1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/delay.h> 36 #include "cxgb4.h" 37 #include "t4_regs.h" 38 #include "t4_values.h" 39 #include "t4fw_api.h" 40 #include "t4fw_version.h" 41 42 /** 43 * t4_wait_op_done_val - wait until an operation is completed 44 * @adapter: the adapter performing the operation 45 * @reg: the register to check for completion 46 * @mask: a single-bit field within @reg that indicates completion 47 * @polarity: the value of the field when the operation is completed 48 * @attempts: number of check iterations 49 * @delay: delay in usecs between iterations 50 * @valp: where to store the value of the register at completion time 51 * 52 * Wait until an operation is completed by checking a bit in a register 53 * up to @attempts times. If @valp is not NULL the value of the register 54 * at the time it indicated completion is stored there. Returns 0 if the 55 * operation completes and -EAGAIN otherwise. 56 */ 57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 58 int polarity, int attempts, int delay, u32 *valp) 59 { 60 while (1) { 61 u32 val = t4_read_reg(adapter, reg); 62 63 if (!!(val & mask) == polarity) { 64 if (valp) 65 *valp = val; 66 return 0; 67 } 68 if (--attempts == 0) 69 return -EAGAIN; 70 if (delay) 71 udelay(delay); 72 } 73 } 74 75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 76 int polarity, int attempts, int delay) 77 { 78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 79 delay, NULL); 80 } 81 82 /** 83 * t4_set_reg_field - set a register field to a value 84 * @adapter: the adapter to program 85 * @addr: the register address 86 * @mask: specifies the portion of the register to modify 87 * @val: the new value for the register field 88 * 89 * Sets a register field specified by the supplied mask to the 90 * given value. 91 */ 92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 93 u32 val) 94 { 95 u32 v = t4_read_reg(adapter, addr) & ~mask; 96 97 t4_write_reg(adapter, addr, v | val); 98 (void) t4_read_reg(adapter, addr); /* flush */ 99 } 100 101 /** 102 * t4_read_indirect - read indirectly addressed registers 103 * @adap: the adapter 104 * @addr_reg: register holding the indirect address 105 * @data_reg: register holding the value of the indirect register 106 * @vals: where the read register values are stored 107 * @nregs: how many indirect registers to read 108 * @start_idx: index of first indirect register to read 109 * 110 * Reads registers that are accessed indirectly through an address/data 111 * register pair. 112 */ 113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 114 unsigned int data_reg, u32 *vals, 115 unsigned int nregs, unsigned int start_idx) 116 { 117 while (nregs--) { 118 t4_write_reg(adap, addr_reg, start_idx); 119 *vals++ = t4_read_reg(adap, data_reg); 120 start_idx++; 121 } 122 } 123 124 /** 125 * t4_write_indirect - write indirectly addressed registers 126 * @adap: the adapter 127 * @addr_reg: register holding the indirect addresses 128 * @data_reg: register holding the value for the indirect registers 129 * @vals: values to write 130 * @nregs: how many indirect registers to write 131 * @start_idx: address of first indirect register to write 132 * 133 * Writes a sequential block of registers that are accessed indirectly 134 * through an address/data register pair. 135 */ 136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 137 unsigned int data_reg, const u32 *vals, 138 unsigned int nregs, unsigned int start_idx) 139 { 140 while (nregs--) { 141 t4_write_reg(adap, addr_reg, start_idx++); 142 t4_write_reg(adap, data_reg, *vals++); 143 } 144 } 145 146 /* 147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor 148 * mechanism. This guarantees that we get the real value even if we're 149 * operating within a Virtual Machine and the Hypervisor is trapping our 150 * Configuration Space accesses. 151 */ 152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val) 153 { 154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg); 155 156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 157 req |= ENABLE_F; 158 else 159 req |= T6_ENABLE_F; 160 161 if (is_t4(adap->params.chip)) 162 req |= LOCALCFG_F; 163 164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req); 165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A); 166 167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a 168 * Configuration Space read. (None of the other fields matter when 169 * ENABLE is 0 so a simple register write is easier than a 170 * read-modify-write via t4_set_reg_field().) 171 */ 172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0); 173 } 174 175 /* 176 * t4_report_fw_error - report firmware error 177 * @adap: the adapter 178 * 179 * The adapter firmware can indicate error conditions to the host. 180 * If the firmware has indicated an error, print out the reason for 181 * the firmware error. 182 */ 183 static void t4_report_fw_error(struct adapter *adap) 184 { 185 static const char *const reason[] = { 186 "Crash", /* PCIE_FW_EVAL_CRASH */ 187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */ 188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */ 189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */ 190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ 191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ 192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ 193 "Reserved", /* reserved */ 194 }; 195 u32 pcie_fw; 196 197 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 198 if (pcie_fw & PCIE_FW_ERR_F) { 199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n", 200 reason[PCIE_FW_EVAL_G(pcie_fw)]); 201 adap->flags &= ~FW_OK; 202 } 203 } 204 205 /* 206 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 207 */ 208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 209 u32 mbox_addr) 210 { 211 for ( ; nflit; nflit--, mbox_addr += 8) 212 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 213 } 214 215 /* 216 * Handle a FW assertion reported in a mailbox. 217 */ 218 static void fw_asrt(struct adapter *adap, u32 mbox_addr) 219 { 220 struct fw_debug_cmd asrt; 221 222 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); 223 dev_alert(adap->pdev_dev, 224 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 225 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line), 226 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y)); 227 } 228 229 /** 230 * t4_record_mbox - record a Firmware Mailbox Command/Reply in the log 231 * @adapter: the adapter 232 * @cmd: the Firmware Mailbox Command or Reply 233 * @size: command length in bytes 234 * @access: the time (ms) needed to access the Firmware Mailbox 235 * @execute: the time (ms) the command spent being executed 236 */ 237 static void t4_record_mbox(struct adapter *adapter, 238 const __be64 *cmd, unsigned int size, 239 int access, int execute) 240 { 241 struct mbox_cmd_log *log = adapter->mbox_log; 242 struct mbox_cmd *entry; 243 int i; 244 245 entry = mbox_cmd_log_entry(log, log->cursor++); 246 if (log->cursor == log->size) 247 log->cursor = 0; 248 249 for (i = 0; i < size / 8; i++) 250 entry->cmd[i] = be64_to_cpu(cmd[i]); 251 while (i < MBOX_LEN / 8) 252 entry->cmd[i++] = 0; 253 entry->timestamp = jiffies; 254 entry->seqno = log->seqno++; 255 entry->access = access; 256 entry->execute = execute; 257 } 258 259 /** 260 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox 261 * @adap: the adapter 262 * @mbox: index of the mailbox to use 263 * @cmd: the command to write 264 * @size: command length in bytes 265 * @rpl: where to optionally store the reply 266 * @sleep_ok: if true we may sleep while awaiting command completion 267 * @timeout: time to wait for command to finish before timing out 268 * 269 * Sends the given command to FW through the selected mailbox and waits 270 * for the FW to execute the command. If @rpl is not %NULL it is used to 271 * store the FW's reply to the command. The command and its optional 272 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms 273 * to respond. @sleep_ok determines whether we may sleep while awaiting 274 * the response. If sleeping is allowed we use progressive backoff 275 * otherwise we spin. 276 * 277 * The return value is 0 on success or a negative errno on failure. A 278 * failure can happen either because we are not able to execute the 279 * command or FW executes it but signals an error. In the latter case 280 * the return value is the error code indicated by FW (negated). 281 */ 282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, 283 int size, void *rpl, bool sleep_ok, int timeout) 284 { 285 static const int delay[] = { 286 1, 1, 3, 5, 10, 10, 20, 50, 100, 200 287 }; 288 289 struct mbox_list entry; 290 u16 access = 0; 291 u16 execute = 0; 292 u32 v; 293 u64 res; 294 int i, ms, delay_idx, ret; 295 const __be64 *p = cmd; 296 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); 297 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A); 298 __be64 cmd_rpl[MBOX_LEN / 8]; 299 u32 pcie_fw; 300 301 if ((size & 15) || size > MBOX_LEN) 302 return -EINVAL; 303 304 /* 305 * If the device is off-line, as in EEH, commands will time out. 306 * Fail them early so we don't waste time waiting. 307 */ 308 if (adap->pdev->error_state != pci_channel_io_normal) 309 return -EIO; 310 311 /* If we have a negative timeout, that implies that we can't sleep. */ 312 if (timeout < 0) { 313 sleep_ok = false; 314 timeout = -timeout; 315 } 316 317 /* Queue ourselves onto the mailbox access list. When our entry is at 318 * the front of the list, we have rights to access the mailbox. So we 319 * wait [for a while] till we're at the front [or bail out with an 320 * EBUSY] ... 321 */ 322 spin_lock_bh(&adap->mbox_lock); 323 list_add_tail(&entry.list, &adap->mlist.list); 324 spin_unlock_bh(&adap->mbox_lock); 325 326 delay_idx = 0; 327 ms = delay[0]; 328 329 for (i = 0; ; i += ms) { 330 /* If we've waited too long, return a busy indication. This 331 * really ought to be based on our initial position in the 332 * mailbox access list but this is a start. We very rearely 333 * contend on access to the mailbox ... 334 */ 335 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 336 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) { 337 spin_lock_bh(&adap->mbox_lock); 338 list_del(&entry.list); 339 spin_unlock_bh(&adap->mbox_lock); 340 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY; 341 t4_record_mbox(adap, cmd, size, access, ret); 342 return ret; 343 } 344 345 /* If we're at the head, break out and start the mailbox 346 * protocol. 347 */ 348 if (list_first_entry(&adap->mlist.list, struct mbox_list, 349 list) == &entry) 350 break; 351 352 /* Delay for a bit before checking again ... */ 353 if (sleep_ok) { 354 ms = delay[delay_idx]; /* last element may repeat */ 355 if (delay_idx < ARRAY_SIZE(delay) - 1) 356 delay_idx++; 357 msleep(ms); 358 } else { 359 mdelay(ms); 360 } 361 } 362 363 /* Loop trying to get ownership of the mailbox. Return an error 364 * if we can't gain ownership. 365 */ 366 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 367 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 368 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 369 if (v != MBOX_OWNER_DRV) { 370 spin_lock_bh(&adap->mbox_lock); 371 list_del(&entry.list); 372 spin_unlock_bh(&adap->mbox_lock); 373 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT; 374 t4_record_mbox(adap, cmd, size, access, ret); 375 return ret; 376 } 377 378 /* Copy in the new mailbox command and send it on its way ... */ 379 t4_record_mbox(adap, cmd, size, access, 0); 380 for (i = 0; i < size; i += 8) 381 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++)); 382 383 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW)); 384 t4_read_reg(adap, ctl_reg); /* flush write */ 385 386 delay_idx = 0; 387 ms = delay[0]; 388 389 for (i = 0; 390 !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) && 391 i < timeout; 392 i += ms) { 393 if (sleep_ok) { 394 ms = delay[delay_idx]; /* last element may repeat */ 395 if (delay_idx < ARRAY_SIZE(delay) - 1) 396 delay_idx++; 397 msleep(ms); 398 } else 399 mdelay(ms); 400 401 v = t4_read_reg(adap, ctl_reg); 402 if (MBOWNER_G(v) == MBOX_OWNER_DRV) { 403 if (!(v & MBMSGVALID_F)) { 404 t4_write_reg(adap, ctl_reg, 0); 405 continue; 406 } 407 408 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg); 409 res = be64_to_cpu(cmd_rpl[0]); 410 411 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) { 412 fw_asrt(adap, data_reg); 413 res = FW_CMD_RETVAL_V(EIO); 414 } else if (rpl) { 415 memcpy(rpl, cmd_rpl, size); 416 } 417 418 t4_write_reg(adap, ctl_reg, 0); 419 420 execute = i + ms; 421 t4_record_mbox(adap, cmd_rpl, 422 MBOX_LEN, access, execute); 423 spin_lock_bh(&adap->mbox_lock); 424 list_del(&entry.list); 425 spin_unlock_bh(&adap->mbox_lock); 426 return -FW_CMD_RETVAL_G((int)res); 427 } 428 } 429 430 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT; 431 t4_record_mbox(adap, cmd, size, access, ret); 432 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n", 433 *(const u8 *)cmd, mbox); 434 t4_report_fw_error(adap); 435 spin_lock_bh(&adap->mbox_lock); 436 list_del(&entry.list); 437 spin_unlock_bh(&adap->mbox_lock); 438 t4_fatal_err(adap); 439 return ret; 440 } 441 442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 443 void *rpl, bool sleep_ok) 444 { 445 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok, 446 FW_CMD_MAX_TIMEOUT); 447 } 448 449 static int t4_edc_err_read(struct adapter *adap, int idx) 450 { 451 u32 edc_ecc_err_addr_reg; 452 u32 rdata_reg; 453 454 if (is_t4(adap->params.chip)) { 455 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); 456 return 0; 457 } 458 if (idx != 0 && idx != 1) { 459 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); 460 return 0; 461 } 462 463 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx); 464 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx); 465 466 CH_WARN(adap, 467 "edc%d err addr 0x%x: 0x%x.\n", 468 idx, edc_ecc_err_addr_reg, 469 t4_read_reg(adap, edc_ecc_err_addr_reg)); 470 CH_WARN(adap, 471 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", 472 rdata_reg, 473 (unsigned long long)t4_read_reg64(adap, rdata_reg), 474 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8), 475 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16), 476 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24), 477 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32), 478 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40), 479 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48), 480 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56), 481 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64)); 482 483 return 0; 484 } 485 486 /** 487 * t4_memory_rw_init - Get memory window relative offset, base, and size. 488 * @adap: the adapter 489 * @win: PCI-E Memory Window to use 490 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 491 * @mem_off: memory relative offset with respect to @mtype. 492 * @mem_base: configured memory base address. 493 * @mem_aperture: configured memory window aperture. 494 * 495 * Get the configured memory window's relative offset, base, and size. 496 */ 497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off, 498 u32 *mem_base, u32 *mem_aperture) 499 { 500 u32 edc_size, mc_size, mem_reg; 501 502 /* Offset into the region of memory which is being accessed 503 * MEM_EDC0 = 0 504 * MEM_EDC1 = 1 505 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller 506 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5) 507 * MEM_HMA = 4 508 */ 509 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A)); 510 if (mtype == MEM_HMA) { 511 *mem_off = 2 * (edc_size * 1024 * 1024); 512 } else if (mtype != MEM_MC1) { 513 *mem_off = (mtype * (edc_size * 1024 * 1024)); 514 } else { 515 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap, 516 MA_EXT_MEMORY0_BAR_A)); 517 *mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; 518 } 519 520 /* Each PCI-E Memory Window is programmed with a window size -- or 521 * "aperture" -- which controls the granularity of its mapping onto 522 * adapter memory. We need to grab that aperture in order to know 523 * how to use the specified window. The window is also programmed 524 * with the base address of the Memory Window in BAR0's address 525 * space. For T4 this is an absolute PCI-E Bus Address. For T5 526 * the address is relative to BAR0. 527 */ 528 mem_reg = t4_read_reg(adap, 529 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 530 win)); 531 /* a dead adapter will return 0xffffffff for PIO reads */ 532 if (mem_reg == 0xffffffff) 533 return -ENXIO; 534 535 *mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X); 536 *mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X; 537 if (is_t4(adap->params.chip)) 538 *mem_base -= adap->t4_bar0; 539 540 return 0; 541 } 542 543 /** 544 * t4_memory_update_win - Move memory window to specified address. 545 * @adap: the adapter 546 * @win: PCI-E Memory Window to use 547 * @addr: location to move. 548 * 549 * Move memory window to specified address. 550 */ 551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr) 552 { 553 t4_write_reg(adap, 554 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win), 555 addr); 556 /* Read it back to ensure that changes propagate before we 557 * attempt to use the new value. 558 */ 559 t4_read_reg(adap, 560 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); 561 } 562 563 /** 564 * t4_memory_rw_residual - Read/Write residual data. 565 * @adap: the adapter 566 * @off: relative offset within residual to start read/write. 567 * @addr: address within indicated memory type. 568 * @buf: host memory buffer 569 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 570 * 571 * Read/Write residual data less than 32-bits. 572 */ 573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf, 574 int dir) 575 { 576 union { 577 u32 word; 578 char byte[4]; 579 } last; 580 unsigned char *bp; 581 int i; 582 583 if (dir == T4_MEMORY_READ) { 584 last.word = le32_to_cpu((__force __le32) 585 t4_read_reg(adap, addr)); 586 for (bp = (unsigned char *)buf, i = off; i < 4; i++) 587 bp[i] = last.byte[i]; 588 } else { 589 last.word = *buf; 590 for (i = off; i < 4; i++) 591 last.byte[i] = 0; 592 t4_write_reg(adap, addr, 593 (__force u32)cpu_to_le32(last.word)); 594 } 595 } 596 597 /** 598 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window 599 * @adap: the adapter 600 * @win: PCI-E Memory Window to use 601 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 602 * @addr: address within indicated memory type 603 * @len: amount of memory to transfer 604 * @hbuf: host memory buffer 605 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 606 * 607 * Reads/writes an [almost] arbitrary memory region in the firmware: the 608 * firmware memory address and host buffer must be aligned on 32-bit 609 * boudaries; the length may be arbitrary. The memory is transferred as 610 * a raw byte sequence from/to the firmware's memory. If this memory 611 * contains data structures which contain multi-byte integers, it's the 612 * caller's responsibility to perform appropriate byte order conversions. 613 */ 614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr, 615 u32 len, void *hbuf, int dir) 616 { 617 u32 pos, offset, resid, memoffset; 618 u32 win_pf, mem_aperture, mem_base; 619 u32 *buf; 620 int ret; 621 622 /* Argument sanity checks ... 623 */ 624 if (addr & 0x3 || (uintptr_t)hbuf & 0x3) 625 return -EINVAL; 626 buf = (u32 *)hbuf; 627 628 /* It's convenient to be able to handle lengths which aren't a 629 * multiple of 32-bits because we often end up transferring files to 630 * the firmware. So we'll handle that by normalizing the length here 631 * and then handling any residual transfer at the end. 632 */ 633 resid = len & 0x3; 634 len -= resid; 635 636 ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base, 637 &mem_aperture); 638 if (ret) 639 return ret; 640 641 /* Determine the PCIE_MEM_ACCESS_OFFSET */ 642 addr = addr + memoffset; 643 644 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf); 645 646 /* Calculate our initial PCI-E Memory Window Position and Offset into 647 * that Window. 648 */ 649 pos = addr & ~(mem_aperture - 1); 650 offset = addr - pos; 651 652 /* Set up initial PCI-E Memory Window to cover the start of our 653 * transfer. 654 */ 655 t4_memory_update_win(adap, win, pos | win_pf); 656 657 /* Transfer data to/from the adapter as long as there's an integral 658 * number of 32-bit transfers to complete. 659 * 660 * A note on Endianness issues: 661 * 662 * The "register" reads and writes below from/to the PCI-E Memory 663 * Window invoke the standard adapter Big-Endian to PCI-E Link 664 * Little-Endian "swizzel." As a result, if we have the following 665 * data in adapter memory: 666 * 667 * Memory: ... | b0 | b1 | b2 | b3 | ... 668 * Address: i+0 i+1 i+2 i+3 669 * 670 * Then a read of the adapter memory via the PCI-E Memory Window 671 * will yield: 672 * 673 * x = readl(i) 674 * 31 0 675 * [ b3 | b2 | b1 | b0 ] 676 * 677 * If this value is stored into local memory on a Little-Endian system 678 * it will show up correctly in local memory as: 679 * 680 * ( ..., b0, b1, b2, b3, ... ) 681 * 682 * But on a Big-Endian system, the store will show up in memory 683 * incorrectly swizzled as: 684 * 685 * ( ..., b3, b2, b1, b0, ... ) 686 * 687 * So we need to account for this in the reads and writes to the 688 * PCI-E Memory Window below by undoing the register read/write 689 * swizzels. 690 */ 691 while (len > 0) { 692 if (dir == T4_MEMORY_READ) 693 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap, 694 mem_base + offset)); 695 else 696 t4_write_reg(adap, mem_base + offset, 697 (__force u32)cpu_to_le32(*buf++)); 698 offset += sizeof(__be32); 699 len -= sizeof(__be32); 700 701 /* If we've reached the end of our current window aperture, 702 * move the PCI-E Memory Window on to the next. Note that 703 * doing this here after "len" may be 0 allows us to set up 704 * the PCI-E Memory Window for a possible final residual 705 * transfer below ... 706 */ 707 if (offset == mem_aperture) { 708 pos += mem_aperture; 709 offset = 0; 710 t4_memory_update_win(adap, win, pos | win_pf); 711 } 712 } 713 714 /* If the original transfer had a length which wasn't a multiple of 715 * 32-bits, now's where we need to finish off the transfer of the 716 * residual amount. The PCI-E Memory Window has already been moved 717 * above (if necessary) to cover this final transfer. 718 */ 719 if (resid) 720 t4_memory_rw_residual(adap, resid, mem_base + offset, 721 (u8 *)buf, dir); 722 723 return 0; 724 } 725 726 /* Return the specified PCI-E Configuration Space register from our Physical 727 * Function. We try first via a Firmware LDST Command since we prefer to let 728 * the firmware own all of these registers, but if that fails we go for it 729 * directly ourselves. 730 */ 731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg) 732 { 733 u32 val, ldst_addrspace; 734 735 /* If fw_attach != 0, construct and send the Firmware LDST Command to 736 * retrieve the specified PCI-E Configuration Space register. 737 */ 738 struct fw_ldst_cmd ldst_cmd; 739 int ret; 740 741 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 742 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE); 743 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 744 FW_CMD_REQUEST_F | 745 FW_CMD_READ_F | 746 ldst_addrspace); 747 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 748 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1); 749 ldst_cmd.u.pcie.ctrl_to_fn = 750 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf)); 751 ldst_cmd.u.pcie.r = reg; 752 753 /* If the LDST Command succeeds, return the result, otherwise 754 * fall through to reading it directly ourselves ... 755 */ 756 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 757 &ldst_cmd); 758 if (ret == 0) 759 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]); 760 else 761 /* Read the desired Configuration Space register via the PCI-E 762 * Backdoor mechanism. 763 */ 764 t4_hw_pci_read_cfg4(adap, reg, &val); 765 return val; 766 } 767 768 /* Get the window based on base passed to it. 769 * Window aperture is currently unhandled, but there is no use case for it 770 * right now 771 */ 772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask, 773 u32 memwin_base) 774 { 775 u32 ret; 776 777 if (is_t4(adap->params.chip)) { 778 u32 bar0; 779 780 /* Truncation intentional: we only read the bottom 32-bits of 781 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor 782 * mechanism to read BAR0 instead of using 783 * pci_resource_start() because we could be operating from 784 * within a Virtual Machine which is trapping our accesses to 785 * our Configuration Space and we need to set up the PCI-E 786 * Memory Window decoders with the actual addresses which will 787 * be coming across the PCI-E link. 788 */ 789 bar0 = t4_read_pcie_cfg4(adap, pci_base); 790 bar0 &= pci_mask; 791 adap->t4_bar0 = bar0; 792 793 ret = bar0 + memwin_base; 794 } else { 795 /* For T5, only relative offset inside the PCIe BAR is passed */ 796 ret = memwin_base; 797 } 798 return ret; 799 } 800 801 /* Get the default utility window (win0) used by everyone */ 802 u32 t4_get_util_window(struct adapter *adap) 803 { 804 return t4_get_window(adap, PCI_BASE_ADDRESS_0, 805 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE); 806 } 807 808 /* Set up memory window for accessing adapter memory ranges. (Read 809 * back MA register to ensure that changes propagate before we attempt 810 * to use the new values.) 811 */ 812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window) 813 { 814 t4_write_reg(adap, 815 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window), 816 memwin_base | BIR_V(0) | 817 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X)); 818 t4_read_reg(adap, 819 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window)); 820 } 821 822 /** 823 * t4_get_regs_len - return the size of the chips register set 824 * @adapter: the adapter 825 * 826 * Returns the size of the chip's BAR0 register space. 827 */ 828 unsigned int t4_get_regs_len(struct adapter *adapter) 829 { 830 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 831 832 switch (chip_version) { 833 case CHELSIO_T4: 834 return T4_REGMAP_SIZE; 835 836 case CHELSIO_T5: 837 case CHELSIO_T6: 838 return T5_REGMAP_SIZE; 839 } 840 841 dev_err(adapter->pdev_dev, 842 "Unsupported chip version %d\n", chip_version); 843 return 0; 844 } 845 846 /** 847 * t4_get_regs - read chip registers into provided buffer 848 * @adap: the adapter 849 * @buf: register buffer 850 * @buf_size: size (in bytes) of register buffer 851 * 852 * If the provided register buffer isn't large enough for the chip's 853 * full register range, the register dump will be truncated to the 854 * register buffer's size. 855 */ 856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size) 857 { 858 static const unsigned int t4_reg_ranges[] = { 859 0x1008, 0x1108, 860 0x1180, 0x1184, 861 0x1190, 0x1194, 862 0x11a0, 0x11a4, 863 0x11b0, 0x11b4, 864 0x11fc, 0x123c, 865 0x1300, 0x173c, 866 0x1800, 0x18fc, 867 0x3000, 0x30d8, 868 0x30e0, 0x30e4, 869 0x30ec, 0x5910, 870 0x5920, 0x5924, 871 0x5960, 0x5960, 872 0x5968, 0x5968, 873 0x5970, 0x5970, 874 0x5978, 0x5978, 875 0x5980, 0x5980, 876 0x5988, 0x5988, 877 0x5990, 0x5990, 878 0x5998, 0x5998, 879 0x59a0, 0x59d4, 880 0x5a00, 0x5ae0, 881 0x5ae8, 0x5ae8, 882 0x5af0, 0x5af0, 883 0x5af8, 0x5af8, 884 0x6000, 0x6098, 885 0x6100, 0x6150, 886 0x6200, 0x6208, 887 0x6240, 0x6248, 888 0x6280, 0x62b0, 889 0x62c0, 0x6338, 890 0x6370, 0x638c, 891 0x6400, 0x643c, 892 0x6500, 0x6524, 893 0x6a00, 0x6a04, 894 0x6a14, 0x6a38, 895 0x6a60, 0x6a70, 896 0x6a78, 0x6a78, 897 0x6b00, 0x6b0c, 898 0x6b1c, 0x6b84, 899 0x6bf0, 0x6bf8, 900 0x6c00, 0x6c0c, 901 0x6c1c, 0x6c84, 902 0x6cf0, 0x6cf8, 903 0x6d00, 0x6d0c, 904 0x6d1c, 0x6d84, 905 0x6df0, 0x6df8, 906 0x6e00, 0x6e0c, 907 0x6e1c, 0x6e84, 908 0x6ef0, 0x6ef8, 909 0x6f00, 0x6f0c, 910 0x6f1c, 0x6f84, 911 0x6ff0, 0x6ff8, 912 0x7000, 0x700c, 913 0x701c, 0x7084, 914 0x70f0, 0x70f8, 915 0x7100, 0x710c, 916 0x711c, 0x7184, 917 0x71f0, 0x71f8, 918 0x7200, 0x720c, 919 0x721c, 0x7284, 920 0x72f0, 0x72f8, 921 0x7300, 0x730c, 922 0x731c, 0x7384, 923 0x73f0, 0x73f8, 924 0x7400, 0x7450, 925 0x7500, 0x7530, 926 0x7600, 0x760c, 927 0x7614, 0x761c, 928 0x7680, 0x76cc, 929 0x7700, 0x7798, 930 0x77c0, 0x77fc, 931 0x7900, 0x79fc, 932 0x7b00, 0x7b58, 933 0x7b60, 0x7b84, 934 0x7b8c, 0x7c38, 935 0x7d00, 0x7d38, 936 0x7d40, 0x7d80, 937 0x7d8c, 0x7ddc, 938 0x7de4, 0x7e04, 939 0x7e10, 0x7e1c, 940 0x7e24, 0x7e38, 941 0x7e40, 0x7e44, 942 0x7e4c, 0x7e78, 943 0x7e80, 0x7ea4, 944 0x7eac, 0x7edc, 945 0x7ee8, 0x7efc, 946 0x8dc0, 0x8e04, 947 0x8e10, 0x8e1c, 948 0x8e30, 0x8e78, 949 0x8ea0, 0x8eb8, 950 0x8ec0, 0x8f6c, 951 0x8fc0, 0x9008, 952 0x9010, 0x9058, 953 0x9060, 0x9060, 954 0x9068, 0x9074, 955 0x90fc, 0x90fc, 956 0x9400, 0x9408, 957 0x9410, 0x9458, 958 0x9600, 0x9600, 959 0x9608, 0x9638, 960 0x9640, 0x96bc, 961 0x9800, 0x9808, 962 0x9820, 0x983c, 963 0x9850, 0x9864, 964 0x9c00, 0x9c6c, 965 0x9c80, 0x9cec, 966 0x9d00, 0x9d6c, 967 0x9d80, 0x9dec, 968 0x9e00, 0x9e6c, 969 0x9e80, 0x9eec, 970 0x9f00, 0x9f6c, 971 0x9f80, 0x9fec, 972 0xd004, 0xd004, 973 0xd010, 0xd03c, 974 0xdfc0, 0xdfe0, 975 0xe000, 0xea7c, 976 0xf000, 0x11110, 977 0x11118, 0x11190, 978 0x19040, 0x1906c, 979 0x19078, 0x19080, 980 0x1908c, 0x190e4, 981 0x190f0, 0x190f8, 982 0x19100, 0x19110, 983 0x19120, 0x19124, 984 0x19150, 0x19194, 985 0x1919c, 0x191b0, 986 0x191d0, 0x191e8, 987 0x19238, 0x1924c, 988 0x193f8, 0x1943c, 989 0x1944c, 0x19474, 990 0x19490, 0x194e0, 991 0x194f0, 0x194f8, 992 0x19800, 0x19c08, 993 0x19c10, 0x19c90, 994 0x19ca0, 0x19ce4, 995 0x19cf0, 0x19d40, 996 0x19d50, 0x19d94, 997 0x19da0, 0x19de8, 998 0x19df0, 0x19e40, 999 0x19e50, 0x19e90, 1000 0x19ea0, 0x19f4c, 1001 0x1a000, 0x1a004, 1002 0x1a010, 0x1a06c, 1003 0x1a0b0, 0x1a0e4, 1004 0x1a0ec, 0x1a0f4, 1005 0x1a100, 0x1a108, 1006 0x1a114, 0x1a120, 1007 0x1a128, 0x1a130, 1008 0x1a138, 0x1a138, 1009 0x1a190, 0x1a1c4, 1010 0x1a1fc, 0x1a1fc, 1011 0x1e040, 0x1e04c, 1012 0x1e284, 0x1e28c, 1013 0x1e2c0, 0x1e2c0, 1014 0x1e2e0, 0x1e2e0, 1015 0x1e300, 0x1e384, 1016 0x1e3c0, 0x1e3c8, 1017 0x1e440, 0x1e44c, 1018 0x1e684, 0x1e68c, 1019 0x1e6c0, 0x1e6c0, 1020 0x1e6e0, 0x1e6e0, 1021 0x1e700, 0x1e784, 1022 0x1e7c0, 0x1e7c8, 1023 0x1e840, 0x1e84c, 1024 0x1ea84, 0x1ea8c, 1025 0x1eac0, 0x1eac0, 1026 0x1eae0, 0x1eae0, 1027 0x1eb00, 0x1eb84, 1028 0x1ebc0, 0x1ebc8, 1029 0x1ec40, 0x1ec4c, 1030 0x1ee84, 0x1ee8c, 1031 0x1eec0, 0x1eec0, 1032 0x1eee0, 0x1eee0, 1033 0x1ef00, 0x1ef84, 1034 0x1efc0, 0x1efc8, 1035 0x1f040, 0x1f04c, 1036 0x1f284, 0x1f28c, 1037 0x1f2c0, 0x1f2c0, 1038 0x1f2e0, 0x1f2e0, 1039 0x1f300, 0x1f384, 1040 0x1f3c0, 0x1f3c8, 1041 0x1f440, 0x1f44c, 1042 0x1f684, 0x1f68c, 1043 0x1f6c0, 0x1f6c0, 1044 0x1f6e0, 0x1f6e0, 1045 0x1f700, 0x1f784, 1046 0x1f7c0, 0x1f7c8, 1047 0x1f840, 0x1f84c, 1048 0x1fa84, 0x1fa8c, 1049 0x1fac0, 0x1fac0, 1050 0x1fae0, 0x1fae0, 1051 0x1fb00, 0x1fb84, 1052 0x1fbc0, 0x1fbc8, 1053 0x1fc40, 0x1fc4c, 1054 0x1fe84, 0x1fe8c, 1055 0x1fec0, 0x1fec0, 1056 0x1fee0, 0x1fee0, 1057 0x1ff00, 0x1ff84, 1058 0x1ffc0, 0x1ffc8, 1059 0x20000, 0x2002c, 1060 0x20100, 0x2013c, 1061 0x20190, 0x201a0, 1062 0x201a8, 0x201b8, 1063 0x201c4, 0x201c8, 1064 0x20200, 0x20318, 1065 0x20400, 0x204b4, 1066 0x204c0, 0x20528, 1067 0x20540, 0x20614, 1068 0x21000, 0x21040, 1069 0x2104c, 0x21060, 1070 0x210c0, 0x210ec, 1071 0x21200, 0x21268, 1072 0x21270, 0x21284, 1073 0x212fc, 0x21388, 1074 0x21400, 0x21404, 1075 0x21500, 0x21500, 1076 0x21510, 0x21518, 1077 0x2152c, 0x21530, 1078 0x2153c, 0x2153c, 1079 0x21550, 0x21554, 1080 0x21600, 0x21600, 1081 0x21608, 0x2161c, 1082 0x21624, 0x21628, 1083 0x21630, 0x21634, 1084 0x2163c, 0x2163c, 1085 0x21700, 0x2171c, 1086 0x21780, 0x2178c, 1087 0x21800, 0x21818, 1088 0x21820, 0x21828, 1089 0x21830, 0x21848, 1090 0x21850, 0x21854, 1091 0x21860, 0x21868, 1092 0x21870, 0x21870, 1093 0x21878, 0x21898, 1094 0x218a0, 0x218a8, 1095 0x218b0, 0x218c8, 1096 0x218d0, 0x218d4, 1097 0x218e0, 0x218e8, 1098 0x218f0, 0x218f0, 1099 0x218f8, 0x21a18, 1100 0x21a20, 0x21a28, 1101 0x21a30, 0x21a48, 1102 0x21a50, 0x21a54, 1103 0x21a60, 0x21a68, 1104 0x21a70, 0x21a70, 1105 0x21a78, 0x21a98, 1106 0x21aa0, 0x21aa8, 1107 0x21ab0, 0x21ac8, 1108 0x21ad0, 0x21ad4, 1109 0x21ae0, 0x21ae8, 1110 0x21af0, 0x21af0, 1111 0x21af8, 0x21c18, 1112 0x21c20, 0x21c20, 1113 0x21c28, 0x21c30, 1114 0x21c38, 0x21c38, 1115 0x21c80, 0x21c98, 1116 0x21ca0, 0x21ca8, 1117 0x21cb0, 0x21cc8, 1118 0x21cd0, 0x21cd4, 1119 0x21ce0, 0x21ce8, 1120 0x21cf0, 0x21cf0, 1121 0x21cf8, 0x21d7c, 1122 0x21e00, 0x21e04, 1123 0x22000, 0x2202c, 1124 0x22100, 0x2213c, 1125 0x22190, 0x221a0, 1126 0x221a8, 0x221b8, 1127 0x221c4, 0x221c8, 1128 0x22200, 0x22318, 1129 0x22400, 0x224b4, 1130 0x224c0, 0x22528, 1131 0x22540, 0x22614, 1132 0x23000, 0x23040, 1133 0x2304c, 0x23060, 1134 0x230c0, 0x230ec, 1135 0x23200, 0x23268, 1136 0x23270, 0x23284, 1137 0x232fc, 0x23388, 1138 0x23400, 0x23404, 1139 0x23500, 0x23500, 1140 0x23510, 0x23518, 1141 0x2352c, 0x23530, 1142 0x2353c, 0x2353c, 1143 0x23550, 0x23554, 1144 0x23600, 0x23600, 1145 0x23608, 0x2361c, 1146 0x23624, 0x23628, 1147 0x23630, 0x23634, 1148 0x2363c, 0x2363c, 1149 0x23700, 0x2371c, 1150 0x23780, 0x2378c, 1151 0x23800, 0x23818, 1152 0x23820, 0x23828, 1153 0x23830, 0x23848, 1154 0x23850, 0x23854, 1155 0x23860, 0x23868, 1156 0x23870, 0x23870, 1157 0x23878, 0x23898, 1158 0x238a0, 0x238a8, 1159 0x238b0, 0x238c8, 1160 0x238d0, 0x238d4, 1161 0x238e0, 0x238e8, 1162 0x238f0, 0x238f0, 1163 0x238f8, 0x23a18, 1164 0x23a20, 0x23a28, 1165 0x23a30, 0x23a48, 1166 0x23a50, 0x23a54, 1167 0x23a60, 0x23a68, 1168 0x23a70, 0x23a70, 1169 0x23a78, 0x23a98, 1170 0x23aa0, 0x23aa8, 1171 0x23ab0, 0x23ac8, 1172 0x23ad0, 0x23ad4, 1173 0x23ae0, 0x23ae8, 1174 0x23af0, 0x23af0, 1175 0x23af8, 0x23c18, 1176 0x23c20, 0x23c20, 1177 0x23c28, 0x23c30, 1178 0x23c38, 0x23c38, 1179 0x23c80, 0x23c98, 1180 0x23ca0, 0x23ca8, 1181 0x23cb0, 0x23cc8, 1182 0x23cd0, 0x23cd4, 1183 0x23ce0, 0x23ce8, 1184 0x23cf0, 0x23cf0, 1185 0x23cf8, 0x23d7c, 1186 0x23e00, 0x23e04, 1187 0x24000, 0x2402c, 1188 0x24100, 0x2413c, 1189 0x24190, 0x241a0, 1190 0x241a8, 0x241b8, 1191 0x241c4, 0x241c8, 1192 0x24200, 0x24318, 1193 0x24400, 0x244b4, 1194 0x244c0, 0x24528, 1195 0x24540, 0x24614, 1196 0x25000, 0x25040, 1197 0x2504c, 0x25060, 1198 0x250c0, 0x250ec, 1199 0x25200, 0x25268, 1200 0x25270, 0x25284, 1201 0x252fc, 0x25388, 1202 0x25400, 0x25404, 1203 0x25500, 0x25500, 1204 0x25510, 0x25518, 1205 0x2552c, 0x25530, 1206 0x2553c, 0x2553c, 1207 0x25550, 0x25554, 1208 0x25600, 0x25600, 1209 0x25608, 0x2561c, 1210 0x25624, 0x25628, 1211 0x25630, 0x25634, 1212 0x2563c, 0x2563c, 1213 0x25700, 0x2571c, 1214 0x25780, 0x2578c, 1215 0x25800, 0x25818, 1216 0x25820, 0x25828, 1217 0x25830, 0x25848, 1218 0x25850, 0x25854, 1219 0x25860, 0x25868, 1220 0x25870, 0x25870, 1221 0x25878, 0x25898, 1222 0x258a0, 0x258a8, 1223 0x258b0, 0x258c8, 1224 0x258d0, 0x258d4, 1225 0x258e0, 0x258e8, 1226 0x258f0, 0x258f0, 1227 0x258f8, 0x25a18, 1228 0x25a20, 0x25a28, 1229 0x25a30, 0x25a48, 1230 0x25a50, 0x25a54, 1231 0x25a60, 0x25a68, 1232 0x25a70, 0x25a70, 1233 0x25a78, 0x25a98, 1234 0x25aa0, 0x25aa8, 1235 0x25ab0, 0x25ac8, 1236 0x25ad0, 0x25ad4, 1237 0x25ae0, 0x25ae8, 1238 0x25af0, 0x25af0, 1239 0x25af8, 0x25c18, 1240 0x25c20, 0x25c20, 1241 0x25c28, 0x25c30, 1242 0x25c38, 0x25c38, 1243 0x25c80, 0x25c98, 1244 0x25ca0, 0x25ca8, 1245 0x25cb0, 0x25cc8, 1246 0x25cd0, 0x25cd4, 1247 0x25ce0, 0x25ce8, 1248 0x25cf0, 0x25cf0, 1249 0x25cf8, 0x25d7c, 1250 0x25e00, 0x25e04, 1251 0x26000, 0x2602c, 1252 0x26100, 0x2613c, 1253 0x26190, 0x261a0, 1254 0x261a8, 0x261b8, 1255 0x261c4, 0x261c8, 1256 0x26200, 0x26318, 1257 0x26400, 0x264b4, 1258 0x264c0, 0x26528, 1259 0x26540, 0x26614, 1260 0x27000, 0x27040, 1261 0x2704c, 0x27060, 1262 0x270c0, 0x270ec, 1263 0x27200, 0x27268, 1264 0x27270, 0x27284, 1265 0x272fc, 0x27388, 1266 0x27400, 0x27404, 1267 0x27500, 0x27500, 1268 0x27510, 0x27518, 1269 0x2752c, 0x27530, 1270 0x2753c, 0x2753c, 1271 0x27550, 0x27554, 1272 0x27600, 0x27600, 1273 0x27608, 0x2761c, 1274 0x27624, 0x27628, 1275 0x27630, 0x27634, 1276 0x2763c, 0x2763c, 1277 0x27700, 0x2771c, 1278 0x27780, 0x2778c, 1279 0x27800, 0x27818, 1280 0x27820, 0x27828, 1281 0x27830, 0x27848, 1282 0x27850, 0x27854, 1283 0x27860, 0x27868, 1284 0x27870, 0x27870, 1285 0x27878, 0x27898, 1286 0x278a0, 0x278a8, 1287 0x278b0, 0x278c8, 1288 0x278d0, 0x278d4, 1289 0x278e0, 0x278e8, 1290 0x278f0, 0x278f0, 1291 0x278f8, 0x27a18, 1292 0x27a20, 0x27a28, 1293 0x27a30, 0x27a48, 1294 0x27a50, 0x27a54, 1295 0x27a60, 0x27a68, 1296 0x27a70, 0x27a70, 1297 0x27a78, 0x27a98, 1298 0x27aa0, 0x27aa8, 1299 0x27ab0, 0x27ac8, 1300 0x27ad0, 0x27ad4, 1301 0x27ae0, 0x27ae8, 1302 0x27af0, 0x27af0, 1303 0x27af8, 0x27c18, 1304 0x27c20, 0x27c20, 1305 0x27c28, 0x27c30, 1306 0x27c38, 0x27c38, 1307 0x27c80, 0x27c98, 1308 0x27ca0, 0x27ca8, 1309 0x27cb0, 0x27cc8, 1310 0x27cd0, 0x27cd4, 1311 0x27ce0, 0x27ce8, 1312 0x27cf0, 0x27cf0, 1313 0x27cf8, 0x27d7c, 1314 0x27e00, 0x27e04, 1315 }; 1316 1317 static const unsigned int t5_reg_ranges[] = { 1318 0x1008, 0x10c0, 1319 0x10cc, 0x10f8, 1320 0x1100, 0x1100, 1321 0x110c, 0x1148, 1322 0x1180, 0x1184, 1323 0x1190, 0x1194, 1324 0x11a0, 0x11a4, 1325 0x11b0, 0x11b4, 1326 0x11fc, 0x123c, 1327 0x1280, 0x173c, 1328 0x1800, 0x18fc, 1329 0x3000, 0x3028, 1330 0x3060, 0x30b0, 1331 0x30b8, 0x30d8, 1332 0x30e0, 0x30fc, 1333 0x3140, 0x357c, 1334 0x35a8, 0x35cc, 1335 0x35ec, 0x35ec, 1336 0x3600, 0x5624, 1337 0x56cc, 0x56ec, 1338 0x56f4, 0x5720, 1339 0x5728, 0x575c, 1340 0x580c, 0x5814, 1341 0x5890, 0x589c, 1342 0x58a4, 0x58ac, 1343 0x58b8, 0x58bc, 1344 0x5940, 0x59c8, 1345 0x59d0, 0x59dc, 1346 0x59fc, 0x5a18, 1347 0x5a60, 0x5a70, 1348 0x5a80, 0x5a9c, 1349 0x5b94, 0x5bfc, 1350 0x6000, 0x6020, 1351 0x6028, 0x6040, 1352 0x6058, 0x609c, 1353 0x60a8, 0x614c, 1354 0x7700, 0x7798, 1355 0x77c0, 0x78fc, 1356 0x7b00, 0x7b58, 1357 0x7b60, 0x7b84, 1358 0x7b8c, 0x7c54, 1359 0x7d00, 0x7d38, 1360 0x7d40, 0x7d80, 1361 0x7d8c, 0x7ddc, 1362 0x7de4, 0x7e04, 1363 0x7e10, 0x7e1c, 1364 0x7e24, 0x7e38, 1365 0x7e40, 0x7e44, 1366 0x7e4c, 0x7e78, 1367 0x7e80, 0x7edc, 1368 0x7ee8, 0x7efc, 1369 0x8dc0, 0x8de0, 1370 0x8df8, 0x8e04, 1371 0x8e10, 0x8e84, 1372 0x8ea0, 0x8f84, 1373 0x8fc0, 0x9058, 1374 0x9060, 0x9060, 1375 0x9068, 0x90f8, 1376 0x9400, 0x9408, 1377 0x9410, 0x9470, 1378 0x9600, 0x9600, 1379 0x9608, 0x9638, 1380 0x9640, 0x96f4, 1381 0x9800, 0x9808, 1382 0x9820, 0x983c, 1383 0x9850, 0x9864, 1384 0x9c00, 0x9c6c, 1385 0x9c80, 0x9cec, 1386 0x9d00, 0x9d6c, 1387 0x9d80, 0x9dec, 1388 0x9e00, 0x9e6c, 1389 0x9e80, 0x9eec, 1390 0x9f00, 0x9f6c, 1391 0x9f80, 0xa020, 1392 0xd004, 0xd004, 1393 0xd010, 0xd03c, 1394 0xdfc0, 0xdfe0, 1395 0xe000, 0x1106c, 1396 0x11074, 0x11088, 1397 0x1109c, 0x1117c, 1398 0x11190, 0x11204, 1399 0x19040, 0x1906c, 1400 0x19078, 0x19080, 1401 0x1908c, 0x190e8, 1402 0x190f0, 0x190f8, 1403 0x19100, 0x19110, 1404 0x19120, 0x19124, 1405 0x19150, 0x19194, 1406 0x1919c, 0x191b0, 1407 0x191d0, 0x191e8, 1408 0x19238, 0x19290, 1409 0x193f8, 0x19428, 1410 0x19430, 0x19444, 1411 0x1944c, 0x1946c, 1412 0x19474, 0x19474, 1413 0x19490, 0x194cc, 1414 0x194f0, 0x194f8, 1415 0x19c00, 0x19c08, 1416 0x19c10, 0x19c60, 1417 0x19c94, 0x19ce4, 1418 0x19cf0, 0x19d40, 1419 0x19d50, 0x19d94, 1420 0x19da0, 0x19de8, 1421 0x19df0, 0x19e10, 1422 0x19e50, 0x19e90, 1423 0x19ea0, 0x19f24, 1424 0x19f34, 0x19f34, 1425 0x19f40, 0x19f50, 1426 0x19f90, 0x19fb4, 1427 0x19fc4, 0x19fe4, 1428 0x1a000, 0x1a004, 1429 0x1a010, 0x1a06c, 1430 0x1a0b0, 0x1a0e4, 1431 0x1a0ec, 0x1a0f8, 1432 