xref: /linux/drivers/net/ethernet/chelsio/cxgb4/t4_hw.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41 
42 /**
43  *	t4_wait_op_done_val - wait until an operation is completed
44  *	@adapter: the adapter performing the operation
45  *	@reg: the register to check for completion
46  *	@mask: a single-bit field within @reg that indicates completion
47  *	@polarity: the value of the field when the operation is completed
48  *	@attempts: number of check iterations
49  *	@delay: delay in usecs between iterations
50  *	@valp: where to store the value of the register at completion time
51  *
52  *	Wait until an operation is completed by checking a bit in a register
53  *	up to @attempts times.  If @valp is not NULL the value of the register
54  *	at the time it indicated completion is stored there.  Returns 0 if the
55  *	operation completes and	-EAGAIN	otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 			       int polarity, int attempts, int delay, u32 *valp)
59 {
60 	while (1) {
61 		u32 val = t4_read_reg(adapter, reg);
62 
63 		if (!!(val & mask) == polarity) {
64 			if (valp)
65 				*valp = val;
66 			return 0;
67 		}
68 		if (--attempts == 0)
69 			return -EAGAIN;
70 		if (delay)
71 			udelay(delay);
72 	}
73 }
74 
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 				  int polarity, int attempts, int delay)
77 {
78 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 				   delay, NULL);
80 }
81 
82 /**
83  *	t4_set_reg_field - set a register field to a value
84  *	@adapter: the adapter to program
85  *	@addr: the register address
86  *	@mask: specifies the portion of the register to modify
87  *	@val: the new value for the register field
88  *
89  *	Sets a register field specified by the supplied mask to the
90  *	given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 		      u32 val)
94 {
95 	u32 v = t4_read_reg(adapter, addr) & ~mask;
96 
97 	t4_write_reg(adapter, addr, v | val);
98 	(void) t4_read_reg(adapter, addr);      /* flush */
99 }
100 
101 /**
102  *	t4_read_indirect - read indirectly addressed registers
103  *	@adap: the adapter
104  *	@addr_reg: register holding the indirect address
105  *	@data_reg: register holding the value of the indirect register
106  *	@vals: where the read register values are stored
107  *	@nregs: how many indirect registers to read
108  *	@start_idx: index of first indirect register to read
109  *
110  *	Reads registers that are accessed indirectly through an address/data
111  *	register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 			     unsigned int data_reg, u32 *vals,
115 			     unsigned int nregs, unsigned int start_idx)
116 {
117 	while (nregs--) {
118 		t4_write_reg(adap, addr_reg, start_idx);
119 		*vals++ = t4_read_reg(adap, data_reg);
120 		start_idx++;
121 	}
122 }
123 
124 /**
125  *	t4_write_indirect - write indirectly addressed registers
126  *	@adap: the adapter
127  *	@addr_reg: register holding the indirect addresses
128  *	@data_reg: register holding the value for the indirect registers
129  *	@vals: values to write
130  *	@nregs: how many indirect registers to write
131  *	@start_idx: address of first indirect register to write
132  *
133  *	Writes a sequential block of registers that are accessed indirectly
134  *	through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 		       unsigned int data_reg, const u32 *vals,
138 		       unsigned int nregs, unsigned int start_idx)
139 {
140 	while (nregs--) {
141 		t4_write_reg(adap, addr_reg, start_idx++);
142 		t4_write_reg(adap, data_reg, *vals++);
143 	}
144 }
145 
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 
156 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 		req |= ENABLE_F;
158 	else
159 		req |= T6_ENABLE_F;
160 
161 	if (is_t4(adap->params.chip))
162 		req |= LOCALCFG_F;
163 
164 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 
167 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 	 * Configuration Space read.  (None of the other fields matter when
169 	 * ENABLE is 0 so a simple register write is easier than a
170 	 * read-modify-write via t4_set_reg_field().)
171 	 */
172 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174 
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 	static const char *const reason[] = {
186 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 		"Reserved",                     /* reserved */
194 	};
195 	u32 pcie_fw;
196 
197 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 	if (pcie_fw & PCIE_FW_ERR_F)
199 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 }
202 
203 /*
204  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
205  */
206 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
207 			 u32 mbox_addr)
208 {
209 	for ( ; nflit; nflit--, mbox_addr += 8)
210 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
211 }
212 
213 /*
214  * Handle a FW assertion reported in a mailbox.
215  */
216 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
217 {
218 	struct fw_debug_cmd asrt;
219 
220 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
221 	dev_alert(adap->pdev_dev,
222 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
223 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
224 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
225 }
226 
227 static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
228 {
229 	dev_err(adap->pdev_dev,
230 		"mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
231 		(unsigned long long)t4_read_reg64(adap, data_reg),
232 		(unsigned long long)t4_read_reg64(adap, data_reg + 8),
233 		(unsigned long long)t4_read_reg64(adap, data_reg + 16),
234 		(unsigned long long)t4_read_reg64(adap, data_reg + 24),
235 		(unsigned long long)t4_read_reg64(adap, data_reg + 32),
236 		(unsigned long long)t4_read_reg64(adap, data_reg + 40),
237 		(unsigned long long)t4_read_reg64(adap, data_reg + 48),
238 		(unsigned long long)t4_read_reg64(adap, data_reg + 56));
239 }
240 
241 /**
242  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
243  *	@adap: the adapter
244  *	@mbox: index of the mailbox to use
245  *	@cmd: the command to write
246  *	@size: command length in bytes
247  *	@rpl: where to optionally store the reply
248  *	@sleep_ok: if true we may sleep while awaiting command completion
249  *	@timeout: time to wait for command to finish before timing out
250  *
251  *	Sends the given command to FW through the selected mailbox and waits
252  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
253  *	store the FW's reply to the command.  The command and its optional
254  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
255  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
256  *	the response.  If sleeping is allowed we use progressive backoff
257  *	otherwise we spin.
258  *
259  *	The return value is 0 on success or a negative errno on failure.  A
260  *	failure can happen either because we are not able to execute the
261  *	command or FW executes it but signals an error.  In the latter case
262  *	the return value is the error code indicated by FW (negated).
263  */
264 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
265 			    int size, void *rpl, bool sleep_ok, int timeout)
266 {
267 	static const int delay[] = {
268 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
269 	};
270 
271 	u32 v;
272 	u64 res;
273 	int i, ms, delay_idx;
274 	const __be64 *p = cmd;
275 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
276 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
277 
278 	if ((size & 15) || size > MBOX_LEN)
279 		return -EINVAL;
280 
281 	/*
282 	 * If the device is off-line, as in EEH, commands will time out.
283 	 * Fail them early so we don't waste time waiting.
284 	 */
285 	if (adap->pdev->error_state != pci_channel_io_normal)
286 		return -EIO;
287 
288 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
289 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
290 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
291 
292 	if (v != MBOX_OWNER_DRV)
293 		return v ? -EBUSY : -ETIMEDOUT;
294 
295 	for (i = 0; i < size; i += 8)
296 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
297 
298 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
299 	t4_read_reg(adap, ctl_reg);          /* flush write */
300 
301 	delay_idx = 0;
302 	ms = delay[0];
303 
304 	for (i = 0; i < timeout; i += ms) {
305 		if (sleep_ok) {
306 			ms = delay[delay_idx];  /* last element may repeat */
307 			if (delay_idx < ARRAY_SIZE(delay) - 1)
308 				delay_idx++;
309 			msleep(ms);
310 		} else
311 			mdelay(ms);
312 
313 		v = t4_read_reg(adap, ctl_reg);
314 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
315 			if (!(v & MBMSGVALID_F)) {
316 				t4_write_reg(adap, ctl_reg, 0);
317 				continue;
318 			}
319 
320 			res = t4_read_reg64(adap, data_reg);
321 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
322 				fw_asrt(adap, data_reg);
323 				res = FW_CMD_RETVAL_V(EIO);
324 			} else if (rpl) {
325 				get_mbox_rpl(adap, rpl, size / 8, data_reg);
326 			}
327 
328 			if (FW_CMD_RETVAL_G((int)res))
329 				dump_mbox(adap, mbox, data_reg);
330 			t4_write_reg(adap, ctl_reg, 0);
331 			return -FW_CMD_RETVAL_G((int)res);
332 		}
333 	}
334 
335 	dump_mbox(adap, mbox, data_reg);
336 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
337 		*(const u8 *)cmd, mbox);
338 	t4_report_fw_error(adap);
339 	return -ETIMEDOUT;
340 }
341 
342 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
343 		    void *rpl, bool sleep_ok)
344 {
345 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
346 				       FW_CMD_MAX_TIMEOUT);
347 }
348 
349 static int t4_edc_err_read(struct adapter *adap, int idx)
350 {
351 	u32 edc_ecc_err_addr_reg;
352 	u32 rdata_reg;
353 
354 	if (is_t4(adap->params.chip)) {
355 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
356 		return 0;
357 	}
358 	if (idx != 0 && idx != 1) {
359 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
360 		return 0;
361 	}
362 
363 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
364 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
365 
366 	CH_WARN(adap,
367 		"edc%d err addr 0x%x: 0x%x.\n",
368 		idx, edc_ecc_err_addr_reg,
369 		t4_read_reg(adap, edc_ecc_err_addr_reg));
370 	CH_WARN(adap,
371 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
372 		rdata_reg,
373 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
374 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
375 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
376 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
377 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
378 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
379 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
380 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
381 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
382 
383 	return 0;
384 }
385 
386 /**
387  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
388  *	@adap: the adapter
389  *	@win: PCI-E Memory Window to use
390  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
391  *	@addr: address within indicated memory type
392  *	@len: amount of memory to transfer
393  *	@hbuf: host memory buffer
394  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
395  *
396  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
397  *	firmware memory address and host buffer must be aligned on 32-bit
398  *	boudaries; the length may be arbitrary.  The memory is transferred as
399  *	a raw byte sequence from/to the firmware's memory.  If this memory
400  *	contains data structures which contain multi-byte integers, it's the
401  *	caller's responsibility to perform appropriate byte order conversions.
402  */
403 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
404 		 u32 len, void *hbuf, int dir)
405 {
406 	u32 pos, offset, resid, memoffset;
407 	u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
408 	u32 *buf;
409 
410 	/* Argument sanity checks ...
411 	 */
412 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
413 		return -EINVAL;
414 	buf = (u32 *)hbuf;
415 
416 	/* It's convenient to be able to handle lengths which aren't a
417 	 * multiple of 32-bits because we often end up transferring files to
418 	 * the firmware.  So we'll handle that by normalizing the length here
419 	 * and then handling any residual transfer at the end.
420 	 */
421 	resid = len & 0x3;
422 	len -= resid;
423 
424 	/* Offset into the region of memory which is being accessed
425 	 * MEM_EDC0 = 0
426 	 * MEM_EDC1 = 1
427 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
428 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
429 	 */
430 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
431 	if (mtype != MEM_MC1)
432 		memoffset = (mtype * (edc_size * 1024 * 1024));
433 	else {
434 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
435 						      MA_EXT_MEMORY0_BAR_A));
436 		memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
437 	}
438 
439 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
440 	addr = addr + memoffset;
441 
442 	/* Each PCI-E Memory Window is programmed with a window size -- or
443 	 * "aperture" -- which controls the granularity of its mapping onto
444 	 * adapter memory.  We need to grab that aperture in order to know
445 	 * how to use the specified window.  The window is also programmed
446 	 * with the base address of the Memory Window in BAR0's address
447 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
448 	 * the address is relative to BAR0.
449 	 */
450 	mem_reg = t4_read_reg(adap,
451 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
452 						  win));
453 	mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
454 	mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
455 	if (is_t4(adap->params.chip))
456 		mem_base -= adap->t4_bar0;
457 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
458 
459 	/* Calculate our initial PCI-E Memory Window Position and Offset into
460 	 * that Window.
461 	 */
462 	pos = addr & ~(mem_aperture-1);
463 	offset = addr - pos;
464 
465 	/* Set up initial PCI-E Memory Window to cover the start of our
466 	 * transfer.  (Read it back to ensure that changes propagate before we
467 	 * attempt to use the new value.)
468 	 */
469 	t4_write_reg(adap,
470 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
471 		     pos | win_pf);
472 	t4_read_reg(adap,
473 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
474 
475 	/* Transfer data to/from the adapter as long as there's an integral
476 	 * number of 32-bit transfers to complete.
477 	 *
478 	 * A note on Endianness issues:
479 	 *
480 	 * The "register" reads and writes below from/to the PCI-E Memory
481 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
482 	 * Little-Endian "swizzel."  As a result, if we have the following
483 	 * data in adapter memory:
484 	 *
485 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
486 	 *     Address:      i+0  i+1  i+2  i+3
487 	 *
488 	 * Then a read of the adapter memory via the PCI-E Memory Window
489 	 * will yield:
490 	 *
491 	 *     x = readl(i)
492 	 *         31                  0
493 	 *         [ b3 | b2 | b1 | b0 ]
494 	 *
495 	 * If this value is stored into local memory on a Little-Endian system
496 	 * it will show up correctly in local memory as:
497 	 *
498 	 *     ( ..., b0, b1, b2, b3, ... )
499 	 *
500 	 * But on a Big-Endian system, the store will show up in memory
501 	 * incorrectly swizzled as:
502 	 *
503 	 *     ( ..., b3, b2, b1, b0, ... )
504 	 *
505 	 * So we need to account for this in the reads and writes to the
506 	 * PCI-E Memory Window below by undoing the register read/write
507 	 * swizzels.
508 	 */
509 	while (len > 0) {
510 		if (dir == T4_MEMORY_READ)
511 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
512 						mem_base + offset));
513 		else
514 			t4_write_reg(adap, mem_base + offset,
515 				     (__force u32)cpu_to_le32(*buf++));
516 		offset += sizeof(__be32);
517 		len -= sizeof(__be32);
518 
519 		/* If we've reached the end of our current window aperture,
520 		 * move the PCI-E Memory Window on to the next.  Note that
521 		 * doing this here after "len" may be 0 allows us to set up
522 		 * the PCI-E Memory Window for a possible final residual
523 		 * transfer below ...
524 		 */
525 		if (offset == mem_aperture) {
526 			pos += mem_aperture;
527 			offset = 0;
528 			t4_write_reg(adap,
529 				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
530 						    win), pos | win_pf);
531 			t4_read_reg(adap,
532 				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
533 						    win));
534 		}
535 	}
536 
537 	/* If the original transfer had a length which wasn't a multiple of
538 	 * 32-bits, now's where we need to finish off the transfer of the
539 	 * residual amount.  The PCI-E Memory Window has already been moved
540 	 * above (if necessary) to cover this final transfer.
541 	 */
542 	if (resid) {
543 		union {
544 			u32 word;
545 			char byte[4];
546 		} last;
547 		unsigned char *bp;
548 		int i;
549 
550 		if (dir == T4_MEMORY_READ) {
551 			last.word = le32_to_cpu(
552 					(__force __le32)t4_read_reg(adap,
553 						mem_base + offset));
554 			for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
555 				bp[i] = last.byte[i];
556 		} else {
557 			last.word = *buf;
558 			for (i = resid; i < 4; i++)
559 				last.byte[i] = 0;
560 			t4_write_reg(adap, mem_base + offset,
561 				     (__force u32)cpu_to_le32(last.word));
562 		}
563 	}
564 
565 	return 0;
566 }
567 
568 /* Return the specified PCI-E Configuration Space register from our Physical
569  * Function.  We try first via a Firmware LDST Command since we prefer to let
570  * the firmware own all of these registers, but if that fails we go for it
571  * directly ourselves.
572  */
573 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
574 {
575 	u32 val, ldst_addrspace;
576 
577 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
578 	 * retrieve the specified PCI-E Configuration Space register.
579 	 */
580 	struct fw_ldst_cmd ldst_cmd;
581 	int ret;
582 
583 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
584 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
585 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
586 					       FW_CMD_REQUEST_F |
587 					       FW_CMD_READ_F |
588 					       ldst_addrspace);
589 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
590 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
591 	ldst_cmd.u.pcie.ctrl_to_fn =
592 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
593 	ldst_cmd.u.pcie.r = reg;
594 
595 	/* If the LDST Command succeeds, return the result, otherwise
596 	 * fall through to reading it directly ourselves ...
597 	 */
598 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
599 			 &ldst_cmd);
600 	if (ret == 0)
601 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
602 	else
603 		/* Read the desired Configuration Space register via the PCI-E
604 		 * Backdoor mechanism.
605 		 */
606 		t4_hw_pci_read_cfg4(adap, reg, &val);
607 	return val;
608 }
609 
610 /* Get the window based on base passed to it.
611  * Window aperture is currently unhandled, but there is no use case for it
612  * right now
613  */
614 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
615 			 u32 memwin_base)
616 {
617 	u32 ret;
618 
619 	if (is_t4(adap->params.chip)) {
620 		u32 bar0;
621 
622 		/* Truncation intentional: we only read the bottom 32-bits of
623 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
624 		 * mechanism to read BAR0 instead of using
625 		 * pci_resource_start() because we could be operating from
626 		 * within a Virtual Machine which is trapping our accesses to
627 		 * our Configuration Space and we need to set up the PCI-E
628 		 * Memory Window decoders with the actual addresses which will
629 		 * be coming across the PCI-E link.
630 		 */
631 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
632 		bar0 &= pci_mask;
633 		adap->t4_bar0 = bar0;
634 
635 		ret = bar0 + memwin_base;
636 	} else {
637 		/* For T5, only relative offset inside the PCIe BAR is passed */
638 		ret = memwin_base;
639 	}
640 	return ret;
641 }
642 
643 /* Get the default utility window (win0) used by everyone */
644 u32 t4_get_util_window(struct adapter *adap)
645 {
646 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
647 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
648 }
649 
650 /* Set up memory window for accessing adapter memory ranges.  (Read
651  * back MA register to ensure that changes propagate before we attempt
652  * to use the new values.)
653  */
654 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
655 {
656 	t4_write_reg(adap,
657 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
658 		     memwin_base | BIR_V(0) |
659 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
660 	t4_read_reg(adap,
661 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
662 }
663 
664 /**
665  *	t4_get_regs_len - return the size of the chips register set
666  *	@adapter: the adapter
667  *
668  *	Returns the size of the chip's BAR0 register space.
669  */
670 unsigned int t4_get_regs_len(struct adapter *adapter)
671 {
672 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
673 
674 	switch (chip_version) {
675 	case CHELSIO_T4:
676 		return T4_REGMAP_SIZE;
677 
678 	case CHELSIO_T5:
679 	case CHELSIO_T6:
680 		return T5_REGMAP_SIZE;
681 	}
682 
683 	dev_err(adapter->pdev_dev,
684 		"Unsupported chip version %d\n", chip_version);
685 	return 0;
686 }
687 
688 /**
689  *	t4_get_regs - read chip registers into provided buffer
690  *	@adap: the adapter
691  *	@buf: register buffer
692  *	@buf_size: size (in bytes) of register buffer
693  *
694  *	If the provided register buffer isn't large enough for the chip's
695  *	full register range, the register dump will be truncated to the
696  *	register buffer's size.
697  */
698 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
699 {
700 	static const unsigned int t4_reg_ranges[] = {
701 		0x1008, 0x1108,
702 		0x1180, 0x11b4,
703 		0x11fc, 0x123c,
704 		0x1300, 0x173c,
705 		0x1800, 0x18fc,
706 		0x3000, 0x305c,
707 		0x3068, 0x30d8,
708 		0x30e0, 0x5924,
709 		0x5960, 0x59d4,
710 		0x5a00, 0x5af8,
711 		0x6000, 0x6098,
712 		0x6100, 0x6150,
713 		0x6200, 0x6208,
714 		0x6240, 0x6248,
715 		0x6280, 0x6338,
716 		0x6370, 0x638c,
717 		0x6400, 0x643c,
718 		0x6500, 0x6524,
719 		0x6a00, 0x6a38,
720 		0x6a60, 0x6a78,
721 		0x6b00, 0x6b84,
722 		0x6bf0, 0x6c84,
723 		0x6cf0, 0x6d84,
724 		0x6df0, 0x6e84,
725 		0x6ef0, 0x6f84,
726 		0x6ff0, 0x7084,
727 		0x70f0, 0x7184,
728 		0x71f0, 0x7284,
729 		0x72f0, 0x7384,
730 		0x73f0, 0x7450,
731 		0x7500, 0x7530,
732 		0x7600, 0x761c,
733 		0x7680, 0x76cc,
734 		0x7700, 0x7798,
735 		0x77c0, 0x77fc,
736 		0x7900, 0x79fc,
737 		0x7b00, 0x7c38,
738 		0x7d00, 0x7efc,
739 		0x8dc0, 0x8e1c,
740 		0x8e30, 0x8e78,
741 		0x8ea0, 0x8f6c,
742 		0x8fc0, 0x9074,
743 		0x90fc, 0x90fc,
744 		0x9400, 0x9458,
745 		0x9600, 0x96bc,
746 		0x9800, 0x9808,
747 		0x9820, 0x983c,
748 		0x9850, 0x9864,
749 		0x9c00, 0x9c6c,
750 		0x9c80, 0x9cec,
751 		0x9d00, 0x9d6c,
752 		0x9d80, 0x9dec,
753 		0x9e00, 0x9e6c,
754 		0x9e80, 0x9eec,
755 		0x9f00, 0x9f6c,
756 		0x9f80, 0x9fec,
757 		0xd004, 0xd03c,
758 		0xdfc0, 0xdfe0,
