1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/init.h> 36 #include <linux/delay.h> 37 #include "cxgb4.h" 38 #include "t4_regs.h" 39 #include "t4fw_api.h" 40 41 /** 42 * t4_wait_op_done_val - wait until an operation is completed 43 * @adapter: the adapter performing the operation 44 * @reg: the register to check for completion 45 * @mask: a single-bit field within @reg that indicates completion 46 * @polarity: the value of the field when the operation is completed 47 * @attempts: number of check iterations 48 * @delay: delay in usecs between iterations 49 * @valp: where to store the value of the register at completion time 50 * 51 * Wait until an operation is completed by checking a bit in a register 52 * up to @attempts times. If @valp is not NULL the value of the register 53 * at the time it indicated completion is stored there. Returns 0 if the 54 * operation completes and -EAGAIN otherwise. 55 */ 56 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 57 int polarity, int attempts, int delay, u32 *valp) 58 { 59 while (1) { 60 u32 val = t4_read_reg(adapter, reg); 61 62 if (!!(val & mask) == polarity) { 63 if (valp) 64 *valp = val; 65 return 0; 66 } 67 if (--attempts == 0) 68 return -EAGAIN; 69 if (delay) 70 udelay(delay); 71 } 72 } 73 74 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 75 int polarity, int attempts, int delay) 76 { 77 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 78 delay, NULL); 79 } 80 81 /** 82 * t4_set_reg_field - set a register field to a value 83 * @adapter: the adapter to program 84 * @addr: the register address 85 * @mask: specifies the portion of the register to modify 86 * @val: the new value for the register field 87 * 88 * Sets a register field specified by the supplied mask to the 89 * given value. 90 */ 91 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 92 u32 val) 93 { 94 u32 v = t4_read_reg(adapter, addr) & ~mask; 95 96 t4_write_reg(adapter, addr, v | val); 97 (void) t4_read_reg(adapter, addr); /* flush */ 98 } 99 100 /** 101 * t4_read_indirect - read indirectly addressed registers 102 * @adap: the adapter 103 * @addr_reg: register holding the indirect address 104 * @data_reg: register holding the value of the indirect register 105 * @vals: where the read register values are stored 106 * @nregs: how many indirect registers to read 107 * @start_idx: index of first indirect register to read 108 * 109 * Reads registers that are accessed indirectly through an address/data 110 * register pair. 111 */ 112 static void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 113 unsigned int data_reg, u32 *vals, 114 unsigned int nregs, unsigned int start_idx) 115 { 116 while (nregs--) { 117 t4_write_reg(adap, addr_reg, start_idx); 118 *vals++ = t4_read_reg(adap, data_reg); 119 start_idx++; 120 } 121 } 122 123 /** 124 * t4_write_indirect - write indirectly addressed registers 125 * @adap: the adapter 126 * @addr_reg: register holding the indirect addresses 127 * @data_reg: register holding the value for the indirect registers 128 * @vals: values to write 129 * @nregs: how many indirect registers to write 130 * @start_idx: address of first indirect register to write 131 * 132 * Writes a sequential block of registers that are accessed indirectly 133 * through an address/data register pair. 134 */ 135 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 136 unsigned int data_reg, const u32 *vals, 137 unsigned int nregs, unsigned int start_idx) 138 { 139 while (nregs--) { 140 t4_write_reg(adap, addr_reg, start_idx++); 141 t4_write_reg(adap, data_reg, *vals++); 142 } 143 } 144 145 /* 146 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 147 */ 148 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 149 u32 mbox_addr) 150 { 151 for ( ; nflit; nflit--, mbox_addr += 8) 152 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 153 } 154 155 /* 156 * Handle a FW assertion reported in a mailbox. 157 */ 158 static void fw_asrt(struct adapter *adap, u32 mbox_addr) 159 { 160 struct fw_debug_cmd asrt; 161 162 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); 163 dev_alert(adap->pdev_dev, 164 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 165 asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line), 166 ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y)); 167 } 168 169 static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg) 170 { 171 dev_err(adap->pdev_dev, 172 "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox, 173 (unsigned long long)t4_read_reg64(adap, data_reg), 174 (unsigned long long)t4_read_reg64(adap, data_reg + 8), 175 (unsigned long long)t4_read_reg64(adap, data_reg + 16), 176 (unsigned long long)t4_read_reg64(adap, data_reg + 24), 177 (unsigned long long)t4_read_reg64(adap, data_reg + 32), 178 (unsigned long long)t4_read_reg64(adap, data_reg + 40), 179 (unsigned long long)t4_read_reg64(adap, data_reg + 48), 180 (unsigned long long)t4_read_reg64(adap, data_reg + 56)); 181 } 182 183 /** 184 * t4_wr_mbox_meat - send a command to FW through the given mailbox 185 * @adap: the adapter 186 * @mbox: index of the mailbox to use 187 * @cmd: the command to write 188 * @size: command length in bytes 189 * @rpl: where to optionally store the reply 190 * @sleep_ok: if true we may sleep while awaiting command completion 191 * 192 * Sends the given command to FW through the selected mailbox and waits 193 * for the FW to execute the command. If @rpl is not %NULL it is used to 194 * store the FW's reply to the command. The command and its optional 195 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms 196 * to respond. @sleep_ok determines whether we may sleep while awaiting 197 * the response. If sleeping is allowed we use progressive backoff 198 * otherwise we spin. 199 * 200 * The return value is 0 on success or a negative errno on failure. A 201 * failure can happen either because we are not able to execute the 202 * command or FW executes it but signals an error. In the latter case 203 * the return value is the error code indicated by FW (negated). 204 */ 205 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 206 void *rpl, bool sleep_ok) 207 { 208 static const int delay[] = { 209 1, 1, 3, 5, 10, 10, 20, 50, 100, 200 210 }; 211 212 u32 v; 213 u64 res; 214 int i, ms, delay_idx; 215 const __be64 *p = cmd; 216 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA); 217 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL); 218 219 if ((size & 15) || size > MBOX_LEN) 220 return -EINVAL; 221 222 /* 223 * If the device is off-line, as in EEH, commands will time out. 224 * Fail them early so we don't waste time waiting. 225 */ 226 if (adap->pdev->error_state != pci_channel_io_normal) 227 return -EIO; 228 229 v = MBOWNER_GET(t4_read_reg(adap, ctl_reg)); 230 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 231 v = MBOWNER_GET(t4_read_reg(adap, ctl_reg)); 232 233 if (v != MBOX_OWNER_DRV) 234 return v ? -EBUSY : -ETIMEDOUT; 235 236 for (i = 0; i < size; i += 8) 237 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++)); 238 239 t4_write_reg(adap, ctl_reg, MBMSGVALID | MBOWNER(MBOX_OWNER_FW)); 240 t4_read_reg(adap, ctl_reg); /* flush write */ 241 242 delay_idx = 0; 243 ms = delay[0]; 244 245 for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) { 246 if (sleep_ok) { 247 ms = delay[delay_idx]; /* last element may repeat */ 248 if (delay_idx < ARRAY_SIZE(delay) - 1) 249 delay_idx++; 250 msleep(ms); 251 } else 252 mdelay(ms); 253 254 v = t4_read_reg(adap, ctl_reg); 255 if (MBOWNER_GET(v) == MBOX_OWNER_DRV) { 256 if (!(v & MBMSGVALID)) { 257 t4_write_reg(adap, ctl_reg, 0); 258 continue; 259 } 260 261 res = t4_read_reg64(adap, data_reg); 262 if (FW_CMD_OP_GET(res >> 32) == FW_DEBUG_CMD) { 263 fw_asrt(adap, data_reg); 264 res = FW_CMD_RETVAL(EIO); 265 } else if (rpl) 266 get_mbox_rpl(adap, rpl, size / 8, data_reg); 267 268 if (FW_CMD_RETVAL_GET((int)res)) 269 dump_mbox(adap, mbox, data_reg); 270 t4_write_reg(adap, ctl_reg, 0); 271 return -FW_CMD_RETVAL_GET((int)res); 272 } 273 } 274 275 dump_mbox(adap, mbox, data_reg); 276 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n", 277 *(const u8 *)cmd, mbox); 278 return -ETIMEDOUT; 279 } 280 281 /** 282 * t4_mc_read - read from MC through backdoor accesses 283 * @adap: the adapter 284 * @addr: address of first byte requested 285 * @data: 64 bytes of data containing the requested address 286 * @ecc: where to store the corresponding 64-bit ECC word 287 * 288 * Read 64 bytes of data from MC starting at a 64-byte-aligned address 289 * that covers the requested address @addr. If @parity is not %NULL it 290 * is assigned the 64-bit ECC word for the read data. 291 */ 292 int t4_mc_read(struct adapter *adap, u32 addr, __be32 *data, u64 *ecc) 293 { 294 int i; 295 296 if (t4_read_reg(adap, MC_BIST_CMD) & START_BIST) 297 return -EBUSY; 298 t4_write_reg(adap, MC_BIST_CMD_ADDR, addr & ~0x3fU); 299 t4_write_reg(adap, MC_BIST_CMD_LEN, 64); 300 t4_write_reg(adap, MC_BIST_DATA_PATTERN, 0xc); 301 t4_write_reg(adap, MC_BIST_CMD, BIST_OPCODE(1) | START_BIST | 302 BIST_CMD_GAP(1)); 303 i = t4_wait_op_done(adap, MC_BIST_CMD, START_BIST, 0, 10, 1); 304 if (i) 305 return i; 306 307 #define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA, i) 308 309 for (i = 15; i >= 0; i--) 310 *data++ = htonl(t4_read_reg(adap, MC_DATA(i))); 311 if (ecc) 312 *ecc = t4_read_reg64(adap, MC_DATA(16)); 313 #undef MC_DATA 314 return 0; 315 } 316 317 /** 318 * t4_edc_read - read from EDC through backdoor accesses 319 * @adap: the adapter 320 * @idx: which EDC to access 321 * @addr: address of first byte requested 322 * @data: 64 bytes of data containing the requested address 323 * @ecc: where to store the corresponding 64-bit ECC word 324 * 325 * Read 64 bytes of data from EDC starting at a 64-byte-aligned address 326 * that covers the requested address @addr. If @parity is not %NULL it 327 * is assigned the 64-bit ECC word for the read data. 328 */ 329 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc) 330 { 331 int i; 332 333 idx *= EDC_STRIDE; 334 if (t4_read_reg(adap, EDC_BIST_CMD + idx) & START_BIST) 335 return -EBUSY; 336 t4_write_reg(adap, EDC_BIST_CMD_ADDR + idx, addr & ~0x3fU); 337 t4_write_reg(adap, EDC_BIST_CMD_LEN + idx, 64); 338 t4_write_reg(adap, EDC_BIST_DATA_PATTERN + idx, 0xc); 339 t4_write_reg(adap, EDC_BIST_CMD + idx, 340 BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST); 341 i = t4_wait_op_done(adap, EDC_BIST_CMD + idx, START_BIST, 0, 10, 1); 342 if (i) 343 return i; 344 345 #define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA, i) + idx) 346 347 for (i = 15; i >= 0; i--) 348 *data++ = htonl(t4_read_reg(adap, EDC_DATA(i))); 349 if (ecc) 350 *ecc = t4_read_reg64(adap, EDC_DATA(16)); 351 #undef EDC_DATA 352 return 0; 353 } 354 355 /* 356 * t4_mem_win_rw - read/write memory through PCIE memory window 357 * @adap: the adapter 358 * @addr: address of first byte requested 359 * @data: MEMWIN0_APERTURE bytes of data containing the requested address 360 * @dir: direction of transfer 1 => read, 0 => write 361 * 362 * Read/write MEMWIN0_APERTURE bytes of data from MC starting at a 363 * MEMWIN0_APERTURE-byte-aligned address that covers the requested 364 * address @addr. 365 */ 366 static int t4_mem_win_rw(struct adapter *adap, u32 addr, __be32 *data, int dir) 367 { 368 int i; 369 370 /* 371 * Setup offset into PCIE memory window. Address must be a 372 * MEMWIN0_APERTURE-byte-aligned address. (Read back MA register to 373 * ensure that changes propagate before we attempt to use the new 374 * values.) 375 */ 376 t4_write_reg(adap, PCIE_MEM_ACCESS_OFFSET, 377 addr & ~(MEMWIN0_APERTURE - 1)); 378 t4_read_reg(adap, PCIE_MEM_ACCESS_OFFSET); 379 380 /* Collecting data 4 bytes at a time upto MEMWIN0_APERTURE */ 381 for (i = 0; i < MEMWIN0_APERTURE; i = i+0x4) { 382 if (dir) 383 *data++ = (__force __be32) t4_read_reg(adap, 384 (MEMWIN0_BASE + i)); 385 else 386 t4_write_reg(adap, (MEMWIN0_BASE + i), 387 (__force u32) *data++); 388 } 389 390 return 0; 391 } 392 393 /** 394 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window 395 * @adap: the adapter 396 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 397 * @addr: address within indicated memory type 398 * @len: amount of memory to transfer 399 * @buf: host memory buffer 400 * @dir: direction of transfer 1 => read, 0 => write 401 * 402 * Reads/writes an [almost] arbitrary memory region in the firmware: the 403 * firmware memory address, length and host buffer must be aligned on 404 * 32-bit boudaries. The memory is transferred as a raw byte sequence 405 * from/to the firmware's memory. If this memory contains data 406 * structures which contain multi-byte integers, it's the callers 407 * responsibility to perform appropriate byte order conversions. 408 */ 409 static int t4_memory_rw(struct adapter *adap, int mtype, u32 addr, u32 len, 410 __be32 *buf, int dir) 411 { 412 u32 pos, start, end, offset, memoffset; 413 int ret = 0; 414 __be32 *data; 415 416 /* 417 * Argument sanity checks ... 418 */ 419 if ((addr & 0x3) || (len & 0x3)) 420 return -EINVAL; 421 422 data = vmalloc(MEMWIN0_APERTURE); 423 if (!data) 424 return -ENOMEM; 425 426 /* 427 * Offset into the region of memory which is being accessed 428 * MEM_EDC0 = 0 429 * MEM_EDC1 = 1 430 * MEM_MC = 2 431 */ 432 memoffset = (mtype * (5 * 1024 * 1024)); 433 434 /* Determine the PCIE_MEM_ACCESS_OFFSET */ 435 addr = addr + memoffset; 436 437 /* 438 * The underlaying EDC/MC read routines read MEMWIN0_APERTURE bytes 439 * at a time so we need to round down the start and round up the end. 440 * We'll start copying out of the first line at (addr - start) a word 441 * at a time. 442 */ 443 start = addr & ~(MEMWIN0_APERTURE-1); 444 end = (addr + len + MEMWIN0_APERTURE-1) & ~(MEMWIN0_APERTURE-1); 445 offset = (addr - start)/sizeof(__be32); 446 447 for (pos = start; pos < end; pos += MEMWIN0_APERTURE, offset = 0) { 448 449 /* 450 * If we're writing, copy the data from the caller's memory 451 * buffer 452 */ 453 if (!dir) { 454 /* 455 * If we're doing a partial write, then we need to do 456 * a read-modify-write ... 457 */ 458 if (offset || len < MEMWIN0_APERTURE) { 459 ret = t4_mem_win_rw(adap, pos, data, 1); 460 if (ret) 461 break; 462 } 463 while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) && 464 len > 0) { 465 data[offset++] = *buf++; 466 len -= sizeof(__be32); 467 } 468 } 469 470 /* 471 * Transfer a block of memory and bail if there's an error. 472 */ 473 ret = t4_mem_win_rw(adap, pos, data, dir); 474 if (ret) 475 break; 476 477 /* 478 * If we're reading, copy the data into the caller's memory 479 * buffer. 480 */ 481 if (dir) 482 while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) && 483 len > 0) { 484 *buf++ = data[offset++]; 485 len -= sizeof(__be32); 486 } 487 } 488 489 vfree(data); 490 return ret; 491 } 492 493 int t4_memory_write(struct adapter *adap, int mtype, u32 addr, u32 len, 494 __be32 *buf) 495 { 496 return t4_memory_rw(adap, mtype, addr, len, buf, 0); 497 } 498 499 #define EEPROM_STAT_ADDR 0x7bfc 500 #define VPD_BASE 0 501 #define VPD_LEN 512 502 503 /** 504 * t4_seeprom_wp - enable/disable EEPROM write protection 505 * @adapter: the adapter 506 * @enable: whether to enable or disable write protection 507 * 508 * Enables or disables write protection on the serial EEPROM. 