1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/delay.h> 36 #include "cxgb4.h" 37 #include "t4_regs.h" 38 #include "t4_values.h" 39 #include "t4fw_api.h" 40 #include "t4fw_version.h" 41 42 /** 43 * t4_wait_op_done_val - wait until an operation is completed 44 * @adapter: the adapter performing the operation 45 * @reg: the register to check for completion 46 * @mask: a single-bit field within @reg that indicates completion 47 * @polarity: the value of the field when the operation is completed 48 * @attempts: number of check iterations 49 * @delay: delay in usecs between iterations 50 * @valp: where to store the value of the register at completion time 51 * 52 * Wait until an operation is completed by checking a bit in a register 53 * up to @attempts times. If @valp is not NULL the value of the register 54 * at the time it indicated completion is stored there. Returns 0 if the 55 * operation completes and -EAGAIN otherwise. 56 */ 57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 58 int polarity, int attempts, int delay, u32 *valp) 59 { 60 while (1) { 61 u32 val = t4_read_reg(adapter, reg); 62 63 if (!!(val & mask) == polarity) { 64 if (valp) 65 *valp = val; 66 return 0; 67 } 68 if (--attempts == 0) 69 return -EAGAIN; 70 if (delay) 71 udelay(delay); 72 } 73 } 74 75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 76 int polarity, int attempts, int delay) 77 { 78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 79 delay, NULL); 80 } 81 82 /** 83 * t4_set_reg_field - set a register field to a value 84 * @adapter: the adapter to program 85 * @addr: the register address 86 * @mask: specifies the portion of the register to modify 87 * @val: the new value for the register field 88 * 89 * Sets a register field specified by the supplied mask to the 90 * given value. 91 */ 92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 93 u32 val) 94 { 95 u32 v = t4_read_reg(adapter, addr) & ~mask; 96 97 t4_write_reg(adapter, addr, v | val); 98 (void) t4_read_reg(adapter, addr); /* flush */ 99 } 100 101 /** 102 * t4_read_indirect - read indirectly addressed registers 103 * @adap: the adapter 104 * @addr_reg: register holding the indirect address 105 * @data_reg: register holding the value of the indirect register 106 * @vals: where the read register values are stored 107 * @nregs: how many indirect registers to read 108 * @start_idx: index of first indirect register to read 109 * 110 * Reads registers that are accessed indirectly through an address/data 111 * register pair. 112 */ 113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 114 unsigned int data_reg, u32 *vals, 115 unsigned int nregs, unsigned int start_idx) 116 { 117 while (nregs--) { 118 t4_write_reg(adap, addr_reg, start_idx); 119 *vals++ = t4_read_reg(adap, data_reg); 120 start_idx++; 121 } 122 } 123 124 /** 125 * t4_write_indirect - write indirectly addressed registers 126 * @adap: the adapter 127 * @addr_reg: register holding the indirect addresses 128 * @data_reg: register holding the value for the indirect registers 129 * @vals: values to write 130 * @nregs: how many indirect registers to write 131 * @start_idx: address of first indirect register to write 132 * 133 * Writes a sequential block of registers that are accessed indirectly 134 * through an address/data register pair. 135 */ 136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 137 unsigned int data_reg, const u32 *vals, 138 unsigned int nregs, unsigned int start_idx) 139 { 140 while (nregs--) { 141 t4_write_reg(adap, addr_reg, start_idx++); 142 t4_write_reg(adap, data_reg, *vals++); 143 } 144 } 145 146 /* 147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor 148 * mechanism. This guarantees that we get the real value even if we're 149 * operating within a Virtual Machine and the Hypervisor is trapping our 150 * Configuration Space accesses. 151 */ 152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val) 153 { 154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg); 155 156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 157 req |= ENABLE_F; 158 else 159 req |= T6_ENABLE_F; 160 161 if (is_t4(adap->params.chip)) 162 req |= LOCALCFG_F; 163 164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req); 165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A); 166 167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a 168 * Configuration Space read. (None of the other fields matter when 169 * ENABLE is 0 so a simple register write is easier than a 170 * read-modify-write via t4_set_reg_field().) 171 */ 172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0); 173 } 174 175 /* 176 * t4_report_fw_error - report firmware error 177 * @adap: the adapter 178 * 179 * The adapter firmware can indicate error conditions to the host. 180 * If the firmware has indicated an error, print out the reason for 181 * the firmware error. 182 */ 183 static void t4_report_fw_error(struct adapter *adap) 184 { 185 static const char *const reason[] = { 186 "Crash", /* PCIE_FW_EVAL_CRASH */ 187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */ 188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */ 189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */ 190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ 191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ 192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ 193 "Reserved", /* reserved */ 194 }; 195 u32 pcie_fw; 196 197 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 198 if (pcie_fw & PCIE_FW_ERR_F) { 199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n", 200 reason[PCIE_FW_EVAL_G(pcie_fw)]); 201 adap->flags &= ~CXGB4_FW_OK; 202 } 203 } 204 205 /* 206 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 207 */ 208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 209 u32 mbox_addr) 210 { 211 for ( ; nflit; nflit--, mbox_addr += 8) 212 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 213 } 214 215 /* 216 * Handle a FW assertion reported in a mailbox. 217 */ 218 static void fw_asrt(struct adapter *adap, u32 mbox_addr) 219 { 220 struct fw_debug_cmd asrt; 221 222 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); 223 dev_alert(adap->pdev_dev, 224 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 225 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line), 226 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y)); 227 } 228 229 /** 230 * t4_record_mbox - record a Firmware Mailbox Command/Reply in the log 231 * @adapter: the adapter 232 * @cmd: the Firmware Mailbox Command or Reply 233 * @size: command length in bytes 234 * @access: the time (ms) needed to access the Firmware Mailbox 235 * @execute: the time (ms) the command spent being executed 236 */ 237 static void t4_record_mbox(struct adapter *adapter, 238 const __be64 *cmd, unsigned int size, 239 int access, int execute) 240 { 241 struct mbox_cmd_log *log = adapter->mbox_log; 242 struct mbox_cmd *entry; 243 int i; 244 245 entry = mbox_cmd_log_entry(log, log->cursor++); 246 if (log->cursor == log->size) 247 log->cursor = 0; 248 249 for (i = 0; i < size / 8; i++) 250 entry->cmd[i] = be64_to_cpu(cmd[i]); 251 while (i < MBOX_LEN / 8) 252 entry->cmd[i++] = 0; 253 entry->timestamp = jiffies; 254 entry->seqno = log->seqno++; 255 entry->access = access; 256 entry->execute = execute; 257 } 258 259 /** 260 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox 261 * @adap: the adapter 262 * @mbox: index of the mailbox to use 263 * @cmd: the command to write 264 * @size: command length in bytes 265 * @rpl: where to optionally store the reply 266 * @sleep_ok: if true we may sleep while awaiting command completion 267 * @timeout: time to wait for command to finish before timing out 268 * 269 * Sends the given command to FW through the selected mailbox and waits 270 * for the FW to execute the command. If @rpl is not %NULL it is used to 271 * store the FW's reply to the command. The command and its optional 272 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms 273 * to respond. @sleep_ok determines whether we may sleep while awaiting 274 * the response. If sleeping is allowed we use progressive backoff 275 * otherwise we spin. 276 * 277 * The return value is 0 on success or a negative errno on failure. A 278 * failure can happen either because we are not able to execute the 279 * command or FW executes it but signals an error. In the latter case 280 * the return value is the error code indicated by FW (negated). 281 */ 282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, 283 int size, void *rpl, bool sleep_ok, int timeout) 284 { 285 static const int delay[] = { 286 1, 1, 3, 5, 10, 10, 20, 50, 100, 200 287 }; 288 289 struct mbox_list entry; 290 u16 access = 0; 291 u16 execute = 0; 292 u32 v; 293 u64 res; 294 int i, ms, delay_idx, ret; 295 const __be64 *p = cmd; 296 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); 297 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A); 298 __be64 cmd_rpl[MBOX_LEN / 8]; 299 u32 pcie_fw; 300 301 if ((size & 15) || size > MBOX_LEN) 302 return -EINVAL; 303 304 /* 305 * If the device is off-line, as in EEH, commands will time out. 306 * Fail them early so we don't waste time waiting. 307 */ 308 if (adap->pdev->error_state != pci_channel_io_normal) 309 return -EIO; 310 311 /* If we have a negative timeout, that implies that we can't sleep. */ 312 if (timeout < 0) { 313 sleep_ok = false; 314 timeout = -timeout; 315 } 316 317 /* Queue ourselves onto the mailbox access list. When our entry is at 318 * the front of the list, we have rights to access the mailbox. So we 319 * wait [for a while] till we're at the front [or bail out with an 320 * EBUSY] ... 321 */ 322 spin_lock_bh(&adap->mbox_lock); 323 list_add_tail(&entry.list, &adap->mlist.list); 324 spin_unlock_bh(&adap->mbox_lock); 325 326 delay_idx = 0; 327 ms = delay[0]; 328 329 for (i = 0; ; i += ms) { 330 /* If we've waited too long, return a busy indication. This 331 * really ought to be based on our initial position in the 332 * mailbox access list but this is a start. We very rarely 333 * contend on access to the mailbox ... 334 */ 335 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 336 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) { 337 spin_lock_bh(&adap->mbox_lock); 338 list_del(&entry.list); 339 spin_unlock_bh(&adap->mbox_lock); 340 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY; 341 t4_record_mbox(adap, cmd, size, access, ret); 342 return ret; 343 } 344 345 /* If we're at the head, break out and start the mailbox 346 * protocol. 347 */ 348 if (list_first_entry(&adap->mlist.list, struct mbox_list, 349 list) == &entry) 350 break; 351 352 /* Delay for a bit before checking again ... */ 353 if (sleep_ok) { 354 ms = delay[delay_idx]; /* last element may repeat */ 355 if (delay_idx < ARRAY_SIZE(delay) - 1) 356 delay_idx++; 357 msleep(ms); 358 } else { 359 mdelay(ms); 360 } 361 } 362 363 /* Loop trying to get ownership of the mailbox. Return an error 364 * if we can't gain ownership. 365 */ 366 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 367 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 368 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 369 if (v != MBOX_OWNER_DRV) { 370 spin_lock_bh(&adap->mbox_lock); 371 list_del(&entry.list); 372 spin_unlock_bh(&adap->mbox_lock); 373 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT; 374 t4_record_mbox(adap, cmd, size, access, ret); 375 return ret; 376 } 377 378 /* Copy in the new mailbox command and send it on its way ... */ 379 t4_record_mbox(adap, cmd, size, access, 0); 380 for (i = 0; i < size; i += 8) 381 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++)); 382 383 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW)); 384 t4_read_reg(adap, ctl_reg); /* flush write */ 385 386 delay_idx = 0; 387 ms = delay[0]; 388 389 for (i = 0; 390 !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) && 391 i < timeout; 392 i += ms) { 393 if (sleep_ok) { 394 ms = delay[delay_idx]; /* last element may repeat */ 395 if (delay_idx < ARRAY_SIZE(delay) - 1) 396 delay_idx++; 397 msleep(ms); 398 } else 399 mdelay(ms); 400 401 v = t4_read_reg(adap, ctl_reg); 402 if (MBOWNER_G(v) == MBOX_OWNER_DRV) { 403 if (!(v & MBMSGVALID_F)) { 404 t4_write_reg(adap, ctl_reg, 0); 405 continue; 406 } 407 408 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg); 409 res = be64_to_cpu(cmd_rpl[0]); 410 411 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) { 412 fw_asrt(adap, data_reg); 413 res = FW_CMD_RETVAL_V(EIO); 414 } else if (rpl) { 415 memcpy(rpl, cmd_rpl, size); 416 } 417 418 t4_write_reg(adap, ctl_reg, 0); 419 420 execute = i + ms; 421 t4_record_mbox(adap, cmd_rpl, 422 MBOX_LEN, access, execute); 423 spin_lock_bh(&adap->mbox_lock); 424 list_del(&entry.list); 425 spin_unlock_bh(&adap->mbox_lock); 426 return -FW_CMD_RETVAL_G((int)res); 427 } 428 } 429 430 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT; 431 t4_record_mbox(adap, cmd, size, access, ret); 432 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n", 433 *(const u8 *)cmd, mbox); 434 t4_report_fw_error(adap); 435 spin_lock_bh(&adap->mbox_lock); 436 list_del(&entry.list); 437 spin_unlock_bh(&adap->mbox_lock); 438 t4_fatal_err(adap); 439 return ret; 440 } 441 442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 443 void *rpl, bool sleep_ok) 444 { 445 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok, 446 FW_CMD_MAX_TIMEOUT); 447 } 448 449 static int t4_edc_err_read(struct adapter *adap, int idx) 450 { 451 u32 edc_ecc_err_addr_reg; 452 u32 rdata_reg; 453 454 if (is_t4(adap->params.chip)) { 455 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); 456 return 0; 457 } 458 if (idx != 0 && idx != 1) { 459 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); 460 return 0; 461 } 462 463 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx); 464 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx); 465 466 CH_WARN(adap, 467 "edc%d err addr 0x%x: 0x%x.\n", 468 idx, edc_ecc_err_addr_reg, 469 t4_read_reg(adap, edc_ecc_err_addr_reg)); 470 CH_WARN(adap, 471 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", 472 rdata_reg, 473 (unsigned long long)t4_read_reg64(adap, rdata_reg), 474 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8), 475 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16), 476 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24), 477 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32), 478 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40), 479 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48), 480 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56), 481 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64)); 482 483 return 0; 484 } 485 486 /** 487 * t4_memory_rw_init - Get memory window relative offset, base, and size. 488 * @adap: the adapter 489 * @win: PCI-E Memory Window to use 490 * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC 491 * @mem_off: memory relative offset with respect to @mtype. 492 * @mem_base: configured memory base address. 493 * @mem_aperture: configured memory window aperture. 