759 		0xe000, 0xea7c,
760 		0xf000, 0x11110,
761 		0x11118, 0x11190,
762 		0x19040, 0x1906c,
763 		0x19078, 0x19080,
764 		0x1908c, 0x19124,
765 		0x19150, 0x191b0,
766 		0x191d0, 0x191e8,
767 		0x19238, 0x1924c,
768 		0x193f8, 0x19474,
769 		0x19490, 0x194f8,
770 		0x19800, 0x19f4c,
771 		0x1a000, 0x1a06c,
772 		0x1a0b0, 0x1a120,
773 		0x1a128, 0x1a138,
774 		0x1a190, 0x1a1c4,
775 		0x1a1fc, 0x1a1fc,
776 		0x1e040, 0x1e04c,
777 		0x1e284, 0x1e28c,
778 		0x1e2c0, 0x1e2c0,
779 		0x1e2e0, 0x1e2e0,
780 		0x1e300, 0x1e384,
781 		0x1e3c0, 0x1e3c8,
782 		0x1e440, 0x1e44c,
783 		0x1e684, 0x1e68c,
784 		0x1e6c0, 0x1e6c0,
785 		0x1e6e0, 0x1e6e0,
786 		0x1e700, 0x1e784,
787 		0x1e7c0, 0x1e7c8,
788 		0x1e840, 0x1e84c,
789 		0x1ea84, 0x1ea8c,
790 		0x1eac0, 0x1eac0,
791 		0x1eae0, 0x1eae0,
792 		0x1eb00, 0x1eb84,
793 		0x1ebc0, 0x1ebc8,
794 		0x1ec40, 0x1ec4c,
795 		0x1ee84, 0x1ee8c,
796 		0x1eec0, 0x1eec0,
797 		0x1eee0, 0x1eee0,
798 		0x1ef00, 0x1ef84,
799 		0x1efc0, 0x1efc8,
800 		0x1f040, 0x1f04c,
801 		0x1f284, 0x1f28c,
802 		0x1f2c0, 0x1f2c0,
803 		0x1f2e0, 0x1f2e0,
804 		0x1f300, 0x1f384,
805 		0x1f3c0, 0x1f3c8,
806 		0x1f440, 0x1f44c,
807 		0x1f684, 0x1f68c,
808 		0x1f6c0, 0x1f6c0,
809 		0x1f6e0, 0x1f6e0,
810 		0x1f700, 0x1f784,
811 		0x1f7c0, 0x1f7c8,
812 		0x1f840, 0x1f84c,
813 		0x1fa84, 0x1fa8c,
814 		0x1fac0, 0x1fac0,
815 		0x1fae0, 0x1fae0,
816 		0x1fb00, 0x1fb84,
817 		0x1fbc0, 0x1fbc8,
818 		0x1fc40, 0x1fc4c,
819 		0x1fe84, 0x1fe8c,
820 		0x1fec0, 0x1fec0,
821 		0x1fee0, 0x1fee0,
822 		0x1ff00, 0x1ff84,
823 		0x1ffc0, 0x1ffc8,
824 		0x20000, 0x2002c,
825 		0x20100, 0x2013c,
826 		0x20190, 0x201c8,
827 		0x20200, 0x20318,
828 		0x20400, 0x20528,
829 		0x20540, 0x20614,
830 		0x21000, 0x21040,
831 		0x2104c, 0x21060,
832 		0x210c0, 0x210ec,
833 		0x21200, 0x21268,
834 		0x21270, 0x21284,
835 		0x212fc, 0x21388,
836 		0x21400, 0x21404,
837 		0x21500, 0x21518,
838 		0x2152c, 0x2153c,
839 		0x21550, 0x21554,
840 		0x21600, 0x21600,
841 		0x21608, 0x21628,
842 		0x21630, 0x2163c,
843 		0x21700, 0x2171c,
844 		0x21780, 0x2178c,
845 		0x21800, 0x21c38,
846 		0x21c80, 0x21d7c,
847 		0x21e00, 0x21e04,
848 		0x22000, 0x2202c,
849 		0x22100, 0x2213c,
850 		0x22190, 0x221c8,
851 		0x22200, 0x22318,
852 		0x22400, 0x22528,
853 		0x22540, 0x22614,
854 		0x23000, 0x23040,
855 		0x2304c, 0x23060,
856 		0x230c0, 0x230ec,
857 		0x23200, 0x23268,
858 		0x23270, 0x23284,
859 		0x232fc, 0x23388,
860 		0x23400, 0x23404,
861 		0x23500, 0x23518,
862 		0x2352c, 0x2353c,
863 		0x23550, 0x23554,
864 		0x23600, 0x23600,
865 		0x23608, 0x23628,
866 		0x23630, 0x2363c,
867 		0x23700, 0x2371c,
868 		0x23780, 0x2378c,
869 		0x23800, 0x23c38,
870 		0x23c80, 0x23d7c,
871 		0x23e00, 0x23e04,
872 		0x24000, 0x2402c,
873 		0x24100, 0x2413c,
874 		0x24190, 0x241c8,
875 		0x24200, 0x24318,
876 		0x24400, 0x24528,
877 		0x24540, 0x24614,
878 		0x25000, 0x25040,
879 		0x2504c, 0x25060,
880 		0x250c0, 0x250ec,
881 		0x25200, 0x25268,
882 		0x25270, 0x25284,
883 		0x252fc, 0x25388,
884 		0x25400, 0x25404,
885 		0x25500, 0x25518,
886 		0x2552c, 0x2553c,
887 		0x25550, 0x25554,
888 		0x25600, 0x25600,
889 		0x25608, 0x25628,
890 		0x25630, 0x2563c,
891 		0x25700, 0x2571c,
892 		0x25780, 0x2578c,
893 		0x25800, 0x25c38,
894 		0x25c80, 0x25d7c,
895 		0x25e00, 0x25e04,
896 		0x26000, 0x2602c,
897 		0x26100, 0x2613c,
898 		0x26190, 0x261c8,
899 		0x26200, 0x26318,
900 		0x26400, 0x26528,
901 		0x26540, 0x26614,
902 		0x27000, 0x27040,
903 		0x2704c, 0x27060,
904 		0x270c0, 0x270ec,
905 		0x27200, 0x27268,
906 		0x27270, 0x27284,
907 		0x272fc, 0x27388,
908 		0x27400, 0x27404,
909 		0x27500, 0x27518,
910 		0x2752c, 0x2753c,
911 		0x27550, 0x27554,
912 		0x27600, 0x27600,
913 		0x27608, 0x27628,
914 		0x27630, 0x2763c,
915 		0x27700, 0x2771c,
916 		0x27780, 0x2778c,
917 		0x27800, 0x27c38,
918 		0x27c80, 0x27d7c,
919 		0x27e00, 0x27e04,
920 	};
921 
922 	static const unsigned int t5_reg_ranges[] = {
923 		0x1008, 0x1148,
924 		0x1180, 0x11b4,
925 		0x11fc, 0x123c,
926 		0x1280, 0x173c,
927 		0x1800, 0x18fc,
928 		0x3000, 0x3028,
929 		0x3068, 0x30d8,
930 		0x30e0, 0x30fc,
931 		0x3140, 0x357c,
932 		0x35a8, 0x35cc,
933 		0x35ec, 0x35ec,
934 		0x3600, 0x5624,
935 		0x56cc, 0x575c,
936 		0x580c, 0x5814,
937 		0x5890, 0x58bc,
938 		0x5940, 0x59dc,
939 		0x59fc, 0x5a18,
940 		0x5a60, 0x5a9c,
941 		0x5b94, 0x5bfc,
942 		0x6000, 0x6040,
943 		0x6058, 0x614c,
944 		0x7700, 0x7798,
945 		0x77c0, 0x78fc,
946 		0x7b00, 0x7c54,
947 		0x7d00, 0x7efc,
948 		0x8dc0, 0x8de0,
949 		0x8df8, 0x8e84,
950 		0x8ea0, 0x8f84,
951 		0x8fc0, 0x90f8,
952 		0x9400, 0x9470,
953 		0x9600, 0x96f4,
954 		0x9800, 0x9808,
955 		0x9820, 0x983c,
956 		0x9850, 0x9864,
957 		0x9c00, 0x9c6c,
958 		0x9c80, 0x9cec,
959 		0x9d00, 0x9d6c,
960 		0x9d80, 0x9dec,
961 		0x9e00, 0x9e6c,
962 		0x9e80, 0x9eec,
963 		0x9f00, 0x9f6c,
964 		0x9f80, 0xa020,
965 		0xd004, 0xd03c,
966 		0xdfc0, 0xdfe0,
967 		0xe000, 0x11088,
968 		0x1109c, 0x11110,
969 		0x11118, 0x1117c,
970 		0x11190, 0x11204,
971 		0x19040, 0x1906c,
972 		0x19078, 0x19080,
973 		0x1908c, 0x19124,
974 		0x19150, 0x191b0,
975 		0x191d0, 0x191e8,
976 		0x19238, 0x19290,
977 		0x193f8, 0x19474,
978 		0x19490, 0x194cc,
979 		0x194f0, 0x194f8,
980 		0x19c00, 0x19c60,
981 		0x19c94, 0x19e10,
982 		0x19e50, 0x19f34,
983 		0x19f40, 0x19f50,
984 		0x19f90, 0x19fe4,
985 		0x1a000, 0x1a06c,
986 		0x1a0b0, 0x1a120,
987 		0x1a128, 0x1a138,
988 		0x1a190, 0x1a1c4,
989 		0x1a1fc, 0x1a1fc,
990 		0x1e008, 0x1e00c,
991 		0x1e040, 0x1e04c,
992 		0x1e284, 0x1e290,
993 		0x1e2c0, 0x1e2c0,
994 		0x1e2e0, 0x1e2e0,
995 		0x1e300, 0x1e384,
996 		0x1e3c0, 0x1e3c8,
997 		0x1e408, 0x1e40c,
998 		0x1e440, 0x1e44c,
999 		0x1e684, 0x1e690,
1000 		0x1e6c0, 0x1e6c0,
1001 		0x1e6e0, 0x1e6e0,
1002 		0x1e700, 0x1e784,
1003 		0x1e7c0, 0x1e7c8,
1004 		0x1e808, 0x1e80c,
1005 		0x1e840, 0x1e84c,
1006 		0x1ea84, 0x1ea90,
1007 		0x1eac0, 0x1eac0,
1008 		0x1eae0, 0x1eae0,
1009 		0x1eb00, 0x1eb84,
1010 		0x1ebc0, 0x1ebc8,
1011 		0x1ec08, 0x1ec0c,
1012 		0x1ec40, 0x1ec4c,
1013 		0x1ee84, 0x1ee90,
1014 		0x1eec0, 0x1eec0,
1015 		0x1eee0, 0x1eee0,
1016 		0x1ef00, 0x1ef84,
1017 		0x1efc0, 0x1efc8,
1018 		0x1f008, 0x1f00c,
1019 		0x1f040, 0x1f04c,
1020 		0x1f284, 0x1f290,
1021 		0x1f2c0, 0x1f2c0,
1022 		0x1f2e0, 0x1f2e0,
1023 		0x1f300, 0x1f384,
1024 		0x1f3c0, 0x1f3c8,
1025 		0x1f408, 0x1f40c,
1026 		0x1f440, 0x1f44c,
1027 		0x1f684, 0x1f690,
1028 		0x1f6c0, 0x1f6c0,
1029 		0x1f6e0, 0x1f6e0,
1030 		0x1f700, 0x1f784,
1031 		0x1f7c0, 0x1f7c8,
1032 		0x1f808, 0x1f80c,
1033 		0x1f840, 0x1f84c,
1034 		0x1fa84, 0x1fa90,
1035 		0x1fac0, 0x1fac0,
1036 		0x1fae0, 0x1fae0,
1037 		0x1fb00, 0x1fb84,
1038 		0x1fbc0, 0x1fbc8,
1039 		0x1fc08, 0x1fc0c,
1040 		0x1fc40, 0x1fc4c,
1041 		0x1fe84, 0x1fe90,
1042 		0x1fec0, 0x1fec0,
1043 		0x1fee0, 0x1fee0,
1044 		0x1ff00, 0x1ff84,
1045 		0x1ffc0, 0x1ffc8,
1046 		0x30000, 0x30030,
1047 		0x30100, 0x30144,
1048 		0x30190, 0x301d0,
1049 		0x30200, 0x30318,
1050 		0x30400, 0x3052c,
1051 		0x30540, 0x3061c,
1052 		0x30800, 0x30834,
1053 		0x308c0, 0x30908,
1054 		0x30910, 0x309ac,
1055 		0x30a00, 0x30a2c,
1056 		0x30a44, 0x30a50,
1057 		0x30a74, 0x30c24,
1058 		0x30d00, 0x30d00,
1059 		0x30d08, 0x30d14,
1060 		0x30d1c, 0x30d20,
1061 		0x30d3c, 0x30d50,
1062 		0x31200, 0x3120c,
1063 		0x31220, 0x31220,
1064 		0x31240, 0x31240,
1065 		0x31600, 0x3160c,
1066 		0x31a00, 0x31a1c,
1067 		0x31e00, 0x31e20,
1068 		0x31e38, 0x31e3c,
1069 		0x31e80, 0x31e80,
1070 		0x31e88, 0x31ea8,
1071 		0x31eb0, 0x31eb4,
1072 		0x31ec8, 0x31ed4,
1073 		0x31fb8, 0x32004,
1074 		0x32200, 0x32200,
1075 		0x32208, 0x32240,
1076 		0x32248, 0x32280,
1077 		0x32288, 0x322c0,
1078 		0x322c8, 0x322fc,
1079 		0x32600, 0x32630,
1080 		0x32a00, 0x32abc,
1081 		0x32b00, 0x32b70,
1082 		0x33000, 0x33048,
1083 		0x33060, 0x3309c,
1084 		0x330f0, 0x33148,
1085 		0x33160, 0x3319c,
1086 		0x331f0, 0x332e4,
1087 		0x332f8, 0x333e4,
1088 		0x333f8, 0x33448,
1089 		0x33460, 0x3349c,
1090 		0x334f0, 0x33548,
1091 		0x33560, 0x3359c,
1092 		0x335f0, 0x336e4,
1093 		0x336f8, 0x337e4,
1094 		0x337f8, 0x337fc,
1095 		0x33814, 0x33814,
1096 		0x3382c, 0x3382c,
1097 		0x33880, 0x3388c,
1098 		0x338e8, 0x338ec,
1099 		0x33900, 0x33948,
1100 		0x33960, 0x3399c,
1101 		0x339f0, 0x33ae4,
1102 		0x33af8, 0x33b10,
1103 		0x33b28, 0x33b28,
1104 		0x33b3c, 0x33b50,
1105 		0x33bf0, 0x33c10,
1106 		0x33c28, 0x33c28,
1107 		0x33c3c, 0x33c50,
1108 		0x33cf0, 0x33cfc,
1109 		0x34000, 0x34030,
1110 		0x34100, 0x34144,
1111 		0x34190, 0x341d0,
1112 		0x34200, 0x34318,
1113 		0x34400, 0x3452c,
1114 		0x34540, 0x3461c,
1115 		0x34800, 0x34834,
1116 		0x348c0, 0x34908,
1117 		0x34910, 0x349ac,
1118 		0x34a00, 0x34a2c,
1119 		0x34a44, 0x34a50,
1120 		0x34a74, 0x34c24,
1121 		0x34d00, 0x34d00,
1122 		0x34d08, 0x34d14,
1123 		0x34d1c, 0x34d20,
1124 		0x34d3c, 0x34d50,
1125 		0x35200, 0x3520c,
1126 		0x35220, 0x35220,
1127 		0x35240, 0x35240,
1128 		0x35600, 0x3560c,
1129 		0x35a00, 0x35a1c,
1130 		0x35e00, 0x35e20,
1131 		0x35e38, 0x35e3c,
1132 		0x35e80, 0x35e80,
1133 		0x35e88, 0x35ea8,
1134 		0x35eb0, 0x35eb4,
1135 		0x35ec8, 0x35ed4,
1136 		0x35fb8, 0x36004,
1137 		0x36200, 0x36200,
1138 		0x36208, 0x36240,
1139 		0x36248, 0x36280,
1140 		0x36288, 0x362c0,
1141 		0x362c8, 0x362fc,
1142 		0x36600, 0x36630,
1143 		0x36a00, 0x36abc,
1144 		0x36b00, 0x36b70,
1145 		0x37000, 0x37048,
1146 		0x37060, 0x3709c,
1147 		0x370f0, 0x37148,
1148 		0x37160, 0x3719c,
1149 		0x371f0, 0x372e4,
1150 		0x372f8, 0x373e4,
1151 		0x373f8, 0x37448,
1152 		0x37460, 0x3749c,
1153 		0x374f0, 0x37548,
1154 		0x37560, 0x3759c,
1155 		0x375f0, 0x376e4,
1156 		0x376f8, 0x377e4,
1157 		0x377f8, 0x377fc,
1158 		0x37814, 0x37814,
1159 		0x3782c, 0x3782c,
1160 		0x37880, 0x3788c,
1161 		0x378e8, 0x378ec,
1162 		0x37900, 0x37948,
1163 		0x37960, 0x3799c,
1164 		0x379f0, 0x37ae4,
1165 		0x37af8, 0x37b10,
1166 		0x37b28, 0x37b28,
1167 		0x37b3c, 0x37b50,
1168 		0x37bf0, 0x37c10,
1169 		0x37c28, 0x37c28,
1170 		0x37c3c, 0x37c50,
1171 		0x37cf0, 0x37cfc,
1172 		0x38000, 0x38030,
1173 		0x38100, 0x38144,
1174 		0x38190, 0x381d0,
1175 		0x38200, 0x38318,
1176 		0x38400, 0x3852c,
1177 		0x38540, 0x3861c,
1178 		0x38800, 0x38834,
1179 		0x388c0, 0x38908,
1180 		0x38910, 0x389ac,
1181 		0x38a00, 0x38a2c,
1182 		0x38a44, 0x38a50,
1183 		0x38a74, 0x38c24,
1184 		0x38d00, 0x38d00,
1185 		0x38d08, 0x38d14,
1186 		0x38d1c, 0x38d20,
1187 		0x38d3c, 0x38d50,
1188 		0x39200, 0x3920c,
1189 		0x39220, 0x39220,
1190 		0x39240, 0x39240,
1191 		0x39600, 0x3960c,
1192 		0x39a00, 0x39a1c,
1193 		0x39e00, 0x39e20,
1194 		0x39e38, 0x39e3c,
1195 		0x39e80, 0x39e80,
1196 		0x39e88, 0x39ea8,
1197 		0x39eb0, 0x39eb4,
1198 		0x39ec8, 0x39ed4,
1199 		0x39fb8, 0x3a004,
1200 		0x3a200, 0x3a200,
1201 		0x3a208, 0x3a240,
1202 		0x3a248, 0x3a280,
1203 		0x3a288, 0x3a2c0,
1204 		0x3a2c8, 0x3a2fc,
1205 		0x3a600, 0x3a630,
1206 		0x3aa00, 0x3aabc,
1207 		0x3ab00, 0x3ab70,
1208 		0x3b000, 0x3b048,
1209 		0x3b060, 0x3b09c,
1210 		0x3b0f0, 0x3b148,
1211 		0x3b160, 0x3b19c,
1212 		0x3b1f0, 0x3b2e4,
1213 		0x3b2f8, 0x3b3e4,
1214 		0x3b3f8, 0x3b448,
1215 		0x3b460, 0x3b49c,
1216 		0x3b4f0, 0x3b548,
1217 		0x3b560, 0x3b59c,
1218 		0x3b5f0, 0x3b6e4,
1219 		0x3b6f8, 0x3b7e4,
1220 		0x3b7f8, 0x3b7fc,
1221 		0x3b814, 0x3b814,
1222 		0x3b82c, 0x3b82c,
1223 		0x3b880, 0x3b88c,
1224 		0x3b8e8, 0x3b8ec,
1225 		0x3b900, 0x3b948,
1226 		0x3b960, 0x3b99c,
1227 		0x3b9f0, 0x3bae4,
1228 		0x3baf8, 0x3bb10,
1229 		0x3bb28, 0x3bb28,
1230 		0x3bb3c, 0x3bb50,
1231 		0x3bbf0, 0x3bc10,
1232 		0x3bc28, 0x3bc28,
1233 		0x3bc3c, 0x3bc50,
1234 		0x3bcf0, 0x3bcfc,
1235 		0x3c000, 0x3c030,
1236 		0x3c100, 0x3c144,
1237 		0x3c190, 0x3c1d0,
1238 		0x3c200, 0x3c318,
1239 		0x3c400, 0x3c52c,
1240 		0x3c540, 0x3c61c,
1241 		0x3c800, 0x3c834,
1242 		0x3c8c0, 0x3c908,
1243 		0x3c910, 0x3c9ac,
1244 		0x3ca00, 0x3ca2c,
1245 		0x3ca44, 0x3ca50,
1246 		0x3ca74, 0x3cc24,
1247 		0x3cd00, 0x3cd00,
1248 		0x3cd08, 0x3cd14,
1249 		0x3cd1c, 0x3cd20,
1250 		0x3cd3c, 0x3cd50,
1251 		0x3d200, 0x3d20c,
1252 		0x3d220, 0x3d220,
1253 		0x3d240, 0x3d240,
1254 		0x3d600, 0x3d60c,
1255 		0x3da00, 0x3da1c,
1256 		0x3de00, 0x3de20,
1257 		0x3de38, 0x3de3c,
1258 		0x3de80, 0x3de80,
1259 		0x3de88, 0x3dea8,
1260 		0x3deb0, 0x3deb4,
1261 		0x3dec8, 0x3ded4,
1262 		0x3dfb8, 0x3e004,
1263 		0x3e200, 0x3e200,
1264 		0x3e208, 0x3e240,
1265 		0x3e248, 0x3e280,
1266 		0x3e288, 0x3e2c0,
1267 		0x3e2c8, 0x3e2fc,
1268 		0x3e600, 0x3e630,
1269 		0x3ea00, 0x3eabc,
1270 		0x3eb00, 0x3eb70,
1271 		0x3f000, 0x3f048,
1272 		0x3f060, 0x3f09c,
1273 		0x3f0f0, 0x3f148,
1274 		0x3f160, 0x3f19c,
1275 		0x3f1f0, 0x3f2e4,
1276 		0x3f2f8, 0x3f3e4,
1277 		0x3f3f8, 0x3f448,
1278 		0x3f460, 0x3f49c,
1279 		0x3f4f0, 0x3f548,
1280 		0x3f560, 0x3f59c,
1281 		0x3f5f0, 0x3f6e4,
1282 		0x3f6f8, 0x3f7e4,
1283 		0x3f7f8, 0x3f7fc,
1284 		0x3f814, 0x3f814,
1285 		0x3f82c, 0x3f82c,
1286 		0x3f880, 0x3f88c,
1287 		0x3f8e8, 0x3f8ec,
1288 		0x3f900, 0x3f948,
1289 		0x3f960, 0x3f99c,
1290 		0x3f9f0, 0x3fae4,
1291 		0x3faf8, 0x3fb10,
1292 		0x3fb28, 0x3fb28,
1293 		0x3fb3c, 0x3fb50,
1294 		0x3fbf0, 0x3fc10,
1295 		0x3fc28, 0x3fc28,
1296 		0x3fc3c, 0x3fc50,
1297 		0x3fcf0, 0x3fcfc,
1298 		0x40000, 0x4000c,
1299 		0x40040, 0x40068,
1300 		0x4007c, 0x40144,
1301 		0x40180, 0x4018c,
1302 		0x40200, 0x40298,
1303 		0x402ac, 0x4033c,
1304 		0x403f8, 0x403fc,
1305 		0x41304, 0x413c4,
1306 		0x41400, 0x4141c,
1307 		0x41480, 0x414d0,
1308 		0x44000, 0x44078,
1309 		0x440c0, 0x44278,
1310 		0x442c0, 0x44478,
1311 		0x444c0, 0x44678,
1312 		0x446c0, 0x44878,
1313 		0x448c0, 0x449fc,
1314 		0x45000, 0x45068,
1315 		0x45080, 0x45084,
1316 		0x450a0, 0x450b0,
1317 		0x45200, 0x45268,
1318 		0x45280, 0x45284,
1319 		0x452a0, 0x452b0,
1320 		0x460c0, 0x460e4,
1321 		0x47000, 0x4708c,
1322 		0x47200, 0x47250,
1323 		0x47400, 0x47420,
1324 		0x47600, 0x47618,
1325 		0x47800, 0x47814,
1326 		0x48000, 0x4800c,
1327 		0x48040, 0x48068,
1328 		0x4807c, 0x48144,
1329 		0x48180, 0x4818c,
1330 		0x48200, 0x48298,
1331 		0x482ac, 0x4833c,
1332 		0x483f8, 0x483fc,
1333 		0x49304, 0x493c4,
1334 		0x49400, 0x4941c,
1335 		0x49480, 0x494d0,
1336 		0x4c000, 0x4c078,
1337 		0x4c0c0, 0x4c278,
1338 		0x4c2c0, 0x4c478,
1339 		0x4c4c0, 0x4c678,
1340 		0x4c6c0, 0x4c878,
1341 		0x4c8c0, 0x4c9fc,
1342 		0x4d000, 0x4d068,
1343 		0x4d080, 0x4d084,
1344 		0x4d0a0, 0x4d0b0,
1345 		0x4d200, 0x4d268,
1346 		0x4d280, 0x4d284,
1347 		0x4d2a0, 0x4d2b0,
1348 		0x4e0c0, 0x4e0e4,
1349 		0x4f000, 0x4f08c,
1350 		0x4f200, 0x4f250,
1351 		0x4f400, 0x4f420,
1352 		0x4f600, 0x4f618,
1353 		0x4f800, 0x4f814,
1354 		0x50000, 0x500cc,
1355 		0x50400, 0x50400,
1356 		0x50800, 0x508cc,
1357 		0x50c00, 0x50c00,
1358 		0x51000, 0x5101c,
1359 		0x51300, 0x51308,
1360 	};
1361 
1362 	static const unsigned int t6_reg_ranges[] = {
1363 		0x1008, 0x1124,
1364 		0x1138, 0x114c,
1365 		0x1180, 0x11b4,
1366 		0x11fc, 0x1254,
1367 		0x1280, 0x133c,
1368 		0x1800, 0x18fc,
1369 		0x3000, 0x302c,
1370 		0x3060, 0x30d8,
1371 		0x30e0, 0x30fc,
1372 		0x3140, 0x357c,
1373 		0x35a8, 0x35cc,
1374 		0x35ec, 0x35ec,
1375 		0x3600, 0x5624,
1376 		0x56cc, 0x575c,
1377 		0x580c, 0x5814,
1378 		0x5890, 0x58bc,
1379 		0x5940, 0x595c,
1380 		0x5980, 0x598c,
1381 		0x59b0, 0x59dc,
1382 		0x59fc, 0x5a18,
1383 		0x5a60, 0x5a6c,
1384 		0x5a80, 0x5a9c,
1385 		0x5b94, 0x5bfc,
1386 		0x5c10, 0x5ec0,
1387 		0x5ec8, 0x5ecc,
1388 		0x6000, 0x6040,
1389 		0x6058, 0x619c,
1390 		0x7700, 0x7798,
1391 		0x77c0, 0x7880,
1392 		0x78cc, 0x78fc,
1393 		0x7b00, 0x7c54,
1394 		0x7d00, 0x7efc,
1395 		0x8dc0, 0x8de4,
1396 		0x8df8, 0x8e84,
1397 		0x8ea0, 0x8f88,
1398 		0x8fb8, 0x9124,
1399 		0x9400, 0x9470,
1400 		0x9600, 0x971c,
1401 		0x9800, 0x9808,
1402 		0x9820, 0x983c,
1403 		0x9850, 0x9864,
1404 		0x9c00, 0x9c6c,
1405 		0x9c80, 0x9cec,
1406 		0x9d00, 0x9d6c,
1407 		0x9d80, 0x9dec,
1408 		0x9e00, 0x9e6c,
1409 		0x9e80, 0x9eec,
1410 		0x9f00, 0x9f6c,
1411 		0x9f80, 0xa020,
1412 		0xd004, 0xd03c,
1413 		0xd100, 0xd118,
1414 		0xd200, 0xd31c,
1415 		0xdfc0, 0xdfe0,
1416 		0xe000, 0xf008,
1417 		0x11000, 0x11014,
1418 		0x11048, 0x1117c,
1419 		0x11190, 0x11270,
1420 		0x11300, 0x1130c,
1421 		0x12000, 0x1206c,
1422 		0x19040, 0x1906c,
1423 		0x19078, 0x19080,
1424 		0x1908c, 0x19124,
1425 		0x19150, 0x191b0,
1426 		0x191d0, 0x191e8,
1427 		0x19238, 0x192bc,
1428 		0x193f8, 0x19474,
1429 		0x19490, 0x194cc,
1430 		0x194f0, 0x194f8,
1431 		0x19c00, 0x19c80,
1432 		0x19c94, 0x19cbc,
1433 		0x19ce4, 0x19d28,
1434 		0x19d50, 0x19d78,
1435 		0x19d94, 0x19dc8,
1436 		0x19df0, 0x19e10,
1437 		0x19e50, 0x19e6c,
1438 		0x19ea0, 0x19f34,
1439 		0x19f40, 0x19f50,
1440 		0x19f90, 0x19fac,
1441 		0x19fc4, 0x19fe4,
1442 		0x1a000, 0x1a06c,
1443 		0x1a0b0, 0x1a120,
1444 		0x1a128, 0x1a138,
1445 		0x1a190, 0x1a1c4,
1446 		0x1a1fc, 0x1a1fc,
1447 		0x1e008, 0x1e00c,
1448 		0x1e040, 0x1e04c,
1449 		0x1e284, 0x1e290,
1450 		0x1e2c0, 0x1e2c0,
1451 		0x1e2e0, 0x1e2e0,
1452 		0x1e300, 0x1e384,
1453 		0x1e3c0, 0x1e3c8,
1454 		0x1e408, 0x1e40c,
1455 		0x1e440, 0x1e44c,
1456 		0x1e684, 0x1e690,
1457 		0x1e6c0, 0x1e6c0,
1458 		0x1e6e0, 0x1e6e0,
1459 		0x1e700, 0x1e784,
1460 		0x1e7c0, 0x1e7c8,
1461 		0x1e808, 0x1e80c,
1462 		0x1e840, 0x1e84c,
1463 		0x1ea84, 0x1ea90,
1464 		0x1eac0, 0x1eac0,
1465 		0x1eae0, 0x1eae0,
1466 		0x1eb00, 0x1eb84,
1467 		0x1ebc0, 0x1ebc8,
1468 		0x1ec08, 0x1ec0c,
1469 		0x1ec40, 0x1ec4c,
1470 		0x1ee84, 0x1ee90,
1471 		0x1eec0, 0x1eec0,
1472 		0x1eee0, 0x1eee0,
1473 		0x1ef00, 0x1ef84,
1474 		0x1efc0, 0x1efc8,
1475 		0x1f008, 0x1f00c,
1476 		0x1f040, 0x1f04c,
1477 		0x1f284, 0x1f290,
1478 		0x1f2c0, 0x1f2c0,
1479 		0x1f2e0, 0x1f2e0,
1480 		0x1f300, 0x1f384,
1481 		0x1f3c0, 0x1f3c8,
1482 		0x1f408, 0x1f40c,
1483 		0x1f440, 0x1f44c,
1484 		0x1f684, 0x1f690,
1485 		0x1f6c0, 0x1f6c0,
1486 		0x1f6e0, 0x1f6e0,
1487 		0x1f700, 0x1f784,
1488 		0x1f7c0, 0x1f7c8,
1489 		0x1f808, 0x1f80c,
1490 		0x1f840, 0x1f84c,
1491 		0x1fa84, 0x1fa90,
1492 		0x1fac0, 0x1fac0,
1493 		0x1fae0, 0x1fae0,
1494 		0x1fb00, 0x1fb84,
1495 		0x1fbc0, 0x1fbc8,
1496 		0x1fc08, 0x1fc0c,
1497 		0x1fc40, 0x1fc4c,
1498 		0x1fe84, 0x1fe90,
1499 		0x1fec0, 0x1fec0,
1500 		0x1fee0, 0x1fee0,
1501 		0x1ff00, 0x1ff84,
1502 		0x1ffc0, 0x1ffc8,
1503 		0x30000, 0x30070,
1504 		0x30100, 0x301d0,
1505 		0x30200, 0x30320,
1506 		0x30400, 0x3052c,
1507 		0x30540, 0x3061c,
1508 		0x30800, 0x30890,
1509 		0x308c0, 0x30908,
1510 		0x30910, 0x309b8,
1511 		0x30a00, 0x30a04,
1512 		0x30a0c, 0x30a2c,
1513 		0x30a44, 0x30a50,
1514 		0x30a74, 0x30c24,
1515 		0x30d00, 0x30d3c,
1516 		0x30d44, 0x30d7c,
1517 		0x30de0, 0x30de0,
1518 		0x30e00, 0x30ed4,
1519 		0x30f00, 0x30fa4,
1520 		0x30fc0, 0x30fc4,
1521 		0x31000, 0x31004,
1522 		0x31080, 0x310fc,
1523 		0x31208, 0x31220,
1524 		0x3123c, 0x31254,
1525 		0x31300, 0x31300,
1526 		0x31308, 0x3131c,
1527 		0x31338, 0x3133c,
1528 		0x31380, 0x31380,
1529 		0x31388, 0x313a8,
1530 		0x313b4, 0x313b4,
1531 		0x31400, 0x31420,
1532 		0x31438, 0x3143c,
1533 		0x31480, 0x31480,
1534 		0x314a8, 0x314a8,
1535 		0x314b0, 0x314b4,
1536 		0x314c8, 0x314d4,
1537 		0x31a40, 0x31a4c,
1538 		0x31af0, 0x31b20,
1539 		0x31b38, 0x31b3c,
1540 		0x31b80, 0x31b80,
1541 		0x31ba8, 0x31ba8,
1542 		0x31bb0, 0x31bb4,
1543 		0x31bc8, 0x31bd4,
1544 		0x32140, 0x3218c,
1545 		0x321f0, 0x32200,
1546 		0x32218, 0x32218,
1547 		0x32400, 0x32400,
1548 		0x32408, 0x3241c,
1549 		0x32618, 0x32620,
1550 		0x32664, 0x32664,
1551 		0x326a8, 0x326a8,
1552 		0x326ec, 0x326ec,
1553 		0x32a00, 0x32abc,
1554 		0x32b00, 0x32b78,
1555 		0x32c00, 0x32c00,
1556 		0x32c08, 0x32c3c,
1557 		0x32e00, 0x32e2c,
1558 		0x32f00, 0x32f2c,
1559 		0x33000, 0x330ac,
1560 		0x330c0, 0x331ac,
1561 		0x331c0, 0x332c4,
1562 		0x332e4, 0x333c4,
1563 		0x333e4, 0x334ac,
1564 		0x334c0, 0x335ac,
1565 		0x335c0, 0x336c4,
1566 		0x336e4, 0x337c4,
1567 		0x337e4, 0x337fc,
1568 		0x33814, 0x33814,
1569 		0x33854, 0x33868,
1570 		0x33880, 0x3388c,
1571 		0x338c0, 0x338d0,
1572 		0x338e8, 0x338ec,
1573 		0x33900, 0x339ac,
1574 		0x339c0, 0x33ac4,
1575 		0x33ae4, 0x33b10,
1576 		0x33b24, 0x33b50,
1577 		0x33bf0, 0x33c10,
1578 		0x33c24, 0x33c50,
1579 		0x33cf0, 0x33cfc,
1580 		0x34000, 0x34070,
1581 		0x34100, 0x341d0,
1582 		0x34200, 0x34320,
1583 		0x34400, 0x3452c,
1584 		0x34540, 0x3461c,
1585 		0x34800, 0x34890,
1586 		0x348c0, 0x34908,
1587 		0x34910, 0x349b8,
1588 		0x34a00, 0x34a04,
1589 		0x34a0c, 0x34a2c,
1590 		0x34a44, 0x34a50,
1591 		0x34a74, 0x34c24,
1592 		0x34d00, 0x34d3c,
1593 		0x34d44, 0x34d7c,
1594 		0x34de0, 0x34de0,
1595 		0x34e00, 0x34ed4,
1596 		0x34f00, 0x34fa4,
1597 		0x34fc0, 0x34fc4,
1598 		0x35000, 0x35004,
1599 		0x35080, 0x350fc,
1600 		0x35208, 0x35220,
1601 		0x3523c, 0x35254,
1602 		0x35300, 0x35300,
1603 		0x35308, 0x3531c,
1604 		0x35338, 0x3533c,
1605 		0x35380, 0x35380,
1606 		0x35388, 0x353a8,
1607 		0x353b4, 0x353b4,
1608 		0x35400, 0x35420,
1609 		0x35438, 0x3543c,
1610 		0x35480, 0x35480,
1611 		0x354a8, 0x354a8,
1612 		0x354b0, 0x354b4,
1613 		0x354c8, 0x354d4,
1614 		0x35a40, 0x35a4c,
1615 		0x35af0, 0x35b20,
1616 		0x35b38, 0x35b3c,
1617 		0x35b80, 0x35b80,
1618 		0x35ba8, 0x35ba8,
1619 		0x35bb0, 0x35bb4,
1620 		0x35bc8, 0x35bd4,
1621 		0x36140, 0x3618c,
1622 		0x361f0, 0x36200,
1623 		0x36218, 0x36218,
1624 		0x36400, 0x36400,
1625 		0x36408, 0x3641c,
1626 		0x36618, 0x36620,
1627 		0x36664, 0x36664,
1628 		0x366a8, 0x366a8,
1629 		0x366ec, 0x366ec,
1630 		0x36a00, 0x36abc,
1631 		0x36b00, 0x36b78,
1632 		0x36c00, 0x36c00,
1633 		0x36c08, 0x36c3c,
1634 		0x36e00, 0x36e2c,
1635 		0x36f00, 0x36f2c,
1636 		0x37000, 0x370ac,
1637 		0x370c0, 0x371ac,
1638 		0x371c0, 0x372c4,
1639 		0x372e4, 0x373c4,
1640 		0x373e4, 0x374ac,
1641 		0x374c0, 0x375ac,
1642 		0x375c0, 0x376c4,
1643 		0x376e4, 0x377c4,
1644 		0x377e4, 0x377fc,
1645 		0x37814, 0x37814,
1646 		0x37854, 0x37868,
1647 		0x37880, 0x3788c,
1648 		0x378c0, 0x378d0,
1649 		0x378e8, 0x378ec,
1650 		0x37900, 0x379ac,
1651 		0x379c0, 0x37ac4,
1652 		0x37ae4, 0x37b10,
1653 		0x37b24, 0x37b50,
1654 		0x37bf0, 0x37c10,
1655 		0x37c24, 0x37c50,
1656 		0x37cf0, 0x37cfc,
1657 		0x40040, 0x40040,
1658 		0x40080, 0x40084,
1659 		0x40100, 0x40100,
1660 		0x40140, 0x401bc,
1661 		0x40200, 0x40214,
1662 		0x40228, 0x40228,
1663 		0x40240, 0x40258,
1664 		0x40280, 0x40280,
1665 		0x40304, 0x40304,
1666 		0x40330, 0x4033c,
1667 		0x41304, 0x413dc,
1668 		0x41400, 0x4141c,
1669 		0x41480, 0x414d0,
1670 		0x44000, 0x4407c,
1671 		0x440c0, 0x4427c,
1672 		0x442c0, 0x4447c,
1673 		0x444c0, 0x4467c,
1674 		0x446c0, 0x4487c,
1675 		0x448c0, 0x44a7c,
1676 		0x44ac0, 0x44c7c,
1677 		0x44cc0, 0x44e7c,
1678 		0x44ec0, 0x4507c,
1679 		0x450c0, 0x451fc,
1680 		0x45800, 0x45868,
1681 		0x45880, 0x45884,
1682 		0x458a0, 0x458b0,
1683 		0x45a00, 0x45a68,
1684 		0x45a80, 0x45a84,
1685 		0x45aa0, 0x45ab0,
1686 		0x460c0, 0x460e4,
1687 		0x47000, 0x4708c,
1688 		0x47200, 0x47250,
1689 		0x47400, 0x47420,
1690 		0x47600, 0x47618,
1691 		0x47800, 0x4782c,
1692 		0x50000, 0x500cc,
1693 		0x50400, 0x50400,
1694 		0x50800, 0x508cc,
1695 		0x50c00, 0x50c00,
1696 		0x51000, 0x510b0,
1697 		0x51300, 0x51324,
1698 	};
1699 
1700 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
1701 	const unsigned int *reg_ranges;
1702 	int reg_ranges_size, range;
1703 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
1704 
1705 	/* Select the right set of register ranges to dump depending on the
1706 	 * adapter chip type.