509 */ 510 int t4_seeprom_wp(struct adapter *adapter, bool enable) 511 { 512 unsigned int v = enable ? 0xc : 0; 513 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v); 514 return ret < 0 ? ret : 0; 515 } 516 517 /** 518 * get_vpd_params - read VPD parameters from VPD EEPROM 519 * @adapter: adapter to read 520 * @p: where to store the parameters 521 * 522 * Reads card parameters stored in VPD EEPROM. 523 */ 524 int get_vpd_params(struct adapter *adapter, struct vpd_params *p) 525 { 526 u32 cclk_param, cclk_val; 527 int i, ret; 528 int ec, sn; 529 u8 *vpd, csum; 530 unsigned int vpdr_len, kw_offset, id_len; 531 532 vpd = vmalloc(VPD_LEN); 533 if (!vpd) 534 return -ENOMEM; 535 536 ret = pci_read_vpd(adapter->pdev, VPD_BASE, VPD_LEN, vpd); 537 if (ret < 0) 538 goto out; 539 540 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) { 541 dev_err(adapter->pdev_dev, "missing VPD ID string\n"); 542 ret = -EINVAL; 543 goto out; 544 } 545 546 id_len = pci_vpd_lrdt_size(vpd); 547 if (id_len > ID_LEN) 548 id_len = ID_LEN; 549 550 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA); 551 if (i < 0) { 552 dev_err(adapter->pdev_dev, "missing VPD-R section\n"); 553 ret = -EINVAL; 554 goto out; 555 } 556 557 vpdr_len = pci_vpd_lrdt_size(&vpd[i]); 558 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE; 559 if (vpdr_len + kw_offset > VPD_LEN) { 560 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len); 561 ret = -EINVAL; 562 goto out; 563 } 564 565 #define FIND_VPD_KW(var, name) do { \ 566 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \ 567 if (var < 0) { \ 568 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \ 569 ret = -EINVAL; \ 570 goto out; \ 571 } \ 572 var += PCI_VPD_INFO_FLD_HDR_SIZE; \ 573 } while (0) 574 575 FIND_VPD_KW(i, "RV"); 576 for (csum = 0; i >= 0; i--) 577 csum += vpd[i]; 578 579 if (csum) { 580 dev_err(adapter->pdev_dev, 581 "corrupted VPD EEPROM, actual csum %u\n", csum); 582 ret = -EINVAL; 583 goto out; 584 } 585 586 FIND_VPD_KW(ec, "EC"); 587 FIND_VPD_KW(sn, "SN"); 588 #undef FIND_VPD_KW 589 590 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len); 591 strim(p->id); 592 memcpy(p->ec, vpd + ec, EC_LEN); 593 strim(p->ec); 594 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE); 595 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); 596 strim(p->sn); 597 598 /* 599 * Ask firmware for the Core Clock since it knows how to translate the 600 * Reference Clock ('V2') VPD field into a Core Clock value ... 601 */ 602 cclk_param = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 603 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK)); 604 ret = t4_query_params(adapter, adapter->mbox, 0, 0, 605 1, &cclk_param, &cclk_val); 606 607 out: 608 vfree(vpd); 609 if (ret) 610 return ret; 611 p->cclk = cclk_val; 612 613 return 0; 614 } 615 616 /* serial flash and firmware constants */ 617 enum { 618 SF_ATTEMPTS = 10, /* max retries for SF operations */ 619 620 /* flash command opcodes */ 621 SF_PROG_PAGE = 2, /* program page */ 622 SF_WR_DISABLE = 4, /* disable writes */ 623 SF_RD_STATUS = 5, /* read status register */ 624 SF_WR_ENABLE = 6, /* enable writes */ 625 SF_RD_DATA_FAST = 0xb, /* read flash */ 626 SF_RD_ID = 0x9f, /* read ID */ 627 SF_ERASE_SECTOR = 0xd8, /* erase sector */ 628 629 FW_MAX_SIZE = 512 * 1024, 630 }; 631 632 /** 633 * sf1_read - read data from the serial flash 634 * @adapter: the adapter 635 * @byte_cnt: number of bytes to read 636 * @cont: whether another operation will be chained 637 * @lock: whether to lock SF for PL access only 638 * @valp: where to store the read data 639 * 640 * Reads up to 4 bytes of data from the serial flash. The location of 641 * the read needs to be specified prior to calling this by issuing the 642 * appropriate commands to the serial flash. 643 */ 644 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 645 int lock, u32 *valp) 646 { 647 int ret; 648 649 if (!byte_cnt || byte_cnt > 4) 650 return -EINVAL; 651 if (t4_read_reg(adapter, SF_OP) & SF_BUSY) 652 return -EBUSY; 653 cont = cont ? SF_CONT : 0; 654 lock = lock ? SF_LOCK : 0; 655 t4_write_reg(adapter, SF_OP, lock | cont | BYTECNT(byte_cnt - 1)); 656 ret = t4_wait_op_done(adapter, SF_OP, SF_BUSY, 0, SF_ATTEMPTS, 5); 657 if (!ret) 658 *valp = t4_read_reg(adapter, SF_DATA); 659 return ret; 660 } 661 662 /** 663 * sf1_write - write data to the serial flash 664 * @adapter: the adapter 665 * @byte_cnt: number of bytes to write 666 * @cont: whether another operation will be chained 667 * @lock: whether to lock SF for PL access only 668 * @val: value to write 669 * 670 * Writes up to 4 bytes of data to the serial flash. The location of 671 * the write needs to be specified prior to calling this by issuing the 672 * appropriate commands to the serial flash. 673 */ 674 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 675 int lock, u32 val) 676 { 677 if (!byte_cnt || byte_cnt > 4) 678 return -EINVAL; 679 if (t4_read_reg(adapter, SF_OP) & SF_BUSY) 680 return -EBUSY; 681 cont = cont ? SF_CONT : 0; 682 lock = lock ? SF_LOCK : 0; 683 t4_write_reg(adapter, SF_DATA, val); 684 t4_write_reg(adapter, SF_OP, lock | 685 cont | BYTECNT(byte_cnt - 1) | OP_WR); 686 return t4_wait_op_done(adapter, SF_OP, SF_BUSY, 0, SF_ATTEMPTS, 5); 687 } 688 689 /** 690 * flash_wait_op - wait for a flash operation to complete 691 * @adapter: the adapter 692 * @attempts: max number of polls of the status register 693 * @delay: delay between polls in ms 694 * 695 * Wait for a flash operation to complete by polling the status register. 696 */ 697 static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 698 { 699 int ret; 700 u32 status; 701 702 while (1) { 703 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 704 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 705 return ret; 706 if (!(status & 1)) 707 return 0; 708 if (--attempts == 0) 709 return -EAGAIN; 710 if (delay) 711 msleep(delay); 712 } 713 } 714 715 /** 716 * t4_read_flash - read words from serial flash 717 * @adapter: the adapter 718 * @addr: the start address for the read 719 * @nwords: how many 32-bit words to read 720 * @data: where to store the read data 721 * @byte_oriented: whether to store data as bytes or as words 722 * 723 * Read the specified number of 32-bit words from the serial flash. 724 * If @byte_oriented is set the read data is stored as a byte array 725 * (i.e., big-endian), otherwise as 32-bit words in the platform's 726 * natural endianess. 727 */ 728 static int t4_read_flash(struct adapter *adapter, unsigned int addr, 729 unsigned int nwords, u32 *data, int byte_oriented) 730 { 731 int ret; 732 733 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 734 return -EINVAL; 735 736 addr = swab32(addr) | SF_RD_DATA_FAST; 737 738 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 739 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 740 return ret; 741 742 for ( ; nwords; nwords--, data++) { 743 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 744 if (nwords == 1) 745 t4_write_reg(adapter, SF_OP, 0); /* unlock SF */ 746 if (ret) 747 return ret; 748 if (byte_oriented) 749 *data = (__force __u32) (htonl(*data)); 750 } 751 return 0; 752 } 753 754 /** 755 * t4_write_flash - write up to a page of data to the serial flash 756 * @adapter: the adapter 757 * @addr: the start address to write 758 * @n: length of data to write in bytes 759 * @data: the data to write 760 * 761 * Writes up to a page of data (256 bytes) to the serial flash starting 762 * at the given address. All the data must be written to the same page. 763 */ 764 static int t4_write_flash(struct adapter *adapter, unsigned int addr, 765 unsigned int n, const u8 *data) 766 { 767 int ret; 768 u32 buf[64]; 769 unsigned int i, c, left, val, offset = addr & 0xff; 770 771 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 772 return -EINVAL; 773 774 val = swab32(addr) | SF_PROG_PAGE; 775 776 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 777 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 778 goto unlock; 779 780 for (left = n; left; left -= c) { 781 c = min(left, 4U); 782 for (val = 0, i = 0; i < c; ++i) 783 val = (val << 8) + *data++; 784 785 ret = sf1_write(adapter, c, c != left, 1, val); 786 if (ret) 787 goto unlock; 788 } 789 ret = flash_wait_op(adapter, 8, 1); 790 if (ret) 791 goto unlock; 792 793 t4_write_reg(adapter, SF_OP, 0); /* unlock SF */ 794 795 /* Read the page to verify the write succeeded */ 796 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); 797 if (ret) 798 return ret; 799 800 if (memcmp(data - n, (u8 *)buf + offset, n)) { 801 dev_err(adapter->pdev_dev, 802 "failed to correctly write the flash page at %#x\n", 803 addr); 804 return -EIO; 805 } 806 return 0; 807 808 unlock: 809 t4_write_reg(adapter, SF_OP, 0); /* unlock SF */ 810 return ret; 811 } 812 813 /** 814 * get_fw_version - read the firmware version 815 * @adapter: the adapter 816 * @vers: where to place the version 817 * 818 * Reads the FW version from flash. 819 */ 820 static int get_fw_version(struct adapter *adapter, u32 *vers) 821 { 822 return t4_read_flash(adapter, adapter->params.sf_fw_start + 823 offsetof(struct fw_hdr, fw_ver), 1, vers, 0); 824 } 825 826 /** 827 * get_tp_version - read the TP microcode version 828 * @adapter: the adapter 829 * @vers: where to place the version 830 * 831 * Reads the TP microcode version from flash. 832 */ 833 static int get_tp_version(struct adapter *adapter, u32 *vers) 834 { 835 return t4_read_flash(adapter, adapter->params.sf_fw_start + 836 offsetof(struct fw_hdr, tp_microcode_ver), 837 1, vers, 0); 838 } 839 840 /** 841 * t4_check_fw_version - check if the FW is compatible with this driver 842 * @adapter: the adapter 843 * 844 * Checks if an adapter's FW is compatible with the driver. Returns 0 845 * if there's exact match, a negative error if the version could not be 846 * read or there's a major version mismatch, and a positive value if the 847 * expected major version is found but there's a minor version mismatch. 848 */ 849 int t4_check_fw_version(struct adapter *adapter) 850 { 851 u32 api_vers[2]; 852 int ret, major, minor, micro; 853 854 ret = get_fw_version(adapter, &adapter->params.fw_vers); 855 if (!ret) 856 ret = get_tp_version(adapter, &adapter->params.tp_vers); 857 if (!ret) 858 ret = t4_read_flash(adapter, adapter->params.sf_fw_start + 859 offsetof(struct fw_hdr, intfver_nic), 860 2, api_vers, 1); 861 if (ret) 862 return ret; 863 864 major = FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers); 865 minor = FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers); 866 micro = FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers); 867 memcpy(adapter->params.api_vers, api_vers, 868 sizeof(adapter->params.api_vers)); 869 870 if (major != FW_VERSION_MAJOR) { /* major mismatch - fail */ 871 dev_err(adapter->pdev_dev, 872 "card FW has major version %u, driver wants %u\n", 873 major, FW_VERSION_MAJOR); 874 return -EINVAL; 875 } 876 877 if (minor == FW_VERSION_MINOR && micro == FW_VERSION_MICRO) 878 return 0; /* perfect match */ 879 880 /* Minor/micro version mismatch. Report it but often it's OK. */ 881 return 1; 882 } 883 884 /** 885 * t4_flash_erase_sectors - erase a range of flash sectors 886 * @adapter: the adapter 887 * @start: the first sector to erase 888 * @end: the last sector to erase 889 * 890 * Erases the sectors in the given inclusive range. 891 */ 892 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 893 { 894 int ret = 0; 895 896 while (start <= end) { 897 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 898 (ret = sf1_write(adapter, 4, 0, 1, 899 SF_ERASE_SECTOR | (start << 8))) != 0 || 900 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 901 dev_err(adapter->pdev_dev, 902 "erase of flash sector %d failed, error %d\n", 903 start, ret); 904 break; 905 } 906 start++; 907 } 908 t4_write_reg(adapter, SF_OP, 0); /* unlock SF */ 909 return ret; 910 } 911 912 /** 913 * t4_flash_cfg_addr - return the address of the flash configuration file 914 * @adapter: the adapter 915 * 916 * Return the address within the flash where the Firmware Configuration 917 * File is stored. 918 */ 919 unsigned int t4_flash_cfg_addr(struct adapter *adapter) 920 { 921 if (adapter->params.sf_size == 0x100000) 922 return FLASH_FPGA_CFG_START; 923 else 924 return FLASH_CFG_START; 925 } 926 927 /** 928 * t4_load_cfg - download config file 929 * @adap: the adapter 930 * @cfg_data: the cfg text file to write 931 * @size: text file size 932 * 933 * Write the supplied config text file to the card's serial flash. 934 */ 935 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 936 { 937 int ret, i, n; 938 unsigned int addr; 939 unsigned int flash_cfg_start_sec; 940 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 941 942 addr = t4_flash_cfg_addr(adap); 943 flash_cfg_start_sec = addr / SF_SEC_SIZE; 944 945 if (size > FLASH_CFG_MAX_SIZE) { 946 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n", 947 FLASH_CFG_MAX_SIZE); 948 return -EFBIG; 949 } 950 951 i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ 952 sf_sec_size); 953 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 954 flash_cfg_start_sec + i - 1); 955 /* 956 * If size == 0 then we're simply erasing the FLASH sectors associated 957 * with the on-adapter Firmware Configuration File. 958 */ 959 if (ret || size == 0) 960 goto out; 961 962 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 963 for (i = 0; i < size; i += SF_PAGE_SIZE) { 964 if ((size - i) < SF_PAGE_SIZE) 965 n = size - i; 966 else 967 n = SF_PAGE_SIZE; 968 ret = t4_write_flash(adap, addr, n, cfg_data); 969 if (ret) 970 goto out; 971 972 addr += SF_PAGE_SIZE; 973 cfg_data += SF_PAGE_SIZE; 974 } 975 976 out: 977 if (ret) 978 dev_err(adap->pdev_dev, "config file %s failed %d\n", 979 (size == 0 ? "clear" : "download"), ret); 980 return ret; 981 } 982 983 /** 984 * t4_load_fw - download firmware 985 * @adap: the adapter 986 * @fw_data: the firmware image to write 987 * @size: image size 988 * 989 * Write the supplied firmware image to the card's serial flash. 990 */ 991 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 992 { 993 u32 csum; 994 int ret, addr; 995 unsigned int i; 996 u8 first_page[SF_PAGE_SIZE]; 997 const __be32 *p = (const __be32 *)fw_data; 998 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 999 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 1000 unsigned int fw_img_start = adap->params.sf_fw_start; 1001 unsigned int fw_start_sec = fw_img_start / sf_sec_size; 1002 1003 if (!size) { 1004 dev_err(adap->pdev_dev, "FW image has no data\n"); 1005 return -EINVAL; 1006 } 1007 if (size & 511) { 1008 dev_err(adap->pdev_dev, 1009 "FW image size not multiple of 512 bytes\n"); 1010 return -EINVAL; 1011 } 1012 if (ntohs(hdr->len512) * 512 != size) { 1013 dev_err(adap->pdev_dev, 1014 "FW image size differs from size in FW header\n"); 1015 return -EINVAL; 1016 } 1017 if (size > FW_MAX_SIZE) { 1018 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n", 1019 FW_MAX_SIZE); 1020 return -EFBIG; 1021 } 1022 1023 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 1024 csum += ntohl(p[i]); 1025 1026 if (csum != 0xffffffff) { 1027 dev_err(adap->pdev_dev, 1028 "corrupted firmware image, checksum %#x\n", csum); 1029 return -EINVAL; 1030 } 1031 1032 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 1033 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 1034 if (ret) 1035 goto out; 1036 1037 /* 1038 * We write the correct version at the end so the driver can see a bad 1039 * version if the FW write fails. Start by writing a copy of the 1040 * first page with a bad version. 