494 * 495 * Get the configured memory window's relative offset, base, and size. 496 */ 497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off, 498 u32 *mem_base, u32 *mem_aperture) 499 { 500 u32 edc_size, mc_size, mem_reg; 501 502 /* Offset into the region of memory which is being accessed 503 * MEM_EDC0 = 0 504 * MEM_EDC1 = 1 505 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller 506 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5) 507 * MEM_HMA = 4 508 */ 509 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A)); 510 if (mtype == MEM_HMA) { 511 *mem_off = 2 * (edc_size * 1024 * 1024); 512 } else if (mtype != MEM_MC1) { 513 *mem_off = (mtype * (edc_size * 1024 * 1024)); 514 } else { 515 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap, 516 MA_EXT_MEMORY0_BAR_A)); 517 *mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; 518 } 519 520 /* Each PCI-E Memory Window is programmed with a window size -- or 521 * "aperture" -- which controls the granularity of its mapping onto 522 * adapter memory. We need to grab that aperture in order to know 523 * how to use the specified window. The window is also programmed 524 * with the base address of the Memory Window in BAR0's address 525 * space. For T4 this is an absolute PCI-E Bus Address. For T5 526 * the address is relative to BAR0. 527 */ 528 mem_reg = t4_read_reg(adap, 529 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 530 win)); 531 /* a dead adapter will return 0xffffffff for PIO reads */ 532 if (mem_reg == 0xffffffff) 533 return -ENXIO; 534 535 *mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X); 536 *mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X; 537 if (is_t4(adap->params.chip)) 538 *mem_base -= adap->t4_bar0; 539 540 return 0; 541 } 542 543 /** 544 * t4_memory_update_win - Move memory window to specified address. 545 * @adap: the adapter 546 * @win: PCI-E Memory Window to use 547 * @addr: location to move. 548 * 549 * Move memory window to specified address. 550 */ 551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr) 552 { 553 t4_write_reg(adap, 554 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win), 555 addr); 556 /* Read it back to ensure that changes propagate before we 557 * attempt to use the new value. 558 */ 559 t4_read_reg(adap, 560 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); 561 } 562 563 /** 564 * t4_memory_rw_residual - Read/Write residual data. 565 * @adap: the adapter 566 * @off: relative offset within residual to start read/write. 567 * @addr: address within indicated memory type. 568 * @buf: host memory buffer 569 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 570 * 571 * Read/Write residual data less than 32-bits. 572 */ 573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf, 574 int dir) 575 { 576 union { 577 u32 word; 578 char byte[4]; 579 } last; 580 unsigned char *bp; 581 int i; 582 583 if (dir == T4_MEMORY_READ) { 584 last.word = le32_to_cpu((__force __le32) 585 t4_read_reg(adap, addr)); 586 for (bp = (unsigned char *)buf, i = off; i < 4; i++) 587 bp[i] = last.byte[i]; 588 } else { 589 last.word = *buf; 590 for (i = off; i < 4; i++) 591 last.byte[i] = 0; 592 t4_write_reg(adap, addr, 593 (__force u32)cpu_to_le32(last.word)); 594 } 595 } 596 597 /** 598 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window 599 * @adap: the adapter 600 * @win: PCI-E Memory Window to use 601 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 602 * @addr: address within indicated memory type 603 * @len: amount of memory to transfer 604 * @hbuf: host memory buffer 605 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 606 * 607 * Reads/writes an [almost] arbitrary memory region in the firmware: the 608 * firmware memory address and host buffer must be aligned on 32-bit 609 * boundaries; the length may be arbitrary. The memory is transferred as 610 * a raw byte sequence from/to the firmware's memory. If this memory 611 * contains data structures which contain multi-byte integers, it's the 612 * caller's responsibility to perform appropriate byte order conversions. 613 */ 614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr, 615 u32 len, void *hbuf, int dir) 616 { 617 u32 pos, offset, resid, memoffset; 618 u32 win_pf, mem_aperture, mem_base; 619 u32 *buf; 620 int ret; 621 622 /* Argument sanity checks ... 623 */ 624 if (addr & 0x3 || (uintptr_t)hbuf & 0x3) 625 return -EINVAL; 626 buf = (u32 *)hbuf; 627 628 /* It's convenient to be able to handle lengths which aren't a 629 * multiple of 32-bits because we often end up transferring files to 630 * the firmware. So we'll handle that by normalizing the length here 631 * and then handling any residual transfer at the end. 632 */ 633 resid = len & 0x3; 634 len -= resid; 635 636 ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base, 637 &mem_aperture); 638 if (ret) 639 return ret; 640 641 /* Determine the PCIE_MEM_ACCESS_OFFSET */ 642 addr = addr + memoffset; 643 644 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf); 645 646 /* Calculate our initial PCI-E Memory Window Position and Offset into 647 * that Window. 648 */ 649 pos = addr & ~(mem_aperture - 1); 650 offset = addr - pos; 651 652 /* Set up initial PCI-E Memory Window to cover the start of our 653 * transfer. 654 */ 655 t4_memory_update_win(adap, win, pos | win_pf); 656 657 /* Transfer data to/from the adapter as long as there's an integral 658 * number of 32-bit transfers to complete. 659 * 660 * A note on Endianness issues: 661 * 662 * The "register" reads and writes below from/to the PCI-E Memory 663 * Window invoke the standard adapter Big-Endian to PCI-E Link 664 * Little-Endian "swizzel." As a result, if we have the following 665 * data in adapter memory: 666 * 667 * Memory: ... | b0 | b1 | b2 | b3 | ... 668 * Address: i+0 i+1 i+2 i+3 669 * 670 * Then a read of the adapter memory via the PCI-E Memory Window 671 * will yield: 672 * 673 * x = readl(i) 674 * 31 0 675 * [ b3 | b2 | b1 | b0 ] 676 * 677 * If this value is stored into local memory on a Little-Endian system 678 * it will show up correctly in local memory as: 679 * 680 * ( ..., b0, b1, b2, b3, ... ) 681 * 682 * But on a Big-Endian system, the store will show up in memory 683 * incorrectly swizzled as: 684 * 685 * ( ..., b3, b2, b1, b0, ... ) 686 * 687 * So we need to account for this in the reads and writes to the 688 * PCI-E Memory Window below by undoing the register read/write 689 * swizzels. 690 */ 691 while (len > 0) { 692 if (dir == T4_MEMORY_READ) 693 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap, 694 mem_base + offset)); 695 else 696 t4_write_reg(adap, mem_base + offset, 697 (__force u32)cpu_to_le32(*buf++)); 698 offset += sizeof(__be32); 699 len -= sizeof(__be32); 700 701 /* If we've reached the end of our current window aperture, 702 * move the PCI-E Memory Window on to the next. Note that 703 * doing this here after "len" may be 0 allows us to set up 704 * the PCI-E Memory Window for a possible final residual 705 * transfer below ... 706 */ 707 if (offset == mem_aperture) { 708 pos += mem_aperture; 709 offset = 0; 710 t4_memory_update_win(adap, win, pos | win_pf); 711 } 712 } 713 714 /* If the original transfer had a length which wasn't a multiple of 715 * 32-bits, now's where we need to finish off the transfer of the 716 * residual amount. The PCI-E Memory Window has already been moved 717 * above (if necessary) to cover this final transfer. 718 */ 719 if (resid) 720 t4_memory_rw_residual(adap, resid, mem_base + offset, 721 (u8 *)buf, dir); 722 723 return 0; 724 } 725 726 /* Return the specified PCI-E Configuration Space register from our Physical 727 * Function. We try first via a Firmware LDST Command since we prefer to let 728 * the firmware own all of these registers, but if that fails we go for it 729 * directly ourselves. 730 */ 731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg) 732 { 733 u32 val, ldst_addrspace; 734 735 /* If fw_attach != 0, construct and send the Firmware LDST Command to 736 * retrieve the specified PCI-E Configuration Space register. 737 */ 738 struct fw_ldst_cmd ldst_cmd; 739 int ret; 740 741 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 742 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE); 743 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 744 FW_CMD_REQUEST_F | 745 FW_CMD_READ_F | 746 ldst_addrspace); 747 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 748 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1); 749 ldst_cmd.u.pcie.ctrl_to_fn = 750 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf)); 751 ldst_cmd.u.pcie.r = reg; 752 753 /* If the LDST Command succeeds, return the result, otherwise 754 * fall through to reading it directly ourselves ... 755 */ 756 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 757 &ldst_cmd); 758 if (ret == 0) 759 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]); 760 else 761 /* Read the desired Configuration Space register via the PCI-E 762 * Backdoor mechanism. 763 */ 764 t4_hw_pci_read_cfg4(adap, reg, &val); 765 return val; 766 } 767 768 /* Get the window based on base passed to it. 769 * Window aperture is currently unhandled, but there is no use case for it 770 * right now 771 */ 772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask, 773 u32 memwin_base) 774 { 775 u32 ret; 776 777 if (is_t4(adap->params.chip)) { 778 u32 bar0; 779 780 /* Truncation intentional: we only read the bottom 32-bits of 781 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor 782 * mechanism to read BAR0 instead of using 783 * pci_resource_start() because we could be operating from 784 * within a Virtual Machine which is trapping our accesses to 785 * our Configuration Space and we need to set up the PCI-E 786 * Memory Window decoders with the actual addresses which will 787 * be coming across the PCI-E link. 788 */ 789 bar0 = t4_read_pcie_cfg4(adap, pci_base); 790 bar0 &= pci_mask; 791 adap->t4_bar0 = bar0; 792 793 ret = bar0 + memwin_base; 794 } else { 795 /* For T5, only relative offset inside the PCIe BAR is passed */ 796 ret = memwin_base; 797 } 798 return ret; 799 } 800 801 /* Get the default utility window (win0) used by everyone */ 802 u32 t4_get_util_window(struct adapter *adap) 803 { 804 return t4_get_window(adap, PCI_BASE_ADDRESS_0, 805 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE); 806 } 807 808 /* Set up memory window for accessing adapter memory ranges. (Read 809 * back MA register to ensure that changes propagate before we attempt 810 * to use the new values.) 811 */ 812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window) 813 { 814 t4_write_reg(adap, 815 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window), 816 memwin_base | BIR_V(0) | 817 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X)); 818 t4_read_reg(adap, 819 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window)); 820 } 821 822 /** 823 * t4_get_regs_len - return the size of the chips register set 824 * @adapter: the adapter 825 * 826 * Returns the size of the chip's BAR0 register space. 827 */ 828 unsigned int t4_get_regs_len(struct adapter *adapter) 829 { 830 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 831 832 switch (chip_version) { 833 case CHELSIO_T4: 834 return T4_REGMAP_SIZE; 835 836 case CHELSIO_T5: 837 case CHELSIO_T6: 838 return T5_REGMAP_SIZE; 839 } 840 841 dev_err(adapter->pdev_dev, 842 "Unsupported chip version %d\n", chip_version); 843 return 0; 844 } 845 846 /** 847 * t4_get_regs - read chip registers into provided buffer 848 * @adap: the adapter 849 * @buf: register buffer 850 * @buf_size: size (in bytes) of register buffer 851 * 852 * If the provided register buffer isn't large enough for the chip's 853 * full register range, the register dump will be truncated to the 854 * register buffer's size. 855 */ 856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size) 857 { 858 static const unsigned int t4_reg_ranges[] = { 859 0x1008, 0x1108, 860 0x1180, 0x1184, 861 0x1190, 0x1194, 862 0x11a0, 0x11a4, 863 0x11b0, 0x11b4, 864 0x11fc, 0x123c, 865 0x1300, 0x173c, 866 0x1800, 0x18fc, 867 0x3000, 0x30d8, 868 0x30e0, 0x30e4, 869 0x30ec, 0x5910, 870 0x5920, 0x5924, 871 0x5960, 0x5960, 872 0x5968, 0x5968, 873 0x5970, 0x5970, 874 0x5978, 0x5978, 875 0x5980, 0x5980, 876 0x5988, 0x5988, 877 0x5990, 0x5990, 878 0x5998, 0x5998, 879 0x59a0, 0x59d4, 880 0x5a00, 0x5ae0, 881 0x5ae8, 0x5ae8, 882 0x5af0, 0x5af0, 883 0x5af8, 0x5af8, 884 0x6000, 0x6098, 885 0x6100, 0x6150, 886 0x6200, 0x6208, 887 0x6240, 0x6248, 888 0x6280, 0x62b0, 889 0x62c0, 0x6338, 890 0x6370, 0x638c, 891 0x6400, 0x643c, 892 0x6500, 0x6524, 893 0x6a00, 0x6a04, 894 0x6a14, 0x6a38, 895 0x6a60, 0x6a70, 896 0x6a78, 0x6a78, 897 0x6b00, 0x6b0c, 898 0x6b1c, 0x6b84, 899 0x6bf0, 0x6bf8, 900 0x6c00, 0x6c0c, 901 0x6c1c, 0x6c84, 902 0x6cf0, 0x6cf8, 903 0x6d00, 0x6d0c, 904 0x6d1c, 0x6d84, 905 0x6df0, 0x6df8, 906 0x6e00, 0x6e0c, 907 0x6e1c, 0x6e84, 908 0x6ef0, 0x6ef8, 909 0x6f00, 0x6f0c, 910 0x6f1c, 0x6f84, 911 0x6ff0, 0x6ff8, 912 0x7000, 0x700c, 913 0x701c, 0x7084, 914 0x70f0, 0x70f8, 915 0x7100, 0x710c, 916 0x711c, 0x7184, 917 0x71f0, 0x71f8, 918 0x7200, 0x720c, 919 0x721c, 0x7284, 920 0x72f0, 0x72f8, 921 0x7300, 0x730c, 922 0x731c, 0x7384, 923 0x73f0, 0x73f8, 924 0x7400, 0x7450, 925 0x7500, 0x7530, 926 0x7600, 0x760c, 927 0x7614, 0x761c, 928 0x7680, 0x76cc, 929 0x7700, 0x7798, 930 0x77c0, 0x77fc, 931 0x7900, 0x79fc, 932 0x7b00, 0x7b58, 933 0x7b60, 0x7b84, 934 0x7b8c, 0x7c38, 935 0x7d00, 0x7d38, 936 0x7d40, 0x7d80, 937 0x7d8c, 0x7ddc, 938 0x7de4, 0x7e04, 939 0x7e10, 0x7e1c, 940 0x7e24, 0x7e38, 941 0x7e40, 0x7e44, 942 0x7e4c, 0x7e78, 943 0x7e80, 0x7ea4, 944 0x7eac, 0x7edc, 945 0x7ee8, 0x7efc, 946 0x8dc0, 0x8e04, 947 0x8e10, 0x8e1c, 948 0x8e30, 0x8e78, 949 0x8ea0, 0x8eb8, 950 0x8ec0, 0x8f6c, 951 0x8fc0, 0x9008, 952 0x9010, 0x9058, 953 0x9060, 0x9060, 954 0x9068, 0x9074, 955 0x90fc, 0x90fc, 956 0x9400, 0x9408, 957 0x9410, 0x9458, 958 0x9600, 0x9600, 959 0x9608, 0x9638, 960 0x9640, 0x96bc, 961 0x9800, 0x9808, 962 0x9820, 0x983c, 963 0x9850, 0x9864, 964 0x9c00, 0x9c6c, 965 0x9c80, 0x9cec, 966 0x9d00, 0x9d6c, 967 0x9d80, 0x9dec, 968 0x9e00, 0x9e6c, 969 0x9e80, 0x9eec, 970 0x9f00, 0x9f6c, 971 0x9f80, 0x9fec, 972 0xd004, 0xd004, 973 0xd010, 0xd03c, 974 0xdfc0, 0xdfe0, 975 0xe000, 0xea7c, 976 0xf000, 0x11110, 977 0x11118, 0x11190, 978 0x19040, 0x1906c, 979 0x19078, 0x19080, 980 0x1908c, 0x190e4, 981 0x190f0, 0x190f8, 982 0x19100, 0x19110, 983 0x19120, 0x19124, 984 0x19150, 0x19194, 985 0x1919c, 0x191b0, 986 0x191d0, 0x191e8, 987 0x19238, 0x1924c, 988 0x193f8, 0x1943c, 989 0x1944c, 0x19474, 990 0x19490, 0x194e0, 991 0x194f0, 0x194f8, 992 0x19800, 0x19c08, 993 0x19c10, 0x19c90, 994 0x19ca0, 0x19ce4, 995 0x19cf0, 0x19d40, 996 0x19d50, 0x19d94, 997 0x19da0, 0x19de8, 998 0x19df0, 0x19e40, 999 0x19e50, 0x19e90, 1000 0x19ea0, 0x19f4c, 1001 0x1a000, 0x1a004, 1002 0x1a010, 0x1a06c, 1003 0x1a0b0, 0x1a0e4, 1004 0x1a0ec, 0x1a0f4, 1005 0x1a100, 0x1a108, 1006 0x1a114, 0x1a120, 1007 0x1a128, 0x1a130, 1008 0x1a138, 0x1a138, 1009 0x1a190, 0x1a1c4, 1010 0x1a1fc, 0x1a1fc, 1011 0x1e040, 0x1e04c, 1012 0x1e284, 0x1e28c, 1013 0x1e2c0, 0x1e2c0, 1014 0x1e2e0, 0x1e2e0, 1015 0x1e300, 0x1e384, 1016 0x1e3c0, 0x1e3c8, 1017 0x1e440, 0x1e44c, 1018 0x1e684, 0x1e68c, 1019 0x1e6c0, 0x1e6c0, 1020 0x1e6e0, 0x1e6e0, 1021 0x1e700, 0x1e784, 1022 0x1e7c0, 0x1e7c8, 1023 0x1e840, 0x1e84c, 1024 0x1ea84, 0x1ea8c, 1025 0x1eac0, 0x1eac0, 1026 0x1eae0, 0x1eae0, 1027 0x1eb00, 0x1eb84, 1028 0x1ebc0, 0x1ebc8, 1029 0x1ec40, 0x1ec4c, 1030 0x1ee84, 0x1ee8c, 1031 0x1eec0, 0x1eec0, 1032 0x1eee0, 0x1eee0, 1033 0x1ef00, 0x1ef84, 1034 0x1efc0, 0x1efc8, 1035 0x1f040, 0x1f04c, 1036 0x1f284, 0x1f28c, 1037 0x1f2c0, 0x1f2c0, 1038 0x1f2e0, 0x1f2e0, 1039 0x1f300, 0x1f384, 1040 0x1f3c0, 0x1f3c8, 1041 0x1f440, 0x1f44c, 1042 0x1f684, 0x1f68c, 1043 0x1f6c0, 0x1f6c0, 1044 0x1f6e0, 0x1f6e0, 1045 0x1f700, 0x1f784, 1046 0x1f7c0, 0x1f7c8, 1047 0x1f840, 0x1f84c, 