1707 	 */
1708 	switch (chip_version) {
1709 	case CHELSIO_T4:
1710 		reg_ranges = t4_reg_ranges;
1711 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
1712 		break;
1713 
1714 	case CHELSIO_T5:
1715 		reg_ranges = t5_reg_ranges;
1716 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
1717 		break;
1718 
1719 	case CHELSIO_T6:
1720 		reg_ranges = t6_reg_ranges;
1721 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
1722 		break;
1723 
1724 	default:
1725 		dev_err(adap->pdev_dev,
1726 			"Unsupported chip version %d\n", chip_version);
1727 		return;
1728 	}
1729 
1730 	/* Clear the register buffer and insert the appropriate register
1731 	 * values selected by the above register ranges.
1732 	 */
1733 	memset(buf, 0, buf_size);
1734 	for (range = 0; range < reg_ranges_size; range += 2) {
1735 		unsigned int reg = reg_ranges[range];
1736 		unsigned int last_reg = reg_ranges[range + 1];
1737 		u32 *bufp = (u32 *)((char *)buf + reg);
1738 
1739 		/* Iterate across the register range filling in the register
1740 		 * buffer but don't write past the end of the register buffer.
1741 		 */
1742 		while (reg <= last_reg && bufp < buf_end) {
1743 			*bufp++ = t4_read_reg(adap, reg);
1744 			reg += sizeof(u32);
1745 		}
1746 	}
1747 }
1748 
1749 #define EEPROM_STAT_ADDR   0x7bfc
1750 #define VPD_BASE           0x400
1751 #define VPD_BASE_OLD       0
1752 #define VPD_LEN            1024
1753 #define CHELSIO_VPD_UNIQUE_ID 0x82
1754 
1755 /**
1756  *	t4_seeprom_wp - enable/disable EEPROM write protection
1757  *	@adapter: the adapter
1758  *	@enable: whether to enable or disable write protection
1759  *
1760  *	Enables or disables write protection on the serial EEPROM.
1761  */
1762 int t4_seeprom_wp(struct adapter *adapter, bool enable)
1763 {
1764 	unsigned int v = enable ? 0xc : 0;
1765 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
1766 	return ret < 0 ? ret : 0;
1767 }
1768 
1769 /**
1770  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
1771  *	@adapter: adapter to read
1772  *	@p: where to store the parameters
1773  *
1774  *	Reads card parameters stored in VPD EEPROM.
1775  */
1776 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
1777 {
1778 	int i, ret = 0, addr;
1779 	int ec, sn, pn, na;
1780 	u8 *vpd, csum;
1781 	unsigned int vpdr_len, kw_offset, id_len;
1782 
1783 	vpd = vmalloc(VPD_LEN);
1784 	if (!vpd)
1785 		return -ENOMEM;
1786 
1787 	/* Card information normally starts at VPD_BASE but early cards had
1788 	 * it at 0.
1789 	 */
1790 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
1791 	if (ret < 0)
1792 		goto out;
1793 
1794 	/* The VPD shall have a unique identifier specified by the PCI SIG.
1795 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
1796 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
1797 	 * is expected to automatically put this entry at the
1798 	 * beginning of the VPD.
1799 	 */
1800 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
1801 
1802 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
1803 	if (ret < 0)
1804 		goto out;
1805 
1806 	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
1807 		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
1808 		ret = -EINVAL;
1809 		goto out;
1810 	}
1811 
1812 	id_len = pci_vpd_lrdt_size(vpd);
1813 	if (id_len > ID_LEN)
1814 		id_len = ID_LEN;
1815 
1816 	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
1817 	if (i < 0) {
1818 		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
1819 		ret = -EINVAL;
1820 		goto out;
1821 	}
1822 
1823 	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
1824 	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
1825 	if (vpdr_len + kw_offset > VPD_LEN) {
1826 		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
1827 		ret = -EINVAL;
1828 		goto out;
1829 	}
1830 
1831 #define FIND_VPD_KW(var, name) do { \
1832 	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
1833 	if (var < 0) { \
1834 		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
1835 		ret = -EINVAL; \
1836 		goto out; \
1837 	} \
1838 	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
1839 } while (0)
1840 
1841 	FIND_VPD_KW(i, "RV");
1842 	for (csum = 0; i >= 0; i--)
1843 		csum += vpd[i];
1844 
1845 	if (csum) {
1846 		dev_err(adapter->pdev_dev,
1847 			"corrupted VPD EEPROM, actual csum %u\n", csum);
1848 		ret = -EINVAL;
1849 		goto out;
1850 	}
1851 
1852 	FIND_VPD_KW(ec, "EC");
1853 	FIND_VPD_KW(sn, "SN");
1854 	FIND_VPD_KW(pn, "PN");
1855 	FIND_VPD_KW(na, "NA");
1856 #undef FIND_VPD_KW
1857 
1858 	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
1859 	strim(p->id);
1860 	memcpy(p->ec, vpd + ec, EC_LEN);
1861 	strim(p->ec);
1862 	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
1863 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
1864 	strim(p->sn);
1865 	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
1866 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
1867 	strim(p->pn);
1868 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
1869 	strim((char *)p->na);
1870 
1871 out:
1872 	vfree(vpd);
1873 	return ret;
1874 }
1875 
1876 /**
1877  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
1878  *	@adapter: adapter to read
1879  *	@p: where to store the parameters
1880  *
1881  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
1882  *	Clock.  This can only be called after a connection to the firmware
1883  *	is established.
1884  */
1885 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
1886 {
1887 	u32 cclk_param, cclk_val;
1888 	int ret;
1889 
1890 	/* Grab the raw VPD parameters.
1891 	 */
1892 	ret = t4_get_raw_vpd_params(adapter, p);
1893 	if (ret)
1894 		return ret;
1895 
1896 	/* Ask firmware for the Core Clock since it knows how to translate the
1897 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
1898 	 */
1899 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1900 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
1901 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
1902 			      1, &cclk_param, &cclk_val);
1903 
1904 	if (ret)
1905 		return ret;
1906 	p->cclk = cclk_val;
1907 
1908 	return 0;
1909 }
1910 
1911 /* serial flash and firmware constants */
1912 enum {
1913 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
1914 
1915 	/* flash command opcodes */
1916 	SF_PROG_PAGE    = 2,          /* program page */
1917 	SF_WR_DISABLE   = 4,          /* disable writes */
1918 	SF_RD_STATUS    = 5,          /* read status register */
1919 	SF_WR_ENABLE    = 6,          /* enable writes */
1920 	SF_RD_DATA_FAST = 0xb,        /* read flash */
1921 	SF_RD_ID        = 0x9f,       /* read ID */
1922 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
1923 
1924 	FW_MAX_SIZE = 16 * SF_SEC_SIZE,
1925 };
1926 
1927 /**
1928  *	sf1_read - read data from the serial flash
1929  *	@adapter: the adapter
1930  *	@byte_cnt: number of bytes to read
1931  *	@cont: whether another operation will be chained
1932  *	@lock: whether to lock SF for PL access only
1933  *	@valp: where to store the read data
1934  *
1935  *	Reads up to 4 bytes of data from the serial flash.  The location of
1936  *	the read needs to be specified prior to calling this by issuing the
1937  *	appropriate commands to the serial flash.
1938  */
1939 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
1940 		    int lock, u32 *valp)
1941 {
1942 	int ret;
1943 
1944 	if (!byte_cnt || byte_cnt > 4)
1945 		return -EINVAL;
1946 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
1947 		return -EBUSY;
1948 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
1949 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
1950 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
1951 	if (!ret)
1952 		*valp = t4_read_reg(adapter, SF_DATA_A);
1953 	return ret;
1954 }
1955 
1956 /**
1957  *	sf1_write - write data to the serial flash
1958  *	@adapter: the adapter
1959  *	@byte_cnt: number of bytes to write
1960  *	@cont: whether another operation will be chained
1961  *	@lock: whether to lock SF for PL access only
1962  *	@val: value to write
1963  *
1964  *	Writes up to 4 bytes of data to the serial flash.  The location of
1965  *	the write needs to be specified prior to calling this by issuing the
1966  *	appropriate commands to the serial flash.
1967  */
1968 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
1969 		     int lock, u32 val)
1970 {
1971 	if (!byte_cnt || byte_cnt > 4)
1972 		return -EINVAL;
1973 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
1974 		return -EBUSY;
1975 	t4_write_reg(adapter, SF_DATA_A, val);
1976 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
1977 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
1978 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
1979 }
1980 
1981 /**
1982  *	flash_wait_op - wait for a flash operation to complete
1983  *	@adapter: the adapter
1984  *	@attempts: max number of polls of the status register
1985  *	@delay: delay between polls in ms
1986  *
1987  *	Wait for a flash operation to complete by polling the status register.
1988  */
1989 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
1990 {
1991 	int ret;
1992 	u32 status;
1993 
1994 	while (1) {
1995 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
1996 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
1997 			return ret;
1998 		if (!(status & 1))
1999 			return 0;
2000 		if (--attempts == 0)
2001 			return -EAGAIN;
2002 		if (delay)
2003 			msleep(delay);
2004 	}
2005 }
2006 
2007 /**
2008  *	t4_read_flash - read words from serial flash
2009  *	@adapter: the adapter
2010  *	@addr: the start address for the read
2011  *	@nwords: how many 32-bit words to read
2012  *	@data: where to store the read data
2013  *	@byte_oriented: whether to store data as bytes or as words
2014  *
2015  *	Read the specified number of 32-bit words from the serial flash.
2016  *	If @byte_oriented is set the read data is stored as a byte array
2017  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
2018  *	natural endianness.
2019  */
2020 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2021 		  unsigned int nwords, u32 *data, int byte_oriented)
2022 {
2023 	int ret;
2024 
2025 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2026 		return -EINVAL;
2027 
2028 	addr = swab32(addr) | SF_RD_DATA_FAST;
2029 
2030 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2031 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2032 		return ret;
2033 
2034 	for ( ; nwords; nwords--, data++) {
2035 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2036 		if (nwords == 1)
2037 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2038 		if (ret)
2039 			return ret;
2040 		if (byte_oriented)
2041 			*data = (__force __u32)(cpu_to_be32(*data));
2042 	}
2043 	return 0;
2044 }
2045 
2046 /**
2047  *	t4_write_flash - write up to a page of data to the serial flash
2048  *	@adapter: the adapter
2049  *	@addr: the start address to write
2050  *	@n: length of data to write in bytes
2051  *	@data: the data to write
2052  *
2053  *	Writes up to a page of data (256 bytes) to the serial flash starting
2054  *	at the given address.  All the data must be written to the same page.
2055  */
2056 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2057 			  unsigned int n, const u8 *data)
2058 {
2059 	int ret;
2060 	u32 buf[64];
2061 	unsigned int i, c, left, val, offset = addr & 0xff;
2062 
2063 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
2064 		return -EINVAL;
2065 
2066 	val = swab32(addr) | SF_PROG_PAGE;
2067 
2068 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2069 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2070 		goto unlock;
2071 
2072 	for (left = n; left; left -= c) {
2073 		c = min(left, 4U);
2074 		for (val = 0, i = 0; i < c; ++i)
2075 			val = (val << 8) + *data++;
2076 
2077 		ret = sf1_write(adapter, c, c != left, 1, val);
2078 		if (ret)
2079 			goto unlock;
2080 	}
2081 	ret = flash_wait_op(adapter, 8, 1);
2082 	if (ret)
2083 		goto unlock;
2084 
2085 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2086 
2087 	/* Read the page to verify the write succeeded */
2088 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
2089 	if (ret)
2090 		return ret;
2091 
2092 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
2093 		dev_err(adapter->pdev_dev,
2094 			"failed to correctly write the flash page at %#x\n",
2095 			addr);
2096 		return -EIO;
2097 	}
2098 	return 0;
2099 
2100 unlock:
2101 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2102 	return ret;
2103 }
2104 
2105 /**
2106  *	t4_get_fw_version - read the firmware version
2107  *	@adapter: the adapter
2108  *	@vers: where to place the version
2109  *
2110  *	Reads the FW version from flash.
2111  */
2112 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
2113 {
2114 	return t4_read_flash(adapter, FLASH_FW_START +
2115 			     offsetof(struct fw_hdr, fw_ver), 1,
2116 			     vers, 0);
2117 }
2118 
2119 /**
2120  *	t4_get_tp_version - read the TP microcode version
2121  *	@adapter: the adapter
2122  *	@vers: where to place the version
2123  *
2124  *	Reads the TP microcode version from flash.
2125  */
2126 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
2127 {
2128 	return t4_read_flash(adapter, FLASH_FW_START +
2129 			     offsetof(struct fw_hdr, tp_microcode_ver),
2130 			     1, vers, 0);
2131 }
2132 
2133 /**
2134  *	t4_get_exprom_version - return the Expansion ROM version (if any)
2135  *	@adapter: the adapter
2136  *	@vers: where to place the version
2137  *
2138  *	Reads the Expansion ROM header from FLASH and returns the version
2139  *	number (if present) through the @vers return value pointer.  We return
2140  *	this in the Firmware Version Format since it's convenient.  Return
2141  *	0 on success, -ENOENT if no Expansion ROM is present.
2142  */
2143 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
2144 {
2145 	struct exprom_header {
2146 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
2147 		unsigned char hdr_ver[4];	/* Expansion ROM version */
2148 	} *hdr;
2149 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
2150 					   sizeof(u32))];
2151 	int ret;
2152 
2153 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
2154 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
2155 			    0);
2156 	if (ret)
2157 		return ret;
2158 
2159 	hdr = (struct exprom_header *)exprom_header_buf;
2160 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
2161 		return -ENOENT;
2162 
2163 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
2164 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
2165 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
2166 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
2167 	return 0;
2168 }
2169 
2170 /**
2171  *	t4_check_fw_version - check if the FW is supported with this driver
2172  *	@adap: the adapter
2173  *
2174  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
2175  *	if there's exact match, a negative error if the version could not be
2176  *	read or there's a major version mismatch
2177  */
2178 int t4_check_fw_version(struct adapter *adap)
2179 {
2180 	int ret, major, minor, micro;
2181 	int exp_major, exp_minor, exp_micro;
2182 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2183 
2184 	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
2185 	if (ret)
2186 		return ret;
2187 
2188 	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
2189 	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
2190 	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
2191 
2192 	switch (chip_version) {
2193 	case CHELSIO_T4:
2194 		exp_major = T4FW_MIN_VERSION_MAJOR;
2195 		exp_minor = T4FW_MIN_VERSION_MINOR;
2196 		exp_micro = T4FW_MIN_VERSION_MICRO;
2197 		break;
2198 	case CHELSIO_T5:
2199 		exp_major = T5FW_MIN_VERSION_MAJOR;
2200 		exp_minor = T5FW_MIN_VERSION_MINOR;
2201 		exp_micro = T5FW_MIN_VERSION_MICRO;
2202 		break;
2203 	case CHELSIO_T6:
2204 		exp_major = T6FW_MIN_VERSION_MAJOR;
2205 		exp_minor = T6FW_MIN_VERSION_MINOR;
2206 		exp_micro = T6FW_MIN_VERSION_MICRO;
2207 		break;
2208 	default:
2209 		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
2210 			adap->chip);
2211 		return -EINVAL;
2212 	}
2213 
2214 	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
2215 	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
2216 		dev_err(adap->pdev_dev,
2217 			"Card has firmware version %u.%u.%u, minimum "
2218 			"supported firmware is %u.%u.%u.\n", major, minor,
2219 			micro, exp_major, exp_minor, exp_micro);
2220 		return -EFAULT;
2221 	}
2222 	return 0;
2223 }
2224 
2225 /* Is the given firmware API compatible with the one the driver was compiled
2226  * with?
2227  */
2228 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
2229 {
2230 
2231 	/* short circuit if it's the exact same firmware version */
2232 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
2233 		return 1;
2234 
2235 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
2236 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
2237 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
2238 		return 1;
2239 #undef SAME_INTF
2240 
2241 	return 0;
2242 }
2243 
2244 /* The firmware in the filesystem is usable, but should it be installed?
2245  * This routine explains itself in detail if it indicates the filesystem
2246  * firmware should be installed.
2247  */
2248 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
2249 				int k, int c)
2250 {
2251 	const char *reason;
2252 
2253 	if (!card_fw_usable) {
2254 		reason = "incompatible or unusable";
2255 		goto install;
2256 	}
2257 
2258 	if (k > c) {
2259 		reason = "older than the version supported with this driver";
2260 		goto install;
2261 	}
2262 
2263 	return 0;
2264 
2265 install:
2266 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
2267 		"installing firmware %u.%u.%u.%u on card.\n",
2268 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
2269 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
2270 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
2271 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
2272 
2273 	return 1;
2274 }
2275 
2276 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
2277 	       const u8 *fw_data, unsigned int fw_size,
2278 	       struct fw_hdr *card_fw, enum dev_state state,
2279 	       int *reset)
2280 {
2281 	int ret, card_fw_usable, fs_fw_usable;
2282 	const struct fw_hdr *fs_fw;
2283 	const struct fw_hdr *drv_fw;
2284 
2285 	drv_fw = &fw_info->fw_hdr;
2286 
2287 	/* Read the header of the firmware on the card */
2288 	ret = -t4_read_flash(adap, FLASH_FW_START,
2289 			    sizeof(*card_fw) / sizeof(uint32_t),
2290 			    (uint32_t *)card_fw, 1);
2291 	if (ret == 0) {
2292 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
2293 	} else {
2294 		dev_err(adap->pdev_dev,
2295 			"Unable to read card's firmware header: %d\n", ret);
2296 		card_fw_usable = 0;
2297 	}
2298 
2299 	if (fw_data != NULL) {
2300 		fs_fw = (const void *)fw_data;
2301 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
2302 	} else {
2303 		fs_fw = NULL;
2304 		fs_fw_usable = 0;
2305 	}
2306 
2307 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
2308 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
2309 		/* Common case: the firmware on the card is an exact match and
2310 		 * the filesystem one is an exact match too, or the filesystem
2311 		 * one is absent/incompatible.
2312 		 */
2313 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
2314 		   should_install_fs_fw(adap, card_fw_usable,
2315 					be32_to_cpu(fs_fw->fw_ver),
2316 					be32_to_cpu(card_fw->fw_ver))) {
2317 		ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
2318 				     fw_size, 0);
2319 		if (ret != 0) {
2320 			dev_err(adap->pdev_dev,
2321 				"failed to install firmware: %d\n", ret);
2322 			goto bye;
2323 		}
2324 
2325 		/* Installed successfully, update the cached header too. */
2326 		*card_fw = *fs_fw;
2327 		card_fw_usable = 1;
2328 		*reset = 0;	/* already reset as part of load_fw */
2329 	}
2330 
2331 	if (!card_fw_usable) {
2332 		uint32_t d, c, k;
2333 
2334 		d = be32_to_cpu(drv_fw->fw_ver);
2335 		c = be32_to_cpu(card_fw->fw_ver);
2336 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
2337 
2338 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
2339 			"chip state %d, "
2340 			"driver compiled with %d.%d.%d.%d, "
2341 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
2342 			state,
2343 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
2344 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
2345 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
2346 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
2347 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
2348 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
2349 		ret = EINVAL;
2350 		goto bye;
2351 	}
2352 
2353 	/* We're using whatever's on the card and it's known to be good. */
2354 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
2355 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
2356 
2357 bye:
2358 	return ret;
2359 }
2360 
2361 /**
2362  *	t4_flash_erase_sectors - erase a range of flash sectors
2363  *	@adapter: the adapter
2364  *	@start: the first sector to erase
2365  *	@end: the last sector to erase
2366  *
2367  *	Erases the sectors in the given inclusive range.
2368  */
2369 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
2370 {
2371 	int ret = 0;
2372 
2373 	if (end >= adapter->params.sf_nsec)
2374 		return -EINVAL;
2375 
2376 	while (start <= end) {
2377 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2378 		    (ret = sf1_write(adapter, 4, 0, 1,
2379 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
2380 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
2381 			dev_err(adapter->pdev_dev,
2382 				"erase of flash sector %d failed, error %d\n",
2383 				start, ret);
2384 			break;
2385 		}
2386 		start++;
2387 	}
2388 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2389 	return ret;
2390 }
2391 
2392 /**
2393  *	t4_flash_cfg_addr - return the address of the flash configuration file
2394  *	@adapter: the adapter
2395  *
2396  *	Return the address within the flash where the Firmware Configuration
2397  *	File is stored.
2398  */
2399 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
2400 {
2401 	if (adapter->params.sf_size == 0x100000)
2402 		return FLASH_FPGA_CFG_START;
2403 	else
2404 		return FLASH_CFG_START;
2405 }
2406 
2407 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
2408  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
2409  * and emit an error message for mismatched firmware to save our caller the
2410  * effort ...
2411  */
2412 static bool t4_fw_matches_chip(const struct adapter *adap,
2413 			       const struct fw_hdr *hdr)
2414 {
2415 	/* The expression below will return FALSE for any unsupported adapter
2416 	 * which will keep us "honest" in the future ...
2417 	 */
2418 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
2419 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
2420 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
2421 		return true;
2422 
2423 	dev_err(adap->pdev_dev,
2424 		"FW image (%d) is not suitable for this adapter (%d)\n",
2425 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
2426 	return false;
2427 }
2428 
2429 /**
2430  *	t4_load_fw - download firmware
2431  *	@adap: the adapter
2432  *	@fw_data: the firmware image to write
2433  *	@size: image size
2434  *
2435  *	Write the supplied firmware image to the card's serial flash.