1041 */ 1042 memcpy(first_page, fw_data, SF_PAGE_SIZE); 1043 ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff); 1044 ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page); 1045 if (ret) 1046 goto out; 1047 1048 addr = fw_img_start; 1049 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 1050 addr += SF_PAGE_SIZE; 1051 fw_data += SF_PAGE_SIZE; 1052 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data); 1053 if (ret) 1054 goto out; 1055 } 1056 1057 ret = t4_write_flash(adap, 1058 fw_img_start + offsetof(struct fw_hdr, fw_ver), 1059 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver); 1060 out: 1061 if (ret) 1062 dev_err(adap->pdev_dev, "firmware download failed, error %d\n", 1063 ret); 1064 return ret; 1065 } 1066 1067 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\ 1068 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_ANEG) 1069 1070 /** 1071 * t4_link_start - apply link configuration to MAC/PHY 1072 * @phy: the PHY to setup 1073 * @mac: the MAC to setup 1074 * @lc: the requested link configuration 1075 * 1076 * Set up a port's MAC and PHY according to a desired link configuration. 1077 * - If the PHY can auto-negotiate first decide what to advertise, then 1078 * enable/disable auto-negotiation as desired, and reset. 1079 * - If the PHY does not auto-negotiate just reset it. 1080 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 1081 * otherwise do it later based on the outcome of auto-negotiation. 1082 */ 1083 int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port, 1084 struct link_config *lc) 1085 { 1086 struct fw_port_cmd c; 1087 unsigned int fc = 0, mdi = FW_PORT_MDI(FW_PORT_MDI_AUTO); 1088 1089 lc->link_ok = 0; 1090 if (lc->requested_fc & PAUSE_RX) 1091 fc |= FW_PORT_CAP_FC_RX; 1092 if (lc->requested_fc & PAUSE_TX) 1093 fc |= FW_PORT_CAP_FC_TX; 1094 1095 memset(&c, 0, sizeof(c)); 1096 c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST | 1097 FW_CMD_EXEC | FW_PORT_CMD_PORTID(port)); 1098 c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) | 1099 FW_LEN16(c)); 1100 1101 if (!(lc->supported & FW_PORT_CAP_ANEG)) { 1102 c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc); 1103 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); 1104 } else if (lc->autoneg == AUTONEG_DISABLE) { 1105 c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi); 1106 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); 1107 } else 1108 c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi); 1109 1110 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 1111 } 1112 1113 /** 1114 * t4_restart_aneg - restart autonegotiation 1115 * @adap: the adapter 1116 * @mbox: mbox to use for the FW command 1117 * @port: the port id 1118 * 1119 * Restarts autonegotiation for the selected port. 1120 */ 1121 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 1122 { 1123 struct fw_port_cmd c; 1124 1125 memset(&c, 0, sizeof(c)); 1126 c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST | 1127 FW_CMD_EXEC | FW_PORT_CMD_PORTID(port)); 1128 c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) | 1129 FW_LEN16(c)); 1130 c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG); 1131 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 1132 } 1133 1134 typedef void (*int_handler_t)(struct adapter *adap); 1135 1136 struct intr_info { 1137 unsigned int mask; /* bits to check in interrupt status */ 1138 const char *msg; /* message to print or NULL */ 1139 short stat_idx; /* stat counter to increment or -1 */ 1140 unsigned short fatal; /* whether the condition reported is fatal */ 1141 int_handler_t int_handler; /* platform-specific int handler */ 1142 }; 1143 1144 /** 1145 * t4_handle_intr_status - table driven interrupt handler 1146 * @adapter: the adapter that generated the interrupt 1147 * @reg: the interrupt status register to process 1148 * @acts: table of interrupt actions 1149 * 1150 * A table driven interrupt handler that applies a set of masks to an 1151 * interrupt status word and performs the corresponding actions if the 1152 * interrupts described by the mask have occurred. The actions include 1153 * optionally emitting a warning or alert message. The table is terminated 1154 * by an entry specifying mask 0. Returns the number of fatal interrupt 1155 * conditions. 1156 */ 1157 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, 1158 const struct intr_info *acts) 1159 { 1160 int fatal = 0; 1161 unsigned int mask = 0; 1162 unsigned int status = t4_read_reg(adapter, reg); 1163 1164 for ( ; acts->mask; ++acts) { 1165 if (!(status & acts->mask)) 1166 continue; 1167 if (acts->fatal) { 1168 fatal++; 1169 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 1170 status & acts->mask); 1171 } else if (acts->msg && printk_ratelimit()) 1172 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 1173 status & acts->mask); 1174 if (acts->int_handler) 1175 acts->int_handler(adapter); 1176 mask |= acts->mask; 1177 } 1178 status &= mask; 1179 if (status) /* clear processed interrupts */ 1180 t4_write_reg(adapter, reg, status); 1181 return fatal; 1182 } 1183 1184 /* 1185 * Interrupt handler for the PCIE module. 1186 */ 1187 static void pcie_intr_handler(struct adapter *adapter) 1188 { 1189 static const struct intr_info sysbus_intr_info[] = { 1190 { RNPP, "RXNP array parity error", -1, 1 }, 1191 { RPCP, "RXPC array parity error", -1, 1 }, 1192 { RCIP, "RXCIF array parity error", -1, 1 }, 1193 { RCCP, "Rx completions control array parity error", -1, 1 }, 1194 { RFTP, "RXFT array parity error", -1, 1 }, 1195 { 0 } 1196 }; 1197 static const struct intr_info pcie_port_intr_info[] = { 1198 { TPCP, "TXPC array parity error", -1, 1 }, 1199 { TNPP, "TXNP array parity error", -1, 1 }, 1200 { TFTP, "TXFT array parity error", -1, 1 }, 1201 { TCAP, "TXCA array parity error", -1, 1 }, 1202 { TCIP, "TXCIF array parity error", -1, 1 }, 1203 { RCAP, "RXCA array parity error", -1, 1 }, 1204 { OTDD, "outbound request TLP discarded", -1, 1 }, 1205 { RDPE, "Rx data parity error", -1, 1 }, 1206 { TDUE, "Tx uncorrectable data error", -1, 1 }, 1207 { 0 } 1208 }; 1209 static const struct intr_info pcie_intr_info[] = { 1210 { MSIADDRLPERR, "MSI AddrL parity error", -1, 1 }, 1211 { MSIADDRHPERR, "MSI AddrH parity error", -1, 1 }, 1212 { MSIDATAPERR, "MSI data parity error", -1, 1 }, 1213 { MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 }, 1214 { MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 }, 1215 { MSIXDATAPERR, "MSI-X data parity error", -1, 1 }, 1216 { MSIXDIPERR, "MSI-X DI parity error", -1, 1 }, 1217 { PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 }, 1218 { PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 }, 1219 { TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 }, 1220 { CCNTPERR, "PCI CMD channel count parity error", -1, 1 }, 1221 { CREQPERR, "PCI CMD channel request parity error", -1, 1 }, 1222 { CRSPPERR, "PCI CMD channel response parity error", -1, 1 }, 1223 { DCNTPERR, "PCI DMA channel count parity error", -1, 1 }, 1224 { DREQPERR, "PCI DMA channel request parity error", -1, 1 }, 1225 { DRSPPERR, "PCI DMA channel response parity error", -1, 1 }, 1226 { HCNTPERR, "PCI HMA channel count parity error", -1, 1 }, 1227 { HREQPERR, "PCI HMA channel request parity error", -1, 1 }, 1228 { HRSPPERR, "PCI HMA channel response parity error", -1, 1 }, 1229 { CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 }, 1230 { FIDPERR, "PCI FID parity error", -1, 1 }, 1231 { INTXCLRPERR, "PCI INTx clear parity error", -1, 1 }, 1232 { MATAGPERR, "PCI MA tag parity error", -1, 1 }, 1233 { PIOTAGPERR, "PCI PIO tag parity error", -1, 1 }, 1234 { RXCPLPERR, "PCI Rx completion parity error", -1, 1 }, 1235 { RXWRPERR, "PCI Rx write parity error", -1, 1 }, 1236 { RPLPERR, "PCI replay buffer parity error", -1, 1 }, 1237 { PCIESINT, "PCI core secondary fault", -1, 1 }, 1238 { PCIEPINT, "PCI core primary fault", -1, 1 }, 1239 { UNXSPLCPLERR, "PCI unexpected split completion error", -1, 0 }, 1240 { 0 } 1241 }; 1242 1243 int fat; 1244 1245 fat = t4_handle_intr_status(adapter, 1246 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS, 1247 sysbus_intr_info) + 1248 t4_handle_intr_status(adapter, 1249 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS, 1250 pcie_port_intr_info) + 1251 t4_handle_intr_status(adapter, PCIE_INT_CAUSE, pcie_intr_info); 1252 if (fat) 1253 t4_fatal_err(adapter); 1254 } 1255 1256 /* 1257 * TP interrupt handler. 1258 */ 1259 static void tp_intr_handler(struct adapter *adapter) 1260 { 1261 static const struct intr_info tp_intr_info[] = { 1262 { 0x3fffffff, "TP parity error", -1, 1 }, 1263 { FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 }, 1264 { 0 } 1265 }; 1266 1267 if (t4_handle_intr_status(adapter, TP_INT_CAUSE, tp_intr_info)) 1268 t4_fatal_err(adapter); 1269 } 1270 1271 /* 1272 * SGE interrupt handler. 1273 */ 1274 static void sge_intr_handler(struct adapter *adapter) 1275 { 1276 u64 v; 1277 1278 static const struct intr_info sge_intr_info[] = { 1279 { ERR_CPL_EXCEED_IQE_SIZE, 1280 "SGE received CPL exceeding IQE size", -1, 1 }, 1281 { ERR_INVALID_CIDX_INC, 1282 "SGE GTS CIDX increment too large", -1, 0 }, 1283 { ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 }, 1284 { DBFIFO_LP_INT, NULL, -1, 0, t4_db_full }, 1285 { DBFIFO_HP_INT, NULL, -1, 0, t4_db_full }, 1286 { ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped }, 1287 { ERR_DATA_CPL_ON_HIGH_QID1 | ERR_DATA_CPL_ON_HIGH_QID0, 1288 "SGE IQID > 1023 received CPL for FL", -1, 0 }, 1289 { ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1, 1290 0 }, 1291 { ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1, 1292 0 }, 1293 { ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1, 1294 0 }, 1295 { ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1, 1296 0 }, 1297 { ERR_ING_CTXT_PRIO, 1298 "SGE too many priority ingress contexts", -1, 0 }, 1299 { ERR_EGR_CTXT_PRIO, 1300 "SGE too many priority egress contexts", -1, 0 }, 1301 { INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 }, 1302 { EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 }, 1303 { 0 } 1304 }; 1305 1306 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1) | 1307 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2) << 32); 1308 if (v) { 1309 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n", 1310 (unsigned long long)v); 1311 t4_write_reg(adapter, SGE_INT_CAUSE1, v); 1312 t4_write_reg(adapter, SGE_INT_CAUSE2, v >> 32); 1313 } 1314 1315 if (t4_handle_intr_status(adapter, SGE_INT_CAUSE3, sge_intr_info) || 1316 v != 0) 1317 t4_fatal_err(adapter); 1318 } 1319 1320 /* 1321 * CIM interrupt handler. 1322 */ 1323 static void cim_intr_handler(struct adapter *adapter) 1324 { 1325 static const struct intr_info cim_intr_info[] = { 1326 { PREFDROPINT, "CIM control register prefetch drop", -1, 1 }, 1327 { OBQPARERR, "CIM OBQ parity error", -1, 1 }, 1328 { IBQPARERR, "CIM IBQ parity error", -1, 1 }, 1329 { MBUPPARERR, "CIM mailbox uP parity error", -1, 1 }, 1330 { MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 }, 1331 { TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 }, 1332 { TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 }, 1333 { 0 } 1334 }; 1335 static const struct intr_info cim_upintr_info[] = { 1336 { RSVDSPACEINT, "CIM reserved space access", -1, 1 }, 1337 { ILLTRANSINT, "CIM illegal transaction", -1, 1 }, 1338 { ILLWRINT, "CIM illegal write", -1, 1 }, 1339 { ILLRDINT, "CIM illegal read", -1, 1 }, 1340 { ILLRDBEINT, "CIM illegal read BE", -1, 1 }, 1341 { ILLWRBEINT, "CIM illegal write BE", -1, 1 }, 1342 { SGLRDBOOTINT, "CIM single read from boot space", -1, 1 }, 1343 { SGLWRBOOTINT, "CIM single write to boot space", -1, 1 }, 1344 { BLKWRBOOTINT, "CIM block write to boot space", -1, 1 }, 1345 { SGLRDFLASHINT, "CIM single read from flash space", -1, 1 }, 1346 { SGLWRFLASHINT, "CIM single write to flash space", -1, 1 }, 1347 { BLKWRFLASHINT, "CIM block write to flash space", -1, 1 }, 1348 { SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 }, 1349 { SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 }, 1350 { BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 }, 1351 { BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 }, 1352 { SGLRDCTLINT , "CIM single read from CTL space", -1, 1 }, 1353 { SGLWRCTLINT , "CIM single write to CTL space", -1, 1 }, 1354 { BLKRDCTLINT , "CIM block read from CTL space", -1, 1 }, 1355 { BLKWRCTLINT , "CIM block write to CTL space", -1, 1 }, 1356 { SGLRDPLINT , "CIM single read from PL space", -1, 1 }, 1357 { SGLWRPLINT , "CIM single write to PL space", -1, 1 }, 1358 { BLKRDPLINT , "CIM block read from PL space", -1, 1 }, 1359 { BLKWRPLINT , "CIM block write to PL space", -1, 1 }, 1360 { REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 }, 1361 { RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 }, 1362 { TIMEOUTINT , "CIM PIF timeout", -1, 1 }, 1363 { TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 }, 1364 { 0 } 1365 }; 1366 1367 int fat; 1368 1369 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE, 1370 cim_intr_info) + 1371 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE, 1372 cim_upintr_info); 1373 if (fat) 1374 t4_fatal_err(adapter); 1375 } 1376 1377 /* 1378 * ULP RX interrupt handler. 1379 */ 1380 static void ulprx_intr_handler(struct adapter *adapter) 1381 { 1382 static const struct intr_info ulprx_intr_info[] = { 1383 { 0x1800000, "ULPRX context error", -1, 1 }, 1384 { 0x7fffff, "ULPRX parity error", -1, 1 }, 1385 { 0 } 1386 }; 1387 1388 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE, ulprx_intr_info)) 1389 t4_fatal_err(adapter); 1390 } 1391 1392 /* 1393 * ULP TX interrupt handler. 1394 */ 1395 static void ulptx_intr_handler(struct adapter *adapter) 1396 { 1397 static const struct intr_info ulptx_intr_info[] = { 1398 { PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1, 1399 0 }, 1400 { PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1, 1401 0 }, 1402 { PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1, 1403 0 }, 1404 { PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1, 1405 0 }, 1406 { 0xfffffff, "ULPTX parity error", -1, 1 }, 1407 { 0 } 1408 }; 1409 1410 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE, ulptx_intr_info)) 1411 t4_fatal_err(adapter); 1412 } 1413 1414 /* 1415 * PM TX interrupt handler. 