0x1a100, 0x1a108, 1433 0x1a114, 0x1a120, 1434 0x1a128, 0x1a130, 1435 0x1a138, 0x1a138, 1436 0x1a190, 0x1a1c4, 1437 0x1a1fc, 0x1a1fc, 1438 0x1e008, 0x1e00c, 1439 0x1e040, 0x1e044, 1440 0x1e04c, 0x1e04c, 1441 0x1e284, 0x1e290, 1442 0x1e2c0, 0x1e2c0, 1443 0x1e2e0, 0x1e2e0, 1444 0x1e300, 0x1e384, 1445 0x1e3c0, 0x1e3c8, 1446 0x1e408, 0x1e40c, 1447 0x1e440, 0x1e444, 1448 0x1e44c, 0x1e44c, 1449 0x1e684, 0x1e690, 1450 0x1e6c0, 0x1e6c0, 1451 0x1e6e0, 0x1e6e0, 1452 0x1e700, 0x1e784, 1453 0x1e7c0, 0x1e7c8, 1454 0x1e808, 0x1e80c, 1455 0x1e840, 0x1e844, 1456 0x1e84c, 0x1e84c, 1457 0x1ea84, 0x1ea90, 1458 0x1eac0, 0x1eac0, 1459 0x1eae0, 0x1eae0, 1460 0x1eb00, 0x1eb84, 1461 0x1ebc0, 0x1ebc8, 1462 0x1ec08, 0x1ec0c, 1463 0x1ec40, 0x1ec44, 1464 0x1ec4c, 0x1ec4c, 1465 0x1ee84, 0x1ee90, 1466 0x1eec0, 0x1eec0, 1467 0x1eee0, 0x1eee0, 1468 0x1ef00, 0x1ef84, 1469 0x1efc0, 0x1efc8, 1470 0x1f008, 0x1f00c, 1471 0x1f040, 0x1f044, 1472 0x1f04c, 0x1f04c, 1473 0x1f284, 0x1f290, 1474 0x1f2c0, 0x1f2c0, 1475 0x1f2e0, 0x1f2e0, 1476 0x1f300, 0x1f384, 1477 0x1f3c0, 0x1f3c8, 1478 0x1f408, 0x1f40c, 1479 0x1f440, 0x1f444, 1480 0x1f44c, 0x1f44c, 1481 0x1f684, 0x1f690, 1482 0x1f6c0, 0x1f6c0, 1483 0x1f6e0, 0x1f6e0, 1484 0x1f700, 0x1f784, 1485 0x1f7c0, 0x1f7c8, 1486 0x1f808, 0x1f80c, 1487 0x1f840, 0x1f844, 1488 0x1f84c, 0x1f84c, 1489 0x1fa84, 0x1fa90, 1490 0x1fac0, 0x1fac0, 1491 0x1fae0, 0x1fae0, 1492 0x1fb00, 0x1fb84, 1493 0x1fbc0, 0x1fbc8, 1494 0x1fc08, 0x1fc0c, 1495 0x1fc40, 0x1fc44, 1496 0x1fc4c, 0x1fc4c, 1497 0x1fe84, 0x1fe90, 1498 0x1fec0, 0x1fec0, 1499 0x1fee0, 0x1fee0, 1500 0x1ff00, 0x1ff84, 1501 0x1ffc0, 0x1ffc8, 1502 0x30000, 0x30030, 1503 0x30100, 0x30144, 1504 0x30190, 0x301a0, 1505 0x301a8, 0x301b8, 1506 0x301c4, 0x301c8, 1507 0x301d0, 0x301d0, 1508 0x30200, 0x30318, 1509 0x30400, 0x304b4, 1510 0x304c0, 0x3052c, 1511 0x30540, 0x3061c, 1512 0x30800, 0x30828, 1513 0x30834, 0x30834, 1514 0x308c0, 0x30908, 1515 0x30910, 0x309ac, 1516 0x30a00, 0x30a14, 1517 0x30a1c, 0x30a2c, 1518 0x30a44, 0x30a50, 1519 0x30a74, 0x30a74, 1520 0x30a7c, 0x30afc, 1521 0x30b08, 0x30c24, 1522 0x30d00, 0x30d00, 1523 0x30d08, 0x30d14, 1524 0x30d1c, 0x30d20, 1525 0x30d3c, 0x30d3c, 1526 0x30d48, 0x30d50, 1527 0x31200, 0x3120c, 1528 0x31220, 0x31220, 1529 0x31240, 0x31240, 1530 0x31600, 0x3160c, 1531 0x31a00, 0x31a1c, 1532 0x31e00, 0x31e20, 1533 0x31e38, 0x31e3c, 1534 0x31e80, 0x31e80, 1535 0x31e88, 0x31ea8, 1536 0x31eb0, 0x31eb4, 1537 0x31ec8, 0x31ed4, 1538 0x31fb8, 0x32004, 1539 0x32200, 0x32200, 1540 0x32208, 0x32240, 1541 0x32248, 0x32280, 1542 0x32288, 0x322c0, 1543 0x322c8, 0x322fc, 1544 0x32600, 0x32630, 1545 0x32a00, 0x32abc, 1546 0x32b00, 0x32b10, 1547 0x32b20, 0x32b30, 1548 0x32b40, 0x32b50, 1549 0x32b60, 0x32b70, 1550 0x33000, 0x33028, 1551 0x33030, 0x33048, 1552 0x33060, 0x33068, 1553 0x33070, 0x3309c, 1554 0x330f0, 0x33128, 1555 0x33130, 0x33148, 1556 0x33160, 0x33168, 1557 0x33170, 0x3319c, 1558 0x331f0, 0x33238, 1559 0x33240, 0x33240, 1560 0x33248, 0x33250, 1561 0x3325c, 0x33264, 1562 0x33270, 0x332b8, 1563 0x332c0, 0x332e4, 1564 0x332f8, 0x33338, 1565 0x33340, 0x33340, 1566 0x33348, 0x33350, 1567 0x3335c, 0x33364, 1568 0x33370, 0x333b8, 1569 0x333c0, 0x333e4, 1570 0x333f8, 0x33428, 1571 0x33430, 0x33448, 1572 0x33460, 0x33468, 1573 0x33470, 0x3349c, 1574 0x334f0, 0x33528, 1575 0x33530, 0x33548, 1576 0x33560, 0x33568, 1577 0x33570, 0x3359c, 1578 0x335f0, 0x33638, 1579 0x33640, 0x33640, 1580 0x33648, 0x33650, 1581 0x3365c, 0x33664, 1582 0x33670, 0x336b8, 1583 0x336c0, 0x336e4, 1584 0x336f8, 0x33738, 1585 0x33740, 0x33740, 1586 0x33748, 0x33750, 1587 0x3375c, 0x33764, 1588 0x33770, 0x337b8, 1589 0x337c0, 0x337e4, 1590 0x337f8, 0x337fc, 1591 0x33814, 0x33814, 1592 0x3382c, 0x3382c, 1593 0x33880, 0x3388c, 1594 0x338e8, 0x338ec, 1595 0x33900, 0x33928, 1596 0x33930, 0x33948, 1597 0x33960, 0x33968, 1598 0x33970, 0x3399c, 1599 0x339f0, 0x33a38, 1600 0x33a40, 0x33a40, 1601 0x33a48, 0x33a50, 1602 0x33a5c, 0x33a64, 1603 0x33a70, 0x33ab8, 1604 0x33ac0, 0x33ae4, 1605 0x33af8, 0x33b10, 1606 0x33b28, 0x33b28, 1607 0x33b3c, 0x33b50, 1608 0x33bf0, 0x33c10, 1609 0x33c28, 0x33c28, 1610 0x33c3c, 0x33c50, 1611 0x33cf0, 0x33cfc, 1612 0x34000, 0x34030, 1613 0x34100, 0x34144, 1614 0x34190, 0x341a0, 1615 0x341a8, 0x341b8, 1616 0x341c4, 0x341c8, 1617 0x341d0, 0x341d0, 1618 0x34200, 0x34318, 1619 0x34400, 0x344b4, 1620 0x344c0, 0x3452c, 1621 0x34540, 0x3461c, 1622 0x34800, 0x34828, 1623 0x34834, 0x34834, 1624 0x348c0, 0x34908, 1625 0x34910, 0x349ac, 1626 0x34a00, 0x34a14, 1627 0x34a1c, 0x34a2c, 1628 0x34a44, 0x34a50, 1629 0x34a74, 0x34a74, 1630 0x34a7c, 0x34afc, 1631 0x34b08, 0x34c24, 1632 0x34d00, 0x34d00, 1633 0x34d08, 0x34d14, 1634 0x34d1c, 0x34d20, 1635 0x34d3c, 0x34d3c, 1636 0x34d48, 0x34d50, 1637 0x35200, 0x3520c, 1638 0x35220, 0x35220, 1639 0x35240, 0x35240, 1640 0x35600, 0x3560c, 1641 0x35a00, 0x35a1c, 1642 0x35e00, 0x35e20, 1643 0x35e38, 0x35e3c, 1644 0x35e80, 0x35e80, 1645 0x35e88, 0x35ea8, 1646 0x35eb0, 0x35eb4, 1647 0x35ec8, 0x35ed4, 1648 0x35fb8, 0x36004, 1649 0x36200, 0x36200, 1650 0x36208, 0x36240, 1651 0x36248, 0x36280, 1652 0x36288, 0x362c0, 1653 0x362c8, 0x362fc, 1654 0x36600, 0x36630, 1655 0x36a00, 0x36abc, 1656 0x36b00, 0x36b10, 1657 0x36b20, 0x36b30, 1658 0x36b40, 0x36b50, 1659 0x36b60, 0x36b70, 1660 0x37000, 0x37028, 1661 0x37030, 0x37048, 1662 0x37060, 0x37068, 1663 0x37070, 0x3709c, 1664 0x370f0, 0x37128, 1665 0x37130, 0x37148, 1666 0x37160, 0x37168, 1667 0x37170, 0x3719c, 1668 0x371f0, 0x37238, 1669 0x37240, 0x37240, 1670 0x37248, 0x37250, 1671 0x3725c, 0x37264, 1672 0x37270, 0x372b8, 1673 0x372c0, 0x372e4, 1674 0x372f8, 0x37338, 1675 0x37340, 0x37340, 1676 0x37348, 0x37350, 1677 0x3735c, 0x37364, 1678 0x37370, 0x373b8, 1679 0x373c0, 0x373e4, 1680 0x373f8, 0x37428, 1681 0x37430, 0x37448, 1682 0x37460, 0x37468, 1683 0x37470, 0x3749c, 1684 0x374f0, 0x37528, 1685 0x37530, 0x37548, 1686 0x37560, 0x37568, 1687 0x37570, 0x3759c, 1688 0x375f0, 0x37638, 1689 0x37640, 0x37640, 1690 0x37648, 0x37650, 1691 0x3765c, 0x37664, 1692 0x37670, 0x376b8, 1693 0x376c0, 0x376e4, 1694 0x376f8, 0x37738, 1695 0x37740, 0x37740, 1696 0x37748, 0x37750, 1697 0x3775c, 0x37764, 1698 0x37770, 0x377b8, 1699 0x377c0, 0x377e4, 1700 0x377f8, 0x377fc, 1701 0x37814, 0x37814, 1702 0x3782c, 0x3782c, 1703 0x37880, 0x3788c, 1704 0x378e8, 0x378ec, 1705 0x37900, 0x37928, 1706 0x37930, 0x37948, 1707 0x37960, 0x37968, 1708 0x37970, 0x3799c, 1709 0x379f0, 0x37a38, 1710 0x37a40, 0x37a40, 1711 0x37a48, 0x37a50, 1712 0x37a5c, 0x37a64, 1713 0x37a70, 0x37ab8, 1714 0x37ac0, 0x37ae4, 1715 0x37af8, 0x37b10, 1716 0x37b28, 0x37b28, 1717 0x37b3c, 0x37b50, 1718 0x37bf0, 0x37c10, 1719 0x37c28, 0x37c28, 1720 0x37c3c, 0x37c50, 1721 0x37cf0, 0x37cfc, 1722 0x38000, 0x38030, 1723 0x38100, 0x38144, 1724 0x38190, 0x381a0, 1725 0x381a8, 0x381b8, 1726 0x381c4, 0x381c8, 1727 0x381d0, 0x381d0, 1728 0x38200, 0x38318, 1729 0x38400, 0x384b4, 1730 0x384c0, 0x3852c, 1731 0x38540, 0x3861c, 1732 0x38800, 0x38828, 1733 0x38834, 0x38834, 1734 0x388c0, 0x38908, 1735 0x38910, 0x389ac, 1736 0x38a00, 0x38a14, 1737 0x38a1c, 0x38a2c, 1738 0x38a44, 0x38a50, 1739 0x38a74, 0x38a74, 1740 0x38a7c, 0x38afc, 1741 0x38b08, 0x38c24, 1742 0x38d00, 0x38d00, 1743 0x38d08, 0x38d14, 1744 0x38d1c, 0x38d20, 1745 0x38d3c, 0x38d3c, 1746 0x38d48, 0x38d50, 1747 0x39200, 0x3920c, 1748 0x39220, 0x39220, 1749 0x39240, 0x39240, 1750 0x39600, 0x3960c, 1751 0x39a00, 0x39a1c, 1752 0x39e00, 0x39e20, 1753 0x39e38, 0x39e3c, 1754 0x39e80, 0x39e80, 1755 0x39e88, 0x39ea8, 1756 0x39eb0, 0x39eb4, 1757 0x39ec8, 0x39ed4, 1758 0x39fb8, 0x3a004, 1759 0x3a200, 0x3a200, 1760 0x3a208, 0x3a240, 1761 0x3a248, 0x3a280, 1762 0x3a288, 0x3a2c0, 1763 0x3a2c8, 0x3a2fc, 1764 0x3a600, 0x3a630, 1765 0x3aa00, 0x3aabc, 1766 0x3ab00, 0x3ab10, 1767 0x3ab20, 0x3ab30, 1768 0x3ab40, 0x3ab50, 1769 0x3ab60, 0x3ab70, 1770 0x3b000, 0x3b028, 1771 0x3b030, 0x3b048, 1772 0x3b060, 0x3b068, 1773 0x3b070, 0x3b09c, 1774 0x3b0f0, 0x3b128, 1775 0x3b130, 0x3b148, 1776 0x3b160, 0x3b168, 1777 0x3b170, 0x3b19c, 1778 0x3b1f0, 0x3b238, 1779 0x3b240, 0x3b240, 1780 0x3b248, 0x3b250, 1781 0x3b25c, 0x3b264, 1782 0x3b270, 0x3b2b8, 1783 0x3b2c0, 0x3b2e4, 1784 0x3b2f8, 0x3b338, 1785 0x3b340, 0x3b340, 1786 0x3b348, 0x3b350, 1787 0x3b35c, 0x3b364, 1788 0x3b370, 0x3b3b8, 1789 0x3b3c0, 0x3b3e4, 1790 0x3b3f8, 0x3b428, 1791 0x3b430, 0x3b448, 1792 0x3b460, 0x3b468, 1793 0x3b470, 0x3b49c, 1794 0x3b4f0, 0x3b528, 1795 0x3b530, 0x3b548, 1796 0x3b560, 0x3b568, 1797 0x3b570, 0x3b59c, 1798 0x3b5f0, 0x3b638, 1799 0x3b640, 0x3b640, 1800 0x3b648, 0x3b650, 1801 0x3b65c, 0x3b664, 1802 0x3b670, 0x3b6b8, 1803 0x3b6c0, 0x3b6e4, 1804 0x3b6f8, 0x3b738, 1805 0x3b740, 0x3b740, 1806 0x3b748, 0x3b750, 1807 0x3b75c, 0x3b764, 1808 0x3b770, 0x3b7b8, 1809 0x3b7c0, 0x3b7e4, 1810 0x3b7f8, 0x3b7fc, 1811 0x3b814, 0x3b814, 1812 0x3b82c, 0x3b82c, 1813 0x3b880, 0x3b88c, 1814 0x3b8e8, 0x3b8ec, 1815 0x3b900, 0x3b928, 1816 0x3b930, 0x3b948, 1817 0x3b960, 0x3b968, 1818 0x3b970, 0x3b99c, 1819 0x3b9f0, 0x3ba38, 1820 0x3ba40, 0x3ba40, 1821 0x3ba48, 0x3ba50, 1822 0x3ba5c, 0x3ba64, 1823 0x3ba70, 0x3bab8, 1824 0x3bac0, 0x3bae4, 1825 0x3baf8, 0x3bb10, 1826 0x3bb28, 0x3bb28, 1827 0x3bb3c, 0x3bb50, 1828 0x3bbf0, 0x3bc10, 1829 0x3bc28, 0x3bc28, 1830 0x3bc3c, 0x3bc50, 1831 0x3bcf0, 0x3bcfc, 1832 0x3c000, 0x3c030, 1833 0x3c100, 0x3c144, 1834 0x3c190, 0x3c1a0, 1835 0x3c1a8, 0x3c1b8, 1836 0x3c1c4, 0x3c1c8, 1837 0x3c1d0, 0x3c1d0, 1838 0x3c200, 0x3c318, 1839 0x3c400, 0x3c4b4, 1840 0x3c4c0, 0x3c52c, 1841 0x3c540, 0x3c61c, 1842 0x3c800, 0x3c828, 1843 0x3c834, 0x3c834, 1844 0x3c8c0, 0x3c908, 1845 0x3c910, 0x3c9ac, 1846 0x3ca00, 0x3ca14, 1847 0x3ca1c, 0x3ca2c, 1848 0x3ca44, 0x3ca50, 1849 0x3ca74, 0x3ca74, 1850 0x3ca7c, 0x3cafc, 1851 0x3cb08, 0x3cc24, 1852 0x3cd00, 0x3cd00, 1853 0x3cd08, 0x3cd14, 1854 0x3cd1c, 0x3cd20, 1855 0x3cd3c, 0x3cd3c, 1856 0x3cd48, 0x3cd50, 1857 0x3d200, 0x3d20c, 1858 0x3d220, 0x3d220, 1859 0x3d240, 0x3d240, 1860 0x3d600, 0x3d60c, 1861 0x3da00, 0x3da1c, 1862 0x3de00, 0x3de20, 1863 0x3de38, 0x3de3c, 1864 0x3de80, 0x3de80, 1865 0x3de88, 0x3dea8, 1866 0x3deb0, 0x3deb4, 1867 0x3dec8, 0x3ded4, 1868 0x3dfb8, 0x3e004, 1869 0x3e200, 0x3e200, 1870 0x3e208, 0x3e240, 1871 0x3e248, 0x3e280, 1872 0x3e288, 0x3e2c0, 1873 0x3e2c8, 0x3e2fc, 1874 0x3e600, 0x3e630, 1875 0x3ea00, 0x3eabc, 1876 0x3eb00, 0x3eb10, 1877 0x3eb20, 0x3eb30, 1878 0x3eb40, 0x3eb50, 1879 0x3eb60, 0x3eb70, 1880 0x3f000, 0x3f028, 1881 0x3f030, 0x3f048, 1882 0x3f060, 0x3f068, 1883 0x3f070, 0x3f09c, 1884 0x3f0f0, 0x3f128, 1885 0x3f130, 0x3f148, 1886 0x3f160, 0x3f168, 1887 0x3f170, 0x3f19c, 1888 0x3f1f0, 0x3f238, 1889 0x3f240, 0x3f240, 1890 0x3f248, 0x3f250, 1891 0x3f25c, 0x3f264, 1892 0x3f270, 0x3f2b8, 1893 0x3f2c0, 0x3f2e4, 1894 0x3f2f8, 0x3f338, 1895 0x3f340, 0x3f340, 1896 0x3f348, 0x3f350, 1897 0x3f35c, 0x3f364, 1898 0x3f370, 0x3f3b8, 1899 0x3f3c0, 0x3f3e4, 1900 0x3f3f8, 0x3f428, 1901 0x3f430, 0x3f448, 1902 0x3f460, 0x3f468, 1903 0x3f470, 0x3f49c, 1904 0x3f4f0, 0x3f528, 1905 0x3f530, 0x3f548, 1906 0x3f560, 0x3f568, 1907 0x3f570, 0x3f59c, 1908 0x3f5f0, 0x3f638, 1909 0x3f640, 0x3f640, 1910 0x3f648, 0x3f650, 1911 0x3f65c, 0x3f664, 1912 0x3f670, 0x3f6b8, 1913 0x3f6c0, 0x3f6e4, 1914 0x3f6f8, 0x3f738, 1915 0x3f740, 0x3f740, 1916 0x3f748, 0x3f750, 1917 0x3f75c, 0x3f764, 1918 0x3f770, 0x3f7b8, 1919 0x3f7c0, 0x3f7e4, 1920 0x3f7f8, 0x3f7fc, 1921 0x3f814, 0x3f814, 1922 0x3f82c, 0x3f82c, 1923 0x3f880, 0x3f88c, 1924 0x3f8e8, 0x3f8ec, 1925 0x3f900, 0x3f928, 1926 0x3f930, 0x3f948, 1927 0x3f960, 0x3f968, 1928 0x3f970, 0x3f99c, 1929 0x3f9f0, 0x3fa38, 1930 0x3fa40, 0x3fa40, 1931 0x3fa48, 0x3fa50, 1932 0x3fa5c, 0x3fa64, 1933 0x3fa70, 0x3fab8, 1934 0x3fac0, 0x3fae4, 1935 0x3faf8, 0x3fb10, 1936 0x3fb28, 0x3fb28, 1937 0x3fb3c, 0x3fb50, 1938 0x3fbf0, 0x3fc10, 1939 0x3fc28, 0x3fc28, 1940 0x3fc3c, 0x3fc50, 1941 0x3fcf0, 0x3fcfc, 1942 0x40000, 0x4000c, 1943 0x40040, 0x40050, 1944 0x40060, 0x40068, 1945 0x4007c, 0x4008c, 1946 0x40094, 0x400b0, 1947 0x400c0, 0x40144, 1948 0x40180, 0x4018c, 1949 0x40200, 0x40254, 1950 0x40260, 0x40264, 1951 0x40270, 0x40288, 1952 0x40290, 0x40298, 1953 0x402ac, 0x402c8, 1954 0x402d0, 0x402e0, 1955 0x402f0, 0x402f0, 1956 0x40300, 0x4033c, 1957 0x403f8, 0x403fc, 1958 0x41304, 0x413c4, 1959 0x41400, 0x4140c, 1960 0x41414, 0x4141c, 1961 0x41480, 0x414d0, 1962 0x44000, 0x44054, 1963 0x4405c, 0x44078, 1964 0x440c0, 0x44174, 1965 0x44180, 0x441ac, 1966 0x441b4, 0x441b8, 1967 0x441c0, 0x44254, 1968 0x4425c, 0x44278, 1969 0x442c0, 0x44374, 1970 0x44380, 0x443ac, 1971 0x443b4, 0x443b8, 1972 0x443c0, 0x44454, 1973 0x4445c, 0x44478, 1974 0x444c0, 0x44574, 1975 0x44580, 0x445ac, 1976 0x445b4, 0x445b8, 1977 0x445c0, 0x44654, 1978 0x4465c, 0x44678, 1979 0x446c0, 0x44774, 1980 0x44780, 0x447ac, 1981 0x447b4, 0x447b8, 1982 0x447c0, 0x44854, 1983 0x4485c, 0x44878, 1984 0x448c0, 0x44974, 1985 0x44980, 0x449ac, 1986 0x449b4, 0x449b8, 1987 0x449c0, 0x449fc, 1988 0x45000, 0x45004, 1989 0x45010, 0x45030, 1990 0x45040, 0x45060, 1991 0x45068, 0x45068, 1992 0x45080, 0x45084, 1993 0x450a0, 0x450b0, 1994 0x45200, 0x45204, 1995 0x45210, 0x45230, 1996 0x45240, 0x45260, 1997 0x45268, 0x45268, 1998 0x45280, 0x45284, 1999 0x452a0, 0x452b0, 2000 0x460c0, 0x460e4, 2001 0x47000, 0x4703c, 2002 0x47044, 0x4708c, 2003 0x47200, 0x47250, 2004 0x47400, 0x47408, 2005 0x47414, 0x47420, 2006 0x47600, 0x47618, 2007 0x47800, 0x47814, 2008 0x48000, 0x4800c, 2009 0x48040, 0x48050, 2010 0x48060, 0x48068, 2011 0x4807c, 0x4808c, 2012 0x48094, 0x480b0, 2013 0x480c0, 0x48144, 2014 0x48180, 0x4818c, 2015 0x48200, 0x48254, 2016 0x48260, 0x48264, 2017 0x48270, 0x48288, 2018 0x48290, 0x48298, 2019 0x482ac, 0x482c8, 2020 0x482d0, 0x482e0, 2021 0x482f0, 0x482f0, 2022 0x48300, 0x4833c, 2023 0x483f8, 0x483fc, 2024 0x49304, 0x493c4, 2025 0x49400, 0x4940c, 2026 0x49414, 0x4941c, 2027 0x49480, 0x494d0, 2028 0x4c000, 0x4c054, 2029 0x4c05c, 0x4c078, 2030 0x4c0c0, 0x4c174, 2031 0x4c180, 0x4c1ac, 2032 0x4c1b4, 0x4c1b8, 2033 0x4c1c0, 0x4c254, 2034 0x4c25c, 0x4c278, 2035 0x4c2c0, 0x4c374, 2036 0x4c380, 0x4c3ac, 2037 0x4c3b4, 0x4c3b8, 2038 0x4c3c0, 0x4c454, 2039 0x4c45c, 0x4c478, 2040 0x4c4c0, 0x4c574, 2041 0x4c580, 0x4c5ac, 2042 0x4c5b4, 0x4c5b8, 2043 0x4c5c0, 0x4c654, 2044 0x4c65c, 0x4c678, 2045 0x4c6c0, 0x4c774, 2046 0x4c780, 0x4c7ac, 2047 0x4c7b4, 0x4c7b8, 2048 0x4c7c0, 0x4c854, 2049 0x4c85c, 0x4c878, 2050 0x4c8c0, 0x4c974, 2051 0x4c980, 0x4c9ac, 2052 0x4c9b4, 0x4c9b8, 2053 0x4c9c0, 0x4c9fc, 2054 0x4d000, 0x4d004, 2055 0x4d010, 0x4d030, 2056 0x4d040, 0x4d060, 2057 0x4d068, 0x4d068, 2058 0x4d080, 0x4d084, 2059 0x4d0a0, 0x4d0b0, 2060 0x4d200, 0x4d204, 2061 0x4d210, 0x4d230, 2062 0x4d240, 0x4d260, 2063 0x4d268, 0x4d268, 2064 0x4d280, 0x4d284, 2065 0x4d2a0, 0x4d2b0, 2066 0x4e0c0, 0x4e0e4, 2067 0x4f000, 0x4f03c, 2068 0x4f044, 0x4f08c, 2069 0x4f200, 0x4f250, 2070 0x4f400, 0x4f408, 2071 0x4f414, 0x4f420, 2072 0x4f600, 0x4f618, 2073 0x4f800, 0x4f814, 2074 0x50000, 0x50084, 2075 0x50090, 0x500cc, 2076 0x50400, 0x50400, 2077 0x50800, 0x50884, 2078 0x50890, 0x508cc, 2079 0x50c00, 0x50c00, 2080 0x51000, 0x5101c, 2081 0x51300, 0x51308, 2082 }; 2083 2084 static const unsigned int t6_reg_ranges[] = { 2085 0x1008, 0x101c, 2086 0x1024, 0x10a8, 2087 0x10b4, 0x10f8, 2088 0x1100, 0x1114, 2089 0x111c, 0x112c, 2090 0x1138, 0x113c, 2091 0x1144, 0x114c, 2092 0x1180, 0x1184, 2093 0x1190, 0x1194, 2094 0x11a0, 0x11a4, 2095 0x11b0, 0x11b4, 2096 0x11fc, 0x1274, 2097 0x1280, 0x133c, 2098 0x1800, 0x18fc, 2099 0x3000, 0x302c, 2100 0x3060, 0x30b0, 2101 0x30b8, 0x30d8, 2102 0x30e0, 0x30fc, 2103 0x3140, 0x357c, 2104 0x35a8, 0x35cc, 2105 0x35ec, 0x35ec, 2106 0x3600, 0x5624, 2107 0x56cc, 0x56ec, 2108 0x56f4, 0x5720, 2109 0x5728, 0x575c, 2110 0x580c, 0x5814, 2111 0x5890, 0x589c, 2112 0x58a4, 0x58ac, 2113 0x58b8, 0x58bc, 2114 0x5940, 0x595c, 2115 0x5980, 0x598c, 2116 0x59b0, 0x59c8, 2117 0x59d0, 0x59dc, 2118 0x59fc, 0x5a18, 2119 0x5a60, 0x5a6c, 2120 0x5a80, 0x5a8c, 2121 0x5a94, 0x5a9c, 2122 0x5b94, 0x5bfc, 2123 0x5c10, 0x5e48, 2124 0x5e50, 0x5e94, 2125 0x5ea0, 0x5eb0, 2126 0x5ec0, 0x5ec0, 2127 0x5ec8, 0x5ed0, 2128 0x5ee0, 0x5ee0, 2129 0x5ef0, 0x5ef0, 2130 0x5f00, 0x5f00, 2131 0x6000, 0x6020, 2132 0x6028, 0x6040, 2133 0x6058, 0x609c, 2134 0x60a8, 0x619c, 2135 0x7700, 0x7798, 2136 0x77c0, 0x7880, 2137 0x78cc, 0x78fc, 2138 0x7b00, 0x7b58, 2139 0x7b60, 0x7b84, 2140 0x7b8c, 0x7c54, 2141 0x7d00, 0x7d38, 2142 0x7d40, 0x7d84, 2143 0x7d8c, 0x7ddc, 2144 0x7de4, 0x7e04, 2145 0x7e10, 0x7e1c, 2146 0x7e24, 0x7e38, 2147 0x7e40, 0x7e44, 2148 0x7e4c, 0x7e78, 2149 0x7e80, 0x7edc, 2150 0x7ee8, 0x7efc, 2151 0x8dc0, 0x8de4, 2152 0x8df8, 0x8e04, 2153 0x8e10, 0x8e84, 2154 0x8ea0, 0x8f88, 2155 0x8fb8, 0x9058, 2156 0x9060, 0x9060, 2157 0x9068, 0x90f8, 2158 0x9100, 0x9124, 2159 0x9400, 0x9470, 2160 0x9600, 0x9600, 2161 0x9608, 0x9638, 2162 0x9640, 0x9704, 2163 0x9710, 0x971c, 2164 0x9800, 0x9808, 2165 0x9820, 0x983c, 2166 0x9850, 0x9864, 2167 0x9c00, 0x9c6c, 2168 0x9c80, 0x9cec, 2169 0x9d00, 0x9d6c, 2170 0x9d80, 0x9dec, 2171 0x9e00, 0x9e6c, 2172 0x9e80, 0x9eec, 2173 0x9f00, 0x9f6c, 2174 0x9f80, 0xa020, 2175 0xd004, 0xd03c, 2176 0xd100, 0xd118, 2177 0xd200, 0xd214, 2178 0xd220, 0xd234, 2179 0xd240, 0xd254, 2180 0xd260, 0xd274, 2181 0xd280, 0xd294, 2182 0xd2a0, 0xd2b4, 2183 0xd2c0, 0xd2d4, 2184 0xd2e0, 0xd2f4, 2185 0xd300, 0xd31c, 2186 0xdfc0, 0xdfe0, 2187 0xe000, 0xf008, 2188 0xf010, 0xf018, 2189 0xf020, 0xf028, 2190 0x11000, 0x11014, 2191 0x11048, 0x1106c, 2192 0x11074, 0x11088, 2193 0x11098, 0x11120, 2194 0x1112c, 0x1117c, 2195 0x11190, 0x112e0, 2196 0x11300, 0x1130c, 2197 0x12000, 0x1206c, 2198 0x19040, 0x1906c, 2199 0x19078, 0x19080, 2200 0x1908c, 0x190e8, 2201 0x190f0, 0x190f8, 2202 0x19100, 0x19110, 2203 0x19120, 0x19124, 2204 0x19150, 0x19194, 2205 0x1919c, 0x191b0, 2206 0x191d0, 0x191e8, 2207 0x19238, 0x19290, 2208 0x192a4, 0x192b0, 2209 0x192bc, 0x192bc, 2210 0x19348, 0x1934c, 2211 0x193f8, 0x19418, 2212 0x19420, 0x19428, 2213 0x19430, 0x19444, 2214 0x1944c, 0x1946c, 2215 0x19474, 0x19474, 2216 0x19490, 0x194cc, 2217 0x194f0, 0x194f8, 2218 0x19c00, 0x19c48, 2219 0x19c50, 0x19c80, 2220 0x19c94, 0x19c98, 2221 0x19ca0, 0x19cbc, 2222 0x19ce4, 0x19ce4, 2223 0x19cf0, 0x19cf8, 2224 0x19d00, 0x19d28, 2225 0x19d50, 0x19d78, 2226 0x19d94, 0x19d98, 2227 0x19da0, 0x19dc8, 2228 0x19df0, 0x19e10, 2229 0x19e50, 0x19e6c, 2230 0x19ea0, 0x19ebc, 2231 0x19ec4, 0x19ef4, 2232 0x19f04, 0x19f2c, 2233 0x19f34, 0x19f34, 2234 0x19f40, 0x19f50, 2235 0x19f90, 0x19fac, 2236 0x19fc4, 0x19fc8, 2237 0x19fd0, 0x19fe4, 2238 0x1a000, 0x1a004, 2239 0x1a010, 0x1a06c, 2240 0x1a0b0, 0x1a0e4, 2241 0x1a0ec, 0x1a0f8, 2242 0x1a100, 0x1a108, 2243 0x1a114, 0x1a120, 2244 0x1a128, 0x1a130, 2245 0x1a138, 0x1a138, 2246 0x1a190, 0x1a1c4, 2247 0x1a1fc, 0x1a1fc, 2248 0x1e008, 0x1e00c, 2249 0x1e040, 0x1e044, 2250 0x1e04c, 0x1e04c, 2251 0x1e284, 0x1e290, 2252 0x1e2c0, 0x1e2c0, 2253 0x1e2e0, 0x1e2e0, 2254 0x1e300, 0x1e384, 2255 0x1e3c0, 0x1e3c8, 2256 0x1e408, 0x1e40c, 2257 0x1e440, 0x1e444, 2258 0x1e44c, 0x1e44c, 2259 0x1e684, 0x1e690, 2260 0x1e6c0, 0x1e6c0, 2261 0x1e6e0, 0x1e6e0, 2262 0x1e700, 0x1e784, 2263 0x1e7c0, 0x1e7c8, 2264 0x1e808, 0x1e80c, 2265 0x1e840, 0x1e844, 2266 0x1e84c, 0x1e84c, 2267 0x1ea84, 0x1ea90, 2268 0x1eac0, 0x1eac0, 2269 0x1eae0, 0x1eae0, 2270 0x1eb00, 0x1eb84, 2271 0x1ebc0, 0x1ebc8, 2272 0x1ec08, 0x1ec0c, 2273 0x1ec40, 0x1ec44, 2274 0x1ec4c, 0x1ec4c, 2275 0x1ee84, 0x1ee90, 2276 0x1eec0, 0x1eec0, 2277 0x1eee0, 0x1eee0, 2278 0x1ef00, 0x1ef84, 2279 0x1efc0, 0x1efc8, 2280 0x1f008, 0x1f00c, 2281 0x1f040, 0x1f044, 2282 0x1f04c, 0x1f04c, 2283 0x1f284, 0x1f290, 2284 0x1f2c0, 0x1f2c0, 2285 0x1f2e0, 0x1f2e0, 2286 0x1f300, 0x1f384, 2287 0x1f3c0, 0x1f3c8, 2288 0x1f408, 0x1f40c, 2289 0x1f440, 0x1f444, 2290 0x1f44c, 0x1f44c, 2291 0x1f684, 0x1f690, 2292 0x1f6c0, 0x1f6c0, 2293 0x1f6e0, 0x1f6e0, 2294 0x1f700, 0x1f784, 2295 0x1f7c0, 0x1f7c8, 2296 0x1f808, 0x1f80c, 2297 0x1f840, 0x1f844, 2298 0x1f84c, 0x1f84c, 2299 0x1fa84, 0x1fa90, 2300 0x1fac0, 0x1fac0, 2301 0x1fae0, 0x1fae0, 2302 0x1fb00, 0x1fb84, 2303 0x1fbc0, 0x1fbc8, 2304 0x1fc08, 0x1fc0c, 2305 0x1fc40, 0x1fc44, 2306 0x1fc4c, 0x1fc4c, 2307 0x1fe84, 0x1fe90, 2308 0x1fec0, 0x1fec0, 2309 0x1fee0, 0x1fee0, 2310 0x1ff00, 0x1ff84, 2311 0x1ffc0, 0x1ffc8, 2312 0x30000, 0x30030, 2313 0x30100, 0x30168, 2314 0x30190, 0x301a0, 2315 0x301a8, 0x301b8, 2316 0x301c4, 0x301c8, 2317 0x301d0, 0x301d0, 2318 0x30200, 0x30320, 2319 0x30400, 0x304b4, 2320 0x304c0, 0x3052c, 2321 0x30540, 0x3061c, 2322 0x30800, 0x308a0, 2323 0x308c0, 0x30908, 2324 0x30910, 0x309b8, 2325 0x30a00, 0x30a04, 2326 0x30a0c, 0x30a14, 2327 0x30a1c, 0x30a2c, 2328 0x30a44, 0x30a50, 2329 0x30a74, 0x30a74, 2330 0x30a7c, 0x30afc, 2331 0x30b08, 0x30c24, 2332 0x30d00, 0x30d14, 2333 0x30d1c, 0x30d3c, 2334 0x30d44, 0x30d4c, 2335 0x30d54, 0x30d74, 2336 0x30d7c, 0x30d7c, 2337 0x30de0, 0x30de0, 2338 0x30e00, 0x30ed4, 2339 0x30f00, 0x30fa4, 2340 0x30fc0, 0x30fc4, 2341 0x31000, 0x31004, 2342 0x31080, 0x310fc, 2343 0x31208, 0x31220, 2344 0x3123c, 0x31254, 2345 0x31300, 0x31300, 2346 0x31308, 0x3131c, 2347 0x31338, 0x3133c, 2348 0x31380, 0x31380, 2349 0x31388, 0x313a8, 2350 0x313b4, 0x313b4, 2351 0x31400, 0x31420, 2352 0x31438, 0x3143c, 2353 0x31480, 0x31480, 2354 0x314a8, 0x314a8, 2355 0x314b0, 0x314b4, 2356 0x314c8, 0x314d4, 2357 0x31a40, 0x31a4c, 2358 0x31af0, 0x31b20, 2359 0x31b38, 0x31b3c, 2360 0x31b80, 0x31b80, 2361 0x31ba8, 0x31ba8, 2362 0x31bb0, 0x31bb4, 2363 0x31bc8, 0x31bd4, 2364 0x32140, 0x3218c, 2365 0x321f0, 0x321f4, 2366 0x32200, 0x32200, 2367 0x32218, 0x32218, 2368 0x32400, 0x32400, 2369 0x32408, 0x3241c, 2370 0x32618, 0x32620, 2371 0x32664, 0x32664, 2372 0x326a8, 0x326a8, 2373 0x326ec, 0x326ec, 2374 0x32a00, 0x32abc, 2375 0x32b00, 0x32b18, 2376 0x32b20, 0x32b38, 2377 0x32b40, 0x32b58, 2378 0x32b60, 0x32b78, 2379 0x32c00, 0x32c00, 2380 0x32c08, 0x32c3c, 2381 0x33000, 0x3302c, 2382 0x33034, 0x33050, 2383 0x33058, 0x33058, 2384 0x33060, 0x3308c, 2385 0x3309c, 0x330ac, 2386 0x330c0, 0x330c0, 2387 0x330c8, 0x330d0, 2388 0x330d8, 0x330e0, 2389 0x330ec, 0x3312c, 2390 0x33134, 0x33150, 2391 0x33158, 0x33158, 2392 0x33160, 0x3318c, 2393 0x3319c, 0x331ac, 2394 0x331c0, 0x331c0, 2395 0x331c8, 0x331d0, 2396 0x331d8, 0x331e0, 2397 0x331ec, 0x33290, 2398 0x33298, 0x332c4, 2399 0x332e4, 0x33390, 2400 0x33398, 0x333c4, 2401 0x333e4, 0x3342c, 2402 0x33434, 0x33450, 2403 0x33458, 0x33458, 2404 0x33460, 0x3348c, 2405 0x3349c, 0x334ac, 2406 0x334c0, 0x334c0, 2407 0x334c8, 0x334d0, 2408 0x334d8, 0x334e0, 2409 0x334ec, 0x3352c, 2410 0x33534, 0x33550, 2411 0x33558, 0x33558, 2412 0x33560, 0x3358c, 2413 0x3359c, 0x335ac, 2414 0x335c0, 0x335c0, 2415 0x335c8, 0x335d0, 2416 0x335d8, 0x335e0, 2417 0x335ec, 0x33690, 2418 0x33698, 0x336c4, 2419 0x336e4, 0x33790, 2420 0x33798, 0x337c4, 2421 0x337e4, 0x337fc, 2422 0x33814, 0x33814, 2423 0x33854, 0x33868, 2424 0x33880, 0x3388c, 2425 0x338c0, 0x338d0, 2426 0x338e8, 0x338ec, 2427 0x33900, 0x3392c, 2428 0x33934, 0x33950, 2429 0x33958, 0x33958, 2430 0x33960, 0x3398c, 2431 0x3399c, 0x339ac, 2432 0x339c0, 0x339c0, 2433 0x339c8, 0x339d0, 2434 0x339d8, 0x339e0, 2435 0x339ec, 0x33a90, 2436 0x33a98, 0x33ac4, 2437 0x33ae4, 0x33b10, 2438 0x33b24, 0x33b28, 2439 0x33b38, 0x33b50, 2440 0x33bf0, 0x33c10, 2441 0x33c24, 0x33c28, 2442 0x33c38, 0x33c50, 2443 0x33cf0, 0x33cfc, 2444 0x34000, 0x34030, 2445 0x34100, 0x34168, 2446 0x34190, 0x341a0, 2447 0x341a8, 0x341b8, 2448 0x341c4, 0x341c8, 2449 0x341d0, 0x341d0, 2450 0x34200, 0x34320, 2451 0x34400, 0x344b4, 2452 0x344c0, 0x3452c, 2453 0x34540, 0x3461c, 2454 0x34800, 0x348a0, 2455 0x348c0, 0x34908, 2456 0x34910, 0x349b8, 2457 0x34a00, 0x34a04, 2458 0x34a0c, 0x34a14, 2459 0x34a1c, 0x34a2c, 2460 0x34a44, 0x34a50, 2461 0x34a74, 0x34a74, 2462 0x34a7c, 0x34afc, 2463 0x34b08, 0x34c24, 2464 0x34d00, 0x34d14, 2465 0x34d1c, 0x34d3c, 2466 0x34d44, 0x34d4c, 2467 0x34d54, 0x34d74, 2468 0x34d7c, 0x34d7c, 2469 0x34de0, 0x34de0, 2470 0x34e00, 0x34ed4, 2471 0x34f00, 0x34fa4, 2472 0x34fc0, 0x34fc4, 2473 0x35000, 0x35004, 2474 0x35080, 0x350fc, 2475 0x35208, 0x35220, 2476 0x3523c, 0x35254, 2477 0x35300, 0x35300, 2478 0x35308, 0x3531c, 2479 0x35338, 0x3533c, 2480 0x35380, 0x35380, 2481 0x35388, 0x353a8, 2482 0x353b4, 0x353b4, 2483 0x35400, 0x35420, 2484 0x35438, 0x3543c, 2485 0x35480, 0x35480, 2486 0x354a8, 0x354a8, 2487 0x354b0, 0x354b4, 2488 0x354c8, 0x354d4, 2489 0x35a40, 0x35a4c, 2490 0x35af0, 0x35b20, 2491 0x35b38, 0x35b3c, 2492 0x35b80, 0x35b80, 2493 0x35ba8, 0x35ba8, 2494 0x35bb0, 0x35bb4, 2495 0x35bc8, 0x35bd4, 2496 0x36140, 0x3618c, 2497 0x361f0, 0x361f4, 2498 0x36200, 0x36200, 2499 0x36218, 0x36218, 2500 0x36400, 0x36400, 2501 0x36408, 0x3641c, 2502 0x36618, 0x36620, 2503 0x36664, 0x36664, 2504 0x366a8, 0x366a8, 2505 0x366ec, 0x366ec, 2506 0x36a00, 0x36abc, 2507 0x36b00, 0x36b18, 2508 0x36b20, 0x36b38, 2509 0x36b40, 0x36b58, 2510 0x36b60, 0x36b78, 2511 0x36c00, 0x36c00, 2512 0x36c08, 0x36c3c, 2513 0x37000, 0x3702c, 2514 0x37034, 0x37050, 2515 0x37058, 0x37058, 2516 0x37060, 0x3708c, 2517 0x3709c, 0x370ac, 2518 0x370c0, 0x370c0, 2519 0x370c8, 0x370d0, 2520 0x370d8, 0x370e0, 2521 0x370ec, 0x3712c, 2522 0x37134, 0x37150, 2523 0x37158, 0x37158, 2524 0x37160, 0x3718c, 2525 0x3719c, 0x371ac, 2526 0x371c0, 0x371c0, 2527 0x371c8, 0x371d0, 2528 0x371d8, 0x371e0, 2529 0x371ec, 0x37290, 2530 0x37298, 0x372c4, 2531 0x372e4, 0x37390, 2532 0x37398, 0x373c4, 2533 0x373e4, 0x3742c, 2534 0x37434, 0x37450, 2535 0x37458, 0x37458, 2536 0x37460, 0x3748c, 2537 0x3749c, 0x374ac, 2538 0x374c0, 0x374c0, 2539 0x374c8, 0x374d0, 2540 0x374d8, 0x374e0, 2541 0x374ec, 0x3752c, 2542 0x37534, 0x37550, 2543 0x37558, 0x37558, 2544 0x37560, 0x3758c, 2545 0x3759c, 0x375ac, 2546 0x375c0, 0x375c0, 2547 0x375c8, 0x375d0, 2548 0x375d8, 0x375e0, 2549 0x375ec, 0x37690, 2550 0x37698, 0x376c4, 2551 0x376e4, 0x37790, 2552 0x37798, 0x377c4, 2553 0x377e4, 0x377fc, 2554 0x37814, 0x37814, 2555 0x37854, 0x37868, 2556 0x37880, 0x3788c, 2557 0x378c0, 0x378d0, 2558 0x378e8, 0x378ec, 2559 0x37900, 0x3792c, 2560 0x37934, 0x37950, 2561 0x37958, 0x37958, 2562 0x37960, 0x3798c, 2563 0x3799c, 0x379ac, 2564 0x379c0, 0x379c0, 2565 0x379c8, 0x379d0, 2566 0x379d8, 0x379e0, 2567 0x379ec, 0x37a90, 2568 0x37a98, 0x37ac4, 2569 0x37ae4, 0x37b10, 2570 0x37b24, 0x37b28, 2571 0x37b38, 0x37b50, 2572 0x37bf0, 0x37c10, 2573 0x37c24, 0x37c28, 2574 0x37c38, 0x37c50, 2575 0x37cf0, 0x37cfc, 2576 0x40040, 0x40040, 2577 0x40080, 0x40084, 2578 0x40100, 0x40100, 2579 0x40140, 0x401bc, 2580 0x40200, 0x40214, 2581 0x40228, 0x40228, 2582 0x40240, 0x40258, 2583 0x40280, 0x40280, 2584 0x40304, 0x40304, 2585 0x40330, 0x4033c, 2586 0x41304, 0x413c8, 2587 0x413d0, 0x413dc, 2588 0x413f0, 0x413f0, 2589 0x41400, 0x4140c, 2590 0x41414, 0x4141c, 2591 0x41480, 0x414d0, 2592 0x44000, 0x4407c, 2593 0x440c0, 0x441ac, 2594 0x441b4, 0x4427c, 2595 0x442c0, 0x443ac, 2596 0x443b4, 0x4447c, 2597 0x444c0, 0x445ac, 2598 0x445b4, 0x4467c, 2599 0x446c0, 0x447ac, 2600 0x447b4, 0x4487c, 2601 0x448c0, 0x449ac, 2602 0x449b4, 0x44a7c, 2603 0x44ac0, 0x44bac, 2604 0x44bb4, 0x44c7c, 2605 0x44cc0, 0x44dac, 2606 0x44db4, 0x44e7c, 2607 0x44ec0, 0x44fac, 2608 0x44fb4, 0x4507c, 2609 0x450c0, 0x451ac, 2610 0x451b4, 0x451fc, 2611 0x45800, 0x45804, 2612 0x45810, 0x45830, 2613 0x45840, 0x45860, 2614 0x45868, 0x45868, 2615 0x45880, 0x45884, 2616 0x458a0, 0x458b0, 2617 0x45a00, 0x45a04, 2618 0x45a10, 0x45a30, 2619 0x45a40, 0x45a60, 2620 0x45a68, 0x45a68, 2621 0x45a80, 0x45a84, 2622 0x45aa0, 0x45ab0, 2623 0x460c0, 0x460e4, 2624 0x47000, 0x4703c, 2625 0x47044, 0x4708c, 2626 0x47200, 0x47250, 2627 0x47400, 0x47408, 2628 0x47414, 0x47420, 2629 0x47600, 0x47618, 2630 0x47800, 0x47814, 2631 0x47820, 0x4782c, 2632 0x50000, 0x50084, 2633 0x50090, 0x500cc, 2634 0x50300, 0x50384, 2635 0x50400, 0x50400, 2636 0x50800, 0x50884, 2637 0x50890, 0x508cc, 2638 0x50b00, 0x50b84, 2639 0x50c00, 0x50c00, 2640 0x51000, 0x51020, 2641 0x51028, 0x510b0, 2642 0x51300, 0x51324, 2643 }; 2644 2645 u32 *buf_end = (u32 *)((char *)buf + buf_size); 2646 const unsigned int *reg_ranges; 2647 int reg_ranges_size, range; 2648 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 2649 2650 /* Select the right set of register ranges to dump depending on the 2651 * adapter chip type. 2652 */ 2653 switch (chip_version) { 2654 case CHELSIO_T4: 2655 reg_ranges = t4_reg_ranges; 2656 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); 2657 break; 2658 2659 case CHELSIO_T5: 2660 reg_ranges = t5_reg_ranges; 2661 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); 2662 break; 2663 2664 case CHELSIO_T6: 2665 reg_ranges = t6_reg_ranges; 2666 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); 2667 break; 2668 2669 default: 2670 dev_err(adap->pdev_dev, 2671 "Unsupported chip version %d\n", chip_version); 2672 return; 2673 } 2674 2675 /* Clear the register buffer and insert the appropriate register 2676 * values selected by the above register ranges. 2677 */ 2678 memset(buf, 0, buf_size); 2679 for (range = 0; range < reg_ranges_size; range += 2) { 2680 unsigned int reg = reg_ranges[range]; 2681 unsigned int last_reg = reg_ranges[range + 1]; 2682 u32 *bufp = (u32 *)((char *)buf + reg); 2683 2684 /* Iterate across the register range filling in the register 2685 * buffer but don't write past the end of the register buffer. 2686 */ 2687 while (reg <= last_reg && bufp < buf_end) { 2688 *bufp++ = t4_read_reg(adap, reg); 2689 reg += sizeof(u32); 2690 } 2691 } 2692 } 2693 2694 #define EEPROM_STAT_ADDR 0x7bfc 2695 #define VPD_BASE 0x400 2696 #define VPD_BASE_OLD 0 2697 #define VPD_LEN 1024 2698 #define CHELSIO_VPD_UNIQUE_ID 0x82 2699 2700 /** 2701 * t4_eeprom_ptov - translate a physical EEPROM address to virtual 2702 * @phys_addr: the physical EEPROM address 2703 * @fn: the PCI function number 2704 * @sz: size of function-specific area 2705 * 2706 * Translate a physical EEPROM address to virtual. The first 1K is 2707 * accessed through virtual addresses starting at 31K, the rest is 2708 * accessed through virtual addresses starting at 0. 2709 * 2710 * The mapping is as follows: 2711 * [0..1K) -> [31K..32K) 2712 * [1K..1K+A) -> [31K-A..31K) 2713 * [1K+A..ES) -> [0..ES-A-1K) 2714 * 2715 * where A = @fn * @sz, and ES = EEPROM size. 2716 */ 2717 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) 2718 { 2719 fn *= sz; 2720 if (phys_addr < 1024) 2721 return phys_addr + (31 << 10); 2722 if (phys_addr < 1024 + fn) 2723 return 31744 - fn + phys_addr - 1024; 2724 if (phys_addr < EEPROMSIZE) 2725 return phys_addr - 1024 - fn; 2726 return -EINVAL; 2727 } 2728 2729 /** 2730 * t4_seeprom_wp - enable/disable EEPROM write protection 2731 * @adapter: the adapter 2732 * @enable: whether to enable or disable write protection 2733 * 2734 * Enables or disables write protection on the serial EEPROM. 2735 */ 2736 int t4_seeprom_wp(struct adapter *adapter, bool enable) 2737 { 2738 unsigned int v = enable ? 0xc : 0; 2739 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v); 2740 return ret < 0 ? ret : 0; 2741 } 2742 2743 /** 2744 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM 2745 * @adapter: adapter to read 2746 * @p: where to store the parameters 2747 * 2748 * Reads card parameters stored in VPD EEPROM. 2749 */ 2750 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p) 2751 { 2752 int i, ret = 0, addr; 2753 int ec, sn, pn, na; 2754 u8 *vpd, csum; 2755 unsigned int vpdr_len, kw_offset, id_len; 2756 2757 vpd = vmalloc(VPD_LEN); 2758 if (!vpd) 2759 return -ENOMEM; 2760 2761 /* Card information normally starts at VPD_BASE but early cards had 2762 * it at 0. 2763 */ 2764 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd); 2765 if (ret < 0) 2766 goto out; 2767 2768 /* The VPD shall have a unique identifier specified by the PCI SIG. 2769 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD 2770 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software 2771 * is expected to automatically put this entry at the 2772 * beginning of the VPD. 2773 */ 2774 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD; 2775 2776 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd); 2777 if (ret < 0) 2778 goto out; 2779 2780 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) { 2781 dev_err(adapter->pdev_dev, "missing VPD ID string\n"); 2782 ret = -EINVAL; 2783 goto out; 2784 } 2785 2786 id_len = pci_vpd_lrdt_size(vpd); 2787 if (id_len > ID_LEN) 2788 id_len = ID_LEN; 2789 2790 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA); 2791 if (i < 0) { 2792 dev_err(adapter->pdev_dev, "missing VPD-R section\n"); 2793 ret = -EINVAL; 2794 goto out; 2795 } 2796 2797 vpdr_len = pci_vpd_lrdt_size(&vpd[i]); 2798 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE; 2799 if (vpdr_len + kw_offset > VPD_LEN) { 2800 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len); 2801 ret = -EINVAL; 2802 goto out; 2803 } 2804 2805 #define FIND_VPD_KW(var, name) do { \ 2806 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \ 2807 if (var < 0) { \ 2808 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \ 2809 ret = -EINVAL; \ 2810 goto out; \ 2811 } \ 2812 var += PCI_VPD_INFO_FLD_HDR_SIZE; \ 2813 } while (0) 2814 2815 FIND_VPD_KW(i, "RV"); 2816 for (csum = 0; i >= 0; i--) 2817 csum += vpd[i]; 2818 2819 if (csum) { 2820 dev_err(adapter->pdev_dev, 2821 "corrupted VPD EEPROM, actual csum %u\n", csum); 2822 ret = -EINVAL; 2823 goto out; 2824 } 2825 2826 FIND_VPD_KW(ec, "EC"); 2827 FIND_VPD_KW(sn, "SN"); 2828 FIND_VPD_KW(pn, "PN"); 2829 FIND_VPD_KW(na, "NA"); 2830 #undef FIND_VPD_KW 2831 2832 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len); 2833 strim(p->id); 2834 memcpy(p->ec, vpd + ec, EC_LEN); 2835 strim(p->ec); 2836 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE); 2837 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); 2838 strim(p->sn); 2839 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE); 2840 memcpy(p->pn, vpd + pn, min(i, PN_LEN)); 2841 strim(p->pn); 2842 memcpy(p->na, vpd + na, min(i, MACADDR_LEN)); 2843 strim((char *)p->na); 2844 2845 out: 2846 vfree(vpd); 2847 return ret < 0 ? ret : 0; 2848 } 2849 2850 /** 2851 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock 2852 * @adapter: adapter to read 2853 * @p: where to store the parameters 2854 * 2855 * Reads card parameters stored in VPD EEPROM and retrieves the Core 2856 * Clock. This can only be called after a connection to the firmware 2857 * is established. 2858 */ 2859 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p) 2860 { 2861 u32 cclk_param, cclk_val; 2862 int ret; 2863 2864 /* Grab the raw VPD parameters. 2865 */ 2866 ret = t4_get_raw_vpd_params(adapter, p); 2867 if (ret) 2868 return ret; 2869 2870 /* Ask firmware for the Core Clock since it knows how to translate the 2871 * Reference Clock ('V2') VPD field into a Core Clock value ... 2872 */ 2873 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 2874 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); 2875 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 2876 1, &cclk_param, &cclk_val); 2877 2878 if (ret) 2879 return ret; 2880 p->cclk = cclk_val; 2881 2882 return 0; 2883 } 2884 2885 /* serial flash and firmware constants */ 2886 enum { 2887 SF_ATTEMPTS = 10, /* max retries for SF operations */ 2888 2889 /* flash command opcodes */ 2890 SF_PROG_PAGE = 2, /* program page */ 2891 SF_WR_DISABLE = 4, /* disable writes */ 2892 SF_RD_STATUS = 5, /* read status register */ 2893 SF_WR_ENABLE = 6, /* enable writes */ 2894 SF_RD_DATA_FAST = 0xb, /* read flash */ 2895 SF_RD_ID = 0x9f, /* read ID */ 2896 SF_ERASE_SECTOR = 0xd8, /* erase sector */ 2897 }; 2898 2899 /** 2900 * sf1_read - read data from the serial flash 2901 * @adapter: the adapter 2902 * @byte_cnt: number of bytes to read 2903 * @cont: whether another operation will be chained 2904 * @lock: whether to lock SF for PL access only 2905 * @valp: where to store the read data 2906 * 2907 * Reads up to 4 bytes of data from the serial flash. The location of 2908 * the read needs to be specified prior to calling this by issuing the 2909 * appropriate commands to the serial flash. 2910 */ 2911 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 2912 int lock, u32 *valp) 2913 { 2914 int ret; 2915 2916 if (!byte_cnt || byte_cnt > 4) 2917 return -EINVAL; 2918 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2919 return -EBUSY; 2920 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2921 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1)); 2922 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2923 if (!ret) 2924 *valp = t4_read_reg(adapter, SF_DATA_A); 2925 return ret; 2926 } 2927 2928 /** 2929 * sf1_write - write data to the serial flash 2930 * @adapter: the adapter 2931 * @byte_cnt: number of bytes to write 2932 * @cont: whether another operation will be chained 2933 * @lock: whether to lock SF for PL access only 2934 * @val: value to write 2935 * 2936 * Writes up to 4 bytes of data to the serial flash. The location of 2937 * the write needs to be specified prior to calling this by issuing the 2938 * appropriate commands to the serial flash. 2939 */ 2940 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 2941 int lock, u32 val) 2942 { 2943 if (!byte_cnt || byte_cnt > 4) 2944 return -EINVAL; 2945 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2946 return -EBUSY; 2947 t4_write_reg(adapter, SF_DATA_A, val); 2948 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2949 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1)); 2950 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2951 } 2952 2953 /** 2954 * flash_wait_op - wait for a flash operation to complete 2955 * @adapter: the adapter 2956 * @attempts: max number of polls of the status register 2957 * @delay: delay between polls in ms 2958 * 2959 * Wait for a flash operation to complete by polling the status register. 2960 */ 2961 static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 2962 { 2963 int ret; 2964 u32 status; 2965 2966 while (1) { 2967 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 2968 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 2969 return ret; 2970 if (!(status & 1)) 2971 return 0; 2972 if (--attempts == 0) 2973 return -EAGAIN; 2974 if (delay) 2975 msleep(delay); 2976 } 2977 } 2978 2979 /** 2980 * t4_read_flash - read words from serial flash 2981 * @adapter: the adapter 2982 * @addr: the start address for the read 2983 * @nwords: how many 32-bit words to read 2984 * @data: where to store the read data 2985 * @byte_oriented: whether to store data as bytes or as words 2986 * 2987 * Read the specified number of 32-bit words from the serial flash. 2988 * If @byte_oriented is set the read data is stored as a byte array 2989 * (i.e., big-endian), otherwise as 32-bit words in the platform's 2990 * natural endianness. 