2436  */
2437 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
2438 {
2439 	u32 csum;
2440 	int ret, addr;
2441 	unsigned int i;
2442 	u8 first_page[SF_PAGE_SIZE];
2443 	const __be32 *p = (const __be32 *)fw_data;
2444 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
2445 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
2446 	unsigned int fw_img_start = adap->params.sf_fw_start;
2447 	unsigned int fw_start_sec = fw_img_start / sf_sec_size;
2448 
2449 	if (!size) {
2450 		dev_err(adap->pdev_dev, "FW image has no data\n");
2451 		return -EINVAL;
2452 	}
2453 	if (size & 511) {
2454 		dev_err(adap->pdev_dev,
2455 			"FW image size not multiple of 512 bytes\n");
2456 		return -EINVAL;
2457 	}
2458 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
2459 		dev_err(adap->pdev_dev,
2460 			"FW image size differs from size in FW header\n");
2461 		return -EINVAL;
2462 	}
2463 	if (size > FW_MAX_SIZE) {
2464 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
2465 			FW_MAX_SIZE);
2466 		return -EFBIG;
2467 	}
2468 	if (!t4_fw_matches_chip(adap, hdr))
2469 		return -EINVAL;
2470 
2471 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
2472 		csum += be32_to_cpu(p[i]);
2473 
2474 	if (csum != 0xffffffff) {
2475 		dev_err(adap->pdev_dev,
2476 			"corrupted firmware image, checksum %#x\n", csum);
2477 		return -EINVAL;
2478 	}
2479 
2480 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
2481 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
2482 	if (ret)
2483 		goto out;
2484 
2485 	/*
2486 	 * We write the correct version at the end so the driver can see a bad
2487 	 * version if the FW write fails.  Start by writing a copy of the
2488 	 * first page with a bad version.
2489 	 */
2490 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
2491 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
2492 	ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
2493 	if (ret)
2494 		goto out;
2495 
2496 	addr = fw_img_start;
2497 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
2498 		addr += SF_PAGE_SIZE;
2499 		fw_data += SF_PAGE_SIZE;
2500 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
2501 		if (ret)
2502 			goto out;
2503 	}
2504 
2505 	ret = t4_write_flash(adap,
2506 			     fw_img_start + offsetof(struct fw_hdr, fw_ver),
2507 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
2508 out:
2509 	if (ret)
2510 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
2511 			ret);
2512 	else
2513 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
2514 	return ret;
2515 }
2516 
2517 /**
2518  *	t4_phy_fw_ver - return current PHY firmware version
2519  *	@adap: the adapter
2520  *	@phy_fw_ver: return value buffer for PHY firmware version
2521  *
2522  *	Returns the current version of external PHY firmware on the
2523  *	adapter.
2524  */
2525 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
2526 {
2527 	u32 param, val;
2528 	int ret;
2529 
2530 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2531 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
2532 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
2533 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
2534 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
2535 			      &param, &val);
2536 	if (ret < 0)
2537 		return ret;
2538 	*phy_fw_ver = val;
2539 	return 0;
2540 }
2541 
2542 /**
2543  *	t4_load_phy_fw - download port PHY firmware
2544  *	@adap: the adapter
2545  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
2546  *	@win_lock: the lock to use to guard the memory copy
2547  *	@phy_fw_version: function to check PHY firmware versions
2548  *	@phy_fw_data: the PHY firmware image to write
2549  *	@phy_fw_size: image size
2550  *
2551  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
2552  *	@phy_fw_version is supplied, then it will be used to determine if
2553  *	it's necessary to perform the transfer by comparing the version
2554  *	of any existing adapter PHY firmware with that of the passed in
2555  *	PHY firmware image.  If @win_lock is non-NULL then it will be used
2556  *	around the call to t4_memory_rw() which transfers the PHY firmware
2557  *	to the adapter.
2558  *
2559  *	A negative error number will be returned if an error occurs.  If
2560  *	version number support is available and there's no need to upgrade
2561  *	the firmware, 0 will be returned.  If firmware is successfully
2562  *	transferred to the adapter, 1 will be retured.
2563  *
2564  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
2565  *	a result, a RESET of the adapter would cause that RAM to lose its
2566  *	contents.  Thus, loading PHY firmware on such adapters must happen
2567  *	after any FW_RESET_CMDs ...
2568  */
2569 int t4_load_phy_fw(struct adapter *adap,
2570 		   int win, spinlock_t *win_lock,
2571 		   int (*phy_fw_version)(const u8 *, size_t),
2572 		   const u8 *phy_fw_data, size_t phy_fw_size)
2573 {
2574 	unsigned long mtype = 0, maddr = 0;
2575 	u32 param, val;
2576 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
2577 	int ret;
2578 
2579 	/* If we have version number support, then check to see if the adapter
2580 	 * already has up-to-date PHY firmware loaded.
2581 	 */
2582 	 if (phy_fw_version) {
2583 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
2584 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
2585 		if (ret < 0)
2586 			return ret;
2587 
2588 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
2589 			CH_WARN(adap, "PHY Firmware already up-to-date, "
2590 				"version %#x\n", cur_phy_fw_ver);
2591 			return 0;
2592 		}
2593 	}
2594 
2595 	/* Ask the firmware where it wants us to copy the PHY firmware image.
2596 	 * The size of the file requires a special version of the READ coommand
2597 	 * which will pass the file size via the values field in PARAMS_CMD and
2598 	 * retrieve the return value from firmware and place it in the same
2599 	 * buffer values
2600 	 */
2601 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2602 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
2603 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
2604 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
2605 	val = phy_fw_size;
2606 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
2607 				 &param, &val, 1);
2608 	if (ret < 0)
2609 		return ret;
2610 	mtype = val >> 8;
2611 	maddr = (val & 0xff) << 16;
2612 
2613 	/* Copy the supplied PHY Firmware image to the adapter memory location
2614 	 * allocated by the adapter firmware.
2615 	 */
2616 	if (win_lock)
2617 		spin_lock_bh(win_lock);
2618 	ret = t4_memory_rw(adap, win, mtype, maddr,
2619 			   phy_fw_size, (__be32 *)phy_fw_data,
2620 			   T4_MEMORY_WRITE);
2621 	if (win_lock)
2622 		spin_unlock_bh(win_lock);
2623 	if (ret)
2624 		return ret;
2625 
2626 	/* Tell the firmware that the PHY firmware image has been written to
2627 	 * RAM and it can now start copying it over to the PHYs.  The chip
2628 	 * firmware will RESET the affected PHYs as part of this operation
2629 	 * leaving them running the new PHY firmware image.
2630 	 */
2631 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2632 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
2633 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
2634 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
2635 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
2636 				    &param, &val, 30000);
2637 
2638 	/* If we have version number support, then check to see that the new
2639 	 * firmware got loaded properly.
2640 	 */
2641 	if (phy_fw_version) {
2642 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
2643 		if (ret < 0)
2644 			return ret;
2645 
2646 		if (cur_phy_fw_ver != new_phy_fw_vers) {
2647 			CH_WARN(adap, "PHY Firmware did not update: "
2648 				"version on adapter %#x, "
2649 				"version flashed %#x\n",
2650 				cur_phy_fw_ver, new_phy_fw_vers);
2651 			return -ENXIO;
2652 		}
2653 	}
2654 
2655 	return 1;
2656 }
2657 
2658 /**
2659  *	t4_fwcache - firmware cache operation
2660  *	@adap: the adapter
2661  *	@op  : the operation (flush or flush and invalidate)
2662  */
2663 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
2664 {
2665 	struct fw_params_cmd c;
2666 
2667 	memset(&c, 0, sizeof(c));
2668 	c.op_to_vfn =
2669 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
2670 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
2671 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
2672 			    FW_PARAMS_CMD_VFN_V(0));
2673 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
2674 	c.param[0].mnem =
2675 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2676 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
2677 	c.param[0].val = (__force __be32)op;
2678 
2679 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
2680 }
2681 
2682 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
2683 			unsigned int *pif_req_wrptr,
2684 			unsigned int *pif_rsp_wrptr)
2685 {
2686 	int i, j;
2687 	u32 cfg, val, req, rsp;
2688 
2689 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
2690 	if (cfg & LADBGEN_F)
2691 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
2692 
2693 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
2694 	req = POLADBGWRPTR_G(val);
2695 	rsp = PILADBGWRPTR_G(val);
2696 	if (pif_req_wrptr)
2697 		*pif_req_wrptr = req;
2698 	if (pif_rsp_wrptr)
2699 		*pif_rsp_wrptr = rsp;
2700 
2701 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
2702 		for (j = 0; j < 6; j++) {
2703 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
2704 				     PILADBGRDPTR_V(rsp));
2705 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
2706 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
2707 			req++;
2708 			rsp++;
2709 		}
2710 		req = (req + 2) & POLADBGRDPTR_M;
2711 		rsp = (rsp + 2) & PILADBGRDPTR_M;
2712 	}
2713 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
2714 }
2715 
2716 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
2717 {
2718 	u32 cfg;
2719 	int i, j, idx;
2720 
2721 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
2722 	if (cfg & LADBGEN_F)
2723 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
2724 
2725 	for (i = 0; i < CIM_MALA_SIZE; i++) {
2726 		for (j = 0; j < 5; j++) {
2727 			idx = 8 * i + j;
2728 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
2729 				     PILADBGRDPTR_V(idx));
2730 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
2731 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
2732 		}
2733 	}
2734 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
2735 }
2736 
2737 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
2738 {
2739 	unsigned int i, j;
2740 
2741 	for (i = 0; i < 8; i++) {
2742 		u32 *p = la_buf + i;
2743 
2744 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
2745 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
2746 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
2747 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
2748 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
2749 	}
2750 }
2751 
2752 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
2753 		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
2754 		     FW_PORT_CAP_ANEG)
2755 
2756 /**
2757  *	t4_link_l1cfg - apply link configuration to MAC/PHY
2758  *	@phy: the PHY to setup
2759  *	@mac: the MAC to setup
2760  *	@lc: the requested link configuration
2761  *
2762  *	Set up a port's MAC and PHY according to a desired link configuration.
2763  *	- If the PHY can auto-negotiate first decide what to advertise, then
2764  *	  enable/disable auto-negotiation as desired, and reset.
2765  *	- If the PHY does not auto-negotiate just reset it.
2766  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
2767  *	  otherwise do it later based on the outcome of auto-negotiation.
2768  */
2769 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
2770 		  struct link_config *lc)
2771 {
2772 	struct fw_port_cmd c;
2773 	unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
2774 
2775 	lc->link_ok = 0;
2776 	if (lc->requested_fc & PAUSE_RX)
2777 		fc |= FW_PORT_CAP_FC_RX;
2778 	if (lc->requested_fc & PAUSE_TX)
2779 		fc |= FW_PORT_CAP_FC_TX;
2780 
2781 	memset(&c, 0, sizeof(c));
2782 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
2783 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
2784 				     FW_PORT_CMD_PORTID_V(port));
2785 	c.action_to_len16 =
2786 		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
2787 			    FW_LEN16(c));
2788 
2789 	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2790 		c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
2791 					     fc);
2792 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
2793 	} else if (lc->autoneg == AUTONEG_DISABLE) {
2794 		c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
2795 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
2796 	} else
2797 		c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
2798 
2799 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2800 }
2801 
2802 /**
2803  *	t4_restart_aneg - restart autonegotiation
2804  *	@adap: the adapter
2805  *	@mbox: mbox to use for the FW command
2806  *	@port: the port id
2807  *
2808  *	Restarts autonegotiation for the selected port.
2809  */
2810 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
2811 {
2812 	struct fw_port_cmd c;
2813 
2814 	memset(&c, 0, sizeof(c));
2815 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
2816 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
2817 				     FW_PORT_CMD_PORTID_V(port));
2818 	c.action_to_len16 =
2819 		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
2820 			    FW_LEN16(c));
2821 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
2822 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2823 }
2824 
2825 typedef void (*int_handler_t)(struct adapter *adap);
2826 
2827 struct intr_info {
2828 	unsigned int mask;       /* bits to check in interrupt status */
2829 	const char *msg;         /* message to print or NULL */
2830 	short stat_idx;          /* stat counter to increment or -1 */
2831 	unsigned short fatal;    /* whether the condition reported is fatal */
2832 	int_handler_t int_handler; /* platform-specific int handler */
2833 };
2834 
2835 /**
2836  *	t4_handle_intr_status - table driven interrupt handler
2837  *	@adapter: the adapter that generated the interrupt
2838  *	@reg: the interrupt status register to process
2839  *	@acts: table of interrupt actions
2840  *
2841  *	A table driven interrupt handler that applies a set of masks to an
2842  *	interrupt status word and performs the corresponding actions if the
2843  *	interrupts described by the mask have occurred.  The actions include
2844  *	optionally emitting a warning or alert message.  The table is terminated
2845  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
2846  *	conditions.
2847  */
2848 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
2849 				 const struct intr_info *acts)
2850 {
2851 	int fatal = 0;
2852 	unsigned int mask = 0;
2853 	unsigned int status = t4_read_reg(adapter, reg);
2854 
2855 	for ( ; acts->mask; ++acts) {
2856 		if (!(status & acts->mask))
2857 			continue;
2858 		if (acts->fatal) {
2859 			fatal++;
2860 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
2861 				  status & acts->mask);
2862 		} else if (acts->msg && printk_ratelimit())
2863 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
2864 				 status & acts->mask);
2865 		if (acts->int_handler)
2866 			acts->int_handler(adapter);
2867 		mask |= acts->mask;
2868 	}
2869 	status &= mask;
2870 	if (status)                           /* clear processed interrupts */
2871 		t4_write_reg(adapter, reg, status);
2872 	return fatal;
2873 }
2874 
2875 /*
2876  * Interrupt handler for the PCIE module.
2877  */
2878 static void pcie_intr_handler(struct adapter *adapter)
2879 {
2880 	static const struct intr_info sysbus_intr_info[] = {
2881 		{ RNPP_F, "RXNP array parity error", -1, 1 },
2882 		{ RPCP_F, "RXPC array parity error", -1, 1 },
2883 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
2884 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
2885 		{ RFTP_F, "RXFT array parity error", -1, 1 },
2886 		{ 0 }
2887 	};
2888 	static const struct intr_info pcie_port_intr_info[] = {
2889 		{ TPCP_F, "TXPC array parity error", -1, 1 },
2890 		{ TNPP_F, "TXNP array parity error", -1, 1 },
2891 		{ TFTP_F, "TXFT array parity error", -1, 1 },
2892 		{ TCAP_F, "TXCA array parity error", -1, 1 },
2893 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
2894 		{ RCAP_F, "RXCA array parity error", -1, 1 },
2895 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
2896 		{ RDPE_F, "Rx data parity error", -1, 1 },
2897 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
2898 		{ 0 }
2899 	};
2900 	static const struct intr_info pcie_intr_info[] = {
2901 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
2902 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
2903 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
2904 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
2905 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
2906 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
2907 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
2908 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
2909 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
2910 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
2911 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
2912 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
2913 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
2914 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
2915 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
2916 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
2917 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
2918 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
2919 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
2920 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
2921 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
2922 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
2923 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
2924 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
2925 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
2926 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
2927 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
2928 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
2929 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
2930 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
2931 		  -1, 0 },
2932 		{ 0 }
2933 	};
2934 
2935 	static struct intr_info t5_pcie_intr_info[] = {
2936 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
2937 		  -1, 1 },
2938 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
2939 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
2940 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
2941 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
2942 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
2943 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
2944 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
2945 		  -1, 1 },
2946 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
2947 		  -1, 1 },
2948 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
2949 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
2950 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
2951 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
2952 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
2953 		  -1, 1 },
2954 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
2955 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
2956 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
2957 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
2958 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
2959 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
2960 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
2961 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
2962 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
2963 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
2964 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
2965 		  -1, 1 },
2966 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
2967 		  -1, 1 },
2968 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
2969 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
2970 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
2971 		{ READRSPERR_F, "Outbound read error", -1, 0 },
2972 		{ 0 }
2973 	};
2974 
2975 	int fat;
2976 
2977 	if (is_t4(adapter->params.chip))
2978 		fat = t4_handle_intr_status(adapter,
2979 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
2980 				sysbus_intr_info) +
2981 			t4_handle_intr_status(adapter,
2982 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
2983 					pcie_port_intr_info) +
2984 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
2985 					      pcie_intr_info);
2986 	else
2987 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
2988 					    t5_pcie_intr_info);
2989 
2990 	if (fat)
2991 		t4_fatal_err(adapter);
2992 }
2993 
2994 /*
2995  * TP interrupt handler.
2996  */
2997 static void tp_intr_handler(struct adapter *adapter)
2998 {
2999 	static const struct intr_info tp_intr_info[] = {
3000 		{ 0x3fffffff, "TP parity error", -1, 1 },
3001 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
3002 		{ 0 }
3003 	};
3004 
3005 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
3006 		t4_fatal_err(adapter);
3007 }
3008 
3009 /*
3010  * SGE interrupt handler.
3011  */
3012 static void sge_intr_handler(struct adapter *adapter)
3013 {
3014 	u64 v;
3015 	u32 err;
3016 
3017 	static const struct intr_info sge_intr_info[] = {
3018 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
3019 		  "SGE received CPL exceeding IQE size", -1, 1 },
3020 		{ ERR_INVALID_CIDX_INC_F,
3021 		  "SGE GTS CIDX increment too large", -1, 0 },
3022 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
3023 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
3024 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
3025 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
3026 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
3027 		  0 },
3028 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
3029 		  0 },
3030 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
3031 		  0 },
3032 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
3033 		  0 },
3034 		{ ERR_ING_CTXT_PRIO_F,
3035 		  "SGE too many priority ingress contexts", -1, 0 },
3036 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
3037 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
3038 		{ 0 }
3039 	};
3040 
3041 	static struct intr_info t4t5_sge_intr_info[] = {
3042 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
3043 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
3044 		{ ERR_EGR_CTXT_PRIO_F,
3045 		  "SGE too many priority egress contexts", -1, 0 },
3046 		{ 0 }
3047 	};
3048 
3049 	v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
3050 		((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
3051 	if (v) {
3052 		dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
3053 				(unsigned long long)v);
3054 		t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
3055 		t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
3056 	}
3057 
3058 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
3059 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
3060 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
3061 					   t4t5_sge_intr_info);
3062 
3063 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
3064 	if (err & ERROR_QID_VALID_F) {
3065 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
3066 			ERROR_QID_G(err));
3067 		if (err & UNCAPTURED_ERROR_F)
3068 			dev_err(adapter->pdev_dev,
3069 				"SGE UNCAPTURED_ERROR set (clearing)\n");
3070 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
3071 			     UNCAPTURED_ERROR_F);
3072 	}
3073 
3074 	if (v != 0)
3075 		t4_fatal_err(adapter);
3076 }
3077 
3078 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
3079 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
3080 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
3081 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
3082 
3083 /*
3084  * CIM interrupt handler.
3085  */
3086 static void cim_intr_handler(struct adapter *adapter)
3087 {
3088 	static const struct intr_info cim_intr_info[] = {
3089 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
3090 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3091 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3092 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
3093 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
3094 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
3095 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
3096 		{ 0 }
3097 	};
3098 	static const struct intr_info cim_upintr_info[] = {
3099 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
3100 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
3101 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
3102 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
3103 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
3104 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
3105 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
3106 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
3107 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
3108 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
3109 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
3110 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
3111 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
3112 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
3113 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
3114 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
3115 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
3116 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
3117 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
3118 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
3119 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
3120 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
3121 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
3122 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
3123 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
3124 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
3125 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
3126 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
3127 		{ 0 }
3128 	};
3129 
3130 	int fat;
3131 
3132 	if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
3133 		t4_report_fw_error(adapter);
3134 
3135 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
3136 				    cim_intr_info) +
3137 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
3138 				    cim_upintr_info);
3139 	if (fat)
3140 		t4_fatal_err(adapter);
3141 }
3142 
3143 /*
3144  * ULP RX interrupt handler.
3145  */
3146 static void ulprx_intr_handler(struct adapter *adapter)
3147 {
3148 	static const struct intr_info ulprx_intr_info[] = {
3149 		{ 0x1800000, "ULPRX context error", -1, 1 },
3150 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
3151 		{ 0 }
3152 	};
3153 
3154 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
3155 		t4_fatal_err(adapter);
3156 }
3157 
3158 /*
3159  * ULP TX interrupt handler.
3160  */
3161 static void ulptx_intr_handler(struct adapter *adapter)
3162 {
3163 	static const struct intr_info ulptx_intr_info[] = {
3164 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
3165 		  0 },
3166 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
3167 		  0 },
3168 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
3169 		  0 },
3170 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
3171 		  0 },
3172 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
3173 		{ 0 }
3174 	};
3175 
3176 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
3177 		t4_fatal_err(adapter);
3178 }
3179 
3180 /*
3181  * PM TX interrupt handler.
3182  */
3183 static void pmtx_intr_handler(struct adapter *adapter)
3184 {
3185 	static const struct intr_info pmtx_intr_info[] = {
3186 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
3187 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
3188 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
3189 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
3190 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
3191 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
3192 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
3193 		  -1, 1 },
3194 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
3195 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
3196 		{ 0 }
3197 	};
3198 
3199 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
3200 		t4_fatal_err(adapter);
3201 }
3202 
3203 /*
3204  * PM RX interrupt handler.
3205  */
3206 static void pmrx_intr_handler(struct adapter *adapter)
3207 {
3208 	static const struct intr_info pmrx_intr_info[] = {
3209 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
3210 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
3211 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
3212 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
3213 		  -1, 1 },
3214 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
3215 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
3216 		{ 0 }
3217 	};
3218 
3219 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
3220 		t4_fatal_err(adapter);
3221 }
3222 
3223 /*
3224  * CPL switch interrupt handler.
3225  */
3226 static void cplsw_intr_handler(struct adapter *adapter)
3227 {
3228 	static const struct intr_info cplsw_intr_info[] = {
3229 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
3230 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
3231 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
3232 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
3233 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
3234 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
3235 		{ 0 }
3236 	};
3237 
3238 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
3239 		t4_fatal_err(adapter);
3240 }
3241 
3242 /*
3243  * LE interrupt handler.
3244  */
3245 static void le_intr_handler(struct adapter *adap)
3246 {
3247 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
3248 	static const struct intr_info le_intr_info[] = {
3249 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
3250 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
3251 		{ PARITYERR_F, "LE parity error", -1, 1 },
3252 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
3253 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
3254 		{ 0 }
3255 	};
3256 
3257 	static struct intr_info t6_le_intr_info[] = {
3258 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
3259 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
3260 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
3261 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
3262 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
3263 		{ 0 }
3264 	};
3265 
3266 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
3267 				  (chip <= CHELSIO_T5) ?
3268 				  le_intr_info : t6_le_intr_info))
3269 		t4_fatal_err(adap);
3270 }
3271 
3272 /*
3273  * MPS interrupt handler.
3274  */
3275 static void mps_intr_handler(struct adapter *adapter)
3276 {
3277 	static const struct intr_info mps_rx_intr_info[] = {
3278 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
3279 		{ 0 }
3280 	};
3281 	static const struct intr_info mps_tx_intr_info[] = {
3282 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
3283 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
3284 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
3285 		  -1, 1 },
3286 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
3287 		  -1, 1 },
3288 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
3289 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
3290 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
3291 		{ 0 }
3292 	};
3293 	static const struct intr_info mps_trc_intr_info[] = {
3294 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
3295 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
3296 		  -1, 1 },
3297 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
3298 		{ 0 }
3299 	};
3300 	static const struct intr_info mps_stat_sram_intr_info[] = {
3301 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
3302 		{ 0 }
3303 	};
3304 	static const struct intr_info mps_stat_tx_intr_info[] = {
3305 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
3306 		{ 0 }
3307 	};
3308 	static const struct intr_info mps_stat_rx_intr_info[] = {
3309 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
3310 		{ 0 }
3311 	};
3312 	static const struct intr_info mps_cls_intr_info[] = {
3313 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
3314 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
3315 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
3316 		{ 0 }
3317 	};
3318 
3319 	int fat;
3320 
3321 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
3322 				    mps_rx_intr_info) +
3323 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
3324 				    mps_tx_intr_info) +
3325 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
3326 				    mps_trc_intr_info) +
3327 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
3328 				    mps_stat_sram_intr_info) +
3329 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
3330 				    mps_stat_tx_intr_info) +
3331 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
3332 				    mps_stat_rx_intr_info) +
3333 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
3334 				    mps_cls_intr_info);
3335 
3336 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
3337 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
3338 	if (fat)
3339 		t4_fatal_err(adapter);
3340 }
3341 
3342 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
3343 		      ECC_UE_INT_CAUSE_F)
3344 
3345 /*
3346  * EDC/MC interrupt handler.
3347  */
3348 static void mem_intr_handler(struct adapter *adapter, int idx)
3349 {
3350 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
3351 
3352 	unsigned int addr, cnt_addr, v;
3353 
3354 	if (idx <= MEM_EDC1) {
3355 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
3356 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
3357 	} else if (idx == MEM_MC) {
3358 		if (is_t4(adapter->params.chip)) {
3359 			addr = MC_INT_CAUSE_A;
3360 			cnt_addr = MC_ECC_STATUS_A;
3361 		} else {
3362 			addr = MC_P_INT_CAUSE_A;
3363 			cnt_addr = MC_P_ECC_STATUS_A;
3364 		}
3365 	} else {
3366 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
3367 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
3368 	}
3369 
3370 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
3371 	if (v & PERR_INT_CAUSE_F)
3372 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
3373 			  name[idx]);
3374 	if (v & ECC_CE_INT_CAUSE_F) {
3375 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
3376 
3377 		t4_edc_err_read(adapter, idx);
3378 
3379 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
3380 		if (printk_ratelimit())
3381 			dev_warn(adapter->pdev_dev,
3382 				 "%u %s correctable ECC data error%s\n",
3383 				 cnt, name[idx], cnt > 1 ? "s" : "");
3384 	}
3385 	if (v & ECC_UE_INT_CAUSE_F)
3386 		dev_alert(adapter->pdev_dev,
3387 			  "%s uncorrectable ECC data error\n", name[idx]);
3388 
3389 	t4_write_reg(adapter, addr, v);
3390 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
3391 		t4_fatal_err(adapter);
3392 }
3393 
3394 /*
3395  * MA interrupt handler.
3396  */
3397 static void ma_intr_handler(struct adapter *adap)
3398 {
3399 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
3400 
3401 	if (status & MEM_PERR_INT_CAUSE_F) {
3402 		dev_alert(adap->pdev_dev,
3403 			  "MA parity error, parity status %#x\n",
3404 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
3405 		if (is_t5(adap->params.chip))
3406 			dev_alert(adap->pdev_dev,
3407 				  "MA parity error, parity status %#x\n",
3408 				  t4_read_reg(adap,
3409 					      MA_PARITY_ERROR_STATUS2_A));
3410 	}
3411 	if (status & MEM_WRAP_INT_CAUSE_F) {
3412 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
3413 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
3414 			  "client %u to address %#x\n",
3415 			  MEM_WRAP_CLIENT_NUM_G(v),
3416 			  MEM_WRAP_ADDRESS_G(v) << 4);
3417 	}
3418 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
3419 	t4_fatal_err(adap);
3420 }
3421 
3422 /*
3423  * SMB interrupt handler.
3424  */
3425 static void smb_intr_handler(struct adapter *adap)
3426 {
3427 	static const struct intr_info smb_intr_info[] = {
3428 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
3429 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
3430 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
3431 		{ 0 }
3432 	};
3433 
3434 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
3435 		t4_fatal_err(adap);
3436 }
3437 
3438 /*
3439  * NC-SI interrupt handler.
3440  */
3441 static void ncsi_intr_handler(struct adapter *adap)
3442 {
3443 	static const struct intr_info ncsi_intr_info[] = {
3444 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
3445 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
3446 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
3447 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
3448 		{ 0 }
3449 	};
3450 
3451 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
3452 		t4_fatal_err(adap);
3453 }
3454 
3455 /*
3456  * XGMAC interrupt handler.
3457  */
3458 static void xgmac_intr_handler(struct adapter *adap, int port)
3459 {
3460 	u32 v, int_cause_reg;
3461 
3462 	if (is_t4(adap->params.chip))
3463 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
3464 	else
3465 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
3466 
3467 	v = t4_read_reg(adap, int_cause_reg);
3468 
3469 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
3470 	if (!v)
3471 		return;
3472 
3473 	if (v & TXFIFO_PRTY_ERR_F)
3474 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
3475 			  port);
3476 	if (v & RXFIFO_PRTY_ERR_F)
3477 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
3478 			  port);
3479 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
3480 	t4_fatal_err(adap);
3481 }
3482 
3483 /*
3484  * PL interrupt handler.