1048 0x1fa84, 0x1fa8c, 1049 0x1fac0, 0x1fac0, 1050 0x1fae0, 0x1fae0, 1051 0x1fb00, 0x1fb84, 1052 0x1fbc0, 0x1fbc8, 1053 0x1fc40, 0x1fc4c, 1054 0x1fe84, 0x1fe8c, 1055 0x1fec0, 0x1fec0, 1056 0x1fee0, 0x1fee0, 1057 0x1ff00, 0x1ff84, 1058 0x1ffc0, 0x1ffc8, 1059 0x20000, 0x2002c, 1060 0x20100, 0x2013c, 1061 0x20190, 0x201a0, 1062 0x201a8, 0x201b8, 1063 0x201c4, 0x201c8, 1064 0x20200, 0x20318, 1065 0x20400, 0x204b4, 1066 0x204c0, 0x20528, 1067 0x20540, 0x20614, 1068 0x21000, 0x21040, 1069 0x2104c, 0x21060, 1070 0x210c0, 0x210ec, 1071 0x21200, 0x21268, 1072 0x21270, 0x21284, 1073 0x212fc, 0x21388, 1074 0x21400, 0x21404, 1075 0x21500, 0x21500, 1076 0x21510, 0x21518, 1077 0x2152c, 0x21530, 1078 0x2153c, 0x2153c, 1079 0x21550, 0x21554, 1080 0x21600, 0x21600, 1081 0x21608, 0x2161c, 1082 0x21624, 0x21628, 1083 0x21630, 0x21634, 1084 0x2163c, 0x2163c, 1085 0x21700, 0x2171c, 1086 0x21780, 0x2178c, 1087 0x21800, 0x21818, 1088 0x21820, 0x21828, 1089 0x21830, 0x21848, 1090 0x21850, 0x21854, 1091 0x21860, 0x21868, 1092 0x21870, 0x21870, 1093 0x21878, 0x21898, 1094 0x218a0, 0x218a8, 1095 0x218b0, 0x218c8, 1096 0x218d0, 0x218d4, 1097 0x218e0, 0x218e8, 1098 0x218f0, 0x218f0, 1099 0x218f8, 0x21a18, 1100 0x21a20, 0x21a28, 1101 0x21a30, 0x21a48, 1102 0x21a50, 0x21a54, 1103 0x21a60, 0x21a68, 1104 0x21a70, 0x21a70, 1105 0x21a78, 0x21a98, 1106 0x21aa0, 0x21aa8, 1107 0x21ab0, 0x21ac8, 1108 0x21ad0, 0x21ad4, 1109 0x21ae0, 0x21ae8, 1110 0x21af0, 0x21af0, 1111 0x21af8, 0x21c18, 1112 0x21c20, 0x21c20, 1113 0x21c28, 0x21c30, 1114 0x21c38, 0x21c38, 1115 0x21c80, 0x21c98, 1116 0x21ca0, 0x21ca8, 1117 0x21cb0, 0x21cc8, 1118 0x21cd0, 0x21cd4, 1119 0x21ce0, 0x21ce8, 1120 0x21cf0, 0x21cf0, 1121 0x21cf8, 0x21d7c, 1122 0x21e00, 0x21e04, 1123 0x22000, 0x2202c, 1124 0x22100, 0x2213c, 1125 0x22190, 0x221a0, 1126 0x221a8, 0x221b8, 1127 0x221c4, 0x221c8, 1128 0x22200, 0x22318, 1129 0x22400, 0x224b4, 1130 0x224c0, 0x22528, 1131 0x22540, 0x22614, 1132 0x23000, 0x23040, 1133 0x2304c, 0x23060, 1134 0x230c0, 0x230ec, 1135 0x23200, 0x23268, 1136 0x23270, 0x23284, 1137 0x232fc, 0x23388, 1138 0x23400, 0x23404, 1139 0x23500, 0x23500, 1140 0x23510, 0x23518, 1141 0x2352c, 0x23530, 1142 0x2353c, 0x2353c, 1143 0x23550, 0x23554, 1144 0x23600, 0x23600, 1145 0x23608, 0x2361c, 1146 0x23624, 0x23628, 1147 0x23630, 0x23634, 1148 0x2363c, 0x2363c, 1149 0x23700, 0x2371c, 1150 0x23780, 0x2378c, 1151 0x23800, 0x23818, 1152 0x23820, 0x23828, 1153 0x23830, 0x23848, 1154 0x23850, 0x23854, 1155 0x23860, 0x23868, 1156 0x23870, 0x23870, 1157 0x23878, 0x23898, 1158 0x238a0, 0x238a8, 1159 0x238b0, 0x238c8, 1160 0x238d0, 0x238d4, 1161 0x238e0, 0x238e8, 1162 0x238f0, 0x238f0, 1163 0x238f8, 0x23a18, 1164 0x23a20, 0x23a28, 1165 0x23a30, 0x23a48, 1166 0x23a50, 0x23a54, 1167 0x23a60, 0x23a68, 1168 0x23a70, 0x23a70, 1169 0x23a78, 0x23a98, 1170 0x23aa0, 0x23aa8, 1171 0x23ab0, 0x23ac8, 1172 0x23ad0, 0x23ad4, 1173 0x23ae0, 0x23ae8, 1174 0x23af0, 0x23af0, 1175 0x23af8, 0x23c18, 1176 0x23c20, 0x23c20, 1177 0x23c28, 0x23c30, 1178 0x23c38, 0x23c38, 1179 0x23c80, 0x23c98, 1180 0x23ca0, 0x23ca8, 1181 0x23cb0, 0x23cc8, 1182 0x23cd0, 0x23cd4, 1183 0x23ce0, 0x23ce8, 1184 0x23cf0, 0x23cf0, 1185 0x23cf8, 0x23d7c, 1186 0x23e00, 0x23e04, 1187 0x24000, 0x2402c, 1188 0x24100, 0x2413c, 1189 0x24190, 0x241a0, 1190 0x241a8, 0x241b8, 1191 0x241c4, 0x241c8, 1192 0x24200, 0x24318, 1193 0x24400, 0x244b4, 1194 0x244c0, 0x24528, 1195 0x24540, 0x24614, 1196 0x25000, 0x25040, 1197 0x2504c, 0x25060, 1198 0x250c0, 0x250ec, 1199 0x25200, 0x25268, 1200 0x25270, 0x25284, 1201 0x252fc, 0x25388, 1202 0x25400, 0x25404, 1203 0x25500, 0x25500, 1204 0x25510, 0x25518, 1205 0x2552c, 0x25530, 1206 0x2553c, 0x2553c, 1207 0x25550, 0x25554, 1208 0x25600, 0x25600, 1209 0x25608, 0x2561c, 1210 0x25624, 0x25628, 1211 0x25630, 0x25634, 1212 0x2563c, 0x2563c, 1213 0x25700, 0x2571c, 1214 0x25780, 0x2578c, 1215 0x25800, 0x25818, 1216 0x25820, 0x25828, 1217 0x25830, 0x25848, 1218 0x25850, 0x25854, 1219 0x25860, 0x25868, 1220 0x25870, 0x25870, 1221 0x25878, 0x25898, 1222 0x258a0, 0x258a8, 1223 0x258b0, 0x258c8, 1224 0x258d0, 0x258d4, 1225 0x258e0, 0x258e8, 1226 0x258f0, 0x258f0, 1227 0x258f8, 0x25a18, 1228 0x25a20, 0x25a28, 1229 0x25a30, 0x25a48, 1230 0x25a50, 0x25a54, 1231 0x25a60, 0x25a68, 1232 0x25a70, 0x25a70, 1233 0x25a78, 0x25a98, 1234 0x25aa0, 0x25aa8, 1235 0x25ab0, 0x25ac8, 1236 0x25ad0, 0x25ad4, 1237 0x25ae0, 0x25ae8, 1238 0x25af0, 0x25af0, 1239 0x25af8, 0x25c18, 1240 0x25c20, 0x25c20, 1241 0x25c28, 0x25c30, 1242 0x25c38, 0x25c38, 1243 0x25c80, 0x25c98, 1244 0x25ca0, 0x25ca8, 1245 0x25cb0, 0x25cc8, 1246 0x25cd0, 0x25cd4, 1247 0x25ce0, 0x25ce8, 1248 0x25cf0, 0x25cf0, 1249 0x25cf8, 0x25d7c, 1250 0x25e00, 0x25e04, 1251 0x26000, 0x2602c, 1252 0x26100, 0x2613c, 1253 0x26190, 0x261a0, 1254 0x261a8, 0x261b8, 1255 0x261c4, 0x261c8, 1256 0x26200, 0x26318, 1257 0x26400, 0x264b4, 1258 0x264c0, 0x26528, 1259 0x26540, 0x26614, 1260 0x27000, 0x27040, 1261 0x2704c, 0x27060, 1262 0x270c0, 0x270ec, 1263 0x27200, 0x27268, 1264 0x27270, 0x27284, 1265 0x272fc, 0x27388, 1266 0x27400, 0x27404, 1267 0x27500, 0x27500, 1268 0x27510, 0x27518, 1269 0x2752c, 0x27530, 1270 0x2753c, 0x2753c, 1271 0x27550, 0x27554, 1272 0x27600, 0x27600, 1273 0x27608, 0x2761c, 1274 0x27624, 0x27628, 1275 0x27630, 0x27634, 1276 0x2763c, 0x2763c, 1277 0x27700, 0x2771c, 1278 0x27780, 0x2778c, 1279 0x27800, 0x27818, 1280 0x27820, 0x27828, 1281 0x27830, 0x27848, 1282 0x27850, 0x27854, 1283 0x27860, 0x27868, 1284 0x27870, 0x27870, 1285 0x27878, 0x27898, 1286 0x278a0, 0x278a8, 1287 0x278b0, 0x278c8, 1288 0x278d0, 0x278d4, 1289 0x278e0, 0x278e8, 1290 0x278f0, 0x278f0, 1291 0x278f8, 0x27a18, 1292 0x27a20, 0x27a28, 1293 0x27a30, 0x27a48, 1294 0x27a50, 0x27a54, 1295 0x27a60, 0x27a68, 1296 0x27a70, 0x27a70, 1297 0x27a78, 0x27a98, 1298 0x27aa0, 0x27aa8, 1299 0x27ab0, 0x27ac8, 1300 0x27ad0, 0x27ad4, 1301 0x27ae0, 0x27ae8, 1302 0x27af0, 0x27af0, 1303 0x27af8, 0x27c18, 1304 0x27c20, 0x27c20, 1305 0x27c28, 0x27c30, 1306 0x27c38, 0x27c38, 1307 0x27c80, 0x27c98, 1308 0x27ca0, 0x27ca8, 1309 0x27cb0, 0x27cc8, 1310 0x27cd0, 0x27cd4, 1311 0x27ce0, 0x27ce8, 1312 0x27cf0, 0x27cf0, 1313 0x27cf8, 0x27d7c, 1314 0x27e00, 0x27e04, 1315 }; 1316 1317 static const unsigned int t5_reg_ranges[] = { 1318 0x1008, 0x10c0, 1319 0x10cc, 0x10f8, 1320 0x1100, 0x1100, 1321 0x110c, 0x1148, 1322 0x1180, 0x1184, 1323 0x1190, 0x1194, 1324 0x11a0, 0x11a4, 1325 0x11b0, 0x11b4, 1326 0x11fc, 0x123c, 1327 0x1280, 0x173c, 1328 0x1800, 0x18fc, 1329 0x3000, 0x3028, 1330 0x3060, 0x30b0, 1331 0x30b8, 0x30d8, 1332 0x30e0, 0x30fc, 1333 0x3140, 0x357c, 1334 0x35a8, 0x35cc, 1335 0x35ec, 0x35ec, 1336 0x3600, 0x5624, 1337 0x56cc, 0x56ec, 1338 0x56f4, 0x5720, 1339 0x5728, 0x575c, 1340 0x580c, 0x5814, 1341 0x5890, 0x589c, 1342 0x58a4, 0x58ac, 1343 0x58b8, 0x58bc, 1344 0x5940, 0x59c8, 1345 0x59d0, 0x59dc, 1346 0x59fc, 0x5a18, 1347 0x5a60, 0x5a70, 1348 0x5a80, 0x5a9c, 1349 0x5b94, 0x5bfc, 1350 0x6000, 0x6020, 1351 0x6028, 0x6040, 1352 0x6058, 0x609c, 1353 0x60a8, 0x614c, 1354 0x7700, 0x7798, 1355 0x77c0, 0x78fc, 1356 0x7b00, 0x7b58, 1357 0x7b60, 0x7b84, 1358 0x7b8c, 0x7c54, 1359 0x7d00, 0x7d38, 1360 0x7d40, 0x7d80, 1361 0x7d8c, 0x7ddc, 1362 0x7de4, 0x7e04, 1363 0x7e10, 0x7e1c, 1364 0x7e24, 0x7e38, 1365 0x7e40, 0x7e44, 1366 0x7e4c, 0x7e78, 1367 0x7e80, 0x7edc, 1368 0x7ee8, 0x7efc, 1369 0x8dc0, 0x8de0, 1370 0x8df8, 0x8e04, 1371 0x8e10, 0x8e84, 1372 0x8ea0, 0x8f84, 1373 0x8fc0, 0x9058, 1374 0x9060, 0x9060, 1375 0x9068, 0x90f8, 1376 0x9400, 0x9408, 1377 0x9410, 0x9470, 1378 0x9600, 0x9600, 1379 0x9608, 0x9638, 1380 0x9640, 0x96f4, 1381 0x9800, 0x9808, 1382 0x9810, 0x9864, 1383 0x9c00, 0x9c6c, 1384 0x9c80, 0x9cec, 1385 0x9d00, 0x9d6c, 1386 0x9d80, 0x9dec, 1387 0x9e00, 0x9e6c, 1388 0x9e80, 0x9eec, 1389 0x9f00, 0x9f6c, 1390 0x9f80, 0xa020, 1391 0xd000, 0xd004, 1392 0xd010, 0xd03c, 1393 0xdfc0, 0xdfe0, 1394 0xe000, 0x1106c, 1395 0x11074, 0x11088, 1396 0x1109c, 0x1117c, 1397 0x11190, 0x11204, 1398 0x19040, 0x1906c, 1399 0x19078, 0x19080, 1400 0x1908c, 0x190e8, 1401 0x190f0, 0x190f8, 1402 0x19100, 0x19110, 1403 0x19120, 0x19124, 1404 0x19150, 0x19194, 1405 0x1919c, 0x191b0, 1406 0x191d0, 0x191e8, 1407 0x19238, 0x19290, 1408 0x193f8, 0x19428, 1409 0x19430, 0x19444, 1410 0x1944c, 0x1946c, 1411 0x19474, 0x19474, 1412 0x19490, 0x194cc, 1413 0x194f0, 0x194f8, 1414 0x19c00, 0x19c08, 1415 0x19c10, 0x19c60, 1416 0x19c94, 0x19ce4, 1417 0x19cf0, 0x19d40, 1418 0x19d50, 0x19d94, 1419 0x19da0, 0x19de8, 1420 0x19df0, 0x19e10, 1421 0x19e50, 0x19e90, 1422 0x19ea0, 0x19f24, 1423 0x19f34, 0x19f34, 1424 0x19f40, 0x19f50, 1425 0x19f90, 0x19fb4, 1426 0x19fc4, 0x19fe4, 1427 0x1a000, 0x1a004, 1428 0x1a010, 0x1a06c, 1429 0x1a0b0, 0x1a0e4, 1430 0x1a0ec, 0x1a0f8, 1431 0x1a100, 0x1a108, 1432 0x1a114, 0x1a130, 1433 0x1a138, 0x1a1c4, 1434 0x1a1fc, 0x1a1fc, 1435 0x1e008, 0x1e00c, 1436 0x1e040, 0x1e044, 1437 0x1e04c, 0x1e04c, 1438 0x1e284, 0x1e290, 1439 0x1e2c0, 0x1e2c0, 1440 0x1e2e0, 0x1e2e0, 1441 0x1e300, 0x1e384, 1442 0x1e3c0, 0x1e3c8, 1443 0x1e408, 0x1e40c, 1444 0x1e440, 0x1e444, 1445 0x1e44c, 0x1e44c, 1446 0x1e684, 0x1e690, 1447 0x1e6c0, 0x1e6c0, 1448 0x1e6e0, 0x1e6e0, 1449 0x1e700, 0x1e784, 1450 0x1e7c0, 0x1e7c8, 1451 0x1e808, 0x1e80c, 1452 0x1e840, 0x1e844, 1453 0x1e84c, 0x1e84c, 1454 0x1ea84, 0x1ea90, 1455 0x1eac0, 0x1eac0, 1456 0x1eae0, 0x1eae0, 1457 0x1eb00, 0x1eb84, 1458 0x1ebc0, 0x1ebc8, 1459 0x1ec08, 0x1ec0c, 1460 0x1ec40, 0x1ec44, 1461 0x1ec4c, 0x1ec4c, 1462 0x1ee84, 0x1ee90, 1463 0x1eec0, 0x1eec0, 1464 0x1eee0, 0x1eee0, 1465 0x1ef00, 0x1ef84, 1466 0x1efc0, 0x1efc8, 1467 0x1f008, 0x1f00c, 1468 0x1f040, 0x1f044, 1469 0x1f04c, 0x1f04c, 1470 0x1f284, 0x1f290, 1471 0x1f2c0, 0x1f2c0, 1472 0x1f2e0, 0x1f2e0, 1473 0x1f300, 0x1f384, 1474 0x1f3c0, 0x1f3c8, 1475 0x1f408, 0x1f40c, 1476 0x1f440, 0x1f444, 1477 0x1f44c, 0x1f44c, 1478 0x1f684, 0x1f690, 1479 0x1f6c0, 0x1f6c0, 1480 0x1f6e0, 0x1f6e0, 1481 0x1f700, 0x1f784, 1482 0x1f7c0, 0x1f7c8, 1483 0x1f808, 0x1f80c, 1484 0x1f840, 0x1f844, 1485 0x1f84c, 0x1f84c, 1486 0x1fa84, 0x1fa90, 1487 0x1fac0, 0x1fac0, 1488 0x1fae0, 0x1fae0, 1489 0x1fb00, 0x1fb84, 1490 0x1fbc0, 0x1fbc8, 1491 0x1fc08, 0x1fc0c, 1492 0x1fc40, 0x1fc44, 1493 0x1fc4c, 0x1fc4c, 1494 0x1fe84, 0x1fe90, 1495 0x1fec0, 0x1fec0, 1496 0x1fee0, 0x1fee0, 1497 0x1ff00, 0x1ff84, 1498 0x1ffc0, 0x1ffc8, 1499 0x30000, 0x30030, 1500 0x30100, 0x30144, 1501 0x30190, 0x301a0, 1502 0x301a8, 0x301b8, 1503 0x301c4, 0x301c8, 1504 0x301d0, 0x301d0, 1505 0x30200, 0x30318, 1506 0x30400, 0x304b4, 1507 0x304c0, 0x3052c, 1508 0x30540, 0x3061c, 1509 0x30800, 0x30828, 1510 0x30834, 0x30834, 1511 0x308c0, 0x30908, 1512 0x30910, 0x309ac, 1513 0x30a00, 0x30a14, 1514 0x30a1c, 0x30a2c, 1515 0x30a44, 0x30a50, 1516 0x30a74, 0x30a74, 1517 0x30a7c, 0x30afc, 1518 0x30b08, 0x30c24, 1519 0x30d00, 0x30d00, 1520 0x30d08, 0x30d14, 1521 0x30d1c, 0x30d20, 1522 0x30d3c, 0x30d3c, 1523 0x30d48, 0x30d50, 1524 0x31200, 0x3120c, 1525 0x31220, 0x31220, 1526 0x31240, 0x31240, 1527 0x31600, 0x3160c, 1528 0x31a00, 0x31a1c, 1529 0x31e00, 0x31e20, 1530 0x31e38, 0x31e3c, 1531 0x31e80, 0x31e80, 1532 0x31e88, 0x31ea8, 1533 0x31eb0, 0x31eb4, 1534 0x31ec8, 0x31ed4, 1535 0x31fb8, 0x32004, 1536 0x32200, 0x32200, 1537 0x32208, 0x32240, 1538 0x32248, 0x32280, 1539 0x32288, 0x322c0, 1540 0x322c8, 0x322fc, 1541 0x32600, 0x32630, 1542 0x32a00, 0x32abc, 1543 0x32b00, 0x32b10, 1544 0x32b20, 0x32b30, 1545 0x32b40, 0x32b50, 1546 0x32b60, 0x32b70, 1547 0x33000, 0x33028, 1548 0x33030, 0x33048, 1549 0x33060, 0x33068, 1550 0x33070, 0x3309c, 1551 0x330f0, 0x33128, 1552 0x33130, 0x33148, 1553 0x33160, 0x33168, 1554 0x33170, 0x3319c, 1555 0x331f0, 0x33238, 1556 0x33240, 0x33240, 1557 0x33248, 0x33250, 1558 0x3325c, 0x33264, 1559 0x33270, 0x332b8, 1560 0x332c0, 0x332e4, 1561 0x332f8, 0x33338, 1562 0x33340, 0x33340, 1563 0x33348, 0x33350, 1564 0x3335c, 0x33364, 1565 0x33370, 0x333b8, 1566 0x333c0, 0x333e4, 1567 0x333f8, 0x33428, 1568 0x33430, 0x33448, 1569 0x33460, 0x33468, 1570 0x33470, 0x3349c, 1571 0x334f0, 0x33528, 1572 0x33530, 0x33548, 1573 0x33560, 0x33568, 1574 0x33570, 0x3359c, 1575 0x335f0, 0x33638, 1576 0x33640, 0x33640, 1577 0x33648, 0x33650, 1578 0x3365c, 0x33664, 1579 0x33670, 0x336b8, 1580 0x336c0, 0x336e4, 1581 0x336f8, 0x33738, 1582 0x33740, 0x33740, 1583 0x33748, 0x33750, 1584 0x3375c, 0x33764, 1585 0x33770, 0x337b8, 1586 0x337c0, 0x337e4, 1587 0x337f8, 0x337fc, 1588 0x33814, 0x33814, 1589 0x3382c, 0x3382c, 1590 0x33880, 0x3388c, 1591 0x338e8, 0x338ec, 1592 0x33900, 0x33928, 1593 0x33930, 0x33948, 1594 0x33960, 0x33968, 1595 0x33970, 0x3399c, 1596 0x339f0, 0x33a38, 1597 0x33a40, 0x33a40, 1598 0x33a48, 0x33a50, 1599 0x33a5c, 0x33a64, 1600 0x33a70, 0x33ab8, 1601 0x33ac0, 0x33ae4, 1602 0x33af8, 0x33b10, 1603 0x33b28, 0x33b28, 1604 0x33b3c, 0x33b50, 1605 0x33bf0, 0x33c10, 1606 0x33c28, 0x33c28, 1607 0x33c3c, 0x33c50, 1608 0x33cf0, 0x33cfc, 1609 0x34000, 0x34030, 1610 0x34100, 0x34144, 1611 0x34190, 0x341a0, 1612 0x341a8, 0x341b8, 1613 0x341c4, 0x341c8, 1614 0x341d0, 0x341d0, 1615 0x34200, 0x34318, 1616 0x34400, 0x344b4, 1617 0x344c0, 0x3452c, 1618 0x34540, 0x3461c, 1619 0x34800, 0x34828, 1620 0x34834, 0x34834, 1621 0x348c0, 0x34908, 1622 0x34910, 0x349ac, 1623 0x34a00, 0x34a14, 1624 0x34a1c, 0x34a2c, 1625 0x34a44, 0x34a50, 1626 0x34a74, 0x34a74, 1627 0x34a7c, 0x34afc, 1628 0x34b08, 0x34c24, 1629 0x34d00, 0x34d00, 1630 0x34d08, 0x34d14, 1631 0x34d1c, 0x34d20, 1632 0x34d3c, 0x34d3c, 1633 0x34d48, 0x34d50, 1634 0x35200, 0x3520c, 1635 0x35220, 0x35220, 1636 0x35240, 0x35240, 1637 0x35600, 0x3560c, 1638 0x35a00, 0x35a1c, 1639 0x35e00, 0x35e20, 1640 0x35e38, 0x35e3c, 1641 0x35e80, 0x35e80, 1642 0x35e88, 0x35ea8, 1643 0x35eb0, 0x35eb4, 1644 0x35ec8, 0x35ed4, 1645 0x35fb8, 0x36004, 1646 0x36200, 0x36200, 1647 0x36208, 0x36240, 1648 0x36248, 0x36280, 1649 0x36288, 0x362c0, 1650 0x362c8, 0x362fc, 1651 0x36600, 0x36630, 1652 0x36a00, 0x36abc, 1653 0x36b00, 0x36b10, 1654 0x36b20, 0x36b30, 1655 0x36b40, 0x36b50, 1656 0x36b60, 0x36b70, 1657 0x37000, 0x37028, 1658 0x37030, 0x37048, 1659 0x37060, 0x37068, 1660 0x37070, 0x3709c, 1661 0x370f0, 0x37128, 1662 0x37130, 0x37148, 1663 0x37160, 0x37168, 1664 0x37170, 0x3719c, 1665 0x371f0, 0x37238, 1666 0x37240, 0x37240, 1667 0x37248, 0x37250, 1668 0x3725c, 0x37264, 1669 0x37270, 0x372b8, 1670 0x372c0, 0x372e4, 1671 0x372f8, 0x37338, 1672 0x37340, 0x37340, 1673 0x37348, 0x37350, 1674 0x3735c, 0x37364, 1675 0x37370, 0x373b8, 1676 0x373c0, 0x373e4, 1677 0x373f8, 0x37428, 1678 0x37430, 0x37448, 1679 0x37460, 0x37468, 1680 0x37470, 0x3749c, 1681 0x374f0, 0x37528, 1682 0x37530, 0x37548, 1683 0x37560, 0x37568, 1684 0x37570, 0x3759c, 1685 0x375f0, 0x37638, 1686 0x37640, 0x37640, 1687 0x37648, 0x37650, 1688 0x3765c, 0x37664, 1689 0x37670, 0x376b8, 1690 0x376c0, 0x376e4, 1691 0x376f8, 0x37738, 1692 0x37740, 0x37740, 1693 0x37748, 0x37750, 1694 0x3775c, 0x37764, 1695 0x37770, 0x377b8, 1696 0x377c0, 0x377e4, 1697 0x377f8, 0x377fc, 1698 0x37814, 0x37814, 1699 0x3782c, 0x3782c, 1700 0x37880, 0x3788c, 1701 0x378e8, 0x378ec, 1702 0x37900, 0x37928, 1703 0x37930, 0x37948, 1704 0x37960, 0x37968, 1705 0x37970, 0x3799c, 1706 0x379f0, 0x37a38, 1707 0x37a40, 0x37a40, 1708 0x37a48, 0x37a50, 1709 0x37a5c, 0x37a64, 1710 0x37a70, 0x37ab8, 1711 0x37ac0, 0x37ae4, 1712 0x37af8, 0x37b10, 1713 0x37b28, 0x37b28, 1714 0x37b3c, 0x37b50, 1715 0x37bf0, 0x37c10, 1716 0x37c28, 0x37c28, 1717 0x37c3c, 0x37c50, 1718 0x37cf0, 0x37cfc, 1719 0x38000, 0x38030, 1720 0x38100, 0x38144, 1721 0x38190, 0x381a0, 1722 0x381a8, 0x381b8, 1723 0x381c4, 0x381c8, 1724 0x381d0, 0x381d0, 1725 0x38200, 0x38318, 1726 0x38400, 0x384b4, 1727 0x384c0, 0x3852c, 1728 0x38540, 