] = 3;
5660 	a[11] = 4;
5661 	a[12] = 5;
5662 	a[13] = 6;
5663 	a[14] = 7;
5664 	a[15] = 8;
5665 	a[16] = 9;
5666 	a[17] = 10;
5667 	a[18] = 14;
5668 	a[19] = 17;
5669 	a[20] = 21;
5670 	a[21] = 25;
5671 	a[22] = 30;
5672 	a[23] = 35;
5673 	a[24] = 45;
5674 	a[25] = 60;
5675 	a[26] = 80;
5676 	a[27] = 100;
5677 	a[28] = 200;
5678 	a[29] = 300;
5679 	a[30] = 400;
5680 	a[31] = 500;
5681 
5682 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5683 	b[9] = b[10] = 1;
5684 	b[11] = b[12] = 2;
5685 	b[13] = b[14] = b[15] = b[16] = 3;
5686 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5687 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5688 	b[28] = b[29] = 6;
5689 	b[30] = b[31] = 7;
5690 }
5691 
5692 /* The minimum additive increment value for the congestion control table */
5693 #define CC_MIN_INCR 2U
5694 
5695 /**
5696  *	t4_load_mtus - write the MTU and congestion control HW tables
5697  *	@adap: the adapter
5698  *	@mtus: the values for the MTU table
5699  *	@alpha: the values for the congestion control alpha parameter
5700  *	@beta: the values for the congestion control beta parameter
5701  *
5702  *	Write the HW MTU table with the supplied MTUs and the high-speed
5703  *	congestion control table with the supplied alpha, beta, and MTUs.
5704  *	We write the two tables together because the additive increments
5705  *	depend on the MTUs.
5706  */
5707 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5708 		  const unsigned short *alpha, const unsigned short *beta)
5709 {
5710 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5711 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5712 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5713 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5714 	};
5715 
5716 	unsigned int i, w;
5717 
5718 	for (i = 0; i < NMTUS; ++i) {
5719 		unsigned int mtu = mtus[i];
5720 		unsigned int log2 = fls(mtu);
5721 
5722 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5723 			log2--;
5724 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5725 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5726 
5727 		for (w = 0; w < NCCTRL_WIN; ++w) {
5728 			unsigned int inc;
5729 
5730 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5731 				  CC_MIN_INCR);
5732 
5733 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5734 				     (w << 16) | (beta[w] << 13) | inc);
5735 		}
5736 	}
5737 }
5738 
5739 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5740  * clocks.  The formula is
5741  *
5742  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5743  *
5744  * which is equivalent to
5745  *
5746  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5747  */
5748 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5749 {
5750 	u64 v = bytes256 * adap->params.vpd.cclk;
5751 
5752 	return v * 62 + v / 2;
5753 }
5754 
5755 /**
5756  *	t4_get_chan_txrate - get the current per channel Tx rates
5757  *	@adap: the adapter
5758  *	@nic_rate: rates for NIC traffic
5759  *	@ofld_rate: rates for offloaded traffic
5760  *
5761  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5762  *	for each channel.
5763  */
5764 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5765 {
5766 	u32 v;
5767 
5768 	v = t4_read_reg(adap, TP_TX_TRATE_A);
5769 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5770 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5771 	if (adap->params.arch.nchan == NCHAN) {
5772 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5773 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5774 	}
5775 
5776 	v = t4_read_reg(adap, TP_TX_ORATE_A);
5777 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5778 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5779 	if (adap->params.arch.nchan == NCHAN) {
5780 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5781 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5782 	}
5783 }
5784 
5785 /**
5786  *	t4_set_trace_filter - configure one of the tracing filters
5787  *	@adap: the adapter
5788  *	@tp: the desired trace filter parameters
5789  *	@idx: which filter to configure
5790  *	@enable: whether to enable or disable the filter
5791  *
5792  *	Configures one of the tracing filters available in HW.  If @enable is
5793  *	%0 @tp is not examined and may be %NULL. The user is responsible to
5794  *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5795  */
5796 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5797 			int idx, int enable)
5798 {
5799 	int i, ofst = idx * 4;
5800 	u32 data_reg, mask_reg, cfg;
5801 	u32 multitrc = TRCMULTIFILTER_F;
5802 
5803 	if (!enable) {
5804 		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5805 		return 0;
5806 	}
5807 
5808 	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5809 	if (cfg & TRCMULTIFILTER_F) {
5810 		/* If multiple tracers are enabled, then maximum
5811 		 * capture size is 2.5KB (FIFO size of a single channel)
5812 		 * minus 2 flits for CPL_TRACE_PKT header.
5813 		 */
5814 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5815 			return -EINVAL;
5816 	} else {
5817 		/* If multiple tracers are disabled, to avoid deadlocks
5818 		 * maximum packet capture size of 9600 bytes is recommended.
5819 		 * Also in this mode, only trace0 can be enabled and running.
5820 		 */
5821 		multitrc = 0;
5822 		if (tp->snap_len > 9600 || idx)
5823 			return -EINVAL;
5824 	}
5825 
5826 	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5827 	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5828 	    tp->min_len > TFMINPKTSIZE_M)
5829 		return -EINVAL;
5830 
5831 	/* stop the tracer we'll be changing */
5832 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5833 
5834 	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5835 	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5836 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5837 
5838 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5839 		t4_write_reg(adap, data_reg, tp->data[i]);
5840 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5841 	}
5842 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5843 		     TFCAPTUREMAX_V(tp->snap_len) |
5844 		     TFMINPKTSIZE_V(tp->min_len));
5845 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5846 		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5847 		     (is_t4(adap->params.chip) ?
5848 		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5849 		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
5850 		     T5_TFINVERTMATCH_V(tp->invert)));
5851 
5852 	return 0;
5853 }
5854 
5855 /**
5856  *	t4_get_trace_filter - query one of the tracing filters
5857  *	@adap: the adapter
5858  *	@tp: the current trace filter parameters
5859  *	@idx: which trace filter to query
5860  *	@enabled: non-zero if the filter is enabled
5861  *
5862  *	Returns the current settings of one of the HW tracing filters.
5863  */
5864 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5865 			 int *enabled)
5866 {
5867 	u32 ctla, ctlb;
5868 	int i, ofst = idx * 4;
5869 	u32 data_reg, mask_reg;
5870 
5871 	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5872 	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5873 
5874 	if (is_t4(adap->params.chip)) {
5875 		*enabled = !!(ctla & TFEN_F);
5876 		tp->port =  TFPORT_G(ctla);
5877 		tp->invert = !!(ctla & TFINVERTMATCH_F);
5878 	} else {
5879 		*enabled = !!(ctla & T5_TFEN_F);
5880 		tp->port = T5_TFPORT_G(ctla);
5881 		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5882 	}
5883 	tp->snap_len = TFCAPTUREMAX_G(ctlb);
5884 	tp->min_len = TFMINPKTSIZE_G(ctlb);
5885 	tp->skip_ofst = TFOFFSET_G(ctla);
5886 	tp->skip_len = TFLENGTH_G(ctla);
5887 
5888 	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5889 	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5890 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5891 
5892 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5893 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5894 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5895 	}
5896 }
5897 
5898 /**
5899  *	t4_pmtx_get_stats - returns the HW stats from PMTX
5900  *	@adap: the adapter
5901  *	@cnt: where to store the count statistics
5902  *	@cycles: where to store the cycle statistics
5903  *
5904  *	Returns performance statistics from PMTX.
5905  */
5906 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5907 {
5908 	int i;
5909 	u32 data[2];
5910 
5911 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5912 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5913 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5914 		if (is_t4(adap->params.chip)) {
5915 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5916 		} else {
5917 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5918 					 PM_TX_DBG_DATA_A, data, 2,
5919 					 PM_TX_DBG_STAT_MSB_A);
5920 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5921 		}
5922 	}
5923 }
5924 
5925 /**
5926  *	t4_pmrx_get_stats - returns the HW stats from PMRX
5927  *	@adap: the adapter
5928  *	@cnt: where to store the count statistics
5929  *	@cycles: where to store the cycle statistics
5930  *
5931  *	Returns performance statistics from PMRX.
5932  */
5933 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5934 {
5935 	int i;
5936 	u32 data[2];
5937 
5938 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5939 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5940 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5941 		if (is_t4(adap->params.chip)) {
5942 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5943 		} else {
5944 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5945 					 PM_RX_DBG_DATA_A, data, 2,
5946 					 PM_RX_DBG_STAT_MSB_A);
5947 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5948 		}
5949 	}
5950 }
5951 
5952 /**
5953  *	compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
5954  *	@adap: the adapter
5955  *	@pidx: the port index
5956  *
5957  *	Computes and returns a bitmap indicating which MPS buffer groups are
5958  *	associated with the given Port.  Bit i is set if buffer group i is
5959  *	used by the Port.
5960  */
5961 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
5962 					      int pidx)
5963 {
5964 	unsigned int chip_version, nports;
5965 
5966 	chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
5967 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
5968 
5969 	switch (chip_version) {
5970 	case CHELSIO_T4:
5971 	case CHELSIO_T5:
5972 		switch (nports) {
5973 		case 1: return 0xf;
5974 		case 2: return 3 << (2 * pidx);
5975 		case 4: return 1 << pidx;
5976 		}
5977 		break;
5978 
5979 	case CHELSIO_T6:
5980 		switch (nports) {
5981 		case 2: return 1 << (2 * pidx);
5982 		}
5983 		break;
5984 	}
5985 
5986 	dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
5987 		chip_version, nports);
5988 
5989 	return 0;
5990 }
5991 
5992 /**
5993  *	t4_get_mps_bg_map - return the buffer groups associated with a port
5994  *	@adapter: the adapter
5995  *	@pidx: the port index
5996  *
5997  *	Returns a bitmap indicating which MPS buffer groups are associated
5998  *	with the given Port.  Bit i is set if buffer group i is used by the
5999  *	Port.
6000  */
6001 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6002 {
6003 	u8 *mps_bg_map;
6004 	unsigned int nports;
6005 
6006 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6007 	if (pidx >= nports) {
6008 		CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6009 			pidx, nports);
6010 		return 0;
6011 	}
6012 
6013 	/* If we've already retrieved/computed this, just return the result.
6014 	 */
6015 	mps_bg_map = adapter->params.mps_bg_map;
6016 	if (mps_bg_map[pidx])
6017 		return mps_bg_map[pidx];
6018 
6019 	/* Newer Firmware can tell us what the MPS Buffer Group Map is.
6020 	 * If we're talking to such Firmware, let it tell us.  If the new
6021 	 * API isn't supported, revert back to old hardcoded way.  The value
6022 	 * obtained from Firmware is encoded in below format:
6023 	 *
6024 	 * val = (( MPSBGMAP[Port 3] << 24 ) |
6025 	 *        ( MPSBGMAP[Port 2] << 16 ) |
6026 	 *        ( MPSBGMAP[Port 1] <<  8 ) |
6027 	 *        ( MPSBGMAP[Port 0] <<  0 ))
6028 	 */
6029 	if (adapter->flags & FW_OK) {
6030 		u32 param, val;
6031 		int ret;
6032 
6033 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6034 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6035 		ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6036 					 0, 1, &param, &val);
6037 		if (!ret) {
6038 			int p;
6039 
6040 			/* Store the BG Map for all of the Ports in order to
6041 			 * avoid more calls to the Firmware in the future.
6042 			 */
6043 			for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6044 				mps_bg_map[p] = val & 0xff;
6045 
6046 			return mps_bg_map[pidx];
6047 		}
6048 	}
6049 
6050 	/* Either we're not talking to the Firmware or we're dealing with
6051 	 * older Firmware which doesn't support the new API to get the MPS
6052 	 * Buffer Group Map.  Fall back to computing it ourselves.
6053 	 */
6054 	mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6055 	return mps_bg_map[pidx];
6056 }
6057 
6058 /**
6059  *	t4_get_tp_ch_map - return TP ingress channels associated with a port
6060  *	@adapter: the adapter
6061  *	@pidx: the port index
6062  *
6063  *	Returns a bitmap indicating which TP Ingress Channels are associated
6064  *	with a given Port.  Bit i is set if TP Ingress Channel i is used by
6065  *	the Port.
6066  */
6067 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6068 {
6069 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6070 	unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6071 
6072 	if (pidx >= nports) {
6073 		dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6074 			 pidx, nports);
6075 		return 0;
6076 	}
6077 
6078 	switch (chip_version) {
6079 	case CHELSIO_T4:
6080 	case CHELSIO_T5:
6081 		/* Note that this happens to be the same values as the MPS
6082 		 * Buffer Group Map for these Chips.  But we replicate the code
6083 		 * here because they're really separate concepts.
6084 		 */
6085 		switch (nports) {
6086 		case 1: return 0xf;
6087 		case 2: return 3 << (2 * pidx);
6088 		case 4: return 1 << pidx;
6089 		}
6090 		break;
6091 
6092 	case CHELSIO_T6:
6093 		switch (nports) {
6094 		case 2: return 1 << pidx;
6095 		}
6096 		break;
6097 	}
6098 
6099 	dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6100 		chip_version, nports);
6101 	return 0;
6102 }
6103 
6104 /**
6105  *      t4_get_port_type_description - return Port Type string description
6106  *      @port_type: firmware Port Type enumeration
6107  */
6108 const char *t4_get_port_type_description(enum fw_port_type port_type)
6109 {
6110 	static const char *const port_type_description[] = {
6111 		"Fiber_XFI",
6112 		"Fiber_XAUI",
6113 		"BT_SGMII",
6114 		"BT_XFI",
6115 		"BT_XAUI",
6116 		"KX4",
6117 		"CX4",
6118 		"KX",
6119 		"KR",
6120 		"SFP",
6121 		"BP_AP",
6122 		"BP4_AP",
6123 		"QSFP_10G",
6124 		"QSA",
6125 		"QSFP",
6126 		"BP40_BA",
6127 		"KR4_100G",
6128 		"CR4_QSFP",
6129 		"CR_QSFP",
6130 		"CR2_QSFP",
6131 		"SFP28",
6132 		"KR_SFP28",
6133 		"KR_XLAUI"
6134 	};
6135 
6136 	if (port_type < ARRAY_SIZE(port_type_description))
6137 		return port_type_description[port_type];
6138 	return "UNKNOWN";
6139 }
6140 
6141 /**
6142  *      t4_get_port_stats_offset - collect port stats relative to a previous
6143  *                                 snapshot
6144  *      @adap: The adapter
6145  *      @idx: The port
6146  *      @stats: Current stats to fill
6147  *      @offset: Previous stats snapshot
6148  */
6149 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6150 			      struct port_stats *stats,
6151 			      struct port_stats *offset)
6152 {
6153 	u64 *s, *o;
6154 	int i;
6155 
6156 	t4_get_port_stats(adap, idx, stats);
6157 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6158 			i < (sizeof(struct port_stats) / sizeof(u64));
6159 			i++, s++, o++)
6160 		*s -= *o;
6161 }
6162 
6163 /**
6164  *	t4_get_port_stats - collect port statistics
6165  *	@adap: the adapter
6166  *	@idx: the port index
6167  *	@p: the stats structure to fill
6168  *
6169  *	Collect statistics related to the given port from HW.
6170  */
6171 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6172 {
6173 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6174 	u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6175 
6176 #define GET_STAT(name) \
6177 	t4_read_reg64(adap, \
6178 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6179 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6180 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6181 
6182 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6183 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6184 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6185 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6186 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6187 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6188 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6189 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6190 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6191 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6192 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6193 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6194 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6195 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
6196 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6197 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6198 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6199 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6200 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6201 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6202 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6203 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6204 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6205 
6206 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6207 		if (stat_ctl & COUNTPAUSESTATTX_F)
6208 			p->tx_frames_64 -= p->tx_pause;
6209 		if (stat_ctl & COUNTPAUSEMCTX_F)
6210 			p->tx_mcast_frames -= p->tx_pause;
6211 	}
6212 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6213 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6214 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6215 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6216 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6217 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6218 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6219 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6220 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6221 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6222 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6223 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6224 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6225 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6226 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6227 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6228 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6229 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6230 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6231 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6232 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6233 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6234 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6235 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6236 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6237 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6238 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6239 
6240 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6241 		if (stat_ctl & COUNTPAUSESTATRX_F)
6242 			p->rx_frames_64 -= p->rx_pause;
6243 		if (stat_ctl & COUNTPAUSEMCRX_F)
6244 			p->rx_mcast_frames -= p->rx_pause;
6245 	}
6246 
6247 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6248 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6249 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6250 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6251 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6252 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6253 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6254 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6255 
6256 #undef GET_STAT
6257 #undef GET_STAT_COM
6258 }
6259 
6260 /**
6261  *	t4_get_lb_stats - collect loopback port statistics
6262  *	@adap: the adapter
6263  *	@idx: the loopback port index
6264  *	@p: the stats structure to fill
6265  *
6266  *	Return HW statistics for the given loopback port.