2991 */ 2992 int t4_read_flash(struct adapter *adapter, unsigned int addr, 2993 unsigned int nwords, u32 *data, int byte_oriented) 2994 { 2995 int ret; 2996 2997 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 2998 return -EINVAL; 2999 3000 addr = swab32(addr) | SF_RD_DATA_FAST; 3001 3002 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 3003 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 3004 return ret; 3005 3006 for ( ; nwords; nwords--, data++) { 3007 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 3008 if (nwords == 1) 3009 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3010 if (ret) 3011 return ret; 3012 if (byte_oriented) 3013 *data = (__force __u32)(cpu_to_be32(*data)); 3014 } 3015 return 0; 3016 } 3017 3018 /** 3019 * t4_write_flash - write up to a page of data to the serial flash 3020 * @adapter: the adapter 3021 * @addr: the start address to write 3022 * @n: length of data to write in bytes 3023 * @data: the data to write 3024 * 3025 * Writes up to a page of data (256 bytes) to the serial flash starting 3026 * at the given address. All the data must be written to the same page. 3027 */ 3028 static int t4_write_flash(struct adapter *adapter, unsigned int addr, 3029 unsigned int n, const u8 *data) 3030 { 3031 int ret; 3032 u32 buf[64]; 3033 unsigned int i, c, left, val, offset = addr & 0xff; 3034 3035 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 3036 return -EINVAL; 3037 3038 val = swab32(addr) | SF_PROG_PAGE; 3039 3040 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3041 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 3042 goto unlock; 3043 3044 for (left = n; left; left -= c) { 3045 c = min(left, 4U); 3046 for (val = 0, i = 0; i < c; ++i) 3047 val = (val << 8) + *data++; 3048 3049 ret = sf1_write(adapter, c, c != left, 1, val); 3050 if (ret) 3051 goto unlock; 3052 } 3053 ret = flash_wait_op(adapter, 8, 1); 3054 if (ret) 3055 goto unlock; 3056 3057 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3058 3059 /* Read the page to verify the write succeeded */ 3060 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); 3061 if (ret) 3062 return ret; 3063 3064 if (memcmp(data - n, (u8 *)buf + offset, n)) { 3065 dev_err(adapter->pdev_dev, 3066 "failed to correctly write the flash page at %#x\n", 3067 addr); 3068 return -EIO; 3069 } 3070 return 0; 3071 3072 unlock: 3073 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3074 return ret; 3075 } 3076 3077 /** 3078 * t4_get_fw_version - read the firmware version 3079 * @adapter: the adapter 3080 * @vers: where to place the version 3081 * 3082 * Reads the FW version from flash. 3083 */ 3084 int t4_get_fw_version(struct adapter *adapter, u32 *vers) 3085 { 3086 return t4_read_flash(adapter, FLASH_FW_START + 3087 offsetof(struct fw_hdr, fw_ver), 1, 3088 vers, 0); 3089 } 3090 3091 /** 3092 * t4_get_bs_version - read the firmware bootstrap version 3093 * @adapter: the adapter 3094 * @vers: where to place the version 3095 * 3096 * Reads the FW Bootstrap version from flash. 3097 */ 3098 int t4_get_bs_version(struct adapter *adapter, u32 *vers) 3099 { 3100 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START + 3101 offsetof(struct fw_hdr, fw_ver), 1, 3102 vers, 0); 3103 } 3104 3105 /** 3106 * t4_get_tp_version - read the TP microcode version 3107 * @adapter: the adapter 3108 * @vers: where to place the version 3109 * 3110 * Reads the TP microcode version from flash. 3111 */ 3112 int t4_get_tp_version(struct adapter *adapter, u32 *vers) 3113 { 3114 return t4_read_flash(adapter, FLASH_FW_START + 3115 offsetof(struct fw_hdr, tp_microcode_ver), 3116 1, vers, 0); 3117 } 3118 3119 /** 3120 * t4_get_exprom_version - return the Expansion ROM version (if any) 3121 * @adapter: the adapter 3122 * @vers: where to place the version 3123 * 3124 * Reads the Expansion ROM header from FLASH and returns the version 3125 * number (if present) through the @vers return value pointer. We return 3126 * this in the Firmware Version Format since it's convenient. Return 3127 * 0 on success, -ENOENT if no Expansion ROM is present. 3128 */ 3129 int t4_get_exprom_version(struct adapter *adap, u32 *vers) 3130 { 3131 struct exprom_header { 3132 unsigned char hdr_arr[16]; /* must start with 0x55aa */ 3133 unsigned char hdr_ver[4]; /* Expansion ROM version */ 3134 } *hdr; 3135 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), 3136 sizeof(u32))]; 3137 int ret; 3138 3139 ret = t4_read_flash(adap, FLASH_EXP_ROM_START, 3140 ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 3141 0); 3142 if (ret) 3143 return ret; 3144 3145 hdr = (struct exprom_header *)exprom_header_buf; 3146 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) 3147 return -ENOENT; 3148 3149 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) | 3150 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) | 3151 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) | 3152 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3])); 3153 return 0; 3154 } 3155 3156 /** 3157 * t4_get_vpd_version - return the VPD version 3158 * @adapter: the adapter 3159 * @vers: where to place the version 3160 * 3161 * Reads the VPD via the Firmware interface (thus this can only be called 3162 * once we're ready to issue Firmware commands). The format of the 3163 * VPD version is adapter specific. Returns 0 on success, an error on 3164 * failure. 3165 * 3166 * Note that early versions of the Firmware didn't include the ability 3167 * to retrieve the VPD version, so we zero-out the return-value parameter 3168 * in that case to avoid leaving it with garbage in it. 3169 * 3170 * Also note that the Firmware will return its cached copy of the VPD 3171 * Revision ID, not the actual Revision ID as written in the Serial 3172 * EEPROM. This is only an issue if a new VPD has been written and the 3173 * Firmware/Chip haven't yet gone through a RESET sequence. So it's best 3174 * to defer calling this routine till after a FW_RESET_CMD has been issued 3175 * if the Host Driver will be performing a full adapter initialization. 3176 */ 3177 int t4_get_vpd_version(struct adapter *adapter, u32 *vers) 3178 { 3179 u32 vpdrev_param; 3180 int ret; 3181 3182 vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3183 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV)); 3184 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3185 1, &vpdrev_param, vers); 3186 if (ret) 3187 *vers = 0; 3188 return ret; 3189 } 3190 3191 /** 3192 * t4_get_scfg_version - return the Serial Configuration version 3193 * @adapter: the adapter 3194 * @vers: where to place the version 3195 * 3196 * Reads the Serial Configuration Version via the Firmware interface 3197 * (thus this can only be called once we're ready to issue Firmware 3198 * commands). The format of the Serial Configuration version is 3199 * adapter specific. Returns 0 on success, an error on failure. 3200 * 3201 * Note that early versions of the Firmware didn't include the ability 3202 * to retrieve the Serial Configuration version, so we zero-out the 3203 * return-value parameter in that case to avoid leaving it with 3204 * garbage in it. 3205 * 3206 * Also note that the Firmware will return its cached copy of the Serial 3207 * Initialization Revision ID, not the actual Revision ID as written in 3208 * the Serial EEPROM. This is only an issue if a new VPD has been written 3209 * and the Firmware/Chip haven't yet gone through a RESET sequence. So 3210 * it's best to defer calling this routine till after a FW_RESET_CMD has 3211 * been issued if the Host Driver will be performing a full adapter 3212 * initialization. 3213 */ 3214 int t4_get_scfg_version(struct adapter *adapter, u32 *vers) 3215 { 3216 u32 scfgrev_param; 3217 int ret; 3218 3219 scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3220 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV)); 3221 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3222 1, &scfgrev_param, vers); 3223 if (ret) 3224 *vers = 0; 3225 return ret; 3226 } 3227 3228 /** 3229 * t4_get_version_info - extract various chip/firmware version information 3230 * @adapter: the adapter 3231 * 3232 * Reads various chip/firmware version numbers and stores them into the 3233 * adapter Adapter Parameters structure. If any of the efforts fails 3234 * the first failure will be returned, but all of the version numbers 3235 * will be read. 3236 */ 3237 int t4_get_version_info(struct adapter *adapter) 3238 { 3239 int ret = 0; 3240 3241 #define FIRST_RET(__getvinfo) \ 3242 do { \ 3243 int __ret = __getvinfo; \ 3244 if (__ret && !ret) \ 3245 ret = __ret; \ 3246 } while (0) 3247 3248 FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers)); 3249 FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers)); 3250 FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers)); 3251 FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers)); 3252 FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers)); 3253 FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers)); 3254 3255 #undef FIRST_RET 3256 return ret; 3257 } 3258 3259 /** 3260 * t4_dump_version_info - dump all of the adapter configuration IDs 3261 * @adapter: the adapter 3262 * 3263 * Dumps all of the various bits of adapter configuration version/revision 3264 * IDs information. This is typically called at some point after 3265 * t4_get_version_info() has been called. 3266 */ 3267 void t4_dump_version_info(struct adapter *adapter) 3268 { 3269 /* Device information */ 3270 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n", 3271 adapter->params.vpd.id, 3272 CHELSIO_CHIP_RELEASE(adapter->params.chip)); 3273 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n", 3274 adapter->params.vpd.sn, adapter->params.vpd.pn); 3275 3276 /* Firmware Version */ 3277 if (!adapter->params.fw_vers) 3278 dev_warn(adapter->pdev_dev, "No firmware loaded\n"); 3279 else 3280 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n", 3281 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers), 3282 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers), 3283 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers), 3284 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers)); 3285 3286 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap 3287 * Firmware, so dev_info() is more appropriate here.) 3288 */ 3289 if (!adapter->params.bs_vers) 3290 dev_info(adapter->pdev_dev, "No bootstrap loaded\n"); 3291 else 3292 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n", 3293 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers), 3294 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers), 3295 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers), 3296 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers)); 3297 3298 /* TP Microcode Version */ 3299 if (!adapter->params.tp_vers) 3300 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n"); 3301 else 3302 dev_info(adapter->pdev_dev, 3303 "TP Microcode version: %u.%u.%u.%u\n", 3304 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers), 3305 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers), 3306 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers), 3307 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers)); 3308 3309 /* Expansion ROM version */ 3310 if (!adapter->params.er_vers) 3311 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n"); 3312 else 3313 dev_info(adapter->pdev_dev, 3314 "Expansion ROM version: %u.%u.%u.%u\n", 3315 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers), 3316 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers), 3317 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers), 3318 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers)); 3319 3320 /* Serial Configuration version */ 3321 dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n", 3322 adapter->params.scfg_vers); 3323 3324 /* VPD Version */ 3325 dev_info(adapter->pdev_dev, "VPD version: %#x\n", 3326 adapter->params.vpd_vers); 3327 } 3328 3329 /** 3330 * t4_check_fw_version - check if the FW is supported with this driver 3331 * @adap: the adapter 3332 * 3333 * Checks if an adapter's FW is compatible with the driver. Returns 0 3334 * if there's exact match, a negative error if the version could not be 3335 * read or there's a major version mismatch 3336 */ 3337 int t4_check_fw_version(struct adapter *adap) 3338 { 3339 int i, ret, major, minor, micro; 3340 int exp_major, exp_minor, exp_micro; 3341 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 3342 3343 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3344 /* Try multiple times before returning error */ 3345 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++) 3346 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3347 3348 if (ret) 3349 return ret; 3350 3351 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers); 3352 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers); 3353 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers); 3354 3355 switch (chip_version) { 3356 case CHELSIO_T4: 3357 exp_major = T4FW_MIN_VERSION_MAJOR; 3358 exp_minor = T4FW_MIN_VERSION_MINOR; 3359 exp_micro = T4FW_MIN_VERSION_MICRO; 3360 break; 3361 case CHELSIO_T5: 3362 exp_major = T5FW_MIN_VERSION_MAJOR; 3363 exp_minor = T5FW_MIN_VERSION_MINOR; 3364 exp_micro = T5FW_MIN_VERSION_MICRO; 3365 break; 3366 case CHELSIO_T6: 3367 exp_major = T6FW_MIN_VERSION_MAJOR; 3368 exp_minor = T6FW_MIN_VERSION_MINOR; 3369 exp_micro = T6FW_MIN_VERSION_MICRO; 3370 break; 3371 default: 3372 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n", 3373 adap->chip); 3374 return -EINVAL; 3375 } 3376 3377 if (major < exp_major || (major == exp_major && minor < exp_minor) || 3378 (major == exp_major && minor == exp_minor && micro < exp_micro)) { 3379 dev_err(adap->pdev_dev, 3380 "Card has firmware version %u.%u.%u, minimum " 3381 "supported firmware is %u.%u.%u.\n", major, minor, 3382 micro, exp_major, exp_minor, exp_micro); 3383 return -EFAULT; 3384 } 3385 return 0; 3386 } 3387 3388 /* Is the given firmware API compatible with the one the driver was compiled 3389 * with? 3390 */ 3391 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) 3392 { 3393 3394 /* short circuit if it's the exact same firmware version */ 3395 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 3396 return 1; 3397 3398 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 3399 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 3400 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) 3401 return 1; 3402 #undef SAME_INTF 3403 3404 return 0; 3405 } 3406 3407 /* The firmware in the filesystem is usable, but should it be installed? 3408 * This routine explains itself in detail if it indicates the filesystem 3409 * firmware should be installed. 3410 */ 3411 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable, 3412 int k, int c) 3413 { 3414 const char *reason; 3415 3416 if (!card_fw_usable) { 3417 reason = "incompatible or unusable"; 3418 goto install; 3419 } 3420 3421 if (k > c) { 3422 reason = "older than the version supported with this driver"; 3423 goto install; 3424 } 3425 3426 return 0; 3427 3428 install: 3429 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, " 3430 "installing firmware %u.%u.%u.%u on card.\n", 3431 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3432 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason, 3433 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3434 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3435 3436 return 1; 3437 } 3438 3439 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info, 3440 const u8 *fw_data, unsigned int fw_size, 3441 struct fw_hdr *card_fw, enum dev_state state, 3442 int *reset) 3443 { 3444 int ret, card_fw_usable, fs_fw_usable; 3445 const struct fw_hdr *fs_fw; 3446 const struct fw_hdr *drv_fw; 3447 3448 drv_fw = &fw_info->fw_hdr; 3449 3450 /* Read the header of the firmware on the card */ 3451 ret = -t4_read_flash(adap, FLASH_FW_START, 3452 sizeof(*card_fw) / sizeof(uint32_t), 3453 (uint32_t *)card_fw, 1); 3454 if (ret == 0) { 3455 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); 3456 } else { 3457 dev_err(adap->pdev_dev, 3458 "Unable to read card's firmware header: %d\n", ret); 3459 card_fw_usable = 0; 3460 } 3461 3462 if (fw_data != NULL) { 3463 fs_fw = (const void *)fw_data; 3464 fs_fw_usable = fw_compatible(drv_fw, fs_fw); 3465 } else { 3466 fs_fw = NULL; 3467 fs_fw_usable = 0; 3468 } 3469 3470 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && 3471 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { 3472 /* Common case: the firmware on the card is an exact match and 3473 * the filesystem one is an exact match too, or the filesystem 3474 * one is absent/incompatible. 3475 */ 3476 } else if (fs_fw_usable && state == DEV_STATE_UNINIT && 3477 should_install_fs_fw(adap, card_fw_usable, 3478 be32_to_cpu(fs_fw->fw_ver), 3479 be32_to_cpu(card_fw->fw_ver))) { 3480 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data, 3481 fw_size, 0); 3482 if (ret != 0) { 3483 dev_err(adap->pdev_dev, 3484 "failed to install firmware: %d\n", ret); 3485 goto bye; 3486 } 3487 3488 /* Installed successfully, update the cached header too. */ 3489 *card_fw = *fs_fw; 3490 card_fw_usable = 1; 3491 *reset = 0; /* already reset as part of load_fw */ 3492 } 3493 3494 if (!card_fw_usable) { 3495 uint32_t d, c, k; 3496 3497 d = be32_to_cpu(drv_fw->fw_ver); 3498 c = be32_to_cpu(card_fw->fw_ver); 3499 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; 3500 3501 dev_err(adap->pdev_dev, "Cannot find a usable firmware: " 3502 "chip state %d, " 3503 "driver compiled with %d.%d.%d.%d, " 3504 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", 3505 state, 3506 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d), 3507 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d), 3508 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3509 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), 3510 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3511 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3512 ret = EINVAL; 3513 goto bye; 3514 } 3515 3516 /* We're using whatever's on the card and it's known to be good. */ 3517 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver); 3518 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); 3519 3520 bye: 3521 return ret; 3522 } 3523 3524 /** 3525 * t4_flash_erase_sectors - erase a range of flash sectors 3526 * @adapter: the adapter 3527 * @start: the first sector to erase 3528 * @end: the last sector to erase 3529 * 3530 * Erases the sectors in the given inclusive range. 3531 */ 3532 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 3533 { 3534 int ret = 0; 3535 3536 if (end >= adapter->params.sf_nsec) 3537 return -EINVAL; 3538 3539 while (start <= end) { 3540 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3541 (ret = sf1_write(adapter, 4, 0, 1, 3542 SF_ERASE_SECTOR | (start << 8))) != 0 || 3543 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 3544 dev_err(adapter->pdev_dev, 3545 "erase of flash sector %d failed, error %d\n", 3546 start, ret); 3547 break; 3548 } 3549 start++; 3550 } 3551 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3552 return ret; 3553 } 3554 3555 /** 3556 * t4_flash_cfg_addr - return the address of the flash configuration file 3557 * @adapter: the adapter 3558 * 3559 * Return the address within the flash where the Firmware Configuration 3560 * File is stored. 3561 */ 3562 unsigned int t4_flash_cfg_addr(struct adapter *adapter) 3563 { 3564 if (adapter->params.sf_size == 0x100000) 3565 return FLASH_FPGA_CFG_START; 3566 else 3567 return FLASH_CFG_START; 3568 } 3569 3570 /* Return TRUE if the specified firmware matches the adapter. I.e. T4 3571 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead 3572 * and emit an error message for mismatched firmware to save our caller the 3573 * effort ... 3574 */ 3575 static bool t4_fw_matches_chip(const struct adapter *adap, 3576 const struct fw_hdr *hdr) 3577 { 3578 /* The expression below will return FALSE for any unsupported adapter 3579 * which will keep us "honest" in the future ... 3580 */ 3581 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) || 3582 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) || 3583 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6)) 3584 return true; 3585 3586 dev_err(adap->pdev_dev, 3587 "FW image (%d) is not suitable for this adapter (%d)\n", 3588 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip)); 3589 return false; 3590 } 3591 3592 /** 3593 * t4_load_fw - download firmware 3594 * @adap: the adapter 3595 * @fw_data: the firmware image to write 3596 * @size: image size 3597 * 3598 * Write the supplied firmware image to the card's serial flash. 3599 */ 3600 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 3601 { 3602 u32 csum; 3603 int ret, addr; 3604 unsigned int i; 3605 u8 first_page[SF_PAGE_SIZE]; 3606 const __be32 *p = (const __be32 *)fw_data; 3607 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 3608 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 3609 unsigned int fw_start_sec = FLASH_FW_START_SEC; 3610 unsigned int fw_size = FLASH_FW_MAX_SIZE; 3611 unsigned int fw_start = FLASH_FW_START; 3612 3613 if (!size) { 3614 dev_err(adap->pdev_dev, "FW image has no data\n"); 3615 return -EINVAL; 3616 } 3617 if (size & 511) { 3618 dev_err(adap->pdev_dev, 3619 "FW image size not multiple of 512 bytes\n"); 3620 return -EINVAL; 3621 } 3622 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) { 3623 dev_err(adap->pdev_dev, 3624 "FW image size differs from size in FW header\n"); 3625 return -EINVAL; 3626 } 3627 if (size > fw_size) { 3628 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n", 3629 fw_size); 3630 return -EFBIG; 3631 } 3632 if (!t4_fw_matches_chip(adap, hdr)) 3633 return -EINVAL; 3634 3635 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 3636 csum += be32_to_cpu(p[i]); 3637 3638 if (csum != 0xffffffff) { 3639 dev_err(adap->pdev_dev, 3640 "corrupted firmware image, checksum %#x\n", csum); 3641 return -EINVAL; 3642 } 3643 3644 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 3645 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 3646 if (ret) 3647 goto out; 3648 3649 /* 3650 * We write the correct version at the end so the driver can see a bad 3651 * version if the FW write fails. Start by writing a copy of the 3652 * first page with a bad version. 3653 */ 3654 memcpy(first_page, fw_data, SF_PAGE_SIZE); 3655 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); 3656 ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page); 3657 if (ret) 3658 goto out; 3659 3660 addr = fw_start; 3661 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 3662 addr += SF_PAGE_SIZE; 3663 fw_data += SF_PAGE_SIZE; 3664 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data); 3665 if (ret) 3666 goto out; 3667 } 3668 3669 ret = t4_write_flash(adap, 3670 fw_start + offsetof(struct fw_hdr, fw_ver), 3671 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver); 3672 out: 3673 if (ret) 3674 dev_err(adap->pdev_dev, "firmware download failed, error %d\n", 3675 ret); 3676 else 3677 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3678 return ret; 3679 } 3680 3681 /** 3682 * t4_phy_fw_ver - return current PHY firmware version 3683 * @adap: the adapter 3684 * @phy_fw_ver: return value buffer for PHY firmware version 3685 * 3686 * Returns the current version of external PHY firmware on the 3687 * adapter. 3688 */ 3689 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver) 3690 { 3691 u32 param, val; 3692 int ret; 3693 3694 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3695 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3696 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3697 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION)); 3698 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3699 ¶m, &val); 3700 if (ret < 0) 3701 return ret; 3702 *phy_fw_ver = val; 3703 return 0; 3704 } 3705 3706 /** 3707 * t4_load_phy_fw - download port PHY firmware 3708 * @adap: the adapter 3709 * @win: the PCI-E Memory Window index to use for t4_memory_rw() 3710 * @win_lock: the lock to use to guard the memory copy 3711 * @phy_fw_version: function to check PHY firmware versions 3712 * @phy_fw_data: the PHY firmware image to write 3713 * @phy_fw_size: image size 3714 * 3715 * Transfer the specified PHY firmware to the adapter. If a non-NULL 3716 * @phy_fw_version is supplied, then it will be used to determine if 3717 * it's necessary to perform the transfer by comparing the version 3718 * of any existing adapter PHY firmware with that of the passed in 3719 * PHY firmware image. If @win_lock is non-NULL then it will be used 3720 * around the call to t4_memory_rw() which transfers the PHY firmware 3721 * to the adapter. 3722 * 3723 * A negative error number will be returned if an error occurs. If 3724 * version number support is available and there's no need to upgrade 3725 * the firmware, 0 will be returned. If firmware is successfully 3726 * transferred to the adapter, 1 will be retured. 3727 * 3728 * NOTE: some adapters only have local RAM to store the PHY firmware. As 3729 * a result, a RESET of the adapter would cause that RAM to lose its 3730 * contents. Thus, loading PHY firmware on such adapters must happen 3731 * after any FW_RESET_CMDs ... 3732 */ 3733 int t4_load_phy_fw(struct adapter *adap, 3734 int win, spinlock_t *win_lock, 3735 int (*phy_fw_version)(const u8 *, size_t), 3736 const u8 *phy_fw_data, size_t phy_fw_size) 3737 { 3738 unsigned long mtype = 0, maddr = 0; 3739 u32 param, val; 3740 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0; 3741 int ret; 3742 3743 /* If we have version number support, then check to see if the adapter 3744 * already has up-to-date PHY firmware loaded. 3745 */ 3746 if (phy_fw_version) { 3747 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size); 3748 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3749 if (ret < 0) 3750 return ret; 3751 3752 if (cur_phy_fw_ver >= new_phy_fw_vers) { 3753 CH_WARN(adap, "PHY Firmware already up-to-date, " 3754 "version %#x\n", cur_phy_fw_ver); 3755 return 0; 3756 } 3757 } 3758 3759 /* Ask the firmware where it wants us to copy the PHY firmware image. 3760 * The size of the file requires a special version of the READ coommand 3761 * which will pass the file size via the values field in PARAMS_CMD and 3762 * retrieve the return value from firmware and place it in the same 3763 * buffer values 3764 */ 3765 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3766 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3767 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3768 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3769 val = phy_fw_size; 3770 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1, 3771 ¶m, &val, 1, true); 3772 if (ret < 0) 3773 return ret; 3774 mtype = val >> 8; 3775 maddr = (val & 0xff) << 16; 3776 3777 /* Copy the supplied PHY Firmware image to the adapter memory location 3778 * allocated by the adapter firmware. 3779 */ 3780 if (win_lock) 3781 spin_lock_bh(win_lock); 3782 ret = t4_memory_rw(adap, win, mtype, maddr, 3783 phy_fw_size, (__be32 *)phy_fw_data, 3784 T4_MEMORY_WRITE); 3785 if (win_lock) 3786 spin_unlock_bh(win_lock); 3787 if (ret) 3788 return ret; 3789 3790 /* Tell the firmware that the PHY firmware image has been written to 3791 * RAM and it can now start copying it over to the PHYs. The chip 3792 * firmware will RESET the affected PHYs as part of this operation 3793 * leaving them running the new PHY firmware image. 3794 */ 3795 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3796 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3797 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3798 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3799 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 3800 ¶m, &val, 30000); 3801 3802 /* If we have version number support, then check to see that the new 3803 * firmware got loaded properly. 3804 */ 3805 if (phy_fw_version) { 3806 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3807 if (ret < 0) 3808 return ret; 3809 3810 if (cur_phy_fw_ver != new_phy_fw_vers) { 3811 CH_WARN(adap, "PHY Firmware did not update: " 3812 "version on adapter %#x, " 3813 "version flashed %#x\n", 3814 cur_phy_fw_ver, new_phy_fw_vers); 3815 return -ENXIO; 3816 } 3817 } 3818 3819 return 1; 3820 } 3821 3822 /** 3823 * t4_fwcache - firmware cache operation 3824 * @adap: the adapter 3825 * @op : the operation (flush or flush and invalidate) 3826 */ 3827 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) 3828 { 3829 struct fw_params_cmd c; 3830 3831 memset(&c, 0, sizeof(c)); 3832 c.op_to_vfn = 3833 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 3834 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 3835 FW_PARAMS_CMD_PFN_V(adap->pf) | 3836 FW_PARAMS_CMD_VFN_V(0)); 3837 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 3838 c.param[0].mnem = 3839 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3840 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE)); 3841 c.param[0].val = (__force __be32)op; 3842 3843 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); 3844 } 3845 3846 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, 3847 unsigned int *pif_req_wrptr, 3848 unsigned int *pif_rsp_wrptr) 3849 { 3850 int i, j; 3851 u32 cfg, val, req, rsp; 3852 3853 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3854 if (cfg & LADBGEN_F) 3855 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3856 3857 val = t4_read_reg(adap, CIM_DEBUGSTS_A); 3858 req = POLADBGWRPTR_G(val); 3859 rsp = PILADBGWRPTR_G(val); 3860 if (pif_req_wrptr) 3861 *pif_req_wrptr = req; 3862 if (pif_rsp_wrptr) 3863 *pif_rsp_wrptr = rsp; 3864 3865 for (i = 0; i < CIM_PIFLA_SIZE; i++) { 3866 for (j = 0; j < 6; j++) { 3867 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) | 3868 PILADBGRDPTR_V(rsp)); 3869 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A); 3870 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A); 3871 req++; 3872 rsp++; 3873 } 3874 req = (req + 2) & POLADBGRDPTR_M; 3875 rsp = (rsp + 2) & PILADBGRDPTR_M; 3876 } 3877 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3878 } 3879 3880 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) 3881 { 3882 u32 cfg; 3883 int i, j, idx; 3884 3885 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3886 if (cfg & LADBGEN_F) 3887 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3888 3889 for (i = 0; i < CIM_MALA_SIZE; i++) { 3890 for (j = 0; j < 5; j++) { 3891 idx = 8 * i + j; 3892 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) | 3893 PILADBGRDPTR_V(idx)); 3894 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A); 3895 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A); 3896 } 3897 } 3898 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3899 } 3900 3901 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) 3902 { 3903 unsigned int i, j; 3904 3905 for (i = 0; i < 8; i++) { 3906 u32 *p = la_buf + i; 3907 3908 t4_write_reg(adap, ULP_RX_LA_CTL_A, i); 3909 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A); 3910 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j); 3911 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) 3912 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A); 3913 } 3914 } 3915 3916 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \ 3917 FW_PORT_CAP32_ANEG) 3918 3919 /** 3920 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits 3921 * @caps16: a 16-bit Port Capabilities value 3922 * 3923 * Returns the equivalent 32-bit Port Capabilities value. 3924 */ 3925 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16) 3926 { 3927 fw_port_cap32_t caps32 = 0; 3928 3929 #define CAP16_TO_CAP32(__cap) \ 3930 do { \ 3931 if (caps16 & FW_PORT_CAP_##__cap) \ 3932 caps32 |= FW_PORT_CAP32_##__cap; \ 3933 } while (0) 3934 3935 CAP16_TO_CAP32(SPEED_100M); 3936 CAP16_TO_CAP32(SPEED_1G); 3937 CAP16_TO_CAP32(SPEED_25G); 3938 CAP16_TO_CAP32(SPEED_10G); 3939 CAP16_TO_CAP32(SPEED_40G); 3940 CAP16_TO_CAP32(SPEED_100G); 3941 CAP16_TO_CAP32(FC_RX); 3942 CAP16_TO_CAP32(FC_TX); 3943 CAP16_TO_CAP32(ANEG); 3944 CAP16_TO_CAP32(MDIX); 3945 CAP16_TO_CAP32(MDIAUTO); 3946 CAP16_TO_CAP32(FEC_RS); 3947 CAP16_TO_CAP32(FEC_BASER_RS); 3948 CAP16_TO_CAP32(802_3_PAUSE); 3949 CAP16_TO_CAP32(802_3_ASM_DIR); 3950 3951 #undef CAP16_TO_CAP32 3952 3953 return caps32; 3954 } 3955 3956 /** 3957 * fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits 3958 * @caps32: a 32-bit Port Capabilities value 3959 * 3960 * Returns the equivalent 16-bit Port Capabilities value. Note that 3961 * not all 32-bit Port Capabilities can be represented in the 16-bit 3962 * Port Capabilities and some fields/values may not make it. 3963 */ 3964 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32) 3965 { 3966 fw_port_cap16_t caps16 = 0; 3967 3968 #define CAP32_TO_CAP16(__cap) \ 3969 do { \ 3970 if (caps32 & FW_PORT_CAP32_##__cap) \ 3971 caps16 |= FW_PORT_CAP_##__cap; \ 3972 } while (0) 3973 3974 CAP32_TO_CAP16(SPEED_100M); 3975 CAP32_TO_CAP16(SPEED_1G); 3976 CAP32_TO_CAP16(SPEED_10G); 3977 CAP32_TO_CAP16(SPEED_25G); 3978 CAP32_TO_CAP16(SPEED_40G); 3979 CAP32_TO_CAP16(SPEED_100G); 3980 CAP32_TO_CAP16(FC_RX); 3981 CAP32_TO_CAP16(FC_TX); 3982 CAP32_TO_CAP16(802_3_PAUSE); 3983 CAP32_TO_CAP16(802_3_ASM_DIR); 3984 CAP32_TO_CAP16(ANEG); 3985 CAP32_TO_CAP16(MDIX); 3986 CAP32_TO_CAP16(MDIAUTO); 3987 CAP32_TO_CAP16(FEC_RS); 3988 CAP32_TO_CAP16(FEC_BASER_RS); 3989 3990 #undef CAP32_TO_CAP16 3991 3992 return caps16; 3993 } 3994 3995 /* Translate Firmware Port Capabilities Pause specification to Common Code */ 3996 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause) 3997 { 3998 enum cc_pause cc_pause = 0; 3999 4000 if (fw_pause & FW_PORT_CAP32_FC_RX) 4001 cc_pause |= PAUSE_RX; 4002 if (fw_pause & FW_PORT_CAP32_FC_TX) 4003 cc_pause |= PAUSE_TX; 4004 4005 return cc_pause; 4006 } 4007 4008 /* Translate Common Code Pause specification into Firmware Port Capabilities */ 4009 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause) 4010 { 4011 fw_port_cap32_t fw_pause = 0; 4012 4013 if (cc_pause & PAUSE_RX) 4014 fw_pause |= FW_PORT_CAP32_FC_RX; 4015 if (cc_pause & PAUSE_TX) 4016 fw_pause |= FW_PORT_CAP32_FC_TX; 4017 4018 return fw_pause; 4019 } 4020 4021 /* Translate Firmware Forward Error Correction specification to Common Code */ 4022 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec) 4023 { 4024 enum cc_fec cc_fec = 0; 4025 4026 if (fw_fec & FW_PORT_CAP32_FEC_RS) 4027 cc_fec |= FEC_RS; 4028 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) 4029 cc_fec |= FEC_BASER_RS; 4030 4031 return cc_fec; 4032 } 4033 4034 /* Translate Common Code Forward Error Correction specification to Firmware */ 4035 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec) 4036 { 4037 fw_port_cap32_t fw_fec = 0; 4038 4039 if (cc_fec & FEC_RS) 4040 fw_fec |= FW_PORT_CAP32_FEC_RS; 4041 if (cc_fec & FEC_BASER_RS) 4042 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS; 4043 4044 return fw_fec; 4045 } 4046 4047 /** 4048 * t4_link_l1cfg - apply link configuration to MAC/PHY 4049 * @adapter: the adapter 4050 * @mbox: the Firmware Mailbox to use 4051 * @port: the Port ID 4052 * @lc: the Port's Link Configuration 4053 * 4054 * Set up a port's MAC and PHY according to a desired link configuration. 4055 * - If the PHY can auto-negotiate first decide what to advertise, then 4056 * enable/disable auto-negotiation as desired, and reset. 4057 * - If the PHY does not auto-negotiate just reset it. 4058 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 4059 * otherwise do it later based on the outcome of auto-negotiation. 4060 */ 4061 int t4_link_l1cfg(struct adapter *adapter, unsigned int mbox, 4062 unsigned int port, struct link_config *lc) 4063 { 4064 unsigned int fw_caps = adapter->params.fw_caps_support; 4065 struct fw_port_cmd cmd; 4066 unsigned int fw_mdi = FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO); 4067 fw_port_cap32_t fw_fc, cc_fec, fw_fec, rcap; 4068 4069 lc->link_ok = 0; 4070 4071 /* Convert driver coding of Pause Frame Flow Control settings into the 4072 * Firmware's API. 4073 */ 4074 fw_fc = cc_to_fwcap_pause(lc->requested_fc); 4075 4076 /* Convert Common Code Forward Error Control settings into the 4077 * Firmware's API. If the current Requested FEC has "Automatic" 4078 * (IEEE 802.3) specified, then we use whatever the Firmware 4079 * sent us as part of it's IEEE 802.3-based interpratation of 4080 * the Transceiver Module EPROM FEC parameters. Otherwise we 4081 * use whatever is in the current Requested FEC settings. 4082 */ 4083 if (lc->requested_fec & FEC_AUTO) 4084 cc_fec = fwcap_to_cc_fec(lc->def_acaps); 4085 else 4086 cc_fec = lc->requested_fec; 4087 fw_fec = cc_to_fwcap_fec(cc_fec); 4088 4089 /* Figure out what our Requested Port Capabilities are going to be. 4090 */ 4091 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 4092 rcap = (lc->pcaps & ADVERT_MASK) | fw_fc | fw_fec; 4093 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4094 lc->fec = cc_fec; 4095 } else if (lc->autoneg == AUTONEG_DISABLE) { 4096 rcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi; 4097 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4098 lc->fec = cc_fec; 4099 } else { 4100 rcap = lc->acaps | fw_fc | fw_fec | fw_mdi; 4101 } 4102 4103 /* And send that on to the Firmware ... 4104 */ 4105 memset(&cmd, 0, sizeof(cmd)); 4106 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4107 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4108 FW_PORT_CMD_PORTID_V(port)); 4109 cmd.action_to_len16 = 4110 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4111 ? FW_PORT_ACTION_L1_CFG 4112 : FW_PORT_ACTION_L1_CFG32) | 4113 FW_LEN16(cmd)); 4114 if (fw_caps == FW_CAPS16) 4115 cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap)); 4116 else 4117 cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap); 4118 return t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 4119 } 4120 4121 /** 4122 * t4_restart_aneg - restart autonegotiation 4123 * @adap: the adapter 4124 * @mbox: mbox to use for the FW command 4125 * @port: the port id 4126 * 4127 * Restarts autonegotiation for the selected port. 4128 */ 4129 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 4130 { 4131 struct fw_port_cmd c; 4132 4133 memset(&c, 0, sizeof(c)); 4134 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4135 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4136 FW_PORT_CMD_PORTID_V(port)); 4137 c.action_to_len16 = 4138 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) | 4139 FW_LEN16(c)); 4140 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP32_ANEG); 4141 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4142 } 4143 4144 typedef void (*int_handler_t)(struct adapter *adap); 4145 4146 struct intr_info { 4147 unsigned int mask; /* bits to check in interrupt status */ 4148 const char *msg; /* message to print or NULL */ 4149 short stat_idx; /* stat counter to increment or -1 */ 4150 unsigned short fatal; /* whether the condition reported is fatal */ 4151 int_handler_t int_handler; /* platform-specific int handler */ 4152 }; 4153 4154 /** 4155 * t4_handle_intr_status - table driven interrupt handler 4156 * @adapter: the adapter that generated the interrupt 4157 * @reg: the interrupt status register to process 4158 * @acts: table of interrupt actions 4159 * 4160 * A table driven interrupt handler that applies a set of masks to an 4161 * interrupt status word and performs the corresponding actions if the 4162 * interrupts described by the mask have occurred. The actions include 4163 * optionally emitting a warning or alert message. The table is terminated 4164 * by an entry specifying mask 0. Returns the number of fatal interrupt 4165 * conditions. 4166 */ 4167 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, 4168 const struct intr_info *acts) 4169 { 4170 int fatal = 0; 4171 unsigned int mask = 0; 4172 unsigned int status = t4_read_reg(adapter, reg); 4173 4174 for ( ; acts->mask; ++acts) { 4175 if (!(status & acts->mask)) 4176 continue; 4177 if (acts->fatal) { 4178 fatal++; 4179 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4180 status & acts->mask); 4181 } else if (acts->msg && printk_ratelimit()) 4182 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4183 status & acts->mask); 4184 if (acts->int_handler) 4185 acts->int_handler(adapter); 4186 mask |= acts->mask; 4187 } 4188 status &= mask; 4189 if (status) /* clear processed interrupts */ 4190 t4_write_reg(adapter, reg, status); 4191 return fatal; 4192 } 4193 4194 /* 4195 * Interrupt handler for the PCIE module. 