1416 */ 1417 static void pmtx_intr_handler(struct adapter *adapter) 1418 { 1419 static const struct intr_info pmtx_intr_info[] = { 1420 { PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 }, 1421 { PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 }, 1422 { PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 }, 1423 { ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 }, 1424 { PMTX_FRAMING_ERROR, "PMTX framing error", -1, 1 }, 1425 { OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 }, 1426 { DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1, 1 }, 1427 { ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 }, 1428 { C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1}, 1429 { 0 } 1430 }; 1431 1432 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE, pmtx_intr_info)) 1433 t4_fatal_err(adapter); 1434 } 1435 1436 /* 1437 * PM RX interrupt handler. 1438 */ 1439 static void pmrx_intr_handler(struct adapter *adapter) 1440 { 1441 static const struct intr_info pmrx_intr_info[] = { 1442 { ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 }, 1443 { PMRX_FRAMING_ERROR, "PMRX framing error", -1, 1 }, 1444 { OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 }, 1445 { DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1, 1 }, 1446 { IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 }, 1447 { E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1}, 1448 { 0 } 1449 }; 1450 1451 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE, pmrx_intr_info)) 1452 t4_fatal_err(adapter); 1453 } 1454 1455 /* 1456 * CPL switch interrupt handler. 1457 */ 1458 static void cplsw_intr_handler(struct adapter *adapter) 1459 { 1460 static const struct intr_info cplsw_intr_info[] = { 1461 { CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 }, 1462 { CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 }, 1463 { TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 }, 1464 { SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 }, 1465 { CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 }, 1466 { ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 }, 1467 { 0 } 1468 }; 1469 1470 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE, cplsw_intr_info)) 1471 t4_fatal_err(adapter); 1472 } 1473 1474 /* 1475 * LE interrupt handler. 1476 */ 1477 static void le_intr_handler(struct adapter *adap) 1478 { 1479 static const struct intr_info le_intr_info[] = { 1480 { LIPMISS, "LE LIP miss", -1, 0 }, 1481 { LIP0, "LE 0 LIP error", -1, 0 }, 1482 { PARITYERR, "LE parity error", -1, 1 }, 1483 { UNKNOWNCMD, "LE unknown command", -1, 1 }, 1484 { REQQPARERR, "LE request queue parity error", -1, 1 }, 1485 { 0 } 1486 }; 1487 1488 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE, le_intr_info)) 1489 t4_fatal_err(adap); 1490 } 1491 1492 /* 1493 * MPS interrupt handler. 1494 */ 1495 static void mps_intr_handler(struct adapter *adapter) 1496 { 1497 static const struct intr_info mps_rx_intr_info[] = { 1498 { 0xffffff, "MPS Rx parity error", -1, 1 }, 1499 { 0 } 1500 }; 1501 static const struct intr_info mps_tx_intr_info[] = { 1502 { TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 }, 1503 { NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 1504 { TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 }, 1505 { TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 }, 1506 { BUBBLE, "MPS Tx underflow", -1, 1 }, 1507 { SECNTERR, "MPS Tx SOP/EOP error", -1, 1 }, 1508 { FRMERR, "MPS Tx framing error", -1, 1 }, 1509 { 0 } 1510 }; 1511 static const struct intr_info mps_trc_intr_info[] = { 1512 { FILTMEM, "MPS TRC filter parity error", -1, 1 }, 1513 { PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 }, 1514 { MISCPERR, "MPS TRC misc parity error", -1, 1 }, 1515 { 0 } 1516 }; 1517 static const struct intr_info mps_stat_sram_intr_info[] = { 1518 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, 1519 { 0 } 1520 }; 1521 static const struct intr_info mps_stat_tx_intr_info[] = { 1522 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, 1523 { 0 } 1524 }; 1525 static const struct intr_info mps_stat_rx_intr_info[] = { 1526 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, 1527 { 0 } 1528 }; 1529 static const struct intr_info mps_cls_intr_info[] = { 1530 { MATCHSRAM, "MPS match SRAM parity error", -1, 1 }, 1531 { MATCHTCAM, "MPS match TCAM parity error", -1, 1 }, 1532 { HASHSRAM, "MPS hash SRAM parity error", -1, 1 }, 1533 { 0 } 1534 }; 1535 1536 int fat; 1537 1538 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE, 1539 mps_rx_intr_info) + 1540 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE, 1541 mps_tx_intr_info) + 1542 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE, 1543 mps_trc_intr_info) + 1544 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM, 1545 mps_stat_sram_intr_info) + 1546 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO, 1547 mps_stat_tx_intr_info) + 1548 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO, 1549 mps_stat_rx_intr_info) + 1550 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE, 1551 mps_cls_intr_info); 1552 1553 t4_write_reg(adapter, MPS_INT_CAUSE, CLSINT | TRCINT | 1554 RXINT | TXINT | STATINT); 1555 t4_read_reg(adapter, MPS_INT_CAUSE); /* flush */ 1556 if (fat) 1557 t4_fatal_err(adapter); 1558 } 1559 1560 #define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE) 1561 1562 /* 1563 * EDC/MC interrupt handler. 1564 */ 1565 static void mem_intr_handler(struct adapter *adapter, int idx) 1566 { 1567 static const char name[3][5] = { "EDC0", "EDC1", "MC" }; 1568 1569 unsigned int addr, cnt_addr, v; 1570 1571 if (idx <= MEM_EDC1) { 1572 addr = EDC_REG(EDC_INT_CAUSE, idx); 1573 cnt_addr = EDC_REG(EDC_ECC_STATUS, idx); 1574 } else { 1575 addr = MC_INT_CAUSE; 1576 cnt_addr = MC_ECC_STATUS; 1577 } 1578 1579 v = t4_read_reg(adapter, addr) & MEM_INT_MASK; 1580 if (v & PERR_INT_CAUSE) 1581 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n", 1582 name[idx]); 1583 if (v & ECC_CE_INT_CAUSE) { 1584 u32 cnt = ECC_CECNT_GET(t4_read_reg(adapter, cnt_addr)); 1585 1586 t4_write_reg(adapter, cnt_addr, ECC_CECNT_MASK); 1587 if (printk_ratelimit()) 1588 dev_warn(adapter->pdev_dev, 1589 "%u %s correctable ECC data error%s\n", 1590 cnt, name[idx], cnt > 1 ? "s" : ""); 1591 } 1592 if (v & ECC_UE_INT_CAUSE) 1593 dev_alert(adapter->pdev_dev, 1594 "%s uncorrectable ECC data error\n", name[idx]); 1595 1596 t4_write_reg(adapter, addr, v); 1597 if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE)) 1598 t4_fatal_err(adapter); 1599 } 1600 1601 /* 1602 * MA interrupt handler. 1603 */ 1604 static void ma_intr_handler(struct adapter *adap) 1605 { 1606 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE); 1607 1608 if (status & MEM_PERR_INT_CAUSE) 1609 dev_alert(adap->pdev_dev, 1610 "MA parity error, parity status %#x\n", 1611 t4_read_reg(adap, MA_PARITY_ERROR_STATUS)); 1612 if (status & MEM_WRAP_INT_CAUSE) { 1613 v = t4_read_reg(adap, MA_INT_WRAP_STATUS); 1614 dev_alert(adap->pdev_dev, "MA address wrap-around error by " 1615 "client %u to address %#x\n", 1616 MEM_WRAP_CLIENT_NUM_GET(v), 1617 MEM_WRAP_ADDRESS_GET(v) << 4); 1618 } 1619 t4_write_reg(adap, MA_INT_CAUSE, status); 1620 t4_fatal_err(adap); 1621 } 1622 1623 /* 1624 * SMB interrupt handler. 1625 */ 1626 static void smb_intr_handler(struct adapter *adap) 1627 { 1628 static const struct intr_info smb_intr_info[] = { 1629 { MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 }, 1630 { MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 }, 1631 { SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 }, 1632 { 0 } 1633 }; 1634 1635 if (t4_handle_intr_status(adap, SMB_INT_CAUSE, smb_intr_info)) 1636 t4_fatal_err(adap); 1637 } 1638 1639 /* 1640 * NC-SI interrupt handler. 1641 */ 1642 static void ncsi_intr_handler(struct adapter *adap) 1643 { 1644 static const struct intr_info ncsi_intr_info[] = { 1645 { CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 }, 1646 { MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 }, 1647 { TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 }, 1648 { RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 }, 1649 { 0 } 1650 }; 1651 1652 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE, ncsi_intr_info)) 1653 t4_fatal_err(adap); 1654 } 1655 1656 /* 1657 * XGMAC interrupt handler. 1658 */ 1659 static void xgmac_intr_handler(struct adapter *adap, int port) 1660 { 1661 u32 v = t4_read_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE)); 1662 1663 v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR; 1664 if (!v) 1665 return; 1666 1667 if (v & TXFIFO_PRTY_ERR) 1668 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n", 1669 port); 1670 if (v & RXFIFO_PRTY_ERR) 1671 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n", 1672 port); 1673 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE), v); 1674 t4_fatal_err(adap); 1675 } 1676 1677 /* 1678 * PL interrupt handler. 1679 */ 1680 static void pl_intr_handler(struct adapter *adap) 1681 { 1682 static const struct intr_info pl_intr_info[] = { 1683 { FATALPERR, "T4 fatal parity error", -1, 1 }, 1684 { PERRVFID, "PL VFID_MAP parity error", -1, 1 }, 1685 { 0 } 1686 }; 1687 1688 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE, pl_intr_info)) 1689 t4_fatal_err(adap); 1690 } 1691 1692 #define PF_INTR_MASK (PFSW) 1693 #define GLBL_INTR_MASK (CIM | MPS | PL | PCIE | MC | EDC0 | \ 1694 EDC1 | LE | TP | MA | PM_TX | PM_RX | ULP_RX | \ 1695 CPL_SWITCH | SGE | ULP_TX) 1696 1697 /** 1698 * t4_slow_intr_handler - control path interrupt handler 1699 * @adapter: the adapter 1700 * 1701 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 1702 * The designation 'slow' is because it involves register reads, while 1703 * data interrupts typically don't involve any MMIOs. 1704 */ 1705 int t4_slow_intr_handler(struct adapter *adapter) 1706 { 1707 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE); 1708 1709 if (!(cause & GLBL_INTR_MASK)) 1710 return 0; 1711 if (cause & CIM) 1712 cim_intr_handler(adapter); 1713 if (cause & MPS) 1714 mps_intr_handler(adapter); 1715 if (cause & NCSI) 1716 ncsi_intr_handler(adapter); 1717 if (cause & PL) 1718 pl_intr_handler(adapter); 1719 if (cause & SMB) 1720 smb_intr_handler(adapter); 1721 if (cause & XGMAC0) 1722 xgmac_intr_handler(adapter, 0); 1723 if (cause & XGMAC1) 1724 xgmac_intr_handler(adapter, 1); 1725 if (cause & XGMAC_KR0) 1726 xgmac_intr_handler(adapter, 2); 1727 if (cause & XGMAC_KR1) 1728 xgmac_intr_handler(adapter, 3); 1729 if (cause & PCIE) 1730 pcie_intr_handler(adapter); 1731 if (cause & MC) 1732 mem_intr_handler(adapter, MEM_MC); 1733 if (cause & EDC0) 1734 mem_intr_handler(adapter, MEM_EDC0); 1735 if (cause & EDC1) 1736 mem_intr_handler(adapter, MEM_EDC1); 1737 if (cause & LE) 1738 le_intr_handler(adapter); 1739 if (cause & TP) 1740 tp_intr_handler(adapter); 1741 if (cause & MA) 1742 ma_intr_handler(adapter); 1743 if (cause & PM_TX) 1744 pmtx_intr_handler(adapter); 1745 if (cause & PM_RX) 1746 pmrx_intr_handler(adapter); 1747 if (cause & ULP_RX) 1748 ulprx_intr_handler(adapter); 1749 if (cause & CPL_SWITCH) 1750 cplsw_intr_handler(adapter); 1751 if (cause & SGE) 1752 sge_intr_handler(adapter); 1753 if (cause & ULP_TX) 1754 ulptx_intr_handler(adapter); 1755 1756 /* Clear the interrupts just processed for which we are the master. */ 1757 t4_write_reg(adapter, PL_INT_CAUSE, cause & GLBL_INTR_MASK); 1758 (void) t4_read_reg(adapter, PL_INT_CAUSE); /* flush */ 1759 return 1; 1760 } 1761 1762 /** 1763 * t4_intr_enable - enable interrupts 1764 * @adapter: the adapter whose interrupts should be enabled 1765 * 1766 * Enable PF-specific interrupts for the calling function and the top-level 1767 * interrupt concentrator for global interrupts. Interrupts are already 1768 * enabled at each module, here we just enable the roots of the interrupt 1769 * hierarchies. 1770 * 1771 * Note: this function should be called only when the driver manages 1772 * non PF-specific interrupts from the various HW modules. Only one PCI 1773 * function at a time should be doing this. 1774 */ 1775 void t4_intr_enable(struct adapter *adapter) 1776 { 1777 u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI)); 1778 1779 t4_write_reg(adapter, SGE_INT_ENABLE3, ERR_CPL_EXCEED_IQE_SIZE | 1780 ERR_INVALID_CIDX_INC | ERR_CPL_OPCODE_0 | 1781 ERR_DROPPED_DB | ERR_DATA_CPL_ON_HIGH_QID1 | 1782 ERR_DATA_CPL_ON_HIGH_QID0 | ERR_BAD_DB_PIDX3 | 1783 ERR_BAD_DB_PIDX2 | ERR_BAD_DB_PIDX1 | 1784 ERR_BAD_DB_PIDX0 | ERR_ING_CTXT_PRIO | 1785 ERR_EGR_CTXT_PRIO | INGRESS_SIZE_ERR | 1786 DBFIFO_HP_INT | DBFIFO_LP_INT | 1787 EGRESS_SIZE_ERR); 1788 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), PF_INTR_MASK); 1789 t4_set_reg_field(adapter, PL_INT_MAP0, 0, 1 << pf); 1790 } 1791 1792 /** 1793 * t4_intr_disable - disable interrupts 1794 * @adapter: the adapter whose interrupts should be disabled 1795 * 1796 * Disable interrupts. We only disable the top-level interrupt 1797 * concentrators. The caller must be a PCI function managing global 1798 * interrupts. 1799 */ 1800 void t4_intr_disable(struct adapter *adapter) 1801 { 1802 u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI)); 1803 1804 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), 0); 1805 t4_set_reg_field(adapter, PL_INT_MAP0, 1 << pf, 0); 1806 } 1807 1808 /** 1809 * hash_mac_addr - return the hash value of a MAC address 1810 * @addr: the 48-bit Ethernet MAC address 1811 * 1812 * Hashes a MAC address according to the hash function used by HW inexact 1813 * (hash) address matching. 1814 */ 1815 static int hash_mac_addr(const u8 *addr) 1816 { 1817 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2]; 1818 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5]; 1819 a ^= b; 1820 a ^= (a >> 12); 1821 a ^= (a >> 6); 1822 return a & 0x3f; 1823 } 1824 1825 /** 1826 * t4_config_rss_range - configure a portion of the RSS mapping table 1827 * @adapter: the adapter 1828 * @mbox: mbox to use for the FW command 1829 * @viid: virtual interface whose RSS subtable is to be written 1830 * @start: start entry in the table to write 1831 * @n: how many table entries to write 1832 * @rspq: values for the response queue lookup table 1833 * @nrspq: number of values in @rspq 1834 * 1835 * Programs the selected part of the VI's RSS mapping table with the 1836 * provided values. If @nrspq < @n the supplied values are used repeatedly 1837 * until the full table range is populated. 