0x3861c, 1729 0x38800, 0x38828, 1730 0x38834, 0x38834, 1731 0x388c0, 0x38908, 1732 0x38910, 0x389ac, 1733 0x38a00, 0x38a14, 1734 0x38a1c, 0x38a2c, 1735 0x38a44, 0x38a50, 1736 0x38a74, 0x38a74, 1737 0x38a7c, 0x38afc, 1738 0x38b08, 0x38c24, 1739 0x38d00, 0x38d00, 1740 0x38d08, 0x38d14, 1741 0x38d1c, 0x38d20, 1742 0x38d3c, 0x38d3c, 1743 0x38d48, 0x38d50, 1744 0x39200, 0x3920c, 1745 0x39220, 0x39220, 1746 0x39240, 0x39240, 1747 0x39600, 0x3960c, 1748 0x39a00, 0x39a1c, 1749 0x39e00, 0x39e20, 1750 0x39e38, 0x39e3c, 1751 0x39e80, 0x39e80, 1752 0x39e88, 0x39ea8, 1753 0x39eb0, 0x39eb4, 1754 0x39ec8, 0x39ed4, 1755 0x39fb8, 0x3a004, 1756 0x3a200, 0x3a200, 1757 0x3a208, 0x3a240, 1758 0x3a248, 0x3a280, 1759 0x3a288, 0x3a2c0, 1760 0x3a2c8, 0x3a2fc, 1761 0x3a600, 0x3a630, 1762 0x3aa00, 0x3aabc, 1763 0x3ab00, 0x3ab10, 1764 0x3ab20, 0x3ab30, 1765 0x3ab40, 0x3ab50, 1766 0x3ab60, 0x3ab70, 1767 0x3b000, 0x3b028, 1768 0x3b030, 0x3b048, 1769 0x3b060, 0x3b068, 1770 0x3b070, 0x3b09c, 1771 0x3b0f0, 0x3b128, 1772 0x3b130, 0x3b148, 1773 0x3b160, 0x3b168, 1774 0x3b170, 0x3b19c, 1775 0x3b1f0, 0x3b238, 1776 0x3b240, 0x3b240, 1777 0x3b248, 0x3b250, 1778 0x3b25c, 0x3b264, 1779 0x3b270, 0x3b2b8, 1780 0x3b2c0, 0x3b2e4, 1781 0x3b2f8, 0x3b338, 1782 0x3b340, 0x3b340, 1783 0x3b348, 0x3b350, 1784 0x3b35c, 0x3b364, 1785 0x3b370, 0x3b3b8, 1786 0x3b3c0, 0x3b3e4, 1787 0x3b3f8, 0x3b428, 1788 0x3b430, 0x3b448, 1789 0x3b460, 0x3b468, 1790 0x3b470, 0x3b49c, 1791 0x3b4f0, 0x3b528, 1792 0x3b530, 0x3b548, 1793 0x3b560, 0x3b568, 1794 0x3b570, 0x3b59c, 1795 0x3b5f0, 0x3b638, 1796 0x3b640, 0x3b640, 1797 0x3b648, 0x3b650, 1798 0x3b65c, 0x3b664, 1799 0x3b670, 0x3b6b8, 1800 0x3b6c0, 0x3b6e4, 1801 0x3b6f8, 0x3b738, 1802 0x3b740, 0x3b740, 1803 0x3b748, 0x3b750, 1804 0x3b75c, 0x3b764, 1805 0x3b770, 0x3b7b8, 1806 0x3b7c0, 0x3b7e4, 1807 0x3b7f8, 0x3b7fc, 1808 0x3b814, 0x3b814, 1809 0x3b82c, 0x3b82c, 1810 0x3b880, 0x3b88c, 1811 0x3b8e8, 0x3b8ec, 1812 0x3b900, 0x3b928, 1813 0x3b930, 0x3b948, 1814 0x3b960, 0x3b968, 1815 0x3b970, 0x3b99c, 1816 0x3b9f0, 0x3ba38, 1817 0x3ba40, 0x3ba40, 1818 0x3ba48, 0x3ba50, 1819 0x3ba5c, 0x3ba64, 1820 0x3ba70, 0x3bab8, 1821 0x3bac0, 0x3bae4, 1822 0x3baf8, 0x3bb10, 1823 0x3bb28, 0x3bb28, 1824 0x3bb3c, 0x3bb50, 1825 0x3bbf0, 0x3bc10, 1826 0x3bc28, 0x3bc28, 1827 0x3bc3c, 0x3bc50, 1828 0x3bcf0, 0x3bcfc, 1829 0x3c000, 0x3c030, 1830 0x3c100, 0x3c144, 1831 0x3c190, 0x3c1a0, 1832 0x3c1a8, 0x3c1b8, 1833 0x3c1c4, 0x3c1c8, 1834 0x3c1d0, 0x3c1d0, 1835 0x3c200, 0x3c318, 1836 0x3c400, 0x3c4b4, 1837 0x3c4c0, 0x3c52c, 1838 0x3c540, 0x3c61c, 1839 0x3c800, 0x3c828, 1840 0x3c834, 0x3c834, 1841 0x3c8c0, 0x3c908, 1842 0x3c910, 0x3c9ac, 1843 0x3ca00, 0x3ca14, 1844 0x3ca1c, 0x3ca2c, 1845 0x3ca44, 0x3ca50, 1846 0x3ca74, 0x3ca74, 1847 0x3ca7c, 0x3cafc, 1848 0x3cb08, 0x3cc24, 1849 0x3cd00, 0x3cd00, 1850 0x3cd08, 0x3cd14, 1851 0x3cd1c, 0x3cd20, 1852 0x3cd3c, 0x3cd3c, 1853 0x3cd48, 0x3cd50, 1854 0x3d200, 0x3d20c, 1855 0x3d220, 0x3d220, 1856 0x3d240, 0x3d240, 1857 0x3d600, 0x3d60c, 1858 0x3da00, 0x3da1c, 1859 0x3de00, 0x3de20, 1860 0x3de38, 0x3de3c, 1861 0x3de80, 0x3de80, 1862 0x3de88, 0x3dea8, 1863 0x3deb0, 0x3deb4, 1864 0x3dec8, 0x3ded4, 1865 0x3dfb8, 0x3e004, 1866 0x3e200, 0x3e200, 1867 0x3e208, 0x3e240, 1868 0x3e248, 0x3e280, 1869 0x3e288, 0x3e2c0, 1870 0x3e2c8, 0x3e2fc, 1871 0x3e600, 0x3e630, 1872 0x3ea00, 0x3eabc, 1873 0x3eb00, 0x3eb10, 1874 0x3eb20, 0x3eb30, 1875 0x3eb40, 0x3eb50, 1876 0x3eb60, 0x3eb70, 1877 0x3f000, 0x3f028, 1878 0x3f030, 0x3f048, 1879 0x3f060, 0x3f068, 1880 0x3f070, 0x3f09c, 1881 0x3f0f0, 0x3f128, 1882 0x3f130, 0x3f148, 1883 0x3f160, 0x3f168, 1884 0x3f170, 0x3f19c, 1885 0x3f1f0, 0x3f238, 1886 0x3f240, 0x3f240, 1887 0x3f248, 0x3f250, 1888 0x3f25c, 0x3f264, 1889 0x3f270, 0x3f2b8, 1890 0x3f2c0, 0x3f2e4, 1891 0x3f2f8, 0x3f338, 1892 0x3f340, 0x3f340, 1893 0x3f348, 0x3f350, 1894 0x3f35c, 0x3f364, 1895 0x3f370, 0x3f3b8, 1896 0x3f3c0, 0x3f3e4, 1897 0x3f3f8, 0x3f428, 1898 0x3f430, 0x3f448, 1899 0x3f460, 0x3f468, 1900 0x3f470, 0x3f49c, 1901 0x3f4f0, 0x3f528, 1902 0x3f530, 0x3f548, 1903 0x3f560, 0x3f568, 1904 0x3f570, 0x3f59c, 1905 0x3f5f0, 0x3f638, 1906 0x3f640, 0x3f640, 1907 0x3f648, 0x3f650, 1908 0x3f65c, 0x3f664, 1909 0x3f670, 0x3f6b8, 1910 0x3f6c0, 0x3f6e4, 1911 0x3f6f8, 0x3f738, 1912 0x3f740, 0x3f740, 1913 0x3f748, 0x3f750, 1914 0x3f75c, 0x3f764, 1915 0x3f770, 0x3f7b8, 1916 0x3f7c0, 0x3f7e4, 1917 0x3f7f8, 0x3f7fc, 1918 0x3f814, 0x3f814, 1919 0x3f82c, 0x3f82c, 1920 0x3f880, 0x3f88c, 1921 0x3f8e8, 0x3f8ec, 1922 0x3f900, 0x3f928, 1923 0x3f930, 0x3f948, 1924 0x3f960, 0x3f968, 1925 0x3f970, 0x3f99c, 1926 0x3f9f0, 0x3fa38, 1927 0x3fa40, 0x3fa40, 1928 0x3fa48, 0x3fa50, 1929 0x3fa5c, 0x3fa64, 1930 0x3fa70, 0x3fab8, 1931 0x3fac0, 0x3fae4, 1932 0x3faf8, 0x3fb10, 1933 0x3fb28, 0x3fb28, 1934 0x3fb3c, 0x3fb50, 1935 0x3fbf0, 0x3fc10, 1936 0x3fc28, 0x3fc28, 1937 0x3fc3c, 0x3fc50, 1938 0x3fcf0, 0x3fcfc, 1939 0x40000, 0x4000c, 1940 0x40040, 0x40050, 1941 0x40060, 0x40068, 1942 0x4007c, 0x4008c, 1943 0x40094, 0x400b0, 1944 0x400c0, 0x40144, 1945 0x40180, 0x4018c, 1946 0x40200, 0x40254, 1947 0x40260, 0x40264, 1948 0x40270, 0x40288, 1949 0x40290, 0x40298, 1950 0x402ac, 0x402c8, 1951 0x402d0, 0x402e0, 1952 0x402f0, 0x402f0, 1953 0x40300, 0x4033c, 1954 0x403f8, 0x403fc, 1955 0x41304, 0x413c4, 1956 0x41400, 0x4140c, 1957 0x41414, 0x4141c, 1958 0x41480, 0x414d0, 1959 0x44000, 0x44054, 1960 0x4405c, 0x44078, 1961 0x440c0, 0x44174, 1962 0x44180, 0x441ac, 1963 0x441b4, 0x441b8, 1964 0x441c0, 0x44254, 1965 0x4425c, 0x44278, 1966 0x442c0, 0x44374, 1967 0x44380, 0x443ac, 1968 0x443b4, 0x443b8, 1969 0x443c0, 0x44454, 1970 0x4445c, 0x44478, 1971 0x444c0, 0x44574, 1972 0x44580, 0x445ac, 1973 0x445b4, 0x445b8, 1974 0x445c0, 0x44654, 1975 0x4465c, 0x44678, 1976 0x446c0, 0x44774, 1977 0x44780, 0x447ac, 1978 0x447b4, 0x447b8, 1979 0x447c0, 0x44854, 1980 0x4485c, 0x44878, 1981 0x448c0, 0x44974, 1982 0x44980, 0x449ac, 1983 0x449b4, 0x449b8, 1984 0x449c0, 0x449fc, 1985 0x45000, 0x45004, 1986 0x45010, 0x45030, 1987 0x45040, 0x45060, 1988 0x45068, 0x45068, 1989 0x45080, 0x45084, 1990 0x450a0, 0x450b0, 1991 0x45200, 0x45204, 1992 0x45210, 0x45230, 1993 0x45240, 0x45260, 1994 0x45268, 0x45268, 1995 0x45280, 0x45284, 1996 0x452a0, 0x452b0, 1997 0x460c0, 0x460e4, 1998 0x47000, 0x4703c, 1999 0x47044, 0x4708c, 2000 0x47200, 0x47250, 2001 0x47400, 0x47408, 2002 0x47414, 0x47420, 2003 0x47600, 0x47618, 2004 0x47800, 0x47814, 2005 0x48000, 0x4800c, 2006 0x48040, 0x48050, 2007 0x48060, 0x48068, 2008 0x4807c, 0x4808c, 2009 0x48094, 0x480b0, 2010 0x480c0, 0x48144, 2011 0x48180, 0x4818c, 2012 0x48200, 0x48254, 2013 0x48260, 0x48264, 2014 0x48270, 0x48288, 2015 0x48290, 0x48298, 2016 0x482ac, 0x482c8, 2017 0x482d0, 0x482e0, 2018 0x482f0, 0x482f0, 2019 0x48300, 0x4833c, 2020 0x483f8, 0x483fc, 2021 0x49304, 0x493c4, 2022 0x49400, 0x4940c, 2023 0x49414, 0x4941c, 2024 0x49480, 0x494d0, 2025 0x4c000, 0x4c054, 2026 0x4c05c, 0x4c078, 2027 0x4c0c0, 0x4c174, 2028 0x4c180, 0x4c1ac, 2029 0x4c1b4, 0x4c1b8, 2030 0x4c1c0, 0x4c254, 2031 0x4c25c, 0x4c278, 2032 0x4c2c0, 0x4c374, 2033 0x4c380, 0x4c3ac, 2034 0x4c3b4, 0x4c3b8, 2035 0x4c3c0, 0x4c454, 2036 0x4c45c, 0x4c478, 2037 0x4c4c0, 0x4c574, 2038 0x4c580, 0x4c5ac, 2039 0x4c5b4, 0x4c5b8, 2040 0x4c5c0, 0x4c654, 2041 0x4c65c, 0x4c678, 2042 0x4c6c0, 0x4c774, 2043 0x4c780, 0x4c7ac, 2044 0x4c7b4, 0x4c7b8, 2045 0x4c7c0, 0x4c854, 2046 0x4c85c, 0x4c878, 2047 0x4c8c0, 0x4c974, 2048 0x4c980, 0x4c9ac, 2049 0x4c9b4, 0x4c9b8, 2050 0x4c9c0, 0x4c9fc, 2051 0x4d000, 0x4d004, 2052 0x4d010, 0x4d030, 2053 0x4d040, 0x4d060, 2054 0x4d068, 0x4d068, 2055 0x4d080, 0x4d084, 2056 0x4d0a0, 0x4d0b0, 2057 0x4d200, 0x4d204, 2058 0x4d210, 0x4d230, 2059 0x4d240, 0x4d260, 2060 0x4d268, 0x4d268, 2061 0x4d280, 0x4d284, 2062 0x4d2a0, 0x4d2b0, 2063 0x4e0c0, 0x4e0e4, 2064 0x4f000, 0x4f03c, 2065 0x4f044, 0x4f08c, 2066 0x4f200, 0x4f250, 2067 0x4f400, 0x4f408, 2068 0x4f414, 0x4f420, 2069 0x4f600, 0x4f618, 2070 0x4f800, 0x4f814, 2071 0x50000, 0x50084, 2072 0x50090, 0x500cc, 2073 0x50400, 0x50400, 2074 0x50800, 0x50884, 2075 0x50890, 0x508cc, 2076 0x50c00, 0x50c00, 2077 0x51000, 0x5101c, 2078 0x51300, 0x51308, 2079 }; 2080 2081 static const unsigned int t6_reg_ranges[] = { 2082 0x1008, 0x101c, 2083 0x1024, 0x10a8, 2084 0x10b4, 0x10f8, 2085 0x1100, 0x1114, 2086 0x111c, 0x112c, 2087 0x1138, 0x113c, 2088 0x1144, 0x114c, 2089 0x1180, 0x1184, 2090 0x1190, 0x1194, 2091 0x11a0, 0x11a4, 2092 0x11b0, 0x11b4, 2093 0x11fc, 0x123c, 2094 0x1254, 0x1274, 2095 0x1280, 0x133c, 2096 0x1800, 0x18fc, 2097 0x3000, 0x302c, 2098 0x3060, 0x30b0, 2099 0x30b8, 0x30d8, 2100 0x30e0, 0x30fc, 2101 0x3140, 0x357c, 2102 0x35a8, 0x35cc, 2103 0x35ec, 0x35ec, 2104 0x3600, 0x5624, 2105 0x56cc, 0x56ec, 2106 0x56f4, 0x5720, 2107 0x5728, 0x575c, 2108 0x580c, 0x5814, 2109 0x5890, 0x589c, 2110 0x58a4, 0x58ac, 2111 0x58b8, 0x58bc, 2112 0x5940, 0x595c, 2113 0x5980, 0x598c, 2114 0x59b0, 0x59c8, 2115 0x59d0, 0x59dc, 2116 0x59fc, 0x5a18, 2117 0x5a60, 0x5a6c, 2118 0x5a80, 0x5a8c, 2119 0x5a94, 0x5a9c, 2120 0x5b94, 0x5bfc, 2121 0x5c10, 0x5e48, 2122 0x5e50, 0x5e94, 2123 0x5ea0, 0x5eb0, 2124 0x5ec0, 0x5ec0, 2125 0x5ec8, 0x5ed0, 2126 0x5ee0, 0x5ee0, 2127 0x5ef0, 0x5ef0, 2128 0x5f00, 0x5f00, 2129 0x6000, 0x6020, 2130 0x6028, 0x6040, 2131 0x6058, 0x609c, 2132 0x60a8, 0x619c, 2133 0x7700, 0x7798, 2134 0x77c0, 0x7880, 2135 0x78cc, 0x78fc, 2136 0x7b00, 0x7b58, 2137 0x7b60, 0x7b84, 2138 0x7b8c, 0x7c54, 2139 0x7d00, 0x7d38, 2140 0x7d40, 0x7d84, 2141 0x7d8c, 0x7ddc, 2142 0x7de4, 0x7e04, 2143 0x7e10, 0x7e1c, 2144 0x7e24, 0x7e38, 2145 0x7e40, 0x7e44, 2146 0x7e4c, 0x7e78, 2147 0x7e80, 0x7edc, 2148 0x7ee8, 0x7efc, 2149 0x8dc0, 0x8de4, 2150 0x8df8, 0x8e04, 2151 0x8e10, 0x8e84, 2152 0x8ea0, 0x8f88, 2153 0x8fb8, 0x9058, 2154 0x9060, 0x9060, 2155 0x9068, 0x90f8, 2156 0x9100, 0x9124, 2157 0x9400, 0x9470, 2158 0x9600, 0x9600, 2159 0x9608, 0x9638, 2160 0x9640, 0x9704, 2161 0x9710, 0x971c, 2162 0x9800, 0x9808, 2163 0x9810, 0x9864, 2164 0x9c00, 0x9c6c, 2165 0x9c80, 0x9cec, 2166 0x9d00, 0x9d6c, 2167 0x9d80, 0x9dec, 2168 0x9e00, 0x9e6c, 2169 0x9e80, 0x9eec, 2170 0x9f00, 0x9f6c, 2171 0x9f80, 0xa020, 2172 0xd000, 0xd03c, 2173 0xd100, 0xd118, 2174 0xd200, 0xd214, 2175 0xd220, 0xd234, 2176 0xd240, 0xd254, 2177 0xd260, 0xd274, 2178 0xd280, 0xd294, 2179 0xd2a0, 0xd2b4, 2180 0xd2c0, 0xd2d4, 2181 0xd2e0, 0xd2f4, 2182 0xd300, 0xd31c, 2183 0xdfc0, 0xdfe0, 2184 0xe000, 0xf008, 2185 0xf010, 0xf018, 2186 0xf020, 0xf028, 2187 0x11000, 0x11014, 2188 0x11048, 0x1106c, 2189 0x11074, 0x11088, 2190 0x11098, 0x11120, 2191 0x1112c, 0x1117c, 2192 0x11190, 0x112e0, 2193 0x11300, 0x1130c, 2194 0x12000, 0x1206c, 2195 0x19040, 0x1906c, 2196 0x19078, 0x19080, 2197 0x1908c, 0x190e8, 2198 0x190f0, 0x190f8, 2199 0x19100, 0x19110, 2200 0x19120, 0x19124, 2201 0x19150, 0x19194, 2202 0x1919c, 0x191b0, 2203 0x191d0, 0x191e8, 2204 0x19238, 0x19290, 2205 0x192a4, 0x192b0, 2206 0x192bc, 0x192bc, 2207 0x19348, 0x1934c, 2208 0x193f8, 0x19418, 2209 0x19420, 0x19428, 2210 0x19430, 0x19444, 2211 0x1944c, 0x1946c, 2212 0x19474, 0x19474, 2213 0x19490, 0x194cc, 2214 0x194f0, 0x194f8, 2215 0x19c00, 0x19c48, 2216 0x19c50, 0x19c80, 2217 0x19c94, 0x19c98, 2218 0x19ca0, 0x19cbc, 2219 0x19ce4, 0x19ce4, 2220 0x19cf0, 0x19cf8, 2221 0x19d00, 0x19d28, 2222 0x19d50, 0x19d78, 2223 0x19d94, 0x19d98, 2224 0x19da0, 0x19dc8, 2225 0x19df0, 0x19e10, 2226 0x19e50, 0x19e6c, 2227 0x19ea0, 0x19ebc, 2228 0x19ec4, 0x19ef4, 2229 0x19f04, 0x19f2c, 2230 0x19f34, 0x19f34, 2231 0x19f40, 0x19f50, 2232 0x19f90, 0x19fac, 2233 0x19fc4, 0x19fc8, 2234 0x19fd0, 0x19fe4, 2235 0x1a000, 0x1a004, 2236 0x1a010, 0x1a06c, 2237 0x1a0b0, 0x1a0e4, 2238 0x1a0ec, 0x1a0f8, 2239 0x1a100, 0x1a108, 2240 0x1a114, 0x1a130, 2241 0x1a138, 0x1a1c4, 2242 0x1a1fc, 0x1a1fc, 2243 0x1e008, 0x1e00c, 2244 0x1e040, 0x1e044, 2245 0x1e04c, 0x1e04c, 2246 0x1e284, 0x1e290, 2247 0x1e2c0, 0x1e2c0, 2248 0x1e2e0, 0x1e2e0, 2249 0x1e300, 0x1e384, 2250 0x1e3c0, 0x1e3c8, 2251 0x1e408, 0x1e40c, 2252 0x1e440, 0x1e444, 2253 0x1e44c, 0x1e44c, 2254 0x1e684, 0x1e690, 2255 0x1e6c0, 0x1e6c0, 2256 0x1e6e0, 0x1e6e0, 2257 0x1e700, 0x1e784, 2258 0x1e7c0, 0x1e7c8, 2259 0x1e808, 0x1e80c, 2260 0x1e840, 0x1e844, 2261 0x1e84c, 0x1e84c, 2262 0x1ea84, 0x1ea90, 2263 0x1eac0, 0x1eac0, 2264 0x1eae0, 0x1eae0, 2265 0x1eb00, 0x1eb84, 2266 0x1ebc0, 0x1ebc8, 2267 0x1ec08, 0x1ec0c, 2268 0x1ec40, 0x1ec44, 2269 0x1ec4c, 0x1ec4c, 2270 0x1ee84, 0x1ee90, 2271 0x1eec0, 0x1eec0, 2272 0x1eee0, 0x1eee0, 2273 0x1ef00, 0x1ef84, 2274 0x1efc0, 0x1efc8, 2275 0x1f008, 0x1f00c, 2276 0x1f040, 0x1f044, 2277 0x1f04c, 0x1f04c, 2278 0x1f284, 0x1f290, 2279 0x1f2c0, 0x1f2c0, 2280 0x1f2e0, 0x1f2e0, 2281 0x1f300, 0x1f384, 2282 0x1f3c0, 0x1f3c8, 2283 0x1f408, 0x1f40c, 2284 0x1f440, 0x1f444, 2285 0x1f44c, 0x1f44c, 2286 0x1f684, 0x1f690, 2287 0x1f6c0, 0x1f6c0, 2288 0x1f6e0, 0x1f6e0, 2289 0x1f700, 0x1f784, 2290 0x1f7c0, 0x1f7c8, 2291 0x1f808, 0x1f80c, 2292 0x1f840, 0x1f844, 2293 0x1f84c, 0x1f84c, 2294 0x1fa84, 0x1fa90, 2295 0x1fac0, 0x1fac0, 2296 0x1fae0, 0x1fae0, 2297 0x1fb00, 0x1fb84, 2298 0x1fbc0, 0x1fbc8, 2299 0x1fc08, 0x1fc0c, 2300 0x1fc40, 0x1fc44, 2301 0x1fc4c, 0x1fc4c, 2302 0x1fe84, 0x1fe90, 2303 0x1fec0, 0x1fec0, 2304 0x1fee0, 0x1fee0, 2305 0x1ff00, 0x1ff84, 2306 0x1ffc0, 0x1ffc8, 2307 0x30000, 0x30030, 2308 0x30100, 0x30168, 2309 0x30190, 0x301a0, 2310 0x301a8, 0x301b8, 2311 0x301c4, 0x301c8, 2312 0x301d0, 0x301d0, 2313 0x30200, 0x30320, 2314 0x30400, 0x304b4, 2315 0x304c0, 0x3052c, 2316 0x30540, 0x3061c, 2317 0x30800, 0x308a0, 2318 0x308c0, 0x30908, 2319 0x30910, 0x309b8, 2320 0x30a00, 0x30a04, 2321 0x30a0c, 0x30a14, 2322 0x30a1c, 0x30a2c, 2323 0x30a44, 0x30a50, 2324 0x30a74, 0x30a74, 2325 0x30a7c, 0x30afc, 2326 0x30b08, 0x30c24, 2327 0x30d00, 0x30d14, 2328 0x30d1c, 0x30d3c, 2329 0x30d44, 0x30d4c, 2330 0x30d54, 0x30d74, 2331 0x30d7c, 0x30d7c, 2332 0x30de0, 0x30de0, 2333 0x30e00, 0x30ed4, 2334 0x30f00, 0x30fa4, 2335 0x30fc0, 0x30fc4, 2336 0x31000, 0x31004, 2337 0x31080, 0x310fc, 2338 0x31208, 0x31220, 2339 0x3123c, 0x31254, 2340 0x31300, 0x31300, 2341 0x31308, 0x3131c, 2342 0x31338, 0x3133c, 2343 0x31380, 0x31380, 2344 0x31388, 0x313a8, 2345 0x313b4, 0x313b4, 2346 0x31400, 0x31420, 2347 0x31438, 0x3143c, 2348 0x31480, 0x31480, 2349 0x314a8, 0x314a8, 2350 0x314b0, 0x314b4, 2351 0x314c8, 0x314d4, 2352 0x31a40, 0x31a4c, 2353 0x31af0, 0x31b20, 2354 0x31b38, 0x31b3c, 2355 0x31b80, 0x31b80, 2356 0x31ba8, 0x31ba8, 2357 0x31bb0, 0x31bb4, 2358 0x31bc8, 0x31bd4, 2359 0x32140, 0x3218c, 2360 0x321f0, 0x321f4, 2361 0x32200, 0x32200, 2362 0x32218, 0x32218, 2363 0x32400, 0x32400, 2364 0x32408, 0x3241c, 2365 0x32618, 0x32620, 2366 0x32664, 0x32664, 2367 0x326a8, 0x326a8, 2368 0x326ec, 0x326ec, 2369 0x32a00, 0x32abc, 2370 0x32b00, 0x32b18, 2371 0x32b20, 0x32b38, 2372 0x32b40, 0x32b58, 2373 0x32b60, 0x32b78, 2374 0x32c00, 0x32c00, 2375 0x32c08, 0x32c3c, 2376 0x33000, 0x3302c, 2377 0x33034, 0x33050, 2378 0x33058, 0x33058, 2379 0x33060, 0x3308c, 2380 0x3309c, 0x330ac, 2381 0x330c0, 0x330c0, 2382 0x330c8, 0x330d0, 2383 0x330d8, 0x330e0, 2384 0x330ec, 0x3312c, 2385 0x33134, 0x33150, 2386 0x33158, 0x33158, 2387 0x33160, 0x3318c, 2388 0x3319c, 0x331ac, 2389 0x331c0, 0x331c0, 2390 0x331c8, 0x331d0, 2391 0x331d8, 0x331e0, 2392 0x331ec, 0x33290, 2393 0x33298, 0x332c4, 2394 0x332e4, 0x33390, 2395 0x33398, 0x333c4, 2396 0x333e4, 0x3342c, 2397 0x33434, 0x33450, 2398 0x33458, 0x33458, 2399 0x33460, 0x3348c, 2400 0x3349c, 0x334ac, 2401 0x334c0, 0x334c0, 2402 0x334c8, 0x334d0, 2403 0x334d8, 0x334e0, 2404 0x334ec, 0x3352c, 2405 0x33534, 0x33550, 2406 0x33558, 0x33558, 2407 0x33560, 0x3358c, 2408 0x3359c, 0x335ac, 2409 0x335c0, 0x335c0, 2410 0x335c8, 0x335d0, 2411 0x335d8, 