4196 */ 4197 static void pcie_intr_handler(struct adapter *adapter) 4198 { 4199 static const struct intr_info sysbus_intr_info[] = { 4200 { RNPP_F, "RXNP array parity error", -1, 1 }, 4201 { RPCP_F, "RXPC array parity error", -1, 1 }, 4202 { RCIP_F, "RXCIF array parity error", -1, 1 }, 4203 { RCCP_F, "Rx completions control array parity error", -1, 1 }, 4204 { RFTP_F, "RXFT array parity error", -1, 1 }, 4205 { 0 } 4206 }; 4207 static const struct intr_info pcie_port_intr_info[] = { 4208 { TPCP_F, "TXPC array parity error", -1, 1 }, 4209 { TNPP_F, "TXNP array parity error", -1, 1 }, 4210 { TFTP_F, "TXFT array parity error", -1, 1 }, 4211 { TCAP_F, "TXCA array parity error", -1, 1 }, 4212 { TCIP_F, "TXCIF array parity error", -1, 1 }, 4213 { RCAP_F, "RXCA array parity error", -1, 1 }, 4214 { OTDD_F, "outbound request TLP discarded", -1, 1 }, 4215 { RDPE_F, "Rx data parity error", -1, 1 }, 4216 { TDUE_F, "Tx uncorrectable data error", -1, 1 }, 4217 { 0 } 4218 }; 4219 static const struct intr_info pcie_intr_info[] = { 4220 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 }, 4221 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 }, 4222 { MSIDATAPERR_F, "MSI data parity error", -1, 1 }, 4223 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4224 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4225 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4226 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4227 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 }, 4228 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 }, 4229 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4230 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 }, 4231 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4232 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4233 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 }, 4234 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4235 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4236 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4237 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4238 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4239 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4240 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4241 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 }, 4242 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 }, 4243 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4244 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 }, 4245 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 }, 4246 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 }, 4247 { PCIESINT_F, "PCI core secondary fault", -1, 1 }, 4248 { PCIEPINT_F, "PCI core primary fault", -1, 1 }, 4249 { UNXSPLCPLERR_F, "PCI unexpected split completion error", 4250 -1, 0 }, 4251 { 0 } 4252 }; 4253 4254 static struct intr_info t5_pcie_intr_info[] = { 4255 { MSTGRPPERR_F, "Master Response Read Queue parity error", 4256 -1, 1 }, 4257 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 }, 4258 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 }, 4259 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4260 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4261 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4262 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4263 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error", 4264 -1, 1 }, 4265 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error", 4266 -1, 1 }, 4267 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4268 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 }, 4269 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4270 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4271 { DREQWRPERR_F, "PCI DMA channel write request parity error", 4272 -1, 1 }, 4273 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4274 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4275 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4276 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4277 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4278 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4279 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4280 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 }, 4281 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 }, 4282 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4283 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error", 4284 -1, 1 }, 4285 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error", 4286 -1, 1 }, 4287 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 }, 4288 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 }, 4289 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 }, 4290 { READRSPERR_F, "Outbound read error", -1, 0 }, 4291 { 0 } 4292 }; 4293 4294 int fat; 4295 4296 if (is_t4(adapter->params.chip)) 4297 fat = t4_handle_intr_status(adapter, 4298 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A, 4299 sysbus_intr_info) + 4300 t4_handle_intr_status(adapter, 4301 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A, 4302 pcie_port_intr_info) + 4303 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4304 pcie_intr_info); 4305 else 4306 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4307 t5_pcie_intr_info); 4308 4309 if (fat) 4310 t4_fatal_err(adapter); 4311 } 4312 4313 /* 4314 * TP interrupt handler. 4315 */ 4316 static void tp_intr_handler(struct adapter *adapter) 4317 { 4318 static const struct intr_info tp_intr_info[] = { 4319 { 0x3fffffff, "TP parity error", -1, 1 }, 4320 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 }, 4321 { 0 } 4322 }; 4323 4324 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info)) 4325 t4_fatal_err(adapter); 4326 } 4327 4328 /* 4329 * SGE interrupt handler. 4330 */ 4331 static void sge_intr_handler(struct adapter *adapter) 4332 { 4333 u64 v; 4334 u32 err; 4335 4336 static const struct intr_info sge_intr_info[] = { 4337 { ERR_CPL_EXCEED_IQE_SIZE_F, 4338 "SGE received CPL exceeding IQE size", -1, 1 }, 4339 { ERR_INVALID_CIDX_INC_F, 4340 "SGE GTS CIDX increment too large", -1, 0 }, 4341 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 }, 4342 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full }, 4343 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F, 4344 "SGE IQID > 1023 received CPL for FL", -1, 0 }, 4345 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1, 4346 0 }, 4347 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1, 4348 0 }, 4349 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1, 4350 0 }, 4351 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1, 4352 0 }, 4353 { ERR_ING_CTXT_PRIO_F, 4354 "SGE too many priority ingress contexts", -1, 0 }, 4355 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 }, 4356 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 }, 4357 { 0 } 4358 }; 4359 4360 static struct intr_info t4t5_sge_intr_info[] = { 4361 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped }, 4362 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full }, 4363 { ERR_EGR_CTXT_PRIO_F, 4364 "SGE too many priority egress contexts", -1, 0 }, 4365 { 0 } 4366 }; 4367 4368 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) | 4369 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32); 4370 if (v) { 4371 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n", 4372 (unsigned long long)v); 4373 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v); 4374 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32); 4375 } 4376 4377 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info); 4378 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4379 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, 4380 t4t5_sge_intr_info); 4381 4382 err = t4_read_reg(adapter, SGE_ERROR_STATS_A); 4383 if (err & ERROR_QID_VALID_F) { 4384 dev_err(adapter->pdev_dev, "SGE error for queue %u\n", 4385 ERROR_QID_G(err)); 4386 if (err & UNCAPTURED_ERROR_F) 4387 dev_err(adapter->pdev_dev, 4388 "SGE UNCAPTURED_ERROR set (clearing)\n"); 4389 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F | 4390 UNCAPTURED_ERROR_F); 4391 } 4392 4393 if (v != 0) 4394 t4_fatal_err(adapter); 4395 } 4396 4397 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\ 4398 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F) 4399 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\ 4400 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F) 4401 4402 /* 4403 * CIM interrupt handler. 4404 */ 4405 static void cim_intr_handler(struct adapter *adapter) 4406 { 4407 static const struct intr_info cim_intr_info[] = { 4408 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 }, 4409 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, 4410 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, 4411 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 }, 4412 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 }, 4413 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 }, 4414 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 }, 4415 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 }, 4416 { 0 } 4417 }; 4418 static const struct intr_info cim_upintr_info[] = { 4419 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 }, 4420 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 }, 4421 { ILLWRINT_F, "CIM illegal write", -1, 1 }, 4422 { ILLRDINT_F, "CIM illegal read", -1, 1 }, 4423 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 }, 4424 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 }, 4425 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 }, 4426 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 }, 4427 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 }, 4428 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 }, 4429 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 }, 4430 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 }, 4431 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 }, 4432 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 }, 4433 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 }, 4434 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 }, 4435 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 }, 4436 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 }, 4437 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 }, 4438 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 }, 4439 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 }, 4440 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 }, 4441 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 }, 4442 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 }, 4443 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 }, 4444 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 }, 4445 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 }, 4446 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 }, 4447 { 0 } 4448 }; 4449 4450 u32 val, fw_err; 4451 int fat; 4452 4453 fw_err = t4_read_reg(adapter, PCIE_FW_A); 4454 if (fw_err & PCIE_FW_ERR_F) 4455 t4_report_fw_error(adapter); 4456 4457 /* When the Firmware detects an internal error which normally 4458 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt 4459 * in order to make sure the Host sees the Firmware Crash. So 4460 * if we have a Timer0 interrupt and don't see a Firmware Crash, 4461 * ignore the Timer0 interrupt. 4462 */ 4463 4464 val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A); 4465 if (val & TIMER0INT_F) 4466 if (!(fw_err & PCIE_FW_ERR_F) || 4467 (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH)) 4468 t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A, 4469 TIMER0INT_F); 4470 4471 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A, 4472 cim_intr_info) + 4473 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A, 4474 cim_upintr_info); 4475 if (fat) 4476 t4_fatal_err(adapter); 4477 } 4478 4479 /* 4480 * ULP RX interrupt handler. 4481 */ 4482 static void ulprx_intr_handler(struct adapter *adapter) 4483 { 4484 static const struct intr_info ulprx_intr_info[] = { 4485 { 0x1800000, "ULPRX context error", -1, 1 }, 4486 { 0x7fffff, "ULPRX parity error", -1, 1 }, 4487 { 0 } 4488 }; 4489 4490 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info)) 4491 t4_fatal_err(adapter); 4492 } 4493 4494 /* 4495 * ULP TX interrupt handler. 4496 */ 4497 static void ulptx_intr_handler(struct adapter *adapter) 4498 { 4499 static const struct intr_info ulptx_intr_info[] = { 4500 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1, 4501 0 }, 4502 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1, 4503 0 }, 4504 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1, 4505 0 }, 4506 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1, 4507 0 }, 4508 { 0xfffffff, "ULPTX parity error", -1, 1 }, 4509 { 0 } 4510 }; 4511 4512 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info)) 4513 t4_fatal_err(adapter); 4514 } 4515 4516 /* 4517 * PM TX interrupt handler. 4518 */ 4519 static void pmtx_intr_handler(struct adapter *adapter) 4520 { 4521 static const struct intr_info pmtx_intr_info[] = { 4522 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 }, 4523 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 }, 4524 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 }, 4525 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 }, 4526 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 }, 4527 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 }, 4528 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", 4529 -1, 1 }, 4530 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 }, 4531 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1}, 4532 { 0 } 4533 }; 4534 4535 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info)) 4536 t4_fatal_err(adapter); 4537 } 4538 4539 /* 4540 * PM RX interrupt handler. 4541 */ 4542 static void pmrx_intr_handler(struct adapter *adapter) 4543 { 4544 static const struct intr_info pmrx_intr_info[] = { 4545 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 }, 4546 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 }, 4547 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 }, 4548 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", 4549 -1, 1 }, 4550 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 }, 4551 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1}, 4552 { 0 } 4553 }; 4554 4555 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info)) 4556 t4_fatal_err(adapter); 4557 } 4558 4559 /* 4560 * CPL switch interrupt handler. 4561 */ 4562 static void cplsw_intr_handler(struct adapter *adapter) 4563 { 4564 static const struct intr_info cplsw_intr_info[] = { 4565 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 }, 4566 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 }, 4567 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 }, 4568 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 }, 4569 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 }, 4570 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 }, 4571 { 0 } 4572 }; 4573 4574 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info)) 4575 t4_fatal_err(adapter); 4576 } 4577 4578 /* 4579 * LE interrupt handler. 4580 */ 4581 static void le_intr_handler(struct adapter *adap) 4582 { 4583 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); 4584 static const struct intr_info le_intr_info[] = { 4585 { LIPMISS_F, "LE LIP miss", -1, 0 }, 4586 { LIP0_F, "LE 0 LIP error", -1, 0 }, 4587 { PARITYERR_F, "LE parity error", -1, 1 }, 4588 { UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4589 { REQQPARERR_F, "LE request queue parity error", -1, 1 }, 4590 { 0 } 4591 }; 4592 4593 static struct intr_info t6_le_intr_info[] = { 4594 { T6_LIPMISS_F, "LE LIP miss", -1, 0 }, 4595 { T6_LIP0_F, "LE 0 LIP error", -1, 0 }, 4596 { TCAMINTPERR_F, "LE parity error", -1, 1 }, 4597 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4598 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 }, 4599 { 0 } 4600 }; 4601 4602 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A, 4603 (chip <= CHELSIO_T5) ? 4604 le_intr_info : t6_le_intr_info)) 4605 t4_fatal_err(adap); 4606 } 4607 4608 /* 4609 * MPS interrupt handler. 4610 */ 4611 static void mps_intr_handler(struct adapter *adapter) 4612 { 4613 static const struct intr_info mps_rx_intr_info[] = { 4614 { 0xffffff, "MPS Rx parity error", -1, 1 }, 4615 { 0 } 4616 }; 4617 static const struct intr_info mps_tx_intr_info[] = { 4618 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4619 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4620 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4621 -1, 1 }, 4622 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4623 -1, 1 }, 4624 { BUBBLE_F, "MPS Tx underflow", -1, 1 }, 4625 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4626 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4627 { 0 } 4628 }; 4629 static const struct intr_info t6_mps_tx_intr_info[] = { 4630 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4631 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4632 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4633 -1, 1 }, 4634 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4635 -1, 1 }, 4636 /* MPS Tx Bubble is normal for T6 */ 4637 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4638 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4639 { 0 } 4640 }; 4641 static const struct intr_info mps_trc_intr_info[] = { 4642 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 }, 4643 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error", 4644 -1, 1 }, 4645 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 }, 4646 { 0 } 4647 }; 4648 static const struct intr_info mps_stat_sram_intr_info[] = { 4649 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, 4650 { 0 } 4651 }; 4652 static const struct intr_info mps_stat_tx_intr_info[] = { 4653 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, 4654 { 0 } 4655 }; 4656 static const struct intr_info mps_stat_rx_intr_info[] = { 4657 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, 4658 { 0 } 4659 }; 4660 static const struct intr_info mps_cls_intr_info[] = { 4661 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 }, 4662 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 }, 4663 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 }, 4664 { 0 } 4665 }; 4666 4667 int fat; 4668 4669 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A, 4670 mps_rx_intr_info) + 4671 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A, 4672 is_t6(adapter->params.chip) 4673 ? t6_mps_tx_intr_info 4674 : mps_tx_intr_info) + 4675 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A, 4676 mps_trc_intr_info) + 4677 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A, 4678 mps_stat_sram_intr_info) + 4679 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A, 4680 mps_stat_tx_intr_info) + 4681 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A, 4682 mps_stat_rx_intr_info) + 4683 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A, 4684 mps_cls_intr_info); 4685 4686 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0); 4687 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */ 4688 if (fat) 4689 t4_fatal_err(adapter); 4690 } 4691 4692 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \ 4693 ECC_UE_INT_CAUSE_F) 4694 4695 /* 4696 * EDC/MC interrupt handler. 4697 */ 4698 static void mem_intr_handler(struct adapter *adapter, int idx) 4699 { 4700 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" }; 4701 4702 unsigned int addr, cnt_addr, v; 4703 4704 if (idx <= MEM_EDC1) { 4705 addr = EDC_REG(EDC_INT_CAUSE_A, idx); 4706 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx); 4707 } else if (idx == MEM_MC) { 4708 if (is_t4(adapter->params.chip)) { 4709 addr = MC_INT_CAUSE_A; 4710 cnt_addr = MC_ECC_STATUS_A; 4711 } else { 4712 addr = MC_P_INT_CAUSE_A; 4713 cnt_addr = MC_P_ECC_STATUS_A; 4714 } 4715 } else { 4716 addr = MC_REG(MC_P_INT_CAUSE_A, 1); 4717 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1); 4718 } 4719 4720 v = t4_read_reg(adapter, addr) & MEM_INT_MASK; 4721 if (v & PERR_INT_CAUSE_F) 4722 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n", 4723 name[idx]); 4724 if (v & ECC_CE_INT_CAUSE_F) { 4725 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr)); 4726 4727 t4_edc_err_read(adapter, idx); 4728 4729 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M)); 4730 if (printk_ratelimit()) 4731 dev_warn(adapter->pdev_dev, 4732 "%u %s correctable ECC data error%s\n", 4733 cnt, name[idx], cnt > 1 ? "s" : ""); 4734 } 4735 if (v & ECC_UE_INT_CAUSE_F) 4736 dev_alert(adapter->pdev_dev, 4737 "%s uncorrectable ECC data error\n", name[idx]); 4738 4739 t4_write_reg(adapter, addr, v); 4740 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F)) 4741 t4_fatal_err(adapter); 4742 } 4743 4744 /* 4745 * MA interrupt handler. 4746 */ 4747 static void ma_intr_handler(struct adapter *adap) 4748 { 4749 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A); 4750 4751 if (status & MEM_PERR_INT_CAUSE_F) { 4752 dev_alert(adap->pdev_dev, 4753 "MA parity error, parity status %#x\n", 4754 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A)); 4755 if (is_t5(adap->params.chip)) 4756 dev_alert(adap->pdev_dev, 4757 "MA parity error, parity status %#x\n", 4758 t4_read_reg(adap, 4759 MA_PARITY_ERROR_STATUS2_A)); 4760 } 4761 if (status & MEM_WRAP_INT_CAUSE_F) { 4762 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A); 4763 dev_alert(adap->pdev_dev, "MA address wrap-around error by " 4764 "client %u to address %#x\n", 4765 MEM_WRAP_CLIENT_NUM_G(v), 4766 MEM_WRAP_ADDRESS_G(v) << 4); 4767 } 4768 t4_write_reg(adap, MA_INT_CAUSE_A, status); 4769 t4_fatal_err(adap); 4770 } 4771 4772 /* 4773 * SMB interrupt handler. 4774 */ 4775 static void smb_intr_handler(struct adapter *adap) 4776 { 4777 static const struct intr_info smb_intr_info[] = { 4778 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 }, 4779 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 }, 4780 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 }, 4781 { 0 } 4782 }; 4783 4784 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info)) 4785 t4_fatal_err(adap); 4786 } 4787 4788 /* 4789 * NC-SI interrupt handler. 4790 */ 4791 static void ncsi_intr_handler(struct adapter *adap) 4792 { 4793 static const struct intr_info ncsi_intr_info[] = { 4794 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 }, 4795 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 }, 4796 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 }, 4797 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 }, 4798 { 0 } 4799 }; 4800 4801 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info)) 4802 t4_fatal_err(adap); 4803 } 4804 4805 /* 4806 * XGMAC interrupt handler. 4807 */ 4808 static void xgmac_intr_handler(struct adapter *adap, int port) 4809 { 4810 u32 v, int_cause_reg; 4811 4812 if (is_t4(adap->params.chip)) 4813 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A); 4814 else 4815 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A); 4816 4817 v = t4_read_reg(adap, int_cause_reg); 4818 4819 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F; 4820 if (!v) 4821 return; 4822 4823 if (v & TXFIFO_PRTY_ERR_F) 4824 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n", 4825 port); 4826 if (v & RXFIFO_PRTY_ERR_F) 4827 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n", 4828 port); 4829 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v); 4830 t4_fatal_err(adap); 4831 } 4832 4833 /* 4834 * PL interrupt handler. 4835 */ 4836 static void pl_intr_handler(struct adapter *adap) 4837 { 4838 static const struct intr_info pl_intr_info[] = { 4839 { FATALPERR_F, "T4 fatal parity error", -1, 1 }, 4840 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 }, 4841 { 0 } 4842 }; 4843 4844 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info)) 4845 t4_fatal_err(adap); 4846 } 4847 4848 #define PF_INTR_MASK (PFSW_F) 4849 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \ 4850 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \ 4851 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F) 4852 4853 /** 4854 * t4_slow_intr_handler - control path interrupt handler 4855 * @adapter: the adapter 4856 * 4857 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 4858 * The designation 'slow' is because it involves register reads, while 4859 * data interrupts typically don't involve any MMIOs. 4860 */ 4861 int t4_slow_intr_handler(struct adapter *adapter) 4862 { 4863 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A); 4864 4865 if (!(cause & GLBL_INTR_MASK)) 4866 return 0; 4867 if (cause & CIM_F) 4868 cim_intr_handler(adapter); 4869 if (cause & MPS_F) 4870 mps_intr_handler(adapter); 4871 if (cause & NCSI_F) 4872 ncsi_intr_handler(adapter); 4873 if (cause & PL_F) 4874 pl_intr_handler(adapter); 4875 if (cause & SMB_F) 4876 smb_intr_handler(adapter); 4877 if (cause & XGMAC0_F) 4878 xgmac_intr_handler(adapter, 0); 4879 if (cause & XGMAC1_F) 4880 xgmac_intr_handler(adapter, 1); 4881 if (cause & XGMAC_KR0_F) 4882 xgmac_intr_handler(adapter, 2); 4883 if (cause & XGMAC_KR1_F) 4884 xgmac_intr_handler(adapter, 3); 4885 if (cause & PCIE_F) 4886 pcie_intr_handler(adapter); 4887 if (cause & MC_F) 4888 mem_intr_handler(adapter, MEM_MC); 4889 if (is_t5(adapter->params.chip) && (cause & MC1_F)) 4890 mem_intr_handler(adapter, MEM_MC1); 4891 if (cause & EDC0_F) 4892 mem_intr_handler(adapter, MEM_EDC0); 4893 if (cause & EDC1_F) 4894 mem_intr_handler(adapter, MEM_EDC1); 4895 if (cause & LE_F) 4896 le_intr_handler(adapter); 4897 if (cause & TP_F) 4898 tp_intr_handler(adapter); 4899 if (cause & MA_F) 4900 ma_intr_handler(adapter); 4901 if (cause & PM_TX_F) 4902 pmtx_intr_handler(adapter); 4903 if (cause & PM_RX_F) 4904 pmrx_intr_handler(adapter); 4905 if (cause & ULP_RX_F) 4906 ulprx_intr_handler(adapter); 4907 if (cause & CPL_SWITCH_F) 4908 cplsw_intr_handler(adapter); 4909 if (cause & SGE_F) 4910 sge_intr_handler(adapter); 4911 if (cause & ULP_TX_F) 4912 ulptx_intr_handler(adapter); 4913 4914 /* Clear the interrupts just processed for which we are the master. */ 4915 t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK); 4916 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */ 4917 return 1; 4918 } 4919 4920 /** 4921 * t4_intr_enable - enable interrupts 4922 * @adapter: the adapter whose interrupts should be enabled 4923 * 4924 * Enable PF-specific interrupts for the calling function and the top-level 4925 * interrupt concentrator for global interrupts. Interrupts are already 4926 * enabled at each module, here we just enable the roots of the interrupt 4927 * hierarchies. 4928 * 4929 * Note: this function should be called only when the driver manages 4930 * non PF-specific interrupts from the various HW modules. Only one PCI 4931 * function at a time should be doing this. 4932 */ 4933 void t4_intr_enable(struct adapter *adapter) 4934 { 4935 u32 val = 0; 4936 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 4937 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 4938 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4939 4940 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4941 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F; 4942 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F | 4943 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F | 4944 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F | 4945 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F | 4946 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F | 4947 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F | 4948 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val); 4949 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK); 4950 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf); 4951 } 4952 4953 /** 4954 * t4_intr_disable - disable interrupts 4955 * @adapter: the adapter whose interrupts should be disabled 4956 * 4957 * Disable interrupts. We only disable the top-level interrupt 4958 * concentrators. The caller must be a PCI function managing global 4959 * interrupts. 4960 */ 4961 void t4_intr_disable(struct adapter *adapter) 4962 { 4963 u32 whoami, pf; 4964 4965 if (pci_channel_offline(adapter->pdev)) 4966 return; 4967 4968 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 4969 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 4970 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4971 4972 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0); 4973 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0); 4974 } 4975 4976 unsigned int t4_chip_rss_size(struct adapter *adap) 4977 { 4978 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 4979 return RSS_NENTRIES; 4980 else 4981 return T6_RSS_NENTRIES; 4982 } 4983 4984 /** 4985 * t4_config_rss_range - configure a portion of the RSS mapping table 4986 * @adapter: the adapter 4987 * @mbox: mbox to use for the FW command 4988 * @viid: virtual interface whose RSS subtable is to be written 4989 * @start: start entry in the table to write 4990 * @n: how many table entries to write 4991 * @rspq: values for the response queue lookup table 4992 * @nrspq: number of values in @rspq 4993 * 4994 * Programs the selected part of the VI's RSS mapping table with the 4995 * provided values. If @nrspq < @n the supplied values are used repeatedly 4996 * until the full table range is populated. 4997 * 4998 * The caller must ensure the values in @rspq are in the range allowed for 4999 * @viid. 5000 */ 5001 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 5002 int start, int n, const u16 *rspq, unsigned int nrspq) 5003 { 5004 int ret; 5005 const u16 *rsp = rspq; 5006 const u16 *rsp_end = rspq + nrspq; 5007 struct fw_rss_ind_tbl_cmd cmd; 5008 5009 memset(&cmd, 0, sizeof(cmd)); 5010 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | 5011 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5012 FW_RSS_IND_TBL_CMD_VIID_V(viid)); 5013 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 5014 5015 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */ 5016 while (n > 0) { 5017 int nq = min(n, 32); 5018 __be32 *qp = &cmd.iq0_to_iq2; 5019 5020 cmd.niqid = cpu_to_be16(nq); 5021 cmd.startidx = cpu_to_be16(start); 5022 5023 start += nq; 5024 n -= nq; 5025 5026 while (nq > 0) { 5027 unsigned int v; 5028 5029 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp); 5030 if (++rsp >= rsp_end) 5031 rsp = rspq; 5032 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp); 5033 if (++rsp >= rsp_end) 5034 rsp = rspq; 5035 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp); 5036 if (++rsp >= rsp_end) 5037 rsp = rspq; 5038 5039 *qp++ = cpu_to_be32(v); 5040 nq -= 3; 5041 } 5042 5043 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 5044 if (ret) 5045 return ret; 5046 } 5047 return 0; 5048 } 5049 5050 /** 5051 * t4_config_glbl_rss - configure the global RSS mode 5052 * @adapter: the adapter 5053 * @mbox: mbox to use for the FW command 5054 * @mode: global RSS mode 5055 * @flags: mode-specific flags 5056 * 5057 * Sets the global RSS mode. 5058 */ 5059 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 5060 unsigned int flags) 5061 { 5062 struct fw_rss_glb_config_cmd c; 5063 5064 memset(&c, 0, sizeof(c)); 5065 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | 5066 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 5067 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5068 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 5069 c.u.manual.mode_pkd = 5070 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5071 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 5072 c.u.basicvirtual.mode_pkd = 5073 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5074 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); 5075 } else 5076 return -EINVAL; 5077 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5078 } 5079 5080 /** 5081 * t4_config_vi_rss - configure per VI RSS settings 5082 * @adapter: the adapter 5083 * @mbox: mbox to use for the FW command 5084 * @viid: the VI id 5085 * @flags: RSS flags 5086 * @defq: id of the default RSS queue for the VI. 5087 * 5088 * Configures VI-specific RSS properties. 5089 */ 5090 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, 5091 unsigned int flags, unsigned int defq) 5092 { 5093 struct fw_rss_vi_config_cmd c; 5094 5095 memset(&c, 0, sizeof(c)); 5096 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 5097 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5098 FW_RSS_VI_CONFIG_CMD_VIID_V(viid)); 5099 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5100 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | 5101 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq)); 5102 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5103 } 5104 5105 /* Read an RSS table row */ 5106 static int rd_rss_row(struct adapter *adap, int row, u32 *val) 5107 { 5108 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row); 5109 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1, 5110 5, 0, val); 5111 } 5112 5113 /** 5114 * t4_read_rss - read the contents of the RSS mapping table 5115 * @adapter: the adapter 5116 * @map: holds the contents of the RSS mapping table 5117 * 5118 * Reads the contents of the RSS hash->queue mapping table. 5119 */ 5120 int t4_read_rss(struct adapter *adapter, u16 *map) 5121 { 5122 int i, ret, nentries; 5123 u32 val; 5124 5125 nentries = t4_chip_rss_size(adapter); 5126 for (i = 0; i < nentries / 2; ++i) { 5127 ret = rd_rss_row(adapter, i, &val); 5128 if (ret) 5129 return ret; 5130 *map++ = LKPTBLQUEUE0_G(val); 5131 *map++ = LKPTBLQUEUE1_G(val); 5132 } 5133 return 0; 5134 } 5135 5136 static unsigned int t4_use_ldst(struct adapter *adap) 5137 { 5138 return (adap->flags & FW_OK) && !adap->use_bd; 5139 } 5140 5141 /** 5142 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST 5143 * @adap: the adapter 5144 * @cmd: TP fw ldst address space type 5145 * @vals: where the indirect register values are stored/written 5146 * @nregs: how many indirect registers to read/write 5147 * @start_idx: index of first indirect register to read/write 5148 * @rw: Read (1) or Write (0) 5149 * @sleep_ok: if true we may sleep while awaiting command completion 5150 * 5151 * Access TP indirect registers through LDST 5152 */ 5153 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals, 5154 unsigned int nregs, unsigned int start_index, 5155 unsigned int rw, bool sleep_ok) 5156 { 5157 int ret = 0; 5158 unsigned int i; 5159 struct fw_ldst_cmd c; 5160 5161 for (i = 0; i < nregs; i++) { 5162 memset(&c, 0, sizeof(c)); 5163 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5164 FW_CMD_REQUEST_F | 5165 (rw ? FW_CMD_READ_F : 5166 FW_CMD_WRITE_F) | 5167 FW_LDST_CMD_ADDRSPACE_V(cmd)); 5168 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5169 5170 c.u.addrval.addr = cpu_to_be32(start_index + i); 5171 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); 5172 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, 5173 sleep_ok); 5174 if (ret) 5175 return ret; 5176 5177 if (rw) 5178 vals[i] = be32_to_cpu(c.u.addrval.val); 5179 } 5180 return 0; 5181 } 5182 5183 /** 5184 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor 5185 * @adap: the adapter 5186 * @reg_addr: Address Register 5187 * @reg_data: Data register 5188 * @buff: where the indirect register values are stored/written 5189 * @nregs: how many indirect registers to read/write 5190 * @start_index: index of first indirect register to read/write 5191 * @rw: READ(1) or WRITE(0) 5192 * @sleep_ok: if true we may sleep while awaiting command completion 5193 * 5194 * Read/Write TP indirect registers through LDST if possible. 5195 * Else, use backdoor access 5196 **/ 5197 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data, 5198 u32 *buff, u32 nregs, u32 start_index, int rw, 5199 bool sleep_ok) 5200 { 5201 int rc = -EINVAL; 5202 int cmd; 5203 5204 switch (reg_addr) { 5205 case TP_PIO_ADDR_A: 5206 cmd = FW_LDST_ADDRSPC_TP_PIO; 5207 break; 5208 case TP_TM_PIO_ADDR_A: 5209 cmd = FW_LDST_ADDRSPC_TP_TM_PIO; 5210 break; 5211 case TP_MIB_INDEX_A: 5212 cmd = FW_LDST_ADDRSPC_TP_MIB; 5213 break; 5214 default: 5215 goto indirect_access; 5216 } 5217 5218 if (t4_use_ldst(adap)) 5219 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw, 5220 sleep_ok); 5221 5222 indirect_access: 5223 5224 if (rc) { 5225 if (rw) 5226 t4_read_indirect(adap, reg_addr, reg_data, buff, nregs, 5227 start_index); 5228 else 5229 t4_write_indirect(adap, reg_addr, reg_data, buff, nregs, 5230 start_index); 5231 } 5232 } 5233 5234 /** 5235 * t4_tp_pio_read - Read TP PIO registers 5236 * @adap: the adapter 5237 * @buff: where the indirect register values are written 5238 * @nregs: how many indirect registers to read 5239 * @start_index: index of first indirect register to read 5240 * @sleep_ok: if true we may sleep while awaiting command completion 5241 * 5242 * Read TP PIO Registers 5243 **/ 5244 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5245 u32 start_index, bool sleep_ok) 5246 { 5247 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5248 start_index, 1, sleep_ok); 5249 } 5250 5251 /** 5252 * t4_tp_pio_write - Write TP PIO registers 5253 * @adap: the adapter 5254 * @buff: where the indirect register values are stored 5255 * @nregs: how many indirect registers to write 5256 * @start_index: index of first indirect register to write 5257 * @sleep_ok: if true we may sleep while awaiting command completion 5258 * 5259 * Write TP PIO Registers 5260 **/ 5261 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs, 5262 u32 start_index, bool sleep_ok) 5263 { 5264 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5265 start_index, 0, sleep_ok); 5266 } 5267 5268 /** 5269 * t4_tp_tm_pio_read - Read TP TM PIO registers 5270 * @adap: the adapter 5271 * @buff: where the indirect register values are written 5272 * @nregs: how many indirect registers to read 5273 * @start_index: index of first indirect register to read 5274 * @sleep_ok: if true we may sleep while awaiting command completion 5275 * 5276 * Read TP TM PIO Registers 5277 **/ 5278 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5279 u32 start_index, bool sleep_ok) 5280 { 5281 t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff, 5282 nregs, start_index, 1, sleep_ok); 5283 } 5284 5285 /** 5286 * t4_tp_mib_read - Read TP MIB registers 5287 * @adap: the adapter 5288 * @buff: where the indirect register values are written 5289 * @nregs: how many indirect registers to read 5290 * @start_index: index of first indirect register to read 5291 * @sleep_ok: if true we may sleep while awaiting command completion 5292 * 5293 * Read TP MIB Registers 5294 **/ 5295 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index, 5296 bool sleep_ok) 5297 { 5298 t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs, 5299 start_index, 1, sleep_ok); 5300 } 5301 5302 /** 5303 * t4_read_rss_key - read the global RSS key 5304 * @adap: the adapter 5305 * @key: 10-entry array holding the 320-bit RSS key 5306 * @sleep_ok: if true we may sleep while awaiting command completion 5307 * 5308 * Reads the global 320-bit RSS key. 5309 */ 5310 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok) 5311 { 5312 t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5313 } 5314 5315 /** 5316 * t4_write_rss_key - program one of the RSS keys 5317 * @adap: the adapter 5318 * @key: 10-entry array holding the 320-bit RSS key 5319 * @idx: which RSS key to write 5320 * @sleep_ok: if true we may sleep while awaiting command completion 5321 * 5322 * Writes one of the RSS keys with the given 320-bit value. If @idx is 5323 * 0..15 the corresponding entry in the RSS key table is written, 5324 * otherwise the global RSS key is written. 