6267  */
6268 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6269 {
6270 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6271 
6272 #define GET_STAT(name) \
6273 	t4_read_reg64(adap, \
6274 	(is_t4(adap->params.chip) ? \
6275 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6276 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6277 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6278 
6279 	p->octets           = GET_STAT(BYTES);
6280 	p->frames           = GET_STAT(FRAMES);
6281 	p->bcast_frames     = GET_STAT(BCAST);
6282 	p->mcast_frames     = GET_STAT(MCAST);
6283 	p->ucast_frames     = GET_STAT(UCAST);
6284 	p->error_frames     = GET_STAT(ERROR);
6285 
6286 	p->frames_64        = GET_STAT(64B);
6287 	p->frames_65_127    = GET_STAT(65B_127B);
6288 	p->frames_128_255   = GET_STAT(128B_255B);
6289 	p->frames_256_511   = GET_STAT(256B_511B);
6290 	p->frames_512_1023  = GET_STAT(512B_1023B);
6291 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
6292 	p->frames_1519_max  = GET_STAT(1519B_MAX);
6293 	p->drop             = GET_STAT(DROP_FRAMES);
6294 
6295 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6296 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6297 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6298 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6299 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6300 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6301 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6302 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6303 
6304 #undef GET_STAT
6305 #undef GET_STAT_COM
6306 }
6307 
6308 /*     t4_mk_filtdelwr - create a delete filter WR
6309  *     @ftid: the filter ID
6310  *     @wr: the filter work request to populate
6311  *     @qid: ingress queue to receive the delete notification
6312  *
6313  *     Creates a filter work request to delete the supplied filter.  If @qid is
6314  *     negative the delete notification is suppressed.
6315  */
6316 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6317 {
6318 	memset(wr, 0, sizeof(*wr));
6319 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6320 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6321 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6322 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
6323 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6324 	if (qid >= 0)
6325 		wr->rx_chan_rx_rpl_iq =
6326 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6327 }
6328 
6329 #define INIT_CMD(var, cmd, rd_wr) do { \
6330 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6331 					FW_CMD_REQUEST_F | \
6332 					FW_CMD_##rd_wr##_F); \
6333 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6334 } while (0)
6335 
6336 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6337 			  u32 addr, u32 val)
6338 {
6339 	u32 ldst_addrspace;
6340 	struct fw_ldst_cmd c;
6341 
6342 	memset(&c, 0, sizeof(c));
6343 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6344 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6345 					FW_CMD_REQUEST_F |
6346 					FW_CMD_WRITE_F |
6347 					ldst_addrspace);
6348 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6349 	c.u.addrval.addr = cpu_to_be32(addr);
6350 	c.u.addrval.val = cpu_to_be32(val);
6351 
6352 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6353 }
6354 
6355 /**
6356  *	t4_mdio_rd - read a PHY register through MDIO
6357  *	@adap: the adapter
6358  *	@mbox: mailbox to use for the FW command
6359  *	@phy_addr: the PHY address
6360  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6361  *	@reg: the register to read
6362  *	@valp: where to store the value
6363  *
6364  *	Issues a FW command through the given mailbox to read a PHY register.
6365  */
6366 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6367 	       unsigned int mmd, unsigned int reg, u16 *valp)
6368 {
6369 	int ret;
6370 	u32 ldst_addrspace;
6371 	struct fw_ldst_cmd c;
6372 
6373 	memset(&c, 0, sizeof(c));
6374 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6375 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6376 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6377 					ldst_addrspace);
6378 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6379 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6380 					 FW_LDST_CMD_MMD_V(mmd));
6381 	c.u.mdio.raddr = cpu_to_be16(reg);
6382 
6383 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6384 	if (ret == 0)
6385 		*valp = be16_to_cpu(c.u.mdio.rval);
6386 	return ret;
6387 }
6388 
6389 /**
6390  *	t4_mdio_wr - write a PHY register through MDIO
6391  *	@adap: the adapter
6392  *	@mbox: mailbox to use for the FW command
6393  *	@phy_addr: the PHY address
6394  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6395  *	@reg: the register to write
6396  *	@valp: value to write
6397  *
6398  *	Issues a FW command through the given mailbox to write a PHY register.
6399  */
6400 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6401 	       unsigned int mmd, unsigned int reg, u16 val)
6402 {
6403 	u32 ldst_addrspace;
6404 	struct fw_ldst_cmd c;
6405 
6406 	memset(&c, 0, sizeof(c));
6407 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6408 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6409 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6410 					ldst_addrspace);
6411 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6412 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6413 					 FW_LDST_CMD_MMD_V(mmd));
6414 	c.u.mdio.raddr = cpu_to_be16(reg);
6415 	c.u.mdio.rval = cpu_to_be16(val);
6416 
6417 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6418 }
6419 
6420 /**
6421  *	t4_sge_decode_idma_state - decode the idma state
6422  *	@adap: the adapter
6423  *	@state: the state idma is stuck in
6424  */
6425 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6426 {
6427 	static const char * const t4_decode[] = {
6428 		"IDMA_IDLE",
6429 		"IDMA_PUSH_MORE_CPL_FIFO",
6430 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6431 		"Not used",
6432 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6433 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6434 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6435 		"IDMA_SEND_FIFO_TO_IMSG",
6436 		"IDMA_FL_REQ_DATA_FL_PREP",
6437 		"IDMA_FL_REQ_DATA_FL",
6438 		"IDMA_FL_DROP",
6439 		"IDMA_FL_H_REQ_HEADER_FL",
6440 		"IDMA_FL_H_SEND_PCIEHDR",
6441 		"IDMA_FL_H_PUSH_CPL_FIFO",
6442 		"IDMA_FL_H_SEND_CPL",
6443 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6444 		"IDMA_FL_H_SEND_IP_HDR",
6445 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6446 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6447 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6448 		"IDMA_FL_D_SEND_PCIEHDR",
6449 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6450 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6451 		"IDMA_FL_SEND_PCIEHDR",
6452 		"IDMA_FL_PUSH_CPL_FIFO",
6453 		"IDMA_FL_SEND_CPL",
6454 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6455 		"IDMA_FL_SEND_PAYLOAD",
6456 		"IDMA_FL_REQ_NEXT_DATA_FL",
6457 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6458 		"IDMA_FL_SEND_PADDING",
6459 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6460 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6461 		"IDMA_FL_REQ_DATAFL_DONE",
6462 		"IDMA_FL_REQ_HEADERFL_DONE",
6463 	};
6464 	static const char * const t5_decode[] = {
6465 		"IDMA_IDLE",
6466 		"IDMA_ALMOST_IDLE",
6467 		"IDMA_PUSH_MORE_CPL_FIFO",
6468 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6469 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6470 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6471 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6472 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6473 		"IDMA_SEND_FIFO_TO_IMSG",
6474 		"IDMA_FL_REQ_DATA_FL",
6475 		"IDMA_FL_DROP",
6476 		"IDMA_FL_DROP_SEND_INC",
6477 		"IDMA_FL_H_REQ_HEADER_FL",
6478 		"IDMA_FL_H_SEND_PCIEHDR",
6479 		"IDMA_FL_H_PUSH_CPL_FIFO",
6480 		"IDMA_FL_H_SEND_CPL",
6481 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6482 		"IDMA_FL_H_SEND_IP_HDR",
6483 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6484 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6485 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6486 		"IDMA_FL_D_SEND_PCIEHDR",
6487 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6488 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6489 		"IDMA_FL_SEND_PCIEHDR",
6490 		"IDMA_FL_PUSH_CPL_FIFO",
6491 		"IDMA_FL_SEND_CPL",
6492 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6493 		"IDMA_FL_SEND_PAYLOAD",
6494 		"IDMA_FL_REQ_NEXT_DATA_FL",
6495 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6496 		"IDMA_FL_SEND_PADDING",
6497 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6498 	};
6499 	static const char * const t6_decode[] = {
6500 		"IDMA_IDLE",
6501 		"IDMA_PUSH_MORE_CPL_FIFO",
6502 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6503 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6504 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6505 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6506 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6507 		"IDMA_FL_REQ_DATA_FL",
6508 		"IDMA_FL_DROP",
6509 		"IDMA_FL_DROP_SEND_INC",
6510 		"IDMA_FL_H_REQ_HEADER_FL",
6511 		"IDMA_FL_H_SEND_PCIEHDR",
6512 		"IDMA_FL_H_PUSH_CPL_FIFO",
6513 		"IDMA_FL_H_SEND_CPL",
6514 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6515 		"IDMA_FL_H_SEND_IP_HDR",
6516 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6517 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6518 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6519 		"IDMA_FL_D_SEND_PCIEHDR",
6520 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6521 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6522 		"IDMA_FL_SEND_PCIEHDR",
6523 		"IDMA_FL_PUSH_CPL_FIFO",
6524 		"IDMA_FL_SEND_CPL",
6525 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6526 		"IDMA_FL_SEND_PAYLOAD",
6527 		"IDMA_FL_REQ_NEXT_DATA_FL",
6528 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6529 		"IDMA_FL_SEND_PADDING",
6530 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6531 	};
6532 	static const u32 sge_regs[] = {
6533 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
6534 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
6535 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6536 	};
6537 	const char **sge_idma_decode;
6538 	int sge_idma_decode_nstates;
6539 	int i;
6540 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6541 
6542 	/* Select the right set of decode strings to dump depending on the
6543 	 * adapter chip type.
6544 	 */
6545 	switch (chip_version) {
6546 	case CHELSIO_T4:
6547 		sge_idma_decode = (const char **)t4_decode;
6548 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6549 		break;
6550 
6551 	case CHELSIO_T5:
6552 		sge_idma_decode = (const char **)t5_decode;
6553 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6554 		break;
6555 
6556 	case CHELSIO_T6:
6557 		sge_idma_decode = (const char **)t6_decode;
6558 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6559 		break;
6560 
6561 	default:
6562 		dev_err(adapter->pdev_dev,
6563 			"Unsupported chip version %d\n", chip_version);
6564 		return;
6565 	}
6566 
6567 	if (is_t4(adapter->params.chip)) {
6568 		sge_idma_decode = (const char **)t4_decode;
6569 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6570 	} else {
6571 		sge_idma_decode = (const char **)t5_decode;
6572 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6573 	}
6574 
6575 	if (state < sge_idma_decode_nstates)
6576 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6577 	else
6578 		CH_WARN(adapter, "idma state %d unknown\n", state);
6579 
6580 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6581 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6582 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6583 }
6584 
6585 /**
6586  *      t4_sge_ctxt_flush - flush the SGE context cache
6587  *      @adap: the adapter
6588  *      @mbox: mailbox to use for the FW command
6589  *      @ctx_type: Egress or Ingress
6590  *
6591  *      Issues a FW command through the given mailbox to flush the
6592  *      SGE context cache.
6593  */
6594 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6595 {
6596 	int ret;
6597 	u32 ldst_addrspace;
6598 	struct fw_ldst_cmd c;
6599 
6600 	memset(&c, 0, sizeof(c));
6601 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6602 						 FW_LDST_ADDRSPC_SGE_EGRC :
6603 						 FW_LDST_ADDRSPC_SGE_INGC);
6604 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6605 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6606 					ldst_addrspace);
6607 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6608 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6609 
6610 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6611 	return ret;
6612 }
6613 
6614 /**
6615  *      t4_fw_hello - establish communication with FW
6616  *      @adap: the adapter
6617  *      @mbox: mailbox to use for the FW command
6618  *      @evt_mbox: mailbox to receive async FW events
6619  *      @master: specifies the caller's willingness to be the device master
6620  *	@state: returns the current device state (if non-NULL)
6621  *
6622  *	Issues a command to establish communication with FW.  Returns either
6623  *	an error (negative integer) or the mailbox of the Master PF.
6624  */
6625 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6626 		enum dev_master master, enum dev_state *state)
6627 {
6628 	int ret;
6629 	struct fw_hello_cmd c;
6630 	u32 v;
6631 	unsigned int master_mbox;
6632 	int retries = FW_CMD_HELLO_RETRIES;
6633 
6634 retry:
6635 	memset(&c, 0, sizeof(c));
6636 	INIT_CMD(c, HELLO, WRITE);
6637 	c.err_to_clearinit = cpu_to_be32(
6638 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6639 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6640 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6641 					mbox : FW_HELLO_CMD_MBMASTER_M) |
6642 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6643 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6644 		FW_HELLO_CMD_CLEARINIT_F);
6645 
6646 	/*
6647 	 * Issue the HELLO command to the firmware.  If it's not successful
6648 	 * but indicates that we got a "busy" or "timeout" condition, retry
6649 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6650 	 * retry limit, check to see if the firmware left us any error
6651 	 * information and report that if so.
6652 	 */
6653 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6654 	if (ret < 0) {
6655 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6656 			goto retry;
6657 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6658 			t4_report_fw_error(adap);
6659 		return ret;
6660 	}
6661 
6662 	v = be32_to_cpu(c.err_to_clearinit);
6663 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6664 	if (state) {
6665 		if (v & FW_HELLO_CMD_ERR_F)
6666 			*state = DEV_STATE_ERR;
6667 		else if (v & FW_HELLO_CMD_INIT_F)
6668 			*state = DEV_STATE_INIT;
6669 		else
6670 			*state = DEV_STATE_UNINIT;
6671 	}
6672 
6673 	/*
6674 	 * If we're not the Master PF then we need to wait around for the
6675 	 * Master PF Driver to finish setting up the adapter.
6676 	 *
6677 	 * Note that we also do this wait if we're a non-Master-capable PF and
6678 	 * there is no current Master PF; a Master PF may show up momentarily
6679 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6680 	 * OS loads lots of different drivers rapidly at the same time).  In
6681 	 * this case, the Master PF returned by the firmware will be
6682 	 * PCIE_FW_MASTER_M so the test below will work ...
6683 	 */
6684 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6685 	    master_mbox != mbox) {
6686 		int waiting = FW_CMD_HELLO_TIMEOUT;
6687 
6688 		/*
6689 		 * Wait for the firmware to either indicate an error or
6690 		 * initialized state.  If we see either of these we bail out
6691 		 * and report the issue to the caller.  If we exhaust the
6692 		 * "hello timeout" and we haven't exhausted our retries, try
6693 		 * again.  Otherwise bail with a timeout error.
6694 		 */
6695 		for (;;) {
6696 			u32 pcie_fw;
6697 
6698 			msleep(50);
6699 			waiting -= 50;
6700 
6701 			/*
6702 			 * If neither Error nor Initialialized are indicated
6703 			 * by the firmware keep waiting till we exaust our
6704 			 * timeout ... and then retry if we haven't exhausted
6705 			 * our retries ...
6706 			 */
6707 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6708 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6709 				if (waiting <= 0) {
6710 					if (retries-- > 0)
6711 						goto retry;
6712 
6713 					return -ETIMEDOUT;
6714 				}
6715 				continue;
6716 			}
6717 
6718 			/*
6719 			 * We either have an Error or Initialized condition
6720 			 * report errors preferentially.
6721 			 */
6722 			if (state) {
6723 				if (pcie_fw & PCIE_FW_ERR_F)
6724 					*state = DEV_STATE_ERR;
6725 				else if (pcie_fw & PCIE_FW_INIT_F)
6726 					*state = DEV_STATE_INIT;
6727 			}
6728 
6729 			/*
6730 			 * If we arrived before a Master PF was selected and
6731 			 * there's not a valid Master PF, grab its identity
6732 			 * for our caller.
6733 			 */
6734 			if (master_mbox == PCIE_FW_MASTER_M &&
6735 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
6736 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6737 			break;
6738 		}
6739 	}
6740 
6741 	return master_mbox;
6742 }
6743 
6744 /**
6745  *	t4_fw_bye - end communication with FW
6746  *	@adap: the adapter
6747  *	@mbox: mailbox to use for the FW command
6748  *
6749  *	Issues a command to terminate communication with FW.
6750  */
6751 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6752 {
6753 	struct fw_bye_cmd c;
6754 
6755 	memset(&c, 0, sizeof(c));
6756 	INIT_CMD(c, BYE, WRITE);
6757 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6758 }
6759 
6760 /**
6761  *	t4_init_cmd - ask FW to initialize the device
6762  *	@adap: the adapter
6763  *	@mbox: mailbox to use for the FW command
6764  *
6765  *	Issues a command to FW to partially initialize the device.  This
6766  *	performs initialization that generally doesn't depend on user input.
6767  */
6768 int t4_early_init(struct adapter *adap, unsigned int mbox)
6769 {
6770 	struct fw_initialize_cmd c;
6771 
6772 	memset(&c, 0, sizeof(c));
6773 	INIT_CMD(c, INITIALIZE, WRITE);
6774 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6775 }
6776 
6777 /**
6778  *	t4_fw_reset - issue a reset to FW
6779  *	@adap: the adapter
6780  *	@mbox: mailbox to use for the FW command
6781  *	@reset: specifies the type of reset to perform
6782  *
6783  *	Issues a reset command of the specified type to FW.