0x335e0, 2412 0x335ec, 0x33690, 2413 0x33698, 0x336c4, 2414 0x336e4, 0x33790, 2415 0x33798, 0x337c4, 2416 0x337e4, 0x337fc, 2417 0x33814, 0x33814, 2418 0x33854, 0x33868, 2419 0x33880, 0x3388c, 2420 0x338c0, 0x338d0, 2421 0x338e8, 0x338ec, 2422 0x33900, 0x3392c, 2423 0x33934, 0x33950, 2424 0x33958, 0x33958, 2425 0x33960, 0x3398c, 2426 0x3399c, 0x339ac, 2427 0x339c0, 0x339c0, 2428 0x339c8, 0x339d0, 2429 0x339d8, 0x339e0, 2430 0x339ec, 0x33a90, 2431 0x33a98, 0x33ac4, 2432 0x33ae4, 0x33b10, 2433 0x33b24, 0x33b28, 2434 0x33b38, 0x33b50, 2435 0x33bf0, 0x33c10, 2436 0x33c24, 0x33c28, 2437 0x33c38, 0x33c50, 2438 0x33cf0, 0x33cfc, 2439 0x34000, 0x34030, 2440 0x34100, 0x34168, 2441 0x34190, 0x341a0, 2442 0x341a8, 0x341b8, 2443 0x341c4, 0x341c8, 2444 0x341d0, 0x341d0, 2445 0x34200, 0x34320, 2446 0x34400, 0x344b4, 2447 0x344c0, 0x3452c, 2448 0x34540, 0x3461c, 2449 0x34800, 0x348a0, 2450 0x348c0, 0x34908, 2451 0x34910, 0x349b8, 2452 0x34a00, 0x34a04, 2453 0x34a0c, 0x34a14, 2454 0x34a1c, 0x34a2c, 2455 0x34a44, 0x34a50, 2456 0x34a74, 0x34a74, 2457 0x34a7c, 0x34afc, 2458 0x34b08, 0x34c24, 2459 0x34d00, 0x34d14, 2460 0x34d1c, 0x34d3c, 2461 0x34d44, 0x34d4c, 2462 0x34d54, 0x34d74, 2463 0x34d7c, 0x34d7c, 2464 0x34de0, 0x34de0, 2465 0x34e00, 0x34ed4, 2466 0x34f00, 0x34fa4, 2467 0x34fc0, 0x34fc4, 2468 0x35000, 0x35004, 2469 0x35080, 0x350fc, 2470 0x35208, 0x35220, 2471 0x3523c, 0x35254, 2472 0x35300, 0x35300, 2473 0x35308, 0x3531c, 2474 0x35338, 0x3533c, 2475 0x35380, 0x35380, 2476 0x35388, 0x353a8, 2477 0x353b4, 0x353b4, 2478 0x35400, 0x35420, 2479 0x35438, 0x3543c, 2480 0x35480, 0x35480, 2481 0x354a8, 0x354a8, 2482 0x354b0, 0x354b4, 2483 0x354c8, 0x354d4, 2484 0x35a40, 0x35a4c, 2485 0x35af0, 0x35b20, 2486 0x35b38, 0x35b3c, 2487 0x35b80, 0x35b80, 2488 0x35ba8, 0x35ba8, 2489 0x35bb0, 0x35bb4, 2490 0x35bc8, 0x35bd4, 2491 0x36140, 0x3618c, 2492 0x361f0, 0x361f4, 2493 0x36200, 0x36200, 2494 0x36218, 0x36218, 2495 0x36400, 0x36400, 2496 0x36408, 0x3641c, 2497 0x36618, 0x36620, 2498 0x36664, 0x36664, 2499 0x366a8, 0x366a8, 2500 0x366ec, 0x366ec, 2501 0x36a00, 0x36abc, 2502 0x36b00, 0x36b18, 2503 0x36b20, 0x36b38, 2504 0x36b40, 0x36b58, 2505 0x36b60, 0x36b78, 2506 0x36c00, 0x36c00, 2507 0x36c08, 0x36c3c, 2508 0x37000, 0x3702c, 2509 0x37034, 0x37050, 2510 0x37058, 0x37058, 2511 0x37060, 0x3708c, 2512 0x3709c, 0x370ac, 2513 0x370c0, 0x370c0, 2514 0x370c8, 0x370d0, 2515 0x370d8, 0x370e0, 2516 0x370ec, 0x3712c, 2517 0x37134, 0x37150, 2518 0x37158, 0x37158, 2519 0x37160, 0x3718c, 2520 0x3719c, 0x371ac, 2521 0x371c0, 0x371c0, 2522 0x371c8, 0x371d0, 2523 0x371d8, 0x371e0, 2524 0x371ec, 0x37290, 2525 0x37298, 0x372c4, 2526 0x372e4, 0x37390, 2527 0x37398, 0x373c4, 2528 0x373e4, 0x3742c, 2529 0x37434, 0x37450, 2530 0x37458, 0x37458, 2531 0x37460, 0x3748c, 2532 0x3749c, 0x374ac, 2533 0x374c0, 0x374c0, 2534 0x374c8, 0x374d0, 2535 0x374d8, 0x374e0, 2536 0x374ec, 0x3752c, 2537 0x37534, 0x37550, 2538 0x37558, 0x37558, 2539 0x37560, 0x3758c, 2540 0x3759c, 0x375ac, 2541 0x375c0, 0x375c0, 2542 0x375c8, 0x375d0, 2543 0x375d8, 0x375e0, 2544 0x375ec, 0x37690, 2545 0x37698, 0x376c4, 2546 0x376e4, 0x37790, 2547 0x37798, 0x377c4, 2548 0x377e4, 0x377fc, 2549 0x37814, 0x37814, 2550 0x37854, 0x37868, 2551 0x37880, 0x3788c, 2552 0x378c0, 0x378d0, 2553 0x378e8, 0x378ec, 2554 0x37900, 0x3792c, 2555 0x37934, 0x37950, 2556 0x37958, 0x37958, 2557 0x37960, 0x3798c, 2558 0x3799c, 0x379ac, 2559 0x379c0, 0x379c0, 2560 0x379c8, 0x379d0, 2561 0x379d8, 0x379e0, 2562 0x379ec, 0x37a90, 2563 0x37a98, 0x37ac4, 2564 0x37ae4, 0x37b10, 2565 0x37b24, 0x37b28, 2566 0x37b38, 0x37b50, 2567 0x37bf0, 0x37c10, 2568 0x37c24, 0x37c28, 2569 0x37c38, 0x37c50, 2570 0x37cf0, 0x37cfc, 2571 0x40040, 0x40040, 2572 0x40080, 0x40084, 2573 0x40100, 0x40100, 2574 0x40140, 0x401bc, 2575 0x40200, 0x40214, 2576 0x40228, 0x40228, 2577 0x40240, 0x40258, 2578 0x40280, 0x40280, 2579 0x40304, 0x40304, 2580 0x40330, 0x4033c, 2581 0x41304, 0x413c8, 2582 0x413d0, 0x413dc, 2583 0x413f0, 0x413f0, 2584 0x41400, 0x4140c, 2585 0x41414, 0x4141c, 2586 0x41480, 0x414d0, 2587 0x44000, 0x4407c, 2588 0x440c0, 0x441ac, 2589 0x441b4, 0x4427c, 2590 0x442c0, 0x443ac, 2591 0x443b4, 0x4447c, 2592 0x444c0, 0x445ac, 2593 0x445b4, 0x4467c, 2594 0x446c0, 0x447ac, 2595 0x447b4, 0x4487c, 2596 0x448c0, 0x449ac, 2597 0x449b4, 0x44a7c, 2598 0x44ac0, 0x44bac, 2599 0x44bb4, 0x44c7c, 2600 0x44cc0, 0x44dac, 2601 0x44db4, 0x44e7c, 2602 0x44ec0, 0x44fac, 2603 0x44fb4, 0x4507c, 2604 0x450c0, 0x451ac, 2605 0x451b4, 0x451fc, 2606 0x45800, 0x45804, 2607 0x45810, 0x45830, 2608 0x45840, 0x45860, 2609 0x45868, 0x45868, 2610 0x45880, 0x45884, 2611 0x458a0, 0x458b0, 2612 0x45a00, 0x45a04, 2613 0x45a10, 0x45a30, 2614 0x45a40, 0x45a60, 2615 0x45a68, 0x45a68, 2616 0x45a80, 0x45a84, 2617 0x45aa0, 0x45ab0, 2618 0x460c0, 0x460e4, 2619 0x47000, 0x4703c, 2620 0x47044, 0x4708c, 2621 0x47200, 0x47250, 2622 0x47400, 0x47408, 2623 0x47414, 0x47420, 2624 0x47600, 0x47618, 2625 0x47800, 0x47814, 2626 0x47820, 0x4782c, 2627 0x50000, 0x50084, 2628 0x50090, 0x500cc, 2629 0x50300, 0x50384, 2630 0x50400, 0x50400, 2631 0x50800, 0x50884, 2632 0x50890, 0x508cc, 2633 0x50b00, 0x50b84, 2634 0x50c00, 0x50c00, 2635 0x51000, 0x51020, 2636 0x51028, 0x510b0, 2637 0x51300, 0x51324, 2638 }; 2639 2640 u32 *buf_end = (u32 *)((char *)buf + buf_size); 2641 const unsigned int *reg_ranges; 2642 int reg_ranges_size, range; 2643 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 2644 2645 /* Select the right set of register ranges to dump depending on the 2646 * adapter chip type. 2647 */ 2648 switch (chip_version) { 2649 case CHELSIO_T4: 2650 reg_ranges = t4_reg_ranges; 2651 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); 2652 break; 2653 2654 case CHELSIO_T5: 2655 reg_ranges = t5_reg_ranges; 2656 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); 2657 break; 2658 2659 case CHELSIO_T6: 2660 reg_ranges = t6_reg_ranges; 2661 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); 2662 break; 2663 2664 default: 2665 dev_err(adap->pdev_dev, 2666 "Unsupported chip version %d\n", chip_version); 2667 return; 2668 } 2669 2670 /* Clear the register buffer and insert the appropriate register 2671 * values selected by the above register ranges. 2672 */ 2673 memset(buf, 0, buf_size); 2674 for (range = 0; range < reg_ranges_size; range += 2) { 2675 unsigned int reg = reg_ranges[range]; 2676 unsigned int last_reg = reg_ranges[range + 1]; 2677 u32 *bufp = (u32 *)((char *)buf + reg); 2678 2679 /* Iterate across the register range filling in the register 2680 * buffer but don't write past the end of the register buffer. 2681 */ 2682 while (reg <= last_reg && bufp < buf_end) { 2683 *bufp++ = t4_read_reg(adap, reg); 2684 reg += sizeof(u32); 2685 } 2686 } 2687 } 2688 2689 #define EEPROM_STAT_ADDR 0x7bfc 2690 #define VPD_BASE 0x400 2691 #define VPD_BASE_OLD 0 2692 #define VPD_LEN 1024 2693 2694 /** 2695 * t4_eeprom_ptov - translate a physical EEPROM address to virtual 2696 * @phys_addr: the physical EEPROM address 2697 * @fn: the PCI function number 2698 * @sz: size of function-specific area 2699 * 2700 * Translate a physical EEPROM address to virtual. The first 1K is 2701 * accessed through virtual addresses starting at 31K, the rest is 2702 * accessed through virtual addresses starting at 0. 2703 * 2704 * The mapping is as follows: 2705 * [0..1K) -> [31K..32K) 2706 * [1K..1K+A) -> [31K-A..31K) 2707 * [1K+A..ES) -> [0..ES-A-1K) 2708 * 2709 * where A = @fn * @sz, and ES = EEPROM size. 2710 */ 2711 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) 2712 { 2713 fn *= sz; 2714 if (phys_addr < 1024) 2715 return phys_addr + (31 << 10); 2716 if (phys_addr < 1024 + fn) 2717 return 31744 - fn + phys_addr - 1024; 2718 if (phys_addr < EEPROMSIZE) 2719 return phys_addr - 1024 - fn; 2720 return -EINVAL; 2721 } 2722 2723 /** 2724 * t4_seeprom_wp - enable/disable EEPROM write protection 2725 * @adapter: the adapter 2726 * @enable: whether to enable or disable write protection 2727 * 2728 * Enables or disables write protection on the serial EEPROM. 2729 */ 2730 int t4_seeprom_wp(struct adapter *adapter, bool enable) 2731 { 2732 unsigned int v = enable ? 0xc : 0; 2733 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v); 2734 return ret < 0 ? ret : 0; 2735 } 2736 2737 /** 2738 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM 2739 * @adapter: adapter to read 2740 * @p: where to store the parameters 2741 * 2742 * Reads card parameters stored in VPD EEPROM. 2743 */ 2744 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p) 2745 { 2746 unsigned int id_len, pn_len, sn_len, na_len; 2747 int id, sn, pn, na, addr, ret = 0; 2748 u8 *vpd, base_val = 0; 2749 2750 vpd = vmalloc(VPD_LEN); 2751 if (!vpd) 2752 return -ENOMEM; 2753 2754 /* Card information normally starts at VPD_BASE but early cards had 2755 * it at 0. 2756 */ 2757 ret = pci_read_vpd(adapter->pdev, VPD_BASE, 1, &base_val); 2758 if (ret < 0) 2759 goto out; 2760 2761 addr = base_val == PCI_VPD_LRDT_ID_STRING ? VPD_BASE : VPD_BASE_OLD; 2762 2763 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd); 2764 if (ret < 0) 2765 goto out; 2766 2767 ret = pci_vpd_find_id_string(vpd, VPD_LEN, &id_len); 2768 if (ret < 0) 2769 goto out; 2770 id = ret; 2771 2772 ret = pci_vpd_check_csum(vpd, VPD_LEN); 2773 if (ret) { 2774 dev_err(adapter->pdev_dev, "VPD checksum incorrect or missing\n"); 2775 ret = -EINVAL; 2776 goto out; 2777 } 2778 2779 ret = pci_vpd_find_ro_info_keyword(vpd, VPD_LEN, 2780 PCI_VPD_RO_KEYWORD_SERIALNO, &sn_len); 2781 if (ret < 0) 2782 goto out; 2783 sn = ret; 2784 2785 ret = pci_vpd_find_ro_info_keyword(vpd, VPD_LEN, 2786 PCI_VPD_RO_KEYWORD_PARTNO, &pn_len); 2787 if (ret < 0) 2788 goto out; 2789 pn = ret; 2790 2791 ret = pci_vpd_find_ro_info_keyword(vpd, VPD_LEN, "NA", &na_len); 2792 if (ret < 0) 2793 goto out; 2794 na = ret; 2795 2796 memcpy(p->id, vpd + id, min_t(unsigned int, id_len, ID_LEN)); 2797 strim(p->id); 2798 memcpy(p->sn, vpd + sn, min_t(unsigned int, sn_len, SERNUM_LEN)); 2799 strim(p->sn); 2800 memcpy(p->pn, vpd + pn, min_t(unsigned int, pn_len, PN_LEN)); 2801 strim(p->pn); 2802 memcpy(p->na, vpd + na, min_t(unsigned int, na_len, MACADDR_LEN)); 2803 strim(p->na); 2804 2805 out: 2806 vfree(vpd); 2807 if (ret < 0) { 2808 dev_err(adapter->pdev_dev, "error reading VPD\n"); 2809 return ret; 2810 } 2811 2812 return 0; 2813 } 2814 2815 /** 2816 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock 2817 * @adapter: adapter to read 2818 * @p: where to store the parameters 2819 * 2820 * Reads card parameters stored in VPD EEPROM and retrieves the Core 2821 * Clock. This can only be called after a connection to the firmware 2822 * is established. 2823 */ 2824 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p) 2825 { 2826 u32 cclk_param, cclk_val; 2827 int ret; 2828 2829 /* Grab the raw VPD parameters. 2830 */ 2831 ret = t4_get_raw_vpd_params(adapter, p); 2832 if (ret) 2833 return ret; 2834 2835 /* Ask firmware for the Core Clock since it knows how to translate the 2836 * Reference Clock ('V2') VPD field into a Core Clock value ... 2837 */ 2838 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 2839 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); 2840 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 2841 1, &cclk_param, &cclk_val); 2842 2843 if (ret) 2844 return ret; 2845 p->cclk = cclk_val; 2846 2847 return 0; 2848 } 2849 2850 /** 2851 * t4_get_pfres - retrieve VF resource limits 2852 * @adapter: the adapter 2853 * 2854 * Retrieves configured resource limits and capabilities for a physical 2855 * function. The results are stored in @adapter->pfres. 2856 */ 2857 int t4_get_pfres(struct adapter *adapter) 2858 { 2859 struct pf_resources *pfres = &adapter->params.pfres; 2860 struct fw_pfvf_cmd cmd, rpl; 2861 int v; 2862 u32 word; 2863 2864 /* Execute PFVF Read command to get VF resource limits; bail out early 2865 * with error on command failure. 2866 */ 2867 memset(&cmd, 0, sizeof(cmd)); 2868 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 2869 FW_CMD_REQUEST_F | 2870 FW_CMD_READ_F | 2871 FW_PFVF_CMD_PFN_V(adapter->pf) | 2872 FW_PFVF_CMD_VFN_V(0)); 2873 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 2874 v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl); 2875 if (v != FW_SUCCESS) 2876 return v; 2877 2878 /* Extract PF resource limits and return success. 2879 */ 2880 word = be32_to_cpu(rpl.niqflint_niq); 2881 pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word); 2882 pfres->niq = FW_PFVF_CMD_NIQ_G(word); 2883 2884 word = be32_to_cpu(rpl.type_to_neq); 2885 pfres->neq = FW_PFVF_CMD_NEQ_G(word); 2886 pfres->pmask = FW_PFVF_CMD_PMASK_G(word); 2887 2888 word = be32_to_cpu(rpl.tc_to_nexactf); 2889 pfres->tc = FW_PFVF_CMD_TC_G(word); 2890 pfres->nvi = FW_PFVF_CMD_NVI_G(word); 2891 pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word); 2892 2893 word = be32_to_cpu(rpl.r_caps_to_nethctrl); 2894 pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word); 2895 pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word); 2896 pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word); 2897 2898 return 0; 2899 } 2900 2901 /* serial flash and firmware constants */ 2902 enum { 2903 SF_ATTEMPTS = 10, /* max retries for SF operations */ 2904 2905 /* flash command opcodes */ 2906 SF_PROG_PAGE = 2, /* program page */ 2907 SF_WR_DISABLE = 4, /* disable writes */ 2908 SF_RD_STATUS = 5, /* read status register */ 2909 SF_WR_ENABLE = 6, /* enable writes */ 2910 SF_RD_DATA_FAST = 0xb, /* read flash */ 2911 SF_RD_ID = 0x9f, /* read ID */ 2912 SF_ERASE_SECTOR = 0xd8, /* erase sector */ 2913 }; 2914 2915 /** 2916 * sf1_read - read data from the serial flash 2917 * @adapter: the adapter 2918 * @byte_cnt: number of bytes to read 2919 * @cont: whether another operation will be chained 2920 * @lock: whether to lock SF for PL access only 2921 * @valp: where to store the read data 2922 * 2923 * Reads up to 4 bytes of data from the serial flash. The location of 2924 * the read needs to be specified prior to calling this by issuing the 2925 * appropriate commands to the serial flash. 2926 */ 2927 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 2928 int lock, u32 *valp) 2929 { 2930 int ret; 2931 2932 if (!byte_cnt || byte_cnt > 4) 2933 return -EINVAL; 2934 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2935 return -EBUSY; 2936 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2937 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1)); 2938 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2939 if (!ret) 2940 *valp = t4_read_reg(adapter, SF_DATA_A); 2941 return ret; 2942 } 2943 2944 /** 2945 * sf1_write - write data to the serial flash 2946 * @adapter: the adapter 2947 * @byte_cnt: number of bytes to write 2948 * @cont: whether another operation will be chained 2949 * @lock: whether to lock SF for PL access only 2950 * @val: value to write 2951 * 2952 * Writes up to 4 bytes of data to the serial flash. The location of 2953 * the write needs to be specified prior to calling this by issuing the 2954 * appropriate commands to the serial flash. 2955 */ 2956 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 2957 int lock, u32 val) 2958 { 2959 if (!byte_cnt || byte_cnt > 4) 2960 return -EINVAL; 2961 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2962 return -EBUSY; 2963 t4_write_reg(adapter, SF_DATA_A, val); 2964 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2965 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1)); 2966 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2967 } 2968 2969 /** 2970 * flash_wait_op - wait for a flash operation to complete 2971 * @adapter: the adapter 2972 * @attempts: max number of polls of the status register 2973 * @delay: delay between polls in ms 2974 * 2975 * Wait for a flash operation to complete by polling the status register. 