5325 */ 5326 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx, 5327 bool sleep_ok) 5328 { 5329 u8 rss_key_addr_cnt = 16; 5330 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A); 5331 5332 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble), 5333 * allows access to key addresses 16-63 by using KeyWrAddrX 5334 * as index[5:4](upper 2) into key table 5335 */ 5336 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) && 5337 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3)) 5338 rss_key_addr_cnt = 32; 5339 5340 t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5341 5342 if (idx >= 0 && idx < rss_key_addr_cnt) { 5343 if (rss_key_addr_cnt > 16) 5344 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5345 KEYWRADDRX_V(idx >> 4) | 5346 T6_VFWRADDR_V(idx) | KEYWREN_F); 5347 else 5348 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5349 KEYWRADDR_V(idx) | KEYWREN_F); 5350 } 5351 } 5352 5353 /** 5354 * t4_read_rss_pf_config - read PF RSS Configuration Table 5355 * @adapter: the adapter 5356 * @index: the entry in the PF RSS table to read 5357 * @valp: where to store the returned value 5358 * @sleep_ok: if true we may sleep while awaiting command completion 5359 * 5360 * Reads the PF RSS Configuration Table at the specified index and returns 5361 * the value found there. 5362 */ 5363 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, 5364 u32 *valp, bool sleep_ok) 5365 { 5366 t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok); 5367 } 5368 5369 /** 5370 * t4_read_rss_vf_config - read VF RSS Configuration Table 5371 * @adapter: the adapter 5372 * @index: the entry in the VF RSS table to read 5373 * @vfl: where to store the returned VFL 5374 * @vfh: where to store the returned VFH 5375 * @sleep_ok: if true we may sleep while awaiting command completion 5376 * 5377 * Reads the VF RSS Configuration Table at the specified index and returns 5378 * the (VFL, VFH) values found there. 5379 */ 5380 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, 5381 u32 *vfl, u32 *vfh, bool sleep_ok) 5382 { 5383 u32 vrt, mask, data; 5384 5385 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) { 5386 mask = VFWRADDR_V(VFWRADDR_M); 5387 data = VFWRADDR_V(index); 5388 } else { 5389 mask = T6_VFWRADDR_V(T6_VFWRADDR_M); 5390 data = T6_VFWRADDR_V(index); 5391 } 5392 5393 /* Request that the index'th VF Table values be read into VFL/VFH. 5394 */ 5395 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A); 5396 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask); 5397 vrt |= data | VFRDEN_F; 5398 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt); 5399 5400 /* Grab the VFL/VFH values ... 5401 */ 5402 t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok); 5403 t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok); 5404 } 5405 5406 /** 5407 * t4_read_rss_pf_map - read PF RSS Map 5408 * @adapter: the adapter 5409 * @sleep_ok: if true we may sleep while awaiting command completion 5410 * 5411 * Reads the PF RSS Map register and returns its value. 5412 */ 5413 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok) 5414 { 5415 u32 pfmap; 5416 5417 t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok); 5418 return pfmap; 5419 } 5420 5421 /** 5422 * t4_read_rss_pf_mask - read PF RSS Mask 5423 * @adapter: the adapter 5424 * @sleep_ok: if true we may sleep while awaiting command completion 5425 * 5426 * Reads the PF RSS Mask register and returns its value. 5427 */ 5428 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok) 5429 { 5430 u32 pfmask; 5431 5432 t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok); 5433 return pfmask; 5434 } 5435 5436 /** 5437 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 5438 * @adap: the adapter 5439 * @v4: holds the TCP/IP counter values 5440 * @v6: holds the TCP/IPv6 counter values 5441 * @sleep_ok: if true we may sleep while awaiting command completion 5442 * 5443 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 5444 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 5445 */ 5446 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 5447 struct tp_tcp_stats *v6, bool sleep_ok) 5448 { 5449 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1]; 5450 5451 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A) 5452 #define STAT(x) val[STAT_IDX(x)] 5453 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 5454 5455 if (v4) { 5456 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5457 TP_MIB_TCP_OUT_RST_A, sleep_ok); 5458 v4->tcp_out_rsts = STAT(OUT_RST); 5459 v4->tcp_in_segs = STAT64(IN_SEG); 5460 v4->tcp_out_segs = STAT64(OUT_SEG); 5461 v4->tcp_retrans_segs = STAT64(RXT_SEG); 5462 } 5463 if (v6) { 5464 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5465 TP_MIB_TCP_V6OUT_RST_A, sleep_ok); 5466 v6->tcp_out_rsts = STAT(OUT_RST); 5467 v6->tcp_in_segs = STAT64(IN_SEG); 5468 v6->tcp_out_segs = STAT64(OUT_SEG); 5469 v6->tcp_retrans_segs = STAT64(RXT_SEG); 5470 } 5471 #undef STAT64 5472 #undef STAT 5473 #undef STAT_IDX 5474 } 5475 5476 /** 5477 * t4_tp_get_err_stats - read TP's error MIB counters 5478 * @adap: the adapter 5479 * @st: holds the counter values 5480 * @sleep_ok: if true we may sleep while awaiting command completion 5481 * 5482 * Returns the values of TP's error counters. 5483 */ 5484 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st, 5485 bool sleep_ok) 5486 { 5487 int nchan = adap->params.arch.nchan; 5488 5489 t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A, 5490 sleep_ok); 5491 t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A, 5492 sleep_ok); 5493 t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A, 5494 sleep_ok); 5495 t4_tp_mib_read(adap, st->tnl_cong_drops, nchan, 5496 TP_MIB_TNL_CNG_DROP_0_A, sleep_ok); 5497 t4_tp_mib_read(adap, st->ofld_chan_drops, nchan, 5498 TP_MIB_OFD_CHN_DROP_0_A, sleep_ok); 5499 t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A, 5500 sleep_ok); 5501 t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan, 5502 TP_MIB_OFD_VLN_DROP_0_A, sleep_ok); 5503 t4_tp_mib_read(adap, st->tcp6_in_errs, nchan, 5504 TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok); 5505 t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A, 5506 sleep_ok); 5507 } 5508 5509 /** 5510 * t4_tp_get_cpl_stats - read TP's CPL MIB counters 5511 * @adap: the adapter 5512 * @st: holds the counter values 5513 * @sleep_ok: if true we may sleep while awaiting command completion 5514 * 5515 * Returns the values of TP's CPL counters. 5516 */ 5517 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st, 5518 bool sleep_ok) 5519 { 5520 int nchan = adap->params.arch.nchan; 5521 5522 t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok); 5523 5524 t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok); 5525 } 5526 5527 /** 5528 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters 5529 * @adap: the adapter 5530 * @st: holds the counter values 5531 * @sleep_ok: if true we may sleep while awaiting command completion 5532 * 5533 * Returns the values of TP's RDMA counters. 5534 */ 5535 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st, 5536 bool sleep_ok) 5537 { 5538 t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A, 5539 sleep_ok); 5540 } 5541 5542 /** 5543 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port 5544 * @adap: the adapter 5545 * @idx: the port index 5546 * @st: holds the counter values 5547 * @sleep_ok: if true we may sleep while awaiting command completion 5548 * 5549 * Returns the values of TP's FCoE counters for the selected port. 5550 */ 5551 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, 5552 struct tp_fcoe_stats *st, bool sleep_ok) 5553 { 5554 u32 val[2]; 5555 5556 t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx, 5557 sleep_ok); 5558 5559 t4_tp_mib_read(adap, &st->frames_drop, 1, 5560 TP_MIB_FCOE_DROP_0_A + idx, sleep_ok); 5561 5562 t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx, 5563 sleep_ok); 5564 5565 st->octets_ddp = ((u64)val[0] << 32) | val[1]; 5566 } 5567 5568 /** 5569 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters 5570 * @adap: the adapter 5571 * @st: holds the counter values 5572 * @sleep_ok: if true we may sleep while awaiting command completion 5573 * 5574 * Returns the values of TP's counters for non-TCP directly-placed packets. 5575 */ 5576 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st, 5577 bool sleep_ok) 5578 { 5579 u32 val[4]; 5580 5581 t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok); 5582 st->frames = val[0]; 5583 st->drops = val[1]; 5584 st->octets = ((u64)val[2] << 32) | val[3]; 5585 } 5586 5587 /** 5588 * t4_read_mtu_tbl - returns the values in the HW path MTU table 5589 * @adap: the adapter 5590 * @mtus: where to store the MTU values 5591 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 5592 * 5593 * Reads the HW path MTU table. 5594 */ 5595 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 5596 { 5597 u32 v; 5598 int i; 5599 5600 for (i = 0; i < NMTUS; ++i) { 5601 t4_write_reg(adap, TP_MTU_TABLE_A, 5602 MTUINDEX_V(0xff) | MTUVALUE_V(i)); 5603 v = t4_read_reg(adap, TP_MTU_TABLE_A); 5604 mtus[i] = MTUVALUE_G(v); 5605 if (mtu_log) 5606 mtu_log[i] = MTUWIDTH_G(v); 5607 } 5608 } 5609 5610 /** 5611 * t4_read_cong_tbl - reads the congestion control table 5612 * @adap: the adapter 5613 * @incr: where to store the alpha values 5614 * 5615 * Reads the additive increments programmed into the HW congestion 5616 * control table. 5617 */ 5618 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) 5619 { 5620 unsigned int mtu, w; 5621 5622 for (mtu = 0; mtu < NMTUS; ++mtu) 5623 for (w = 0; w < NCCTRL_WIN; ++w) { 5624 t4_write_reg(adap, TP_CCTRL_TABLE_A, 5625 ROWINDEX_V(0xffff) | (mtu << 5) | w); 5626 incr[mtu][w] = (u16)t4_read_reg(adap, 5627 TP_CCTRL_TABLE_A) & 0x1fff; 5628 } 5629 } 5630 5631 /** 5632 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 5633 * @adap: the adapter 5634 * @addr: the indirect TP register address 5635 * @mask: specifies the field within the register to modify 5636 * @val: new value for the field 5637 * 5638 * Sets a field of an indirect TP register to the given value. 5639 */ 5640 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 5641 unsigned int mask, unsigned int val) 5642 { 5643 t4_write_reg(adap, TP_PIO_ADDR_A, addr); 5644 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask; 5645 t4_write_reg(adap, TP_PIO_DATA_A, val); 5646 } 5647 5648 /** 5649 * init_cong_ctrl - initialize congestion control parameters 5650 * @a: the alpha values for congestion control 5651 * @b: the beta values for congestion control 5652 * 5653 * Initialize the congestion control parameters. 5654 */ 5655 static void init_cong_ctrl(unsigned short *a, unsigned short *b) 5656 { 5657 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 5658 a[9] = 2; 5659 a[10] = 3; 5660 a[11] = 4; 5661 a[12] = 5; 5662 a[13] = 6; 5663 a[14] = 7; 5664 a[15] = 8; 5665 a[16] = 9; 5666 a[17] = 10; 5667 a[18] = 14; 5668 a[19] = 17; 5669 a[20] = 21; 5670 a[21] = 25; 5671 a[22] = 30; 5672 a[23] = 35; 5673 a[24] = 45; 5674 a[25] = 60; 5675 a[26] = 80; 5676 a[27] = 100; 5677 a[28] = 200; 5678 a[29] = 300; 5679 a[30] = 400; 5680 a[31] = 500; 5681 5682 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 5683 b[9] = b[10] = 1; 5684 b[11] = b[12] = 2; 5685 b[13] = b[14] = b[15] = b[16] = 3; 5686 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 5687 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 5688 b[28] = b[29] = 6; 5689 b[30] = b[31] = 7; 5690 } 5691 5692 /* The minimum additive increment value for the congestion control table */ 5693 #define CC_MIN_INCR 2U 5694 5695 /** 5696 * t4_load_mtus - write the MTU and congestion control HW tables 5697 * @adap: the adapter 5698 * @mtus: the values for the MTU table 5699 * @alpha: the values for the congestion control alpha parameter 5700 * @beta: the values for the congestion control beta parameter 5701 * 5702 * Write the HW MTU table with the supplied MTUs and the high-speed 5703 * congestion control table with the supplied alpha, beta, and MTUs. 5704 * We write the two tables together because the additive increments 5705 * depend on the MTUs. 5706 */ 5707 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 5708 const unsigned short *alpha, const unsigned short *beta) 5709 { 5710 static const unsigned int avg_pkts[NCCTRL_WIN] = { 5711 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 5712 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 5713 28672, 40960, 57344, 81920, 114688, 163840, 229376 5714 }; 5715 5716 unsigned int i, w; 5717 5718 for (i = 0; i < NMTUS; ++i) { 5719 unsigned int mtu = mtus[i]; 5720 unsigned int log2 = fls(mtu); 5721 5722 if (!(mtu & ((1 << log2) >> 2))) /* round */ 5723 log2--; 5724 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) | 5725 MTUWIDTH_V(log2) | MTUVALUE_V(mtu)); 5726 5727 for (w = 0; w < NCCTRL_WIN; ++w) { 5728 unsigned int inc; 5729 5730 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 5731 CC_MIN_INCR); 5732 5733 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) | 5734 (w << 16) | (beta[w] << 13) | inc); 5735 } 5736 } 5737 } 5738 5739 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core 5740 * clocks. The formula is 5741 * 5742 * bytes/s = bytes256 * 256 * ClkFreq / 4096 5743 * 5744 * which is equivalent to 5745 * 5746 * bytes/s = 62.5 * bytes256 * ClkFreq_ms 5747 */ 5748 static u64 chan_rate(struct adapter *adap, unsigned int bytes256) 5749 { 5750 u64 v = bytes256 * adap->params.vpd.cclk; 5751 5752 return v * 62 + v / 2; 5753 } 5754 5755 /** 5756 * t4_get_chan_txrate - get the current per channel Tx rates 5757 * @adap: the adapter 5758 * @nic_rate: rates for NIC traffic 5759 * @ofld_rate: rates for offloaded traffic 5760 * 5761 * Return the current Tx rates in bytes/s for NIC and offloaded traffic 5762 * for each channel. 5763 */ 5764 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) 5765 { 5766 u32 v; 5767 5768 v = t4_read_reg(adap, TP_TX_TRATE_A); 5769 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v)); 5770 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v)); 5771 if (adap->params.arch.nchan == NCHAN) { 5772 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v)); 5773 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v)); 5774 } 5775 5776 v = t4_read_reg(adap, TP_TX_ORATE_A); 5777 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v)); 5778 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v)); 5779 if (adap->params.arch.nchan == NCHAN) { 5780 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v)); 5781 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v)); 5782 } 5783 } 5784 5785 /** 5786 * t4_set_trace_filter - configure one of the tracing filters 5787 * @adap: the adapter 5788 * @tp: the desired trace filter parameters 5789 * @idx: which filter to configure 5790 * @enable: whether to enable or disable the filter 5791 * 5792 * Configures one of the tracing filters available in HW. If @enable is 5793 * %0 @tp is not examined and may be %NULL. The user is responsible to 5794 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register 5795 */ 5796 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, 5797 int idx, int enable) 5798 { 5799 int i, ofst = idx * 4; 5800 u32 data_reg, mask_reg, cfg; 5801 u32 multitrc = TRCMULTIFILTER_F; 5802 5803 if (!enable) { 5804 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5805 return 0; 5806 } 5807 5808 cfg = t4_read_reg(adap, MPS_TRC_CFG_A); 5809 if (cfg & TRCMULTIFILTER_F) { 5810 /* If multiple tracers are enabled, then maximum 5811 * capture size is 2.5KB (FIFO size of a single channel) 5812 * minus 2 flits for CPL_TRACE_PKT header. 5813 */ 5814 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) 5815 return -EINVAL; 5816 } else { 5817 /* If multiple tracers are disabled, to avoid deadlocks 5818 * maximum packet capture size of 9600 bytes is recommended. 5819 * Also in this mode, only trace0 can be enabled and running. 5820 */ 5821 multitrc = 0; 5822 if (tp->snap_len > 9600 || idx) 5823 return -EINVAL; 5824 } 5825 5826 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 || 5827 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M || 5828 tp->min_len > TFMINPKTSIZE_M) 5829 return -EINVAL; 5830 5831 /* stop the tracer we'll be changing */ 5832 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5833 5834 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A); 5835 data_reg = MPS_TRC_FILTER0_MATCH_A + idx; 5836 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx; 5837 5838 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5839 t4_write_reg(adap, data_reg, tp->data[i]); 5840 t4_write_reg(adap, mask_reg, ~tp->mask[i]); 5841 } 5842 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst, 5843 TFCAPTUREMAX_V(tp->snap_len) | 5844 TFMINPKTSIZE_V(tp->min_len)); 5845 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 5846 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) | 5847 (is_t4(adap->params.chip) ? 5848 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) : 5849 T5_TFPORT_V(tp->port) | T5_TFEN_F | 5850 T5_TFINVERTMATCH_V(tp->invert))); 5851 5852 return 0; 5853 } 5854 5855 /** 5856 * t4_get_trace_filter - query one of the tracing filters 5857 * @adap: the adapter 5858 * @tp: the current trace filter parameters 5859 * @idx: which trace filter to query 5860 * @enabled: non-zero if the filter is enabled 5861 * 5862 * Returns the current settings of one of the HW tracing filters. 5863 */ 5864 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, 5865 int *enabled) 5866 { 5867 u32 ctla, ctlb; 5868 int i, ofst = idx * 4; 5869 u32 data_reg, mask_reg; 5870 5871 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst); 5872 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst); 5873 5874 if (is_t4(adap->params.chip)) { 5875 *enabled = !!(ctla & TFEN_F); 5876 tp->port = TFPORT_G(ctla); 5877 tp->invert = !!(ctla & TFINVERTMATCH_F); 5878 } else { 5879 *enabled = !!(ctla & T5_TFEN_F); 5880 tp->port = T5_TFPORT_G(ctla); 5881 tp->invert = !!(ctla & T5_TFINVERTMATCH_F); 5882 } 5883 tp->snap_len = TFCAPTUREMAX_G(ctlb); 5884 tp->min_len = TFMINPKTSIZE_G(ctlb); 5885 tp->skip_ofst = TFOFFSET_G(ctla); 5886 tp->skip_len = TFLENGTH_G(ctla); 5887 5888 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx; 5889 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst; 5890 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst; 5891 5892 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5893 tp->mask[i] = ~t4_read_reg(adap, mask_reg); 5894 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; 5895 } 5896 } 5897 5898 /** 5899 * t4_pmtx_get_stats - returns the HW stats from PMTX 5900 * @adap: the adapter 5901 * @cnt: where to store the count statistics 5902 * @cycles: where to store the cycle statistics 5903 * 5904 * Returns performance statistics from PMTX. 5905 */ 5906 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 5907 { 5908 int i; 5909 u32 data[2]; 5910 5911 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 5912 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1); 5913 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A); 5914 if (is_t4(adap->params.chip)) { 5915 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A); 5916 } else { 5917 t4_read_indirect(adap, PM_TX_DBG_CTRL_A, 5918 PM_TX_DBG_DATA_A, data, 2, 5919 PM_TX_DBG_STAT_MSB_A); 5920 cycles[i] = (((u64)data[0] << 32) | data[1]); 5921 } 5922 } 5923 } 5924 5925 /** 5926 * t4_pmrx_get_stats - returns the HW stats from PMRX 5927 * @adap: the adapter 5928 * @cnt: where to store the count statistics 5929 * @cycles: where to store the cycle statistics 5930 * 5931 * Returns performance statistics from PMRX. 5932 */ 5933 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 5934 { 5935 int i; 5936 u32 data[2]; 5937 5938 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 5939 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1); 5940 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A); 5941 if (is_t4(adap->params.chip)) { 5942 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A); 5943 } else { 5944 t4_read_indirect(adap, PM_RX_DBG_CTRL_A, 5945 PM_RX_DBG_DATA_A, data, 2, 5946 PM_RX_DBG_STAT_MSB_A); 5947 cycles[i] = (((u64)data[0] << 32) | data[1]); 5948 } 5949 } 5950 } 5951 5952 /** 5953 * compute_mps_bg_map - compute the MPS Buffer Group Map for a Port 5954 * @adap: the adapter 5955 * @pidx: the port index 5956 * 5957 * Computes and returns a bitmap indicating which MPS buffer groups are 5958 * associated with the given Port. Bit i is set if buffer group i is 5959 * used by the Port. 5960 */ 5961 static inline unsigned int compute_mps_bg_map(struct adapter *adapter, 5962 int pidx) 5963 { 5964 unsigned int chip_version, nports; 5965 5966 chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 5967 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 5968 5969 switch (chip_version) { 5970 case CHELSIO_T4: 5971 case CHELSIO_T5: 5972 switch (nports) { 5973 case 1: return 0xf; 5974 case 2: return 3 << (2 * pidx); 5975 case 4: return 1 << pidx; 5976 } 5977 break; 5978 5979 case CHELSIO_T6: 5980 switch (nports) { 5981 case 2: return 1 << (2 * pidx); 5982 } 5983 break; 5984 } 5985 5986 dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n", 5987 chip_version, nports); 5988 5989 return 0; 5990 } 5991 5992 /** 5993 * t4_get_mps_bg_map - return the buffer groups associated with a port 5994 * @adapter: the adapter 5995 * @pidx: the port index 5996 * 5997 * Returns a bitmap indicating which MPS buffer groups are associated 5998 * with the given Port. Bit i is set if buffer group i is used by the 5999 * Port. 6000 */ 6001 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx) 6002 { 6003 u8 *mps_bg_map; 6004 unsigned int nports; 6005 6006 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6007 if (pidx >= nports) { 6008 CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n", 6009 pidx, nports); 6010 return 0; 6011 } 6012 6013 /* If we've already retrieved/computed this, just return the result. 6014 */ 6015 mps_bg_map = adapter->params.mps_bg_map; 6016 if (mps_bg_map[pidx]) 6017 return mps_bg_map[pidx]; 6018 6019 /* Newer Firmware can tell us what the MPS Buffer Group Map is. 6020 * If we're talking to such Firmware, let it tell us. If the new 6021 * API isn't supported, revert back to old hardcoded way. The value 6022 * obtained from Firmware is encoded in below format: 6023 * 6024 * val = (( MPSBGMAP[Port 3] << 24 ) | 6025 * ( MPSBGMAP[Port 2] << 16 ) | 6026 * ( MPSBGMAP[Port 1] << 8 ) | 6027 * ( MPSBGMAP[Port 0] << 0 )) 6028 */ 6029 if (adapter->flags & FW_OK) { 6030 u32 param, val; 6031 int ret; 6032 6033 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6034 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP)); 6035 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf, 6036 0, 1, ¶m, &val); 6037 if (!ret) { 6038 int p; 6039 6040 /* Store the BG Map for all of the Ports in order to 6041 * avoid more calls to the Firmware in the future. 6042 */ 6043 for (p = 0; p < MAX_NPORTS; p++, val >>= 8) 6044 mps_bg_map[p] = val & 0xff; 6045 6046 return mps_bg_map[pidx]; 6047 } 6048 } 6049 6050 /* Either we're not talking to the Firmware or we're dealing with 6051 * older Firmware which doesn't support the new API to get the MPS 6052 * Buffer Group Map. Fall back to computing it ourselves. 6053 */ 6054 mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx); 6055 return mps_bg_map[pidx]; 6056 } 6057 6058 /** 6059 * t4_get_tp_ch_map - return TP ingress channels associated with a port 6060 * @adapter: the adapter 6061 * @pidx: the port index 6062 * 6063 * Returns a bitmap indicating which TP Ingress Channels are associated 6064 * with a given Port. Bit i is set if TP Ingress Channel i is used by 6065 * the Port. 6066 */ 6067 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx) 6068 { 6069 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 6070 unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A)); 6071 6072 if (pidx >= nports) { 6073 dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n", 6074 pidx, nports); 6075 return 0; 6076 } 6077 6078 switch (chip_version) { 6079 case CHELSIO_T4: 6080 case CHELSIO_T5: 6081 /* Note that this happens to be the same values as the MPS 6082 * Buffer Group Map for these Chips. But we replicate the code 6083 * here because they're really separate concepts. 6084 */ 6085 switch (nports) { 6086 case 1: return 0xf; 6087 case 2: return 3 << (2 * pidx); 6088 case 4: return 1 << pidx; 6089 } 6090 break; 6091 6092 case CHELSIO_T6: 6093 switch (nports) { 6094 case 2: return 1 << pidx; 6095 } 6096 break; 6097 } 6098 6099 dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n", 6100 chip_version, nports); 6101 return 0; 6102 } 6103 6104 /** 6105 * t4_get_port_type_description - return Port Type string description 6106 * @port_type: firmware Port Type enumeration 6107 */ 6108 const char *t4_get_port_type_description(enum fw_port_type port_type) 6109 { 6110 static const char *const port_type_description[] = { 6111 "Fiber_XFI", 6112 "Fiber_XAUI", 6113 "BT_SGMII", 6114 "BT_XFI", 6115 "BT_XAUI", 6116 "KX4", 6117 "CX4", 6118 "KX", 6119 "KR", 6120 "SFP", 6121 "BP_AP", 6122 "BP4_AP", 6123 "QSFP_10G", 6124 "QSA", 6125 "QSFP", 6126 "BP40_BA", 6127 "KR4_100G", 6128 "CR4_QSFP", 6129 "CR_QSFP", 6130 "CR2_QSFP", 6131 "SFP28", 6132 "KR_SFP28", 6133 "KR_XLAUI" 6134 }; 6135 6136 if (port_type < ARRAY_SIZE(port_type_description)) 6137 return port_type_description[port_type]; 6138 return "UNKNOWN"; 6139 } 6140 6141 /** 6142 * t4_get_port_stats_offset - collect port stats relative to a previous 6143 * snapshot 6144 * @adap: The adapter 6145 * @idx: The port 6146 * @stats: Current stats to fill 6147 * @offset: Previous stats snapshot 6148 */ 6149 void t4_get_port_stats_offset(struct adapter *adap, int idx, 6150 struct port_stats *stats, 6151 struct port_stats *offset) 6152 { 6153 u64 *s, *o; 6154 int i; 6155 6156 t4_get_port_stats(adap, idx, stats); 6157 for (i = 0, s = (u64 *)stats, o = (u64 *)offset; 6158 i < (sizeof(struct port_stats) / sizeof(u64)); 6159 i++, s++, o++) 6160 *s -= *o; 6161 } 6162 6163 /** 6164 * t4_get_port_stats - collect port statistics 6165 * @adap: the adapter 6166 * @idx: the port index 6167 * @p: the stats structure to fill 6168 * 6169 * Collect statistics related to the given port from HW. 6170 */ 6171 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 6172 { 6173 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6174 u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A); 6175 6176 #define GET_STAT(name) \ 6177 t4_read_reg64(adap, \ 6178 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \ 6179 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L))) 6180 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6181 6182 p->tx_octets = GET_STAT(TX_PORT_BYTES); 6183 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 6184 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 6185 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 6186 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 6187 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 6188 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 6189 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 6190 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 6191 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 6192 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 6193 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 6194 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 6195 p->tx_drop = GET_STAT(TX_PORT_DROP); 6196 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 6197 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 6198 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 6199 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 6200 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 6201 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 6202 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 6203 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 6204 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 6205 6206 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6207 if (stat_ctl & COUNTPAUSESTATTX_F) 6208 p->tx_frames_64 -= p->tx_pause; 6209 if (stat_ctl & COUNTPAUSEMCTX_F) 6210 p->tx_mcast_frames -= p->tx_pause; 6211 } 6212 p->rx_octets = GET_STAT(RX_PORT_BYTES); 6213 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 6214 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 6215 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 6216 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 6217 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 6218 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 6219 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); 6220 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 6221 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 6222 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 6223 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 6224 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 6225 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 6226 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 6227 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 6228 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 6229 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 6230 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 6231 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 6232 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 6233 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 6234 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 6235 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 6236 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 6237 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 6238 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 6239 6240 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6241 if (stat_ctl & COUNTPAUSESTATRX_F) 6242 p->rx_frames_64 -= p->rx_pause; 6243 if (stat_ctl & COUNTPAUSEMCRX_F) 6244 p->rx_mcast_frames -= p->rx_pause; 6245 } 6246 6247 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 6248 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 6249 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 6250 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 6251 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 6252 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 6253 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 6254 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 6255 6256 #undef GET_STAT 6257 #undef GET_STAT_COM 6258 } 6259 6260 /** 6261 * t4_get_lb_stats - collect loopback port statistics 6262 * @adap: the adapter 6263 * @idx: the loopback port index 6264 * @p: the stats structure to fill 6265 * 6266 * Return HW statistics for the given loopback port. 6267 */ 6268 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) 6269 { 6270 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6271 6272 #define GET_STAT(name) \ 6273 t4_read_reg64(adap, \ 6274 (is_t4(adap->params.chip) ? \ 6275 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \ 6276 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L))) 6277 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6278 6279 p->octets = GET_STAT(BYTES); 6280 p->frames = GET_STAT(FRAMES); 6281 p->bcast_frames = GET_STAT(BCAST); 6282 p->mcast_frames = GET_STAT(MCAST); 6283 p->ucast_frames = GET_STAT(UCAST); 6284 p->error_frames = GET_STAT(ERROR); 6285 6286 p->frames_64 = GET_STAT(64B); 6287 p->frames_65_127 = GET_STAT(65B_127B); 6288 p->frames_128_255 = GET_STAT(128B_255B); 6289 p->frames_256_511 = GET_STAT(256B_511B); 6290 p->frames_512_1023 = GET_STAT(512B_1023B); 6291 p->frames_1024_1518 = GET_STAT(1024B_1518B); 6292 p->frames_1519_max = GET_STAT(1519B_MAX); 6293 p->drop = GET_STAT(DROP_FRAMES); 6294 6295 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; 6296 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; 6297 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; 6298 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; 6299 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; 6300 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; 6301 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; 6302 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; 6303 6304 #undef GET_STAT 6305 #undef GET_STAT_COM 6306 } 6307 6308 /* t4_mk_filtdelwr - create a delete filter WR 6309 * @ftid: the filter ID 6310 * @wr: the filter work request to populate 6311 * @qid: ingress queue to receive the delete notification 6312 * 6313 * Creates a filter work request to delete the supplied filter. If @qid is 6314 * negative the delete notification is suppressed. 6315 */ 6316 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 6317 { 6318 memset(wr, 0, sizeof(*wr)); 6319 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR)); 6320 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16)); 6321 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) | 6322 FW_FILTER_WR_NOREPLY_V(qid < 0)); 6323 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F); 6324 if (qid >= 0) 6325 wr->rx_chan_rx_rpl_iq = 6326 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid)); 6327 } 6328 6329 #define INIT_CMD(var, cmd, rd_wr) do { \ 6330 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \ 6331 FW_CMD_REQUEST_F | \ 6332 FW_CMD_##rd_wr##_F); \ 6333 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ 6334 } while (0) 6335 6336 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 6337 u32 addr, u32 val) 6338 { 6339 u32 ldst_addrspace; 6340 struct fw_ldst_cmd c; 6341 6342 memset(&c, 0, sizeof(c)); 6343 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE); 6344 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6345 FW_CMD_REQUEST_F | 6346 FW_CMD_WRITE_F | 6347 ldst_addrspace); 6348 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6349 c.u.addrval.addr = cpu_to_be32(addr); 6350 c.u.addrval.val = cpu_to_be32(val); 6351 6352 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6353 } 6354 6355 /** 6356 * t4_mdio_rd - read a PHY register through MDIO 6357 * @adap: the adapter 6358 * @mbox: mailbox to use for the FW command 6359 * @phy_addr: the PHY address 6360 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6361 * @reg: the register to read 6362 * @valp: where to store the value 6363 * 6364 * Issues a FW command through the given mailbox to read a PHY register. 6365 */ 6366 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6367 unsigned int mmd, unsigned int reg, u16 *valp) 6368 { 6369 int ret; 6370 u32 ldst_addrspace; 6371 struct fw_ldst_cmd c; 6372 6373 memset(&c, 0, sizeof(c)); 6374 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6375 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6376 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6377 ldst_addrspace); 6378 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6379 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6380 FW_LDST_CMD_MMD_V(mmd)); 6381 c.u.mdio.raddr = cpu_to_be16(reg); 6382 6383 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6384 if (ret == 0) 6385 *valp = be16_to_cpu(c.u.mdio.rval); 6386 return ret; 6387 } 6388 6389 /** 6390 * t4_mdio_wr - write a PHY register through MDIO 6391 * @adap: the adapter 6392 * @mbox: mailbox to use for the FW command 6393 * @phy_addr: the PHY address 6394 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6395 * @reg: the register to write 6396 * @valp: value to write 6397 * 6398 * Issues a FW command through the given mailbox to write a PHY register. 6399 */ 6400 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6401 unsigned int mmd, unsigned int reg, u16 val) 6402 { 6403 u32 ldst_addrspace; 6404 struct fw_ldst_cmd c; 6405 6406 memset(&c, 0, sizeof(c)); 6407 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6408 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6409 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6410 ldst_addrspace); 6411 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6412 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6413 FW_LDST_CMD_MMD_V(mmd)); 6414 c.u.mdio.raddr = cpu_to_be16(reg); 6415 c.u.mdio.rval = cpu_to_be16(val); 6416 6417 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6418 } 6419 6420 /** 6421 * t4_sge_decode_idma_state - decode the idma state 6422 * @adap: the adapter 6423 * @state: the state idma is stuck in 6424 */ 6425 void t4_sge_decode_idma_state(struct adapter *adapter, int state) 6426 { 6427 static const char * const t4_decode[] = { 6428 "IDMA_IDLE", 6429 "IDMA_PUSH_MORE_CPL_FIFO", 6430 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6431 "Not used", 6432 "IDMA_PHYSADDR_SEND_PCIEHDR", 6433 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6434 "IDMA_PHYSADDR_SEND_PAYLOAD", 6435 "IDMA_SEND_FIFO_TO_IMSG", 6436 "IDMA_FL_REQ_DATA_FL_PREP", 6437 "IDMA_FL_REQ_DATA_FL", 6438 "IDMA_FL_DROP", 6439 "IDMA_FL_H_REQ_HEADER_FL", 6440 "IDMA_FL_H_SEND_PCIEHDR", 6441 "IDMA_FL_H_PUSH_CPL_FIFO", 6442 "IDMA_FL_H_SEND_CPL", 6443 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6444 "IDMA_FL_H_SEND_IP_HDR", 6445 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6446 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6447 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6448 "IDMA_FL_D_SEND_PCIEHDR", 6449 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6450 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6451 "IDMA_FL_SEND_PCIEHDR", 6452 "IDMA_FL_PUSH_CPL_FIFO", 6453 "IDMA_FL_SEND_CPL", 6454 "IDMA_FL_SEND_PAYLOAD_FIRST", 6455 "IDMA_FL_SEND_PAYLOAD", 6456 "IDMA_FL_REQ_NEXT_DATA_FL", 6457 "IDMA_FL_SEND_NEXT_PCIEHDR", 6458 "IDMA_FL_SEND_PADDING", 6459 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6460 "IDMA_FL_SEND_FIFO_TO_IMSG", 6461 "IDMA_FL_REQ_DATAFL_DONE", 6462 "IDMA_FL_REQ_HEADERFL_DONE", 6463 }; 6464 static const char * const t5_decode[] = { 6465 "IDMA_IDLE", 6466 "IDMA_ALMOST_IDLE", 6467 "IDMA_PUSH_MORE_CPL_FIFO", 6468 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6469 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6470 "IDMA_PHYSADDR_SEND_PCIEHDR", 6471 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6472 "IDMA_PHYSADDR_SEND_PAYLOAD", 6473 "IDMA_SEND_FIFO_TO_IMSG", 6474 "IDMA_FL_REQ_DATA_FL", 6475 "IDMA_FL_DROP", 6476 "IDMA_FL_DROP_SEND_INC", 6477 "IDMA_FL_H_REQ_HEADER_FL", 6478 "IDMA_FL_H_SEND_PCIEHDR", 6479 "IDMA_FL_H_PUSH_CPL_FIFO", 6480 "IDMA_FL_H_SEND_CPL", 6481 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6482 "IDMA_FL_H_SEND_IP_HDR", 6483 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6484 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6485 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6486 "IDMA_FL_D_SEND_PCIEHDR", 6487 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6488 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6489 "IDMA_FL_SEND_PCIEHDR", 6490 "IDMA_FL_PUSH_CPL_FIFO", 6491 "IDMA_FL_SEND_CPL", 6492 "IDMA_FL_SEND_PAYLOAD_FIRST", 6493 "IDMA_FL_SEND_PAYLOAD", 6494 "IDMA_FL_REQ_NEXT_DATA_FL", 6495 "IDMA_FL_SEND_NEXT_PCIEHDR", 6496 "IDMA_FL_SEND_PADDING", 6497 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6498 }; 6499 static const char * const t6_decode[] = { 6500 "IDMA_IDLE", 6501 "IDMA_PUSH_MORE_CPL_FIFO", 6502 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6503 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6504 "IDMA_PHYSADDR_SEND_PCIEHDR", 6505 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6506 "IDMA_PHYSADDR_SEND_PAYLOAD", 6507 "IDMA_FL_REQ_DATA_FL", 6508 "IDMA_FL_DROP", 6509 "IDMA_FL_DROP_SEND_INC", 6510 "IDMA_FL_H_REQ_HEADER_FL", 6511 "IDMA_FL_H_SEND_PCIEHDR", 6512 "IDMA_FL_H_PUSH_CPL_FIFO", 6513 "IDMA_FL_H_SEND_CPL", 6514 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6515 "IDMA_FL_H_SEND_IP_HDR", 6516 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6517 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6518 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6519 "IDMA_FL_D_SEND_PCIEHDR", 6520 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6521 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6522 "IDMA_FL_SEND_PCIEHDR", 6523 "IDMA_FL_PUSH_CPL_FIFO", 6524 "IDMA_FL_SEND_CPL", 6525 "IDMA_FL_SEND_PAYLOAD_FIRST", 6526 "IDMA_FL_SEND_PAYLOAD", 6527 "IDMA_FL_REQ_NEXT_DATA_FL", 6528 "IDMA_FL_SEND_NEXT_PCIEHDR", 6529 "IDMA_FL_SEND_PADDING", 6530 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6531 }; 6532 static const u32 sge_regs[] = { 6533 SGE_DEBUG_DATA_LOW_INDEX_2_A, 6534 SGE_DEBUG_DATA_LOW_INDEX_3_A, 6535 SGE_DEBUG_DATA_HIGH_INDEX_10_A, 6536 }; 6537 const char **sge_idma_decode; 6538 int sge_idma_decode_nstates; 6539 int i; 6540 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6541 6542 /* Select the right set of decode strings to dump depending on the 6543 * adapter chip type. 6544 */ 6545 switch (chip_version) { 6546 case CHELSIO_T4: 6547 sge_idma_decode = (const char **)t4_decode; 6548 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6549 break; 6550 6551 case CHELSIO_T5: 6552 sge_idma_decode = (const char **)t5_decode; 6553 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6554 break; 6555 6556 case CHELSIO_T6: 6557 sge_idma_decode = (const char **)t6_decode; 6558 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); 6559 break; 6560 6561 default: 6562 dev_err(adapter->pdev_dev, 6563 "Unsupported chip version %d\n", chip_version); 6564 return; 6565 } 6566 6567 if (is_t4(adapter->params.chip)) { 6568 sge_idma_decode = (const char **)t4_decode; 6569 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6570 } else { 6571 sge_idma_decode = (const char **)t5_decode; 6572 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6573 } 6574 6575 if (state < sge_idma_decode_nstates) 6576 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); 6577 else 6578 CH_WARN(adapter, "idma state %d unknown\n", state); 6579 6580 for (i = 0; i < ARRAY_SIZE(sge_regs); i++) 6581 CH_WARN(adapter, "SGE register %#x value %#x\n", 6582 sge_regs[i], t4_read_reg(adapter, sge_regs[i])); 6583 } 6584 6585 /** 6586 * t4_sge_ctxt_flush - flush the SGE context cache 6587 * @adap: the adapter 6588 * @mbox: mailbox to use for the FW command 6589 * @ctx_type: Egress or Ingress 6590 * 6591 * Issues a FW command through the given mailbox to flush the 6592 * SGE context cache. 