6784  */
6785 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6786 {
6787 	struct fw_reset_cmd c;
6788 
6789 	memset(&c, 0, sizeof(c));
6790 	INIT_CMD(c, RESET, WRITE);
6791 	c.val = cpu_to_be32(reset);
6792 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6793 }
6794 
6795 /**
6796  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6797  *	@adap: the adapter
6798  *	@mbox: mailbox to use for the FW RESET command (if desired)
6799  *	@force: force uP into RESET even if FW RESET command fails
6800  *
6801  *	Issues a RESET command to firmware (if desired) with a HALT indication
6802  *	and then puts the microprocessor into RESET state.  The RESET command
6803  *	will only be issued if a legitimate mailbox is provided (mbox <=
6804  *	PCIE_FW_MASTER_M).
6805  *
6806  *	This is generally used in order for the host to safely manipulate the
6807  *	adapter without fear of conflicting with whatever the firmware might
6808  *	be doing.  The only way out of this state is to RESTART the firmware
6809  *	...
6810  */
6811 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6812 {
6813 	int ret = 0;
6814 
6815 	/*
6816 	 * If a legitimate mailbox is provided, issue a RESET command
6817 	 * with a HALT indication.
6818 	 */
6819 	if (mbox <= PCIE_FW_MASTER_M) {
6820 		struct fw_reset_cmd c;
6821 
6822 		memset(&c, 0, sizeof(c));
6823 		INIT_CMD(c, RESET, WRITE);
6824 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
6825 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
6826 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6827 	}
6828 
6829 	/*
6830 	 * Normally we won't complete the operation if the firmware RESET
6831 	 * command fails but if our caller insists we'll go ahead and put the
6832 	 * uP into RESET.  This can be useful if the firmware is hung or even
6833 	 * missing ...  We'll have to take the risk of putting the uP into
6834 	 * RESET without the cooperation of firmware in that case.
6835 	 *
6836 	 * We also force the firmware's HALT flag to be on in case we bypassed
6837 	 * the firmware RESET command above or we're dealing with old firmware
6838 	 * which doesn't have the HALT capability.  This will serve as a flag
6839 	 * for the incoming firmware to know that it's coming out of a HALT
6840 	 * rather than a RESET ... if it's new enough to understand that ...
6841 	 */
6842 	if (ret == 0 || force) {
6843 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
6844 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
6845 				 PCIE_FW_HALT_F);
6846 	}
6847 
6848 	/*
6849 	 * And we always return the result of the firmware RESET command
6850 	 * even when we force the uP into RESET ...
6851 	 */
6852 	return ret;
6853 }
6854 
6855 /**
6856  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6857  *	@adap: the adapter
6858  *	@reset: if we want to do a RESET to restart things
6859  *
6860  *	Restart firmware previously halted by t4_fw_halt().  On successful
6861  *	return the previous PF Master remains as the new PF Master and there
6862  *	is no need to issue a new HELLO command, etc.
6863  *
6864  *	We do this in two ways:
6865  *
6866  *	 1. If we're dealing with newer firmware we'll simply want to take
6867  *	    the chip's microprocessor out of RESET.  This will cause the
6868  *	    firmware to start up from its start vector.  And then we'll loop
6869  *	    until the firmware indicates it's started again (PCIE_FW.HALT
6870  *	    reset to 0) or we timeout.
6871  *
6872  *	 2. If we're dealing with older firmware then we'll need to RESET
6873  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6874  *	    flag and automatically RESET itself on startup.
6875  */
6876 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6877 {
6878 	if (reset) {
6879 		/*
6880 		 * Since we're directing the RESET instead of the firmware
6881 		 * doing it automatically, we need to clear the PCIE_FW.HALT
6882 		 * bit.
6883 		 */
6884 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6885 
6886 		/*
6887 		 * If we've been given a valid mailbox, first try to get the
6888 		 * firmware to do the RESET.  If that works, great and we can
6889 		 * return success.  Otherwise, if we haven't been given a
6890 		 * valid mailbox or the RESET command failed, fall back to
6891 		 * hitting the chip with a hammer.
6892 		 */
6893 		if (mbox <= PCIE_FW_MASTER_M) {
6894 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6895 			msleep(100);
6896 			if (t4_fw_reset(adap, mbox,
6897 					PIORST_F | PIORSTMODE_F) == 0)
6898 				return 0;
6899 		}
6900 
6901 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6902 		msleep(2000);
6903 	} else {
6904 		int ms;
6905 
6906 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6907 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6908 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6909 				return 0;
6910 			msleep(100);
6911 			ms += 100;
6912 		}
6913 		return -ETIMEDOUT;
6914 	}
6915 	return 0;
6916 }
6917 
6918 /**
6919  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6920  *	@adap: the adapter
6921  *	@mbox: mailbox to use for the FW RESET command (if desired)
6922  *	@fw_data: the firmware image to write
6923  *	@size: image size
6924  *	@force: force upgrade even if firmware doesn't cooperate
6925  *
6926  *	Perform all of the steps necessary for upgrading an adapter's
6927  *	firmware image.  Normally this requires the cooperation of the
6928  *	existing firmware in order to halt all existing activities
6929  *	but if an invalid mailbox token is passed in we skip that step
6930  *	(though we'll still put the adapter microprocessor into RESET in
6931  *	that case).
6932  *
6933  *	On successful return the new firmware will have been loaded and
6934  *	the adapter will have been fully RESET losing all previous setup
6935  *	state.  On unsuccessful return the adapter may be completely hosed ...
6936  *	positive errno indicates that the adapter is ~probably~ intact, a
6937  *	negative errno indicates that things are looking bad ...
6938  */
6939 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6940 		  const u8 *fw_data, unsigned int size, int force)
6941 {
6942 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6943 	int reset, ret;
6944 
6945 	if (!t4_fw_matches_chip(adap, fw_hdr))
6946 		return -EINVAL;
6947 
6948 	/* Disable FW_OK flag so that mbox commands with FW_OK flag set
6949 	 * wont be sent when we are flashing FW.
6950 	 */
6951 	adap->flags &= ~FW_OK;
6952 
6953 	ret = t4_fw_halt(adap, mbox, force);
6954 	if (ret < 0 && !force)
6955 		goto out;
6956 
6957 	ret = t4_load_fw(adap, fw_data, size);
6958 	if (ret < 0)
6959 		goto out;
6960 
6961 	/*
6962 	 * If there was a Firmware Configuration File stored in FLASH,
6963 	 * there's a good chance that it won't be compatible with the new
6964 	 * Firmware.  In order to prevent difficult to diagnose adapter
6965 	 * initialization issues, we clear out the Firmware Configuration File
6966 	 * portion of the FLASH .  The user will need to re-FLASH a new
6967 	 * Firmware Configuration File which is compatible with the new
6968 	 * Firmware if that's desired.
6969 	 */
6970 	(void)t4_load_cfg(adap, NULL, 0);
6971 
6972 	/*
6973 	 * Older versions of the firmware don't understand the new
6974 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6975 	 * restart.  So for newly loaded older firmware we'll have to do the
6976 	 * RESET for it so it starts up on a clean slate.  We can tell if
6977 	 * the newly loaded firmware will handle this right by checking
6978 	 * its header flags to see if it advertises the capability.
6979 	 */
6980 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6981 	ret = t4_fw_restart(adap, mbox, reset);
6982 
6983 	/* Grab potentially new Firmware Device Log parameters so we can see
6984 	 * how healthy the new Firmware is.  It's okay to contact the new
6985 	 * Firmware for these parameters even though, as far as it's
6986 	 * concerned, we've never said "HELLO" to it ...
6987 	 */
6988 	(void)t4_init_devlog_params(adap);
6989 out:
6990 	adap->flags |= FW_OK;
6991 	return ret;
6992 }
6993 
6994 /**
6995  *	t4_fl_pkt_align - return the fl packet alignment
6996  *	@adap: the adapter
6997  *
6998  *	T4 has a single field to specify the packing and padding boundary.
6999  *	T5 onwards has separate fields for this and hence the alignment for
7000  *	next packet offset is maximum of these two.
7001  *
7002  */
7003 int t4_fl_pkt_align(struct adapter *adap)
7004 {
7005 	u32 sge_control, sge_control2;
7006 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7007 
7008 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7009 
7010 	/* T4 uses a single control field to specify both the PCIe Padding and
7011 	 * Packing Boundary.  T5 introduced the ability to specify these
7012 	 * separately.  The actual Ingress Packet Data alignment boundary
7013 	 * within Packed Buffer Mode is the maximum of these two
7014 	 * specifications.  (Note that it makes no real practical sense to
7015 	 * have the Pading Boudary be larger than the Packing Boundary but you
7016 	 * could set the chip up that way and, in fact, legacy T4 code would
7017 	 * end doing this because it would initialize the Padding Boundary and
7018 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
7019 	 * Padding Boundary values in T6 starts from 8B,
7020 	 * where as it is 32B for T4 and T5.
7021 	 */
7022 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7023 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7024 	else
7025 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7026 
7027 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7028 
7029 	fl_align = ingpadboundary;
7030 	if (!is_t4(adap->params.chip)) {
7031 		/* T5 has a weird interpretation of one of the PCIe Packing
7032 		 * Boundary values.  No idea why ...
7033 		 */
7034 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7035 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7036 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7037 			ingpackboundary = 16;
7038 		else
7039 			ingpackboundary = 1 << (ingpackboundary +
7040 						INGPACKBOUNDARY_SHIFT_X);
7041 
7042 		fl_align = max(ingpadboundary, ingpackboundary);
7043 	}
7044 	return fl_align;
7045 }
7046 
7047 /**
7048  *	t4_fixup_host_params - fix up host-dependent parameters
7049  *	@adap: the adapter
7050  *	@page_size: the host's Base Page Size
7051  *	@cache_line_size: the host's Cache Line Size
7052  *
7053  *	Various registers in T4 contain values which are dependent on the
7054  *	host's Base Page and Cache Line Sizes.  This function will fix all of
7055  *	those registers with the appropriate values as passed in ...
7056  */
7057 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7058 			 unsigned int cache_line_size)
7059 {
7060 	unsigned int page_shift = fls(page_size) - 1;
7061 	unsigned int sge_hps = page_shift - 10;
7062 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7063 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7064 	unsigned int fl_align_log = fls(fl_align) - 1;
7065 
7066 	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7067 		     HOSTPAGESIZEPF0_V(sge_hps) |
7068 		     HOSTPAGESIZEPF1_V(sge_hps) |
7069 		     HOSTPAGESIZEPF2_V(sge_hps) |
7070 		     HOSTPAGESIZEPF3_V(sge_hps) |
7071 		     HOSTPAGESIZEPF4_V(sge_hps) |
7072 		     HOSTPAGESIZEPF5_V(sge_hps) |
7073 		     HOSTPAGESIZEPF6_V(sge_hps) |
7074 		     HOSTPAGESIZEPF7_V(sge_hps));
7075 
7076 	if (is_t4(adap->params.chip)) {
7077 		t4_set_reg_field(adap, SGE_CONTROL_A,
7078 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7079 				 EGRSTATUSPAGESIZE_F,
7080 				 INGPADBOUNDARY_V(fl_align_log -
7081 						  INGPADBOUNDARY_SHIFT_X) |
7082 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7083 	} else {
7084 		unsigned int pack_align;
7085 		unsigned int ingpad, ingpack;
7086 		unsigned int pcie_cap;
7087 
7088 		/* T5 introduced the separation of the Free List Padding and
7089 		 * Packing Boundaries.  Thus, we can select a smaller Padding
7090 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
7091 		 * Bandwidth, and use a Packing Boundary which is large enough
7092 		 * to avoid false sharing between CPUs, etc.
7093 		 *
7094 		 * For the PCI Link, the smaller the Padding Boundary the
7095 		 * better.  For the Memory Controller, a smaller Padding
7096 		 * Boundary is better until we cross under the Memory Line
7097 		 * Size (the minimum unit of transfer to/from Memory).  If we
7098 		 * have a Padding Boundary which is smaller than the Memory
7099 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
7100 		 * Memory Controller which is never good.
7101 		 */
7102 
7103 		/* We want the Packing Boundary to be based on the Cache Line
7104 		 * Size in order to help avoid False Sharing performance
7105 		 * issues between CPUs, etc.  We also want the Packing
7106 		 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7107 		 * get best performance when the Packing Boundary is a
7108 		 * multiple of the Maximum Payload Size.
7109 		 */
7110 		pack_align = fl_align;
7111 		pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP);
7112 		if (pcie_cap) {
7113 			unsigned int mps, mps_log;
7114 			u16 devctl;
7115 
7116 			/* The PCIe Device Control Maximum Payload Size field
7117 			 * [bits 7:5] encodes sizes as powers of 2 starting at
7118 			 * 128 bytes.
7119 			 */
7120 			pci_read_config_word(adap->pdev,
7121 					     pcie_cap + PCI_EXP_DEVCTL,
7122 					     &devctl);
7123 			mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7124 			mps = 1 << mps_log;
7125 			if (mps > pack_align)
7126 				pack_align = mps;
7127 		}
7128 
7129 		/* N.B. T5/T6 have a crazy special interpretation of the "0"
7130 		 * value for the Packing Boundary.  This corresponds to 16
7131 		 * bytes instead of the expected 32 bytes.  So if we want 32
7132 		 * bytes, the best we can really do is 64 bytes ...
7133 		 */
7134 		if (pack_align <= 16) {
7135 			ingpack = INGPACKBOUNDARY_16B_X;
7136 			fl_align = 16;
7137 		} else if (pack_align == 32) {
7138 			ingpack = INGPACKBOUNDARY_64B_X;
7139 			fl_align = 64;
7140 		} else {
7141 			unsigned int pack_align_log = fls(pack_align) - 1;
7142 
7143 			ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7144 			fl_align = pack_align;
7145 		}
7146 
7147 		/* Use the smallest Ingress Padding which isn't smaller than
7148 		 * the Memory Controller Read/Write Size.  We'll take that as
7149 		 * being 8 bytes since we don't know of any system with a
7150 		 * wider Memory Controller Bus Width.
7151 		 */
7152 		if (is_t5(adap->params.chip))
7153 			ingpad = INGPADBOUNDARY_32B_X;
7154 		else
7155 			ingpad = T6_INGPADBOUNDARY_8B_X;
7156 
7157 		t4_set_reg_field(adap, SGE_CONTROL_A,
7158 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7159 				 EGRSTATUSPAGESIZE_F,
7160 				 INGPADBOUNDARY_V(ingpad) |
7161 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7162 		t4_set_reg_field(adap, SGE_CONTROL2_A,
7163 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7164 				 INGPACKBOUNDARY_V(ingpack));
7165 	}
7166 	/*
7167 	 * Adjust various SGE Free List Host Buffer Sizes.
7168 	 *
7169 	 * This is something of a crock since we're using fixed indices into
7170 	 * the array which are also known by the sge.c code and the T4
7171 	 * Firmware Configuration File.  We need to come up with a much better
7172 	 * approach to managing this array.  For now, the first four entries
7173 	 * are:
7174 	 *
7175 	 *   0: Host Page Size
7176 	 *   1: 64KB
7177 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7178 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7179 	 *
7180 	 * For the single-MTU buffers in unpacked mode we need to include
7181 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7182 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7183 	 * Padding boundary.  All of these are accommodated in the Factory
7184 	 * Default Firmware Configuration File but we need to adjust it for
7185 	 * this host's cache line size.
7186 	 */
7187 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7188 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7189 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7190 		     & ~(fl_align-1));
7191 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7192 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7193 		     & ~(fl_align-1));
7194 
7195 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7196 
7197 	return 0;
7198 }
7199 
7200 /**
7201  *	t4_fw_initialize - ask FW to initialize the device
7202  *	@adap: the adapter
7203  *	@mbox: mailbox to use for the FW command
7204  *
7205  *	Issues a command to FW to partially initialize the device.  This
7206  *	performs initialization that generally doesn't depend on user input.
7207  */
7208 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7209 {
7210 	struct fw_initialize_cmd c;
7211 
7212 	memset(&c, 0, sizeof(c));
7213 	INIT_CMD(c, INITIALIZE, WRITE);
7214 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7215 }
7216 
7217 /**
7218  *	t4_query_params_rw - query FW or device parameters
7219  *	@adap: the adapter
7220  *	@mbox: mailbox to use for the FW command
7221  *	@pf: the PF
7222  *	@vf: the VF
7223  *	@nparams: the number of parameters
7224  *	@params: the parameter names
7225  *	@val: the parameter values
7226  *	@rw: Write and read flag
7227  *	@sleep_ok: if true, we may sleep awaiting mbox cmd completion
7228  *
7229  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7230  *	queried at once.