2976 */ 2977 static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 2978 { 2979 int ret; 2980 u32 status; 2981 2982 while (1) { 2983 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 2984 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 2985 return ret; 2986 if (!(status & 1)) 2987 return 0; 2988 if (--attempts == 0) 2989 return -EAGAIN; 2990 if (delay) 2991 msleep(delay); 2992 } 2993 } 2994 2995 /** 2996 * t4_read_flash - read words from serial flash 2997 * @adapter: the adapter 2998 * @addr: the start address for the read 2999 * @nwords: how many 32-bit words to read 3000 * @data: where to store the read data 3001 * @byte_oriented: whether to store data as bytes or as words 3002 * 3003 * Read the specified number of 32-bit words from the serial flash. 3004 * If @byte_oriented is set the read data is stored as a byte array 3005 * (i.e., big-endian), otherwise as 32-bit words in the platform's 3006 * natural endianness. 3007 */ 3008 int t4_read_flash(struct adapter *adapter, unsigned int addr, 3009 unsigned int nwords, u32 *data, int byte_oriented) 3010 { 3011 int ret; 3012 3013 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 3014 return -EINVAL; 3015 3016 addr = swab32(addr) | SF_RD_DATA_FAST; 3017 3018 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 3019 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 3020 return ret; 3021 3022 for ( ; nwords; nwords--, data++) { 3023 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 3024 if (nwords == 1) 3025 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3026 if (ret) 3027 return ret; 3028 if (byte_oriented) 3029 *data = (__force __u32)(cpu_to_be32(*data)); 3030 } 3031 return 0; 3032 } 3033 3034 /** 3035 * t4_write_flash - write up to a page of data to the serial flash 3036 * @adapter: the adapter 3037 * @addr: the start address to write 3038 * @n: length of data to write in bytes 3039 * @data: the data to write 3040 * @byte_oriented: whether to store data as bytes or as words 3041 * 3042 * Writes up to a page of data (256 bytes) to the serial flash starting 3043 * at the given address. All the data must be written to the same page. 3044 * If @byte_oriented is set the write data is stored as byte stream 3045 * (i.e. matches what on disk), otherwise in big-endian. 3046 */ 3047 static int t4_write_flash(struct adapter *adapter, unsigned int addr, 3048 unsigned int n, const u8 *data, bool byte_oriented) 3049 { 3050 unsigned int i, c, left, val, offset = addr & 0xff; 3051 u32 buf[64]; 3052 int ret; 3053 3054 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 3055 return -EINVAL; 3056 3057 val = swab32(addr) | SF_PROG_PAGE; 3058 3059 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3060 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 3061 goto unlock; 3062 3063 for (left = n; left; left -= c, data += c) { 3064 c = min(left, 4U); 3065 for (val = 0, i = 0; i < c; ++i) { 3066 if (byte_oriented) 3067 val = (val << 8) + data[i]; 3068 else 3069 val = (val << 8) + data[c - i - 1]; 3070 } 3071 3072 ret = sf1_write(adapter, c, c != left, 1, val); 3073 if (ret) 3074 goto unlock; 3075 } 3076 ret = flash_wait_op(adapter, 8, 1); 3077 if (ret) 3078 goto unlock; 3079 3080 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3081 3082 /* Read the page to verify the write succeeded */ 3083 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 3084 byte_oriented); 3085 if (ret) 3086 return ret; 3087 3088 if (memcmp(data - n, (u8 *)buf + offset, n)) { 3089 dev_err(adapter->pdev_dev, 3090 "failed to correctly write the flash page at %#x\n", 3091 addr); 3092 return -EIO; 3093 } 3094 return 0; 3095 3096 unlock: 3097 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3098 return ret; 3099 } 3100 3101 /** 3102 * t4_get_fw_version - read the firmware version 3103 * @adapter: the adapter 3104 * @vers: where to place the version 3105 * 3106 * Reads the FW version from flash. 3107 */ 3108 int t4_get_fw_version(struct adapter *adapter, u32 *vers) 3109 { 3110 return t4_read_flash(adapter, FLASH_FW_START + 3111 offsetof(struct fw_hdr, fw_ver), 1, 3112 vers, 0); 3113 } 3114 3115 /** 3116 * t4_get_bs_version - read the firmware bootstrap version 3117 * @adapter: the adapter 3118 * @vers: where to place the version 3119 * 3120 * Reads the FW Bootstrap version from flash. 3121 */ 3122 int t4_get_bs_version(struct adapter *adapter, u32 *vers) 3123 { 3124 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START + 3125 offsetof(struct fw_hdr, fw_ver), 1, 3126 vers, 0); 3127 } 3128 3129 /** 3130 * t4_get_tp_version - read the TP microcode version 3131 * @adapter: the adapter 3132 * @vers: where to place the version 3133 * 3134 * Reads the TP microcode version from flash. 3135 */ 3136 int t4_get_tp_version(struct adapter *adapter, u32 *vers) 3137 { 3138 return t4_read_flash(adapter, FLASH_FW_START + 3139 offsetof(struct fw_hdr, tp_microcode_ver), 3140 1, vers, 0); 3141 } 3142 3143 /** 3144 * t4_get_exprom_version - return the Expansion ROM version (if any) 3145 * @adap: the adapter 3146 * @vers: where to place the version 3147 * 3148 * Reads the Expansion ROM header from FLASH and returns the version 3149 * number (if present) through the @vers return value pointer. We return 3150 * this in the Firmware Version Format since it's convenient. Return 3151 * 0 on success, -ENOENT if no Expansion ROM is present. 3152 */ 3153 int t4_get_exprom_version(struct adapter *adap, u32 *vers) 3154 { 3155 struct exprom_header { 3156 unsigned char hdr_arr[16]; /* must start with 0x55aa */ 3157 unsigned char hdr_ver[4]; /* Expansion ROM version */ 3158 } *hdr; 3159 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), 3160 sizeof(u32))]; 3161 int ret; 3162 3163 ret = t4_read_flash(adap, FLASH_EXP_ROM_START, 3164 ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 3165 0); 3166 if (ret) 3167 return ret; 3168 3169 hdr = (struct exprom_header *)exprom_header_buf; 3170 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) 3171 return -ENOENT; 3172 3173 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) | 3174 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) | 3175 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) | 3176 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3])); 3177 return 0; 3178 } 3179 3180 /** 3181 * t4_get_vpd_version - return the VPD version 3182 * @adapter: the adapter 3183 * @vers: where to place the version 3184 * 3185 * Reads the VPD via the Firmware interface (thus this can only be called 3186 * once we're ready to issue Firmware commands). The format of the 3187 * VPD version is adapter specific. Returns 0 on success, an error on 3188 * failure. 3189 * 3190 * Note that early versions of the Firmware didn't include the ability 3191 * to retrieve the VPD version, so we zero-out the return-value parameter 3192 * in that case to avoid leaving it with garbage in it. 3193 * 3194 * Also note that the Firmware will return its cached copy of the VPD 3195 * Revision ID, not the actual Revision ID as written in the Serial 3196 * EEPROM. This is only an issue if a new VPD has been written and the 3197 * Firmware/Chip haven't yet gone through a RESET sequence. So it's best 3198 * to defer calling this routine till after a FW_RESET_CMD has been issued 3199 * if the Host Driver will be performing a full adapter initialization. 3200 */ 3201 int t4_get_vpd_version(struct adapter *adapter, u32 *vers) 3202 { 3203 u32 vpdrev_param; 3204 int ret; 3205 3206 vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3207 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV)); 3208 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3209 1, &vpdrev_param, vers); 3210 if (ret) 3211 *vers = 0; 3212 return ret; 3213 } 3214 3215 /** 3216 * t4_get_scfg_version - return the Serial Configuration version 3217 * @adapter: the adapter 3218 * @vers: where to place the version 3219 * 3220 * Reads the Serial Configuration Version via the Firmware interface 3221 * (thus this can only be called once we're ready to issue Firmware 3222 * commands). The format of the Serial Configuration version is 3223 * adapter specific. Returns 0 on success, an error on failure. 3224 * 3225 * Note that early versions of the Firmware didn't include the ability 3226 * to retrieve the Serial Configuration version, so we zero-out the 3227 * return-value parameter in that case to avoid leaving it with 3228 * garbage in it. 3229 * 3230 * Also note that the Firmware will return its cached copy of the Serial 3231 * Initialization Revision ID, not the actual Revision ID as written in 3232 * the Serial EEPROM. This is only an issue if a new VPD has been written 3233 * and the Firmware/Chip haven't yet gone through a RESET sequence. So 3234 * it's best to defer calling this routine till after a FW_RESET_CMD has 3235 * been issued if the Host Driver will be performing a full adapter 3236 * initialization. 3237 */ 3238 int t4_get_scfg_version(struct adapter *adapter, u32 *vers) 3239 { 3240 u32 scfgrev_param; 3241 int ret; 3242 3243 scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3244 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV)); 3245 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3246 1, &scfgrev_param, vers); 3247 if (ret) 3248 *vers = 0; 3249 return ret; 3250 } 3251 3252 /** 3253 * t4_get_version_info - extract various chip/firmware version information 3254 * @adapter: the adapter 3255 * 3256 * Reads various chip/firmware version numbers and stores them into the 3257 * adapter Adapter Parameters structure. If any of the efforts fails 3258 * the first failure will be returned, but all of the version numbers 3259 * will be read. 3260 */ 3261 int t4_get_version_info(struct adapter *adapter) 3262 { 3263 int ret = 0; 3264 3265 #define FIRST_RET(__getvinfo) \ 3266 do { \ 3267 int __ret = __getvinfo; \ 3268 if (__ret && !ret) \ 3269 ret = __ret; \ 3270 } while (0) 3271 3272 FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers)); 3273 FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers)); 3274 FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers)); 3275 FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers)); 3276 FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers)); 3277 FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers)); 3278 3279 #undef FIRST_RET 3280 return ret; 3281 } 3282 3283 /** 3284 * t4_dump_version_info - dump all of the adapter configuration IDs 3285 * @adapter: the adapter 3286 * 3287 * Dumps all of the various bits of adapter configuration version/revision 3288 * IDs information. This is typically called at some point after 3289 * t4_get_version_info() has been called. 3290 */ 3291 void t4_dump_version_info(struct adapter *adapter) 3292 { 3293 /* Device information */ 3294 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n", 3295 adapter->params.vpd.id, 3296 CHELSIO_CHIP_RELEASE(adapter->params.chip)); 3297 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n", 3298 adapter->params.vpd.sn, adapter->params.vpd.pn); 3299 3300 /* Firmware Version */ 3301 if (!adapter->params.fw_vers) 3302 dev_warn(adapter->pdev_dev, "No firmware loaded\n"); 3303 else 3304 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n", 3305 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers), 3306 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers), 3307 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers), 3308 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers)); 3309 3310 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap 3311 * Firmware, so dev_info() is more appropriate here.) 3312 */ 3313 if (!adapter->params.bs_vers) 3314 dev_info(adapter->pdev_dev, "No bootstrap loaded\n"); 3315 else 3316 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n", 3317 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers), 3318 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers), 3319 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers), 3320 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers)); 3321 3322 /* TP Microcode Version */ 3323 if (!adapter->params.tp_vers) 3324 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n"); 3325 else 3326 dev_info(adapter->pdev_dev, 3327 "TP Microcode version: %u.%u.%u.%u\n", 3328 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers), 3329 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers), 3330 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers), 3331 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers)); 3332 3333 /* Expansion ROM version */ 3334 if (!adapter->params.er_vers) 3335 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n"); 3336 else 3337 dev_info(adapter->pdev_dev, 3338 "Expansion ROM version: %u.%u.%u.%u\n", 3339 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers), 3340 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers), 3341 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers), 3342 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers)); 3343 3344 /* Serial Configuration version */ 3345 dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n", 3346 adapter->params.scfg_vers); 3347 3348 /* VPD Version */ 3349 dev_info(adapter->pdev_dev, "VPD version: %#x\n", 3350 adapter->params.vpd_vers); 3351 } 3352 3353 /** 3354 * t4_check_fw_version - check if the FW is supported with this driver 3355 * @adap: the adapter 3356 * 3357 * Checks if an adapter's FW is compatible with the driver. Returns 0 3358 * if there's exact match, a negative error if the version could not be 3359 * read or there's a major version mismatch 3360 */ 3361 int t4_check_fw_version(struct adapter *adap) 3362 { 3363 int i, ret, major, minor, micro; 3364 int exp_major, exp_minor, exp_micro; 3365 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 3366 3367 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3368 /* Try multiple times before returning error */ 3369 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++) 3370 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3371 3372 if (ret) 3373 return ret; 3374 3375 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers); 3376 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers); 3377 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers); 3378 3379 switch (chip_version) { 3380 case CHELSIO_T4: 3381 exp_major = T4FW_MIN_VERSION_MAJOR; 3382 exp_minor = T4FW_MIN_VERSION_MINOR; 3383 exp_micro = T4FW_MIN_VERSION_MICRO; 3384 break; 3385 case CHELSIO_T5: 3386 exp_major = T5FW_MIN_VERSION_MAJOR; 3387 exp_minor = T5FW_MIN_VERSION_MINOR; 3388 exp_micro = T5FW_MIN_VERSION_MICRO; 3389 break; 3390 case CHELSIO_T6: 3391 exp_major = T6FW_MIN_VERSION_MAJOR; 3392 exp_minor = T6FW_MIN_VERSION_MINOR; 3393 exp_micro = T6FW_MIN_VERSION_MICRO; 3394 break; 3395 default: 3396 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n", 3397 adap->chip); 3398 return -EINVAL; 3399 } 3400 3401 if (major < exp_major || (major == exp_major && minor < exp_minor) || 3402 (major == exp_major && minor == exp_minor && micro < exp_micro)) { 3403 dev_err(adap->pdev_dev, 3404 "Card has firmware version %u.%u.%u, minimum " 3405 "supported firmware is %u.%u.%u.