6593 */ 6594 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type) 6595 { 6596 int ret; 6597 u32 ldst_addrspace; 6598 struct fw_ldst_cmd c; 6599 6600 memset(&c, 0, sizeof(c)); 6601 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ? 6602 FW_LDST_ADDRSPC_SGE_EGRC : 6603 FW_LDST_ADDRSPC_SGE_INGC); 6604 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6605 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6606 ldst_addrspace); 6607 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6608 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F); 6609 6610 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6611 return ret; 6612 } 6613 6614 /** 6615 * t4_fw_hello - establish communication with FW 6616 * @adap: the adapter 6617 * @mbox: mailbox to use for the FW command 6618 * @evt_mbox: mailbox to receive async FW events 6619 * @master: specifies the caller's willingness to be the device master 6620 * @state: returns the current device state (if non-NULL) 6621 * 6622 * Issues a command to establish communication with FW. Returns either 6623 * an error (negative integer) or the mailbox of the Master PF. 6624 */ 6625 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 6626 enum dev_master master, enum dev_state *state) 6627 { 6628 int ret; 6629 struct fw_hello_cmd c; 6630 u32 v; 6631 unsigned int master_mbox; 6632 int retries = FW_CMD_HELLO_RETRIES; 6633 6634 retry: 6635 memset(&c, 0, sizeof(c)); 6636 INIT_CMD(c, HELLO, WRITE); 6637 c.err_to_clearinit = cpu_to_be32( 6638 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) | 6639 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) | 6640 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? 6641 mbox : FW_HELLO_CMD_MBMASTER_M) | 6642 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) | 6643 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) | 6644 FW_HELLO_CMD_CLEARINIT_F); 6645 6646 /* 6647 * Issue the HELLO command to the firmware. If it's not successful 6648 * but indicates that we got a "busy" or "timeout" condition, retry 6649 * the HELLO until we exhaust our retry limit. If we do exceed our 6650 * retry limit, check to see if the firmware left us any error 6651 * information and report that if so. 6652 */ 6653 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6654 if (ret < 0) { 6655 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 6656 goto retry; 6657 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F) 6658 t4_report_fw_error(adap); 6659 return ret; 6660 } 6661 6662 v = be32_to_cpu(c.err_to_clearinit); 6663 master_mbox = FW_HELLO_CMD_MBMASTER_G(v); 6664 if (state) { 6665 if (v & FW_HELLO_CMD_ERR_F) 6666 *state = DEV_STATE_ERR; 6667 else if (v & FW_HELLO_CMD_INIT_F) 6668 *state = DEV_STATE_INIT; 6669 else 6670 *state = DEV_STATE_UNINIT; 6671 } 6672 6673 /* 6674 * If we're not the Master PF then we need to wait around for the 6675 * Master PF Driver to finish setting up the adapter. 6676 * 6677 * Note that we also do this wait if we're a non-Master-capable PF and 6678 * there is no current Master PF; a Master PF may show up momentarily 6679 * and we wouldn't want to fail pointlessly. (This can happen when an 6680 * OS loads lots of different drivers rapidly at the same time). In 6681 * this case, the Master PF returned by the firmware will be 6682 * PCIE_FW_MASTER_M so the test below will work ... 6683 */ 6684 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 && 6685 master_mbox != mbox) { 6686 int waiting = FW_CMD_HELLO_TIMEOUT; 6687 6688 /* 6689 * Wait for the firmware to either indicate an error or 6690 * initialized state. If we see either of these we bail out 6691 * and report the issue to the caller. If we exhaust the 6692 * "hello timeout" and we haven't exhausted our retries, try 6693 * again. Otherwise bail with a timeout error. 6694 */ 6695 for (;;) { 6696 u32 pcie_fw; 6697 6698 msleep(50); 6699 waiting -= 50; 6700 6701 /* 6702 * If neither Error nor Initialialized are indicated 6703 * by the firmware keep waiting till we exaust our 6704 * timeout ... and then retry if we haven't exhausted 6705 * our retries ... 6706 */ 6707 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 6708 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) { 6709 if (waiting <= 0) { 6710 if (retries-- > 0) 6711 goto retry; 6712 6713 return -ETIMEDOUT; 6714 } 6715 continue; 6716 } 6717 6718 /* 6719 * We either have an Error or Initialized condition 6720 * report errors preferentially. 6721 */ 6722 if (state) { 6723 if (pcie_fw & PCIE_FW_ERR_F) 6724 *state = DEV_STATE_ERR; 6725 else if (pcie_fw & PCIE_FW_INIT_F) 6726 *state = DEV_STATE_INIT; 6727 } 6728 6729 /* 6730 * If we arrived before a Master PF was selected and 6731 * there's not a valid Master PF, grab its identity 6732 * for our caller. 6733 */ 6734 if (master_mbox == PCIE_FW_MASTER_M && 6735 (pcie_fw & PCIE_FW_MASTER_VLD_F)) 6736 master_mbox = PCIE_FW_MASTER_G(pcie_fw); 6737 break; 6738 } 6739 } 6740 6741 return master_mbox; 6742 } 6743 6744 /** 6745 * t4_fw_bye - end communication with FW 6746 * @adap: the adapter 6747 * @mbox: mailbox to use for the FW command 6748 * 6749 * Issues a command to terminate communication with FW. 6750 */ 6751 int t4_fw_bye(struct adapter *adap, unsigned int mbox) 6752 { 6753 struct fw_bye_cmd c; 6754 6755 memset(&c, 0, sizeof(c)); 6756 INIT_CMD(c, BYE, WRITE); 6757 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6758 } 6759 6760 /** 6761 * t4_init_cmd - ask FW to initialize the device 6762 * @adap: the adapter 6763 * @mbox: mailbox to use for the FW command 6764 * 6765 * Issues a command to FW to partially initialize the device. This 6766 * performs initialization that generally doesn't depend on user input. 6767 */ 6768 int t4_early_init(struct adapter *adap, unsigned int mbox) 6769 { 6770 struct fw_initialize_cmd c; 6771 6772 memset(&c, 0, sizeof(c)); 6773 INIT_CMD(c, INITIALIZE, WRITE); 6774 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6775 } 6776 6777 /** 6778 * t4_fw_reset - issue a reset to FW 6779 * @adap: the adapter 6780 * @mbox: mailbox to use for the FW command 6781 * @reset: specifies the type of reset to perform 6782 * 6783 * Issues a reset command of the specified type to FW. 6784 */ 6785 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 6786 { 6787 struct fw_reset_cmd c; 6788 6789 memset(&c, 0, sizeof(c)); 6790 INIT_CMD(c, RESET, WRITE); 6791 c.val = cpu_to_be32(reset); 6792 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6793 } 6794 6795 /** 6796 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 6797 * @adap: the adapter 6798 * @mbox: mailbox to use for the FW RESET command (if desired) 6799 * @force: force uP into RESET even if FW RESET command fails 6800 * 6801 * Issues a RESET command to firmware (if desired) with a HALT indication 6802 * and then puts the microprocessor into RESET state. The RESET command 6803 * will only be issued if a legitimate mailbox is provided (mbox <= 6804 * PCIE_FW_MASTER_M). 6805 * 6806 * This is generally used in order for the host to safely manipulate the 6807 * adapter without fear of conflicting with whatever the firmware might 6808 * be doing. The only way out of this state is to RESTART the firmware 6809 * ... 6810 */ 6811 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 6812 { 6813 int ret = 0; 6814 6815 /* 6816 * If a legitimate mailbox is provided, issue a RESET command 6817 * with a HALT indication. 6818 */ 6819 if (mbox <= PCIE_FW_MASTER_M) { 6820 struct fw_reset_cmd c; 6821 6822 memset(&c, 0, sizeof(c)); 6823 INIT_CMD(c, RESET, WRITE); 6824 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F); 6825 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F); 6826 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6827 } 6828 6829 /* 6830 * Normally we won't complete the operation if the firmware RESET 6831 * command fails but if our caller insists we'll go ahead and put the 6832 * uP into RESET. This can be useful if the firmware is hung or even 6833 * missing ... We'll have to take the risk of putting the uP into 6834 * RESET without the cooperation of firmware in that case. 6835 * 6836 * We also force the firmware's HALT flag to be on in case we bypassed 6837 * the firmware RESET command above or we're dealing with old firmware 6838 * which doesn't have the HALT capability. This will serve as a flag 6839 * for the incoming firmware to know that it's coming out of a HALT 6840 * rather than a RESET ... if it's new enough to understand that ... 6841 */ 6842 if (ret == 0 || force) { 6843 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F); 6844 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 6845 PCIE_FW_HALT_F); 6846 } 6847 6848 /* 6849 * And we always return the result of the firmware RESET command 6850 * even when we force the uP into RESET ... 6851 */ 6852 return ret; 6853 } 6854 6855 /** 6856 * t4_fw_restart - restart the firmware by taking the uP out of RESET 6857 * @adap: the adapter 6858 * @reset: if we want to do a RESET to restart things 6859 * 6860 * Restart firmware previously halted by t4_fw_halt(). On successful 6861 * return the previous PF Master remains as the new PF Master and there 6862 * is no need to issue a new HELLO command, etc. 6863 * 6864 * We do this in two ways: 6865 * 6866 * 1. If we're dealing with newer firmware we'll simply want to take 6867 * the chip's microprocessor out of RESET. This will cause the 6868 * firmware to start up from its start vector. And then we'll loop 6869 * until the firmware indicates it's started again (PCIE_FW.HALT 6870 * reset to 0) or we timeout. 6871 * 6872 * 2. If we're dealing with older firmware then we'll need to RESET 6873 * the chip since older firmware won't recognize the PCIE_FW.HALT 6874 * flag and automatically RESET itself on startup. 6875 */ 6876 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) 6877 { 6878 if (reset) { 6879 /* 6880 * Since we're directing the RESET instead of the firmware 6881 * doing it automatically, we need to clear the PCIE_FW.HALT 6882 * bit. 6883 */ 6884 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0); 6885 6886 /* 6887 * If we've been given a valid mailbox, first try to get the 6888 * firmware to do the RESET. If that works, great and we can 6889 * return success. Otherwise, if we haven't been given a 6890 * valid mailbox or the RESET command failed, fall back to 6891 * hitting the chip with a hammer. 6892 */ 6893 if (mbox <= PCIE_FW_MASTER_M) { 6894 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 6895 msleep(100); 6896 if (t4_fw_reset(adap, mbox, 6897 PIORST_F | PIORSTMODE_F) == 0) 6898 return 0; 6899 } 6900 6901 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F); 6902 msleep(2000); 6903 } else { 6904 int ms; 6905 6906 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 6907 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 6908 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F)) 6909 return 0; 6910 msleep(100); 6911 ms += 100; 6912 } 6913 return -ETIMEDOUT; 6914 } 6915 return 0; 6916 } 6917 6918 /** 6919 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 6920 * @adap: the adapter 6921 * @mbox: mailbox to use for the FW RESET command (if desired) 6922 * @fw_data: the firmware image to write 6923 * @size: image size 6924 * @force: force upgrade even if firmware doesn't cooperate 6925 * 6926 * Perform all of the steps necessary for upgrading an adapter's 6927 * firmware image. Normally this requires the cooperation of the 6928 * existing firmware in order to halt all existing activities 6929 * but if an invalid mailbox token is passed in we skip that step 6930 * (though we'll still put the adapter microprocessor into RESET in 6931 * that case). 6932 * 6933 * On successful return the new firmware will have been loaded and 6934 * the adapter will have been fully RESET losing all previous setup 6935 * state. On unsuccessful return the adapter may be completely hosed ... 6936 * positive errno indicates that the adapter is ~probably~ intact, a 6937 * negative errno indicates that things are looking bad ... 6938 */ 6939 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 6940 const u8 *fw_data, unsigned int size, int force) 6941 { 6942 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 6943 int reset, ret; 6944 6945 if (!t4_fw_matches_chip(adap, fw_hdr)) 6946 return -EINVAL; 6947 6948 /* Disable FW_OK flag so that mbox commands with FW_OK flag set 6949 * wont be sent when we are flashing FW. 6950 */ 6951 adap->flags &= ~FW_OK; 6952 6953 ret = t4_fw_halt(adap, mbox, force); 6954 if (ret < 0 && !force) 6955 goto out; 6956 6957 ret = t4_load_fw(adap, fw_data, size); 6958 if (ret < 0) 6959 goto out; 6960 6961 /* 6962 * If there was a Firmware Configuration File stored in FLASH, 6963 * there's a good chance that it won't be compatible with the new 6964 * Firmware. In order to prevent difficult to diagnose adapter 6965 * initialization issues, we clear out the Firmware Configuration File 6966 * portion of the FLASH . The user will need to re-FLASH a new 6967 * Firmware Configuration File which is compatible with the new 6968 * Firmware if that's desired. 6969 */ 6970 (void)t4_load_cfg(adap, NULL, 0); 6971 6972 /* 6973 * Older versions of the firmware don't understand the new 6974 * PCIE_FW.HALT flag and so won't know to perform a RESET when they 6975 * restart. So for newly loaded older firmware we'll have to do the 6976 * RESET for it so it starts up on a clean slate. We can tell if 6977 * the newly loaded firmware will handle this right by checking 6978 * its header flags to see if it advertises the capability. 6979 */ 6980 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); 6981 ret = t4_fw_restart(adap, mbox, reset); 6982 6983 /* Grab potentially new Firmware Device Log parameters so we can see 6984 * how healthy the new Firmware is. It's okay to contact the new 6985 * Firmware for these parameters even though, as far as it's 6986 * concerned, we've never said "HELLO" to it ... 6987 */ 6988 (void)t4_init_devlog_params(adap); 6989 out: 6990 adap->flags |= FW_OK; 6991 return ret; 6992 } 6993 6994 /** 6995 * t4_fl_pkt_align - return the fl packet alignment 6996 * @adap: the adapter 6997 * 6998 * T4 has a single field to specify the packing and padding boundary. 6999 * T5 onwards has separate fields for this and hence the alignment for 7000 * next packet offset is maximum of these two. 7001 * 7002 */ 7003 int t4_fl_pkt_align(struct adapter *adap) 7004 { 7005 u32 sge_control, sge_control2; 7006 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift; 7007 7008 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 7009 7010 /* T4 uses a single control field to specify both the PCIe Padding and 7011 * Packing Boundary. T5 introduced the ability to specify these 7012 * separately. The actual Ingress Packet Data alignment boundary 7013 * within Packed Buffer Mode is the maximum of these two 7014 * specifications. (Note that it makes no real practical sense to 7015 * have the Pading Boudary be larger than the Packing Boundary but you 7016 * could set the chip up that way and, in fact, legacy T4 code would 7017 * end doing this because it would initialize the Padding Boundary and 7018 * leave the Packing Boundary initialized to 0 (16 bytes).) 7019 * Padding Boundary values in T6 starts from 8B, 7020 * where as it is 32B for T4 and T5. 7021 */ 7022 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 7023 ingpad_shift = INGPADBOUNDARY_SHIFT_X; 7024 else 7025 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X; 7026 7027 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift); 7028 7029 fl_align = ingpadboundary; 7030 if (!is_t4(adap->params.chip)) { 7031 /* T5 has a weird interpretation of one of the PCIe Packing 7032 * Boundary values. No idea why ... 7033 */ 7034 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A); 7035 ingpackboundary = INGPACKBOUNDARY_G(sge_control2); 7036 if (ingpackboundary == INGPACKBOUNDARY_16B_X) 7037 ingpackboundary = 16; 7038 else 7039 ingpackboundary = 1 << (ingpackboundary + 7040 INGPACKBOUNDARY_SHIFT_X); 7041 7042 fl_align = max(ingpadboundary, ingpackboundary); 7043 } 7044 return fl_align; 7045 } 7046 7047 /** 7048 * t4_fixup_host_params - fix up host-dependent parameters 7049 * @adap: the adapter 7050 * @page_size: the host's Base Page Size 7051 * @cache_line_size: the host's Cache Line Size 7052 * 7053 * Various registers in T4 contain values which are dependent on the 7054 * host's Base Page and Cache Line Sizes. This function will fix all of 7055 * those registers with the appropriate values as passed in ... 7056 */ 7057 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size, 7058 unsigned int cache_line_size) 7059 { 7060 unsigned int page_shift = fls(page_size) - 1; 7061 unsigned int sge_hps = page_shift - 10; 7062 unsigned int stat_len = cache_line_size > 64 ? 128 : 64; 7063 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size; 7064 unsigned int fl_align_log = fls(fl_align) - 1; 7065 7066 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A, 7067 HOSTPAGESIZEPF0_V(sge_hps) | 7068 HOSTPAGESIZEPF1_V(sge_hps) | 7069 HOSTPAGESIZEPF2_V(sge_hps) | 7070 HOSTPAGESIZEPF3_V(sge_hps) | 7071 HOSTPAGESIZEPF4_V(sge_hps) | 7072 HOSTPAGESIZEPF5_V(sge_hps) | 7073 HOSTPAGESIZEPF6_V(sge_hps) | 7074 HOSTPAGESIZEPF7_V(sge_hps)); 7075 7076 if (is_t4(adap->params.chip)) { 7077 t4_set_reg_field(adap, SGE_CONTROL_A, 7078 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7079 EGRSTATUSPAGESIZE_F, 7080 INGPADBOUNDARY_V(fl_align_log - 7081 INGPADBOUNDARY_SHIFT_X) | 7082 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7083 } else { 7084 unsigned int pack_align; 7085 unsigned int ingpad, ingpack; 7086 unsigned int pcie_cap; 7087 7088 /* T5 introduced the separation of the Free List Padding and 7089 * Packing Boundaries. Thus, we can select a smaller Padding 7090 * Boundary to avoid uselessly chewing up PCIe Link and Memory 7091 * Bandwidth, and use a Packing Boundary which is large enough 7092 * to avoid false sharing between CPUs, etc. 7093 * 7094 * For the PCI Link, the smaller the Padding Boundary the 7095 * better. For the Memory Controller, a smaller Padding 7096 * Boundary is better until we cross under the Memory Line 7097 * Size (the minimum unit of transfer to/from Memory). If we 7098 * have a Padding Boundary which is smaller than the Memory 7099 * Line Size, that'll involve a Read-Modify-Write cycle on the 7100 * Memory Controller which is never good. 7101 */ 7102 7103 /* We want the Packing Boundary to be based on the Cache Line 7104 * Size in order to help avoid False Sharing performance 7105 * issues between CPUs, etc. We also want the Packing 7106 * Boundary to incorporate the PCI-E Maximum Payload Size. We 7107 * get best performance when the Packing Boundary is a 7108 * multiple of the Maximum Payload Size. 7109 */ 7110 pack_align = fl_align; 7111 pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP); 7112 if (pcie_cap) { 7113 unsigned int mps, mps_log; 7114 u16 devctl; 7115 7116 /* The PCIe Device Control Maximum Payload Size field 7117 * [bits 7:5] encodes sizes as powers of 2 starting at 7118 * 128 bytes. 7119 */ 7120 pci_read_config_word(adap->pdev, 7121 pcie_cap + PCI_EXP_DEVCTL, 7122 &devctl); 7123 mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7; 7124 mps = 1 << mps_log; 7125 if (mps > pack_align) 7126 pack_align = mps; 7127 } 7128 7129 /* N.B. T5/T6 have a crazy special interpretation of the "0" 7130 * value for the Packing Boundary. This corresponds to 16 7131 * bytes instead of the expected 32 bytes. So if we want 32 7132 * bytes, the best we can really do is 64 bytes ... 7133 */ 7134 if (pack_align <= 16) { 7135 ingpack = INGPACKBOUNDARY_16B_X; 7136 fl_align = 16; 7137 } else if (pack_align == 32) { 7138 ingpack = INGPACKBOUNDARY_64B_X; 7139 fl_align = 64; 7140 } else { 7141 unsigned int pack_align_log = fls(pack_align) - 1; 7142 7143 ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X; 7144 fl_align = pack_align; 7145 } 7146 7147 /* Use the smallest Ingress Padding which isn't smaller than 7148 * the Memory Controller Read/Write Size. We'll take that as 7149 * being 8 bytes since we don't know of any system with a 7150 * wider Memory Controller Bus Width. 7151 */ 7152 if (is_t5(adap->params.chip)) 7153 ingpad = INGPADBOUNDARY_32B_X; 7154 else 7155 ingpad = T6_INGPADBOUNDARY_8B_X; 7156 7157 t4_set_reg_field(adap, SGE_CONTROL_A, 7158 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7159 EGRSTATUSPAGESIZE_F, 7160 INGPADBOUNDARY_V(ingpad) | 7161 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7162 t4_set_reg_field(adap, SGE_CONTROL2_A, 7163 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M), 7164 INGPACKBOUNDARY_V(ingpack)); 7165 } 7166 /* 7167 * Adjust various SGE Free List Host Buffer Sizes. 7168 * 7169 * This is something of a crock since we're using fixed indices into 7170 * the array which are also known by the sge.c code and the T4 7171 * Firmware Configuration File. We need to come up with a much better 7172 * approach to managing this array. For now, the first four entries 7173 * are: 7174 * 7175 * 0: Host Page Size 7176 * 1: 64KB 7177 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode) 7178 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode) 7179 * 7180 * For the single-MTU buffers in unpacked mode we need to include 7181 * space for the SGE Control Packet Shift, 14 byte Ethernet header, 7182 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet 7183 * Padding boundary. All of these are accommodated in the Factory 7184 * Default Firmware Configuration File but we need to adjust it for 7185 * this host's cache line size. 7186 */ 7187 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size); 7188 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A, 7189 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1) 7190 & ~(fl_align-1)); 7191 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A, 7192 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1) 7193 & ~(fl_align-1)); 7194 7195 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12)); 7196 7197 return 0; 7198 } 7199 7200 /** 7201 * t4_fw_initialize - ask FW to initialize the device 7202 * @adap: the adapter 7203 * @mbox: mailbox to use for the FW command 7204 * 7205 * Issues a command to FW to partially initialize the device. This 7206 * performs initialization that generally doesn't depend on user input. 7207 */ 7208 int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 7209 { 7210 struct fw_initialize_cmd c; 7211 7212 memset(&c, 0, sizeof(c)); 7213 INIT_CMD(c, INITIALIZE, WRITE); 7214 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7215 } 7216 7217 /** 7218 * t4_query_params_rw - query FW or device parameters 7219 * @adap: the adapter 7220 * @mbox: mailbox to use for the FW command 7221 * @pf: the PF 7222 * @vf: the VF 7223 * @nparams: the number of parameters 7224 * @params: the parameter names 7225 * @val: the parameter values 7226 * @rw: Write and read flag 7227 * @sleep_ok: if true, we may sleep awaiting mbox cmd completion 7228 * 7229 * Reads the value of FW or device parameters. Up to 7 parameters can be 7230 * queried at once. 7231 */ 7232 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, 7233 unsigned int vf, unsigned int nparams, const u32 *params, 7234 u32 *val, int rw, bool sleep_ok) 7235 { 7236 int i, ret; 7237 struct fw_params_cmd c; 7238 __be32 *p = &c.param[0].mnem; 7239 7240 if (nparams > 7) 7241 return -EINVAL; 7242 7243 memset(&c, 0, sizeof(c)); 7244 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7245 FW_CMD_REQUEST_F | FW_CMD_READ_F | 7246 FW_PARAMS_CMD_PFN_V(pf) | 7247 FW_PARAMS_CMD_VFN_V(vf)); 7248 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7249 7250 for (i = 0; i < nparams; i++) { 7251 *p++ = cpu_to_be32(*params++); 7252 if (rw) 7253 *p = cpu_to_be32(*(val + i)); 7254 p++; 7255 } 7256 7257 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7258 if (ret == 0) 7259 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 7260 *val++ = be32_to_cpu(*p); 7261 return ret; 7262 } 7263 7264 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7265 unsigned int vf, unsigned int nparams, const u32 *params, 7266 u32 *val) 7267 { 7268 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7269 true); 7270 } 7271 7272 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf, 7273 unsigned int vf, unsigned int nparams, const u32 *params, 7274 u32 *val) 7275 { 7276 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7277 false); 7278 } 7279 7280 /** 7281 * t4_set_params_timeout - sets FW or device parameters 7282 * @adap: the adapter 7283 * @mbox: mailbox to use for the FW command 7284 * @pf: the PF 7285 * @vf: the VF 7286 * @nparams: the number of parameters 7287 * @params: the parameter names 7288 * @val: the parameter values 7289 * @timeout: the timeout time 7290 * 7291 * Sets the value of FW or device parameters. Up to 7 parameters can be 7292 * specified at once. 7293 */ 7294 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, 7295 unsigned int pf, unsigned int vf, 7296 unsigned int nparams, const u32 *params, 7297 const u32 *val, int timeout) 7298 { 7299 struct fw_params_cmd c; 7300 __be32 *p = &c.param[0].mnem; 7301 7302 if (nparams > 7) 7303 return -EINVAL; 7304 7305 memset(&c, 0, sizeof(c)); 7306 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7307 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7308 FW_PARAMS_CMD_PFN_V(pf) | 7309 FW_PARAMS_CMD_VFN_V(vf)); 7310 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7311 7312 while (nparams--) { 7313 *p++ = cpu_to_be32(*params++); 7314 *p++ = cpu_to_be32(*val++); 7315 } 7316 7317 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); 7318 } 7319 7320 /** 7321 * t4_set_params - sets FW or device parameters 7322 * @adap: the adapter 7323 * @mbox: mailbox to use for the FW command 7324 * @pf: the PF 7325 * @vf: the VF 7326 * @nparams: the number of parameters 7327 * @params: the parameter names 7328 * @val: the parameter values 7329 * 7330 * Sets the value of FW or device parameters. Up to 7 parameters can be 7331 * specified at once. 7332 */ 7333 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7334 unsigned int vf, unsigned int nparams, const u32 *params, 7335 const u32 *val) 7336 { 7337 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, 7338 FW_CMD_MAX_TIMEOUT); 7339 } 7340 7341 /** 7342 * t4_cfg_pfvf - configure PF/VF resource limits 7343 * @adap: the adapter 7344 * @mbox: mailbox to use for the FW command 7345 * @pf: the PF being configured 7346 * @vf: the VF being configured 7347 * @txq: the max number of egress queues 7348 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 7349 * @rxqi: the max number of interrupt-capable ingress queues 7350 * @rxq: the max number of interruptless ingress queues 7351 * @tc: the PCI traffic class 7352 * @vi: the max number of virtual interfaces 7353 * @cmask: the channel access rights mask for the PF/VF 7354 * @pmask: the port access rights mask for the PF/VF 7355 * @nexact: the maximum number of exact MPS filters 7356 * @rcaps: read capabilities 7357 * @wxcaps: write/execute capabilities 7358 * 7359 * Configures resource limits and capabilities for a physical or virtual 7360 * function. 7361 */ 7362 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 7363 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 7364 unsigned int rxqi, unsigned int rxq, unsigned int tc, 7365 unsigned int vi, unsigned int cmask, unsigned int pmask, 7366 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 7367 { 7368 struct fw_pfvf_cmd c; 7369 7370 memset(&c, 0, sizeof(c)); 7371 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F | 7372 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) | 7373 FW_PFVF_CMD_VFN_V(vf)); 7374 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7375 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) | 7376 FW_PFVF_CMD_NIQ_V(rxq)); 7377 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) | 7378 FW_PFVF_CMD_PMASK_V(pmask) | 7379 FW_PFVF_CMD_NEQ_V(txq)); 7380 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) | 7381 FW_PFVF_CMD_NVI_V(vi) | 7382 FW_PFVF_CMD_NEXACTF_V(nexact)); 7383 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) | 7384 FW_PFVF_CMD_WX_CAPS_V(wxcaps) | 7385 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl)); 7386 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7387 } 7388 7389 /** 7390 * t4_alloc_vi - allocate a virtual interface 7391 * @adap: the adapter 7392 * @mbox: mailbox to use for the FW command 7393 * @port: physical port associated with the VI 7394 * @pf: the PF owning the VI 7395 * @vf: the VF owning the VI 7396 * @nmac: number of MAC addresses needed (1 to 5) 7397 * @mac: the MAC addresses of the VI 7398 * @rss_size: size of RSS table slice associated with this VI 7399 * 7400 * Allocates a virtual interface for the given physical port. If @mac is 7401 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 7402 * @mac should be large enough to hold @nmac Ethernet addresses, they are 7403 * stored consecutively so the space needed is @nmac * 6 bytes. 7404 * Returns a negative error number or the non-negative VI id. 7405 */ 7406 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 7407 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 7408 unsigned int *rss_size) 7409 { 7410 int ret; 7411 struct fw_vi_cmd c; 7412 7413 memset(&c, 0, sizeof(c)); 7414 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | 7415 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 7416 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf)); 7417 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c)); 7418 c.portid_pkd = FW_VI_CMD_PORTID_V(port); 7419 c.nmac = nmac - 1; 7420 7421 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7422 if (ret) 7423 return ret; 7424 7425 if (mac) { 7426 memcpy(mac, c.mac, sizeof(c.mac)); 7427 switch (nmac) { 7428 case 5: 7429 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 7430 case 4: 7431 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 7432 case 3: 7433 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 7434 case 2: 7435 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 7436 } 7437 } 7438 if (rss_size) 7439 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd)); 7440 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid)); 7441 } 7442 7443 /** 7444 * t4_free_vi - free a virtual interface 7445 * @adap: the adapter 7446 * @mbox: mailbox to use for the FW command 7447 * @pf: the PF owning the VI 7448 * @vf: the VF owning the VI 7449 * @viid: virtual interface identifiler 7450 * 7451 * Free a previously allocated virtual interface. 7452 */ 7453 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, 7454 unsigned int vf, unsigned int viid) 7455 { 7456 struct fw_vi_cmd c; 7457 7458 memset(&c, 0, sizeof(c)); 7459 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 7460 FW_CMD_REQUEST_F | 7461 FW_CMD_EXEC_F | 7462 FW_VI_CMD_PFN_V(pf) | 7463 FW_VI_CMD_VFN_V(vf)); 7464 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c)); 7465 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid)); 7466 7467 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7468 } 7469 7470 /** 7471 * t4_set_rxmode - set Rx properties of a virtual interface 7472 * @adap: the adapter 7473 * @mbox: mailbox to use for the FW command 7474 * @viid: the VI id 7475 * @mtu: the new MTU or -1 7476 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 7477 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 7478 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 7479 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 7480 * @sleep_ok: if true we may sleep while awaiting command completion 7481 * 7482 * Sets Rx properties of a virtual interface. 7483 */ 7484 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 7485 int mtu, int promisc, int all_multi, int bcast, int vlanex, 7486 bool sleep_ok) 7487 { 7488 struct fw_vi_rxmode_cmd c; 7489 7490 /* convert to FW values */ 7491 if (mtu < 0) 7492 mtu = FW_RXMODE_MTU_NO_CHG; 7493 if (promisc < 0) 7494 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; 7495 if (all_multi < 0) 7496 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; 7497 if (bcast < 0) 7498 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; 7499 if (vlanex < 0) 7500 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; 7501 7502 memset(&c, 0, sizeof(c)); 7503 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 7504 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7505 FW_VI_RXMODE_CMD_VIID_V(viid)); 7506 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7507 c.mtu_to_vlanexen = 7508 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) | 7509 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | 7510 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | 7511 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | 7512 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); 7513 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 7514 } 7515 7516 /** 7517 * t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam 7518 * @adap: the adapter 7519 * @viid: the VI id 7520 * @addr: the MAC address 7521 * @mask: the mask 7522 * @idx: index of the entry in mps tcam 7523 * @lookup_type: MAC address for inner (1) or outer (0) header 7524 * @port_id: the port index 7525 * @sleep_ok: call is allowed to sleep 7526 * 7527 * Removes the mac entry at the specified index using raw mac interface. 7528 * 7529 * Returns a negative error number on failure. 7530 */ 7531 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid, 7532 const u8 *addr, const u8 *mask, unsigned int idx, 7533 u8 lookup_type, u8 port_id, bool sleep_ok) 7534 { 7535 struct fw_vi_mac_cmd c; 7536 struct fw_vi_mac_raw *p = &c.u.raw; 7537 u32 val; 7538 7539 memset(&c, 0, sizeof(c)); 7540 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7541 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7542 FW_CMD_EXEC_V(0) | 7543 FW_VI_MAC_CMD_VIID_V(viid)); 7544 val = FW_CMD_LEN16_V(1) | 7545 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7546 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7547 FW_CMD_LEN16_V(val)); 7548 7549 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) | 7550 FW_VI_MAC_ID_BASED_FREE); 7551 7552 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7553 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7554 DATAPORTNUM_V(port_id)); 7555 /* Lookup mask and port mask */ 7556 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7557 DATAPORTNUM_V(DATAPORTNUM_M)); 7558 7559 /* Copy the address and the mask */ 7560 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7561 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7562 7563 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7564 } 7565 7566 /** 7567 * t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam 7568 * @adap: the adapter 7569 * @viid: the VI id 7570 * @mac: the MAC address 7571 * @mask: the mask 7572 * @idx: index at which to add this entry 7573 * @port_id: the port index 7574 * @lookup_type: MAC address for inner (1) or outer (0) header 7575 * @sleep_ok: call is allowed to sleep 7576 * 7577 * Adds the mac entry at the specified index using raw mac interface. 7578 * 7579 * Returns a negative error number or the allocated index for this mac. 7580 */ 7581 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid, 7582 const u8 *addr, const u8 *mask, unsigned int idx, 7583 u8 lookup_type, u8 port_id, bool sleep_ok) 7584 { 7585 int ret = 0; 7586 struct fw_vi_mac_cmd c; 7587 struct fw_vi_mac_raw *p = &c.u.raw; 7588 u32 val; 7589 7590 memset(&c, 0, sizeof(c)); 7591 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7592 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7593 FW_VI_MAC_CMD_VIID_V(viid)); 7594 val = FW_CMD_LEN16_V(1) | 7595 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7596 c.freemacs_to_len16 = cpu_to_be32(val); 7597 7598 /* Specify that this is an inner mac address */ 7599 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx)); 7600 7601 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7602 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7603 DATAPORTNUM_V(port_id)); 7604 /* Lookup mask and port mask */ 7605 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7606 DATAPORTNUM_V(DATAPORTNUM_M)); 7607 7608 /* Copy the address and the mask */ 7609 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7610 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7611 7612 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7613 if (ret == 0) { 7614 ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd)); 7615 if (ret != idx) 7616 ret = -ENOMEM; 7617 } 7618 7619 return ret; 7620 } 7621 7622 /** 7623 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 7624 * @adap: the adapter 7625 * @mbox: mailbox to use for the FW command 7626 * @viid: the VI id 7627 * @free: if true any existing filters for this VI id are first removed 7628 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7629 * @addr: the MAC address(es) 7630 * @idx: where to store the index of each allocated filter 7631 * @hash: pointer to hash address filter bitmap 7632 * @sleep_ok: call is allowed to sleep 7633 * 7634 * Allocates an exact-match filter for each of the supplied addresses and 7635 * sets it to the corresponding address. If @idx is not %NULL it should 7636 * have at least @naddr entries, each of which will be set to the index of 7637 * the filter allocated for the corresponding MAC address. If a filter 7638 * could not be allocated for an address its index is set to 0xffff. 