7231  */
7232 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7233 		       unsigned int vf, unsigned int nparams, const u32 *params,
7234 		       u32 *val, int rw, bool sleep_ok)
7235 {
7236 	int i, ret;
7237 	struct fw_params_cmd c;
7238 	__be32 *p = &c.param[0].mnem;
7239 
7240 	if (nparams > 7)
7241 		return -EINVAL;
7242 
7243 	memset(&c, 0, sizeof(c));
7244 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7245 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
7246 				  FW_PARAMS_CMD_PFN_V(pf) |
7247 				  FW_PARAMS_CMD_VFN_V(vf));
7248 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7249 
7250 	for (i = 0; i < nparams; i++) {
7251 		*p++ = cpu_to_be32(*params++);
7252 		if (rw)
7253 			*p = cpu_to_be32(*(val + i));
7254 		p++;
7255 	}
7256 
7257 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7258 	if (ret == 0)
7259 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7260 			*val++ = be32_to_cpu(*p);
7261 	return ret;
7262 }
7263 
7264 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7265 		    unsigned int vf, unsigned int nparams, const u32 *params,
7266 		    u32 *val)
7267 {
7268 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7269 				  true);
7270 }
7271 
7272 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7273 		       unsigned int vf, unsigned int nparams, const u32 *params,
7274 		       u32 *val)
7275 {
7276 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7277 				  false);
7278 }
7279 
7280 /**
7281  *      t4_set_params_timeout - sets FW or device parameters
7282  *      @adap: the adapter
7283  *      @mbox: mailbox to use for the FW command
7284  *      @pf: the PF
7285  *      @vf: the VF
7286  *      @nparams: the number of parameters
7287  *      @params: the parameter names
7288  *      @val: the parameter values
7289  *      @timeout: the timeout time
7290  *
7291  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7292  *      specified at once.
7293  */
7294 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7295 			  unsigned int pf, unsigned int vf,
7296 			  unsigned int nparams, const u32 *params,
7297 			  const u32 *val, int timeout)
7298 {
7299 	struct fw_params_cmd c;
7300 	__be32 *p = &c.param[0].mnem;
7301 
7302 	if (nparams > 7)
7303 		return -EINVAL;
7304 
7305 	memset(&c, 0, sizeof(c));
7306 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7307 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7308 				  FW_PARAMS_CMD_PFN_V(pf) |
7309 				  FW_PARAMS_CMD_VFN_V(vf));
7310 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7311 
7312 	while (nparams--) {
7313 		*p++ = cpu_to_be32(*params++);
7314 		*p++ = cpu_to_be32(*val++);
7315 	}
7316 
7317 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7318 }
7319 
7320 /**
7321  *	t4_set_params - sets FW or device parameters
7322  *	@adap: the adapter
7323  *	@mbox: mailbox to use for the FW command
7324  *	@pf: the PF
7325  *	@vf: the VF
7326  *	@nparams: the number of parameters
7327  *	@params: the parameter names
7328  *	@val: the parameter values
7329  *
7330  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7331  *	specified at once.
7332  */
7333 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7334 		  unsigned int vf, unsigned int nparams, const u32 *params,
7335 		  const u32 *val)
7336 {
7337 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7338 				     FW_CMD_MAX_TIMEOUT);
7339 }
7340 
7341 /**
7342  *	t4_cfg_pfvf - configure PF/VF resource limits
7343  *	@adap: the adapter
7344  *	@mbox: mailbox to use for the FW command
7345  *	@pf: the PF being configured
7346  *	@vf: the VF being configured
7347  *	@txq: the max number of egress queues
7348  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7349  *	@rxqi: the max number of interrupt-capable ingress queues
7350  *	@rxq: the max number of interruptless ingress queues
7351  *	@tc: the PCI traffic class
7352  *	@vi: the max number of virtual interfaces
7353  *	@cmask: the channel access rights mask for the PF/VF
7354  *	@pmask: the port access rights mask for the PF/VF
7355  *	@nexact: the maximum number of exact MPS filters
7356  *	@rcaps: read capabilities
7357  *	@wxcaps: write/execute capabilities
7358  *
7359  *	Configures resource limits and capabilities for a physical or virtual
7360  *	function.
7361  */
7362 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7363 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7364 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7365 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7366 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7367 {
7368 	struct fw_pfvf_cmd c;
7369 
7370 	memset(&c, 0, sizeof(c));
7371 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7372 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7373 				  FW_PFVF_CMD_VFN_V(vf));
7374 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7375 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7376 				     FW_PFVF_CMD_NIQ_V(rxq));
7377 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7378 				    FW_PFVF_CMD_PMASK_V(pmask) |
7379 				    FW_PFVF_CMD_NEQ_V(txq));
7380 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7381 				      FW_PFVF_CMD_NVI_V(vi) |
7382 				      FW_PFVF_CMD_NEXACTF_V(nexact));
7383 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7384 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7385 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7386 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7387 }
7388 
7389 /**
7390  *	t4_alloc_vi - allocate a virtual interface
7391  *	@adap: the adapter
7392  *	@mbox: mailbox to use for the FW command
7393  *	@port: physical port associated with the VI
7394  *	@pf: the PF owning the VI
7395  *	@vf: the VF owning the VI
7396  *	@nmac: number of MAC addresses needed (1 to 5)
7397  *	@mac: the MAC addresses of the VI
7398  *	@rss_size: size of RSS table slice associated with this VI
7399  *
7400  *	Allocates a virtual interface for the given physical port.  If @mac is
7401  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7402  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7403  *	stored consecutively so the space needed is @nmac * 6 bytes.
7404  *	Returns a negative error number or the non-negative VI id.
7405  */
7406 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7407 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7408 		unsigned int *rss_size)
7409 {
7410 	int ret;
7411 	struct fw_vi_cmd c;
7412 
7413 	memset(&c, 0, sizeof(c));
7414 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7415 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7416 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7417 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7418 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7419 	c.nmac = nmac - 1;
7420 
7421 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7422 	if (ret)
7423 		return ret;
7424 
7425 	if (mac) {
7426 		memcpy(mac, c.mac, sizeof(c.mac));
7427 		switch (nmac) {
7428 		case 5:
7429 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7430 		case 4:
7431 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7432 		case 3:
7433 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7434 		case 2:
7435 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7436 		}
7437 	}
7438 	if (rss_size)
7439 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7440 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7441 }
7442 
7443 /**
7444  *	t4_free_vi - free a virtual interface
7445  *	@adap: the adapter
7446  *	@mbox: mailbox to use for the FW command
7447  *	@pf: the PF owning the VI
7448  *	@vf: the VF owning the VI
7449  *	@viid: virtual interface identifiler
7450  *
7451  *	Free a previously allocated virtual interface.
7452  */
7453 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7454 	       unsigned int vf, unsigned int viid)
7455 {
7456 	struct fw_vi_cmd c;
7457 
7458 	memset(&c, 0, sizeof(c));
7459 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7460 				  FW_CMD_REQUEST_F |
7461 				  FW_CMD_EXEC_F |
7462 				  FW_VI_CMD_PFN_V(pf) |
7463 				  FW_VI_CMD_VFN_V(vf));
7464 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7465 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7466 
7467 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7468 }
7469 
7470 /**
7471  *	t4_set_rxmode - set Rx properties of a virtual interface
7472  *	@adap: the adapter
7473  *	@mbox: mailbox to use for the FW command
7474  *	@viid: the VI id
7475  *	@mtu: the new MTU or -1
7476  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7477  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7478  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7479  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7480  *	@sleep_ok: if true we may sleep while awaiting command completion
7481  *
7482  *	Sets Rx properties of a virtual interface.
7483  */
7484 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7485 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7486 		  bool sleep_ok)
7487 {
7488 	struct fw_vi_rxmode_cmd c;
7489 
7490 	/* convert to FW values */
7491 	if (mtu < 0)
7492 		mtu = FW_RXMODE_MTU_NO_CHG;
7493 	if (promisc < 0)
7494 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7495 	if (all_multi < 0)
7496 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7497 	if (bcast < 0)
7498 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7499 	if (vlanex < 0)
7500 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7501 
7502 	memset(&c, 0, sizeof(c));
7503 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7504 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7505 				   FW_VI_RXMODE_CMD_VIID_V(viid));
7506 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7507 	c.mtu_to_vlanexen =
7508 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7509 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7510 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7511 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7512 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7513 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7514 }
7515 
7516 /**
7517  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7518  *	@adap: the adapter
7519  *	@viid: the VI id
7520  *	@addr: the MAC address
7521  *	@mask: the mask
7522  *	@idx: index of the entry in mps tcam
7523  *	@lookup_type: MAC address for inner (1) or outer (0) header
7524  *	@port_id: the port index
7525  *	@sleep_ok: call is allowed to sleep
7526  *
7527  *	Removes the mac entry at the specified index using raw mac interface.
7528  *
7529  *	Returns a negative error number on failure.
7530  */
7531 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7532 			 const u8 *addr, const u8 *mask, unsigned int idx,
7533 			 u8 lookup_type, u8 port_id, bool sleep_ok)
7534 {
7535 	struct fw_vi_mac_cmd c;
7536 	struct fw_vi_mac_raw *p = &c.u.raw;
7537 	u32 val;
7538 
7539 	memset(&c, 0, sizeof(c));
7540 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7541 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7542 				   FW_CMD_EXEC_V(0) |
7543 				   FW_VI_MAC_CMD_VIID_V(viid));
7544 	val = FW_CMD_LEN16_V(1) |
7545 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7546 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7547 					  FW_CMD_LEN16_V(val));
7548 
7549 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7550 				     FW_VI_MAC_ID_BASED_FREE);
7551 
7552 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7553 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7554 				   DATAPORTNUM_V(port_id));
7555 	/* Lookup mask and port mask */
7556 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7557 				    DATAPORTNUM_V(DATAPORTNUM_M));
7558 
7559 	/* Copy the address and the mask */
7560 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7561 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7562 
7563 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7564 }
7565 
7566 /**
7567  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7568  *	@adap: the adapter
7569  *	@viid: the VI id
7570  *	@mac: the MAC address
7571  *	@mask: the mask
7572  *	@idx: index at which to add this entry
7573  *	@port_id: the port index
7574  *	@lookup_type: MAC address for inner (1) or outer (0) header
7575  *	@sleep_ok: call is allowed to sleep
7576  *
7577  *	Adds the mac entry at the specified index using raw mac interface.
7578  *
7579  *	Returns a negative error number or the allocated index for this mac.
7580  */
7581 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7582 			  const u8 *addr, const u8 *mask, unsigned int idx,
7583 			  u8 lookup_type, u8 port_id, bool sleep_ok)
7584 {
7585 	int ret = 0;
7586 	struct fw_vi_mac_cmd c;
7587 	struct fw_vi_mac_raw *p = &c.u.raw;
7588 	u32 val;
7589 
7590 	memset(&c, 0, sizeof(c));
7591 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7592 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7593 				   FW_VI_MAC_CMD_VIID_V(viid));
7594 	val = FW_CMD_LEN16_V(1) |
7595 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7596 	c.freemacs_to_len16 = cpu_to_be32(val);
7597 
7598 	/* Specify that this is an inner mac address */
7599 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7600 
7601 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7602 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7603 				   DATAPORTNUM_V(port_id));
7604 	/* Lookup mask and port mask */
7605 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7606 				    DATAPORTNUM_V(DATAPORTNUM_M));
7607 
7608 	/* Copy the address and the mask */
7609 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7610 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7611 
7612 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7613 	if (ret == 0) {
7614 		ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7615 		if (ret != idx)
7616 			ret = -ENOMEM;
7617 	}
7618 
7619 	return ret;
7620 }
7621 
7622 /**
7623  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7624  *	@adap: the adapter
7625  *	@mbox: mailbox to use for the FW command
7626  *	@viid: the VI id
7627  *	@free: if true any existing filters for this VI id are first removed
7628  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7629  *	@addr: the MAC address(es)
7630  *	@idx: where to store the index of each allocated filter
7631  *	@hash: pointer to hash address filter bitmap
7632  *	@sleep_ok: call is allowed to sleep
7633  *
7634  *	Allocates an exact-match filter for each of the supplied addresses and
7635  *	sets it to the corresponding address.  If @idx is not %NULL it should
7636  *	have at least @naddr entries, each of which will be set to the index of
7637  *	the filter allocated for the corresponding MAC address.  If a filter
7638  *	could not be allocated for an address its index is set to 0xffff.
7639  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7640  *	are hashed and update the hash filter bitmap pointed at by @hash.
7641  *
7642  *	Returns a negative error number or the number of filters allocated.
7643  */
7644 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7645 		      unsigned int viid, bool free, unsigned int naddr,
7646 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7647 {
7648 	int offset, ret = 0;
7649 	struct fw_vi_mac_cmd c;
7650 	unsigned int nfilters = 0;
7651 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7652 	unsigned int rem = naddr;
7653 
7654 	if (naddr > max_naddr)
7655 		return -EINVAL;
7656 
7657 	for (offset = 0; offset < naddr ; /**/) {
7658 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7659 					 rem : ARRAY_SIZE(c.u.exact));
7660 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7661 						     u.exact[fw_naddr]), 16);
7662 		struct fw_vi_mac_exact *p;
7663 		int i;
7664 
7665 		memset(&c, 0, sizeof(c));
7666 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7667 					   FW_CMD_REQUEST_F |
7668 					   FW_CMD_WRITE_F |
7669 					   FW_CMD_EXEC_V(free) |
7670 					   FW_VI_MAC_CMD_VIID_V(viid));
7671 		c.freemacs_to_len16 =
7672 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
7673 				    FW_CMD_LEN16_V(len16));
7674 
7675 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7676 			p->valid_to_idx =
7677 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7678 					    FW_VI_MAC_CMD_IDX_V(
7679 						    FW_VI_MAC_ADD_MAC));
7680 			memcpy(p->macaddr, addr[offset + i],
7681 			       sizeof(p->macaddr));
7682 		}
7683 
7684 		/* It's okay if we run out of space in our MAC address arena.
7685 		 * Some of the addresses we submit may get stored so we need
7686 		 * to run through the reply to see what the results were ...
7687 		 */
7688 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7689 		if (ret && ret != -FW_ENOMEM)
7690 			break;
7691 
7692 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7693 			u16 index = FW_VI_MAC_CMD_IDX_G(
7694 					be16_to_cpu(p->valid_to_idx));
7695 
7696 			if (idx)
7697 				idx[offset + i] = (index >= max_naddr ?
7698 						   0xffff : index);
7699 			if (index < max_naddr)
7700 				nfilters++;
7701 			else if (hash)
7702 				*hash |= (1ULL <<
7703 					  hash_mac_addr(addr[offset + i]));
7704 		}
7705 
7706 		free = false;
7707 		offset += fw_naddr;
7708 		rem -= fw_naddr;
7709 	}
7710 
7711 	if (ret == 0 || ret == -FW_ENOMEM)
7712 		ret = nfilters;
7713 	return ret;
7714 }
7715 
7716 /**
7717  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
7718  *	@adap: the adapter
7719  *	@mbox: mailbox to use for the FW command
7720  *	@viid: the VI id
7721  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7722  *	@addr: the MAC address(es)
7723  *	@sleep_ok: call is allowed to sleep
7724  *
7725  *	Frees the exact-match filter for each of the supplied addresses
7726  *
7727  *	Returns a negative error number or the number of filters freed.
7728  */
7729 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
7730 		     unsigned int viid, unsigned int naddr,
7731 		     const u8 **addr, bool sleep_ok)
7732 {
7733 	int offset, ret = 0;
7734 	struct fw_vi_mac_cmd c;
7735 	unsigned int nfilters = 0;
7736 	unsigned int max_naddr = is_t4(adap->params.chip) ?
7737 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
7738 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7739 	unsigned int rem = naddr;
7740 
7741 	if (naddr > max_naddr)
7742 		return -EINVAL;
7743 
7744 	for (offset = 0; offset < (int)naddr ; /**/) {
7745 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7746 					 ? rem
7747 					 : ARRAY_SIZE(c.u.exact));
7748 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7749 						     u.exact[fw_naddr]), 16);
7750 		struct fw_vi_mac_exact *p;
7751 		int i;
7752 
7753 		memset(&c, 0, sizeof(c));
7754 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7755 				     FW_CMD_REQUEST_F |
7756 				     FW_CMD_WRITE_F |
7757 				     FW_CMD_EXEC_V(0) |
7758 				     FW_VI_MAC_CMD_VIID_V(viid));
7759 		c.freemacs_to_len16 =
7760 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7761 					    FW_CMD_LEN16_V(len16));
7762 
7763 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
7764 			p->valid_to_idx = cpu_to_be16(
7765 				FW_VI_MAC_CMD_VALID_F |
7766 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
7767 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7768 		}
7769 
7770 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7771 		if (ret)
7772 			break;
7773 
7774 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7775 			u16 index = FW_VI_MAC_CMD_IDX_G(
7776 						be16_to_cpu(p->valid_to_idx));
7777 
7778 			if (index < max_naddr)
7779 				nfilters++;
7780 		}
7781 
7782 		offset += fw_naddr;
7783 		rem -= fw_naddr;
7784 	}
7785 
7786 	if (ret == 0)
7787 		ret = nfilters;
7788 	return ret;
7789 }
7790 
7791 /**
7792  *	t4_change_mac - modifies the exact-match filter for a MAC address
7793  *	@adap: the adapter
7794  *	@mbox: mailbox to use for the FW command
7795  *	@viid: the VI id
7796  *	@idx: index of existing filter for old value of MAC address, or -1
7797  *	@addr: the new MAC address value
7798  *	@persist: whether a new MAC allocation should be persistent
7799  *	@add_smt: if true also add the address to the HW SMT
7800  *
7801  *	Modifies an exact-match filter and sets it to the new MAC address.