3485  */
3486 static void pl_intr_handler(struct adapter *adap)
3487 {
3488 	static const struct intr_info pl_intr_info[] = {
3489 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
3490 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
3491 		{ 0 }
3492 	};
3493 
3494 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
3495 		t4_fatal_err(adap);
3496 }
3497 
3498 #define PF_INTR_MASK (PFSW_F)
3499 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
3500 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
3501 		CPL_SWITCH_F | SGE_F | ULP_TX_F)
3502 
3503 /**
3504  *	t4_slow_intr_handler - control path interrupt handler
3505  *	@adapter: the adapter
3506  *
3507  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
3508  *	The designation 'slow' is because it involves register reads, while
3509  *	data interrupts typically don't involve any MMIOs.
3510  */
3511 int t4_slow_intr_handler(struct adapter *adapter)
3512 {
3513 	u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
3514 
3515 	if (!(cause & GLBL_INTR_MASK))
3516 		return 0;
3517 	if (cause & CIM_F)
3518 		cim_intr_handler(adapter);
3519 	if (cause & MPS_F)
3520 		mps_intr_handler(adapter);
3521 	if (cause & NCSI_F)
3522 		ncsi_intr_handler(adapter);
3523 	if (cause & PL_F)
3524 		pl_intr_handler(adapter);
3525 	if (cause & SMB_F)
3526 		smb_intr_handler(adapter);
3527 	if (cause & XGMAC0_F)
3528 		xgmac_intr_handler(adapter, 0);
3529 	if (cause & XGMAC1_F)
3530 		xgmac_intr_handler(adapter, 1);
3531 	if (cause & XGMAC_KR0_F)
3532 		xgmac_intr_handler(adapter, 2);
3533 	if (cause & XGMAC_KR1_F)
3534 		xgmac_intr_handler(adapter, 3);
3535 	if (cause & PCIE_F)
3536 		pcie_intr_handler(adapter);
3537 	if (cause & MC_F)
3538 		mem_intr_handler(adapter, MEM_MC);
3539 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
3540 		mem_intr_handler(adapter, MEM_MC1);
3541 	if (cause & EDC0_F)
3542 		mem_intr_handler(adapter, MEM_EDC0);
3543 	if (cause & EDC1_F)
3544 		mem_intr_handler(adapter, MEM_EDC1);
3545 	if (cause & LE_F)
3546 		le_intr_handler(adapter);
3547 	if (cause & TP_F)
3548 		tp_intr_handler(adapter);
3549 	if (cause & MA_F)
3550 		ma_intr_handler(adapter);
3551 	if (cause & PM_TX_F)
3552 		pmtx_intr_handler(adapter);
3553 	if (cause & PM_RX_F)
3554 		pmrx_intr_handler(adapter);
3555 	if (cause & ULP_RX_F)
3556 		ulprx_intr_handler(adapter);
3557 	if (cause & CPL_SWITCH_F)
3558 		cplsw_intr_handler(adapter);
3559 	if (cause & SGE_F)
3560 		sge_intr_handler(adapter);
3561 	if (cause & ULP_TX_F)
3562 		ulptx_intr_handler(adapter);
3563 
3564 	/* Clear the interrupts just processed for which we are the master. */
3565 	t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
3566 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
3567 	return 1;
3568 }
3569 
3570 /**
3571  *	t4_intr_enable - enable interrupts
3572  *	@adapter: the adapter whose interrupts should be enabled
3573  *
3574  *	Enable PF-specific interrupts for the calling function and the top-level
3575  *	interrupt concentrator for global interrupts.  Interrupts are already
3576  *	enabled at each module,	here we just enable the roots of the interrupt
3577  *	hierarchies.
3578  *
3579  *	Note: this function should be called only when the driver manages
3580  *	non PF-specific interrupts from the various HW modules.  Only one PCI
3581  *	function at a time should be doing this.
3582  */
3583 void t4_intr_enable(struct adapter *adapter)
3584 {
3585 	u32 val = 0;
3586 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
3587 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
3588 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
3589 
3590 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
3591 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
3592 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
3593 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
3594 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
3595 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
3596 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
3597 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
3598 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
3599 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
3600 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
3601 }
3602 
3603 /**
3604  *	t4_intr_disable - disable interrupts
3605  *	@adapter: the adapter whose interrupts should be disabled
3606  *
3607  *	Disable interrupts.  We only disable the top-level interrupt
3608  *	concentrators.  The caller must be a PCI function managing global
3609  *	interrupts.
3610  */
3611 void t4_intr_disable(struct adapter *adapter)
3612 {
3613 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
3614 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
3615 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
3616 
3617 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
3618 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
3619 }
3620 
3621 /**
3622  *	hash_mac_addr - return the hash value of a MAC address
3623  *	@addr: the 48-bit Ethernet MAC address
3624  *
3625  *	Hashes a MAC address according to the hash function used by HW inexact
3626  *	(hash) address matching.
3627  */
3628 static int hash_mac_addr(const u8 *addr)
3629 {
3630 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
3631 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
3632 	a ^= b;
3633 	a ^= (a >> 12);
3634 	a ^= (a >> 6);
3635 	return a & 0x3f;
3636 }
3637 
3638 /**
3639  *	t4_config_rss_range - configure a portion of the RSS mapping table
3640  *	@adapter: the adapter
3641  *	@mbox: mbox to use for the FW command
3642  *	@viid: virtual interface whose RSS subtable is to be written
3643  *	@start: start entry in the table to write
3644  *	@n: how many table entries to write
3645  *	@rspq: values for the response queue lookup table
3646  *	@nrspq: number of values in @rspq
3647  *
3648  *	Programs the selected part of the VI's RSS mapping table with the
3649  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
3650  *	until the full table range is populated.
3651  *
3652  *	The caller must ensure the values in @rspq are in the range allowed for
3653  *	@viid.
3654  */
3655 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
3656 			int start, int n, const u16 *rspq, unsigned int nrspq)
3657 {
3658 	int ret;
3659 	const u16 *rsp = rspq;
3660 	const u16 *rsp_end = rspq + nrspq;
3661 	struct fw_rss_ind_tbl_cmd cmd;
3662 
3663 	memset(&cmd, 0, sizeof(cmd));
3664 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
3665 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3666 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
3667 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
3668 
3669 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
3670 	while (n > 0) {
3671 		int nq = min(n, 32);
3672 		__be32 *qp = &cmd.iq0_to_iq2;
3673 
3674 		cmd.niqid = cpu_to_be16(nq);
3675 		cmd.startidx = cpu_to_be16(start);
3676 
3677 		start += nq;
3678 		n -= nq;
3679 
3680 		while (nq > 0) {
3681 			unsigned int v;
3682 
3683 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
3684 			if (++rsp >= rsp_end)
3685 				rsp = rspq;
3686 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
3687 			if (++rsp >= rsp_end)
3688 				rsp = rspq;
3689 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
3690 			if (++rsp >= rsp_end)
3691 				rsp = rspq;
3692 
3693 			*qp++ = cpu_to_be32(v);
3694 			nq -= 3;
3695 		}
3696 
3697 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
3698 		if (ret)
3699 			return ret;
3700 	}
3701 	return 0;
3702 }
3703 
3704 /**
3705  *	t4_config_glbl_rss - configure the global RSS mode
3706  *	@adapter: the adapter
3707  *	@mbox: mbox to use for the FW command
3708  *	@mode: global RSS mode
3709  *	@flags: mode-specific flags
3710  *
3711  *	Sets the global RSS mode.
3712  */
3713 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
3714 		       unsigned int flags)
3715 {
3716 	struct fw_rss_glb_config_cmd c;
3717 
3718 	memset(&c, 0, sizeof(c));
3719 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
3720 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3721 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3722 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
3723 		c.u.manual.mode_pkd =
3724 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
3725 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
3726 		c.u.basicvirtual.mode_pkd =
3727 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
3728 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
3729 	} else
3730 		return -EINVAL;
3731 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
3732 }
3733 
3734 /**
3735  *	t4_config_vi_rss - configure per VI RSS settings
3736  *	@adapter: the adapter
3737  *	@mbox: mbox to use for the FW command
3738  *	@viid: the VI id
3739  *	@flags: RSS flags
3740  *	@defq: id of the default RSS queue for the VI.
3741  *
3742  *	Configures VI-specific RSS properties.
3743  */
3744 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
3745 		     unsigned int flags, unsigned int defq)
3746 {
3747 	struct fw_rss_vi_config_cmd c;
3748 
3749 	memset(&c, 0, sizeof(c));
3750 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
3751 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3752 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
3753 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3754 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
3755 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
3756 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
3757 }
3758 
3759 /* Read an RSS table row */
3760 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
3761 {
3762 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
3763 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
3764 				   5, 0, val);
3765 }
3766 
3767 /**
3768  *	t4_read_rss - read the contents of the RSS mapping table
3769  *	@adapter: the adapter
3770  *	@map: holds the contents of the RSS mapping table
3771  *
3772  *	Reads the contents of the RSS hash->queue mapping table.
3773  */
3774 int t4_read_rss(struct adapter *adapter, u16 *map)
3775 {
3776 	u32 val;
3777 	int i, ret;
3778 
3779 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
3780 		ret = rd_rss_row(adapter, i, &val);
3781 		if (ret)
3782 			return ret;
3783 		*map++ = LKPTBLQUEUE0_G(val);
3784 		*map++ = LKPTBLQUEUE1_G(val);
3785 	}
3786 	return 0;
3787 }
3788 
3789 static unsigned int t4_use_ldst(struct adapter *adap)
3790 {
3791 	return (adap->flags & FW_OK) || !adap->use_bd;
3792 }
3793 
3794 /**
3795  *	t4_fw_tp_pio_rw - Access TP PIO through LDST
3796  *	@adap: the adapter
3797  *	@vals: where the indirect register values are stored/written
3798  *	@nregs: how many indirect registers to read/write
3799  *	@start_idx: index of first indirect register to read/write
3800  *	@rw: Read (1) or Write (0)
3801  *
3802  *	Access TP PIO registers through LDST
3803  */
3804 static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
3805 			    unsigned int start_index, unsigned int rw)
3806 {
3807 	int ret, i;
3808 	int cmd = FW_LDST_ADDRSPC_TP_PIO;
3809 	struct fw_ldst_cmd c;
3810 
3811 	for (i = 0 ; i < nregs; i++) {
3812 		memset(&c, 0, sizeof(c));
3813 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
3814 						FW_CMD_REQUEST_F |
3815 						(rw ? FW_CMD_READ_F :
3816 						      FW_CMD_WRITE_F) |
3817 						FW_LDST_CMD_ADDRSPACE_V(cmd));
3818 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
3819 
3820 		c.u.addrval.addr = cpu_to_be32(start_index + i);
3821 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
3822 		ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
3823 		if (!ret && rw)
3824 			vals[i] = be32_to_cpu(c.u.addrval.val);
3825 	}
3826 }
3827 
3828 /**
3829  *	t4_read_rss_key - read the global RSS key
3830  *	@adap: the adapter
3831  *	@key: 10-entry array holding the 320-bit RSS key
3832  *
3833  *	Reads the global 320-bit RSS key.
3834  */
3835 void t4_read_rss_key(struct adapter *adap, u32 *key)
3836 {
3837 	if (t4_use_ldst(adap))
3838 		t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
3839 	else
3840 		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
3841 				 TP_RSS_SECRET_KEY0_A);
3842 }
3843 
3844 /**
3845  *	t4_write_rss_key - program one of the RSS keys
3846  *	@adap: the adapter
3847  *	@key: 10-entry array holding the 320-bit RSS key
3848  *	@idx: which RSS key to write
3849  *
3850  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
3851  *	0..15 the corresponding entry in the RSS key table is written,
3852  *	otherwise the global RSS key is written.
3853  */
3854 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
3855 {
3856 	u8 rss_key_addr_cnt = 16;
3857 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
3858 
3859 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
3860 	 * allows access to key addresses 16-63 by using KeyWrAddrX
3861 	 * as index[5:4](upper 2) into key table
3862 	 */
3863 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
3864 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
3865 		rss_key_addr_cnt = 32;
3866 
3867 	if (t4_use_ldst(adap))
3868 		t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
3869 	else
3870 		t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
3871 				  TP_RSS_SECRET_KEY0_A);
3872 
3873 	if (idx >= 0 && idx < rss_key_addr_cnt) {
3874 		if (rss_key_addr_cnt > 16)
3875 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
3876 				     KEYWRADDRX_V(idx >> 4) |
3877 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
3878 		else
3879 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
3880 				     KEYWRADDR_V(idx) | KEYWREN_F);
3881 	}
3882 }
3883 
3884 /**
3885  *	t4_read_rss_pf_config - read PF RSS Configuration Table
3886  *	@adapter: the adapter
3887  *	@index: the entry in the PF RSS table to read
3888  *	@valp: where to store the returned value
3889  *
3890  *	Reads the PF RSS Configuration Table at the specified index and returns
3891  *	the value found there.
3892  */
3893 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
3894 			   u32 *valp)
3895 {
3896 	if (t4_use_ldst(adapter))
3897 		t4_fw_tp_pio_rw(adapter, valp, 1,
3898 				TP_RSS_PF0_CONFIG_A + index, 1);
3899 	else
3900 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3901 				 valp, 1, TP_RSS_PF0_CONFIG_A + index);
3902 }
3903 
3904 /**
3905  *	t4_read_rss_vf_config - read VF RSS Configuration Table
3906  *	@adapter: the adapter
3907  *	@index: the entry in the VF RSS table to read
3908  *	@vfl: where to store the returned VFL
3909  *	@vfh: where to store the returned VFH
3910  *
3911  *	Reads the VF RSS Configuration Table at the specified index and returns
3912  *	the (VFL, VFH) values found there.
3913  */
3914 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
3915 			   u32 *vfl, u32 *vfh)
3916 {
3917 	u32 vrt, mask, data;
3918 
3919 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
3920 		mask = VFWRADDR_V(VFWRADDR_M);
3921 		data = VFWRADDR_V(index);
3922 	} else {
3923 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
3924 		 data = T6_VFWRADDR_V(index);
3925 	}
3926 
3927 	/* Request that the index'th VF Table values be read into VFL/VFH.
3928 	 */
3929 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
3930 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
3931 	vrt |= data | VFRDEN_F;
3932 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
3933 
3934 	/* Grab the VFL/VFH values ...
3935 	 */
3936 	if (t4_use_ldst(adapter)) {
3937 		t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
3938 		t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
3939 	} else {
3940 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3941 				 vfl, 1, TP_RSS_VFL_CONFIG_A);
3942 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3943 				 vfh, 1, TP_RSS_VFH_CONFIG_A);
3944 	}
3945 }
3946 
3947 /**
3948  *	t4_read_rss_pf_map - read PF RSS Map
3949  *	@adapter: the adapter
3950  *
3951  *	Reads the PF RSS Map register and returns its value.
3952  */
3953 u32 t4_read_rss_pf_map(struct adapter *adapter)
3954 {
3955 	u32 pfmap;
3956 
3957 	if (t4_use_ldst(adapter))
3958 		t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
3959 	else
3960 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3961 				 &pfmap, 1, TP_RSS_PF_MAP_A);
3962 	return pfmap;
3963 }
3964 
3965 /**
3966  *	t4_read_rss_pf_mask - read PF RSS Mask
3967  *	@adapter: the adapter
3968  *
3969  *	Reads the PF RSS Mask register and returns its value.
3970  */
3971 u32 t4_read_rss_pf_mask(struct adapter *adapter)
3972 {
3973 	u32 pfmask;
3974 
3975 	if (t4_use_ldst(adapter))
3976 		t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
3977 	else
3978 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3979 				 &pfmask, 1, TP_RSS_PF_MSK_A);
3980 	return pfmask;
3981 }
3982 
3983 /**
3984  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
3985  *	@adap: the adapter
3986  *	@v4: holds the TCP/IP counter values
3987  *	@v6: holds the TCP/IPv6 counter values
3988  *
3989  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
3990  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
3991  */
3992 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
3993 			 struct tp_tcp_stats *v6)
3994 {
3995 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
3996 
3997 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
3998 #define STAT(x)     val[STAT_IDX(x)]
3999 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
4000 
4001 	if (v4) {
4002 		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4003 				 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
4004 		v4->tcp_out_rsts = STAT(OUT_RST);
4005 		v4->tcp_in_segs  = STAT64(IN_SEG);
4006 		v4->tcp_out_segs = STAT64(OUT_SEG);
4007 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
4008 	}
4009 	if (v6) {
4010 		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4011 				 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
4012 		v6->tcp_out_rsts = STAT(OUT_RST);
4013 		v6->tcp_in_segs  = STAT64(IN_SEG);
4014 		v6->tcp_out_segs = STAT64(OUT_SEG);
4015 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
4016 	}
4017 #undef STAT64
4018 #undef STAT
4019 #undef STAT_IDX
4020 }
4021 
4022 /**
4023  *	t4_tp_get_err_stats - read TP's error MIB counters
4024  *	@adap: the adapter
4025  *	@st: holds the counter values
4026  *
4027  *	Returns the values of TP's error counters.
4028  */
4029 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
4030 {
4031 	int nchan = adap->params.arch.nchan;
4032 
4033 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4034 			 st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A);
4035 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4036 			 st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A);
4037 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4038 			 st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A);
4039 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4040 			 st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A);
4041 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4042 			 st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A);
4043 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4044 			 st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A);
4045 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4046 			 st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A);
4047 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4048 			 st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A);
4049 
4050 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4051 			 &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
4052 }
4053 
4054 /**
4055  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
4056  *	@adap: the adapter
4057  *	@st: holds the counter values
4058  *
4059  *	Returns the values of TP's CPL counters.
4060  */
4061 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
4062 {
4063 	int nchan = adap->params.arch.nchan;
4064 
4065 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
4066 			 nchan, TP_MIB_CPL_IN_REQ_0_A);
4067 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
4068 			 nchan, TP_MIB_CPL_OUT_RSP_0_A);
4069 
4070 }
4071 
4072 /**
4073  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
4074  *	@adap: the adapter
4075  *	@st: holds the counter values
4076  *
4077  *	Returns the values of TP's RDMA counters.
4078  */
4079 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
4080 {
4081 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
4082 			 2, TP_MIB_RQE_DFR_PKT_A);
4083 }
4084 
4085 /**
4086  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
4087  *	@adap: the adapter
4088  *	@idx: the port index
4089  *	@st: holds the counter values
4090  *
4091  *	Returns the values of TP's FCoE counters for the selected port.
4092  */
4093 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
4094 		       struct tp_fcoe_stats *st)
4095 {
4096 	u32 val[2];
4097 
4098 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
4099 			 1, TP_MIB_FCOE_DDP_0_A + idx);
4100 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
4101 			 1, TP_MIB_FCOE_DROP_0_A + idx);
4102 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4103 			 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
4104 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
4105 }
4106 
4107 /**
4108  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
4109  *	@adap: the adapter
4110  *	@st: holds the counter values
4111  *
4112  *	Returns the values of TP's counters for non-TCP directly-placed packets.
4113  */
4114 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
4115 {
4116 	u32 val[4];
4117 
4118 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
4119 			 TP_MIB_USM_PKTS_A);
4120 	st->frames = val[0];
4121 	st->drops = val[1];
4122 	st->octets = ((u64)val[2] << 32) | val[3];
4123 }
4124 
4125 /**
4126  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
4127  *	@adap: the adapter
4128  *	@mtus: where to store the MTU values
4129  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
4130  *
4131  *	Reads the HW path MTU table.
4132  */
4133 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
4134 {
4135 	u32 v;
4136 	int i;
4137 
4138 	for (i = 0; i < NMTUS; ++i) {
4139 		t4_write_reg(adap, TP_MTU_TABLE_A,
4140 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
4141 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
4142 		mtus[i] = MTUVALUE_G(v);
4143 		if (mtu_log)
4144 			mtu_log[i] = MTUWIDTH_G(v);
4145 	}
4146 }
4147 
4148 /**
4149  *	t4_read_cong_tbl - reads the congestion control table
4150  *	@adap: the adapter
4151  *	@incr: where to store the alpha values
4152  *
4153  *	Reads the additive increments programmed into the HW congestion
4154  *	control table.
4155  */
4156 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
4157 {
4158 	unsigned int mtu, w;
4159 
4160 	for (mtu = 0; mtu < NMTUS; ++mtu)
4161 		for (w = 0; w < NCCTRL_WIN; ++w) {
4162 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
4163 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
4164 			incr[mtu][w] = (u16)t4_read_reg(adap,
4165 						TP_CCTRL_TABLE_A) & 0x1fff;
4166 		}
4167 }
4168 
4169 /**
4170  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
4171  *	@adap: the adapter
4172  *	@addr: the indirect TP register address
4173  *	@mask: specifies the field within the register to modify
4174  *	@val: new value for the field
4175  *
4176  *	Sets a field of an indirect TP register to the given value.
4177  */
4178 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
4179 			    unsigned int mask, unsigned int val)
4180 {
4181 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
4182 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
4183 	t4_write_reg(adap, TP_PIO_DATA_A, val);
4184 }
4185 
4186 /**
4187  *	init_cong_ctrl - initialize congestion control parameters
4188  *	@a: the alpha values for congestion control
4189  *	@b: the beta values for congestion control
4190  *
4191  *	Initialize the congestion control parameters.
4192  */
4193 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
4194 {
4195 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
4196 	a[9] = 2;
4197 	a[10] = 3;
4198 	a[11] = 4;
4199 	a[12] = 5;
4200 	a[13] = 6;
4201 	a[14] = 7;
4202 	a[15] = 8;
4203 	a[16] = 9;
4204 	a[17] = 10;
4205 	a[18] = 14;
4206 	a[19] = 17;
4207 	a[20] = 21;
4208 	a[21] = 25;
4209 	a[22] = 30;
4210 	a[23] = 35;
4211 	a[24] = 45;
4212 	a[25] = 60;
4213 	a[26] = 80;
4214 	a[27] = 100;
4215 	a[28] = 200;
4216 	a[29] = 300;
4217 	a[30] = 400;
4218 	a[31] = 500;
4219 
4220 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
4221 	b[9] = b[10] = 1;
4222 	b[11] = b[12] = 2;
4223 	b[13] = b[14] = b[15] = b[16] = 3;
4224 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
4225 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
4226 	b[28] = b[29] = 6;
4227 	b[30] = b[31] = 7;
4228 }
4229 
4230 /* The minimum additive increment value for the congestion control table */
4231 #define CC_MIN_INCR 2U
4232 
4233 /**
4234  *	t4_load_mtus - write the MTU and congestion control HW tables
4235  *	@adap: the adapter
4236  *	@mtus: the values for the MTU table
4237  *	@alpha: the values for the congestion control alpha parameter
4238  *	@beta: the values for the congestion control beta parameter
4239  *
4240  *	Write the HW MTU table with the supplied MTUs and the high-speed
4241  *	congestion control table with the supplied alpha, beta, and MTUs.
4242  *	We write the two tables together because the additive increments
4243  *	depend on the MTUs.
4244  */
4245 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
4246 		  const unsigned short *alpha, const unsigned short *beta)
4247 {
4248 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
4249 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
4250 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
4251 		28672, 40960, 57344, 81920, 114688, 163840, 229376
4252 	};
4253 
4254 	unsigned int i, w;
4255 
4256 	for (i = 0; i < NMTUS; ++i) {
4257 		unsigned int mtu = mtus[i];
4258 		unsigned int log2 = fls(mtu);
4259 
4260 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
4261 			log2--;
4262 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
4263 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
4264 
4265 		for (w = 0; w < NCCTRL_WIN; ++w) {
4266 			unsigned int inc;
4267 
4268 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
4269 				  CC_MIN_INCR);
4270 
4271 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
4272 				     (w << 16) | (beta[w] << 13) | inc);
4273 		}
4274 	}
4275 }
4276 
4277 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
4278  * clocks.  The formula is
4279  *
4280  * bytes/s = bytes256 * 256 * ClkFreq / 4096
4281  *
4282  * which is equivalent to
4283  *
4284  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
4285  */
4286 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
4287 {
4288 	u64 v = bytes256 * adap->params.vpd.cclk;
4289 
4290 	return v * 62 + v / 2;
4291 }
4292 
4293 /**
4294  *	t4_get_chan_txrate - get the current per channel Tx rates
4295  *	@adap: the adapter
4296  *	@nic_rate: rates for NIC traffic
4297  *	@ofld_rate: rates for offloaded traffic
4298  *
4299  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
4300  *	for each channel.
4301  */
4302 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
4303 {
4304 	u32 v;
4305 
4306 	v = t4_read_reg(adap, TP_TX_TRATE_A);
4307 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
4308 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
4309 	if (adap->params.arch.nchan == NCHAN) {
4310 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
4311 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
4312 	}
4313 
4314 	v = t4_read_reg(adap, TP_TX_ORATE_A);
4315 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
4316 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
4317 	if (adap->params.arch.nchan == NCHAN) {
4318 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
4319 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
4320 	}
4321 }
4322 
4323 /**
4324  *	t4_set_trace_filter - configure one of the tracing filters
4325  *	@adap: the adapter
4326  *	@tp: the desired trace filter parameters
4327  *	@idx: which filter to configure
4328  *	@enable: whether to enable or disable the filter
4329  *
4330  *	Configures one of the tracing filters available in HW.  If @enable is
4331  *	%0 @tp is not examined and may be %NULL. The user is responsible to
4332  *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
4333  */
4334 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
4335 			int idx, int enable)
4336 {
4337 	int i, ofst = idx * 4;
4338 	u32 data_reg, mask_reg, cfg;
4339 	u32 multitrc = TRCMULTIFILTER_F;
4340 
4341 	if (!enable) {
4342 		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
4343 		return 0;
4344 	}
4345 
4346 	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
4347 	if (cfg & TRCMULTIFILTER_F) {
4348 		/* If multiple tracers are enabled, then maximum
4349 		 * capture size is 2.5KB (FIFO size of a single channel)
4350 		 * minus 2 flits for CPL_TRACE_PKT header.
4351 		 */
4352 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
4353 			return -EINVAL;
4354 	} else {
4355 		/* If multiple tracers are disabled, to avoid deadlocks
4356 		 * maximum packet capture size of 9600 bytes is recommended.
4357 		 * Also in this mode, only trace0 can be enabled and running.
4358 		 */
4359 		multitrc = 0;
4360 		if (tp->snap_len > 9600 || idx)
4361 			return -EINVAL;
4362 	}
4363 
4364 	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
4365 	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
4366 	    tp->min_len > TFMINPKTSIZE_M)
4367 		return -EINVAL;
4368 
4369 	/* stop the tracer we'll be changing */
4370 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
4371 
4372 	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
4373 	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
4374 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
4375 
4376 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
4377 		t4_write_reg(adap, data_reg, tp->data[i]);
4378 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
4379 	}
4380 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
4381 		     TFCAPTUREMAX_V(tp->snap_len) |
4382 		     TFMINPKTSIZE_V(tp->min_len));
4383 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
4384 		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
4385 		     (is_t4(adap->params.chip) ?
4386 		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
4387 		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
4388 		     T5_TFINVERTMATCH_V(tp->invert)));
4389 
4390 	return 0;
4391 }
4392 
4393 /**
4394  *	t4_get_trace_filter - query one of the tracing filters
4395  *	@adap: the adapter
4396  *	@tp: the current trace filter parameters
4397  *	@idx: which trace filter to query
4398  *	@enabled: non-zero if the filter is enabled
4399  *
4400  *	Returns the current settings of one of the HW tracing filters.
4401  */
4402 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
4403 			 int *enabled)
4404 {
4405 	u32 ctla, ctlb;
4406 	int i, ofst = idx * 4;
4407 	u32 data_reg, mask_reg;
4408 
4409 	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
4410 	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
4411 
4412 	if (is_t4(adap->params.chip)) {
4413 		*enabled = !!(ctla & TFEN_F);
4414 		tp->port =  TFPORT_G(ctla);
4415 		tp->invert = !!(ctla & TFINVERTMATCH_F);
4416 	} else {
4417 		*enabled = !!(ctla & T5_TFEN_F);
4418 		tp->port = T5_TFPORT_G(ctla);
4419 		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
4420 	}
4421 	tp->snap_len = TFCAPTUREMAX_G(ctlb);
4422 	tp->min_len = TFMINPKTSIZE_G(ctlb);
4423 	tp->skip_ofst = TFOFFSET_G(ctla);
4424 	tp->skip_len = TFLENGTH_G(ctla);
4425 
4426 	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
4427 	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
4428 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
4429 
4430 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
4431 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
4432 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
4433 	}
4434 }
4435 
4436 /**
4437  *	t4_pmtx_get_stats - returns the HW stats from PMTX
4438  *	@adap: the adapter
4439  *	@cnt: where to store the count statistics
4440  *	@cycles: where to store the cycle statistics
4441  *
4442  *	Returns performance statistics from PMTX.