1838 * 1839 * The caller must ensure the values in @rspq are in the range allowed for 1840 * @viid. 1841 */ 1842 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 1843 int start, int n, const u16 *rspq, unsigned int nrspq) 1844 { 1845 int ret; 1846 const u16 *rsp = rspq; 1847 const u16 *rsp_end = rspq + nrspq; 1848 struct fw_rss_ind_tbl_cmd cmd; 1849 1850 memset(&cmd, 0, sizeof(cmd)); 1851 cmd.op_to_viid = htonl(FW_CMD_OP(FW_RSS_IND_TBL_CMD) | 1852 FW_CMD_REQUEST | FW_CMD_WRITE | 1853 FW_RSS_IND_TBL_CMD_VIID(viid)); 1854 cmd.retval_len16 = htonl(FW_LEN16(cmd)); 1855 1856 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */ 1857 while (n > 0) { 1858 int nq = min(n, 32); 1859 __be32 *qp = &cmd.iq0_to_iq2; 1860 1861 cmd.niqid = htons(nq); 1862 cmd.startidx = htons(start); 1863 1864 start += nq; 1865 n -= nq; 1866 1867 while (nq > 0) { 1868 unsigned int v; 1869 1870 v = FW_RSS_IND_TBL_CMD_IQ0(*rsp); 1871 if (++rsp >= rsp_end) 1872 rsp = rspq; 1873 v |= FW_RSS_IND_TBL_CMD_IQ1(*rsp); 1874 if (++rsp >= rsp_end) 1875 rsp = rspq; 1876 v |= FW_RSS_IND_TBL_CMD_IQ2(*rsp); 1877 if (++rsp >= rsp_end) 1878 rsp = rspq; 1879 1880 *qp++ = htonl(v); 1881 nq -= 3; 1882 } 1883 1884 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 1885 if (ret) 1886 return ret; 1887 } 1888 return 0; 1889 } 1890 1891 /** 1892 * t4_config_glbl_rss - configure the global RSS mode 1893 * @adapter: the adapter 1894 * @mbox: mbox to use for the FW command 1895 * @mode: global RSS mode 1896 * @flags: mode-specific flags 1897 * 1898 * Sets the global RSS mode. 1899 */ 1900 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 1901 unsigned int flags) 1902 { 1903 struct fw_rss_glb_config_cmd c; 1904 1905 memset(&c, 0, sizeof(c)); 1906 c.op_to_write = htonl(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) | 1907 FW_CMD_REQUEST | FW_CMD_WRITE); 1908 c.retval_len16 = htonl(FW_LEN16(c)); 1909 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 1910 c.u.manual.mode_pkd = htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode)); 1911 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 1912 c.u.basicvirtual.mode_pkd = 1913 htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode)); 1914 c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags); 1915 } else 1916 return -EINVAL; 1917 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 1918 } 1919 1920 /** 1921 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 1922 * @adap: the adapter 1923 * @v4: holds the TCP/IP counter values 1924 * @v6: holds the TCP/IPv6 counter values 1925 * 1926 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 1927 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 1928 */ 1929 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 1930 struct tp_tcp_stats *v6) 1931 { 1932 u32 val[TP_MIB_TCP_RXT_SEG_LO - TP_MIB_TCP_OUT_RST + 1]; 1933 1934 #define STAT_IDX(x) ((TP_MIB_TCP_##x) - TP_MIB_TCP_OUT_RST) 1935 #define STAT(x) val[STAT_IDX(x)] 1936 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 1937 1938 if (v4) { 1939 t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val, 1940 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST); 1941 v4->tcpOutRsts = STAT(OUT_RST); 1942 v4->tcpInSegs = STAT64(IN_SEG); 1943 v4->tcpOutSegs = STAT64(OUT_SEG); 1944 v4->tcpRetransSegs = STAT64(RXT_SEG); 1945 } 1946 if (v6) { 1947 t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val, 1948 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST); 1949 v6->tcpOutRsts = STAT(OUT_RST); 1950 v6->tcpInSegs = STAT64(IN_SEG); 1951 v6->tcpOutSegs = STAT64(OUT_SEG); 1952 v6->tcpRetransSegs = STAT64(RXT_SEG); 1953 } 1954 #undef STAT64 1955 #undef STAT 1956 #undef STAT_IDX 1957 } 1958 1959 /** 1960 * t4_read_mtu_tbl - returns the values in the HW path MTU table 1961 * @adap: the adapter 1962 * @mtus: where to store the MTU values 1963 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 1964 * 1965 * Reads the HW path MTU table. 1966 */ 1967 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 1968 { 1969 u32 v; 1970 int i; 1971 1972 for (i = 0; i < NMTUS; ++i) { 1973 t4_write_reg(adap, TP_MTU_TABLE, 1974 MTUINDEX(0xff) | MTUVALUE(i)); 1975 v = t4_read_reg(adap, TP_MTU_TABLE); 1976 mtus[i] = MTUVALUE_GET(v); 1977 if (mtu_log) 1978 mtu_log[i] = MTUWIDTH_GET(v); 1979 } 1980 } 1981 1982 /** 1983 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 1984 * @adap: the adapter 1985 * @addr: the indirect TP register address 1986 * @mask: specifies the field within the register to modify 1987 * @val: new value for the field 1988 * 1989 * Sets a field of an indirect TP register to the given value. 1990 */ 1991 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 1992 unsigned int mask, unsigned int val) 1993 { 1994 t4_write_reg(adap, TP_PIO_ADDR, addr); 1995 val |= t4_read_reg(adap, TP_PIO_DATA) & ~mask; 1996 t4_write_reg(adap, TP_PIO_DATA, val); 1997 } 1998 1999 /** 2000 * init_cong_ctrl - initialize congestion control parameters 2001 * @a: the alpha values for congestion control 2002 * @b: the beta values for congestion control 2003 * 2004 * Initialize the congestion control parameters. 2005 */ 2006 static void init_cong_ctrl(unsigned short *a, unsigned short *b) 2007 { 2008 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 2009 a[9] = 2; 2010 a[10] = 3; 2011 a[11] = 4; 2012 a[12] = 5; 2013 a[13] = 6; 2014 a[14] = 7; 2015 a[15] = 8; 2016 a[16] = 9; 2017 a[17] = 10; 2018 a[18] = 14; 2019 a[19] = 17; 2020 a[20] = 21; 2021 a[21] = 25; 2022 a[22] = 30; 2023 a[23] = 35; 2024 a[24] = 45; 2025 a[25] = 60; 2026 a[26] = 80; 2027 a[27] = 100; 2028 a[28] = 200; 2029 a[29] = 300; 2030 a[30] = 400; 2031 a[31] = 500; 2032 2033 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 2034 b[9] = b[10] = 1; 2035 b[11] = b[12] = 2; 2036 b[13] = b[14] = b[15] = b[16] = 3; 2037 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 2038 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 2039 b[28] = b[29] = 6; 2040 b[30] = b[31] = 7; 2041 } 2042 2043 /* The minimum additive increment value for the congestion control table */ 2044 #define CC_MIN_INCR 2U 2045 2046 /** 2047 * t4_load_mtus - write the MTU and congestion control HW tables 2048 * @adap: the adapter 2049 * @mtus: the values for the MTU table 2050 * @alpha: the values for the congestion control alpha parameter 2051 * @beta: the values for the congestion control beta parameter 2052 * 2053 * Write the HW MTU table with the supplied MTUs and the high-speed 2054 * congestion control table with the supplied alpha, beta, and MTUs. 2055 * We write the two tables together because the additive increments 2056 * depend on the MTUs. 2057 */ 2058 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 2059 const unsigned short *alpha, const unsigned short *beta) 2060 { 2061 static const unsigned int avg_pkts[NCCTRL_WIN] = { 2062 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 2063 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 2064 28672, 40960, 57344, 81920, 114688, 163840, 229376 2065 }; 2066 2067 unsigned int i, w; 2068 2069 for (i = 0; i < NMTUS; ++i) { 2070 unsigned int mtu = mtus[i]; 2071 unsigned int log2 = fls(mtu); 2072 2073 if (!(mtu & ((1 << log2) >> 2))) /* round */ 2074 log2--; 2075 t4_write_reg(adap, TP_MTU_TABLE, MTUINDEX(i) | 2076 MTUWIDTH(log2) | MTUVALUE(mtu)); 2077 2078 for (w = 0; w < NCCTRL_WIN; ++w) { 2079 unsigned int inc; 2080 2081 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 2082 CC_MIN_INCR); 2083 2084 t4_write_reg(adap, TP_CCTRL_TABLE, (i << 21) | 2085 (w << 16) | (beta[w] << 13) | inc); 2086 } 2087 } 2088 } 2089 2090 /** 2091 * get_mps_bg_map - return the buffer groups associated with a port 2092 * @adap: the adapter 2093 * @idx: the port index 2094 * 2095 * Returns a bitmap indicating which MPS buffer groups are associated 2096 * with the given port. Bit i is set if buffer group i is used by the 2097 * port. 2098 */ 2099 static unsigned int get_mps_bg_map(struct adapter *adap, int idx) 2100 { 2101 u32 n = NUMPORTS_GET(t4_read_reg(adap, MPS_CMN_CTL)); 2102 2103 if (n == 0) 2104 return idx == 0 ? 0xf : 0; 2105 if (n == 1) 2106 return idx < 2 ? (3 << (2 * idx)) : 0; 2107 return 1 << idx; 2108 } 2109 2110 /** 2111 * t4_get_port_stats - collect port statistics 2112 * @adap: the adapter 2113 * @idx: the port index 2114 * @p: the stats structure to fill 2115 * 2116 * Collect statistics related to the given port from HW. 2117 */ 2118 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 2119 { 2120 u32 bgmap = get_mps_bg_map(adap, idx); 2121 2122 #define GET_STAT(name) \ 2123 t4_read_reg64(adap, PORT_REG(idx, MPS_PORT_STAT_##name##_L)) 2124 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 2125 2126 p->tx_octets = GET_STAT(TX_PORT_BYTES); 2127 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 2128 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 2129 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 2130 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 2131 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 2132 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 2133 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 2134 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 2135 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 2136 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 2137 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 2138 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 2139 p->tx_drop = GET_STAT(TX_PORT_DROP); 2140 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 2141 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 2142 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 2143 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 2144 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 2145 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 2146 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 2147 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 2148 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 2149 2150 p->rx_octets = GET_STAT(RX_PORT_BYTES); 2151 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 2152 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 2153 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 2154 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 2155 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 2156 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 2157 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); 2158 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 2159 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 2160 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 2161 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 2162 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 2163 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 2164 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 2165 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 2166 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 2167 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 2168 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 2169 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 2170 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 2171 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 2172 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 2173 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 2174 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 2175 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 2176 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 2177 2178 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 2179 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 2180 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 2181 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 2182 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 2183 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 2184 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 2185 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 2186 2187 #undef GET_STAT 2188 #undef GET_STAT_COM 2189 } 2190 2191 /** 2192 * t4_wol_magic_enable - enable/disable magic packet WoL 2193 * @adap: the adapter 2194 * @port: the physical port index 2195 * @addr: MAC address expected in magic packets, %NULL to disable 2196 * 2197 * Enables/disables magic packet wake-on-LAN for the selected port. 2198 */ 2199 void t4_wol_magic_enable(struct adapter *adap, unsigned int port, 2200 const u8 *addr) 2201 { 2202 if (addr) { 2203 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_MAGIC_MACID_LO), 2204 (addr[2] << 24) | (addr[3] << 16) | 2205 (addr[4] << 8) | addr[5]); 2206 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_MAGIC_MACID_HI), 2207 (addr[0] << 8) | addr[1]); 2208 } 2209 t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), MAGICEN, 2210 addr ? MAGICEN : 0); 2211 } 2212 2213 /** 2214 * t4_wol_pat_enable - enable/disable pattern-based WoL 2215 * @adap: the adapter 2216 * @port: the physical port index 2217 * @map: bitmap of which HW pattern filters to set 2218 * @mask0: byte mask for bytes 0-63 of a packet 2219 * @mask1: byte mask for bytes 64-127 of a packet 2220 * @crc: Ethernet CRC for selected bytes 2221 * @enable: enable/disable switch 2222 * 2223 * Sets the pattern filters indicated in @map to mask out the bytes 2224 * specified in @mask0/@mask1 in received packets and compare the CRC of 2225 * the resulting packet against @crc. If @enable is %true pattern-based 2226 * WoL is enabled, otherwise disabled. 2227 */ 2228 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map, 2229 u64 mask0, u64 mask1, unsigned int crc, bool enable) 2230 { 2231 int i; 2232 2233 if (!enable) { 2234 t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), 2235 PATEN, 0); 2236 return 0; 2237 } 2238 if (map > 0xff) 2239 return -EINVAL; 2240 2241 #define EPIO_REG(name) PORT_REG(port, XGMAC_PORT_EPIO_##name) 2242 2243 t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32); 2244 t4_write_reg(adap, EPIO_REG(DATA2), mask1); 2245 t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32); 2246 2247 for (i = 0; i < NWOL_PAT; i++, map >>= 1) { 2248 if (!(map & 1)) 2249 continue; 2250 2251 /* write byte masks */ 2252 t4_write_reg(adap, EPIO_REG(DATA0), mask0); 2253 t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i) | EPIOWR); 2254 t4_read_reg(adap, EPIO_REG(OP)); /* flush */ 2255 if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY) 2256 return -ETIMEDOUT; 2257 2258 /* write CRC */ 2259 t4_write_reg(adap, EPIO_REG(DATA0), crc); 2260 t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i + 32) | EPIOWR); 2261 t4_read_reg(adap, EPIO_REG(OP)); /* flush */ 2262 if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY) 2263 return -ETIMEDOUT; 2264 } 2265 #undef EPIO_REG 2266 2267 t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), 0, PATEN); 2268 return 0; 2269 } 2270 2271 #define INIT_CMD(var, cmd, rd_wr) do { \ 2272 (var).op_to_write = htonl(FW_CMD_OP(FW_##cmd##_CMD) | \ 2273 FW_CMD_REQUEST | FW_CMD_##rd_wr); \ 2274 (var).retval_len16 = htonl(FW_LEN16(var)); \ 2275 } while (0) 2276 2277 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 2278 u32 addr, u32 val) 2279 { 2280 struct fw_ldst_cmd c; 2281 2282 memset(&c, 0, sizeof(c)); 2283 c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST | 2284 FW_CMD_WRITE | 2285 FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE)); 2286 c.cycles_to_len16 = htonl(FW_LEN16(c)); 2287 c.u.addrval.addr = htonl(addr); 2288 c.u.addrval.val = htonl(val); 2289 2290 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 2291 } 2292 2293 /** 2294 * t4_mem_win_read_len - read memory through PCIE memory window 2295 * @adap: the adapter 2296 * @addr: address of first byte requested aligned on 32b. 2297 * @data: len bytes to hold the data read 2298 * @len: amount of data to read from window. Must be <= 2299 * MEMWIN0_APERATURE after adjusting for 16B alignment 2300 * requirements of the the memory window. 2301 * 2302 * Read len bytes of data from MC starting at @addr. 2303 */ 2304 int t4_mem_win_read_len(struct adapter *adap, u32 addr, __be32 *data, int len) 2305 { 2306 int i; 2307 int off; 2308 2309 /* 2310 * Align on a 16B boundary. 