7802  *	Note that in general it is not possible to modify the value of a given
7803  *	filter so the generic way to modify an address filter is to free the one
7804  *	being used by the old address value and allocate a new filter for the
7805  *	new address value.  @idx can be -1 if the address is a new addition.
7806  *
7807  *	Returns a negative error number or the index of the filter with the new
7808  *	MAC value.
7809  */
7810 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7811 		  int idx, const u8 *addr, bool persist, bool add_smt)
7812 {
7813 	int ret, mode;
7814 	struct fw_vi_mac_cmd c;
7815 	struct fw_vi_mac_exact *p = c.u.exact;
7816 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
7817 
7818 	if (idx < 0)                             /* new allocation */
7819 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7820 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7821 
7822 	memset(&c, 0, sizeof(c));
7823 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7824 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7825 				   FW_VI_MAC_CMD_VIID_V(viid));
7826 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
7827 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7828 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
7829 				      FW_VI_MAC_CMD_IDX_V(idx));
7830 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7831 
7832 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7833 	if (ret == 0) {
7834 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7835 		if (ret >= max_mac_addr)
7836 			ret = -ENOMEM;
7837 	}
7838 	return ret;
7839 }
7840 
7841 /**
7842  *	t4_set_addr_hash - program the MAC inexact-match hash filter
7843  *	@adap: the adapter
7844  *	@mbox: mailbox to use for the FW command
7845  *	@viid: the VI id
7846  *	@ucast: whether the hash filter should also match unicast addresses
7847  *	@vec: the value to be written to the hash filter
7848  *	@sleep_ok: call is allowed to sleep
7849  *
7850  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
7851  */
7852 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7853 		     bool ucast, u64 vec, bool sleep_ok)
7854 {
7855 	struct fw_vi_mac_cmd c;
7856 
7857 	memset(&c, 0, sizeof(c));
7858 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7859 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7860 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7861 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
7862 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
7863 					  FW_CMD_LEN16_V(1));
7864 	c.u.hash.hashvec = cpu_to_be64(vec);
7865 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7866 }
7867 
7868 /**
7869  *      t4_enable_vi_params - enable/disable a virtual interface
7870  *      @adap: the adapter
7871  *      @mbox: mailbox to use for the FW command
7872  *      @viid: the VI id
7873  *      @rx_en: 1=enable Rx, 0=disable Rx
7874  *      @tx_en: 1=enable Tx, 0=disable Tx
7875  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7876  *
7877  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7878  *      only makes sense when enabling a Virtual Interface ...
7879  */
7880 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7881 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7882 {
7883 	struct fw_vi_enable_cmd c;
7884 
7885 	memset(&c, 0, sizeof(c));
7886 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
7887 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7888 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7889 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
7890 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
7891 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
7892 				     FW_LEN16(c));
7893 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7894 }
7895 
7896 /**
7897  *	t4_enable_vi - enable/disable a virtual interface
7898  *	@adap: the adapter
7899  *	@mbox: mailbox to use for the FW command
7900  *	@viid: the VI id
7901  *	@rx_en: 1=enable Rx, 0=disable Rx
7902  *	@tx_en: 1=enable Tx, 0=disable Tx
7903  *
7904  *	Enables/disables a virtual interface.
7905  */
7906 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7907 		 bool rx_en, bool tx_en)
7908 {
7909 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7910 }
7911 
7912 /**
7913  *	t4_identify_port - identify a VI's port by blinking its LED
7914  *	@adap: the adapter
7915  *	@mbox: mailbox to use for the FW command
7916  *	@viid: the VI id
7917  *	@nblinks: how many times to blink LED at 2.5 Hz
7918  *
7919  *	Identifies a VI's port by blinking its LED.
7920  */
7921 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7922 		     unsigned int nblinks)
7923 {
7924 	struct fw_vi_enable_cmd c;
7925 
7926 	memset(&c, 0, sizeof(c));
7927 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
7928 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7929 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7930 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
7931 	c.blinkdur = cpu_to_be16(nblinks);
7932 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7933 }
7934 
7935 /**
7936  *	t4_iq_stop - stop an ingress queue and its FLs
7937  *	@adap: the adapter
7938  *	@mbox: mailbox to use for the FW command
7939  *	@pf: the PF owning the queues
7940  *	@vf: the VF owning the queues
7941  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7942  *	@iqid: ingress queue id
7943  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7944  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7945  *
7946  *	Stops an ingress queue and its associated FLs, if any.  This causes
7947  *	any current or future data/messages destined for these queues to be
7948  *	tossed.
7949  */
7950 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7951 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7952 	       unsigned int fl0id, unsigned int fl1id)
7953 {
7954 	struct fw_iq_cmd c;
7955 
7956 	memset(&c, 0, sizeof(c));
7957 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7958 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7959 				  FW_IQ_CMD_VFN_V(vf));
7960 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
7961 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7962 	c.iqid = cpu_to_be16(iqid);
7963 	c.fl0id = cpu_to_be16(fl0id);
7964 	c.fl1id = cpu_to_be16(fl1id);
7965 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7966 }
7967 
7968 /**
7969  *	t4_iq_free - free an ingress queue and its FLs
7970  *	@adap: the adapter
7971  *	@mbox: mailbox to use for the FW command
7972  *	@pf: the PF owning the queues
7973  *	@vf: the VF owning the queues
7974  *	@iqtype: the ingress queue type
7975  *	@iqid: ingress queue id
7976  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7977  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7978  *
7979  *	Frees an ingress queue and its associated FLs, if any.
7980  */
7981 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7982 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7983 	       unsigned int fl0id, unsigned int fl1id)
7984 {
7985 	struct fw_iq_cmd c;
7986 
7987 	memset(&c, 0, sizeof(c));
7988 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7989 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7990 				  FW_IQ_CMD_VFN_V(vf));
7991 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
7992 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7993 	c.iqid = cpu_to_be16(iqid);
7994 	c.fl0id = cpu_to_be16(fl0id);
7995 	c.fl1id = cpu_to_be16(fl1id);
7996 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7997 }
7998 
7999 /**
8000  *	t4_eth_eq_free - free an Ethernet egress queue
8001  *	@adap: the adapter
8002  *	@mbox: mailbox to use for the FW command
8003  *	@pf: the PF owning the queue
8004  *	@vf: the VF owning the queue
8005  *	@eqid: egress queue id
8006  *
8007  *	Frees an Ethernet egress queue.
8008  */
8009 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8010 		   unsigned int vf, unsigned int eqid)
8011 {
8012 	struct fw_eq_eth_cmd c;
8013 
8014 	memset(&c, 0, sizeof(c));
8015 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8016 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8017 				  FW_EQ_ETH_CMD_PFN_V(pf) |
8018 				  FW_EQ_ETH_CMD_VFN_V(vf));
8019 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8020 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8021 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8022 }
8023 
8024 /**
8025  *	t4_ctrl_eq_free - free a control egress queue
8026  *	@adap: the adapter
8027  *	@mbox: mailbox to use for the FW command
8028  *	@pf: the PF owning the queue
8029  *	@vf: the VF owning the queue
8030  *	@eqid: egress queue id
8031  *
8032  *	Frees a control egress queue.
8033  */
8034 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8035 		    unsigned int vf, unsigned int eqid)
8036 {
8037 	struct fw_eq_ctrl_cmd c;
8038 
8039 	memset(&c, 0, sizeof(c));
8040 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8041 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8042 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
8043 				  FW_EQ_CTRL_CMD_VFN_V(vf));
8044 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8045 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8046 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8047 }
8048 
8049 /**
8050  *	t4_ofld_eq_free - free an offload egress queue
8051  *	@adap: the adapter
8052  *	@mbox: mailbox to use for the FW command
8053  *	@pf: the PF owning the queue
8054  *	@vf: the VF owning the queue
8055  *	@eqid: egress queue id
8056  *
8057  *	Frees a control egress queue.
8058  */
8059 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8060 		    unsigned int vf, unsigned int eqid)
8061 {
8062 	struct fw_eq_ofld_cmd c;
8063 
8064 	memset(&c, 0, sizeof(c));
8065 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8066 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8067 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
8068 				  FW_EQ_OFLD_CMD_VFN_V(vf));
8069 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8070 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8071 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8072 }
8073 
8074 /**
8075  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8076  *	@adap: the adapter
8077  *	@link_down_rc: Link Down Reason Code
8078  *
8079  *	Returns a string representation of the Link Down Reason Code.
8080  */
8081 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8082 {
8083 	static const char * const reason[] = {
8084 		"Link Down",
8085 		"Remote Fault",
8086 		"Auto-negotiation Failure",
8087 		"Reserved",
8088 		"Insufficient Airflow",
8089 		"Unable To Determine Reason",
8090 		"No RX Signal Detected",
8091 		"Reserved",
8092 	};
8093 
8094 	if (link_down_rc >= ARRAY_SIZE(reason))
8095 		return "Bad Reason Code";
8096 
8097 	return reason[link_down_rc];
8098 }
8099 
8100 /**
8101  * Return the highest speed set in the port capabilities, in Mb/s.
8102  */
8103 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8104 {
8105 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8106 		do { \
8107 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8108 				return __speed; \
8109 		} while (0)
8110 
8111 	TEST_SPEED_RETURN(400G, 400000);
8112 	TEST_SPEED_RETURN(200G, 200000);
8113 	TEST_SPEED_RETURN(100G, 100000);
8114 	TEST_SPEED_RETURN(50G,   50000);
8115 	TEST_SPEED_RETURN(40G,   40000);
8116 	TEST_SPEED_RETURN(25G,   25000);
8117 	TEST_SPEED_RETURN(10G,   10000);
8118 	TEST_SPEED_RETURN(1G,     1000);
8119 	TEST_SPEED_RETURN(100M,    100);
8120 
8121 	#undef TEST_SPEED_RETURN
8122 
8123 	return 0;
8124 }
8125 
8126 /**
8127  *	fwcap_to_fwspeed - return highest speed in Port Capabilities
8128  *	@acaps: advertised Port Capabilities
8129  *
8130  *	Get the highest speed for the port from the advertised Port
8131  *	Capabilities.  It will be either the highest speed from the list of
8132  *	speeds or whatever user has set using ethtool.
8133  */
8134 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8135 {
8136 	#define TEST_SPEED_RETURN(__caps_speed) \
8137 		do { \
8138 			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8139 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8140 		} while (0)
8141 
8142 	TEST_SPEED_RETURN(400G);
8143 	TEST_SPEED_RETURN(200G);
8144 	TEST_SPEED_RETURN(100G);
8145 	TEST_SPEED_RETURN(50G);
8146 	TEST_SPEED_RETURN(40G);
8147 	TEST_SPEED_RETURN(25G);
8148 	TEST_SPEED_RETURN(10G);
8149 	TEST_SPEED_RETURN(1G);
8150 	TEST_SPEED_RETURN(100M);
8151 
8152 	#undef TEST_SPEED_RETURN
8153 
8154 	return 0;
8155 }
8156 
8157 /**
8158  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8159  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8160  *
8161  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8162  *	32-bit Port Capabilities value.
8163  */
8164 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8165 {
8166 	fw_port_cap32_t linkattr = 0;
8167 
8168 	/* Unfortunately the format of the Link Status in the old
8169 	 * 16-bit Port Information message isn't the same as the
8170 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8171 	 */
8172 	if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8173 		linkattr |= FW_PORT_CAP32_FC_RX;
8174 	if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8175 		linkattr |= FW_PORT_CAP32_FC_TX;
8176 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8177 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8178 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8179 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8180 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8181 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8182 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8183 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8184 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8185 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8186 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8187 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8188 
8189 	return linkattr;
8190 }
8191 
8192 /**
8193  *	t4_handle_get_port_info - process a FW reply message
8194  *	@pi: the port info
8195  *	@rpl: start of the FW message
8196  *
8197  *	Processes a GET_PORT_INFO FW reply message.
8198  */
8199 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8200 {
8201 	const struct fw_port_cmd *cmd = (const void *)rpl;
8202 	int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8203 	struct adapter *adapter = pi->adapter;
8204 	struct link_config *lc = &pi->link_cfg;
8205 	int link_ok, linkdnrc;
8206 	enum fw_port_type port_type;
8207 	enum fw_port_module_type mod_type;
8208 	unsigned int speed, fc, fec;
8209 	fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8210 
8211 	/* Extract the various fields from the Port Information message.
8212 	 */
8213 	switch (action) {
8214 	case FW_PORT_ACTION_GET_PORT_INFO: {
8215 		u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8216 
8217 		link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8218 		linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8219 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8220 		mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8221 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8222 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8223 		lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8224 		linkattr = lstatus_to_fwcap(lstatus);
8225 		break;
8226 	}
8227 
8228 	case FW_PORT_ACTION_GET_PORT_INFO32: {
8229 		u32 lstatus32;
8230 
8231 		lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8232 		link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8233 		linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8234 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8235 		mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8236 		pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8237 		acaps = be32_to_cpu(cmd->u.info32.acaps32);
8238 		lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8239 		linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8240 		break;
8241 	}
8242 
8243 	default:
8244 		dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8245 			be32_to_cpu(cmd->action_to_len16));
8246 		return;
8247 	}
8248 
8249 	fec = fwcap_to_cc_fec(acaps);
8250 	fc = fwcap_to_cc_pause(linkattr);
8251 	speed = fwcap_to_speed(linkattr);
8252 
8253 	if (mod_type != pi->mod_type) {
8254 		/* With the newer SFP28 and QSFP28 Transceiver Module Types,
8255 		 * various fundamental Port Capabilities which used to be
8256 		 * immutable can now change radically.  We can now have
8257 		 * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8258 		 * all change based on what Transceiver Module is inserted.
8259 		 * So we need to record the Physical "Port" Capabilities on
8260 		 * every Transceiver Module change.
8261 		 */
8262 		lc->pcaps = pcaps;
8263 
8264 		/* When a new Transceiver Module is inserted, the Firmware
8265 		 * will examine its i2c EPROM to determine its type and
8266 		 * general operating parameters including things like Forward
8267 		 * Error Control, etc.  Various IEEE 802.3 standards dictate
8268 		 * how to interpret these i2c values to determine default
8269 		 * "sutomatic" settings.  We record these for future use when
8270 		 * the user explicitly requests these standards-based values.
8271 		 */
8272 		lc->def_acaps = acaps;
8273 
8274 		/* Some versions of the early T6 Firmware "cheated" when
8275 		 * handling different Transceiver Modules by changing the
8276 		 * underlaying Port Type reported to the Host Drivers.  As
8277 		 * such we need to capture whatever Port Type the Firmware
8278 		 * sends us and record it in case it's different from what we
8279 		 * were told earlier.  Unfortunately, since Firmware is
8280 		 * forever, we'll need to keep this code here forever, but in
8281 		 * later T6 Firmware it should just be an assignment of the
8282 		 * same value already recorded.
8283 		 */
8284 		pi->port_type = port_type;
8285 
8286 		pi->mod_type = mod_type;
8287 		t4_os_portmod_changed(adapter, pi->port_id);
8288 	}
8289 
8290 	if (link_ok != lc->link_ok || speed != lc->speed ||
8291 	    fc != lc->fc || fec != lc->fec) {	/* something changed */
8292 		if (!link_ok && lc->link_ok) {
8293 			lc->link_down_rc = linkdnrc;
8294 			dev_warn(adapter->pdev_dev, "Port %d link down, reason: %s\n",
8295 				 pi->tx_chan, t4_link_down_rc_str(linkdnrc));
8296 		}
8297 		lc->link_ok = link_ok;
8298 		lc->speed = speed;
8299 		lc->fc = fc;
8300 		lc->fec = fec;
8301 
8302 		lc->lpacaps = lpacaps;
8303 		lc->acaps = acaps & ADVERT_MASK;
8304 
8305 		if (lc->acaps & FW_PORT_CAP32_ANEG) {
8306 			lc->autoneg = AUTONEG_ENABLE;
8307 		} else {
8308 			/* When Autoneg is disabled, user needs to set
8309 			 * single speed.
8310 			 * Similar to cxgb4_ethtool.c: set_link_ksettings
8311 			 */
8312 			lc->acaps = 0;
8313 			lc->speed_caps = fwcap_to_fwspeed(acaps);
8314 			lc->autoneg = AUTONEG_DISABLE;
8315 		}
8316 
8317 		t4_os_link_changed(adapter, pi->port_id, link_ok);
8318 	}
8319 }
8320 
8321 /**
8322  *	t4_update_port_info - retrieve and update port information if changed
8323  *	@pi: the port_info
8324  *
8325  *	We issue a Get Port Information Command to the Firmware and, if
8326  *	successful, we check to see if anything is different from what we
8327  *	last recorded and update things accordingly.