4443  */
4444 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
4445 {
4446 	int i;
4447 	u32 data[2];
4448 
4449 	for (i = 0; i < PM_NSTATS; i++) {
4450 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
4451 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
4452 		if (is_t4(adap->params.chip)) {
4453 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
4454 		} else {
4455 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
4456 					 PM_TX_DBG_DATA_A, data, 2,
4457 					 PM_TX_DBG_STAT_MSB_A);
4458 			cycles[i] = (((u64)data[0] << 32) | data[1]);
4459 		}
4460 	}
4461 }
4462 
4463 /**
4464  *	t4_pmrx_get_stats - returns the HW stats from PMRX
4465  *	@adap: the adapter
4466  *	@cnt: where to store the count statistics
4467  *	@cycles: where to store the cycle statistics
4468  *
4469  *	Returns performance statistics from PMRX.
4470  */
4471 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
4472 {
4473 	int i;
4474 	u32 data[2];
4475 
4476 	for (i = 0; i < PM_NSTATS; i++) {
4477 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
4478 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
4479 		if (is_t4(adap->params.chip)) {
4480 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
4481 		} else {
4482 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
4483 					 PM_RX_DBG_DATA_A, data, 2,
4484 					 PM_RX_DBG_STAT_MSB_A);
4485 			cycles[i] = (((u64)data[0] << 32) | data[1]);
4486 		}
4487 	}
4488 }
4489 
4490 /**
4491  *	t4_get_mps_bg_map - return the buffer groups associated with a port
4492  *	@adap: the adapter
4493  *	@idx: the port index
4494  *
4495  *	Returns a bitmap indicating which MPS buffer groups are associated
4496  *	with the given port.  Bit i is set if buffer group i is used by the
4497  *	port.
4498  */
4499 unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
4500 {
4501 	u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
4502 
4503 	if (n == 0)
4504 		return idx == 0 ? 0xf : 0;
4505 	if (n == 1)
4506 		return idx < 2 ? (3 << (2 * idx)) : 0;
4507 	return 1 << idx;
4508 }
4509 
4510 /**
4511  *      t4_get_port_type_description - return Port Type string description
4512  *      @port_type: firmware Port Type enumeration
4513  */
4514 const char *t4_get_port_type_description(enum fw_port_type port_type)
4515 {
4516 	static const char *const port_type_description[] = {
4517 		"R XFI",
4518 		"R XAUI",
4519 		"T SGMII",
4520 		"T XFI",
4521 		"T XAUI",
4522 		"KX4",
4523 		"CX4",
4524 		"KX",
4525 		"KR",
4526 		"R SFP+",
4527 		"KR/KX",
4528 		"KR/KX/KX4",
4529 		"R QSFP_10G",
4530 		"R QSA",
4531 		"R QSFP",
4532 		"R BP40_BA",
4533 	};
4534 
4535 	if (port_type < ARRAY_SIZE(port_type_description))
4536 		return port_type_description[port_type];
4537 	return "UNKNOWN";
4538 }
4539 
4540 /**
4541  *      t4_get_port_stats_offset - collect port stats relative to a previous
4542  *                                 snapshot
4543  *      @adap: The adapter
4544  *      @idx: The port
4545  *      @stats: Current stats to fill
4546  *      @offset: Previous stats snapshot
4547  */
4548 void t4_get_port_stats_offset(struct adapter *adap, int idx,
4549 			      struct port_stats *stats,
4550 			      struct port_stats *offset)
4551 {
4552 	u64 *s, *o;
4553 	int i;
4554 
4555 	t4_get_port_stats(adap, idx, stats);
4556 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
4557 			i < (sizeof(struct port_stats) / sizeof(u64));
4558 			i++, s++, o++)
4559 		*s -= *o;
4560 }
4561 
4562 /**
4563  *	t4_get_port_stats - collect port statistics
4564  *	@adap: the adapter
4565  *	@idx: the port index
4566  *	@p: the stats structure to fill
4567  *
4568  *	Collect statistics related to the given port from HW.
4569  */
4570 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
4571 {
4572 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
4573 
4574 #define GET_STAT(name) \
4575 	t4_read_reg64(adap, \
4576 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
4577 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
4578 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
4579 
4580 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
4581 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
4582 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
4583 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
4584 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
4585 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
4586 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
4587 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
4588 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
4589 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
4590 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
4591 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
4592 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
4593 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
4594 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
4595 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
4596 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
4597 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
4598 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
4599 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
4600 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
4601 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
4602 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
4603 
4604 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
4605 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
4606 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
4607 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
4608 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
4609 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
4610 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
4611 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
4612 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
4613 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
4614 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
4615 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
4616 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
4617 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
4618 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
4619 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
4620 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
4621 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
4622 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
4623 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
4624 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
4625 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
4626 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
4627 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
4628 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
4629 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
4630 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
4631 
4632 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
4633 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
4634 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
4635 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
4636 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
4637 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
4638 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
4639 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
4640 
4641 #undef GET_STAT
4642 #undef GET_STAT_COM
4643 }
4644 
4645 /**
4646  *	t4_get_lb_stats - collect loopback port statistics
4647  *	@adap: the adapter
4648  *	@idx: the loopback port index
4649  *	@p: the stats structure to fill
4650  *
4651  *	Return HW statistics for the given loopback port.
4652  */
4653 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
4654 {
4655 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
4656 
4657 #define GET_STAT(name) \
4658 	t4_read_reg64(adap, \
4659 	(is_t4(adap->params.chip) ? \
4660 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
4661 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
4662 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
4663 
4664 	p->octets           = GET_STAT(BYTES);
4665 	p->frames           = GET_STAT(FRAMES);
4666 	p->bcast_frames     = GET_STAT(BCAST);
4667 	p->mcast_frames     = GET_STAT(MCAST);
4668 	p->ucast_frames     = GET_STAT(UCAST);
4669 	p->error_frames     = GET_STAT(ERROR);
4670 
4671 	p->frames_64        = GET_STAT(64B);
4672 	p->frames_65_127    = GET_STAT(65B_127B);
4673 	p->frames_128_255   = GET_STAT(128B_255B);
4674 	p->frames_256_511   = GET_STAT(256B_511B);
4675 	p->frames_512_1023  = GET_STAT(512B_1023B);
4676 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
4677 	p->frames_1519_max  = GET_STAT(1519B_MAX);
4678 	p->drop             = GET_STAT(DROP_FRAMES);
4679 
4680 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
4681 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
4682 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
4683 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
4684 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
4685 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
4686 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
4687 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
4688 
4689 #undef GET_STAT
4690 #undef GET_STAT_COM
4691 }
4692 
4693 /*     t4_mk_filtdelwr - create a delete filter WR
4694  *     @ftid: the filter ID
4695  *     @wr: the filter work request to populate
4696  *     @qid: ingress queue to receive the delete notification
4697  *
4698  *     Creates a filter work request to delete the supplied filter.  If @qid is
4699  *     negative the delete notification is suppressed.
4700  */
4701 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
4702 {
4703 	memset(wr, 0, sizeof(*wr));
4704 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
4705 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
4706 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
4707 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
4708 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
4709 	if (qid >= 0)
4710 		wr->rx_chan_rx_rpl_iq =
4711 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
4712 }
4713 
4714 #define INIT_CMD(var, cmd, rd_wr) do { \
4715 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
4716 					FW_CMD_REQUEST_F | \
4717 					FW_CMD_##rd_wr##_F); \
4718 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
4719 } while (0)
4720 
4721 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
4722 			  u32 addr, u32 val)
4723 {
4724 	u32 ldst_addrspace;
4725 	struct fw_ldst_cmd c;
4726 
4727 	memset(&c, 0, sizeof(c));
4728 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
4729 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4730 					FW_CMD_REQUEST_F |
4731 					FW_CMD_WRITE_F |
4732 					ldst_addrspace);
4733 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4734 	c.u.addrval.addr = cpu_to_be32(addr);
4735 	c.u.addrval.val = cpu_to_be32(val);
4736 
4737 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4738 }
4739 
4740 /**
4741  *	t4_mdio_rd - read a PHY register through MDIO
4742  *	@adap: the adapter
4743  *	@mbox: mailbox to use for the FW command
4744  *	@phy_addr: the PHY address
4745  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
4746  *	@reg: the register to read
4747  *	@valp: where to store the value
4748  *
4749  *	Issues a FW command through the given mailbox to read a PHY register.
4750  */
4751 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
4752 	       unsigned int mmd, unsigned int reg, u16 *valp)
4753 {
4754 	int ret;
4755 	u32 ldst_addrspace;
4756 	struct fw_ldst_cmd c;
4757 
4758 	memset(&c, 0, sizeof(c));
4759 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
4760 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4761 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
4762 					ldst_addrspace);
4763 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4764 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
4765 					 FW_LDST_CMD_MMD_V(mmd));
4766 	c.u.mdio.raddr = cpu_to_be16(reg);
4767 
4768 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4769 	if (ret == 0)
4770 		*valp = be16_to_cpu(c.u.mdio.rval);
4771 	return ret;
4772 }
4773 
4774 /**
4775  *	t4_mdio_wr - write a PHY register through MDIO
4776  *	@adap: the adapter
4777  *	@mbox: mailbox to use for the FW command
4778  *	@phy_addr: the PHY address
4779  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
4780  *	@reg: the register to write
4781  *	@valp: value to write
4782  *
4783  *	Issues a FW command through the given mailbox to write a PHY register.
4784  */
4785 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
4786 	       unsigned int mmd, unsigned int reg, u16 val)
4787 {
4788 	u32 ldst_addrspace;
4789 	struct fw_ldst_cmd c;
4790 
4791 	memset(&c, 0, sizeof(c));
4792 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
4793 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4794 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4795 					ldst_addrspace);
4796 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4797 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
4798 					 FW_LDST_CMD_MMD_V(mmd));
4799 	c.u.mdio.raddr = cpu_to_be16(reg);
4800 	c.u.mdio.rval = cpu_to_be16(val);
4801 
4802 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4803 }
4804 
4805 /**
4806  *	t4_sge_decode_idma_state - decode the idma state
4807  *	@adap: the adapter
4808  *	@state: the state idma is stuck in
4809  */
4810 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
4811 {
4812 	static const char * const t4_decode[] = {
4813 		"IDMA_IDLE",
4814 		"IDMA_PUSH_MORE_CPL_FIFO",
4815 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
4816 		"Not used",
4817 		"IDMA_PHYSADDR_SEND_PCIEHDR",
4818 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
4819 		"IDMA_PHYSADDR_SEND_PAYLOAD",
4820 		"IDMA_SEND_FIFO_TO_IMSG",
4821 		"IDMA_FL_REQ_DATA_FL_PREP",
4822 		"IDMA_FL_REQ_DATA_FL",
4823 		"IDMA_FL_DROP",
4824 		"IDMA_FL_H_REQ_HEADER_FL",
4825 		"IDMA_FL_H_SEND_PCIEHDR",
4826 		"IDMA_FL_H_PUSH_CPL_FIFO",
4827 		"IDMA_FL_H_SEND_CPL",
4828 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
4829 		"IDMA_FL_H_SEND_IP_HDR",
4830 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
4831 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
4832 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
4833 		"IDMA_FL_D_SEND_PCIEHDR",
4834 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
4835 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
4836 		"IDMA_FL_SEND_PCIEHDR",
4837 		"IDMA_FL_PUSH_CPL_FIFO",
4838 		"IDMA_FL_SEND_CPL",
4839 		"IDMA_FL_SEND_PAYLOAD_FIRST",
4840 		"IDMA_FL_SEND_PAYLOAD",
4841 		"IDMA_FL_REQ_NEXT_DATA_FL",
4842 		"IDMA_FL_SEND_NEXT_PCIEHDR",
4843 		"IDMA_FL_SEND_PADDING",
4844 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
4845 		"IDMA_FL_SEND_FIFO_TO_IMSG",
4846 		"IDMA_FL_REQ_DATAFL_DONE",
4847 		"IDMA_FL_REQ_HEADERFL_DONE",
4848 	};
4849 	static const char * const t5_decode[] = {
4850 		"IDMA_IDLE",
4851 		"IDMA_ALMOST_IDLE",
4852 		"IDMA_PUSH_MORE_CPL_FIFO",
4853 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
4854 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
4855 		"IDMA_PHYSADDR_SEND_PCIEHDR",
4856 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
4857 		"IDMA_PHYSADDR_SEND_PAYLOAD",
4858 		"IDMA_SEND_FIFO_TO_IMSG",
4859 		"IDMA_FL_REQ_DATA_FL",
4860 		"IDMA_FL_DROP",
4861 		"IDMA_FL_DROP_SEND_INC",
4862 		"IDMA_FL_H_REQ_HEADER_FL",
4863 		"IDMA_FL_H_SEND_PCIEHDR",
4864 		"IDMA_FL_H_PUSH_CPL_FIFO",
4865 		"IDMA_FL_H_SEND_CPL",
4866 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
4867 		"IDMA_FL_H_SEND_IP_HDR",
4868 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
4869 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
4870 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
4871 		"IDMA_FL_D_SEND_PCIEHDR",
4872 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
4873 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
4874 		"IDMA_FL_SEND_PCIEHDR",
4875 		"IDMA_FL_PUSH_CPL_FIFO",
4876 		"IDMA_FL_SEND_CPL",
4877 		"IDMA_FL_SEND_PAYLOAD_FIRST",
4878 		"IDMA_FL_SEND_PAYLOAD",
4879 		"IDMA_FL_REQ_NEXT_DATA_FL",
4880 		"IDMA_FL_SEND_NEXT_PCIEHDR",
4881 		"IDMA_FL_SEND_PADDING",
4882 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
4883 	};
4884 	static const u32 sge_regs[] = {
4885 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
4886 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
4887 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
4888 	};
4889 	const char **sge_idma_decode;
4890 	int sge_idma_decode_nstates;
4891 	int i;
4892 
4893 	if (is_t4(adapter->params.chip)) {
4894 		sge_idma_decode = (const char **)t4_decode;
4895 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
4896 	} else {
4897 		sge_idma_decode = (const char **)t5_decode;
4898 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
4899 	}
4900 
4901 	if (state < sge_idma_decode_nstates)
4902 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
4903 	else
4904 		CH_WARN(adapter, "idma state %d unknown\n", state);
4905 
4906 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
4907 		CH_WARN(adapter, "SGE register %#x value %#x\n",
4908 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
4909 }
4910 
4911 /**
4912  *      t4_sge_ctxt_flush - flush the SGE context cache
4913  *      @adap: the adapter
4914  *      @mbox: mailbox to use for the FW command
4915  *
4916  *      Issues a FW command through the given mailbox to flush the
4917  *      SGE context cache.
4918  */
4919 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
4920 {
4921 	int ret;
4922 	u32 ldst_addrspace;
4923 	struct fw_ldst_cmd c;
4924 
4925 	memset(&c, 0, sizeof(c));
4926 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
4927 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4928 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
4929 					ldst_addrspace);
4930 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4931 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
4932 
4933 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4934 	return ret;
4935 }
4936 
4937 /**
4938  *      t4_fw_hello - establish communication with FW
4939  *      @adap: the adapter
4940  *      @mbox: mailbox to use for the FW command
4941  *      @evt_mbox: mailbox to receive async FW events
4942  *      @master: specifies the caller's willingness to be the device master
4943  *	@state: returns the current device state (if non-NULL)
4944  *
4945  *	Issues a command to establish communication with FW.  Returns either
4946  *	an error (negative integer) or the mailbox of the Master PF.
4947  */
4948 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
4949 		enum dev_master master, enum dev_state *state)
4950 {
4951 	int ret;
4952 	struct fw_hello_cmd c;
4953 	u32 v;
4954 	unsigned int master_mbox;
4955 	int retries = FW_CMD_HELLO_RETRIES;
4956 
4957 retry:
4958 	memset(&c, 0, sizeof(c));
4959 	INIT_CMD(c, HELLO, WRITE);
4960 	c.err_to_clearinit = cpu_to_be32(
4961 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
4962 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
4963 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
4964 					mbox : FW_HELLO_CMD_MBMASTER_M) |
4965 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
4966 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
4967 		FW_HELLO_CMD_CLEARINIT_F);
4968 
4969 	/*
4970 	 * Issue the HELLO command to the firmware.  If it's not successful
4971 	 * but indicates that we got a "busy" or "timeout" condition, retry
4972 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
4973 	 * retry limit, check to see if the firmware left us any error
4974 	 * information and report that if so.
4975 	 */
4976 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4977 	if (ret < 0) {
4978 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
4979 			goto retry;
4980 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
4981 			t4_report_fw_error(adap);
4982 		return ret;
4983 	}
4984 
4985 	v = be32_to_cpu(c.err_to_clearinit);
4986 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
4987 	if (state) {
4988 		if (v & FW_HELLO_CMD_ERR_F)
4989 			*state = DEV_STATE_ERR;
4990 		else if (v & FW_HELLO_CMD_INIT_F)
4991 			*state = DEV_STATE_INIT;
4992 		else
4993 			*state = DEV_STATE_UNINIT;
4994 	}
4995 
4996 	/*
4997 	 * If we're not the Master PF then we need to wait around for the
4998 	 * Master PF Driver to finish setting up the adapter.
4999 	 *
5000 	 * Note that we also do this wait if we're a non-Master-capable PF and
5001 	 * there is no current Master PF; a Master PF may show up momentarily
5002 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
5003 	 * OS loads lots of different drivers rapidly at the same time).  In
5004 	 * this case, the Master PF returned by the firmware will be
5005 	 * PCIE_FW_MASTER_M so the test below will work ...
5006 	 */
5007 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
5008 	    master_mbox != mbox) {
5009 		int waiting = FW_CMD_HELLO_TIMEOUT;
5010 
5011 		/*
5012 		 * Wait for the firmware to either indicate an error or
5013 		 * initialized state.  If we see either of these we bail out
5014 		 * and report the issue to the caller.  If we exhaust the
5015 		 * "hello timeout" and we haven't exhausted our retries, try
5016 		 * again.  Otherwise bail with a timeout error.
5017 		 */
5018 		for (;;) {
5019 			u32 pcie_fw;
5020 
5021 			msleep(50);
5022 			waiting -= 50;
5023 
5024 			/*
5025 			 * If neither Error nor Initialialized are indicated
5026 			 * by the firmware keep waiting till we exaust our
5027 			 * timeout ... and then retry if we haven't exhausted
5028 			 * our retries ...
5029 			 */
5030 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
5031 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
5032 				if (waiting <= 0) {
5033 					if (retries-- > 0)
5034 						goto retry;
5035 
5036 					return -ETIMEDOUT;
5037 				}
5038 				continue;
5039 			}
5040 
5041 			/*
5042 			 * We either have an Error or Initialized condition
5043 			 * report errors preferentially.
5044 			 */
5045 			if (state) {
5046 				if (pcie_fw & PCIE_FW_ERR_F)
5047 					*state = DEV_STATE_ERR;
5048 				else if (pcie_fw & PCIE_FW_INIT_F)
5049 					*state = DEV_STATE_INIT;
5050 			}
5051 
5052 			/*
5053 			 * If we arrived before a Master PF was selected and
5054 			 * there's not a valid Master PF, grab its identity
5055 			 * for our caller.
5056 			 */
5057 			if (master_mbox == PCIE_FW_MASTER_M &&
5058 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
5059 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
5060 			break;
5061 		}
5062 	}
5063 
5064 	return master_mbox;
5065 }
5066 
5067 /**
5068  *	t4_fw_bye - end communication with FW
5069  *	@adap: the adapter
5070  *	@mbox: mailbox to use for the FW command
5071  *
5072  *	Issues a command to terminate communication with FW.
5073  */
5074 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
5075 {
5076 	struct fw_bye_cmd c;
5077 
5078 	memset(&c, 0, sizeof(c));
5079 	INIT_CMD(c, BYE, WRITE);
5080 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5081 }
5082 
5083 /**
5084  *	t4_init_cmd - ask FW to initialize the device
5085  *	@adap: the adapter
5086  *	@mbox: mailbox to use for the FW command
5087  *
5088  *	Issues a command to FW to partially initialize the device.  This
5089  *	performs initialization that generally doesn't depend on user input.
5090  */
5091 int t4_early_init(struct adapter *adap, unsigned int mbox)
5092 {
5093 	struct fw_initialize_cmd c;
5094 
5095 	memset(&c, 0, sizeof(c));
5096 	INIT_CMD(c, INITIALIZE, WRITE);
5097 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5098 }
5099 
5100 /**
5101  *	t4_fw_reset - issue a reset to FW
5102  *	@adap: the adapter
5103  *	@mbox: mailbox to use for the FW command
5104  *	@reset: specifies the type of reset to perform
5105  *
5106  *	Issues a reset command of the specified type to FW.
5107  */
5108 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
5109 {
5110 	struct fw_reset_cmd c;
5111 
5112 	memset(&c, 0, sizeof(c));
5113 	INIT_CMD(c, RESET, WRITE);
5114 	c.val = cpu_to_be32(reset);
5115 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5116 }
5117 
5118 /**
5119  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
5120  *	@adap: the adapter
5121  *	@mbox: mailbox to use for the FW RESET command (if desired)
5122  *	@force: force uP into RESET even if FW RESET command fails
5123  *
5124  *	Issues a RESET command to firmware (if desired) with a HALT indication
5125  *	and then puts the microprocessor into RESET state.  The RESET command
5126  *	will only be issued if a legitimate mailbox is provided (mbox <=
5127  *	PCIE_FW_MASTER_M).
5128  *
5129  *	This is generally used in order for the host to safely manipulate the
5130  *	adapter without fear of conflicting with whatever the firmware might
5131  *	be doing.  The only way out of this state is to RESTART the firmware
5132  *	...
5133  */
5134 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
5135 {
5136 	int ret = 0;
5137 
5138 	/*
5139 	 * If a legitimate mailbox is provided, issue a RESET command
5140 	 * with a HALT indication.
5141 	 */
5142 	if (mbox <= PCIE_FW_MASTER_M) {
5143 		struct fw_reset_cmd c;
5144 
5145 		memset(&c, 0, sizeof(c));
5146 		INIT_CMD(c, RESET, WRITE);
5147 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
5148 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
5149 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5150 	}
5151 
5152 	/*
5153 	 * Normally we won't complete the operation if the firmware RESET
5154 	 * command fails but if our caller insists we'll go ahead and put the
5155 	 * uP into RESET.  This can be useful if the firmware is hung or even
5156 	 * missing ...  We'll have to take the risk of putting the uP into
5157 	 * RESET without the cooperation of firmware in that case.
5158 	 *
5159 	 * We also force the firmware's HALT flag to be on in case we bypassed
5160 	 * the firmware RESET command above or we're dealing with old firmware
5161 	 * which doesn't have the HALT capability.  This will serve as a flag
5162 	 * for the incoming firmware to know that it's coming out of a HALT
5163 	 * rather than a RESET ... if it's new enough to understand that ...
5164 	 */
5165 	if (ret == 0 || force) {
5166 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
5167 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
5168 				 PCIE_FW_HALT_F);
5169 	}
5170 
5171 	/*
5172 	 * And we always return the result of the firmware RESET command
5173 	 * even when we force the uP into RESET ...
5174 	 */
5175 	return ret;
5176 }
5177 
5178 /**
5179  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
5180  *	@adap: the adapter
5181  *	@reset: if we want to do a RESET to restart things
5182  *
5183  *	Restart firmware previously halted by t4_fw_halt().  On successful
5184  *	return the previous PF Master remains as the new PF Master and there
5185  *	is no need to issue a new HELLO command, etc.
5186  *
5187  *	We do this in two ways:
5188  *
5189  *	 1. If we're dealing with newer firmware we'll simply want to take
5190  *	    the chip's microprocessor out of RESET.  This will cause the
5191  *	    firmware to start up from its start vector.  And then we'll loop
5192  *	    until the firmware indicates it's started again (PCIE_FW.HALT
5193  *	    reset to 0) or we timeout.
5194  *
5195  *	 2. If we're dealing with older firmware then we'll need to RESET
5196  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
5197  *	    flag and automatically RESET itself on startup.
5198  */
5199 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
5200 {
5201 	if (reset) {
5202 		/*
5203 		 * Since we're directing the RESET instead of the firmware
5204 		 * doing it automatically, we need to clear the PCIE_FW.HALT
5205 		 * bit.
5206 		 */
5207 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
5208 
5209 		/*
5210 		 * If we've been given a valid mailbox, first try to get the
5211 		 * firmware to do the RESET.  If that works, great and we can
5212 		 * return success.  Otherwise, if we haven't been given a
5213 		 * valid mailbox or the RESET command failed, fall back to
5214 		 * hitting the chip with a hammer.
5215 		 */
5216 		if (mbox <= PCIE_FW_MASTER_M) {
5217 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
5218 			msleep(100);
5219 			if (t4_fw_reset(adap, mbox,
5220 					PIORST_F | PIORSTMODE_F) == 0)
5221 				return 0;
5222 		}
5223 
5224 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
5225 		msleep(2000);
5226 	} else {
5227 		int ms;
5228 
5229 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
5230 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
5231 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
5232 				return 0;
5233 			msleep(100);
5234 			ms += 100;
5235 		}
5236 		return -ETIMEDOUT;
5237 	}
5238 	return 0;
5239 }
5240 
5241 /**
5242  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
5243  *	@adap: the adapter
5244  *	@mbox: mailbox to use for the FW RESET command (if desired)
5245  *	@fw_data: the firmware image to write
5246  *	@size: image size
5247  *	@force: force upgrade even if firmware doesn't cooperate
5248  *
5249  *	Perform all of the steps necessary for upgrading an adapter's
5250  *	firmware image.  Normally this requires the cooperation of the
5251  *	existing firmware in order to halt all existing activities
5252  *	but if an invalid mailbox token is passed in we skip that step
5253  *	(though we'll still put the adapter microprocessor into RESET in
5254  *	that case).
5255  *
5256  *	On successful return the new firmware will have been loaded and
5257  *	the adapter will have been fully RESET losing all previous setup
5258  *	state.  On unsuccessful return the adapter may be completely hosed ...
5259  *	positive errno indicates that the adapter is ~probably~ intact, a
5260  *	negative errno indicates that things are looking bad ...
5261  */
5262 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
5263 		  const u8 *fw_data, unsigned int size, int force)
5264 {
5265 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
5266 	int reset, ret;
5267 
5268 	if (!t4_fw_matches_chip(adap, fw_hdr))
5269 		return -EINVAL;
5270 
5271 	ret = t4_fw_halt(adap, mbox, force);
5272 	if (ret < 0 && !force)
5273 		return ret;
5274 
5275 	ret = t4_load_fw(adap, fw_data, size);
5276 	if (ret < 0)
5277 		return ret;
5278 
5279 	/*
5280 	 * Older versions of the firmware don't understand the new
5281 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
5282 	 * restart.  So for newly loaded older firmware we'll have to do the
5283 	 * RESET for it so it starts up on a clean slate.  We can tell if
5284 	 * the newly loaded firmware will handle this right by checking
5285 	 * its header flags to see if it advertises the capability.
5286 	 */
5287 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
5288 	return t4_fw_restart(adap, mbox, reset);
5289 }
5290 
5291 /**
5292  *	t4_fixup_host_params - fix up host-dependent parameters
5293  *	@adap: the adapter
5294  *	@page_size: the host's Base Page Size
5295  *	@cache_line_size: the host's Cache Line Size
5296  *
5297  *	Various registers in T4 contain values which are dependent on the
5298  *	host's Base Page and Cache Line Sizes.  This function will fix all of
5299  *	those registers with the appropriate values as passed in ...