2311 */ 2312 off = addr & 15; 2313 if ((addr & 3) || (len + off) > MEMWIN0_APERTURE) 2314 return -EINVAL; 2315 2316 t4_write_reg(adap, PCIE_MEM_ACCESS_OFFSET, addr & ~15); 2317 t4_read_reg(adap, PCIE_MEM_ACCESS_OFFSET); 2318 2319 for (i = 0; i < len; i += 4) 2320 *data++ = (__force __be32) t4_read_reg(adap, 2321 (MEMWIN0_BASE + off + i)); 2322 2323 return 0; 2324 } 2325 2326 /** 2327 * t4_mdio_rd - read a PHY register through MDIO 2328 * @adap: the adapter 2329 * @mbox: mailbox to use for the FW command 2330 * @phy_addr: the PHY address 2331 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 2332 * @reg: the register to read 2333 * @valp: where to store the value 2334 * 2335 * Issues a FW command through the given mailbox to read a PHY register. 2336 */ 2337 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 2338 unsigned int mmd, unsigned int reg, u16 *valp) 2339 { 2340 int ret; 2341 struct fw_ldst_cmd c; 2342 2343 memset(&c, 0, sizeof(c)); 2344 c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST | 2345 FW_CMD_READ | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO)); 2346 c.cycles_to_len16 = htonl(FW_LEN16(c)); 2347 c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) | 2348 FW_LDST_CMD_MMD(mmd)); 2349 c.u.mdio.raddr = htons(reg); 2350 2351 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 2352 if (ret == 0) 2353 *valp = ntohs(c.u.mdio.rval); 2354 return ret; 2355 } 2356 2357 /** 2358 * t4_mdio_wr - write a PHY register through MDIO 2359 * @adap: the adapter 2360 * @mbox: mailbox to use for the FW command 2361 * @phy_addr: the PHY address 2362 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 2363 * @reg: the register to write 2364 * @valp: value to write 2365 * 2366 * Issues a FW command through the given mailbox to write a PHY register. 2367 */ 2368 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 2369 unsigned int mmd, unsigned int reg, u16 val) 2370 { 2371 struct fw_ldst_cmd c; 2372 2373 memset(&c, 0, sizeof(c)); 2374 c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST | 2375 FW_CMD_WRITE | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO)); 2376 c.cycles_to_len16 = htonl(FW_LEN16(c)); 2377 c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) | 2378 FW_LDST_CMD_MMD(mmd)); 2379 c.u.mdio.raddr = htons(reg); 2380 c.u.mdio.rval = htons(val); 2381 2382 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 2383 } 2384 2385 /** 2386 * t4_fw_hello - establish communication with FW 2387 * @adap: the adapter 2388 * @mbox: mailbox to use for the FW command 2389 * @evt_mbox: mailbox to receive async FW events 2390 * @master: specifies the caller's willingness to be the device master 2391 * @state: returns the current device state (if non-NULL) 2392 * 2393 * Issues a command to establish communication with FW. Returns either 2394 * an error (negative integer) or the mailbox of the Master PF. 2395 */ 2396 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 2397 enum dev_master master, enum dev_state *state) 2398 { 2399 int ret; 2400 struct fw_hello_cmd c; 2401 u32 v; 2402 unsigned int master_mbox; 2403 int retries = FW_CMD_HELLO_RETRIES; 2404 2405 retry: 2406 memset(&c, 0, sizeof(c)); 2407 INIT_CMD(c, HELLO, WRITE); 2408 c.err_to_clearinit = htonl( 2409 FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) | 2410 FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) | 2411 FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox : 2412 FW_HELLO_CMD_MBMASTER_MASK) | 2413 FW_HELLO_CMD_MBASYNCNOT(evt_mbox) | 2414 FW_HELLO_CMD_STAGE(fw_hello_cmd_stage_os) | 2415 FW_HELLO_CMD_CLEARINIT); 2416 2417 /* 2418 * Issue the HELLO command to the firmware. If it's not successful 2419 * but indicates that we got a "busy" or "timeout" condition, retry 2420 * the HELLO until we exhaust our retry limit. 2421 */ 2422 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 2423 if (ret < 0) { 2424 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 2425 goto retry; 2426 return ret; 2427 } 2428 2429 v = ntohl(c.err_to_clearinit); 2430 master_mbox = FW_HELLO_CMD_MBMASTER_GET(v); 2431 if (state) { 2432 if (v & FW_HELLO_CMD_ERR) 2433 *state = DEV_STATE_ERR; 2434 else if (v & FW_HELLO_CMD_INIT) 2435 *state = DEV_STATE_INIT; 2436 else 2437 *state = DEV_STATE_UNINIT; 2438 } 2439 2440 /* 2441 * If we're not the Master PF then we need to wait around for the 2442 * Master PF Driver to finish setting up the adapter. 2443 * 2444 * Note that we also do this wait if we're a non-Master-capable PF and 2445 * there is no current Master PF; a Master PF may show up momentarily 2446 * and we wouldn't want to fail pointlessly. (This can happen when an 2447 * OS loads lots of different drivers rapidly at the same time). In 2448 * this case, the Master PF returned by the firmware will be 2449 * FW_PCIE_FW_MASTER_MASK so the test below will work ... 2450 */ 2451 if ((v & (FW_HELLO_CMD_ERR|FW_HELLO_CMD_INIT)) == 0 && 2452 master_mbox != mbox) { 2453 int waiting = FW_CMD_HELLO_TIMEOUT; 2454 2455 /* 2456 * Wait for the firmware to either indicate an error or 2457 * initialized state. If we see either of these we bail out 2458 * and report the issue to the caller. If we exhaust the 2459 * "hello timeout" and we haven't exhausted our retries, try 2460 * again. Otherwise bail with a timeout error. 2461 */ 2462 for (;;) { 2463 u32 pcie_fw; 2464 2465 msleep(50); 2466 waiting -= 50; 2467 2468 /* 2469 * If neither Error nor Initialialized are indicated 2470 * by the firmware keep waiting till we exaust our 2471 * timeout ... and then retry if we haven't exhausted 2472 * our retries ... 2473 */ 2474 pcie_fw = t4_read_reg(adap, MA_PCIE_FW); 2475 if (!(pcie_fw & (FW_PCIE_FW_ERR|FW_PCIE_FW_INIT))) { 2476 if (waiting <= 0) { 2477 if (retries-- > 0) 2478 goto retry; 2479 2480 return -ETIMEDOUT; 2481 } 2482 continue; 2483 } 2484 2485 /* 2486 * We either have an Error or Initialized condition 2487 * report errors preferentially. 2488 */ 2489 if (state) { 2490 if (pcie_fw & FW_PCIE_FW_ERR) 2491 *state = DEV_STATE_ERR; 2492 else if (pcie_fw & FW_PCIE_FW_INIT) 2493 *state = DEV_STATE_INIT; 2494 } 2495 2496 /* 2497 * If we arrived before a Master PF was selected and 2498 * there's not a valid Master PF, grab its identity 2499 * for our caller. 2500 */ 2501 if (master_mbox == FW_PCIE_FW_MASTER_MASK && 2502 (pcie_fw & FW_PCIE_FW_MASTER_VLD)) 2503 master_mbox = FW_PCIE_FW_MASTER_GET(pcie_fw); 2504 break; 2505 } 2506 } 2507 2508 return master_mbox; 2509 } 2510 2511 /** 2512 * t4_fw_bye - end communication with FW 2513 * @adap: the adapter 2514 * @mbox: mailbox to use for the FW command 2515 * 2516 * Issues a command to terminate communication with FW. 2517 */ 2518 int t4_fw_bye(struct adapter *adap, unsigned int mbox) 2519 { 2520 struct fw_bye_cmd c; 2521 2522 memset(&c, 0, sizeof(c)); 2523 INIT_CMD(c, BYE, WRITE); 2524 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 2525 } 2526 2527 /** 2528 * t4_init_cmd - ask FW to initialize the device 2529 * @adap: the adapter 2530 * @mbox: mailbox to use for the FW command 2531 * 2532 * Issues a command to FW to partially initialize the device. This 2533 * performs initialization that generally doesn't depend on user input. 2534 */ 2535 int t4_early_init(struct adapter *adap, unsigned int mbox) 2536 { 2537 struct fw_initialize_cmd c; 2538 2539 memset(&c, 0, sizeof(c)); 2540 INIT_CMD(c, INITIALIZE, WRITE); 2541 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 2542 } 2543 2544 /** 2545 * t4_fw_reset - issue a reset to FW 2546 * @adap: the adapter 2547 * @mbox: mailbox to use for the FW command 2548 * @reset: specifies the type of reset to perform 2549 * 2550 * Issues a reset command of the specified type to FW. 2551 */ 2552 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 2553 { 2554 struct fw_reset_cmd c; 2555 2556 memset(&c, 0, sizeof(c)); 2557 INIT_CMD(c, RESET, WRITE); 2558 c.val = htonl(reset); 2559 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 2560 } 2561 2562 /** 2563 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 2564 * @adap: the adapter 2565 * @mbox: mailbox to use for the FW RESET command (if desired) 2566 * @force: force uP into RESET even if FW RESET command fails 2567 * 2568 * Issues a RESET command to firmware (if desired) with a HALT indication 2569 * and then puts the microprocessor into RESET state. The RESET command 2570 * will only be issued if a legitimate mailbox is provided (mbox <= 2571 * FW_PCIE_FW_MASTER_MASK). 2572 * 2573 * This is generally used in order for the host to safely manipulate the 2574 * adapter without fear of conflicting with whatever the firmware might 2575 * be doing. The only way out of this state is to RESTART the firmware 2576 * ... 2577 */ 2578 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 2579 { 2580 int ret = 0; 2581 2582 /* 2583 * If a legitimate mailbox is provided, issue a RESET command 2584 * with a HALT indication. 2585 */ 2586 if (mbox <= FW_PCIE_FW_MASTER_MASK) { 2587 struct fw_reset_cmd c; 2588 2589 memset(&c, 0, sizeof(c)); 2590 INIT_CMD(c, RESET, WRITE); 2591 c.val = htonl(PIORST | PIORSTMODE); 2592 c.halt_pkd = htonl(FW_RESET_CMD_HALT(1U)); 2593 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 2594 } 2595 2596 /* 2597 * Normally we won't complete the operation if the firmware RESET 2598 * command fails but if our caller insists we'll go ahead and put the 2599 * uP into RESET. This can be useful if the firmware is hung or even 2600 * missing ... We'll have to take the risk of putting the uP into 2601 * RESET without the cooperation of firmware in that case. 2602 * 2603 * We also force the firmware's HALT flag to be on in case we bypassed 2604 * the firmware RESET command above or we're dealing with old firmware 2605 * which doesn't have the HALT capability. This will serve as a flag 2606 * for the incoming firmware to know that it's coming out of a HALT 2607 * rather than a RESET ... if it's new enough to understand that ... 2608 */ 2609 if (ret == 0 || force) { 2610 t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, UPCRST); 2611 t4_set_reg_field(adap, PCIE_FW, FW_PCIE_FW_HALT, 2612 FW_PCIE_FW_HALT); 2613 } 2614 2615 /* 2616 * And we always return the result of the firmware RESET command 2617 * even when we force the uP into RESET ... 2618 */ 2619 return ret; 2620 } 2621 2622 /** 2623 * t4_fw_restart - restart the firmware by taking the uP out of RESET 2624 * @adap: the adapter 2625 * @reset: if we want to do a RESET to restart things 2626 * 2627 * Restart firmware previously halted by t4_fw_halt(). On successful 2628 * return the previous PF Master remains as the new PF Master and there 2629 * is no need to issue a new HELLO command, etc. 2630 * 2631 * We do this in two ways: 2632 * 2633 * 1. If we're dealing with newer firmware we'll simply want to take 2634 * the chip's microprocessor out of RESET. This will cause the 2635 * firmware to start up from its start vector. And then we'll loop 2636 * until the firmware indicates it's started again (PCIE_FW.HALT 2637 * reset to 0) or we timeout. 2638 * 2639 * 2. If we're dealing with older firmware then we'll need to RESET 2640 * the chip since older firmware won't recognize the PCIE_FW.HALT 2641 * flag and automatically RESET itself on startup. 2642 */ 2643 int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) 2644 { 2645 if (reset) { 2646 /* 2647 * Since we're directing the RESET instead of the firmware 2648 * doing it automatically, we need to clear the PCIE_FW.HALT 2649 * bit. 2650 */ 2651 t4_set_reg_field(adap, PCIE_FW, FW_PCIE_FW_HALT, 0); 2652 2653 /* 2654 * If we've been given a valid mailbox, first try to get the 2655 * firmware to do the RESET. If that works, great and we can 2656 * return success. Otherwise, if we haven't been given a 2657 * valid mailbox or the RESET command failed, fall back to 2658 * hitting the chip with a hammer. 2659 */ 2660 if (mbox <= FW_PCIE_FW_MASTER_MASK) { 2661 t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, 0); 2662 msleep(100); 2663 if (t4_fw_reset(adap, mbox, 2664 PIORST | PIORSTMODE) == 0) 2665 return 0; 2666 } 2667 2668 t4_write_reg(adap, PL_RST, PIORST | PIORSTMODE); 2669 msleep(2000); 2670 } else { 2671 int ms; 2672 2673 t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, 0); 2674 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 2675 if (!(t4_read_reg(adap, PCIE_FW) & FW_PCIE_FW_HALT)) 2676 return 0; 2677 msleep(100); 2678 ms += 100; 2679 } 2680 return -ETIMEDOUT; 2681 } 2682 return 0; 2683 } 2684 2685 /** 2686 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 2687 * @adap: the adapter 2688 * @mbox: mailbox to use for the FW RESET command (if desired) 2689 * @fw_data: the firmware image to write 2690 * @size: image size 2691 * @force: force upgrade even if firmware doesn't cooperate 2692 * 2693 * Perform all of the steps necessary for upgrading an adapter's 2694 * firmware image. Normally this requires the cooperation of the 2695 * existing firmware in order to halt all existing activities 2696 * but if an invalid mailbox token is passed in we skip that step 2697 * (though we'll still put the adapter microprocessor into RESET in 2698 * that case). 2699 * 2700 * On successful return the new firmware will have been loaded and 2701 * the adapter will have been fully RESET losing all previous setup 2702 * state. On unsuccessful return the adapter may be completely hosed ... 2703 * positive errno indicates that the adapter is ~probably~ intact, a 2704 * negative errno indicates that things are looking bad ... 2705 */ 2706 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 2707 const u8 *fw_data, unsigned int size, int force) 2708 { 2709 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 2710 int reset, ret; 2711 2712 ret = t4_fw_halt(adap, mbox, force); 2713 if (ret < 0 && !force) 2714 return ret; 2715 2716 ret = t4_load_fw(adap, fw_data, size); 2717 if (ret < 0) 2718 return ret; 2719 2720 /* 2721 * Older versions of the firmware don't understand the new 2722 * PCIE_FW.HALT flag and so won't know to perform a RESET when they 2723 * restart. So for newly loaded older firmware we'll have to do the 2724 * RESET for it so it starts up on a clean slate. We can tell if 2725 * the newly loaded firmware will handle this right by checking 2726 * its header flags to see if it advertises the capability. 2727 */ 2728 reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); 2729 return t4_fw_restart(adap, mbox, reset); 2730 } 2731 2732 2733 /** 2734 * t4_fw_config_file - setup an adapter via a Configuration File 2735 * @adap: the adapter 2736 * @mbox: mailbox to use for the FW command 2737 * @mtype: the memory type where the Configuration File is located 2738 * @maddr: the memory address where the Configuration File is located 2739 * @finiver: return value for CF [fini] version 2740 * @finicsum: return value for CF [fini] checksum 2741 * @cfcsum: return value for CF computed checksum 2742 * 2743 * Issue a command to get the firmware to process the Configuration 2744 * File located at the specified mtype/maddress. If the Configuration 2745 * File is processed successfully and return value pointers are 2746 * provided, the Configuration File "[fini] section version and 2747 * checksum values will be returned along with the computed checksum. 