\n", major, minor, 3406 micro, exp_major, exp_minor, exp_micro); 3407 return -EFAULT; 3408 } 3409 return 0; 3410 } 3411 3412 /* Is the given firmware API compatible with the one the driver was compiled 3413 * with? 3414 */ 3415 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) 3416 { 3417 3418 /* short circuit if it's the exact same firmware version */ 3419 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 3420 return 1; 3421 3422 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 3423 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 3424 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) 3425 return 1; 3426 #undef SAME_INTF 3427 3428 return 0; 3429 } 3430 3431 /* The firmware in the filesystem is usable, but should it be installed? 3432 * This routine explains itself in detail if it indicates the filesystem 3433 * firmware should be installed. 3434 */ 3435 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable, 3436 int k, int c) 3437 { 3438 const char *reason; 3439 3440 if (!card_fw_usable) { 3441 reason = "incompatible or unusable"; 3442 goto install; 3443 } 3444 3445 if (k > c) { 3446 reason = "older than the version supported with this driver"; 3447 goto install; 3448 } 3449 3450 return 0; 3451 3452 install: 3453 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, " 3454 "installing firmware %u.%u.%u.%u on card.\n", 3455 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3456 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason, 3457 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3458 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3459 3460 return 1; 3461 } 3462 3463 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info, 3464 const u8 *fw_data, unsigned int fw_size, 3465 struct fw_hdr *card_fw, enum dev_state state, 3466 int *reset) 3467 { 3468 int ret, card_fw_usable, fs_fw_usable; 3469 const struct fw_hdr *fs_fw; 3470 const struct fw_hdr *drv_fw; 3471 3472 drv_fw = &fw_info->fw_hdr; 3473 3474 /* Read the header of the firmware on the card */ 3475 ret = t4_read_flash(adap, FLASH_FW_START, 3476 sizeof(*card_fw) / sizeof(uint32_t), 3477 (uint32_t *)card_fw, 1); 3478 if (ret == 0) { 3479 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); 3480 } else { 3481 dev_err(adap->pdev_dev, 3482 "Unable to read card's firmware header: %d\n", ret); 3483 card_fw_usable = 0; 3484 } 3485 3486 if (fw_data != NULL) { 3487 fs_fw = (const void *)fw_data; 3488 fs_fw_usable = fw_compatible(drv_fw, fs_fw); 3489 } else { 3490 fs_fw = NULL; 3491 fs_fw_usable = 0; 3492 } 3493 3494 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && 3495 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { 3496 /* Common case: the firmware on the card is an exact match and 3497 * the filesystem one is an exact match too, or the filesystem 3498 * one is absent/incompatible. 3499 */ 3500 } else if (fs_fw_usable && state == DEV_STATE_UNINIT && 3501 should_install_fs_fw(adap, card_fw_usable, 3502 be32_to_cpu(fs_fw->fw_ver), 3503 be32_to_cpu(card_fw->fw_ver))) { 3504 ret = t4_fw_upgrade(adap, adap->mbox, fw_data, 3505 fw_size, 0); 3506 if (ret != 0) { 3507 dev_err(adap->pdev_dev, 3508 "failed to install firmware: %d\n", ret); 3509 goto bye; 3510 } 3511 3512 /* Installed successfully, update the cached header too. */ 3513 *card_fw = *fs_fw; 3514 card_fw_usable = 1; 3515 *reset = 0; /* already reset as part of load_fw */ 3516 } 3517 3518 if (!card_fw_usable) { 3519 uint32_t d, c, k; 3520 3521 d = be32_to_cpu(drv_fw->fw_ver); 3522 c = be32_to_cpu(card_fw->fw_ver); 3523 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; 3524 3525 dev_err(adap->pdev_dev, "Cannot find a usable firmware: " 3526 "chip state %d, " 3527 "driver compiled with %d.%d.%d.%d, " 3528 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", 3529 state, 3530 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d), 3531 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d), 3532 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3533 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), 3534 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3535 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3536 ret = -EINVAL; 3537 goto bye; 3538 } 3539 3540 /* We're using whatever's on the card and it's known to be good. */ 3541 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver); 3542 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); 3543 3544 bye: 3545 return ret; 3546 } 3547 3548 /** 3549 * t4_flash_erase_sectors - erase a range of flash sectors 3550 * @adapter: the adapter 3551 * @start: the first sector to erase 3552 * @end: the last sector to erase 3553 * 3554 * Erases the sectors in the given inclusive range. 3555 */ 3556 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 3557 { 3558 int ret = 0; 3559 3560 if (end >= adapter->params.sf_nsec) 3561 return -EINVAL; 3562 3563 while (start <= end) { 3564 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3565 (ret = sf1_write(adapter, 4, 0, 1, 3566 SF_ERASE_SECTOR | (start << 8))) != 0 || 3567 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 3568 dev_err(adapter->pdev_dev, 3569 "erase of flash sector %d failed, error %d\n", 3570 start, ret); 3571 break; 3572 } 3573 start++; 3574 } 3575 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3576 return ret; 3577 } 3578 3579 /** 3580 * t4_flash_cfg_addr - return the address of the flash configuration file 3581 * @adapter: the adapter 3582 * 3583 * Return the address within the flash where the Firmware Configuration 3584 * File is stored. 3585 */ 3586 unsigned int t4_flash_cfg_addr(struct adapter *adapter) 3587 { 3588 if (adapter->params.sf_size == 0x100000) 3589 return FLASH_FPGA_CFG_START; 3590 else 3591 return FLASH_CFG_START; 3592 } 3593 3594 /* Return TRUE if the specified firmware matches the adapter. I.e. T4 3595 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead 3596 * and emit an error message for mismatched firmware to save our caller the 3597 * effort ... 3598 */ 3599 static bool t4_fw_matches_chip(const struct adapter *adap, 3600 const struct fw_hdr *hdr) 3601 { 3602 /* The expression below will return FALSE for any unsupported adapter 3603 * which will keep us "honest" in the future ... 3604 */ 3605 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) || 3606 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) || 3607 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6)) 3608 return true; 3609 3610 dev_err(adap->pdev_dev, 3611 "FW image (%d) is not suitable for this adapter (%d)\n", 3612 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip)); 3613 return false; 3614 } 3615 3616 /** 3617 * t4_load_fw - download firmware 3618 * @adap: the adapter 3619 * @fw_data: the firmware image to write 3620 * @size: image size 3621 * 3622 * Write the supplied firmware image to the card's serial flash. 3623 */ 3624 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 3625 { 3626 u32 csum; 3627 int ret, addr; 3628 unsigned int i; 3629 u8 first_page[SF_PAGE_SIZE]; 3630 const __be32 *p = (const __be32 *)fw_data; 3631 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 3632 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 3633 unsigned int fw_start_sec = FLASH_FW_START_SEC; 3634 unsigned int fw_size = FLASH_FW_MAX_SIZE; 3635 unsigned int fw_start = FLASH_FW_START; 3636 3637 if (!size) { 3638 dev_err(adap->pdev_dev, "FW image has no data\n"); 3639 return -EINVAL; 3640 } 3641 if (size & 511) { 3642 dev_err(adap->pdev_dev, 3643 "FW image size not multiple of 512 bytes\n"); 3644 return -EINVAL; 3645 } 3646 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) { 3647 dev_err(adap->pdev_dev, 3648 "FW image size differs from size in FW header\n"); 3649 return -EINVAL; 3650 } 3651 if (size > fw_size) { 3652 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n", 3653 fw_size); 3654 return -EFBIG; 3655 } 3656 if (!t4_fw_matches_chip(adap, hdr)) 3657 return -EINVAL; 3658 3659 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 3660 csum += be32_to_cpu(p[i]); 3661 3662 if (csum != 0xffffffff) { 3663 dev_err(adap->pdev_dev, 3664 "corrupted firmware image, checksum %#x\n", csum); 3665 return -EINVAL; 3666 } 3667 3668 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 3669 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 3670 if (ret) 3671 goto out; 3672 3673 /* 3674 * We write the correct version at the end so the driver can see a bad 3675 * version if the FW write fails. Start by writing a copy of the 3676 * first page with a bad version. 3677 */ 3678 memcpy(first_page, fw_data, SF_PAGE_SIZE); 3679 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); 3680 ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, true); 3681 if (ret) 3682 goto out; 3683 3684 addr = fw_start; 3685 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 3686 addr += SF_PAGE_SIZE; 3687 fw_data += SF_PAGE_SIZE; 3688 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, true); 3689 if (ret) 3690 goto out; 3691 } 3692 3693 ret = t4_write_flash(adap, fw_start + offsetof(struct fw_hdr, fw_ver), 3694 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 3695 true); 3696 out: 3697 if (ret) 3698 dev_err(adap->pdev_dev, "firmware download failed, error %d\n", 3699 ret); 3700 else 3701 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3702 return ret; 3703 } 3704 3705 /** 3706 * t4_phy_fw_ver - return current PHY firmware version 3707 * @adap: the adapter 3708 * @phy_fw_ver: return value buffer for PHY firmware version 3709 * 3710 * Returns the current version of external PHY firmware on the 3711 * adapter. 3712 */ 3713 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver) 3714 { 3715 u32 param, val; 3716 int ret; 3717 3718 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3719 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3720 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3721 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION)); 3722 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3723 ¶m, &val); 3724 if (ret) 3725 return ret; 3726 *phy_fw_ver = val; 3727 return 0; 3728 } 3729 3730 /** 3731 * t4_load_phy_fw - download port PHY firmware 3732 * @adap: the adapter 3733 * @win: the PCI-E Memory Window index to use for t4_memory_rw() 3734 * @phy_fw_version: function to check PHY firmware versions 3735 * @phy_fw_data: the PHY firmware image to write 3736 * @phy_fw_size: image size 3737 * 3738 * Transfer the specified PHY firmware to the adapter. If a non-NULL 3739 * @phy_fw_version is supplied, then it will be used to determine if 3740 * it's necessary to perform the transfer by comparing the version 3741 * of any existing adapter PHY firmware with that of the passed in 3742 * PHY firmware image. 3743 * 3744 * A negative error number will be returned if an error occurs. If 3745 * version number support is available and there's no need to upgrade 3746 * the firmware, 0 will be returned. If firmware is successfully 3747 * transferred to the adapter, 1 will be returned. 3748 * 3749 * NOTE: some adapters only have local RAM to store the PHY firmware. As 3750 * a result, a RESET of the adapter would cause that RAM to lose its 3751 * contents. Thus, loading PHY firmware on such adapters must happen 3752 * after any FW_RESET_CMDs ... 3753 */ 3754 int t4_load_phy_fw(struct adapter *adap, int win, 3755 int (*phy_fw_version)(const u8 *, size_t), 3756 const u8 *phy_fw_data, size_t phy_fw_size) 3757 { 3758 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0; 3759 unsigned long mtype = 0, maddr = 0; 3760 u32 param, val; 3761 int ret; 3762 3763 /* If we have version number support, then check to see if the adapter 3764 * already has up-to-date PHY firmware loaded. 3765 */ 3766 if (phy_fw_version) { 3767 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size); 3768 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3769 if (ret < 0) 3770 return ret; 3771 3772 if (cur_phy_fw_ver >= new_phy_fw_vers) { 3773 CH_WARN(adap, "PHY Firmware already up-to-date, " 3774 "version %#x\n", cur_phy_fw_ver); 3775 return 0; 3776 } 3777 } 3778 3779 /* Ask the firmware where it wants us to copy the PHY firmware image. 3780 * The size of the file requires a special version of the READ command 3781 * which will pass the file size via the values field in PARAMS_CMD and 3782 * retrieve the return value from firmware and place it in the same 3783 * buffer values 3784 */ 3785 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3786 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3787 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3788 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3789 val = phy_fw_size; 3790 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1, 3791 ¶m, &val, 1, true); 3792 if (ret < 0) 3793 return ret; 3794 mtype = val >> 8; 3795 maddr = (val & 0xff) << 16; 3796 3797 /* Copy the supplied PHY Firmware image to the adapter memory location 3798 * allocated by the adapter firmware. 3799 */ 3800 spin_lock_bh(&adap->win0_lock); 3801 ret = t4_memory_rw(adap, win, mtype, maddr, 3802 phy_fw_size, (__be32 *)phy_fw_data, 3803 T4_MEMORY_WRITE); 3804 spin_unlock_bh(&adap->win0_lock); 3805 if (ret) 3806 return ret; 3807 3808 /* Tell the firmware that the PHY firmware image has been written to 3809 * RAM and it can now start copying it over to the PHYs. The chip 3810 * firmware will RESET the affected PHYs as part of this operation 3811 * leaving them running the new PHY firmware image. 3812 */ 3813 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3814 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3815 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3816 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3817 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 3818 ¶m, &val, 30000); 3819 if (ret) 3820 return ret; 3821 3822 /* If we have version number support, then check to see that the new 3823 * firmware got loaded properly. 