8328  */
8329 int t4_update_port_info(struct port_info *pi)
8330 {
8331 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8332 	struct fw_port_cmd port_cmd;
8333 	int ret;
8334 
8335 	memset(&port_cmd, 0, sizeof(port_cmd));
8336 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8337 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8338 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8339 	port_cmd.action_to_len16 = cpu_to_be32(
8340 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8341 				     ? FW_PORT_ACTION_GET_PORT_INFO
8342 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
8343 		FW_LEN16(port_cmd));
8344 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8345 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8346 	if (ret)
8347 		return ret;
8348 
8349 	t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8350 	return 0;
8351 }
8352 
8353 /**
8354  *	t4_get_link_params - retrieve basic link parameters for given port
8355  *	@pi: the port
8356  *	@link_okp: value return pointer for link up/down
8357  *	@speedp: value return pointer for speed (Mb/s)
8358  *	@mtup: value return pointer for mtu
8359  *
8360  *	Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8361  *	and MTU for a specified port.  A negative error is returned on
8362  *	failure; 0 on success.
8363  */
8364 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8365 		       unsigned int *speedp, unsigned int *mtup)
8366 {
8367 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8368 	struct fw_port_cmd port_cmd;
8369 	unsigned int action, link_ok, speed, mtu;
8370 	fw_port_cap32_t linkattr;
8371 	int ret;
8372 
8373 	memset(&port_cmd, 0, sizeof(port_cmd));
8374 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8375 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8376 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8377 	action = (fw_caps == FW_CAPS16
8378 		  ? FW_PORT_ACTION_GET_PORT_INFO
8379 		  : FW_PORT_ACTION_GET_PORT_INFO32);
8380 	port_cmd.action_to_len16 = cpu_to_be32(
8381 		FW_PORT_CMD_ACTION_V(action) |
8382 		FW_LEN16(port_cmd));
8383 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8384 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8385 	if (ret)
8386 		return ret;
8387 
8388 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8389 		u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8390 
8391 		link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8392 		linkattr = lstatus_to_fwcap(lstatus);
8393 		mtu = be16_to_cpu(port_cmd.u.info.mtu);
8394 	} else {
8395 		u32 lstatus32 =
8396 			   be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8397 
8398 		link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8399 		linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8400 		mtu = FW_PORT_CMD_MTU32_G(
8401 			be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8402 	}
8403 	speed = fwcap_to_speed(linkattr);
8404 
8405 	*link_okp = link_ok;
8406 	*speedp = fwcap_to_speed(linkattr);
8407 	*mtup = mtu;
8408 
8409 	return 0;
8410 }
8411 
8412 /**
8413  *      t4_handle_fw_rpl - process a FW reply message
8414  *      @adap: the adapter
8415  *      @rpl: start of the FW message
8416  *
8417  *      Processes a FW message, such as link state change messages.
8418  */
8419 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8420 {
8421 	u8 opcode = *(const u8 *)rpl;
8422 
8423 	/* This might be a port command ... this simplifies the following
8424 	 * conditionals ...  We can get away with pre-dereferencing
8425 	 * action_to_len16 because it's in the first 16 bytes and all messages
8426 	 * will be at least that long.
8427 	 */
8428 	const struct fw_port_cmd *p = (const void *)rpl;
8429 	unsigned int action =
8430 		FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8431 
8432 	if (opcode == FW_PORT_CMD &&
8433 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8434 	     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8435 		int i;
8436 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8437 		struct port_info *pi = NULL;
8438 
8439 		for_each_port(adap, i) {
8440 			pi = adap2pinfo(adap, i);
8441 			if (pi->tx_chan == chan)
8442 				break;
8443 		}
8444 
8445 		t4_handle_get_port_info(pi, rpl);
8446 	} else {
8447 		dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8448 			 opcode);
8449 		return -EINVAL;
8450 	}
8451 	return 0;
8452 }
8453 
8454 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8455 {
8456 	u16 val;
8457 
8458 	if (pci_is_pcie(adapter->pdev)) {
8459 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8460 		p->speed = val & PCI_EXP_LNKSTA_CLS;
8461 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8462 	}
8463 }
8464 
8465 /**
8466  *	init_link_config - initialize a link's SW state
8467  *	@lc: pointer to structure holding the link state
8468  *	@pcaps: link Port Capabilities
8469  *	@acaps: link current Advertised Port Capabilities
8470  *
8471  *	Initializes the SW state maintained for each link, including the link's
8472  *	capabilities and default speed/flow-control/autonegotiation settings.
8473  */
8474 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8475 			     fw_port_cap32_t acaps)
8476 {
8477 	lc->pcaps = pcaps;
8478 	lc->def_acaps = acaps;
8479 	lc->lpacaps = 0;
8480 	lc->speed_caps = 0;
8481 	lc->speed = 0;
8482 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8483 
8484 	/* For Forward Error Control, we default to whatever the Firmware
8485 	 * tells us the Link is currently advertising.
8486 	 */
8487 	lc->requested_fec = FEC_AUTO;
8488 	lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8489 
8490 	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8491 		lc->acaps = lc->pcaps & ADVERT_MASK;
8492 		lc->autoneg = AUTONEG_ENABLE;
8493 		lc->requested_fc |= PAUSE_AUTONEG;
8494 	} else {
8495 		lc->acaps = 0;
8496 		lc->autoneg = AUTONEG_DISABLE;
8497 	}
8498 }
8499 
8500 #define CIM_PF_NOACCESS 0xeeeeeeee
8501 
8502 int t4_wait_dev_ready(void __iomem *regs)
8503 {
8504 	u32 whoami;
8505 
8506 	whoami = readl(regs + PL_WHOAMI_A);
8507 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8508 		return 0;
8509 
8510 	msleep(500);
8511 	whoami = readl(regs + PL_WHOAMI_A);
8512 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8513 }
8514 
8515 struct flash_desc {
8516 	u32 vendor_and_model_id;
8517 	u32 size_mb;
8518 };
8519 
8520 static int t4_get_flash_params(struct adapter *adap)
8521 {
8522 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
8523 	 * to the preexisting code.  All flash parts have 64KB sectors.
8524 	 */
8525 	static struct flash_desc supported_flash[] = {
8526 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8527 	};
8528 
8529 	unsigned int part, manufacturer;
8530 	unsigned int density, size;
8531 	u32 flashid = 0;
8532 	int ret;
8533 
8534 	/* Issue a Read ID Command to the Flash part.  We decode supported
8535 	 * Flash parts and their sizes from this.  There's a newer Query
8536 	 * Command which can retrieve detailed geometry information but many
8537 	 * Flash parts don't support it.
8538 	 */
8539 
8540 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8541 	if (!ret)
8542 		ret = sf1_read(adap, 3, 0, 1, &flashid);
8543 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8544 	if (ret)
8545 		return ret;
8546 
8547 	/* Check to see if it's one of our non-standard supported Flash parts.
8548 	 */
8549 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8550 		if (supported_flash[part].vendor_and_model_id == flashid) {
8551 			adap->params.sf_size = supported_flash[part].size_mb;
8552 			adap->params.sf_nsec =
8553 				adap->params.sf_size / SF_SEC_SIZE;
8554 			goto found;
8555 		}
8556 
8557 	/* Decode Flash part size.  The code below looks repetative with
8558 	 * common encodings, but that's not guaranteed in the JEDEC
8559 	 * specification for the Read JADEC ID command.  The only thing that
8560 	 * we're guaranteed by the JADEC specification is where the
8561 	 * Manufacturer ID is in the returned result.  After that each
8562 	 * Manufacturer ~could~ encode things completely differently.
8563 	 * Note, all Flash parts must have 64KB sectors.
8564 	 */
8565 	manufacturer = flashid & 0xff;
8566 	switch (manufacturer) {
8567 	case 0x20: { /* Micron/Numonix */
8568 		/* This Density -> Size decoding table is taken from Micron
8569 		 * Data Sheets.
8570 		 */
8571 		density = (flashid >> 16) & 0xff;
8572 		switch (density) {
8573 		case 0x14: /* 1MB */
8574 			size = 1 << 20;
8575 			break;
8576 		case 0x15: /* 2MB */
8577 			size = 1 << 21;
8578 			break;
8579 		case 0x16: /* 4MB */
8580 			size = 1 << 22;
8581 			break;
8582 		case 0x17: /* 8MB */
8583 			size = 1 << 23;
8584 			break;
8585 		case 0x18: /* 16MB */
8586 			size = 1 << 24;
8587 			break;
8588 		case 0x19: /* 32MB */
8589 			size = 1 << 25;
8590 			break;
8591 		case 0x20: /* 64MB */
8592 			size = 1 << 26;
8593 			break;
8594 		case 0x21: /* 128MB */
8595 			size = 1 << 27;
8596 			break;
8597 		case 0x22: /* 256MB */
8598 			size = 1 << 28;
8599 			break;
8600 
8601 		default:
8602 			dev_err(adap->pdev_dev, "Micron Flash Part has bad size, ID = %#x, Density code = %#x\n",
8603 				flashid, density);
8604 			return -EINVAL;
8605 		}
8606 		break;
8607 	}
8608 	case 0xc2: { /* Macronix */
8609 		/* This Density -> Size decoding table is taken from Macronix
8610 		 * Data Sheets.
8611 		 */
8612 		density = (flashid >> 16) & 0xff;
8613 		switch (density) {
8614 		case 0x17: /* 8MB */
8615 			size = 1 << 23;
8616 			break;
8617 		case 0x18: /* 16MB */
8618 			size = 1 << 24;
8619 			break;
8620 		default:
8621 			dev_err(adap->pdev_dev, "Macronix Flash Part has bad size, ID = %#x, Density code = %#x\n",
8622 				flashid, density);
8623 			return -EINVAL;
8624 		}
8625 		break;
8626 	}
8627 	case 0xef: { /* Winbond */
8628 		/* This Density -> Size decoding table is taken from Winbond
8629 		 * Data Sheets.
8630 		 */
8631 		density = (flashid >> 16) & 0xff;
8632 		switch (density) {
8633 		case 0x17: /* 8MB */
8634 			size = 1 << 23;
8635 			break;
8636 		case 0x18: /* 16MB */
8637 			size = 1 << 24;
8638 			break;
8639 		default:
8640 			dev_err(adap->pdev_dev, "Winbond Flash Part has bad size, ID = %#x, Density code = %#x\n",
8641 				flashid, density);
8642 			return -EINVAL;
8643 		}
8644 		break;
8645 	}
8646 	default:
8647 		dev_err(adap->pdev_dev, "Unsupported Flash Part, ID = %#x\n",
8648 			flashid);
8649 		return -EINVAL;
8650 	}
8651 
8652 	/* Store decoded Flash size and fall through into vetting code. */
8653 	adap->params.sf_size = size;
8654 	adap->params.sf_nsec = size / SF_SEC_SIZE;
8655 
8656 found:
8657 	if (adap->params.sf_size < FLASH_MIN_SIZE)
8658 		dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
8659 			 flashid, adap->params.sf_size, FLASH_MIN_SIZE);
8660 	return 0;
8661 }
8662 
8663 /**
8664  *	t4_prep_adapter - prepare SW and HW for operation
8665  *	@adapter: the adapter
8666  *	@reset: if true perform a HW reset
8667  *
8668  *	Initialize adapter SW state for the various HW modules, set initial
8669  *	values for some adapter tunables, take PHYs out of reset, and
8670  *	initialize the MDIO interface.
8671  */
8672 int t4_prep_adapter(struct adapter *adapter)
8673 {
8674 	int ret, ver;
8675 	uint16_t device_id;
8676 	u32 pl_rev;
8677 
8678 	get_pci_mode(adapter, &adapter->params.pci);
8679 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
8680 
8681 	ret = t4_get_flash_params(adapter);
8682 	if (ret < 0) {
8683 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
8684 		return ret;
8685 	}
8686 
8687 	/* Retrieve adapter's device ID
8688 	 */
8689 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
8690 	ver = device_id >> 12;
8691 	adapter->params.chip = 0;
8692 	switch (ver) {
8693 	case CHELSIO_T4:
8694 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
8695 		adapter->params.arch.sge_fl_db = DBPRIO_F;
8696 		adapter->params.arch.mps_tcam_size =
8697 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
8698 		adapter->params.arch.mps_rplc_size = 128;
8699 		adapter->params.arch.nchan = NCHAN;
8700 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
8701 		adapter->params.arch.vfcount = 128;
8702 		/* Congestion map is for 4 channels so that
8703 		 * MPS can have 4 priority per port.
8704 		 */
8705 		adapter->params.arch.cng_ch_bits_log = 2;
8706 		break;
8707 	case CHELSIO_T5:
8708 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
8709 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
8710 		adapter->params.arch.mps_tcam_size =
8711 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8712 		adapter->params.arch.mps_rplc_size = 128;
8713 		adapter->params.arch.nchan = NCHAN;
8714 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
8715 		adapter->params.arch.vfcount = 128;
8716 		adapter->params.arch.cng_ch_bits_log = 2;
8717 		break;
8718 	case CHELSIO_T6:
8719 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
8720 		adapter->params.arch.sge_fl_db = 0;
8721 		adapter->params.arch.mps_tcam_size =
8722 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8723 		adapter->params.arch.mps_rplc_size = 256;
8724 		adapter->params.arch.nchan = 2;
8725 		adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
8726 		adapter->params.arch.vfcount = 256;
8727 		/* Congestion map will be for 2 channels so that
8728 		 * MPS can have 8 priority per port.
8729 		 */
8730 		adapter->params.arch.cng_ch_bits_log = 3;
8731 		break;
8732 	default:
8733 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
8734 			device_id);
8735 		return -EINVAL;
8736 	}
8737 
8738 	adapter->params.cim_la_size = CIMLA_SIZE;
8739 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8740 
8741 	/*
8742 	 * Default port for debugging in case we can't reach FW.
8743 	 */
8744 	adapter->params.nports = 1;
8745 	adapter->params.portvec = 1;
8746 	adapter->params.vpd.cclk = 50000;
8747 
8748 	/* Set PCIe completion timeout to 4 seconds. */
8749 	pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
8750 					   PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
8751 	return 0;
8752 }
8753 
8754 /**
8755  *	t4_shutdown_adapter - shut down adapter, host & wire
8756  *	@adapter: the adapter
8757  *
8758  *	Perform an emergency shutdown of the adapter and stop it from
8759  *	continuing any further communication on the ports or DMA to the
8760  *	host.  This is typically used when the adapter and/or firmware
8761  *	have crashed and we want to prevent any further accidental
8762  *	communication with the rest of the world.  This will also force
8763  *	the port Link Status to go down -- if register writes work --
8764  *	which should help our peers figure out that we're down.
8765  */
8766 int t4_shutdown_adapter(struct adapter *adapter)
8767 {
8768 	int port;
8769 
8770 	t4_intr_disable(adapter);
8771 	t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
8772 	for_each_port(adapter, port) {
8773 		u32 a_port_cfg = is_t4(adapter->params.chip) ?
8774 				       PORT_REG(port, XGMAC_PORT_CFG_A) :
8775 				       T5_PORT_REG(port, MAC_PORT_CFG_A);
8776 
8777 		t4_write_reg(adapter, a_port_cfg,
8778 			     t4_read_reg(adapter, a_port_cfg)
8779 			     & ~SIGNAL_DET_V(1));
8780 	}
8781 	t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
8782 
8783 	return 0;
8784 }
8785 
8786 /**
8787  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
8788  *	@adapter: the adapter
8789  *	@qid: the Queue ID
8790  *	@qtype: the Ingress or Egress type for @qid
8791  *	@user: true if this request is for a user mode queue
8792  *	@pbar2_qoffset: BAR2 Queue Offset
8793  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
8794  *
8795  *	Returns the BAR2 SGE Queue Registers information associated with the
8796  *	indicated Absolute Queue ID.  These are passed back in return value
8797  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
8798  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
8799  *
8800  *	This may return an error which indicates that BAR2 SGE Queue
8801  *	registers aren't available.  If an error is not returned, then the
8802  *	following values are returned:
8803  *
8804  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
8805  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
8806  *
8807  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
8808  *	require the "Inferred Queue ID" ability may be used.  E.g. the
8809  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
8810  *	then these "Inferred Queue ID" register may not be used.
8811  */
8812 int t4_bar2_sge_qregs(struct adapter *adapter,
8813 		      unsigned int qid,
8814 		      enum t4_bar2_qtype qtype,
8815 		      int user,
8816 		      u64 *pbar2_qoffset,
8817 		      unsigned int *pbar2_qid)
8818 {
8819 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
8820 	u64 bar2_page_offset, bar2_qoffset;
8821 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
8822 
8823 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
8824 	if (!user && is_t4(adapter->params.chip))
8825 		return -EINVAL;
8826 
8827 	/* Get our SGE Page Size parameters.
8828 	 */
8829 	page_shift = adapter->params.sge.hps + 10;
8830 	page_size = 1 << page_shift;
8831 
8832 	/* Get the right Queues per Page parameters for our Queue.
8833 	 */
8834 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
8835 		     ? adapter->params.sge.eq_qpp
8836 		     : adapter->params.sge.iq_qpp);
8837 	qpp_mask = (1 << qpp_shift) - 1;
8838 
8839 	/*  Calculate the basics of the BAR2 SGE Queue register area:
8840 	 *  o The BAR2 page the Queue registers will be in.