5300  */
5301 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
5302 			 unsigned int cache_line_size)
5303 {
5304 	unsigned int page_shift = fls(page_size) - 1;
5305 	unsigned int sge_hps = page_shift - 10;
5306 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
5307 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
5308 	unsigned int fl_align_log = fls(fl_align) - 1;
5309 
5310 	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
5311 		     HOSTPAGESIZEPF0_V(sge_hps) |
5312 		     HOSTPAGESIZEPF1_V(sge_hps) |
5313 		     HOSTPAGESIZEPF2_V(sge_hps) |
5314 		     HOSTPAGESIZEPF3_V(sge_hps) |
5315 		     HOSTPAGESIZEPF4_V(sge_hps) |
5316 		     HOSTPAGESIZEPF5_V(sge_hps) |
5317 		     HOSTPAGESIZEPF6_V(sge_hps) |
5318 		     HOSTPAGESIZEPF7_V(sge_hps));
5319 
5320 	if (is_t4(adap->params.chip)) {
5321 		t4_set_reg_field(adap, SGE_CONTROL_A,
5322 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
5323 				 EGRSTATUSPAGESIZE_F,
5324 				 INGPADBOUNDARY_V(fl_align_log -
5325 						  INGPADBOUNDARY_SHIFT_X) |
5326 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
5327 	} else {
5328 		/* T5 introduced the separation of the Free List Padding and
5329 		 * Packing Boundaries.  Thus, we can select a smaller Padding
5330 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
5331 		 * Bandwidth, and use a Packing Boundary which is large enough
5332 		 * to avoid false sharing between CPUs, etc.
5333 		 *
5334 		 * For the PCI Link, the smaller the Padding Boundary the
5335 		 * better.  For the Memory Controller, a smaller Padding
5336 		 * Boundary is better until we cross under the Memory Line
5337 		 * Size (the minimum unit of transfer to/from Memory).  If we
5338 		 * have a Padding Boundary which is smaller than the Memory
5339 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
5340 		 * Memory Controller which is never good.  For T5 the smallest
5341 		 * Padding Boundary which we can select is 32 bytes which is
5342 		 * larger than any known Memory Controller Line Size so we'll
5343 		 * use that.
5344 		 *
5345 		 * T5 has a different interpretation of the "0" value for the
5346 		 * Packing Boundary.  This corresponds to 16 bytes instead of
5347 		 * the expected 32 bytes.  We never have a Packing Boundary
5348 		 * less than 32 bytes so we can't use that special value but
5349 		 * on the other hand, if we wanted 32 bytes, the best we can
5350 		 * really do is 64 bytes.
5351 		*/
5352 		if (fl_align <= 32) {
5353 			fl_align = 64;
5354 			fl_align_log = 6;
5355 		}
5356 		t4_set_reg_field(adap, SGE_CONTROL_A,
5357 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
5358 				 EGRSTATUSPAGESIZE_F,
5359 				 INGPADBOUNDARY_V(INGPCIEBOUNDARY_32B_X) |
5360 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
5361 		t4_set_reg_field(adap, SGE_CONTROL2_A,
5362 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
5363 				 INGPACKBOUNDARY_V(fl_align_log -
5364 						   INGPACKBOUNDARY_SHIFT_X));
5365 	}
5366 	/*
5367 	 * Adjust various SGE Free List Host Buffer Sizes.
5368 	 *
5369 	 * This is something of a crock since we're using fixed indices into
5370 	 * the array which are also known by the sge.c code and the T4
5371 	 * Firmware Configuration File.  We need to come up with a much better
5372 	 * approach to managing this array.  For now, the first four entries
5373 	 * are:
5374 	 *
5375 	 *   0: Host Page Size
5376 	 *   1: 64KB
5377 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
5378 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
5379 	 *
5380 	 * For the single-MTU buffers in unpacked mode we need to include
5381 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
5382 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
5383 	 * Padding boundary.  All of these are accommodated in the Factory
5384 	 * Default Firmware Configuration File but we need to adjust it for
5385 	 * this host's cache line size.
5386 	 */
5387 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
5388 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
5389 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
5390 		     & ~(fl_align-1));
5391 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
5392 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
5393 		     & ~(fl_align-1));
5394 
5395 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
5396 
5397 	return 0;
5398 }
5399 
5400 /**
5401  *	t4_fw_initialize - ask FW to initialize the device
5402  *	@adap: the adapter
5403  *	@mbox: mailbox to use for the FW command
5404  *
5405  *	Issues a command to FW to partially initialize the device.  This
5406  *	performs initialization that generally doesn't depend on user input.
5407  */
5408 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
5409 {
5410 	struct fw_initialize_cmd c;
5411 
5412 	memset(&c, 0, sizeof(c));
5413 	INIT_CMD(c, INITIALIZE, WRITE);
5414 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5415 }
5416 
5417 /**
5418  *	t4_query_params_rw - query FW or device parameters
5419  *	@adap: the adapter
5420  *	@mbox: mailbox to use for the FW command
5421  *	@pf: the PF
5422  *	@vf: the VF
5423  *	@nparams: the number of parameters
5424  *	@params: the parameter names
5425  *	@val: the parameter values
5426  *	@rw: Write and read flag
5427  *
5428  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
5429  *	queried at once.
5430  */
5431 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
5432 		       unsigned int vf, unsigned int nparams, const u32 *params,
5433 		       u32 *val, int rw)
5434 {
5435 	int i, ret;
5436 	struct fw_params_cmd c;
5437 	__be32 *p = &c.param[0].mnem;
5438 
5439 	if (nparams > 7)
5440 		return -EINVAL;
5441 
5442 	memset(&c, 0, sizeof(c));
5443 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
5444 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
5445 				  FW_PARAMS_CMD_PFN_V(pf) |
5446 				  FW_PARAMS_CMD_VFN_V(vf));
5447 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5448 
5449 	for (i = 0; i < nparams; i++) {
5450 		*p++ = cpu_to_be32(*params++);
5451 		if (rw)
5452 			*p = cpu_to_be32(*(val + i));
5453 		p++;
5454 	}
5455 
5456 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5457 	if (ret == 0)
5458 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
5459 			*val++ = be32_to_cpu(*p);
5460 	return ret;
5461 }
5462 
5463 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
5464 		    unsigned int vf, unsigned int nparams, const u32 *params,
5465 		    u32 *val)
5466 {
5467 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
5468 }
5469 
5470 /**
5471  *      t4_set_params_timeout - sets FW or device parameters
5472  *      @adap: the adapter
5473  *      @mbox: mailbox to use for the FW command
5474  *      @pf: the PF
5475  *      @vf: the VF
5476  *      @nparams: the number of parameters
5477  *      @params: the parameter names
5478  *      @val: the parameter values
5479  *      @timeout: the timeout time
5480  *
5481  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
5482  *      specified at once.
5483  */
5484 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
5485 			  unsigned int pf, unsigned int vf,
5486 			  unsigned int nparams, const u32 *params,
5487 			  const u32 *val, int timeout)
5488 {
5489 	struct fw_params_cmd c;
5490 	__be32 *p = &c.param[0].mnem;
5491 
5492 	if (nparams > 7)
5493 		return -EINVAL;
5494 
5495 	memset(&c, 0, sizeof(c));
5496 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
5497 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5498 				  FW_PARAMS_CMD_PFN_V(pf) |
5499 				  FW_PARAMS_CMD_VFN_V(vf));
5500 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5501 
5502 	while (nparams--) {
5503 		*p++ = cpu_to_be32(*params++);
5504 		*p++ = cpu_to_be32(*val++);
5505 	}
5506 
5507 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
5508 }
5509 
5510 /**
5511  *	t4_set_params - sets FW or device parameters
5512  *	@adap: the adapter
5513  *	@mbox: mailbox to use for the FW command
5514  *	@pf: the PF
5515  *	@vf: the VF
5516  *	@nparams: the number of parameters
5517  *	@params: the parameter names
5518  *	@val: the parameter values
5519  *
5520  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
5521  *	specified at once.
5522  */
5523 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
5524 		  unsigned int vf, unsigned int nparams, const u32 *params,
5525 		  const u32 *val)
5526 {
5527 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
5528 				     FW_CMD_MAX_TIMEOUT);
5529 }
5530 
5531 /**
5532  *	t4_cfg_pfvf - configure PF/VF resource limits
5533  *	@adap: the adapter
5534  *	@mbox: mailbox to use for the FW command
5535  *	@pf: the PF being configured
5536  *	@vf: the VF being configured
5537  *	@txq: the max number of egress queues
5538  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
5539  *	@rxqi: the max number of interrupt-capable ingress queues
5540  *	@rxq: the max number of interruptless ingress queues
5541  *	@tc: the PCI traffic class
5542  *	@vi: the max number of virtual interfaces
5543  *	@cmask: the channel access rights mask for the PF/VF
5544  *	@pmask: the port access rights mask for the PF/VF
5545  *	@nexact: the maximum number of exact MPS filters
5546  *	@rcaps: read capabilities
5547  *	@wxcaps: write/execute capabilities
5548  *
5549  *	Configures resource limits and capabilities for a physical or virtual
5550  *	function.
5551  */
5552 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
5553 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
5554 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
5555 		unsigned int vi, unsigned int cmask, unsigned int pmask,
5556 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
5557 {
5558 	struct fw_pfvf_cmd c;
5559 
5560 	memset(&c, 0, sizeof(c));
5561 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
5562 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
5563 				  FW_PFVF_CMD_VFN_V(vf));
5564 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5565 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
5566 				     FW_PFVF_CMD_NIQ_V(rxq));
5567 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
5568 				    FW_PFVF_CMD_PMASK_V(pmask) |
5569 				    FW_PFVF_CMD_NEQ_V(txq));
5570 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
5571 				      FW_PFVF_CMD_NVI_V(vi) |
5572 				      FW_PFVF_CMD_NEXACTF_V(nexact));
5573 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
5574 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
5575 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
5576 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5577 }
5578 
5579 /**
5580  *	t4_alloc_vi - allocate a virtual interface
5581  *	@adap: the adapter
5582  *	@mbox: mailbox to use for the FW command
5583  *	@port: physical port associated with the VI
5584  *	@pf: the PF owning the VI
5585  *	@vf: the VF owning the VI
5586  *	@nmac: number of MAC addresses needed (1 to 5)
5587  *	@mac: the MAC addresses of the VI
5588  *	@rss_size: size of RSS table slice associated with this VI
5589  *
5590  *	Allocates a virtual interface for the given physical port.  If @mac is
5591  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
5592  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
5593  *	stored consecutively so the space needed is @nmac * 6 bytes.
5594  *	Returns a negative error number or the non-negative VI id.
5595  */
5596 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
5597 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
5598 		unsigned int *rss_size)
5599 {
5600 	int ret;
5601 	struct fw_vi_cmd c;
5602 
5603 	memset(&c, 0, sizeof(c));
5604 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
5605 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
5606 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
5607 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
5608 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
5609 	c.nmac = nmac - 1;
5610 
5611 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5612 	if (ret)
5613 		return ret;
5614 
5615 	if (mac) {
5616 		memcpy(mac, c.mac, sizeof(c.mac));
5617 		switch (nmac) {
5618 		case 5:
5619 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
5620 		case 4:
5621 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
5622 		case 3:
5623 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
5624 		case 2:
5625 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
5626 		}
5627 	}
5628 	if (rss_size)
5629 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
5630 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
5631 }
5632 
5633 /**
5634  *	t4_free_vi - free a virtual interface
5635  *	@adap: the adapter
5636  *	@mbox: mailbox to use for the FW command
5637  *	@pf: the PF owning the VI
5638  *	@vf: the VF owning the VI
5639  *	@viid: virtual interface identifiler
5640  *
5641  *	Free a previously allocated virtual interface.
5642  */
5643 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
5644 	       unsigned int vf, unsigned int viid)
5645 {
5646 	struct fw_vi_cmd c;
5647 
5648 	memset(&c, 0, sizeof(c));
5649 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
5650 				  FW_CMD_REQUEST_F |
5651 				  FW_CMD_EXEC_F |
5652 				  FW_VI_CMD_PFN_V(pf) |
5653 				  FW_VI_CMD_VFN_V(vf));
5654 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
5655 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
5656 
5657 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5658 }
5659 
5660 /**
5661  *	t4_set_rxmode - set Rx properties of a virtual interface
5662  *	@adap: the adapter
5663  *	@mbox: mailbox to use for the FW command
5664  *	@viid: the VI id
5665  *	@mtu: the new MTU or -1
5666  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
5667  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
5668  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
5669  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
5670  *	@sleep_ok: if true we may sleep while awaiting command completion
5671  *
5672  *	Sets Rx properties of a virtual interface.
5673  */
5674 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
5675 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
5676 		  bool sleep_ok)
5677 {
5678 	struct fw_vi_rxmode_cmd c;
5679 
5680 	/* convert to FW values */
5681 	if (mtu < 0)
5682 		mtu = FW_RXMODE_MTU_NO_CHG;
5683 	if (promisc < 0)
5684 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
5685 	if (all_multi < 0)
5686 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
5687 	if (bcast < 0)
5688 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
5689 	if (vlanex < 0)
5690 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
5691 
5692 	memset(&c, 0, sizeof(c));
5693 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
5694 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5695 				   FW_VI_RXMODE_CMD_VIID_V(viid));
5696 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5697 	c.mtu_to_vlanexen =
5698 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
5699 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
5700 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
5701 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
5702 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
5703 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
5704 }
5705 
5706 /**
5707  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
5708  *	@adap: the adapter
5709  *	@mbox: mailbox to use for the FW command
5710  *	@viid: the VI id
5711  *	@free: if true any existing filters for this VI id are first removed
5712  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
5713  *	@addr: the MAC address(es)
5714  *	@idx: where to store the index of each allocated filter
5715  *	@hash: pointer to hash address filter bitmap
5716  *	@sleep_ok: call is allowed to sleep
5717  *
5718  *	Allocates an exact-match filter for each of the supplied addresses and
5719  *	sets it to the corresponding address.  If @idx is not %NULL it should
5720  *	have at least @naddr entries, each of which will be set to the index of
5721  *	the filter allocated for the corresponding MAC address.  If a filter
5722  *	could not be allocated for an address its index is set to 0xffff.
5723  *	If @hash is not %NULL addresses that fail to allocate an exact filter
5724  *	are hashed and update the hash filter bitmap pointed at by @hash.
5725  *
5726  *	Returns a negative error number or the number of filters allocated.
5727  */
5728 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
5729 		      unsigned int viid, bool free, unsigned int naddr,
5730 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
5731 {
5732 	int offset, ret = 0;
5733 	struct fw_vi_mac_cmd c;
5734 	unsigned int nfilters = 0;
5735 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
5736 	unsigned int rem = naddr;
5737 
5738 	if (naddr > max_naddr)
5739 		return -EINVAL;
5740 
5741 	for (offset = 0; offset < naddr ; /**/) {
5742 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
5743 					 rem : ARRAY_SIZE(c.u.exact));
5744 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
5745 						     u.exact[fw_naddr]), 16);
5746 		struct fw_vi_mac_exact *p;
5747 		int i;
5748 
5749 		memset(&c, 0, sizeof(c));
5750 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
5751 					   FW_CMD_REQUEST_F |
5752 					   FW_CMD_WRITE_F |
5753 					   FW_CMD_EXEC_V(free) |
5754 					   FW_VI_MAC_CMD_VIID_V(viid));
5755 		c.freemacs_to_len16 =
5756 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
5757 				    FW_CMD_LEN16_V(len16));
5758 
5759 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
5760 			p->valid_to_idx =
5761 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
5762 					    FW_VI_MAC_CMD_IDX_V(
5763 						    FW_VI_MAC_ADD_MAC));
5764 			memcpy(p->macaddr, addr[offset + i],
5765 			       sizeof(p->macaddr));
5766 		}
5767 
5768 		/* It's okay if we run out of space in our MAC address arena.
5769 		 * Some of the addresses we submit may get stored so we need
5770 		 * to run through the reply to see what the results were ...
5771 		 */
5772 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
5773 		if (ret && ret != -FW_ENOMEM)
5774 			break;
5775 
5776 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
5777 			u16 index = FW_VI_MAC_CMD_IDX_G(
5778 					be16_to_cpu(p->valid_to_idx));
5779 
5780 			if (idx)
5781 				idx[offset + i] = (index >= max_naddr ?
5782 						   0xffff : index);
5783 			if (index < max_naddr)
5784 				nfilters++;
5785 			else if (hash)
5786 				*hash |= (1ULL <<
5787 					  hash_mac_addr(addr[offset + i]));
5788 		}
5789 
5790 		free = false;
5791 		offset += fw_naddr;
5792 		rem -= fw_naddr;
5793 	}
5794 
5795 	if (ret == 0 || ret == -FW_ENOMEM)
5796 		ret = nfilters;
5797 	return ret;
5798 }
5799 
5800 /**
5801  *	t4_change_mac - modifies the exact-match filter for a MAC address
5802  *	@adap: the adapter
5803  *	@mbox: mailbox to use for the FW command
5804  *	@viid: the VI id
5805  *	@idx: index of existing filter for old value of MAC address, or -1
5806  *	@addr: the new MAC address value
5807  *	@persist: whether a new MAC allocation should be persistent
5808  *	@add_smt: if true also add the address to the HW SMT
5809  *
5810  *	Modifies an exact-match filter and sets it to the new MAC address.
5811  *	Note that in general it is not possible to modify the value of a given
5812  *	filter so the generic way to modify an address filter is to free the one
5813  *	being used by the old address value and allocate a new filter for the
5814  *	new address value.  @idx can be -1 if the address is a new addition.
5815  *
5816  *	Returns a negative error number or the index of the filter with the new
5817  *	MAC value.
5818  */
5819 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
5820 		  int idx, const u8 *addr, bool persist, bool add_smt)
5821 {
5822 	int ret, mode;
5823 	struct fw_vi_mac_cmd c;
5824 	struct fw_vi_mac_exact *p = c.u.exact;
5825 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
5826 
5827 	if (idx < 0)                             /* new allocation */
5828 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
5829 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
5830 
5831 	memset(&c, 0, sizeof(c));
5832 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
5833 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5834 				   FW_VI_MAC_CMD_VIID_V(viid));
5835 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
5836 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
5837 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
5838 				      FW_VI_MAC_CMD_IDX_V(idx));
5839 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
5840 
5841 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5842 	if (ret == 0) {
5843 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
5844 		if (ret >= max_mac_addr)
5845 			ret = -ENOMEM;
5846 	}
5847 	return ret;
5848 }
5849 
5850 /**
5851  *	t4_set_addr_hash - program the MAC inexact-match hash filter
5852  *	@adap: the adapter
5853  *	@mbox: mailbox to use for the FW command
5854  *	@viid: the VI id
5855  *	@ucast: whether the hash filter should also match unicast addresses
5856  *	@vec: the value to be written to the hash filter
5857  *	@sleep_ok: call is allowed to sleep
5858  *
5859  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
5860  */
5861 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
5862 		     bool ucast, u64 vec, bool sleep_ok)
5863 {
5864 	struct fw_vi_mac_cmd c;
5865 
5866 	memset(&c, 0, sizeof(c));
5867 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
5868 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5869 				   FW_VI_ENABLE_CMD_VIID_V(viid));
5870 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
5871 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
5872 					  FW_CMD_LEN16_V(1));
5873 	c.u.hash.hashvec = cpu_to_be64(vec);
5874 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
5875 }
5876 
5877 /**
5878  *      t4_enable_vi_params - enable/disable a virtual interface
5879  *      @adap: the adapter
5880  *      @mbox: mailbox to use for the FW command
5881  *      @viid: the VI id
5882  *      @rx_en: 1=enable Rx, 0=disable Rx
5883  *      @tx_en: 1=enable Tx, 0=disable Tx
5884  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
5885  *
5886  *      Enables/disables a virtual interface.  Note that setting DCB Enable
5887  *      only makes sense when enabling a Virtual Interface ...
5888  */
5889 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
5890 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
5891 {
5892 	struct fw_vi_enable_cmd c;
5893 
5894 	memset(&c, 0, sizeof(c));
5895 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
5896 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
5897 				   FW_VI_ENABLE_CMD_VIID_V(viid));
5898 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
5899 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
5900 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
5901 				     FW_LEN16(c));
5902 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
5903 }
5904 
5905 /**
5906  *	t4_enable_vi - enable/disable a virtual interface
5907  *	@adap: the adapter
5908  *	@mbox: mailbox to use for the FW command
5909  *	@viid: the VI id
5910  *	@rx_en: 1=enable Rx, 0=disable Rx
5911  *	@tx_en: 1=enable Tx, 0=disable Tx
5912  *
5913  *	Enables/disables a virtual interface.
5914  */
5915 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
5916 		 bool rx_en, bool tx_en)
5917 {
5918 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
5919 }
5920 
5921 /**
5922  *	t4_identify_port - identify a VI's port by blinking its LED
5923  *	@adap: the adapter
5924  *	@mbox: mailbox to use for the FW command
5925  *	@viid: the VI id
5926  *	@nblinks: how many times to blink LED at 2.5 Hz
5927  *
5928  *	Identifies a VI's port by blinking its LED.
5929  */
5930 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
5931 		     unsigned int nblinks)
5932 {
5933 	struct fw_vi_enable_cmd c;
5934 
5935 	memset(&c, 0, sizeof(c));
5936 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
5937 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
5938 				   FW_VI_ENABLE_CMD_VIID_V(viid));
5939 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
5940 	c.blinkdur = cpu_to_be16(nblinks);
5941 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5942 }
5943 
5944 /**
5945  *	t4_iq_free - free an ingress queue and its FLs
5946  *	@adap: the adapter
5947  *	@mbox: mailbox to use for the FW command
5948  *	@pf: the PF owning the queues
5949  *	@vf: the VF owning the queues
5950  *	@iqtype: the ingress queue type
5951  *	@iqid: ingress queue id
5952  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
5953  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
5954  *
5955  *	Frees an ingress queue and its associated FLs, if any.
5956  */
5957 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5958 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
5959 	       unsigned int fl0id, unsigned int fl1id)
5960 {
5961 	struct fw_iq_cmd c;
5962 
5963 	memset(&c, 0, sizeof(c));
5964 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
5965 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
5966 				  FW_IQ_CMD_VFN_V(vf));
5967 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
5968 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
5969 	c.iqid = cpu_to_be16(iqid);
5970 	c.fl0id = cpu_to_be16(fl0id);
5971 	c.fl1id = cpu_to_be16(fl1id);
5972 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5973 }
5974 
5975 /**
5976  *	t4_eth_eq_free - free an Ethernet egress queue
5977  *	@adap: the adapter
5978  *	@mbox: mailbox to use for the FW command
5979  *	@pf: the PF owning the queue
5980  *	@vf: the VF owning the queue
5981  *	@eqid: egress queue id
5982  *
5983  *	Frees an Ethernet egress queue.
5984  */
5985 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5986 		   unsigned int vf, unsigned int eqid)
5987 {
5988 	struct fw_eq_eth_cmd c;
5989 
5990 	memset(&c, 0, sizeof(c));
5991 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
5992 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
5993 				  FW_EQ_ETH_CMD_PFN_V(pf) |
5994 				  FW_EQ_ETH_CMD_VFN_V(vf));
5995 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
5996 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
5997 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5998 }
5999 
6000 /**
6001  *	t4_ctrl_eq_free - free a control egress queue
6002  *	@adap: the adapter
6003  *	@mbox: mailbox to use for the FW command
6004  *	@pf: the PF owning the queue
6005  *	@vf: the VF owning the queue
6006  *	@eqid: egress queue id
6007  *
6008  *	Frees a control egress queue.
6009  */
6010 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6011 		    unsigned int vf, unsigned int eqid)
6012 {
6013 	struct fw_eq_ctrl_cmd c;
6014 
6015 	memset(&c, 0, sizeof(c));
6016 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
6017 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6018 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
6019 				  FW_EQ_CTRL_CMD_VFN_V(vf));
6020 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
6021 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
6022 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6023 }
6024 
6025 /**
6026  *	t4_ofld_eq_free - free an offload egress queue
6027  *	@adap: the adapter
6028  *	@mbox: mailbox to use for the FW command
6029  *	@pf: the PF owning the queue
6030  *	@vf: the VF owning the queue
6031  *	@eqid: egress queue id
6032  *
6033  *	Frees a control egress queue.
6034  */
6035 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6036 		    unsigned int vf, unsigned int eqid)
6037 {
6038 	struct fw_eq_ofld_cmd c;
6039 
6040 	memset(&c, 0, sizeof(c));
6041 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
6042 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6043 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
6044 				  FW_EQ_OFLD_CMD_VFN_V(vf));
6045 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
6046 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
6047 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6048 }
6049 
6050 /**
6051  *	t4_handle_fw_rpl - process a FW reply message
6052  *	@adap: the adapter
6053  *	@rpl: start of the FW message
6054  *
6055  *	Processes a FW message, such as link state change messages.
6056  */
6057 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
6058 {
6059 	u8 opcode = *(const u8 *)rpl;
6060 
6061 	if (opcode == FW_PORT_CMD) {    /* link/module state change message */
6062 		int speed = 0, fc = 0;
6063 		const struct fw_port_cmd *p = (void *)rpl;
6064 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
6065 		int port = adap->chan_map[chan];
6066 		struct port_info *pi = adap2pinfo(adap, port);
6067 		struct link_config *lc = &pi->link_cfg;
6068 		u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
6069 		int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
6070 		u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
6071 
6072 		if (stat & FW_PORT_CMD_RXPAUSE_F)
6073 			fc |= PAUSE_RX;
6074 		if (stat & FW_PORT_CMD_TXPAUSE_F)
6075 			fc |= PAUSE_TX;
6076 		if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
6077 			speed = 100;
6078 		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
6079 			speed = 1000;
6080 		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
6081 			speed = 10000;
6082 		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
6083 			speed = 40000;
6084 
6085 		if (link_ok != lc->link_ok || speed != lc->speed ||
6086 		    fc != lc->fc) {                    /* something changed */
6087 			lc->link_ok = link_ok;
6088 			lc->speed = speed;
6089 			lc->fc = fc;
6090 			lc->supported = be16_to_cpu(p->u.info.pcap);
6091 			t4_os_link_changed(adap, port, link_ok);
6092 		}
6093 		if (mod != pi->mod_type) {
6094 			pi->mod_type = mod;
6095 			t4_os_portmod_changed(adap, port);
6096 		}
6097 	}
6098 	return 0;
6099 }
6100 
6101 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
6102 {
6103 	u16 val;
6104 
6105 	if (pci_is_pcie(adapter->pdev)) {
6106 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
6107 		p->speed = val & PCI_EXP_LNKSTA_CLS;
6108 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
6109 	}
6110 }
6111 
6112 /**
6113  *	init_link_config - initialize a link's SW state
6114  *	@lc: structure holding the link state
6115  *	@caps: link capabilities
6116  *
6117  *	Initializes the SW state maintained for each link, including the link's
6118  *	capabilities and default speed/flow-control/autonegotiation settings.
6119  */
6120 static void init_link_config(struct link_config *lc, unsigned int caps)
6121 {
6122 	lc->supported = caps;
6123 	lc->requested_speed = 0;
6124 	lc->speed = 0;
6125 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
6126 	if (lc->supported & FW_PORT_CAP_ANEG) {
6127 		lc->advertising = lc->supported & ADVERT_MASK;
6128 		lc->autoneg = AUTONEG_ENABLE;
6129 		lc->requested_fc |= PAUSE_AUTONEG;
6130 	} else {
6131 		lc->advertising = 0;
6132 		lc->autoneg = AUTONEG_DISABLE;
6133 	}
6134 }
6135 
6136 #define CIM_PF_NOACCESS 0xeeeeeeee
6137 
6138 int t4_wait_dev_ready(void __iomem *regs)
6139 {
6140 	u32 whoami;
6141 
6142 	whoami = readl(regs + PL_WHOAMI_A);
6143 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
6144 		return 0;
6145 
6146 	msleep(500);
6147 	whoami = readl(regs + PL_WHOAMI_A);
6148 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
6149 }
6150 
6151 struct flash_desc {
6152 	u32 vendor_and_model_id;
6153 	u32 size_mb;
6154 };
6155 
6156 static int get_flash_params(struct adapter *adap)
6157 {
6158 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
6159 	 * to the preexisting code.  All flash parts have 64KB sectors.