2748 * It's up to the caller to decide how it wants to respond to the 2749 * checksums not matching but it recommended that a prominant warning 2750 * be emitted in order to help people rapidly identify changed or 2751 * corrupted Configuration Files. 2752 * 2753 * Also note that it's possible to modify things like "niccaps", 2754 * "toecaps",etc. between processing the Configuration File and telling 2755 * the firmware to use the new configuration. Callers which want to 2756 * do this will need to "hand-roll" their own CAPS_CONFIGS commands for 2757 * Configuration Files if they want to do this. 2758 */ 2759 int t4_fw_config_file(struct adapter *adap, unsigned int mbox, 2760 unsigned int mtype, unsigned int maddr, 2761 u32 *finiver, u32 *finicsum, u32 *cfcsum) 2762 { 2763 struct fw_caps_config_cmd caps_cmd; 2764 int ret; 2765 2766 /* 2767 * Tell the firmware to process the indicated Configuration File. 2768 * If there are no errors and the caller has provided return value 2769 * pointers for the [fini] section version, checksum and computed 2770 * checksum, pass those back to the caller. 2771 */ 2772 memset(&caps_cmd, 0, sizeof(caps_cmd)); 2773 caps_cmd.op_to_write = 2774 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 2775 FW_CMD_REQUEST | 2776 FW_CMD_READ); 2777 caps_cmd.cfvalid_to_len16 = 2778 htonl(FW_CAPS_CONFIG_CMD_CFVALID | 2779 FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 2780 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) | 2781 FW_LEN16(caps_cmd)); 2782 ret = t4_wr_mbox(adap, mbox, &caps_cmd, sizeof(caps_cmd), &caps_cmd); 2783 if (ret < 0) 2784 return ret; 2785 2786 if (finiver) 2787 *finiver = ntohl(caps_cmd.finiver); 2788 if (finicsum) 2789 *finicsum = ntohl(caps_cmd.finicsum); 2790 if (cfcsum) 2791 *cfcsum = ntohl(caps_cmd.cfcsum); 2792 2793 /* 2794 * And now tell the firmware to use the configuration we just loaded. 2795 */ 2796 caps_cmd.op_to_write = 2797 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 2798 FW_CMD_REQUEST | 2799 FW_CMD_WRITE); 2800 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 2801 return t4_wr_mbox(adap, mbox, &caps_cmd, sizeof(caps_cmd), NULL); 2802 } 2803 2804 /** 2805 * t4_fixup_host_params - fix up host-dependent parameters 2806 * @adap: the adapter 2807 * @page_size: the host's Base Page Size 2808 * @cache_line_size: the host's Cache Line Size 2809 * 2810 * Various registers in T4 contain values which are dependent on the 2811 * host's Base Page and Cache Line Sizes. This function will fix all of 2812 * those registers with the appropriate values as passed in ... 2813 */ 2814 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size, 2815 unsigned int cache_line_size) 2816 { 2817 unsigned int page_shift = fls(page_size) - 1; 2818 unsigned int sge_hps = page_shift - 10; 2819 unsigned int stat_len = cache_line_size > 64 ? 128 : 64; 2820 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size; 2821 unsigned int fl_align_log = fls(fl_align) - 1; 2822 2823 t4_write_reg(adap, SGE_HOST_PAGE_SIZE, 2824 HOSTPAGESIZEPF0(sge_hps) | 2825 HOSTPAGESIZEPF1(sge_hps) | 2826 HOSTPAGESIZEPF2(sge_hps) | 2827 HOSTPAGESIZEPF3(sge_hps) | 2828 HOSTPAGESIZEPF4(sge_hps) | 2829 HOSTPAGESIZEPF5(sge_hps) | 2830 HOSTPAGESIZEPF6(sge_hps) | 2831 HOSTPAGESIZEPF7(sge_hps)); 2832 2833 t4_set_reg_field(adap, SGE_CONTROL, 2834 INGPADBOUNDARY_MASK | 2835 EGRSTATUSPAGESIZE_MASK, 2836 INGPADBOUNDARY(fl_align_log - 5) | 2837 EGRSTATUSPAGESIZE(stat_len != 64)); 2838 2839 /* 2840 * Adjust various SGE Free List Host Buffer Sizes. 2841 * 2842 * This is something of a crock since we're using fixed indices into 2843 * the array which are also known by the sge.c code and the T4 2844 * Firmware Configuration File. We need to come up with a much better 2845 * approach to managing this array. For now, the first four entries 2846 * are: 2847 * 2848 * 0: Host Page Size 2849 * 1: 64KB 2850 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode) 2851 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode) 2852 * 2853 * For the single-MTU buffers in unpacked mode we need to include 2854 * space for the SGE Control Packet Shift, 14 byte Ethernet header, 2855 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet 2856 * Padding boundry. All of these are accommodated in the Factory 2857 * Default Firmware Configuration File but we need to adjust it for 2858 * this host's cache line size. 2859 */ 2860 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0, page_size); 2861 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2, 2862 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2) + fl_align-1) 2863 & ~(fl_align-1)); 2864 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3, 2865 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3) + fl_align-1) 2866 & ~(fl_align-1)); 2867 2868 t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(page_shift - 12)); 2869 2870 return 0; 2871 } 2872 2873 /** 2874 * t4_fw_initialize - ask FW to initialize the device 2875 * @adap: the adapter 2876 * @mbox: mailbox to use for the FW command 2877 * 2878 * Issues a command to FW to partially initialize the device. This 2879 * performs initialization that generally doesn't depend on user input. 2880 */ 2881 int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 2882 { 2883 struct fw_initialize_cmd c; 2884 2885 memset(&c, 0, sizeof(c)); 2886 INIT_CMD(c, INITIALIZE, WRITE); 2887 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 2888 } 2889 2890 /** 2891 * t4_query_params - query FW or device parameters 2892 * @adap: the adapter 2893 * @mbox: mailbox to use for the FW command 2894 * @pf: the PF 2895 * @vf: the VF 2896 * @nparams: the number of parameters 2897 * @params: the parameter names 2898 * @val: the parameter values 2899 * 2900 * Reads the value of FW or device parameters. Up to 7 parameters can be 2901 * queried at once. 2902 */ 2903 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 2904 unsigned int vf, unsigned int nparams, const u32 *params, 2905 u32 *val) 2906 { 2907 int i, ret; 2908 struct fw_params_cmd c; 2909 __be32 *p = &c.param[0].mnem; 2910 2911 if (nparams > 7) 2912 return -EINVAL; 2913 2914 memset(&c, 0, sizeof(c)); 2915 c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST | 2916 FW_CMD_READ | FW_PARAMS_CMD_PFN(pf) | 2917 FW_PARAMS_CMD_VFN(vf)); 2918 c.retval_len16 = htonl(FW_LEN16(c)); 2919 for (i = 0; i < nparams; i++, p += 2) 2920 *p = htonl(*params++); 2921 2922 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 2923 if (ret == 0) 2924 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 2925 *val++ = ntohl(*p); 2926 return ret; 2927 } 2928 2929 /** 2930 * t4_set_params - sets FW or device parameters 2931 * @adap: the adapter 2932 * @mbox: mailbox to use for the FW command 2933 * @pf: the PF 2934 * @vf: the VF 2935 * @nparams: the number of parameters 2936 * @params: the parameter names 2937 * @val: the parameter values 2938 * 2939 * Sets the value of FW or device parameters. Up to 7 parameters can be 2940 * specified at once. 2941 */ 2942 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 2943 unsigned int vf, unsigned int nparams, const u32 *params, 2944 const u32 *val) 2945 { 2946 struct fw_params_cmd c; 2947 __be32 *p = &c.param[0].mnem; 2948 2949 if (nparams > 7) 2950 return -EINVAL; 2951 2952 memset(&c, 0, sizeof(c)); 2953 c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST | 2954 FW_CMD_WRITE | FW_PARAMS_CMD_PFN(pf) | 2955 FW_PARAMS_CMD_VFN(vf)); 2956 c.retval_len16 = htonl(FW_LEN16(c)); 2957 while (nparams--) { 2958 *p++ = htonl(*params++); 2959 *p++ = htonl(*val++); 2960 } 2961 2962 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 2963 } 2964 2965 /** 2966 * t4_cfg_pfvf - configure PF/VF resource limits 2967 * @adap: the adapter 2968 * @mbox: mailbox to use for the FW command 2969 * @pf: the PF being configured 2970 * @vf: the VF being configured 2971 * @txq: the max number of egress queues 2972 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 2973 * @rxqi: the max number of interrupt-capable ingress queues 2974 * @rxq: the max number of interruptless ingress queues 2975 * @tc: the PCI traffic class 2976 * @vi: the max number of virtual interfaces 2977 * @cmask: the channel access rights mask for the PF/VF 2978 * @pmask: the port access rights mask for the PF/VF 2979 * @nexact: the maximum number of exact MPS filters 2980 * @rcaps: read capabilities 2981 * @wxcaps: write/execute capabilities 2982 * 2983 * Configures resource limits and capabilities for a physical or virtual 2984 * function. 2985 */ 2986 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 2987 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 2988 unsigned int rxqi, unsigned int rxq, unsigned int tc, 2989 unsigned int vi, unsigned int cmask, unsigned int pmask, 2990 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 2991 { 2992 struct fw_pfvf_cmd c; 2993 2994 memset(&c, 0, sizeof(c)); 2995 c.op_to_vfn = htonl(FW_CMD_OP(FW_PFVF_CMD) | FW_CMD_REQUEST | 2996 FW_CMD_WRITE | FW_PFVF_CMD_PFN(pf) | 2997 FW_PFVF_CMD_VFN(vf)); 2998 c.retval_len16 = htonl(FW_LEN16(c)); 2999 c.niqflint_niq = htonl(FW_PFVF_CMD_NIQFLINT(rxqi) | 3000 FW_PFVF_CMD_NIQ(rxq)); 3001 c.type_to_neq = htonl(FW_PFVF_CMD_CMASK(cmask) | 3002 FW_PFVF_CMD_PMASK(pmask) | 3003 FW_PFVF_CMD_NEQ(txq)); 3004 c.tc_to_nexactf = htonl(FW_PFVF_CMD_TC(tc) | FW_PFVF_CMD_NVI(vi) | 3005 FW_PFVF_CMD_NEXACTF(nexact)); 3006 c.r_caps_to_nethctrl = htonl(FW_PFVF_CMD_R_CAPS(rcaps) | 3007 FW_PFVF_CMD_WX_CAPS(wxcaps) | 3008 FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl)); 3009 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 3010 } 3011 3012 /** 3013 * t4_alloc_vi - allocate a virtual interface 3014 * @adap: the adapter 3015 * @mbox: mailbox to use for the FW command 3016 * @port: physical port associated with the VI 3017 * @pf: the PF owning the VI 3018 * @vf: the VF owning the VI 3019 * @nmac: number of MAC addresses needed (1 to 5) 3020 * @mac: the MAC addresses of the VI 3021 * @rss_size: size of RSS table slice associated with this VI 3022 * 3023 * Allocates a virtual interface for the given physical port. If @mac is 3024 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 3025 * @mac should be large enough to hold @nmac Ethernet addresses, they are 3026 * stored consecutively so the space needed is @nmac * 6 bytes. 3027 * Returns a negative error number or the non-negative VI id. 3028 */ 3029 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 3030 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 3031 unsigned int *rss_size) 3032 { 3033 int ret; 3034 struct fw_vi_cmd c; 3035 3036 memset(&c, 0, sizeof(c)); 3037 c.op_to_vfn = htonl(FW_CMD_OP(FW_VI_CMD) | FW_CMD_REQUEST | 3038 FW_CMD_WRITE | FW_CMD_EXEC | 3039 FW_VI_CMD_PFN(pf) | FW_VI_CMD_VFN(vf)); 3040 c.alloc_to_len16 = htonl(FW_VI_CMD_ALLOC | FW_LEN16(c)); 3041 c.portid_pkd = FW_VI_CMD_PORTID(port); 3042 c.nmac = nmac - 1; 3043 3044 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 3045 if (ret) 3046 return ret; 3047 3048 if (mac) { 3049 memcpy(mac, c.mac, sizeof(c.mac)); 3050 switch (nmac) { 3051 case 5: 3052 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 3053 case 4: 3054 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 3055 case 3: 3056 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 3057 case 2: 3058 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 3059 } 3060 } 3061 if (rss_size) 3062 *rss_size = FW_VI_CMD_RSSSIZE_GET(ntohs(c.rsssize_pkd)); 3063 return FW_VI_CMD_VIID_GET(ntohs(c.type_viid)); 3064 } 3065 3066 /** 3067 * t4_set_rxmode - set Rx properties of a virtual interface 3068 * @adap: the adapter 3069 * @mbox: mailbox to use for the FW command 3070 * @viid: the VI id 3071 * @mtu: the new MTU or -1 3072 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 3073 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 3074 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 3075 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 3076 * @sleep_ok: if true we may sleep while awaiting command completion 3077 * 3078 * Sets Rx properties of a virtual interface. 3079 */ 3080 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 3081 int mtu, int promisc, int all_multi, int bcast, int vlanex, 3082 bool sleep_ok) 3083 { 3084 struct fw_vi_rxmode_cmd c; 3085 3086 /* convert to FW values */ 3087 if (mtu < 0) 3088 mtu = FW_RXMODE_MTU_NO_CHG; 3089 if (promisc < 0) 3090 promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK; 3091 if (all_multi < 0) 3092 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK; 3093 if (bcast < 0) 3094 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK; 3095 if (vlanex < 0) 3096 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK; 3097 3098 memset(&c, 0, sizeof(c)); 3099 c.op_to_viid = htonl(FW_CMD_OP(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST | 3100 FW_CMD_WRITE | FW_VI_RXMODE_CMD_VIID(viid)); 3101 c.retval_len16 = htonl(FW_LEN16(c)); 3102 c.mtu_to_vlanexen = htonl(FW_VI_RXMODE_CMD_MTU(mtu) | 3103 FW_VI_RXMODE_CMD_PROMISCEN(promisc) | 3104 FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) | 3105 FW_VI_RXMODE_CMD_BROADCASTEN(bcast) | 3106 FW_VI_RXMODE_CMD_VLANEXEN(vlanex)); 3107 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 3108 } 3109 3110 /** 3111 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 3112 * @adap: the adapter 3113 * @mbox: mailbox to use for the FW command 3114 * @viid: the VI id 3115 * @free: if true any existing filters for this VI id are first removed 3116 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 3117 * @addr: the MAC address(es) 3118 * @idx: where to store the index of each allocated filter 3119 * @hash: pointer to hash address filter bitmap 3120 * @sleep_ok: call is allowed to sleep 3121 * 3122 * Allocates an exact-match filter for each of the supplied addresses and 3123 * sets it to the corresponding address. If @idx is not %NULL it should 3124 * have at least @naddr entries, each of which will be set to the index of 3125 * the filter allocated for the corresponding MAC address. If a filter 3126 * could not be allocated for an address its index is set to 0xffff. 3127 * If @hash is not %NULL addresses that fail to allocate an exact filter 3128 * are hashed and update the hash filter bitmap pointed at by @hash. 3129 * 3130 * Returns a negative error number or the number of filters allocated. 3131 */ 3132 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 3133 unsigned int viid, bool free, unsigned int naddr, 3134 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 3135 { 3136 int i, ret; 3137 struct fw_vi_mac_cmd c; 3138 struct fw_vi_mac_exact *p; 3139 3140 if (naddr > 7) 3141 return -EINVAL; 3142 3143 memset(&c, 0, sizeof(c)); 3144 c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST | 3145 FW_CMD_WRITE | (free ? FW_CMD_EXEC : 0) | 3146 FW_VI_MAC_CMD_VIID(viid)); 3147 c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_FREEMACS(free) | 3148 FW_CMD_LEN16((naddr + 2) / 2)); 3149 3150 for (i = 0, p = c.u.exact; i < naddr; i++, p++) { 3151 p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID | 3152 FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC)); 3153 memcpy(p->macaddr, addr[i], sizeof(p->macaddr)); 3154 } 3155 3156 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 3157 if (ret) 3158 return ret; 3159 3160 for (i = 0, p = c.u.exact; i < naddr; i++, p++) { 3161 u16 index = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx)); 3162 3163 if (idx) 3164 idx[i] = index >= NEXACT_MAC ? 