8841 	 *  o The BAR2 Queue ID.
8842 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
8843 	 */
8844 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
8845 	bar2_qid = qid & qpp_mask;
8846 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
8847 
8848 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
8849 	 * hardware will infer the Absolute Queue ID simply from the writes to
8850 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
8851 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
8852 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
8853 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
8854 	 * from the BAR2 Page and BAR2 Queue ID.
8855 	 *
8856 	 * One important censequence of this is that some BAR2 SGE registers
8857 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
8858 	 * there.  But other registers synthesize the SGE Queue ID purely
8859 	 * from the writes to the registers -- the Write Combined Doorbell
8860 	 * Buffer is a good example.  These BAR2 SGE Registers are only
8861 	 * available for those BAR2 SGE Register areas where the SGE Absolute
8862 	 * Queue ID can be inferred from simple writes.
8863 	 */
8864 	bar2_qoffset = bar2_page_offset;
8865 	bar2_qinferred = (bar2_qid_offset < page_size);
8866 	if (bar2_qinferred) {
8867 		bar2_qoffset += bar2_qid_offset;
8868 		bar2_qid = 0;
8869 	}
8870 
8871 	*pbar2_qoffset = bar2_qoffset;
8872 	*pbar2_qid = bar2_qid;
8873 	return 0;
8874 }
8875 
8876 /**
8877  *	t4_init_devlog_params - initialize adapter->params.devlog
8878  *	@adap: the adapter
8879  *
8880  *	Initialize various fields of the adapter's Firmware Device Log
8881  *	Parameters structure.
8882  */
8883 int t4_init_devlog_params(struct adapter *adap)
8884 {
8885 	struct devlog_params *dparams = &adap->params.devlog;
8886 	u32 pf_dparams;
8887 	unsigned int devlog_meminfo;
8888 	struct fw_devlog_cmd devlog_cmd;
8889 	int ret;
8890 
8891 	/* If we're dealing with newer firmware, the Device Log Paramerters
8892 	 * are stored in a designated register which allows us to access the
8893 	 * Device Log even if we can't talk to the firmware.
8894 	 */
8895 	pf_dparams =
8896 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
8897 	if (pf_dparams) {
8898 		unsigned int nentries, nentries128;
8899 
8900 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
8901 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
8902 
8903 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
8904 		nentries = (nentries128 + 1) * 128;
8905 		dparams->size = nentries * sizeof(struct fw_devlog_e);
8906 
8907 		return 0;
8908 	}
8909 
8910 	/* Otherwise, ask the firmware for it's Device Log Parameters.
8911 	 */
8912 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
8913 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
8914 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
8915 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
8916 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
8917 			 &devlog_cmd);
8918 	if (ret)
8919 		return ret;
8920 
8921 	devlog_meminfo =
8922 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
8923 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
8924 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
8925 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
8926 
8927 	return 0;
8928 }
8929 
8930 /**
8931  *	t4_init_sge_params - initialize adap->params.sge
8932  *	@adapter: the adapter
8933  *
8934  *	Initialize various fields of the adapter's SGE Parameters structure.
8935  */
8936 int t4_init_sge_params(struct adapter *adapter)
8937 {
8938 	struct sge_params *sge_params = &adapter->params.sge;
8939 	u32 hps, qpp;
8940 	unsigned int s_hps, s_qpp;
8941 
8942 	/* Extract the SGE Page Size for our PF.
8943 	 */
8944 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
8945 	s_hps = (HOSTPAGESIZEPF0_S +
8946 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
8947 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
8948 
8949 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
8950 	 */
8951 	s_qpp = (QUEUESPERPAGEPF0_S +
8952 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
8953 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
8954 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
8955 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
8956 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
8957 
8958 	return 0;
8959 }
8960 
8961 /**
8962  *      t4_init_tp_params - initialize adap->params.tp
8963  *      @adap: the adapter
8964  *      @sleep_ok: if true we may sleep while awaiting command completion
8965  *
8966  *      Initialize various fields of the adapter's TP Parameters structure.
8967  */
8968 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
8969 {
8970 	int chan;
8971 	u32 v;
8972 
8973 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
8974 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
8975 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
8976 
8977 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
8978 	for (chan = 0; chan < NCHAN; chan++)
8979 		adap->params.tp.tx_modq[chan] = chan;
8980 
8981 	/* Cache the adapter's Compressed Filter Mode and global Incress
8982 	 * Configuration.
8983 	 */
8984 	t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
8985 		       TP_VLAN_PRI_MAP_A, sleep_ok);
8986 	t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
8987 		       TP_INGRESS_CONFIG_A, sleep_ok);
8988 
8989 	/* For T6, cache the adapter's compressed error vector
8990 	 * and passing outer header info for encapsulated packets.
8991 	 */
8992 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
8993 		v = t4_read_reg(adap, TP_OUT_CONFIG_A);
8994 		adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
8995 	}
8996 
8997 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
8998 	 * shift positions of several elements of the Compressed Filter Tuple
8999 	 * for this adapter which we need frequently ...
9000 	 */
9001 	adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9002 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9003 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9004 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9005 	adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9006 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9007 							       PROTOCOL_F);
9008 	adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9009 								ETHERTYPE_F);
9010 	adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9011 							       MACMATCH_F);
9012 	adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9013 								MPSHITTYPE_F);
9014 	adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9015 							   FRAGMENTATION_F);
9016 
9017 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9018 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
9019 	 */
9020 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9021 		adap->params.tp.vnic_shift = -1;
9022 
9023 	v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9024 	adap->params.tp.hash_filter_mask = v;
9025 	v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9026 	adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9027 	return 0;
9028 }
9029 
9030 /**
9031  *      t4_filter_field_shift - calculate filter field shift
9032  *      @adap: the adapter
9033  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9034  *
9035  *      Return the shift position of a filter field within the Compressed
9036  *      Filter Tuple.  The filter field is specified via its selection bit
9037  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9038  */
9039 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9040 {
9041 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9042 	unsigned int sel;
9043 	int field_shift;
9044 
9045 	if ((filter_mode & filter_sel) == 0)
9046 		return -1;
9047 
9048 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9049 		switch (filter_mode & sel) {
9050 		case FCOE_F:
9051 			field_shift += FT_FCOE_W;
9052 			break;
9053 		case PORT_F:
9054 			field_shift += FT_PORT_W;
9055 			break;
9056 		case VNIC_ID_F:
9057 			field_shift += FT_VNIC_ID_W;
9058 			break;
9059 		case VLAN_F:
9060 			field_shift += FT_VLAN_W;
9061 			break;
9062 		case TOS_F:
9063 			field_shift += FT_TOS_W;
9064 			break;
9065 		case PROTOCOL_F:
9066 			field_shift += FT_PROTOCOL_W;
9067 			break;
9068 		case ETHERTYPE_F:
9069 			field_shift += FT_ETHERTYPE_W;
9070 			break;
9071 		case MACMATCH_F:
9072 			field_shift += FT_MACMATCH_W;
9073 			break;
9074 		case MPSHITTYPE_F:
9075 			field_shift += FT_MPSHITTYPE_W;
9076 			break;
9077 		case FRAGMENTATION_F:
9078 			field_shift += FT_FRAGMENTATION_W;
9079 			break;
9080 		}
9081 	}
9082 	return field_shift;
9083 }
9084 
9085 int t4_init_rss_mode(struct adapter *adap, int mbox)
9086 {
9087 	int i, ret;
9088 	struct fw_rss_vi_config_cmd rvc;
9089 
9090 	memset(&rvc, 0, sizeof(rvc));
9091 
9092 	for_each_port(adap, i) {
9093 		struct port_info *p = adap2pinfo(adap, i);
9094 
9095 		rvc.op_to_viid =
9096 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9097 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
9098 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9099 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9100 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9101 		if (ret)
9102 			return ret;
9103 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9104 	}
9105 	return 0;
9106 }
9107 
9108 /**
9109  *	t4_init_portinfo - allocate a virtual interface and initialize port_info
9110  *	@pi: the port_info
9111  *	@mbox: mailbox to use for the FW command
9112  *	@port: physical port associated with the VI
9113  *	@pf: the PF owning the VI
9114  *	@vf: the VF owning the VI
9115  *	@mac: the MAC address of the VI
9116  *
9117  *	Allocates a virtual interface for the given physical port.  If @mac is
9118  *	not %NULL it contains the MAC address of the VI as assigned by FW.
9119  *	@mac should be large enough to hold an Ethernet address.
9120  *	Returns < 0 on error.
9121  */
9122 int t4_init_portinfo(struct port_info *pi, int mbox,
9123 		     int port, int pf, int vf, u8 mac[])
9124 {
9125 	struct adapter *adapter = pi->adapter;
9126 	unsigned int fw_caps = adapter->params.fw_caps_support;
9127 	struct fw_port_cmd cmd;
9128 	unsigned int rss_size;
9129 	enum fw_port_type port_type;
9130 	int mdio_addr;
9131 	fw_port_cap32_t pcaps, acaps;
9132 	int ret;
9133 
9134 	/* If we haven't yet determined whether we're talking to Firmware
9135 	 * which knows the new 32-bit Port Capabilities, it's time to find
9136 	 * out now.  This will also tell new Firmware to send us Port Status
9137 	 * Updates using the new 32-bit Port Capabilities version of the
9138 	 * Port Information message.
9139 	 */
9140 	if (fw_caps == FW_CAPS_UNKNOWN) {
9141 		u32 param, val;
9142 
9143 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9144 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9145 		val = 1;
9146 		ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9147 		fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9148 		adapter->params.fw_caps_support = fw_caps;
9149 	}
9150 
9151 	memset(&cmd, 0, sizeof(cmd));
9152 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9153 				       FW_CMD_REQUEST_F | FW_CMD_READ_F |
9154 				       FW_PORT_CMD_PORTID_V(port));
9155 	cmd.action_to_len16 = cpu_to_be32(
9156 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9157 				     ? FW_PORT_ACTION_GET_PORT_INFO
9158 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
9159 		FW_LEN16(cmd));
9160 	ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9161 	if (ret)
9162 		return ret;
9163 
9164 	/* Extract the various fields from the Port Information message.
9165 	 */
9166 	if (fw_caps == FW_CAPS16) {
9167 		u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9168 
9169 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9170 		mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9171 			     ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9172 			     : -1);
9173 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9174 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9175 	} else {
9176 		u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9177 
9178 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9179 		mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9180 			     ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9181 			     : -1);
9182 		pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9183 		acaps = be32_to_cpu(cmd.u.info32.acaps32);
9184 	}
9185 
9186 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size);
9187 	if (ret < 0)
9188 		return ret;
9189 
9190 	pi->viid = ret;
9191 	pi->tx_chan = port;
9192 	pi->lport = port;
9193 	pi->rss_size = rss_size;
9194 
9195 	pi->port_type = port_type;
9196 	pi->mdio_addr = mdio_addr;
9197 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
9198 
9199 	init_link_config(&pi->link_cfg, pcaps, acaps);
9200 	return 0;
9201 }
9202 
9203 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9204 {
9205 	u8 addr[6];
9206 	int ret, i, j = 0;
9207 
9208 	for_each_port(adap, i) {
9209 		struct port_info *pi = adap2pinfo(adap, i);
9210 
9211 		while ((adap->params.portvec & (1 << j)) == 0)
9212 			j++;
9213 
9214 		ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9215 		if (ret)
9216 			return ret;
9217 
9218 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9219 		j++;
9220 	}
9221 	return 0;
9222 }
9223 
9224 /**
9225  *	t4_read_cimq_cfg - read CIM queue configuration
9226  *	@adap: the adapter
9227  *	@base: holds the queue base addresses in bytes
9228  *	@size: holds the queue sizes in bytes
9229  *	@thres: holds the queue full thresholds in bytes
9230  *
9231  *	Returns the current configuration of the CIM queues, starting with
9232  *	the IBQs, then the OBQs.
9233  */
9234 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9235 {
9236 	unsigned int i, v;
9237 	int cim_num_obq = is_t4(adap->params.chip) ?
9238 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9239 
9240 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9241 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9242 			     QUENUMSELECT_V(i));
9243 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9244 		/* value is in 256-byte units */
9245 		*base++ = CIMQBASE_G(v) * 256;
9246 		*size++ = CIMQSIZE_G(v) * 256;
9247 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9248 	}
9249 	for (i = 0; i < cim_num_obq; i++) {
9250 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9251 			     QUENUMSELECT_V(i));
9252 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9253 		/* value is in 256-byte units */
9254 		*base++ = CIMQBASE_G(v) * 256;
9255 		*size++ = CIMQSIZE_G(v) * 256;
9256 	}
9257 }
9258 
9259 /**
9260  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9261  *	@adap: the adapter
9262  *	@qid: the queue index
9263  *	@data: where to store the queue contents
9264  *	@n: capacity of @data in 32-bit words
9265  *
9266  *	Reads the contents of the selected CIM queue starting at address 0 up
9267  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9268  *	error and the number of 32-bit words actually read on success.
9269  */
9270 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9271 {
9272 	int i, err, attempts;
9273 	unsigned int addr;
9274 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9275 
9276 	if (qid > 5 || (n & 3))
9277 		return -EINVAL;
9278 
9279 	addr = qid * nwords;
9280 	if (n > nwords)
9281 		n = nwords;
9282 
9283 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9284 	 * Wait for 1 Sec with a delay of 1 usec.
9285 	 */
9286 	attempts = 1000000;
9287 
9288 	for (i = 0; i < n; i++, addr++) {
9289 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9290 			     IBQDBGEN_F);
9291 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9292 				      attempts, 1);
9293 		if (err)
9294 			return err;
9295 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9296 	}
9297 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9298 	return i;
9299 }
9300 
9301 /**
9302  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9303  *	@adap: the adapter
9304  *	@qid: the queue index
9305  *	@data: where to store the queue contents
9306  *	@n: capacity of @data in 32-bit words
9307  *
9308  *	Reads the contents of the selected CIM queue starting at address 0 up
9309  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9310  *	error and the number of 32-bit words actually read on success.
9311  */
9312 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9313 {
9314 	int i, err;
9315 	unsigned int addr, v, nwords;
9316 	int cim_num_obq = is_t4(adap->params.chip) ?
9317 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9318 
9319 	if ((qid > (cim_num_obq - 1)) || (n & 3))
9320 		return -EINVAL;
9321 
9322 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9323 		     QUENUMSELECT_V(qid));
9324 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9325 
9326 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9327 	nwords = CIMQSIZE_G(v) * 64;  /* same */
9328 	if (n > nwords)
9329 		n = nwords;
9330 
9331 	for (i = 0; i < n; i++, addr++) {
9332 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9333 			     OBQDBGEN_F);
9334 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9335 				      2, 1);
9336 		if (err)
9337 			return err;
9338 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9339 	}
9340 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9341 	return i;
9342 }
9343 
9344 /**
9345  *	t4_cim_read - read a block from CIM internal address space
9346  *	@adap: the adapter
9347  *	@addr: the start address within the CIM address space
9348  *	@n: number of words to read
9349  *	@valp: where to store the result
9350  *
9351  *	Reads a block of 4-byte words from the CIM intenal address space.
9352  */
9353 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9354 		unsigned int *valp)
9355 {
9356 	int ret = 0;
9357 
9358 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9359 		return -EBUSY;
9360 
9361 	for ( ; !ret && n--; addr += 4) {
9362 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9363 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9364 				      0, 5, 2);
9365 		if (!ret)
9366 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9367 	}
9368 	return ret;
9369 }
9370 
9371 /**
9372  *	t4_cim_write - write a block into CIM internal address space
9373  *	@adap: the adapter
9374  *	@addr: the start address within the CIM address space
9375  *	@n: number of words to write
9376  *	@valp: set of values to write
9377  *
9378  *	Writes a block of 4-byte words into the CIM intenal address space.
9379  */
9380 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9381 		 const unsigned int *valp)
9382 {
9383 	int ret = 0;
9384 
9385 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9386 		return -EBUSY;
9387 
9388 	for ( ; !ret && n--; addr += 4) {
9389 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9390 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9391 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9392 				      0, 5, 2);
9393 	}
9394 	return ret;
9395 }
9396 
9397 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9398 			 unsigned int val)
9399 {
9400 	return t4_cim_write(adap, addr, 1, &val);
9401 }
9402 
9403 /**
9404  *	t4_cim_read_la - read CIM LA capture buffer
9405  *	@adap: the adapter
9406  *	@la_buf: where to store the LA data
9407  *	@wrptr: the HW write pointer within the capture buffer
9408  *
9409  *	Reads the contents of the CIM LA buffer with the most recent entry at
9410  *	the end	of the returned data and with the entry at @wrptr first.
9411  *	We try to leave the LA in the running state we find it in.