7639 * If @hash is not %NULL addresses that fail to allocate an exact filter 7640 * are hashed and update the hash filter bitmap pointed at by @hash. 7641 * 7642 * Returns a negative error number or the number of filters allocated. 7643 */ 7644 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 7645 unsigned int viid, bool free, unsigned int naddr, 7646 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 7647 { 7648 int offset, ret = 0; 7649 struct fw_vi_mac_cmd c; 7650 unsigned int nfilters = 0; 7651 unsigned int max_naddr = adap->params.arch.mps_tcam_size; 7652 unsigned int rem = naddr; 7653 7654 if (naddr > max_naddr) 7655 return -EINVAL; 7656 7657 for (offset = 0; offset < naddr ; /**/) { 7658 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ? 7659 rem : ARRAY_SIZE(c.u.exact)); 7660 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 7661 u.exact[fw_naddr]), 16); 7662 struct fw_vi_mac_exact *p; 7663 int i; 7664 7665 memset(&c, 0, sizeof(c)); 7666 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7667 FW_CMD_REQUEST_F | 7668 FW_CMD_WRITE_F | 7669 FW_CMD_EXEC_V(free) | 7670 FW_VI_MAC_CMD_VIID_V(viid)); 7671 c.freemacs_to_len16 = 7672 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) | 7673 FW_CMD_LEN16_V(len16)); 7674 7675 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7676 p->valid_to_idx = 7677 cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7678 FW_VI_MAC_CMD_IDX_V( 7679 FW_VI_MAC_ADD_MAC)); 7680 memcpy(p->macaddr, addr[offset + i], 7681 sizeof(p->macaddr)); 7682 } 7683 7684 /* It's okay if we run out of space in our MAC address arena. 7685 * Some of the addresses we submit may get stored so we need 7686 * to run through the reply to see what the results were ... 7687 */ 7688 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7689 if (ret && ret != -FW_ENOMEM) 7690 break; 7691 7692 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7693 u16 index = FW_VI_MAC_CMD_IDX_G( 7694 be16_to_cpu(p->valid_to_idx)); 7695 7696 if (idx) 7697 idx[offset + i] = (index >= max_naddr ? 7698 0xffff : index); 7699 if (index < max_naddr) 7700 nfilters++; 7701 else if (hash) 7702 *hash |= (1ULL << 7703 hash_mac_addr(addr[offset + i])); 7704 } 7705 7706 free = false; 7707 offset += fw_naddr; 7708 rem -= fw_naddr; 7709 } 7710 7711 if (ret == 0 || ret == -FW_ENOMEM) 7712 ret = nfilters; 7713 return ret; 7714 } 7715 7716 /** 7717 * t4_free_mac_filt - frees exact-match filters of given MAC addresses 7718 * @adap: the adapter 7719 * @mbox: mailbox to use for the FW command 7720 * @viid: the VI id 7721 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7722 * @addr: the MAC address(es) 7723 * @sleep_ok: call is allowed to sleep 7724 * 7725 * Frees the exact-match filter for each of the supplied addresses 7726 * 7727 * Returns a negative error number or the number of filters freed. 7728 */ 7729 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox, 7730 unsigned int viid, unsigned int naddr, 7731 const u8 **addr, bool sleep_ok) 7732 { 7733 int offset, ret = 0; 7734 struct fw_vi_mac_cmd c; 7735 unsigned int nfilters = 0; 7736 unsigned int max_naddr = is_t4(adap->params.chip) ? 7737 NUM_MPS_CLS_SRAM_L_INSTANCES : 7738 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 7739 unsigned int rem = naddr; 7740 7741 if (naddr > max_naddr) 7742 return -EINVAL; 7743 7744 for (offset = 0; offset < (int)naddr ; /**/) { 7745 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) 7746 ? rem 7747 : ARRAY_SIZE(c.u.exact)); 7748 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 7749 u.exact[fw_naddr]), 16); 7750 struct fw_vi_mac_exact *p; 7751 int i; 7752 7753 memset(&c, 0, sizeof(c)); 7754 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7755 FW_CMD_REQUEST_F | 7756 FW_CMD_WRITE_F | 7757 FW_CMD_EXEC_V(0) | 7758 FW_VI_MAC_CMD_VIID_V(viid)); 7759 c.freemacs_to_len16 = 7760 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7761 FW_CMD_LEN16_V(len16)); 7762 7763 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) { 7764 p->valid_to_idx = cpu_to_be16( 7765 FW_VI_MAC_CMD_VALID_F | 7766 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE)); 7767 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 7768 } 7769 7770 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7771 if (ret) 7772 break; 7773 7774 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7775 u16 index = FW_VI_MAC_CMD_IDX_G( 7776 be16_to_cpu(p->valid_to_idx)); 7777 7778 if (index < max_naddr) 7779 nfilters++; 7780 } 7781 7782 offset += fw_naddr; 7783 rem -= fw_naddr; 7784 } 7785 7786 if (ret == 0) 7787 ret = nfilters; 7788 return ret; 7789 } 7790 7791 /** 7792 * t4_change_mac - modifies the exact-match filter for a MAC address 7793 * @adap: the adapter 7794 * @mbox: mailbox to use for the FW command 7795 * @viid: the VI id 7796 * @idx: index of existing filter for old value of MAC address, or -1 7797 * @addr: the new MAC address value 7798 * @persist: whether a new MAC allocation should be persistent 7799 * @add_smt: if true also add the address to the HW SMT 7800 * 7801 * Modifies an exact-match filter and sets it to the new MAC address. 7802 * Note that in general it is not possible to modify the value of a given 7803 * filter so the generic way to modify an address filter is to free the one 7804 * being used by the old address value and allocate a new filter for the 7805 * new address value. @idx can be -1 if the address is a new addition. 7806 * 7807 * Returns a negative error number or the index of the filter with the new 7808 * MAC value. 7809 */ 7810 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 7811 int idx, const u8 *addr, bool persist, bool add_smt) 7812 { 7813 int ret, mode; 7814 struct fw_vi_mac_cmd c; 7815 struct fw_vi_mac_exact *p = c.u.exact; 7816 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size; 7817 7818 if (idx < 0) /* new allocation */ 7819 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 7820 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 7821 7822 memset(&c, 0, sizeof(c)); 7823 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7824 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7825 FW_VI_MAC_CMD_VIID_V(viid)); 7826 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1)); 7827 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7828 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) | 7829 FW_VI_MAC_CMD_IDX_V(idx)); 7830 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7831 7832 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7833 if (ret == 0) { 7834 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 7835 if (ret >= max_mac_addr) 7836 ret = -ENOMEM; 7837 } 7838 return ret; 7839 } 7840 7841 /** 7842 * t4_set_addr_hash - program the MAC inexact-match hash filter 7843 * @adap: the adapter 7844 * @mbox: mailbox to use for the FW command 7845 * @viid: the VI id 7846 * @ucast: whether the hash filter should also match unicast addresses 7847 * @vec: the value to be written to the hash filter 7848 * @sleep_ok: call is allowed to sleep 7849 * 7850 * Sets the 64-bit inexact-match hash filter for a virtual interface. 7851 */ 7852 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 7853 bool ucast, u64 vec, bool sleep_ok) 7854 { 7855 struct fw_vi_mac_cmd c; 7856 7857 memset(&c, 0, sizeof(c)); 7858 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7859 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7860 FW_VI_ENABLE_CMD_VIID_V(viid)); 7861 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F | 7862 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | 7863 FW_CMD_LEN16_V(1)); 7864 c.u.hash.hashvec = cpu_to_be64(vec); 7865 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 7866 } 7867 7868 /** 7869 * t4_enable_vi_params - enable/disable a virtual interface 7870 * @adap: the adapter 7871 * @mbox: mailbox to use for the FW command 7872 * @viid: the VI id 7873 * @rx_en: 1=enable Rx, 0=disable Rx 7874 * @tx_en: 1=enable Tx, 0=disable Tx 7875 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 7876 * 7877 * Enables/disables a virtual interface. Note that setting DCB Enable 7878 * only makes sense when enabling a Virtual Interface ... 7879 */ 7880 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, 7881 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) 7882 { 7883 struct fw_vi_enable_cmd c; 7884 7885 memset(&c, 0, sizeof(c)); 7886 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 7887 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7888 FW_VI_ENABLE_CMD_VIID_V(viid)); 7889 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) | 7890 FW_VI_ENABLE_CMD_EEN_V(tx_en) | 7891 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) | 7892 FW_LEN16(c)); 7893 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 7894 } 7895 7896 /** 7897 * t4_enable_vi - enable/disable a virtual interface 7898 * @adap: the adapter 7899 * @mbox: mailbox to use for the FW command 7900 * @viid: the VI id 7901 * @rx_en: 1=enable Rx, 0=disable Rx 7902 * @tx_en: 1=enable Tx, 0=disable Tx 7903 * 7904 * Enables/disables a virtual interface. 7905 */ 7906 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 7907 bool rx_en, bool tx_en) 7908 { 7909 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); 7910 } 7911 7912 /** 7913 * t4_identify_port - identify a VI's port by blinking its LED 7914 * @adap: the adapter 7915 * @mbox: mailbox to use for the FW command 7916 * @viid: the VI id 7917 * @nblinks: how many times to blink LED at 2.5 Hz 7918 * 7919 * Identifies a VI's port by blinking its LED. 7920 */ 7921 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 7922 unsigned int nblinks) 7923 { 7924 struct fw_vi_enable_cmd c; 7925 7926 memset(&c, 0, sizeof(c)); 7927 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 7928 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7929 FW_VI_ENABLE_CMD_VIID_V(viid)); 7930 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c)); 7931 c.blinkdur = cpu_to_be16(nblinks); 7932 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7933 } 7934 7935 /** 7936 * t4_iq_stop - stop an ingress queue and its FLs 7937 * @adap: the adapter 7938 * @mbox: mailbox to use for the FW command 7939 * @pf: the PF owning the queues 7940 * @vf: the VF owning the queues 7941 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 7942 * @iqid: ingress queue id 7943 * @fl0id: FL0 queue id or 0xffff if no attached FL0 7944 * @fl1id: FL1 queue id or 0xffff if no attached FL1 7945 * 7946 * Stops an ingress queue and its associated FLs, if any. This causes 7947 * any current or future data/messages destined for these queues to be 7948 * tossed. 7949 */ 7950 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, 7951 unsigned int vf, unsigned int iqtype, unsigned int iqid, 7952 unsigned int fl0id, unsigned int fl1id) 7953 { 7954 struct fw_iq_cmd c; 7955 7956 memset(&c, 0, sizeof(c)); 7957 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 7958 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 7959 FW_IQ_CMD_VFN_V(vf)); 7960 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c)); 7961 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 7962 c.iqid = cpu_to_be16(iqid); 7963 c.fl0id = cpu_to_be16(fl0id); 7964 c.fl1id = cpu_to_be16(fl1id); 7965 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7966 } 7967 7968 /** 7969 * t4_iq_free - free an ingress queue and its FLs 7970 * @adap: the adapter 7971 * @mbox: mailbox to use for the FW command 7972 * @pf: the PF owning the queues 7973 * @vf: the VF owning the queues 7974 * @iqtype: the ingress queue type 7975 * @iqid: ingress queue id 7976 * @fl0id: FL0 queue id or 0xffff if no attached FL0 7977 * @fl1id: FL1 queue id or 0xffff if no attached FL1 7978 * 7979 * Frees an ingress queue and its associated FLs, if any. 7980 */ 7981 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 7982 unsigned int vf, unsigned int iqtype, unsigned int iqid, 7983 unsigned int fl0id, unsigned int fl1id) 7984 { 7985 struct fw_iq_cmd c; 7986 7987 memset(&c, 0, sizeof(c)); 7988 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 7989 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 7990 FW_IQ_CMD_VFN_V(vf)); 7991 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c)); 7992 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 7993 c.iqid = cpu_to_be16(iqid); 7994 c.fl0id = cpu_to_be16(fl0id); 7995 c.fl1id = cpu_to_be16(fl1id); 7996 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7997 } 7998 7999 /** 8000 * t4_eth_eq_free - free an Ethernet egress queue 8001 * @adap: the adapter 8002 * @mbox: mailbox to use for the FW command 8003 * @pf: the PF owning the queue 8004 * @vf: the VF owning the queue 8005 * @eqid: egress queue id 8006 * 8007 * Frees an Ethernet egress queue. 8008 */ 8009 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8010 unsigned int vf, unsigned int eqid) 8011 { 8012 struct fw_eq_eth_cmd c; 8013 8014 memset(&c, 0, sizeof(c)); 8015 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | 8016 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8017 FW_EQ_ETH_CMD_PFN_V(pf) | 8018 FW_EQ_ETH_CMD_VFN_V(vf)); 8019 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c)); 8020 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid)); 8021 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8022 } 8023 8024 /** 8025 * t4_ctrl_eq_free - free a control egress queue 8026 * @adap: the adapter 8027 * @mbox: mailbox to use for the FW command 8028 * @pf: the PF owning the queue 8029 * @vf: the VF owning the queue 8030 * @eqid: egress queue id 8031 * 8032 * Frees a control egress queue. 8033 */ 8034 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8035 unsigned int vf, unsigned int eqid) 8036 { 8037 struct fw_eq_ctrl_cmd c; 8038 8039 memset(&c, 0, sizeof(c)); 8040 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | 8041 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8042 FW_EQ_CTRL_CMD_PFN_V(pf) | 8043 FW_EQ_CTRL_CMD_VFN_V(vf)); 8044 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c)); 8045 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid)); 8046 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8047 } 8048 8049 /** 8050 * t4_ofld_eq_free - free an offload egress queue 8051 * @adap: the adapter 8052 * @mbox: mailbox to use for the FW command 8053 * @pf: the PF owning the queue 8054 * @vf: the VF owning the queue 8055 * @eqid: egress queue id 8056 * 8057 * Frees a control egress queue. 8058 */ 8059 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8060 unsigned int vf, unsigned int eqid) 8061 { 8062 struct fw_eq_ofld_cmd c; 8063 8064 memset(&c, 0, sizeof(c)); 8065 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | 8066 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8067 FW_EQ_OFLD_CMD_PFN_V(pf) | 8068 FW_EQ_OFLD_CMD_VFN_V(vf)); 8069 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c)); 8070 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid)); 8071 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8072 } 8073 8074 /** 8075 * t4_link_down_rc_str - return a string for a Link Down Reason Code 8076 * @adap: the adapter 8077 * @link_down_rc: Link Down Reason Code 8078 * 8079 * Returns a string representation of the Link Down Reason Code. 8080 */ 8081 static const char *t4_link_down_rc_str(unsigned char link_down_rc) 8082 { 8083 static const char * const reason[] = { 8084 "Link Down", 8085 "Remote Fault", 8086 "Auto-negotiation Failure", 8087 "Reserved", 8088 "Insufficient Airflow", 8089 "Unable To Determine Reason", 8090 "No RX Signal Detected", 8091 "Reserved", 8092 }; 8093 8094 if (link_down_rc >= ARRAY_SIZE(reason)) 8095 return "Bad Reason Code"; 8096 8097 return reason[link_down_rc]; 8098 } 8099 8100 /** 8101 * Return the highest speed set in the port capabilities, in Mb/s. 8102 */ 8103 static unsigned int fwcap_to_speed(fw_port_cap32_t caps) 8104 { 8105 #define TEST_SPEED_RETURN(__caps_speed, __speed) \ 8106 do { \ 8107 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8108 return __speed; \ 8109 } while (0) 8110 8111 TEST_SPEED_RETURN(400G, 400000); 8112 TEST_SPEED_RETURN(200G, 200000); 8113 TEST_SPEED_RETURN(100G, 100000); 8114 TEST_SPEED_RETURN(50G, 50000); 8115 TEST_SPEED_RETURN(40G, 40000); 8116 TEST_SPEED_RETURN(25G, 25000); 8117 TEST_SPEED_RETURN(10G, 10000); 8118 TEST_SPEED_RETURN(1G, 1000); 8119 TEST_SPEED_RETURN(100M, 100); 8120 8121 #undef TEST_SPEED_RETURN 8122 8123 return 0; 8124 } 8125 8126 /** 8127 * fwcap_to_fwspeed - return highest speed in Port Capabilities 8128 * @acaps: advertised Port Capabilities 8129 * 8130 * Get the highest speed for the port from the advertised Port 8131 * Capabilities. It will be either the highest speed from the list of 8132 * speeds or whatever user has set using ethtool. 8133 */ 8134 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps) 8135 { 8136 #define TEST_SPEED_RETURN(__caps_speed) \ 8137 do { \ 8138 if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8139 return FW_PORT_CAP32_SPEED_##__caps_speed; \ 8140 } while (0) 8141 8142 TEST_SPEED_RETURN(400G); 8143 TEST_SPEED_RETURN(200G); 8144 TEST_SPEED_RETURN(100G); 8145 TEST_SPEED_RETURN(50G); 8146 TEST_SPEED_RETURN(40G); 8147 TEST_SPEED_RETURN(25G); 8148 TEST_SPEED_RETURN(10G); 8149 TEST_SPEED_RETURN(1G); 8150 TEST_SPEED_RETURN(100M); 8151 8152 #undef TEST_SPEED_RETURN 8153 8154 return 0; 8155 } 8156 8157 /** 8158 * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities 8159 * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value 8160 * 8161 * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new 8162 * 32-bit Port Capabilities value. 8163 */ 8164 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus) 8165 { 8166 fw_port_cap32_t linkattr = 0; 8167 8168 /* Unfortunately the format of the Link Status in the old 8169 * 16-bit Port Information message isn't the same as the 8170 * 16-bit Port Capabilities bitfield used everywhere else ... 8171 */ 8172 if (lstatus & FW_PORT_CMD_RXPAUSE_F) 8173 linkattr |= FW_PORT_CAP32_FC_RX; 8174 if (lstatus & FW_PORT_CMD_TXPAUSE_F) 8175 linkattr |= FW_PORT_CAP32_FC_TX; 8176 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) 8177 linkattr |= FW_PORT_CAP32_SPEED_100M; 8178 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) 8179 linkattr |= FW_PORT_CAP32_SPEED_1G; 8180 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) 8181 linkattr |= FW_PORT_CAP32_SPEED_10G; 8182 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G)) 8183 linkattr |= FW_PORT_CAP32_SPEED_25G; 8184 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) 8185 linkattr |= FW_PORT_CAP32_SPEED_40G; 8186 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G)) 8187 linkattr |= FW_PORT_CAP32_SPEED_100G; 8188 8189 return linkattr; 8190 } 8191 8192 /** 8193 * t4_handle_get_port_info - process a FW reply message 8194 * @pi: the port info 8195 * @rpl: start of the FW message 8196 * 8197 * Processes a GET_PORT_INFO FW reply message. 8198 */ 8199 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl) 8200 { 8201 const struct fw_port_cmd *cmd = (const void *)rpl; 8202 int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16)); 8203 struct adapter *adapter = pi->adapter; 8204 struct link_config *lc = &pi->link_cfg; 8205 int link_ok, linkdnrc; 8206 enum fw_port_type port_type; 8207 enum fw_port_module_type mod_type; 8208 unsigned int speed, fc, fec; 8209 fw_port_cap32_t pcaps, acaps, lpacaps, linkattr; 8210 8211 /* Extract the various fields from the Port Information message. 8212 */ 8213 switch (action) { 8214 case FW_PORT_ACTION_GET_PORT_INFO: { 8215 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype); 8216 8217 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0; 8218 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus); 8219 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 8220 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus); 8221 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap)); 8222 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap)); 8223 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap)); 8224 linkattr = lstatus_to_fwcap(lstatus); 8225 break; 8226 } 8227 8228 case FW_PORT_ACTION_GET_PORT_INFO32: { 8229 u32 lstatus32; 8230 8231 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32); 8232 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0; 8233 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32); 8234 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 8235 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32); 8236 pcaps = be32_to_cpu(cmd->u.info32.pcaps32); 8237 acaps = be32_to_cpu(cmd->u.info32.acaps32); 8238 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32); 8239 linkattr = be32_to_cpu(cmd->u.info32.linkattr32); 8240 break; 8241 } 8242 8243 default: 8244 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n", 8245 be32_to_cpu(cmd->action_to_len16)); 8246 return; 8247 } 8248 8249 fec = fwcap_to_cc_fec(acaps); 8250 fc = fwcap_to_cc_pause(linkattr); 8251 speed = fwcap_to_speed(linkattr); 8252 8253 if (mod_type != pi->mod_type) { 8254 /* With the newer SFP28 and QSFP28 Transceiver Module Types, 8255 * various fundamental Port Capabilities which used to be 8256 * immutable can now change radically. We can now have 8257 * Speeds, Auto-Negotiation, Forward Error Correction, etc. 8258 * all change based on what Transceiver Module is inserted. 8259 * So we need to record the Physical "Port" Capabilities on 8260 * every Transceiver Module change. 8261 */ 8262 lc->pcaps = pcaps; 8263 8264 /* When a new Transceiver Module is inserted, the Firmware 8265 * will examine its i2c EPROM to determine its type and 8266 * general operating parameters including things like Forward 8267 * Error Control, etc. Various IEEE 802.3 standards dictate 8268 * how to interpret these i2c values to determine default 8269 * "sutomatic" settings. We record these for future use when 8270 * the user explicitly requests these standards-based values. 8271 */ 8272 lc->def_acaps = acaps; 8273 8274 /* Some versions of the early T6 Firmware "cheated" when 8275 * handling different Transceiver Modules by changing the 8276 * underlaying Port Type reported to the Host Drivers. As 8277 * such we need to capture whatever Port Type the Firmware 8278 * sends us and record it in case it's different from what we 8279 * were told earlier. Unfortunately, since Firmware is 8280 * forever, we'll need to keep this code here forever, but in 8281 * later T6 Firmware it should just be an assignment of the 8282 * same value already recorded. 8283 */ 8284 pi->port_type = port_type; 8285 8286 pi->mod_type = mod_type; 8287 t4_os_portmod_changed(adapter, pi->port_id); 8288 } 8289 8290 if (link_ok != lc->link_ok || speed != lc->speed || 8291 fc != lc->fc || fec != lc->fec) { /* something changed */ 8292 if (!link_ok && lc->link_ok) { 8293 lc->link_down_rc = linkdnrc; 8294 dev_warn(adapter->pdev_dev, "Port %d link down, reason: %s\n", 8295 pi->tx_chan, t4_link_down_rc_str(linkdnrc)); 8296 } 8297 lc->link_ok = link_ok; 8298 lc->speed = speed; 8299 lc->fc = fc; 8300 lc->fec = fec; 8301 8302 lc->lpacaps = lpacaps; 8303 lc->acaps = acaps & ADVERT_MASK; 8304 8305 if (lc->acaps & FW_PORT_CAP32_ANEG) { 8306 lc->autoneg = AUTONEG_ENABLE; 8307 } else { 8308 /* When Autoneg is disabled, user needs to set 8309 * single speed. 8310 * Similar to cxgb4_ethtool.c: set_link_ksettings 8311 */ 8312 lc->acaps = 0; 8313 lc->speed_caps = fwcap_to_fwspeed(acaps); 8314 lc->autoneg = AUTONEG_DISABLE; 8315 } 8316 8317 t4_os_link_changed(adapter, pi->port_id, link_ok); 8318 } 8319 } 8320 8321 /** 8322 * t4_update_port_info - retrieve and update port information if changed 8323 * @pi: the port_info 8324 * 8325 * We issue a Get Port Information Command to the Firmware and, if 8326 * successful, we check to see if anything is different from what we 8327 * last recorded and update things accordingly. 8328 */ 8329 int t4_update_port_info(struct port_info *pi) 8330 { 8331 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8332 struct fw_port_cmd port_cmd; 8333 int ret; 8334 8335 memset(&port_cmd, 0, sizeof(port_cmd)); 8336 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8337 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8338 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8339 port_cmd.action_to_len16 = cpu_to_be32( 8340 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 8341 ? FW_PORT_ACTION_GET_PORT_INFO 8342 : FW_PORT_ACTION_GET_PORT_INFO32) | 8343 FW_LEN16(port_cmd)); 8344 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8345 &port_cmd, sizeof(port_cmd), &port_cmd); 8346 if (ret) 8347 return ret; 8348 8349 t4_handle_get_port_info(pi, (__be64 *)&port_cmd); 8350 return 0; 8351 } 8352 8353 /** 8354 * t4_get_link_params - retrieve basic link parameters for given port 8355 * @pi: the port 8356 * @link_okp: value return pointer for link up/down 8357 * @speedp: value return pointer for speed (Mb/s) 8358 * @mtup: value return pointer for mtu 8359 * 8360 * Retrieves basic link parameters for a port: link up/down, speed (Mb/s), 8361 * and MTU for a specified port. A negative error is returned on 8362 * failure; 0 on success. 8363 */ 8364 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp, 8365 unsigned int *speedp, unsigned int *mtup) 8366 { 8367 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8368 struct fw_port_cmd port_cmd; 8369 unsigned int action, link_ok, speed, mtu; 8370 fw_port_cap32_t linkattr; 8371 int ret; 8372 8373 memset(&port_cmd, 0, sizeof(port_cmd)); 8374 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8375 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8376 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8377 action = (fw_caps == FW_CAPS16 8378 ? FW_PORT_ACTION_GET_PORT_INFO 8379 : FW_PORT_ACTION_GET_PORT_INFO32); 8380 port_cmd.action_to_len16 = cpu_to_be32( 8381 FW_PORT_CMD_ACTION_V(action) | 8382 FW_LEN16(port_cmd)); 8383 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8384 &port_cmd, sizeof(port_cmd), &port_cmd); 8385 if (ret) 8386 return ret; 8387 8388 if (action == FW_PORT_ACTION_GET_PORT_INFO) { 8389 u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype); 8390 8391 link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F); 8392 linkattr = lstatus_to_fwcap(lstatus); 8393 mtu = be16_to_cpu(port_cmd.u.info.mtu); 8394 } else { 8395 u32 lstatus32 = 8396 be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32); 8397 8398 link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F); 8399 linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32); 8400 mtu = FW_PORT_CMD_MTU32_G( 8401 be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32)); 8402 } 8403 speed = fwcap_to_speed(linkattr); 8404 8405 *link_okp = link_ok; 8406 *speedp = fwcap_to_speed(linkattr); 8407 *mtup = mtu; 8408 8409 return 0; 8410 } 8411 8412 /** 8413 * t4_handle_fw_rpl - process a FW reply message 8414 * @adap: the adapter 8415 * @rpl: start of the FW message 8416 * 8417 * Processes a FW message, such as link state change messages. 8418 */ 8419 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 8420 { 8421 u8 opcode = *(const u8 *)rpl; 8422 8423 /* This might be a port command ... this simplifies the following 8424 * conditionals ... We can get away with pre-dereferencing 8425 * action_to_len16 because it's in the first 16 bytes and all messages 8426 * will be at least that long. 8427 */ 8428 const struct fw_port_cmd *p = (const void *)rpl; 8429 unsigned int action = 8430 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16)); 8431 8432 if (opcode == FW_PORT_CMD && 8433 (action == FW_PORT_ACTION_GET_PORT_INFO || 8434 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 8435 int i; 8436 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid)); 8437 struct port_info *pi = NULL; 8438 8439 for_each_port(adap, i) { 8440 pi = adap2pinfo(adap, i); 8441 if (pi->tx_chan == chan) 8442 break; 8443 } 8444 8445 t4_handle_get_port_info(pi, rpl); 8446 } else { 8447 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", 8448 opcode); 8449 return -EINVAL; 8450 } 8451 return 0; 8452 } 8453 8454 static void get_pci_mode(struct adapter *adapter, struct pci_params *p) 8455 { 8456 u16 val; 8457 8458 if (pci_is_pcie(adapter->pdev)) { 8459 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); 8460 p->speed = val & PCI_EXP_LNKSTA_CLS; 8461 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 8462 } 8463 } 8464 8465 /** 8466 * init_link_config - initialize a link's SW state 8467 * @lc: pointer to structure holding the link state 8468 * @pcaps: link Port Capabilities 8469 * @acaps: link current Advertised Port Capabilities 8470 * 8471 * Initializes the SW state maintained for each link, including the link's 8472 * capabilities and default speed/flow-control/autonegotiation settings. 8473 */ 8474 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps, 8475 fw_port_cap32_t acaps) 8476 { 8477 lc->pcaps = pcaps; 8478 lc->def_acaps = acaps; 8479 lc->lpacaps = 0; 8480 lc->speed_caps = 0; 8481 lc->speed = 0; 8482 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 8483 8484 /* For Forward Error Control, we default to whatever the Firmware 8485 * tells us the Link is currently advertising. 8486 */ 8487 lc->requested_fec = FEC_AUTO; 8488 lc->fec = fwcap_to_cc_fec(lc->def_acaps); 8489 8490 if (lc->pcaps & FW_PORT_CAP32_ANEG) { 8491 lc->acaps = lc->pcaps & ADVERT_MASK; 8492 lc->autoneg = AUTONEG_ENABLE; 8493 lc->requested_fc |= PAUSE_AUTONEG; 8494 } else { 8495 lc->acaps = 0; 8496 lc->autoneg = AUTONEG_DISABLE; 8497 } 8498 } 8499 8500 #define CIM_PF_NOACCESS 0xeeeeeeee 8501 8502 int t4_wait_dev_ready(void __iomem *regs) 8503 { 8504 u32 whoami; 8505 8506 whoami = readl(regs + PL_WHOAMI_A); 8507 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS) 8508 return 0; 8509 8510 msleep(500); 8511 whoami = readl(regs + PL_WHOAMI_A); 8512 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO); 8513 } 8514 8515 struct flash_desc { 8516 u32 vendor_and_model_id; 8517 u32 size_mb; 8518 }; 8519 8520 static int t4_get_flash_params(struct adapter *adap) 8521 { 8522 /* Table for non-Numonix supported flash parts. Numonix parts are left 8523 * to the preexisting code. All flash parts have 64KB sectors. 8524 */ 8525 static struct flash_desc supported_flash[] = { 8526 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ 8527 }; 8528 8529 unsigned int part, manufacturer; 8530 unsigned int density, size; 8531 u32 flashid = 0; 8532 int ret; 8533 8534 /* Issue a Read ID Command to the Flash part. We decode supported 8535 * Flash parts and their sizes from this. There's a newer Query 8536 * Command which can retrieve detailed geometry information but many 8537 * Flash parts don't support it. 8538 */ 8539 8540 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID); 8541 if (!ret) 8542 ret = sf1_read(adap, 3, 0, 1, &flashid); 8543 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */ 8544 if (ret) 8545 return ret; 8546 8547 /* Check to see if it's one of our non-standard supported Flash parts. 8548 */ 8549 for (part = 0; part < ARRAY_SIZE(supported_flash); part++) 8550 if (supported_flash[part].vendor_and_model_id == flashid) { 8551 adap->params.sf_size = supported_flash[part].size_mb; 8552 adap->params.sf_nsec = 8553 adap->params.sf_size / SF_SEC_SIZE; 8554 goto found; 8555 } 8556 8557 /* Decode Flash part size. The code below looks repetative with 8558 * common encodings, but that's not guaranteed in the JEDEC 8559 * specification for the Read JADEC ID command. The only thing that 8560 * we're guaranteed by the JADEC specification is where the 8561 * Manufacturer ID is in the returned result. After that each 8562 * Manufacturer ~could~ encode things completely differently. 8563 * Note, all Flash parts must have 64KB sectors. 8564 */ 8565 manufacturer = flashid & 0xff; 8566 switch (manufacturer) { 8567 case 0x20: { /* Micron/Numonix */ 8568 /* This Density -> Size decoding table is taken from Micron 8569 * Data Sheets. 8570 */ 8571 density = (flashid >> 16) & 0xff; 8572 switch (density) { 8573 case 0x14: /* 1MB */ 8574 size = 1 << 20; 8575 break; 8576 case 0x15: /* 2MB */ 8577 size = 1 << 21; 8578 break; 8579 case 0x16: /* 4MB */ 8580 size = 1 << 22; 8581 break; 8582 case 0x17: /* 8MB */ 8583 size = 1 << 23; 8584 break; 8585 case 0x18: /* 16MB */ 8586 size = 1 << 24; 8587 break; 8588 case 0x19: /* 32MB */ 8589 size = 1 << 25; 8590 break; 8591 case 0x20: /* 64MB */ 8592 size = 1 << 26; 8593 break; 8594 case 0x21: /* 128MB */ 8595 size = 1 << 27; 8596 break; 8597 case 0x22: /* 256MB */ 8598 size = 1 << 28; 8599 break; 8600 8601 default: 8602 dev_err(adap->pdev_dev, "Micron Flash Part has bad size, ID = %#x, Density code = %#x\n", 8603 flashid, density); 8604 return -EINVAL; 8605 } 8606 break; 8607 } 8608 case 0xc2: { /* Macronix */ 8609 /* This Density -> Size decoding table is taken from Macronix 8610 * Data Sheets. 8611 */ 8612 density = (flashid >> 16) & 0xff; 8613 switch (density) { 8614 case 0x17: /* 8MB */ 8615 size = 1 << 23; 8616 break; 8617 case 0x18: /* 16MB */ 8618 size = 1 << 24; 8619 break; 8620 default: 8621 dev_err(adap->pdev_dev, "Macronix Flash Part has bad size, ID = %#x, Density code = %#x\n", 8622 flashid, density); 8623 return -EINVAL; 8624 } 8625 break; 8626 } 8627 case 0xef: { /* Winbond */ 8628 /* This Density -> Size decoding table is taken from Winbond 8629 * Data Sheets. 8630 */ 8631 density = (flashid >> 16) & 0xff; 8632 switch (density) { 8633 case 0x17: /* 8MB */ 8634 size = 1 << 23; 8635 break; 8636 case 0x18: /* 16MB */ 8637 size = 1 << 24; 8638 break; 8639 default: 8640 dev_err(adap->pdev_dev, "Winbond Flash Part has bad size, ID = %#x, Density code = %#x\n", 8641 flashid, density); 8642 return -EINVAL; 8643 } 8644 break; 8645 } 8646 default: 8647 dev_err(adap->pdev_dev, "Unsupported Flash Part, ID = %#x\n", 8648 flashid); 8649 return -EINVAL; 8650 } 8651 8652 /* Store decoded Flash size and fall through into vetting code. */ 8653 adap->params.sf_size = size; 8654 adap->params.sf_nsec = size / SF_SEC_SIZE; 8655 8656 found: 8657 if (adap->params.sf_size < FLASH_MIN_SIZE) 8658 dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n", 8659 flashid, adap->params.sf_size, FLASH_MIN_SIZE); 8660 return 0; 8661 } 8662 8663 /** 8664 * t4_prep_adapter - prepare SW and HW for operation 8665 * @adapter: the adapter 8666 * @reset: if true perform a HW reset 8667 * 8668 * Initialize adapter SW state for the various HW modules, set initial 8669 * values for some adapter tunables, take PHYs out of reset, and 8670 * initialize the MDIO interface. 8671 */ 8672 int t4_prep_adapter(struct adapter *adapter) 8673 { 8674 int ret, ver; 8675 uint16_t device_id; 8676 u32 pl_rev; 8677 8678 get_pci_mode(adapter, &adapter->params.pci); 8679 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A)); 8680 8681 ret = t4_get_flash_params(adapter); 8682 if (ret < 0) { 8683 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret); 8684 return ret; 8685 } 8686 8687 /* Retrieve adapter's device ID 8688 */ 8689 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id); 8690 ver = device_id >> 12; 8691 adapter->params.chip = 0; 8692 switch (ver) { 8693 case CHELSIO_T4: 8694 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 8695 adapter->params.arch.sge_fl_db = DBPRIO_F; 8696 adapter->params.arch.mps_tcam_size = 8697 NUM_MPS_CLS_SRAM_L_INSTANCES; 8698 adapter->params.arch.mps_rplc_size = 128; 8699 adapter->params.arch.nchan = NCHAN; 8700 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 8701 adapter->params.arch.vfcount = 128; 8702 /* Congestion map is for 4 channels so that 8703 * MPS can have 4 priority per port. 8704 */ 8705 adapter->params.arch.cng_ch_bits_log = 2; 8706 break; 8707 case CHELSIO_T5: 8708 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 8709 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F; 8710 adapter->params.arch.mps_tcam_size = 8711 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 8712 adapter->params.arch.mps_rplc_size = 128; 8713 adapter->params.arch.nchan = NCHAN; 8714 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 8715 adapter->params.arch.vfcount = 128; 8716 adapter->params.arch.cng_ch_bits_log = 2; 8717 break; 8718 case CHELSIO_T6: 8719 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 8720 adapter->params.arch.sge_fl_db = 0; 8721 adapter->params.arch.mps_tcam_size = 8722 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 8723 adapter->params.arch.mps_rplc_size = 256; 8724 adapter->params.arch.nchan = 2; 8725 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS; 8726 adapter->params.arch.vfcount = 256; 8727 /* Congestion map will be for 2 channels so that 8728 * MPS can have 8 priority per port. 8729 */ 8730 adapter->params.arch.cng_ch_bits_log = 3; 8731 break; 8732 default: 8733 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 8734 device_id); 8735 return -EINVAL; 8736 } 8737 8738 adapter->params.cim_la_size = CIMLA_SIZE; 8739 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 8740 8741 /* 8742 * Default port for debugging in case we can't reach FW. 8743 */ 8744 adapter->params.nports = 1; 8745 adapter->params.portvec = 1; 8746 adapter->params.vpd.cclk = 50000; 8747 8748 /* Set PCIe completion timeout to 4 seconds. */ 8749 pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2, 8750 PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd); 8751 return 0; 8752 } 8753 8754 /** 8755 * t4_shutdown_adapter - shut down adapter, host & wire 8756 * @adapter: the adapter 8757 * 8758 * Perform an emergency shutdown of the adapter and stop it from 8759 * continuing any further communication on the ports or DMA to the 8760 * host. This is typically used when the adapter and/or firmware 8761 * have crashed and we want to prevent any further accidental 8762 * communication with the rest of the world. This will also force 8763 * the port Link Status to go down -- if register writes work -- 8764 * which should help our peers figure out that we're down. 8765 */ 8766 int t4_shutdown_adapter(struct adapter *adapter) 8767 { 8768 int port; 8769 8770 t4_intr_disable(adapter); 8771 t4_write_reg(adapter, DBG_GPIO_EN_A, 0); 8772 for_each_port(adapter, port) { 8773 u32 a_port_cfg = is_t4(adapter->params.chip) ? 