0xffff : index; 3165 if (index < NEXACT_MAC) 3166 ret++; 3167 else if (hash) 3168 *hash |= (1ULL << hash_mac_addr(addr[i])); 3169 } 3170 return ret; 3171 } 3172 3173 /** 3174 * t4_change_mac - modifies the exact-match filter for a MAC address 3175 * @adap: the adapter 3176 * @mbox: mailbox to use for the FW command 3177 * @viid: the VI id 3178 * @idx: index of existing filter for old value of MAC address, or -1 3179 * @addr: the new MAC address value 3180 * @persist: whether a new MAC allocation should be persistent 3181 * @add_smt: if true also add the address to the HW SMT 3182 * 3183 * Modifies an exact-match filter and sets it to the new MAC address. 3184 * Note that in general it is not possible to modify the value of a given 3185 * filter so the generic way to modify an address filter is to free the one 3186 * being used by the old address value and allocate a new filter for the 3187 * new address value. @idx can be -1 if the address is a new addition. 3188 * 3189 * Returns a negative error number or the index of the filter with the new 3190 * MAC value. 3191 */ 3192 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 3193 int idx, const u8 *addr, bool persist, bool add_smt) 3194 { 3195 int ret, mode; 3196 struct fw_vi_mac_cmd c; 3197 struct fw_vi_mac_exact *p = c.u.exact; 3198 3199 if (idx < 0) /* new allocation */ 3200 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 3201 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 3202 3203 memset(&c, 0, sizeof(c)); 3204 c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST | 3205 FW_CMD_WRITE | FW_VI_MAC_CMD_VIID(viid)); 3206 c.freemacs_to_len16 = htonl(FW_CMD_LEN16(1)); 3207 p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID | 3208 FW_VI_MAC_CMD_SMAC_RESULT(mode) | 3209 FW_VI_MAC_CMD_IDX(idx)); 3210 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 3211 3212 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 3213 if (ret == 0) { 3214 ret = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx)); 3215 if (ret >= NEXACT_MAC) 3216 ret = -ENOMEM; 3217 } 3218 return ret; 3219 } 3220 3221 /** 3222 * t4_set_addr_hash - program the MAC inexact-match hash filter 3223 * @adap: the adapter 3224 * @mbox: mailbox to use for the FW command 3225 * @viid: the VI id 3226 * @ucast: whether the hash filter should also match unicast addresses 3227 * @vec: the value to be written to the hash filter 3228 * @sleep_ok: call is allowed to sleep 3229 * 3230 * Sets the 64-bit inexact-match hash filter for a virtual interface. 3231 */ 3232 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 3233 bool ucast, u64 vec, bool sleep_ok) 3234 { 3235 struct fw_vi_mac_cmd c; 3236 3237 memset(&c, 0, sizeof(c)); 3238 c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST | 3239 FW_CMD_WRITE | FW_VI_ENABLE_CMD_VIID(viid)); 3240 c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_HASHVECEN | 3241 FW_VI_MAC_CMD_HASHUNIEN(ucast) | 3242 FW_CMD_LEN16(1)); 3243 c.u.hash.hashvec = cpu_to_be64(vec); 3244 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 3245 } 3246 3247 /** 3248 * t4_enable_vi - enable/disable a virtual interface 3249 * @adap: the adapter 3250 * @mbox: mailbox to use for the FW command 3251 * @viid: the VI id 3252 * @rx_en: 1=enable Rx, 0=disable Rx 3253 * @tx_en: 1=enable Tx, 0=disable Tx 3254 * 3255 * Enables/disables a virtual interface. 3256 */ 3257 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 3258 bool rx_en, bool tx_en) 3259 { 3260 struct fw_vi_enable_cmd c; 3261 3262 memset(&c, 0, sizeof(c)); 3263 c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST | 3264 FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid)); 3265 c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_IEN(rx_en) | 3266 FW_VI_ENABLE_CMD_EEN(tx_en) | FW_LEN16(c)); 3267 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 3268 } 3269 3270 /** 3271 * t4_identify_port - identify a VI's port by blinking its LED 3272 * @adap: the adapter 3273 * @mbox: mailbox to use for the FW command 3274 * @viid: the VI id 3275 * @nblinks: how many times to blink LED at 2.5 Hz 3276 * 3277 * Identifies a VI's port by blinking its LED. 3278 */ 3279 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 3280 unsigned int nblinks) 3281 { 3282 struct fw_vi_enable_cmd c; 3283 3284 memset(&c, 0, sizeof(c)); 3285 c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST | 3286 FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid)); 3287 c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_LED | FW_LEN16(c)); 3288 c.blinkdur = htons(nblinks); 3289 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 3290 } 3291 3292 /** 3293 * t4_iq_free - free an ingress queue and its FLs 3294 * @adap: the adapter 3295 * @mbox: mailbox to use for the FW command 3296 * @pf: the PF owning the queues 3297 * @vf: the VF owning the queues 3298 * @iqtype: the ingress queue type 3299 * @iqid: ingress queue id 3300 * @fl0id: FL0 queue id or 0xffff if no attached FL0 3301 * @fl1id: FL1 queue id or 0xffff if no attached FL1 3302 * 3303 * Frees an ingress queue and its associated FLs, if any. 3304 */ 3305 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 3306 unsigned int vf, unsigned int iqtype, unsigned int iqid, 3307 unsigned int fl0id, unsigned int fl1id) 3308 { 3309 struct fw_iq_cmd c; 3310 3311 memset(&c, 0, sizeof(c)); 3312 c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST | 3313 FW_CMD_EXEC | FW_IQ_CMD_PFN(pf) | 3314 FW_IQ_CMD_VFN(vf)); 3315 c.alloc_to_len16 = htonl(FW_IQ_CMD_FREE | FW_LEN16(c)); 3316 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(iqtype)); 3317 c.iqid = htons(iqid); 3318 c.fl0id = htons(fl0id); 3319 c.fl1id = htons(fl1id); 3320 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 3321 } 3322 3323 /** 3324 * t4_eth_eq_free - free an Ethernet egress queue 3325 * @adap: the adapter 3326 * @mbox: mailbox to use for the FW command 3327 * @pf: the PF owning the queue 3328 * @vf: the VF owning the queue 3329 * @eqid: egress queue id 3330 * 3331 * Frees an Ethernet egress queue. 3332 */ 3333 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 3334 unsigned int vf, unsigned int eqid) 3335 { 3336 struct fw_eq_eth_cmd c; 3337 3338 memset(&c, 0, sizeof(c)); 3339 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST | 3340 FW_CMD_EXEC | FW_EQ_ETH_CMD_PFN(pf) | 3341 FW_EQ_ETH_CMD_VFN(vf)); 3342 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_FREE | FW_LEN16(c)); 3343 c.eqid_pkd = htonl(FW_EQ_ETH_CMD_EQID(eqid)); 3344 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 3345 } 3346 3347 /** 3348 * t4_ctrl_eq_free - free a control egress queue 3349 * @adap: the adapter 3350 * @mbox: mailbox to use for the FW command 3351 * @pf: the PF owning the queue 3352 * @vf: the VF owning the queue 3353 * @eqid: egress queue id 3354 * 3355 * Frees a control egress queue. 3356 */ 3357 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 3358 unsigned int vf, unsigned int eqid) 3359 { 3360 struct fw_eq_ctrl_cmd c; 3361 3362 memset(&c, 0, sizeof(c)); 3363 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST | 3364 FW_CMD_EXEC | FW_EQ_CTRL_CMD_PFN(pf) | 3365 FW_EQ_CTRL_CMD_VFN(vf)); 3366 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_FREE | FW_LEN16(c)); 3367 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_EQID(eqid)); 3368 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 3369 } 3370 3371 /** 3372 * t4_ofld_eq_free - free an offload egress queue 3373 * @adap: the adapter 3374 * @mbox: mailbox to use for the FW command 3375 * @pf: the PF owning the queue 3376 * @vf: the VF owning the queue 3377 * @eqid: egress queue id 3378 * 3379 * Frees a control egress queue. 3380 */ 3381 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 3382 unsigned int vf, unsigned int eqid) 3383 { 3384 struct fw_eq_ofld_cmd c; 3385 3386 memset(&c, 0, sizeof(c)); 3387 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST | 3388 FW_CMD_EXEC | FW_EQ_OFLD_CMD_PFN(pf) | 3389 FW_EQ_OFLD_CMD_VFN(vf)); 3390 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_FREE | FW_LEN16(c)); 3391 c.eqid_pkd = htonl(FW_EQ_OFLD_CMD_EQID(eqid)); 3392 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 3393 } 3394 3395 /** 3396 * t4_handle_fw_rpl - process a FW reply message 3397 * @adap: the adapter 3398 * @rpl: start of the FW message 3399 * 3400 * Processes a FW message, such as link state change messages. 3401 */ 3402 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 3403 { 3404 u8 opcode = *(const u8 *)rpl; 3405 3406 if (opcode == FW_PORT_CMD) { /* link/module state change message */ 3407 int speed = 0, fc = 0; 3408 const struct fw_port_cmd *p = (void *)rpl; 3409 int chan = FW_PORT_CMD_PORTID_GET(ntohl(p->op_to_portid)); 3410 int port = adap->chan_map[chan]; 3411 struct port_info *pi = adap2pinfo(adap, port); 3412 struct link_config *lc = &pi->link_cfg; 3413 u32 stat = ntohl(p->u.info.lstatus_to_modtype); 3414 int link_ok = (stat & FW_PORT_CMD_LSTATUS) != 0; 3415 u32 mod = FW_PORT_CMD_MODTYPE_GET(stat); 3416 3417 if (stat & FW_PORT_CMD_RXPAUSE) 3418 fc |= PAUSE_RX; 3419 if (stat & FW_PORT_CMD_TXPAUSE) 3420 fc |= PAUSE_TX; 3421 if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M)) 3422 speed = SPEED_100; 3423 else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G)) 3424 speed = SPEED_1000; 3425 else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G)) 3426 speed = SPEED_10000; 3427 3428 if (link_ok != lc->link_ok || speed != lc->speed || 3429 fc != lc->fc) { /* something changed */ 3430 lc->link_ok = link_ok; 3431 lc->speed = speed; 3432 lc->fc = fc; 3433 t4_os_link_changed(adap, port, link_ok); 3434 } 3435 if (mod != pi->mod_type) { 3436 pi->mod_type = mod; 3437 t4_os_portmod_changed(adap, port); 3438 } 3439 } 3440 return 0; 3441 } 3442 3443 static void get_pci_mode(struct adapter *adapter, struct pci_params *p) 3444 { 3445 u16 val; 3446 3447 if (pci_is_pcie(adapter->pdev)) { 3448 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); 3449 p->speed = val & PCI_EXP_LNKSTA_CLS; 3450 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 3451 } 3452 } 3453 3454 /** 3455 * init_link_config - initialize a link's SW state 3456 * @lc: structure holding the link state 3457 * @caps: link capabilities 3458 * 3459 * Initializes the SW state maintained for each link, including the link's 3460 * capabilities and default speed/flow-control/autonegotiation settings. 3461 */ 3462 static void init_link_config(struct link_config *lc, unsigned int caps) 3463 { 3464 lc->supported = caps; 3465 lc->requested_speed = 0; 3466 lc->speed = 0; 3467 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 3468 if (lc->supported & FW_PORT_CAP_ANEG) { 3469 lc->advertising = lc->supported & ADVERT_MASK; 3470 lc->autoneg = AUTONEG_ENABLE; 3471 lc->requested_fc |= PAUSE_AUTONEG; 3472 } else { 3473 lc->advertising = 0; 3474 lc->autoneg = AUTONEG_DISABLE; 3475 } 3476 } 3477 3478 int t4_wait_dev_ready(struct adapter *adap) 3479 { 3480 if (t4_read_reg(adap, PL_WHOAMI) != 0xffffffff) 3481 return 0; 3482 msleep(500); 3483 return t4_read_reg(adap, PL_WHOAMI) != 0xffffffff ? 0 : -EIO; 3484 } 3485 3486 static int get_flash_params(struct adapter *adap) 3487 { 3488 int ret; 3489 u32 info; 3490 3491 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID); 3492 if (!ret) 3493 ret = sf1_read(adap, 3, 0, 1, &info); 3494 t4_write_reg(adap, SF_OP, 0); /* unlock SF */ 3495 if (ret) 3496 return ret; 3497 3498 if ((info & 0xff) != 0x20) /* not a Numonix flash */ 3499 return -EINVAL; 3500 info >>= 16; /* log2 of size */ 3501 if (info >= 0x14 && info < 0x18) 3502 adap->params.sf_nsec = 1 << (info - 16); 3503 else if (info == 0x18) 3504 adap->params.sf_nsec = 64; 3505 else 3506 return -EINVAL; 3507 adap->params.sf_size = 1 << info; 3508 adap->params.sf_fw_start = 3509 t4_read_reg(adap, CIM_BOOT_CFG) & BOOTADDR_MASK; 3510 return 0; 3511 } 3512 3513 /** 3514 * t4_prep_adapter - prepare SW and HW for operation 3515 * @adapter: the adapter 3516 * @reset: if true perform a HW reset 3517 * 3518 * Initialize adapter SW state for the various HW modules, set initial 3519 * values for some adapter tunables, take PHYs out of reset, and 3520 * initialize the MDIO interface. 3521 */ 3522 int t4_prep_adapter(struct adapter *adapter) 3523 { 3524 int ret; 3525 3526 ret = t4_wait_dev_ready(adapter); 3527 if (ret < 0) 3528 return ret; 3529 3530 get_pci_mode(adapter, &adapter->params.pci); 3531 adapter->params.rev = t4_read_reg(adapter, PL_REV); 3532 3533 ret = get_flash_params(adapter); 3534 if (ret < 0) { 3535 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret); 3536 return ret; 3537 } 3538 3539 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 3540 3541 /* 3542 * Default port for debugging in case we can't reach FW. 3543 */ 3544 adapter->params.nports = 1; 3545 adapter->params.portvec = 1; 3546 adapter->params.vpd.cclk = 50000; 3547 return 0; 3548 } 3549 3550 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf) 3551 { 3552 u8 addr[6]; 3553 int ret, i, j = 0; 3554 struct fw_port_cmd c; 3555 struct fw_rss_vi_config_cmd rvc; 3556 3557 memset(&c, 0, sizeof(c)); 3558 memset(&rvc, 0, sizeof(rvc)); 3559 3560 for_each_port(adap, i) { 3561 unsigned int rss_size; 3562 struct port_info *p = adap2pinfo(adap, i); 3563 3564 while ((adap->params.portvec & (1 << j)) == 0) 3565 j++; 3566 3567 c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | 3568 FW_CMD_REQUEST | FW_CMD_READ | 3569 FW_PORT_CMD_PORTID(j)); 3570 c.action_to_len16 = htonl( 3571 FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) | 3572 FW_LEN16(c)); 3573 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 3574 if (ret) 3575 return ret; 3576 3577 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size); 3578 if (ret < 0) 3579 return ret; 3580 3581 p->viid = ret; 3582 p->tx_chan = j; 3583 p->lport = j; 3584 p->rss_size = rss_size; 3585 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN); 3586 memcpy(adap->port[i]->perm_addr, addr, ETH_ALEN); 3587 adap->port[i]->dev_id = j; 3588 3589 ret = ntohl(c.u.info.lstatus_to_modtype); 3590 p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP) ? 3591 FW_PORT_CMD_MDIOADDR_GET(ret) : -1; 3592 p->port_type = FW_PORT_CMD_PTYPE_GET(ret); 3593 p->mod_type = FW_PORT_MOD_TYPE_NA; 3594 3595 rvc.op_to_viid = htonl(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) | 3596 FW_CMD_REQUEST | FW_CMD_READ | 3597 FW_RSS_VI_CONFIG_CMD_VIID(p->viid)); 3598 rvc.retval_len16 = htonl(FW_LEN16(rvc)); 3599 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); 3600 if (ret) 3601 return ret; 3602 p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen); 3603 3604 init_link_config(&p->link_cfg, ntohs(c.u.info.pcap)); 3605 j++; 3606 } 3607 return 0; 3608 } 3609