9412  */
9413 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9414 {
9415 	int i, ret;
9416 	unsigned int cfg, val, idx;
9417 
9418 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9419 	if (ret)
9420 		return ret;
9421 
9422 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
9423 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9424 		if (ret)
9425 			return ret;
9426 	}
9427 
9428 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9429 	if (ret)
9430 		goto restart;
9431 
9432 	idx = UPDBGLAWRPTR_G(val);
9433 	if (wrptr)
9434 		*wrptr = idx;
9435 
9436 	for (i = 0; i < adap->params.cim_la_size; i++) {
9437 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9438 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9439 		if (ret)
9440 			break;
9441 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9442 		if (ret)
9443 			break;
9444 		if (val & UPDBGLARDEN_F) {
9445 			ret = -ETIMEDOUT;
9446 			break;
9447 		}
9448 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9449 		if (ret)
9450 			break;
9451 
9452 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9453 		 * identify the 32-bit portion of the full 312-bit data
9454 		 */
9455 		if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9456 			idx = (idx & 0xff0) + 0x10;
9457 		else
9458 			idx++;
9459 		/* address can't exceed 0xfff */
9460 		idx &= UPDBGLARDPTR_M;
9461 	}
9462 restart:
9463 	if (cfg & UPDBGLAEN_F) {
9464 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9465 				      cfg & ~UPDBGLARDEN_F);
9466 		if (!ret)
9467 			ret = r;
9468 	}
9469 	return ret;
9470 }
9471 
9472 /**
9473  *	t4_tp_read_la - read TP LA capture buffer
9474  *	@adap: the adapter
9475  *	@la_buf: where to store the LA data
9476  *	@wrptr: the HW write pointer within the capture buffer
9477  *
9478  *	Reads the contents of the TP LA buffer with the most recent entry at
9479  *	the end	of the returned data and with the entry at @wrptr first.
9480  *	We leave the LA in the running state we find it in.
9481  */
9482 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9483 {
9484 	bool last_incomplete;
9485 	unsigned int i, cfg, val, idx;
9486 
9487 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
9488 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
9489 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9490 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
9491 
9492 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
9493 	idx = DBGLAWPTR_G(val);
9494 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
9495 	if (last_incomplete)
9496 		idx = (idx + 1) & DBGLARPTR_M;
9497 	if (wrptr)
9498 		*wrptr = idx;
9499 
9500 	val &= 0xffff;
9501 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
9502 	val |= adap->params.tp.la_mask;
9503 
9504 	for (i = 0; i < TPLA_SIZE; i++) {
9505 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
9506 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
9507 		idx = (idx + 1) & DBGLARPTR_M;
9508 	}
9509 
9510 	/* Wipe out last entry if it isn't valid */
9511 	if (last_incomplete)
9512 		la_buf[TPLA_SIZE - 1] = ~0ULL;
9513 
9514 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
9515 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9516 			     cfg | adap->params.tp.la_mask);
9517 }
9518 
9519 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
9520  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
9521  * state for more than the Warning Threshold then we'll issue a warning about
9522  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
9523  * appears to be hung every Warning Repeat second till the situation clears.
9524  * If the situation clears, we'll note that as well.
9525  */
9526 #define SGE_IDMA_WARN_THRESH 1
9527 #define SGE_IDMA_WARN_REPEAT 300
9528 
9529 /**
9530  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
9531  *	@adapter: the adapter
9532  *	@idma: the adapter IDMA Monitor state
9533  *
9534  *	Initialize the state of an SGE Ingress DMA Monitor.
9535  */
9536 void t4_idma_monitor_init(struct adapter *adapter,
9537 			  struct sge_idma_monitor_state *idma)
9538 {
9539 	/* Initialize the state variables for detecting an SGE Ingress DMA
9540 	 * hang.  The SGE has internal counters which count up on each clock
9541 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
9542 	 * same state they were on the previous clock tick.  The clock used is
9543 	 * the Core Clock so we have a limit on the maximum "time" they can
9544 	 * record; typically a very small number of seconds.  For instance,
9545 	 * with a 600MHz Core Clock, we can only count up to a bit more than
9546 	 * 7s.  So we'll synthesize a larger counter in order to not run the
9547 	 * risk of having the "timers" overflow and give us the flexibility to
9548 	 * maintain a Hung SGE State Machine of our own which operates across
9549 	 * a longer time frame.
9550 	 */
9551 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
9552 	idma->idma_stalled[0] = 0;
9553 	idma->idma_stalled[1] = 0;
9554 }
9555 
9556 /**
9557  *	t4_idma_monitor - monitor SGE Ingress DMA state
9558  *	@adapter: the adapter
9559  *	@idma: the adapter IDMA Monitor state
9560  *	@hz: number of ticks/second
9561  *	@ticks: number of ticks since the last IDMA Monitor call
9562  */
9563 void t4_idma_monitor(struct adapter *adapter,
9564 		     struct sge_idma_monitor_state *idma,
9565 		     int hz, int ticks)
9566 {
9567 	int i, idma_same_state_cnt[2];
9568 
9569 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
9570 	  * are counters inside the SGE which count up on each clock when the
9571 	  * SGE finds its Ingress DMA State Engines in the same states they
9572 	  * were in the previous clock.  The counters will peg out at
9573 	  * 0xffffffff without wrapping around so once they pass the 1s
9574 	  * threshold they'll stay above that till the IDMA state changes.
9575 	  */
9576 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
9577 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
9578 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9579 
9580 	for (i = 0; i < 2; i++) {
9581 		u32 debug0, debug11;
9582 
9583 		/* If the Ingress DMA Same State Counter ("timer") is less
9584 		 * than 1s, then we can reset our synthesized Stall Timer and
9585 		 * continue.  If we have previously emitted warnings about a
9586 		 * potential stalled Ingress Queue, issue a note indicating
9587 		 * that the Ingress Queue has resumed forward progress.
9588 		 */
9589 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
9590 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
9591 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
9592 					 "resumed after %d seconds\n",
9593 					 i, idma->idma_qid[i],
9594 					 idma->idma_stalled[i] / hz);
9595 			idma->idma_stalled[i] = 0;
9596 			continue;
9597 		}
9598 
9599 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
9600 		 * domain.  The first time we get here it'll be because we
9601 		 * passed the 1s Threshold; each additional time it'll be
9602 		 * because the RX Timer Callback is being fired on its regular
9603 		 * schedule.
9604 		 *
9605 		 * If the stall is below our Potential Hung Ingress Queue
9606 		 * Warning Threshold, continue.
9607 		 */
9608 		if (idma->idma_stalled[i] == 0) {
9609 			idma->idma_stalled[i] = hz;
9610 			idma->idma_warn[i] = 0;
9611 		} else {
9612 			idma->idma_stalled[i] += ticks;
9613 			idma->idma_warn[i] -= ticks;
9614 		}
9615 
9616 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
9617 			continue;
9618 
9619 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
9620 		 */
9621 		if (idma->idma_warn[i] > 0)
9622 			continue;
9623 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
9624 
9625 		/* Read and save the SGE IDMA State and Queue ID information.
9626 		 * We do this every time in case it changes across time ...
9627 		 * can't be too careful ...
9628 		 */
9629 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
9630 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9631 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
9632 
9633 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
9634 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9635 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
9636 
9637 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
9638 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
9639 			 i, idma->idma_qid[i], idma->idma_state[i],
9640 			 idma->idma_stalled[i] / hz,
9641 			 debug0, debug11);
9642 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
9643 	}
9644 }
9645 
9646 /**
9647  *	t4_load_cfg - download config file
9648  *	@adap: the adapter
9649  *	@cfg_data: the cfg text file to write
9650  *	@size: text file size
9651  *
9652  *	Write the supplied config text file to the card's serial flash.
9653  */
9654 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9655 {
9656 	int ret, i, n, cfg_addr;
9657 	unsigned int addr;
9658 	unsigned int flash_cfg_start_sec;
9659 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9660 
9661 	cfg_addr = t4_flash_cfg_addr(adap);
9662 	if (cfg_addr < 0)
9663 		return cfg_addr;
9664 
9665 	addr = cfg_addr;
9666 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9667 
9668 	if (size > FLASH_CFG_MAX_SIZE) {
9669 		dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
9670 			FLASH_CFG_MAX_SIZE);
9671 		return -EFBIG;
9672 	}
9673 
9674 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
9675 			 sf_sec_size);
9676 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9677 				     flash_cfg_start_sec + i - 1);
9678 	/* If size == 0 then we're simply erasing the FLASH sectors associated
9679 	 * with the on-adapter Firmware Configuration File.
9680 	 */
9681 	if (ret || size == 0)
9682 		goto out;
9683 
9684 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9685 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
9686 		if ((size - i) <  SF_PAGE_SIZE)
9687 			n = size - i;
9688 		else
9689 			n = SF_PAGE_SIZE;
9690 		ret = t4_write_flash(adap, addr, n, cfg_data);
9691 		if (ret)
9692 			goto out;
9693 
9694 		addr += SF_PAGE_SIZE;
9695 		cfg_data += SF_PAGE_SIZE;
9696 	}
9697 
9698 out:
9699 	if (ret)
9700 		dev_err(adap->pdev_dev, "config file %s failed %d\n",
9701 			(size == 0 ? "clear" : "download"), ret);
9702 	return ret;
9703 }
9704 
9705 /**
9706  *	t4_set_vf_mac - Set MAC address for the specified VF
9707  *	@adapter: The adapter
9708  *	@vf: one of the VFs instantiated by the specified PF
9709  *	@naddr: the number of MAC addresses
9710  *	@addr: the MAC address(es) to be set to the specified VF
9711  */
9712 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
9713 		      unsigned int naddr, u8 *addr)
9714 {
9715 	struct fw_acl_mac_cmd cmd;
9716 
9717 	memset(&cmd, 0, sizeof(cmd));
9718 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
9719 				    FW_CMD_REQUEST_F |
9720 				    FW_CMD_WRITE_F |
9721 				    FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
9722 				    FW_ACL_MAC_CMD_VFN_V(vf));
9723 
9724 	/* Note: Do not enable the ACL */
9725 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
9726 	cmd.nmac = naddr;
9727 
9728 	switch (adapter->pf) {
9729 	case 3:
9730 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
9731 		break;
9732 	case 2:
9733 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
9734 		break;
9735 	case 1:
9736 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
9737 		break;
9738 	case 0:
9739 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
9740 		break;
9741 	}
9742 
9743 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
9744 }
9745 
9746 /**
9747  * t4_read_pace_tbl - read the pace table
9748  * @adap: the adapter
9749  * @pace_vals: holds the returned values
9750  *
9751  * Returns the values of TP's pace table in microseconds.
9752  */
9753 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
9754 {
9755 	unsigned int i, v;
9756 
9757 	for (i = 0; i < NTX_SCHED; i++) {
9758 		t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
9759 		v = t4_read_reg(adap, TP_PACE_TABLE_A);
9760 		pace_vals[i] = dack_ticks_to_usec(adap, v);
9761 	}
9762 }
9763 
9764 /**
9765  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
9766  * @adap: the adapter
9767  * @sched: the scheduler index
9768  * @kbps: the byte rate in Kbps
9769  * @ipg: the interpacket delay in tenths of nanoseconds
9770  * @sleep_ok: if true we may sleep while awaiting command completion
9771  *
9772  * Return the current configuration of a HW Tx scheduler.
9773  */
9774 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
9775 		     unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
9776 {
9777 	unsigned int v, addr, bpt, cpt;
9778 
9779 	if (kbps) {
9780 		addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
9781 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9782 		if (sched & 1)
9783 			v >>= 16;
9784 		bpt = (v >> 8) & 0xff;
9785 		cpt = v & 0xff;
9786 		if (!cpt) {
9787 			*kbps = 0;	/* scheduler disabled */
9788 		} else {
9789 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
9790 			*kbps = (v * bpt) / 125;
9791 		}
9792 	}
9793 	if (ipg) {
9794 		addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
9795 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9796 		if (sched & 1)
9797 			v >>= 16;
9798 		v &= 0xffff;
9799 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
9800 	}
9801 }
9802 
9803 /* t4_sge_ctxt_rd - read an SGE context through FW
9804  * @adap: the adapter
9805  * @mbox: mailbox to use for the FW command
9806  * @cid: the context id
9807  * @ctype: the context type
9808  * @data: where to store the context data
9809  *
9810  * Issues a FW command through the given mailbox to read an SGE context.
9811  */
9812 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
9813 		   enum ctxt_type ctype, u32 *data)
9814 {
9815 	struct fw_ldst_cmd c;
9816 	int ret;
9817 
9818 	if (ctype == CTXT_FLM)
9819 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
9820 	else
9821 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
9822 
9823 	memset(&c, 0, sizeof(c));
9824 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
9825 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
9826 					FW_LDST_CMD_ADDRSPACE_V(ret));
9827 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9828 	c.u.idctxt.physid = cpu_to_be32(cid);
9829 
9830 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9831 	if (ret == 0) {
9832 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
9833 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
9834 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
9835 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
9836 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
9837 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
9838 	}
9839 	return ret;
9840 }
9841 
9842 /**
9843  * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
9844  * @adap: the adapter
9845  * @cid: the context id
9846  * @ctype: the context type
9847  * @data: where to store the context data
9848  *
9849  * Reads an SGE context directly, bypassing FW.  This is only for
9850  * debugging when FW is unavailable.
9851  */
9852 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
9853 		      enum ctxt_type ctype, u32 *data)
9854 {
9855 	int i, ret;
9856 
9857 	t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
9858 	ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
9859 	if (!ret)
9860 		for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
9861 			*data++ = t4_read_reg(adap, i);
9862 	return ret;
9863 }
9864 
9865 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
9866 		    int rateunit, int ratemode, int channel, int class,
9867 		    int minrate, int maxrate, int weight, int pktsize)
9868 {
9869 	struct fw_sched_cmd cmd;
9870 
9871 	memset(&cmd, 0, sizeof(cmd));
9872 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
9873 				      FW_CMD_REQUEST_F |
9874 				      FW_CMD_WRITE_F);
9875 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9876 
9877 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9878 	cmd.u.params.type = type;
9879 	cmd.u.params.level = level;
9880 	cmd.u.params.mode = mode;
9881 	cmd.u.params.ch = channel;
9882 	cmd.u.params.cl = class;
9883 	cmd.u.params.unit = rateunit;
9884 	cmd.u.params.rate = ratemode;
9885 	cmd.u.params.min = cpu_to_be32(minrate);
9886 	cmd.u.params.max = cpu_to_be32(maxrate);
9887 	cmd.u.params.weight = cpu_to_be16(weight);
9888 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9889 
9890 	return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
9891 			       NULL, 1);
9892 }
9893 
9894 /**
9895  *	t4_i2c_rd - read I2C data from adapter
9896  *	@adap: the adapter
9897  *	@port: Port number if per-port device; <0 if not
9898  *	@devid: per-port device ID or absolute device ID
9899  *	@offset: byte offset into device I2C space
9900  *	@len: byte length of I2C space data
9901  *	@buf: buffer in which to return I2C data
9902  *
9903  *	Reads the I2C data from the indicated device and location.
9904  */
9905 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
9906 	      unsigned int devid, unsigned int offset,
9907 	      unsigned int len, u8 *buf)
9908 {
9909 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
9910 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
9911 	int ret = 0;
9912 
9913 	if (len > I2C_PAGE_SIZE)
9914 		return -EINVAL;
9915 
9916 	/* Dont allow reads that spans multiple pages */
9917 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
9918 		return -EINVAL;
9919 
9920 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
9921 	ldst_cmd.op_to_addrspace =
9922 		cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
9923 			    FW_CMD_REQUEST_F |
9924 			    FW_CMD_READ_F |
9925 			    FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
9926 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
9927 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
9928 	ldst_cmd.u.i2c.did = devid;
9929 
9930 	while (len > 0) {
9931 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
9932 
9933 		ldst_cmd.u.i2c.boffset = offset;
9934 		ldst_cmd.u.i2c.blen = i2c_len;
9935 
9936 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
9937 				 &ldst_rpl);
9938 		if (ret)
9939 			break;
9940 
9941 		memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
9942 		offset += i2c_len;
9943 		buf += i2c_len;
9944 		len -= i2c_len;
9945 	}
9946 
9947 	return ret;
9948 }
9949 
9950 /**
9951  *      t4_set_vlan_acl - Set a VLAN id for the specified VF
9952  *      @adapter: the adapter
9953  *      @mbox: mailbox to use for the FW command
9954  *      @vf: one of the VFs instantiated by the specified PF
9955  *      @vlan: The vlanid to be set
9956  */
9957 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
9958 		    u16 vlan)
9959 {
9960 	struct fw_acl_vlan_cmd vlan_cmd;
9961 	unsigned int enable;
9962 
9963 	enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
9964 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
9965 	vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
9966 					 FW_CMD_REQUEST_F |
9967 					 FW_CMD_WRITE_F |
9968 					 FW_CMD_EXEC_F |
9969 					 FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
9970 					 FW_ACL_VLAN_CMD_VFN_V(vf));
9971 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
9972 	/* Drop all packets that donot match vlan id */
9973 	vlan_cmd.dropnovlan_fm = FW_ACL_VLAN_CMD_FM_F;
9974 	if (enable != 0) {
9975 		vlan_cmd.nvlan = 1;
9976 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
9977 	}
9978 
9979 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
9980 }
9981