6160 	 */
6161 	static struct flash_desc supported_flash[] = {
6162 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
6163 	};
6164 
6165 	int ret;
6166 	u32 info;
6167 
6168 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
6169 	if (!ret)
6170 		ret = sf1_read(adap, 3, 0, 1, &info);
6171 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
6172 	if (ret)
6173 		return ret;
6174 
6175 	for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
6176 		if (supported_flash[ret].vendor_and_model_id == info) {
6177 			adap->params.sf_size = supported_flash[ret].size_mb;
6178 			adap->params.sf_nsec =
6179 				adap->params.sf_size / SF_SEC_SIZE;
6180 			return 0;
6181 		}
6182 
6183 	if ((info & 0xff) != 0x20)             /* not a Numonix flash */
6184 		return -EINVAL;
6185 	info >>= 16;                           /* log2 of size */
6186 	if (info >= 0x14 && info < 0x18)
6187 		adap->params.sf_nsec = 1 << (info - 16);
6188 	else if (info == 0x18)
6189 		adap->params.sf_nsec = 64;
6190 	else
6191 		return -EINVAL;
6192 	adap->params.sf_size = 1 << info;
6193 	adap->params.sf_fw_start =
6194 		t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
6195 
6196 	if (adap->params.sf_size < FLASH_MIN_SIZE)
6197 		dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
6198 			 adap->params.sf_size, FLASH_MIN_SIZE);
6199 	return 0;
6200 }
6201 
6202 static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
6203 {
6204 	u16 val;
6205 	u32 pcie_cap;
6206 
6207 	pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
6208 	if (pcie_cap) {
6209 		pci_read_config_word(adapter->pdev,
6210 				     pcie_cap + PCI_EXP_DEVCTL2, &val);
6211 		val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
6212 		val |= range;
6213 		pci_write_config_word(adapter->pdev,
6214 				      pcie_cap + PCI_EXP_DEVCTL2, val);
6215 	}
6216 }
6217 
6218 /**
6219  *	t4_prep_adapter - prepare SW and HW for operation
6220  *	@adapter: the adapter
6221  *	@reset: if true perform a HW reset
6222  *
6223  *	Initialize adapter SW state for the various HW modules, set initial
6224  *	values for some adapter tunables, take PHYs out of reset, and
6225  *	initialize the MDIO interface.
6226  */
6227 int t4_prep_adapter(struct adapter *adapter)
6228 {
6229 	int ret, ver;
6230 	uint16_t device_id;
6231 	u32 pl_rev;
6232 
6233 	get_pci_mode(adapter, &adapter->params.pci);
6234 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
6235 
6236 	ret = get_flash_params(adapter);
6237 	if (ret < 0) {
6238 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
6239 		return ret;
6240 	}
6241 
6242 	/* Retrieve adapter's device ID
6243 	 */
6244 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
6245 	ver = device_id >> 12;
6246 	adapter->params.chip = 0;
6247 	switch (ver) {
6248 	case CHELSIO_T4:
6249 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
6250 		adapter->params.arch.sge_fl_db = DBPRIO_F;
6251 		adapter->params.arch.mps_tcam_size =
6252 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
6253 		adapter->params.arch.mps_rplc_size = 128;
6254 		adapter->params.arch.nchan = NCHAN;
6255 		adapter->params.arch.vfcount = 128;
6256 		break;
6257 	case CHELSIO_T5:
6258 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
6259 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
6260 		adapter->params.arch.mps_tcam_size =
6261 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
6262 		adapter->params.arch.mps_rplc_size = 128;
6263 		adapter->params.arch.nchan = NCHAN;
6264 		adapter->params.arch.vfcount = 128;
6265 		break;
6266 	case CHELSIO_T6:
6267 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
6268 		adapter->params.arch.sge_fl_db = 0;
6269 		adapter->params.arch.mps_tcam_size =
6270 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
6271 		adapter->params.arch.mps_rplc_size = 256;
6272 		adapter->params.arch.nchan = 2;
6273 		adapter->params.arch.vfcount = 256;
6274 		break;
6275 	default:
6276 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
6277 			device_id);
6278 		return -EINVAL;
6279 	}
6280 
6281 	adapter->params.cim_la_size = CIMLA_SIZE;
6282 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
6283 
6284 	/*
6285 	 * Default port for debugging in case we can't reach FW.
6286 	 */
6287 	adapter->params.nports = 1;
6288 	adapter->params.portvec = 1;
6289 	adapter->params.vpd.cclk = 50000;
6290 
6291 	/* Set pci completion timeout value to 4 seconds. */
6292 	set_pcie_completion_timeout(adapter, 0xd);
6293 	return 0;
6294 }
6295 
6296 /**
6297  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
6298  *	@adapter: the adapter
6299  *	@qid: the Queue ID
6300  *	@qtype: the Ingress or Egress type for @qid
6301  *	@user: true if this request is for a user mode queue
6302  *	@pbar2_qoffset: BAR2 Queue Offset
6303  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
6304  *
6305  *	Returns the BAR2 SGE Queue Registers information associated with the
6306  *	indicated Absolute Queue ID.  These are passed back in return value
6307  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
6308  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
6309  *
6310  *	This may return an error which indicates that BAR2 SGE Queue
6311  *	registers aren't available.  If an error is not returned, then the
6312  *	following values are returned:
6313  *
6314  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
6315  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
6316  *
6317  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
6318  *	require the "Inferred Queue ID" ability may be used.  E.g. the
6319  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
6320  *	then these "Inferred Queue ID" register may not be used.
6321  */
6322 int t4_bar2_sge_qregs(struct adapter *adapter,
6323 		      unsigned int qid,
6324 		      enum t4_bar2_qtype qtype,
6325 		      int user,
6326 		      u64 *pbar2_qoffset,
6327 		      unsigned int *pbar2_qid)
6328 {
6329 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
6330 	u64 bar2_page_offset, bar2_qoffset;
6331 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
6332 
6333 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
6334 	if (!user && is_t4(adapter->params.chip))
6335 		return -EINVAL;
6336 
6337 	/* Get our SGE Page Size parameters.
6338 	 */
6339 	page_shift = adapter->params.sge.hps + 10;
6340 	page_size = 1 << page_shift;
6341 
6342 	/* Get the right Queues per Page parameters for our Queue.
6343 	 */
6344 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
6345 		     ? adapter->params.sge.eq_qpp
6346 		     : adapter->params.sge.iq_qpp);
6347 	qpp_mask = (1 << qpp_shift) - 1;
6348 
6349 	/*  Calculate the basics of the BAR2 SGE Queue register area:
6350 	 *  o The BAR2 page the Queue registers will be in.
6351 	 *  o The BAR2 Queue ID.
6352 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
6353 	 */
6354 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
6355 	bar2_qid = qid & qpp_mask;
6356 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
6357 
6358 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
6359 	 * hardware will infer the Absolute Queue ID simply from the writes to
6360 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
6361 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
6362 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
6363 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
6364 	 * from the BAR2 Page and BAR2 Queue ID.
6365 	 *
6366 	 * One important censequence of this is that some BAR2 SGE registers
6367 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
6368 	 * there.  But other registers synthesize the SGE Queue ID purely
6369 	 * from the writes to the registers -- the Write Combined Doorbell
6370 	 * Buffer is a good example.  These BAR2 SGE Registers are only
6371 	 * available for those BAR2 SGE Register areas where the SGE Absolute
6372 	 * Queue ID can be inferred from simple writes.
6373 	 */
6374 	bar2_qoffset = bar2_page_offset;
6375 	bar2_qinferred = (bar2_qid_offset < page_size);
6376 	if (bar2_qinferred) {
6377 		bar2_qoffset += bar2_qid_offset;
6378 		bar2_qid = 0;
6379 	}
6380 
6381 	*pbar2_qoffset = bar2_qoffset;
6382 	*pbar2_qid = bar2_qid;
6383 	return 0;
6384 }
6385 
6386 /**
6387  *	t4_init_devlog_params - initialize adapter->params.devlog
6388  *	@adap: the adapter
6389  *
6390  *	Initialize various fields of the adapter's Firmware Device Log
6391  *	Parameters structure.
6392  */
6393 int t4_init_devlog_params(struct adapter *adap)
6394 {
6395 	struct devlog_params *dparams = &adap->params.devlog;
6396 	u32 pf_dparams;
6397 	unsigned int devlog_meminfo;
6398 	struct fw_devlog_cmd devlog_cmd;
6399 	int ret;
6400 
6401 	/* If we're dealing with newer firmware, the Device Log Paramerters
6402 	 * are stored in a designated register which allows us to access the
6403 	 * Device Log even if we can't talk to the firmware.
6404 	 */
6405 	pf_dparams =
6406 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
6407 	if (pf_dparams) {
6408 		unsigned int nentries, nentries128;
6409 
6410 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
6411 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
6412 
6413 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
6414 		nentries = (nentries128 + 1) * 128;
6415 		dparams->size = nentries * sizeof(struct fw_devlog_e);
6416 
6417 		return 0;
6418 	}
6419 
6420 	/* Otherwise, ask the firmware for it's Device Log Parameters.
6421 	 */
6422 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
6423 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
6424 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
6425 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
6426 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
6427 			 &devlog_cmd);
6428 	if (ret)
6429 		return ret;
6430 
6431 	devlog_meminfo =
6432 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
6433 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
6434 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
6435 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
6436 
6437 	return 0;
6438 }
6439 
6440 /**
6441  *	t4_init_sge_params - initialize adap->params.sge
6442  *	@adapter: the adapter
6443  *
6444  *	Initialize various fields of the adapter's SGE Parameters structure.
6445  */
6446 int t4_init_sge_params(struct adapter *adapter)
6447 {
6448 	struct sge_params *sge_params = &adapter->params.sge;
6449 	u32 hps, qpp;
6450 	unsigned int s_hps, s_qpp;
6451 
6452 	/* Extract the SGE Page Size for our PF.
6453 	 */
6454 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
6455 	s_hps = (HOSTPAGESIZEPF0_S +
6456 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
6457 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
6458 
6459 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
6460 	 */
6461 	s_qpp = (QUEUESPERPAGEPF0_S +
6462 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
6463 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
6464 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
6465 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
6466 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
6467 
6468 	return 0;
6469 }
6470 
6471 /**
6472  *      t4_init_tp_params - initialize adap->params.tp
6473  *      @adap: the adapter
6474  *
6475  *      Initialize various fields of the adapter's TP Parameters structure.
6476  */
6477 int t4_init_tp_params(struct adapter *adap)
6478 {
6479 	int chan;
6480 	u32 v;
6481 
6482 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
6483 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
6484 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
6485 
6486 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
6487 	for (chan = 0; chan < NCHAN; chan++)
6488 		adap->params.tp.tx_modq[chan] = chan;
6489 
6490 	/* Cache the adapter's Compressed Filter Mode and global Incress
6491 	 * Configuration.
6492 	 */
6493 	if (t4_use_ldst(adap)) {
6494 		t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
6495 				TP_VLAN_PRI_MAP_A, 1);
6496 		t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
6497 				TP_INGRESS_CONFIG_A, 1);
6498 	} else {
6499 		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
6500 				 &adap->params.tp.vlan_pri_map, 1,
6501 				 TP_VLAN_PRI_MAP_A);
6502 		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
6503 				 &adap->params.tp.ingress_config, 1,
6504 				 TP_INGRESS_CONFIG_A);
6505 	}
6506 
6507 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
6508 	 * shift positions of several elements of the Compressed Filter Tuple
6509 	 * for this adapter which we need frequently ...
6510 	 */
6511 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
6512 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
6513 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
6514 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
6515 							       PROTOCOL_F);
6516 
6517 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
6518 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
6519 	 */
6520 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
6521 		adap->params.tp.vnic_shift = -1;
6522 
6523 	return 0;
6524 }
6525 
6526 /**
6527  *      t4_filter_field_shift - calculate filter field shift
6528  *      @adap: the adapter
6529  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
6530  *
6531  *      Return the shift position of a filter field within the Compressed
6532  *      Filter Tuple.  The filter field is specified via its selection bit
6533  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
6534  */
6535 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
6536 {
6537 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
6538 	unsigned int sel;
6539 	int field_shift;
6540 
6541 	if ((filter_mode & filter_sel) == 0)
6542 		return -1;
6543 
6544 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
6545 		switch (filter_mode & sel) {
6546 		case FCOE_F:
6547 			field_shift += FT_FCOE_W;
6548 			break;
6549 		case PORT_F:
6550 			field_shift += FT_PORT_W;
6551 			break;
6552 		case VNIC_ID_F:
6553 			field_shift += FT_VNIC_ID_W;
6554 			break;
6555 		case VLAN_F:
6556 			field_shift += FT_VLAN_W;
6557 			break;
6558 		case TOS_F:
6559 			field_shift += FT_TOS_W;
6560 			break;
6561 		case PROTOCOL_F:
6562 			field_shift += FT_PROTOCOL_W;
6563 			break;
6564 		case ETHERTYPE_F:
6565 			field_shift += FT_ETHERTYPE_W;
6566 			break;
6567 		case MACMATCH_F:
6568 			field_shift += FT_MACMATCH_W;
6569 			break;
6570 		case MPSHITTYPE_F:
6571 			field_shift += FT_MPSHITTYPE_W;
6572 			break;
6573 		case FRAGMENTATION_F:
6574 			field_shift += FT_FRAGMENTATION_W;
6575 			break;
6576 		}
6577 	}
6578 	return field_shift;
6579 }
6580 
6581 int t4_init_rss_mode(struct adapter *adap, int mbox)
6582 {
6583 	int i, ret;
6584 	struct fw_rss_vi_config_cmd rvc;
6585 
6586 	memset(&rvc, 0, sizeof(rvc));
6587 
6588 	for_each_port(adap, i) {
6589 		struct port_info *p = adap2pinfo(adap, i);
6590 
6591 		rvc.op_to_viid =
6592 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
6593 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
6594 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
6595 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
6596 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
6597 		if (ret)
6598 			return ret;
6599 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
6600 	}
6601 	return 0;
6602 }
6603 
6604 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
6605 {
6606 	u8 addr[6];
6607 	int ret, i, j = 0;
6608 	struct fw_port_cmd c;
6609 	struct fw_rss_vi_config_cmd rvc;
6610 
6611 	memset(&c, 0, sizeof(c));
6612 	memset(&rvc, 0, sizeof(rvc));
6613 
6614 	for_each_port(adap, i) {
6615 		unsigned int rss_size;
6616 		struct port_info *p = adap2pinfo(adap, i);
6617 
6618 		while ((adap->params.portvec & (1 << j)) == 0)
6619 			j++;
6620 
6621 		c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
6622 					     FW_CMD_REQUEST_F | FW_CMD_READ_F |
6623 					     FW_PORT_CMD_PORTID_V(j));
6624 		c.action_to_len16 = cpu_to_be32(
6625 			FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
6626 			FW_LEN16(c));
6627 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6628 		if (ret)
6629 			return ret;
6630 
6631 		ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
6632 		if (ret < 0)
6633 			return ret;
6634 
6635 		p->viid = ret;
6636 		p->tx_chan = j;
6637 		p->lport = j;
6638 		p->rss_size = rss_size;
6639 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
6640 		adap->port[i]->dev_port = j;
6641 
6642 		ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
6643 		p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
6644 			FW_PORT_CMD_MDIOADDR_G(ret) : -1;
6645 		p->port_type = FW_PORT_CMD_PTYPE_G(ret);
6646 		p->mod_type = FW_PORT_MOD_TYPE_NA;
6647 
6648 		rvc.op_to_viid =
6649 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
6650 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
6651 				    FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
6652 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
6653 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
6654 		if (ret)
6655 			return ret;
6656 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
6657 
6658 		init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
6659 		j++;
6660 	}
6661 	return 0;
6662 }
6663 
6664 /**
6665  *	t4_read_cimq_cfg - read CIM queue configuration
6666  *	@adap: the adapter
6667  *	@base: holds the queue base addresses in bytes
6668  *	@size: holds the queue sizes in bytes
6669  *	@thres: holds the queue full thresholds in bytes
6670  *
6671  *	Returns the current configuration of the CIM queues, starting with
6672  *	the IBQs, then the OBQs.
6673  */
6674 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
6675 {
6676 	unsigned int i, v;
6677 	int cim_num_obq = is_t4(adap->params.chip) ?
6678 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
6679 
6680 	for (i = 0; i < CIM_NUM_IBQ; i++) {
6681 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
6682 			     QUENUMSELECT_V(i));
6683 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
6684 		/* value is in 256-byte units */
6685 		*base++ = CIMQBASE_G(v) * 256;
6686 		*size++ = CIMQSIZE_G(v) * 256;
6687 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
6688 	}
6689 	for (i = 0; i < cim_num_obq; i++) {
6690 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
6691 			     QUENUMSELECT_V(i));
6692 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
6693 		/* value is in 256-byte units */
6694 		*base++ = CIMQBASE_G(v) * 256;
6695 		*size++ = CIMQSIZE_G(v) * 256;
6696 	}
6697 }
6698 
6699 /**
6700  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
6701  *	@adap: the adapter
6702  *	@qid: the queue index
6703  *	@data: where to store the queue contents
6704  *	@n: capacity of @data in 32-bit words
6705  *
6706  *	Reads the contents of the selected CIM queue starting at address 0 up
6707  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
6708  *	error and the number of 32-bit words actually read on success.
6709  */
6710 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
6711 {
6712 	int i, err, attempts;
6713 	unsigned int addr;
6714 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
6715 
6716 	if (qid > 5 || (n & 3))
6717 		return -EINVAL;
6718 
6719 	addr = qid * nwords;
6720 	if (n > nwords)
6721 		n = nwords;
6722 
6723 	/* It might take 3-10ms before the IBQ debug read access is allowed.
6724 	 * Wait for 1 Sec with a delay of 1 usec.
6725 	 */
6726 	attempts = 1000000;
6727 
6728 	for (i = 0; i < n; i++, addr++) {
6729 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
6730 			     IBQDBGEN_F);
6731 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
6732 				      attempts, 1);
6733 		if (err)
6734 			return err;
6735 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
6736 	}
6737 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
6738 	return i;
6739 }
6740 
6741 /**
6742  *	t4_read_cim_obq - read the contents of a CIM outbound queue
6743  *	@adap: the adapter
6744  *	@qid: the queue index
6745  *	@data: where to store the queue contents
6746  *	@n: capacity of @data in 32-bit words
6747  *
6748  *	Reads the contents of the selected CIM queue starting at address 0 up
6749  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
6750  *	error and the number of 32-bit words actually read on success.
6751  */
6752 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
6753 {
6754 	int i, err;
6755 	unsigned int addr, v, nwords;
6756 	int cim_num_obq = is_t4(adap->params.chip) ?
6757 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
6758 
6759 	if ((qid > (cim_num_obq - 1)) || (n & 3))
6760 		return -EINVAL;
6761 
6762 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
6763 		     QUENUMSELECT_V(qid));
6764 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
6765 
6766 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
6767 	nwords = CIMQSIZE_G(v) * 64;  /* same */
6768 	if (n > nwords)
6769 		n = nwords;
6770 
6771 	for (i = 0; i < n; i++, addr++) {
6772 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
6773 			     OBQDBGEN_F);
6774 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
6775 				      2, 1);
6776 		if (err)
6777 			return err;
6778 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
6779 	}
6780 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
6781 	return i;
6782 }
6783 
6784 /**
6785  *	t4_cim_read - read a block from CIM internal address space
6786  *	@adap: the adapter
6787  *	@addr: the start address within the CIM address space
6788  *	@n: number of words to read
6789  *	@valp: where to store the result
6790  *
6791  *	Reads a block of 4-byte words from the CIM intenal address space.
6792  */
6793 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
6794 		unsigned int *valp)
6795 {
6796 	int ret = 0;
6797 
6798 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
6799 		return -EBUSY;
6800 
6801 	for ( ; !ret && n--; addr += 4) {
6802 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
6803 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
6804 				      0, 5, 2);
6805 		if (!ret)
6806 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
6807 	}
6808 	return ret;
6809 }
6810 
6811 /**
6812  *	t4_cim_write - write a block into CIM internal address space
6813  *	@adap: the adapter
6814  *	@addr: the start address within the CIM address space
6815  *	@n: number of words to write
6816  *	@valp: set of values to write
6817  *
6818  *	Writes a block of 4-byte words into the CIM intenal address space.
6819  */
6820 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
6821 		 const unsigned int *valp)
6822 {
6823 	int ret = 0;
6824 
6825 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
6826 		return -EBUSY;
6827 
6828 	for ( ; !ret && n--; addr += 4) {
6829 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
6830 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
6831 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
6832 				      0, 5, 2);
6833 	}
6834 	return ret;
6835 }
6836 
6837 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
6838 			 unsigned int val)
6839 {
6840 	return t4_cim_write(adap, addr, 1, &val);
6841 }
6842 
6843 /**
6844  *	t4_cim_read_la - read CIM LA capture buffer
6845  *	@adap: the adapter
6846  *	@la_buf: where to store the LA data
6847  *	@wrptr: the HW write pointer within the capture buffer
6848  *
6849  *	Reads the contents of the CIM LA buffer with the most recent entry at
6850  *	the end	of the returned data and with the entry at @wrptr first.
6851  *	We try to leave the LA in the running state we find it in.
6852  */
6853 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
6854 {
6855 	int i, ret;
6856 	unsigned int cfg, val, idx;
6857 
6858 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
6859 	if (ret)
6860 		return ret;
6861 
6862 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
6863 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
6864 		if (ret)
6865 			return ret;
6866 	}
6867 
6868 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
6869 	if (ret)
6870 		goto restart;
6871 
6872 	idx = UPDBGLAWRPTR_G(val);
6873 	if (wrptr)
6874 		*wrptr = idx;
6875 
6876 	for (i = 0; i < adap->params.cim_la_size; i++) {
6877 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
6878 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
6879 		if (ret)
6880 			break;
6881 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
6882 		if (ret)
6883 			break;
6884 		if (val & UPDBGLARDEN_F) {
6885 			ret = -ETIMEDOUT;
6886 			break;
6887 		}
6888 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
6889 		if (ret)
6890 			break;
6891 		idx = (idx + 1) & UPDBGLARDPTR_M;
6892 	}
6893 restart:
6894 	if (cfg & UPDBGLAEN_F) {
6895 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
6896 				      cfg & ~UPDBGLARDEN_F);
6897 		if (!ret)
6898 			ret = r;
6899 	}
6900 	return ret;
6901 }
6902 
6903 /**
6904  *	t4_tp_read_la - read TP LA capture buffer
6905  *	@adap: the adapter
6906  *	@la_buf: where to store the LA data
6907  *	@wrptr: the HW write pointer within the capture buffer
6908  *
6909  *	Reads the contents of the TP LA buffer with the most recent entry at
6910  *	the end	of the returned data and with the entry at @wrptr first.
6911  *	We leave the LA in the running state we find it in.
6912  */
6913 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
6914 {
6915 	bool last_incomplete;
6916 	unsigned int i, cfg, val, idx;
6917 
6918 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
6919 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
6920 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
6921 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
6922 
6923 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
6924 	idx = DBGLAWPTR_G(val);
6925 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
6926 	if (last_incomplete)
6927 		idx = (idx + 1) & DBGLARPTR_M;
6928 	if (wrptr)
6929 		*wrptr = idx;
6930 
6931 	val &= 0xffff;
6932 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
6933 	val |= adap->params.tp.la_mask;
6934 
6935 	for (i = 0; i < TPLA_SIZE; i++) {
6936 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
6937 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
6938 		idx = (idx + 1) & DBGLARPTR_M;
6939 	}
6940 
6941 	/* Wipe out last entry if it isn't valid */
6942 	if (last_incomplete)
6943 		la_buf[TPLA_SIZE - 1] = ~0ULL;
6944 
6945 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
6946 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
6947 			     cfg | adap->params.tp.la_mask);
6948 }
6949 
6950 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
6951  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
6952  * state for more than the Warning Threshold then we'll issue a warning about
6953  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
6954  * appears to be hung every Warning Repeat second till the situation clears.
6955  * If the situation clears, we'll note that as well.
6956  */
6957 #define SGE_IDMA_WARN_THRESH 1
6958 #define SGE_IDMA_WARN_REPEAT 300
6959 
6960 /**
6961  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
6962  *	@adapter: the adapter
6963  *	@idma: the adapter IDMA Monitor state
6964  *
6965  *	Initialize the state of an SGE Ingress DMA Monitor.
6966  */
6967 void t4_idma_monitor_init(struct adapter *adapter,
6968 			  struct sge_idma_monitor_state *idma)
6969 {
6970 	/* Initialize the state variables for detecting an SGE Ingress DMA
6971 	 * hang.  The SGE has internal counters which count up on each clock
6972 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
6973 	 * same state they were on the previous clock tick.  The clock used is
6974 	 * the Core Clock so we have a limit on the maximum "time" they can
6975 	 * record; typically a very small number of seconds.  For instance,
6976 	 * with a 600MHz Core Clock, we can only count up to a bit more than
6977 	 * 7s.  So we'll synthesize a larger counter in order to not run the
6978 	 * risk of having the "timers" overflow and give us the flexibility to
6979 	 * maintain a Hung SGE State Machine of our own which operates across
6980 	 * a longer time frame.
6981 	 */
6982 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
6983 	idma->idma_stalled[0] = 0;
6984 	idma->idma_stalled[1] = 0;
6985 }
6986 
6987 /**
6988  *	t4_idma_monitor - monitor SGE Ingress DMA state
6989  *	@adapter: the adapter
6990  *	@idma: the adapter IDMA Monitor state
6991  *	@hz: number of ticks/second
6992  *	@ticks: number of ticks since the last IDMA Monitor call
6993  */
6994 void t4_idma_monitor(struct adapter *adapter,
6995 		     struct sge_idma_monitor_state *idma,
6996 		     int hz, int ticks)
6997 {
6998 	int i, idma_same_state_cnt[2];
6999 
7000 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
7001 	  * are counters inside the SGE which count up on each clock when the
7002 	  * SGE finds its Ingress DMA State Engines in the same states they
7003 	  * were in the previous clock.  The counters will peg out at
7004 	  * 0xffffffff without wrapping around so once they pass the 1s
7005 	  * threshold they'll stay above that till the IDMA state changes.
7006 	  */
7007 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
7008 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
7009 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
7010 
7011 	for (i = 0; i < 2; i++) {
7012 		u32 debug0, debug11;
7013 
7014 		/* If the Ingress DMA Same State Counter ("timer") is less
7015 		 * than 1s, then we can reset our synthesized Stall Timer and
7016 		 * continue.  If we have previously emitted warnings about a
7017 		 * potential stalled Ingress Queue, issue a note indicating
7018 		 * that the Ingress Queue has resumed forward progress.
7019 		 */
7020 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
7021 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
7022 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
7023 					 "resumed after %d seconds\n",
7024 					 i, idma->idma_qid[i],
7025 					 idma->idma_stalled[i] / hz);
7026 			idma->idma_stalled[i] = 0;
7027 			continue;
7028 		}
7029 
7030 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
7031 		 * domain.  The first time we get here it'll be because we
7032 		 * passed the 1s Threshold; each additional time it'll be
7033 		 * because the RX Timer Callback is being fired on its regular
7034 		 * schedule.
7035 		 *
7036 		 * If the stall is below our Potential Hung Ingress Queue
7037 		 * Warning Threshold, continue.
7038 		 */
7039 		if (idma->idma_stalled[i] == 0) {
7040 			idma->idma_stalled[i] = hz;
7041 			idma->idma_warn[i] = 0;
7042 		} else {
7043 			idma->idma_stalled[i] += ticks;
7044 			idma->idma_warn[i] -= ticks;
7045 		}
7046 
7047 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
7048 			continue;
7049 
7050 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
7051 		 */
7052 		if (idma->idma_warn[i] > 0)
7053 			continue;
7054 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
7055 
7056 		/* Read and save the SGE IDMA State and Queue ID information.
7057 		 * We do this every time in case it changes across time ...
7058 		 * can't be too careful ...
7059 		 */
7060 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
7061 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
7062 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
7063 
7064 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
7065 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
7066 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
7067 
7068 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
7069 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
7070 			 i, idma->idma_qid[i], idma->idma_state[i],
7071 			 idma->idma_stalled[i] / hz,
7072 			 debug0, debug11);
7073 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
7074 	}
7075 }
7076