8774 PORT_REG(port, XGMAC_PORT_CFG_A) : 8775 T5_PORT_REG(port, MAC_PORT_CFG_A); 8776 8777 t4_write_reg(adapter, a_port_cfg, 8778 t4_read_reg(adapter, a_port_cfg) 8779 & ~SIGNAL_DET_V(1)); 8780 } 8781 t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0); 8782 8783 return 0; 8784 } 8785 8786 /** 8787 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information 8788 * @adapter: the adapter 8789 * @qid: the Queue ID 8790 * @qtype: the Ingress or Egress type for @qid 8791 * @user: true if this request is for a user mode queue 8792 * @pbar2_qoffset: BAR2 Queue Offset 8793 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 8794 * 8795 * Returns the BAR2 SGE Queue Registers information associated with the 8796 * indicated Absolute Queue ID. These are passed back in return value 8797 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 8798 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 8799 * 8800 * This may return an error which indicates that BAR2 SGE Queue 8801 * registers aren't available. If an error is not returned, then the 8802 * following values are returned: 8803 * 8804 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 8805 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 8806 * 8807 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 8808 * require the "Inferred Queue ID" ability may be used. E.g. the 8809 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 8810 * then these "Inferred Queue ID" register may not be used. 8811 */ 8812 int t4_bar2_sge_qregs(struct adapter *adapter, 8813 unsigned int qid, 8814 enum t4_bar2_qtype qtype, 8815 int user, 8816 u64 *pbar2_qoffset, 8817 unsigned int *pbar2_qid) 8818 { 8819 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 8820 u64 bar2_page_offset, bar2_qoffset; 8821 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 8822 8823 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */ 8824 if (!user && is_t4(adapter->params.chip)) 8825 return -EINVAL; 8826 8827 /* Get our SGE Page Size parameters. 8828 */ 8829 page_shift = adapter->params.sge.hps + 10; 8830 page_size = 1 << page_shift; 8831 8832 /* Get the right Queues per Page parameters for our Queue. 8833 */ 8834 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 8835 ? adapter->params.sge.eq_qpp 8836 : adapter->params.sge.iq_qpp); 8837 qpp_mask = (1 << qpp_shift) - 1; 8838 8839 /* Calculate the basics of the BAR2 SGE Queue register area: 8840 * o The BAR2 page the Queue registers will be in. 8841 * o The BAR2 Queue ID. 8842 * o The BAR2 Queue ID Offset into the BAR2 page. 8843 */ 8844 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 8845 bar2_qid = qid & qpp_mask; 8846 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 8847 8848 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 8849 * hardware will infer the Absolute Queue ID simply from the writes to 8850 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 8851 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 8852 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 8853 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 8854 * from the BAR2 Page and BAR2 Queue ID. 8855 * 8856 * One important censequence of this is that some BAR2 SGE registers 8857 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 8858 * there. But other registers synthesize the SGE Queue ID purely 8859 * from the writes to the registers -- the Write Combined Doorbell 8860 * Buffer is a good example. These BAR2 SGE Registers are only 8861 * available for those BAR2 SGE Register areas where the SGE Absolute 8862 * Queue ID can be inferred from simple writes. 8863 */ 8864 bar2_qoffset = bar2_page_offset; 8865 bar2_qinferred = (bar2_qid_offset < page_size); 8866 if (bar2_qinferred) { 8867 bar2_qoffset += bar2_qid_offset; 8868 bar2_qid = 0; 8869 } 8870 8871 *pbar2_qoffset = bar2_qoffset; 8872 *pbar2_qid = bar2_qid; 8873 return 0; 8874 } 8875 8876 /** 8877 * t4_init_devlog_params - initialize adapter->params.devlog 8878 * @adap: the adapter 8879 * 8880 * Initialize various fields of the adapter's Firmware Device Log 8881 * Parameters structure. 8882 */ 8883 int t4_init_devlog_params(struct adapter *adap) 8884 { 8885 struct devlog_params *dparams = &adap->params.devlog; 8886 u32 pf_dparams; 8887 unsigned int devlog_meminfo; 8888 struct fw_devlog_cmd devlog_cmd; 8889 int ret; 8890 8891 /* If we're dealing with newer firmware, the Device Log Paramerters 8892 * are stored in a designated register which allows us to access the 8893 * Device Log even if we can't talk to the firmware. 8894 */ 8895 pf_dparams = 8896 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG)); 8897 if (pf_dparams) { 8898 unsigned int nentries, nentries128; 8899 8900 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams); 8901 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4; 8902 8903 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams); 8904 nentries = (nentries128 + 1) * 128; 8905 dparams->size = nentries * sizeof(struct fw_devlog_e); 8906 8907 return 0; 8908 } 8909 8910 /* Otherwise, ask the firmware for it's Device Log Parameters. 8911 */ 8912 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 8913 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) | 8914 FW_CMD_REQUEST_F | FW_CMD_READ_F); 8915 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 8916 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), 8917 &devlog_cmd); 8918 if (ret) 8919 return ret; 8920 8921 devlog_meminfo = 8922 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); 8923 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo); 8924 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4; 8925 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); 8926 8927 return 0; 8928 } 8929 8930 /** 8931 * t4_init_sge_params - initialize adap->params.sge 8932 * @adapter: the adapter 8933 * 8934 * Initialize various fields of the adapter's SGE Parameters structure. 8935 */ 8936 int t4_init_sge_params(struct adapter *adapter) 8937 { 8938 struct sge_params *sge_params = &adapter->params.sge; 8939 u32 hps, qpp; 8940 unsigned int s_hps, s_qpp; 8941 8942 /* Extract the SGE Page Size for our PF. 8943 */ 8944 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A); 8945 s_hps = (HOSTPAGESIZEPF0_S + 8946 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf); 8947 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M); 8948 8949 /* Extract the SGE Egress and Ingess Queues Per Page for our PF. 8950 */ 8951 s_qpp = (QUEUESPERPAGEPF0_S + 8952 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf); 8953 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A); 8954 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 8955 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A); 8956 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 8957 8958 return 0; 8959 } 8960 8961 /** 8962 * t4_init_tp_params - initialize adap->params.tp 8963 * @adap: the adapter 8964 * @sleep_ok: if true we may sleep while awaiting command completion 8965 * 8966 * Initialize various fields of the adapter's TP Parameters structure. 8967 */ 8968 int t4_init_tp_params(struct adapter *adap, bool sleep_ok) 8969 { 8970 int chan; 8971 u32 v; 8972 8973 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A); 8974 adap->params.tp.tre = TIMERRESOLUTION_G(v); 8975 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v); 8976 8977 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 8978 for (chan = 0; chan < NCHAN; chan++) 8979 adap->params.tp.tx_modq[chan] = chan; 8980 8981 /* Cache the adapter's Compressed Filter Mode and global Incress 8982 * Configuration. 8983 */ 8984 t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1, 8985 TP_VLAN_PRI_MAP_A, sleep_ok); 8986 t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1, 8987 TP_INGRESS_CONFIG_A, sleep_ok); 8988 8989 /* For T6, cache the adapter's compressed error vector 8990 * and passing outer header info for encapsulated packets. 8991 */ 8992 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 8993 v = t4_read_reg(adap, TP_OUT_CONFIG_A); 8994 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0; 8995 } 8996 8997 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field 8998 * shift positions of several elements of the Compressed Filter Tuple 8999 * for this adapter which we need frequently ... 9000 */ 9001 adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F); 9002 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F); 9003 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F); 9004 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F); 9005 adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F); 9006 adap->params.tp.protocol_shift = t4_filter_field_shift(adap, 9007 PROTOCOL_F); 9008 adap->params.tp.ethertype_shift = t4_filter_field_shift(adap, 9009 ETHERTYPE_F); 9010 adap->params.tp.macmatch_shift = t4_filter_field_shift(adap, 9011 MACMATCH_F); 9012 adap->params.tp.matchtype_shift = t4_filter_field_shift(adap, 9013 MPSHITTYPE_F); 9014 adap->params.tp.frag_shift = t4_filter_field_shift(adap, 9015 FRAGMENTATION_F); 9016 9017 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID 9018 * represents the presence of an Outer VLAN instead of a VNIC ID. 9019 */ 9020 if ((adap->params.tp.ingress_config & VNIC_F) == 0) 9021 adap->params.tp.vnic_shift = -1; 9022 9023 v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A); 9024 adap->params.tp.hash_filter_mask = v; 9025 v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A); 9026 adap->params.tp.hash_filter_mask |= ((u64)v << 32); 9027 return 0; 9028 } 9029 9030 /** 9031 * t4_filter_field_shift - calculate filter field shift 9032 * @adap: the adapter 9033 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) 9034 * 9035 * Return the shift position of a filter field within the Compressed 9036 * Filter Tuple. The filter field is specified via its selection bit 9037 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. 9038 */ 9039 int t4_filter_field_shift(const struct adapter *adap, int filter_sel) 9040 { 9041 unsigned int filter_mode = adap->params.tp.vlan_pri_map; 9042 unsigned int sel; 9043 int field_shift; 9044 9045 if ((filter_mode & filter_sel) == 0) 9046 return -1; 9047 9048 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { 9049 switch (filter_mode & sel) { 9050 case FCOE_F: 9051 field_shift += FT_FCOE_W; 9052 break; 9053 case PORT_F: 9054 field_shift += FT_PORT_W; 9055 break; 9056 case VNIC_ID_F: 9057 field_shift += FT_VNIC_ID_W; 9058 break; 9059 case VLAN_F: 9060 field_shift += FT_VLAN_W; 9061 break; 9062 case TOS_F: 9063 field_shift += FT_TOS_W; 9064 break; 9065 case PROTOCOL_F: 9066 field_shift += FT_PROTOCOL_W; 9067 break; 9068 case ETHERTYPE_F: 9069 field_shift += FT_ETHERTYPE_W; 9070 break; 9071 case MACMATCH_F: 9072 field_shift += FT_MACMATCH_W; 9073 break; 9074 case MPSHITTYPE_F: 9075 field_shift += FT_MPSHITTYPE_W; 9076 break; 9077 case FRAGMENTATION_F: 9078 field_shift += FT_FRAGMENTATION_W; 9079 break; 9080 } 9081 } 9082 return field_shift; 9083 } 9084 9085 int t4_init_rss_mode(struct adapter *adap, int mbox) 9086 { 9087 int i, ret; 9088 struct fw_rss_vi_config_cmd rvc; 9089 9090 memset(&rvc, 0, sizeof(rvc)); 9091 9092 for_each_port(adap, i) { 9093 struct port_info *p = adap2pinfo(adap, i); 9094 9095 rvc.op_to_viid = 9096 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 9097 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9098 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid)); 9099 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc)); 9100 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); 9101 if (ret) 9102 return ret; 9103 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen); 9104 } 9105 return 0; 9106 } 9107 9108 /** 9109 * t4_init_portinfo - allocate a virtual interface and initialize port_info 9110 * @pi: the port_info 9111 * @mbox: mailbox to use for the FW command 9112 * @port: physical port associated with the VI 9113 * @pf: the PF owning the VI 9114 * @vf: the VF owning the VI 9115 * @mac: the MAC address of the VI 9116 * 9117 * Allocates a virtual interface for the given physical port. If @mac is 9118 * not %NULL it contains the MAC address of the VI as assigned by FW. 9119 * @mac should be large enough to hold an Ethernet address. 9120 * Returns < 0 on error. 9121 */ 9122 int t4_init_portinfo(struct port_info *pi, int mbox, 9123 int port, int pf, int vf, u8 mac[]) 9124 { 9125 struct adapter *adapter = pi->adapter; 9126 unsigned int fw_caps = adapter->params.fw_caps_support; 9127 struct fw_port_cmd cmd; 9128 unsigned int rss_size; 9129 enum fw_port_type port_type; 9130 int mdio_addr; 9131 fw_port_cap32_t pcaps, acaps; 9132 int ret; 9133 9134 /* If we haven't yet determined whether we're talking to Firmware 9135 * which knows the new 32-bit Port Capabilities, it's time to find 9136 * out now. This will also tell new Firmware to send us Port Status 9137 * Updates using the new 32-bit Port Capabilities version of the 9138 * Port Information message. 9139 */ 9140 if (fw_caps == FW_CAPS_UNKNOWN) { 9141 u32 param, val; 9142 9143 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 9144 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32)); 9145 val = 1; 9146 ret = t4_set_params(adapter, mbox, pf, vf, 1, ¶m, &val); 9147 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16); 9148 adapter->params.fw_caps_support = fw_caps; 9149 } 9150 9151 memset(&cmd, 0, sizeof(cmd)); 9152 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 9153 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9154 FW_PORT_CMD_PORTID_V(port)); 9155 cmd.action_to_len16 = cpu_to_be32( 9156 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 9157 ? FW_PORT_ACTION_GET_PORT_INFO 9158 : FW_PORT_ACTION_GET_PORT_INFO32) | 9159 FW_LEN16(cmd)); 9160 ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd); 9161 if (ret) 9162 return ret; 9163 9164 /* Extract the various fields from the Port Information message. 9165 */ 9166 if (fw_caps == FW_CAPS16) { 9167 u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype); 9168 9169 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 9170 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F) 9171 ? FW_PORT_CMD_MDIOADDR_G(lstatus) 9172 : -1); 9173 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap)); 9174 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap)); 9175 } else { 9176 u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32); 9177 9178 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 9179 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F) 9180 ? FW_PORT_CMD_MDIOADDR32_G(lstatus32) 9181 : -1); 9182 pcaps = be32_to_cpu(cmd.u.info32.pcaps32); 9183 acaps = be32_to_cpu(cmd.u.info32.acaps32); 9184 } 9185 9186 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size); 9187 if (ret < 0) 9188 return ret; 9189 9190 pi->viid = ret; 9191 pi->tx_chan = port; 9192 pi->lport = port; 9193 pi->rss_size = rss_size; 9194 9195 pi->port_type = port_type; 9196 pi->mdio_addr = mdio_addr; 9197 pi->mod_type = FW_PORT_MOD_TYPE_NA; 9198 9199 init_link_config(&pi->link_cfg, pcaps, acaps); 9200 return 0; 9201 } 9202 9203 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf) 9204 { 9205 u8 addr[6]; 9206 int ret, i, j = 0; 9207 9208 for_each_port(adap, i) { 9209 struct port_info *pi = adap2pinfo(adap, i); 9210 9211 while ((adap->params.portvec & (1 << j)) == 0) 9212 j++; 9213 9214 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr); 9215 if (ret) 9216 return ret; 9217 9218 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN); 9219 j++; 9220 } 9221 return 0; 9222 } 9223 9224 /** 9225 * t4_read_cimq_cfg - read CIM queue configuration 9226 * @adap: the adapter 9227 * @base: holds the queue base addresses in bytes 9228 * @size: holds the queue sizes in bytes 9229 * @thres: holds the queue full thresholds in bytes 9230 * 9231 * Returns the current configuration of the CIM queues, starting with 9232 * the IBQs, then the OBQs. 9233 */ 9234 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) 9235 { 9236 unsigned int i, v; 9237 int cim_num_obq = is_t4(adap->params.chip) ? 9238 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9239 9240 for (i = 0; i < CIM_NUM_IBQ; i++) { 9241 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F | 9242 QUENUMSELECT_V(i)); 9243 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9244 /* value is in 256-byte units */ 9245 *base++ = CIMQBASE_G(v) * 256; 9246 *size++ = CIMQSIZE_G(v) * 256; 9247 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */ 9248 } 9249 for (i = 0; i < cim_num_obq; i++) { 9250 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9251 QUENUMSELECT_V(i)); 9252 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9253 /* value is in 256-byte units */ 9254 *base++ = CIMQBASE_G(v) * 256; 9255 *size++ = CIMQSIZE_G(v) * 256; 9256 } 9257 } 9258 9259 /** 9260 * t4_read_cim_ibq - read the contents of a CIM inbound queue 9261 * @adap: the adapter 9262 * @qid: the queue index 9263 * @data: where to store the queue contents 9264 * @n: capacity of @data in 32-bit words 9265 * 9266 * Reads the contents of the selected CIM queue starting at address 0 up 9267 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9268 * error and the number of 32-bit words actually read on success. 9269 */ 9270 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9271 { 9272 int i, err, attempts; 9273 unsigned int addr; 9274 const unsigned int nwords = CIM_IBQ_SIZE * 4; 9275 9276 if (qid > 5 || (n & 3)) 9277 return -EINVAL; 9278 9279 addr = qid * nwords; 9280 if (n > nwords) 9281 n = nwords; 9282 9283 /* It might take 3-10ms before the IBQ debug read access is allowed. 9284 * Wait for 1 Sec with a delay of 1 usec. 9285 */ 9286 attempts = 1000000; 9287 9288 for (i = 0; i < n; i++, addr++) { 9289 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) | 9290 IBQDBGEN_F); 9291 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0, 9292 attempts, 1); 9293 if (err) 9294 return err; 9295 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A); 9296 } 9297 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0); 9298 return i; 9299 } 9300 9301 /** 9302 * t4_read_cim_obq - read the contents of a CIM outbound queue 9303 * @adap: the adapter 9304 * @qid: the queue index 9305 * @data: where to store the queue contents 9306 * @n: capacity of @data in 32-bit words 9307 * 9308 * Reads the contents of the selected CIM queue starting at address 0 up 9309 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9310 * error and the number of 32-bit words actually read on success. 9311 */ 9312 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9313 { 9314 int i, err; 9315 unsigned int addr, v, nwords; 9316 int cim_num_obq = is_t4(adap->params.chip) ? 9317 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9318 9319 if ((qid > (cim_num_obq - 1)) || (n & 3)) 9320 return -EINVAL; 9321 9322 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9323 QUENUMSELECT_V(qid)); 9324 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9325 9326 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */ 9327 nwords = CIMQSIZE_G(v) * 64; /* same */ 9328 if (n > nwords) 9329 n = nwords; 9330 9331 for (i = 0; i < n; i++, addr++) { 9332 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) | 9333 OBQDBGEN_F); 9334 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0, 9335 2, 1); 9336 if (err) 9337 return err; 9338 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A); 9339 } 9340 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0); 9341 return i; 9342 } 9343 9344 /** 9345 * t4_cim_read - read a block from CIM internal address space 9346 * @adap: the adapter 9347 * @addr: the start address within the CIM address space 9348 * @n: number of words to read 9349 * @valp: where to store the result 9350 * 9351 * Reads a block of 4-byte words from the CIM intenal address space. 9352 */ 9353 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, 9354 unsigned int *valp) 9355 { 9356 int ret = 0; 9357 9358 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9359 return -EBUSY; 9360 9361 for ( ; !ret && n--; addr += 4) { 9362 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr); 9363 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9364 0, 5, 2); 9365 if (!ret) 9366 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A); 9367 } 9368 return ret; 9369 } 9370 9371 /** 9372 * t4_cim_write - write a block into CIM internal address space 9373 * @adap: the adapter 9374 * @addr: the start address within the CIM address space 9375 * @n: number of words to write 9376 * @valp: set of values to write 9377 * 9378 * Writes a block of 4-byte words into the CIM intenal address space. 9379 */ 9380 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, 9381 const unsigned int *valp) 9382 { 9383 int ret = 0; 9384 9385 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9386 return -EBUSY; 9387 9388 for ( ; !ret && n--; addr += 4) { 9389 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++); 9390 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F); 9391 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9392 0, 5, 2); 9393 } 9394 return ret; 9395 } 9396 9397 static int t4_cim_write1(struct adapter *adap, unsigned int addr, 9398 unsigned int val) 9399 { 9400 return t4_cim_write(adap, addr, 1, &val); 9401 } 9402 9403 /** 9404 * t4_cim_read_la - read CIM LA capture buffer 9405 * @adap: the adapter 9406 * @la_buf: where to store the LA data 9407 * @wrptr: the HW write pointer within the capture buffer 9408 * 9409 * Reads the contents of the CIM LA buffer with the most recent entry at 9410 * the end of the returned data and with the entry at @wrptr first. 9411 * We try to leave the LA in the running state we find it in. 9412 */ 9413 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) 9414 { 9415 int i, ret; 9416 unsigned int cfg, val, idx; 9417 9418 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg); 9419 if (ret) 9420 return ret; 9421 9422 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */ 9423 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0); 9424 if (ret) 9425 return ret; 9426 } 9427 9428 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9429 if (ret) 9430 goto restart; 9431 9432 idx = UPDBGLAWRPTR_G(val); 9433 if (wrptr) 9434 *wrptr = idx; 9435 9436 for (i = 0; i < adap->params.cim_la_size; i++) { 9437 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9438 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F); 9439 if (ret) 9440 break; 9441 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9442 if (ret) 9443 break; 9444 if (val & UPDBGLARDEN_F) { 9445 ret = -ETIMEDOUT; 9446 break; 9447 } 9448 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]); 9449 if (ret) 9450 break; 9451 9452 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to 9453 * identify the 32-bit portion of the full 312-bit data 9454 */ 9455 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9) 9456 idx = (idx & 0xff0) + 0x10; 9457 else 9458 idx++; 9459 /* address can't exceed 0xfff */ 9460 idx &= UPDBGLARDPTR_M; 9461 } 9462 restart: 9463 if (cfg & UPDBGLAEN_F) { 9464 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9465 cfg & ~UPDBGLARDEN_F); 9466 if (!ret) 9467 ret = r; 9468 } 9469 return ret; 9470 } 9471 9472 /** 9473 * t4_tp_read_la - read TP LA capture buffer 9474 * @adap: the adapter 9475 * @la_buf: where to store the LA data 9476 * @wrptr: the HW write pointer within the capture buffer 9477 * 9478 * Reads the contents of the TP LA buffer with the most recent entry at 9479 * the end of the returned data and with the entry at @wrptr first. 9480 * We leave the LA in the running state we find it in. 9481 */ 9482 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) 9483 { 9484 bool last_incomplete; 9485 unsigned int i, cfg, val, idx; 9486 9487 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff; 9488 if (cfg & DBGLAENABLE_F) /* freeze LA */ 9489 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 9490 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F)); 9491 9492 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A); 9493 idx = DBGLAWPTR_G(val); 9494 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0; 9495 if (last_incomplete) 9496 idx = (idx + 1) & DBGLARPTR_M; 9497 if (wrptr) 9498 *wrptr = idx; 9499 9500 val &= 0xffff; 9501 val &= ~DBGLARPTR_V(DBGLARPTR_M); 9502 val |= adap->params.tp.la_mask; 9503 9504 for (i = 0; i < TPLA_SIZE; i++) { 9505 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val); 9506 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A); 9507 idx = (idx + 1) & DBGLARPTR_M; 9508 } 9509 9510 /* Wipe out last entry if it isn't valid */ 9511 if (last_incomplete) 9512 la_buf[TPLA_SIZE - 1] = ~0ULL; 9513 9514 if (cfg & DBGLAENABLE_F) /* restore running state */ 9515 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 9516 cfg | adap->params.tp.la_mask); 9517 } 9518 9519 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in 9520 * seconds). If we find one of the SGE Ingress DMA State Machines in the same 9521 * state for more than the Warning Threshold then we'll issue a warning about 9522 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel 9523 * appears to be hung every Warning Repeat second till the situation clears. 9524 * If the situation clears, we'll note that as well. 9525 */ 9526 #define SGE_IDMA_WARN_THRESH 1 9527 #define SGE_IDMA_WARN_REPEAT 300 9528 9529 /** 9530 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor 9531 * @adapter: the adapter 9532 * @idma: the adapter IDMA Monitor state 9533 * 9534 * Initialize the state of an SGE Ingress DMA Monitor. 9535 */ 9536 void t4_idma_monitor_init(struct adapter *adapter, 9537 struct sge_idma_monitor_state *idma) 9538 { 9539 /* Initialize the state variables for detecting an SGE Ingress DMA 9540 * hang. The SGE has internal counters which count up on each clock 9541 * tick whenever the SGE finds its Ingress DMA State Engines in the 9542 * same state they were on the previous clock tick. The clock used is 9543 * the Core Clock so we have a limit on the maximum "time" they can 9544 * record; typically a very small number of seconds. For instance, 9545 * with a 600MHz Core Clock, we can only count up to a bit more than 9546 * 7s. So we'll synthesize a larger counter in order to not run the 9547 * risk of having the "timers" overflow and give us the flexibility to 9548 * maintain a Hung SGE State Machine of our own which operates across 9549 * a longer time frame. 9550 */ 9551 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ 9552 idma->idma_stalled[0] = 0; 9553 idma->idma_stalled[1] = 0; 9554 } 9555 9556 /** 9557 * t4_idma_monitor - monitor SGE Ingress DMA state 9558 * @adapter: the adapter 9559 * @idma: the adapter IDMA Monitor state 9560 * @hz: number of ticks/second 9561 * @ticks: number of ticks since the last IDMA Monitor call 9562 */ 9563 void t4_idma_monitor(struct adapter *adapter, 9564 struct sge_idma_monitor_state *idma, 9565 int hz, int ticks) 9566 { 9567 int i, idma_same_state_cnt[2]; 9568 9569 /* Read the SGE Debug Ingress DMA Same State Count registers. These 9570 * are counters inside the SGE which count up on each clock when the 9571 * SGE finds its Ingress DMA State Engines in the same states they 9572 * were in the previous clock. The counters will peg out at 9573 * 0xffffffff without wrapping around so once they pass the 1s 9574 * threshold they'll stay above that till the IDMA state changes. 9575 */ 9576 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13); 9577 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A); 9578 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9579 9580 for (i = 0; i < 2; i++) { 9581 u32 debug0, debug11; 9582 9583 /* If the Ingress DMA Same State Counter ("timer") is less 9584 * than 1s, then we can reset our synthesized Stall Timer and 9585 * continue. If we have previously emitted warnings about a 9586 * potential stalled Ingress Queue, issue a note indicating 9587 * that the Ingress Queue has resumed forward progress. 9588 */ 9589 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { 9590 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz) 9591 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, " 9592 "resumed after %d seconds\n", 9593 i, idma->idma_qid[i], 9594 idma->idma_stalled[i] / hz); 9595 idma->idma_stalled[i] = 0; 9596 continue; 9597 } 9598 9599 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 9600 * domain. The first time we get here it'll be because we 9601 * passed the 1s Threshold; each additional time it'll be 9602 * because the RX Timer Callback is being fired on its regular 9603 * schedule. 9604 * 9605 * If the stall is below our Potential Hung Ingress Queue 9606 * Warning Threshold, continue. 9607 */ 9608 if (idma->idma_stalled[i] == 0) { 9609 idma->idma_stalled[i] = hz; 9610 idma->idma_warn[i] = 0; 9611 } else { 9612 idma->idma_stalled[i] += ticks; 9613 idma->idma_warn[i] -= ticks; 9614 } 9615 9616 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz) 9617 continue; 9618 9619 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. 9620 */ 9621 if (idma->idma_warn[i] > 0) 9622 continue; 9623 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz; 9624 9625 /* Read and save the SGE IDMA State and Queue ID information. 9626 * We do this every time in case it changes across time ... 9627 * can't be too careful ... 9628 */ 9629 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0); 9630 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9631 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 9632 9633 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11); 9634 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9635 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 9636 9637 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in " 9638 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n", 9639 i, idma->idma_qid[i], idma->idma_state[i], 9640 idma->idma_stalled[i] / hz, 9641 debug0, debug11); 9642 t4_sge_decode_idma_state(adapter, idma->idma_state[i]); 9643 } 9644 } 9645 9646 /** 9647 * t4_load_cfg - download config file 9648 * @adap: the adapter 9649 * @cfg_data: the cfg text file to write 9650 * @size: text file size 9651 * 9652 * Write the supplied config text file to the card's serial flash. 9653 */ 9654 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 9655 { 9656 int ret, i, n, cfg_addr; 9657 unsigned int addr; 9658 unsigned int flash_cfg_start_sec; 9659 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 9660 9661 cfg_addr = t4_flash_cfg_addr(adap); 9662 if (cfg_addr < 0) 9663 return cfg_addr; 9664 9665 addr = cfg_addr; 9666 flash_cfg_start_sec = addr / SF_SEC_SIZE; 9667 9668 if (size > FLASH_CFG_MAX_SIZE) { 9669 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n", 9670 FLASH_CFG_MAX_SIZE); 9671 return -EFBIG; 9672 } 9673 9674 i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ 9675 sf_sec_size); 9676 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 9677 flash_cfg_start_sec + i - 1); 9678 /* If size == 0 then we're simply erasing the FLASH sectors associated 9679 * with the on-adapter Firmware Configuration File. 9680 */ 9681 if (ret || size == 0) 9682 goto out; 9683 9684 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 9685 for (i = 0; i < size; i += SF_PAGE_SIZE) { 9686 if ((size - i) < SF_PAGE_SIZE) 9687 n = size - i; 9688 else 9689 n = SF_PAGE_SIZE; 9690 ret = t4_write_flash(adap, addr, n, cfg_data); 9691 if (ret) 9692 goto out; 9693 9694 addr += SF_PAGE_SIZE; 9695 cfg_data += SF_PAGE_SIZE; 9696 } 9697 9698 out: 9699 if (ret) 9700 dev_err(adap->pdev_dev, "config file %s failed %d\n", 9701 (size == 0 ? "clear" : "download"), ret); 9702 return ret; 9703 } 9704 9705 /** 9706 * t4_set_vf_mac - Set MAC address for the specified VF 9707 * @adapter: The adapter 9708 * @vf: one of the VFs instantiated by the specified PF 9709 * @naddr: the number of MAC addresses 9710 * @addr: the MAC address(es) to be set to the specified VF 9711 */ 9712 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf, 9713 unsigned int naddr, u8 *addr) 9714 { 9715 struct fw_acl_mac_cmd cmd; 9716 9717 memset(&cmd, 0, sizeof(cmd)); 9718 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) | 9719 FW_CMD_REQUEST_F | 9720 FW_CMD_WRITE_F | 9721 FW_ACL_MAC_CMD_PFN_V(adapter->pf) | 9722 FW_ACL_MAC_CMD_VFN_V(vf)); 9723 9724 /* Note: Do not enable the ACL */ 9725 cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd)); 9726 cmd.nmac = naddr; 9727 9728 switch (adapter->pf) { 9729 case 3: 9730 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3)); 9731 break; 9732 case 2: 9733 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2)); 9734 break; 9735 case 1: 9736 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1)); 9737 break; 9738 case 0: 9739 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0)); 9740 break; 9741 } 9742 9743 return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd); 9744 } 9745 9746 /** 9747 * t4_read_pace_tbl - read the pace table 9748 * @adap: the adapter 9749 * @pace_vals: holds the returned values 9750 * 9751 * Returns the values of TP's pace table in microseconds. 9752 */ 9753 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED]) 9754 { 9755 unsigned int i, v; 9756 9757 for (i = 0; i < NTX_SCHED; i++) { 9758 t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i); 9759 v = t4_read_reg(adap, TP_PACE_TABLE_A); 9760 pace_vals[i] = dack_ticks_to_usec(adap, v); 9761 } 9762 } 9763 9764 /** 9765 * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler 9766 * @adap: the adapter 9767 * @sched: the scheduler index 9768 * @kbps: the byte rate in Kbps 9769 * @ipg: the interpacket delay in tenths of nanoseconds 9770 * @sleep_ok: if true we may sleep while awaiting command completion 9771 * 9772 * Return the current configuration of a HW Tx scheduler. 9773 */ 9774 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, 9775 unsigned int *kbps, unsigned int *ipg, bool sleep_ok) 9776 { 9777 unsigned int v, addr, bpt, cpt; 9778 9779 if (kbps) { 9780 addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2; 9781 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 9782 if (sched & 1) 9783 v >>= 16; 9784 bpt = (v >> 8) & 0xff; 9785 cpt = v & 0xff; 9786 if (!cpt) { 9787 *kbps = 0; /* scheduler disabled */ 9788 } else { 9789 v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */ 9790 *kbps = (v * bpt) / 125; 9791 } 9792 } 9793 if (ipg) { 9794 addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2; 9795 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 9796 if (sched & 1) 9797 v >>= 16; 9798 v &= 0xffff; 9799 *ipg = (10000 * v) / core_ticks_per_usec(adap); 9800 } 9801 } 9802 9803 /* t4_sge_ctxt_rd - read an SGE context through FW 9804 * @adap: the adapter 9805 * @mbox: mailbox to use for the FW command 9806 * @cid: the context id 9807 * @ctype: the context type 9808 * @data: where to store the context data 9809 * 9810 * Issues a FW command through the given mailbox to read an SGE context. 9811 */ 9812 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid, 9813 enum ctxt_type ctype, u32 *data) 9814 { 9815 struct fw_ldst_cmd c; 9816 int ret; 9817 9818 if (ctype == CTXT_FLM) 9819 ret = FW_LDST_ADDRSPC_SGE_FLMC; 9820 else 9821 ret = FW_LDST_ADDRSPC_SGE_CONMC; 9822 9823 memset(&c, 0, sizeof(c)); 9824 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 9825 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9826 FW_LDST_CMD_ADDRSPACE_V(ret)); 9827 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 9828 c.u.idctxt.physid = cpu_to_be32(cid); 9829 9830 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 9831 if (ret == 0) { 9832 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0); 9833 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1); 9834 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2); 9835 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3); 9836 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4); 9837 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5); 9838 } 9839 return ret; 9840 } 9841 9842 /** 9843 * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW 9844 * @adap: the adapter 9845 * @cid: the context id 9846 * @ctype: the context type 9847 * @data: where to store the context data 9848 * 9849 * Reads an SGE context directly, bypassing FW. This is only for 9850 * debugging when FW is unavailable. 9851 */ 9852 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, 9853 enum ctxt_type ctype, u32 *data) 9854 { 9855 int i, ret; 9856 9857 t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype)); 9858 ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1); 9859 if (!ret) 9860 for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4) 9861 *data++ = t4_read_reg(adap, i); 9862 return ret; 9863 } 9864 9865 int t4_sched_params(struct adapter *adapter, int type, int level, int mode, 9866 int rateunit, int ratemode, int channel, int class, 9867 int minrate, int maxrate, int weight, int pktsize) 9868 { 9869 struct fw_sched_cmd cmd; 9870 9871 memset(&cmd, 0, sizeof(cmd)); 9872 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) | 9873 FW_CMD_REQUEST_F | 9874 FW_CMD_WRITE_F); 9875 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 9876 9877 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 9878 cmd.u.params.type = type; 9879 cmd.u.params.level = level; 9880 cmd.u.params.mode = mode; 9881 cmd.u.params.ch = channel; 9882 cmd.u.params.cl = class; 9883 cmd.u.params.unit = rateunit; 9884 cmd.u.params.rate = ratemode; 9885 cmd.u.params.min = cpu_to_be32(minrate); 9886 cmd.u.params.max = cpu_to_be32(maxrate); 9887 cmd.u.params.weight = cpu_to_be16(weight); 9888 cmd.u.params.pktsize = cpu_to_be16(pktsize); 9889 9890 return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd), 9891 NULL, 1); 9892 } 9893 9894 /** 9895 * t4_i2c_rd - read I2C data from adapter 9896 * @adap: the adapter 9897 * @port: Port number if per-port device; <0 if not 9898 * @devid: per-port device ID or absolute device ID 9899 * @offset: byte offset into device I2C space 9900 * @len: byte length of I2C space data 9901 * @buf: buffer in which to return I2C data 9902 * 9903 * Reads the I2C data from the indicated device and location. 9904 */ 9905 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port, 9906 unsigned int devid, unsigned int offset, 9907 unsigned int len, u8 *buf) 9908 { 9909 struct fw_ldst_cmd ldst_cmd, ldst_rpl; 9910 unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data); 9911 int ret = 0; 9912 9913 if (len > I2C_PAGE_SIZE) 9914 return -EINVAL; 9915 9916 /* Dont allow reads that spans multiple pages */ 9917 if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE) 9918 return -EINVAL; 9919 9920 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 9921 ldst_cmd.op_to_addrspace = 9922 cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 9923 FW_CMD_REQUEST_F | 9924 FW_CMD_READ_F | 9925 FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C)); 9926 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 9927 ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port); 9928 ldst_cmd.u.i2c.did = devid; 9929 9930 while (len > 0) { 9931 unsigned int i2c_len = (len < i2c_max) ? len : i2c_max; 9932 9933 ldst_cmd.u.i2c.boffset = offset; 9934 ldst_cmd.u.i2c.blen = i2c_len; 9935 9936 ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd), 9937 &ldst_rpl); 9938 if (ret) 9939 break; 9940 9941 memcpy(buf, ldst_rpl.u.i2c.data, i2c_len); 9942 offset += i2c_len; 9943 buf += i2c_len; 9944 len -= i2c_len; 9945 } 9946 9947 return ret; 9948 } 9949 9950 /** 9951 * t4_set_vlan_acl - Set a VLAN id for the specified VF 9952 * @adapter: the adapter 9953 * @mbox: mailbox to use for the FW command 9954 * @vf: one of the VFs instantiated by the specified PF 9955 * @vlan: The vlanid to be set 9956 */ 9957 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf, 9958 u16 vlan) 9959 { 9960 struct fw_acl_vlan_cmd vlan_cmd; 9961 unsigned int enable; 9962 9963 enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0); 9964 memset(&vlan_cmd, 0, sizeof(vlan_cmd)); 9965 vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) | 9966 FW_CMD_REQUEST_F | 9967 FW_CMD_WRITE_F | 9968 FW_CMD_EXEC_F | 9969 FW_ACL_VLAN_CMD_PFN_V(adap->pf) | 9970 FW_ACL_VLAN_CMD_VFN_V(vf)); 9971 vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd)); 9972 /* Drop all packets that donot match vlan id */ 9973 vlan_cmd.dropnovlan_fm = FW_ACL_VLAN_CMD_FM_F; 9974 if (enable != 0) { 9975 vlan_cmd.nvlan = 1; 9976 vlan_cmd.vlanid[0] = cpu_to_be16(vlan); 9977 } 9978 9979 return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL); 9980 } 9981