3824 */ 3825 if (phy_fw_version) { 3826 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3827 if (ret < 0) 3828 return ret; 3829 3830 if (cur_phy_fw_ver != new_phy_fw_vers) { 3831 CH_WARN(adap, "PHY Firmware did not update: " 3832 "version on adapter %#x, " 3833 "version flashed %#x\n", 3834 cur_phy_fw_ver, new_phy_fw_vers); 3835 return -ENXIO; 3836 } 3837 } 3838 3839 return 1; 3840 } 3841 3842 /** 3843 * t4_fwcache - firmware cache operation 3844 * @adap: the adapter 3845 * @op : the operation (flush or flush and invalidate) 3846 */ 3847 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) 3848 { 3849 struct fw_params_cmd c; 3850 3851 memset(&c, 0, sizeof(c)); 3852 c.op_to_vfn = 3853 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 3854 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 3855 FW_PARAMS_CMD_PFN_V(adap->pf) | 3856 FW_PARAMS_CMD_VFN_V(0)); 3857 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 3858 c.param[0].mnem = 3859 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3860 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE)); 3861 c.param[0].val = cpu_to_be32(op); 3862 3863 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); 3864 } 3865 3866 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, 3867 unsigned int *pif_req_wrptr, 3868 unsigned int *pif_rsp_wrptr) 3869 { 3870 int i, j; 3871 u32 cfg, val, req, rsp; 3872 3873 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3874 if (cfg & LADBGEN_F) 3875 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3876 3877 val = t4_read_reg(adap, CIM_DEBUGSTS_A); 3878 req = POLADBGWRPTR_G(val); 3879 rsp = PILADBGWRPTR_G(val); 3880 if (pif_req_wrptr) 3881 *pif_req_wrptr = req; 3882 if (pif_rsp_wrptr) 3883 *pif_rsp_wrptr = rsp; 3884 3885 for (i = 0; i < CIM_PIFLA_SIZE; i++) { 3886 for (j = 0; j < 6; j++) { 3887 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) | 3888 PILADBGRDPTR_V(rsp)); 3889 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A); 3890 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A); 3891 req++; 3892 rsp++; 3893 } 3894 req = (req + 2) & POLADBGRDPTR_M; 3895 rsp = (rsp + 2) & PILADBGRDPTR_M; 3896 } 3897 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3898 } 3899 3900 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) 3901 { 3902 u32 cfg; 3903 int i, j, idx; 3904 3905 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3906 if (cfg & LADBGEN_F) 3907 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3908 3909 for (i = 0; i < CIM_MALA_SIZE; i++) { 3910 for (j = 0; j < 5; j++) { 3911 idx = 8 * i + j; 3912 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) | 3913 PILADBGRDPTR_V(idx)); 3914 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A); 3915 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A); 3916 } 3917 } 3918 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3919 } 3920 3921 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) 3922 { 3923 unsigned int i, j; 3924 3925 for (i = 0; i < 8; i++) { 3926 u32 *p = la_buf + i; 3927 3928 t4_write_reg(adap, ULP_RX_LA_CTL_A, i); 3929 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A); 3930 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j); 3931 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) 3932 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A); 3933 } 3934 } 3935 3936 /* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port 3937 * Capabilities which we control with separate controls -- see, for instance, 3938 * Pause Frames and Forward Error Correction. In order to determine what the 3939 * full set of Advertised Port Capabilities are, the base Advertised Port 3940 * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised 3941 * Port Capabilities associated with those other controls. See 3942 * t4_link_acaps() for how this is done. 3943 */ 3944 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \ 3945 FW_PORT_CAP32_ANEG) 3946 3947 /** 3948 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits 3949 * @caps16: a 16-bit Port Capabilities value 3950 * 3951 * Returns the equivalent 32-bit Port Capabilities value. 3952 */ 3953 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16) 3954 { 3955 fw_port_cap32_t caps32 = 0; 3956 3957 #define CAP16_TO_CAP32(__cap) \ 3958 do { \ 3959 if (caps16 & FW_PORT_CAP_##__cap) \ 3960 caps32 |= FW_PORT_CAP32_##__cap; \ 3961 } while (0) 3962 3963 CAP16_TO_CAP32(SPEED_100M); 3964 CAP16_TO_CAP32(SPEED_1G); 3965 CAP16_TO_CAP32(SPEED_25G); 3966 CAP16_TO_CAP32(SPEED_10G); 3967 CAP16_TO_CAP32(SPEED_40G); 3968 CAP16_TO_CAP32(SPEED_100G); 3969 CAP16_TO_CAP32(FC_RX); 3970 CAP16_TO_CAP32(FC_TX); 3971 CAP16_TO_CAP32(ANEG); 3972 CAP16_TO_CAP32(FORCE_PAUSE); 3973 CAP16_TO_CAP32(MDIAUTO); 3974 CAP16_TO_CAP32(MDISTRAIGHT); 3975 CAP16_TO_CAP32(FEC_RS); 3976 CAP16_TO_CAP32(FEC_BASER_RS); 3977 CAP16_TO_CAP32(802_3_PAUSE); 3978 CAP16_TO_CAP32(802_3_ASM_DIR); 3979 3980 #undef CAP16_TO_CAP32 3981 3982 return caps32; 3983 } 3984 3985 /** 3986 * fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits 3987 * @caps32: a 32-bit Port Capabilities value 3988 * 3989 * Returns the equivalent 16-bit Port Capabilities value. Note that 3990 * not all 32-bit Port Capabilities can be represented in the 16-bit 3991 * Port Capabilities and some fields/values may not make it. 3992 */ 3993 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32) 3994 { 3995 fw_port_cap16_t caps16 = 0; 3996 3997 #define CAP32_TO_CAP16(__cap) \ 3998 do { \ 3999 if (caps32 & FW_PORT_CAP32_##__cap) \ 4000 caps16 |= FW_PORT_CAP_##__cap; \ 4001 } while (0) 4002 4003 CAP32_TO_CAP16(SPEED_100M); 4004 CAP32_TO_CAP16(SPEED_1G); 4005 CAP32_TO_CAP16(SPEED_10G); 4006 CAP32_TO_CAP16(SPEED_25G); 4007 CAP32_TO_CAP16(SPEED_40G); 4008 CAP32_TO_CAP16(SPEED_100G); 4009 CAP32_TO_CAP16(FC_RX); 4010 CAP32_TO_CAP16(FC_TX); 4011 CAP32_TO_CAP16(802_3_PAUSE); 4012 CAP32_TO_CAP16(802_3_ASM_DIR); 4013 CAP32_TO_CAP16(ANEG); 4014 CAP32_TO_CAP16(FORCE_PAUSE); 4015 CAP32_TO_CAP16(MDIAUTO); 4016 CAP32_TO_CAP16(MDISTRAIGHT); 4017 CAP32_TO_CAP16(FEC_RS); 4018 CAP32_TO_CAP16(FEC_BASER_RS); 4019 4020 #undef CAP32_TO_CAP16 4021 4022 return caps16; 4023 } 4024 4025 /* Translate Firmware Port Capabilities Pause specification to Common Code */ 4026 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause) 4027 { 4028 enum cc_pause cc_pause = 0; 4029 4030 if (fw_pause & FW_PORT_CAP32_FC_RX) 4031 cc_pause |= PAUSE_RX; 4032 if (fw_pause & FW_PORT_CAP32_FC_TX) 4033 cc_pause |= PAUSE_TX; 4034 4035 return cc_pause; 4036 } 4037 4038 /* Translate Common Code Pause specification into Firmware Port Capabilities */ 4039 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause) 4040 { 4041 /* Translate orthogonal RX/TX Pause Controls for L1 Configure 4042 * commands, etc. 4043 */ 4044 fw_port_cap32_t fw_pause = 0; 4045 4046 if (cc_pause & PAUSE_RX) 4047 fw_pause |= FW_PORT_CAP32_FC_RX; 4048 if (cc_pause & PAUSE_TX) 4049 fw_pause |= FW_PORT_CAP32_FC_TX; 4050 if (!(cc_pause & PAUSE_AUTONEG)) 4051 fw_pause |= FW_PORT_CAP32_FORCE_PAUSE; 4052 4053 /* Translate orthogonal Pause controls into IEEE 802.3 Pause, 4054 * Asymmetrical Pause for use in reporting to upper layer OS code, etc. 4055 * Note that these bits are ignored in L1 Configure commands. 4056 */ 4057 if (cc_pause & PAUSE_RX) { 4058 if (cc_pause & PAUSE_TX) 4059 fw_pause |= FW_PORT_CAP32_802_3_PAUSE; 4060 else 4061 fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR | 4062 FW_PORT_CAP32_802_3_PAUSE; 4063 } else if (cc_pause & PAUSE_TX) { 4064 fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR; 4065 } 4066 4067 return fw_pause; 4068 } 4069 4070 /* Translate Firmware Forward Error Correction specification to Common Code */ 4071 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec) 4072 { 4073 enum cc_fec cc_fec = 0; 4074 4075 if (fw_fec & FW_PORT_CAP32_FEC_RS) 4076 cc_fec |= FEC_RS; 4077 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) 4078 cc_fec |= FEC_BASER_RS; 4079 4080 return cc_fec; 4081 } 4082 4083 /* Translate Common Code Forward Error Correction specification to Firmware */ 4084 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec) 4085 { 4086 fw_port_cap32_t fw_fec = 0; 4087 4088 if (cc_fec & FEC_RS) 4089 fw_fec |= FW_PORT_CAP32_FEC_RS; 4090 if (cc_fec & FEC_BASER_RS) 4091 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS; 4092 4093 return fw_fec; 4094 } 4095 4096 /** 4097 * t4_link_acaps - compute Link Advertised Port Capabilities 4098 * @adapter: the adapter 4099 * @port: the Port ID 4100 * @lc: the Port's Link Configuration 4101 * 4102 * Synthesize the Advertised Port Capabilities we'll be using based on 4103 * the base Advertised Port Capabilities (which have been filtered by 4104 * ADVERT_MASK) plus the individual controls for things like Pause 4105 * Frames, Forward Error Correction, MDI, etc. 4106 */ 4107 fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port, 4108 struct link_config *lc) 4109 { 4110 fw_port_cap32_t fw_fc, fw_fec, acaps; 4111 unsigned int fw_mdi; 4112 char cc_fec; 4113 4114 fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps); 4115 4116 /* Convert driver coding of Pause Frame Flow Control settings into the 4117 * Firmware's API. 4118 */ 4119 fw_fc = cc_to_fwcap_pause(lc->requested_fc); 4120 4121 /* Convert Common Code Forward Error Control settings into the 4122 * Firmware's API. If the current Requested FEC has "Automatic" 4123 * (IEEE 802.3) specified, then we use whatever the Firmware 4124 * sent us as part of its IEEE 802.3-based interpretation of 4125 * the Transceiver Module EPROM FEC parameters. Otherwise we 4126 * use whatever is in the current Requested FEC settings. 4127 */ 4128 if (lc->requested_fec & FEC_AUTO) 4129 cc_fec = fwcap_to_cc_fec(lc->def_acaps); 4130 else 4131 cc_fec = lc->requested_fec; 4132 fw_fec = cc_to_fwcap_fec(cc_fec); 4133 4134 /* Figure out what our Requested Port Capabilities are going to be. 4135 * Note parallel structure in t4_handle_get_port_info() and 4136 * init_link_config(). 4137 */ 4138 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 4139 acaps = lc->acaps | fw_fc | fw_fec; 4140 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4141 lc->fec = cc_fec; 4142 } else if (lc->autoneg == AUTONEG_DISABLE) { 4143 acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi; 4144 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4145 lc->fec = cc_fec; 4146 } else { 4147 acaps = lc->acaps | fw_fc | fw_fec | fw_mdi; 4148 } 4149 4150 /* Some Requested Port Capabilities are trivially wrong if they exceed 4151 * the Physical Port Capabilities. We can check that here and provide 4152 * moderately useful feedback in the system log. 4153 * 4154 * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so 4155 * we need to exclude this from this check in order to maintain 4156 * compatibility ... 4157 */ 4158 if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) { 4159 dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n", 4160 acaps, lc->pcaps); 4161 return -EINVAL; 4162 } 4163 4164 return acaps; 4165 } 4166 4167 /** 4168 * t4_link_l1cfg_core - apply link configuration to MAC/PHY 4169 * @adapter: the adapter 4170 * @mbox: the Firmware Mailbox to use 4171 * @port: the Port ID 4172 * @lc: the Port's Link Configuration 4173 * @sleep_ok: if true we may sleep while awaiting command completion 4174 * @timeout: time to wait for command to finish before timing out 4175 * (negative implies @sleep_ok=false) 4176 * 4177 * Set up a port's MAC and PHY according to a desired link configuration. 4178 * - If the PHY can auto-negotiate first decide what to advertise, then 4179 * enable/disable auto-negotiation as desired, and reset. 4180 * - If the PHY does not auto-negotiate just reset it. 4181 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 4182 * otherwise do it later based on the outcome of auto-negotiation. 4183 */ 4184 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox, 4185 unsigned int port, struct link_config *lc, 4186 u8 sleep_ok, int timeout) 4187 { 4188 unsigned int fw_caps = adapter->params.fw_caps_support; 4189 struct fw_port_cmd cmd; 4190 fw_port_cap32_t rcap; 4191 int ret; 4192 4193 if (!(lc->pcaps & FW_PORT_CAP32_ANEG) && 4194 lc->autoneg == AUTONEG_ENABLE) { 4195 return -EINVAL; 4196 } 4197 4198 /* Compute our Requested Port Capabilities and send that on to the 4199 * Firmware. 4200 */ 4201 rcap = t4_link_acaps(adapter, port, lc); 4202 memset(&cmd, 0, sizeof(cmd)); 4203 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4204 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4205 FW_PORT_CMD_PORTID_V(port)); 4206 cmd.action_to_len16 = 4207 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4208 ? FW_PORT_ACTION_L1_CFG 4209 : FW_PORT_ACTION_L1_CFG32) | 4210 FW_LEN16(cmd)); 4211 if (fw_caps == FW_CAPS16) 4212 cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap)); 4213 else 4214 cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap); 4215 4216 ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL, 4217 sleep_ok, timeout); 4218 4219 /* Unfortunately, even if the Requested Port Capabilities "fit" within 4220 * the Physical Port Capabilities, some combinations of features may 4221 * still not be legal. For example, 40Gb/s and Reed-Solomon Forward 4222 * Error Correction. So if the Firmware rejects the L1 Configure 4223 * request, flag that here. 4224 */ 4225 if (ret) { 4226 dev_err(adapter->pdev_dev, 4227 "Requested Port Capabilities %#x rejected, error %d\n", 4228 rcap, -ret); 4229 return ret; 4230 } 4231 return 0; 4232 } 4233 4234 /** 4235 * t4_restart_aneg - restart autonegotiation 4236 * @adap: the adapter 4237 * @mbox: mbox to use for the FW command 4238 * @port: the port id 4239 * 4240 * Restarts autonegotiation for the selected port. 4241 */ 4242 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 4243 { 4244 unsigned int fw_caps = adap->params.fw_caps_support; 4245 struct fw_port_cmd c; 4246 4247 memset(&c, 0, sizeof(c)); 4248 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4249 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4250 FW_PORT_CMD_PORTID_V(port)); 4251 c.action_to_len16 = 4252 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4253 ? FW_PORT_ACTION_L1_CFG 4254 : FW_PORT_ACTION_L1_CFG32) | 4255 FW_LEN16(c)); 4256 if (fw_caps == FW_CAPS16) 4257 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG); 4258 else 4259 c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG); 4260 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4261 } 4262 4263 typedef void (*int_handler_t)(struct adapter *adap); 4264 4265 struct intr_info { 4266 unsigned int mask; /* bits to check in interrupt status */ 4267 const char *msg; /* message to print or NULL */ 4268 short stat_idx; /* stat counter to increment or -1 */ 4269 unsigned short fatal; /* whether the condition reported is fatal */ 4270 int_handler_t int_handler; /* platform-specific int handler */ 4271 }; 4272 4273 /** 4274 * t4_handle_intr_status - table driven interrupt handler 4275 * @adapter: the adapter that generated the interrupt 4276 * @reg: the interrupt status register to process 4277 * @acts: table of interrupt actions 4278 * 4279 * A table driven interrupt handler that applies a set of masks to an 4280 * interrupt status word and performs the corresponding actions if the 4281 * interrupts described by the mask have occurred. The actions include 4282 * optionally emitting a warning or alert message. The table is terminated 4283 * by an entry specifying mask 0. Returns the number of fatal interrupt 4284 * conditions. 4285 */ 4286 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, 4287 const struct intr_info *acts) 4288 { 4289 int fatal = 0; 4290 unsigned int mask = 0; 4291 unsigned int status = t4_read_reg(adapter, reg); 4292 4293 for ( ; acts->mask; ++acts) { 4294 if (!(status & acts->mask)) 4295 continue; 4296 if (acts->fatal) { 4297 fatal++; 4298 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4299 status & acts->mask); 4300 } else if (acts->msg && printk_ratelimit()) 4301 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4302 status & acts->mask); 4303 if (acts->int_handler) 4304 acts->int_handler(adapter); 4305 mask |= acts->mask; 4306 } 4307 status &= mask; 4308 if (status) /* clear processed interrupts */ 4309 t4_write_reg(adapter, reg, status); 4310 return fatal; 4311 } 4312 4313 /* 4314 * Interrupt handler for the PCIE module. 4315 */ 4316 static void pcie_intr_handler(struct adapter *adapter) 4317 { 4318 static const struct intr_info sysbus_intr_info[] = { 4319 { RNPP_F, "RXNP array parity error", -1, 1 }, 4320 { RPCP_F, "RXPC array parity error", -1, 1 }, 4321 { RCIP_F, "RXCIF array parity error", -1, 1 }, 4322 { RCCP_F, "Rx completions control array parity error", -1, 1 }, 4323 { RFTP_F, "RXFT array parity error", -1, 1 }, 4324 { 0 } 4325 }; 4326 static const struct intr_info pcie_port_intr_info[] = { 4327 { TPCP_F, "TXPC array parity error", -1, 1 }, 4328 { TNPP_F, "TXNP array parity error", -1, 1 }, 4329 { TFTP_F, "TXFT array parity error", -1, 1 }, 4330 { TCAP_F, "TXCA array parity error", -1, 1 }, 4331 { TCIP_F, "TXCIF array parity error", -1, 1 }, 4332 { RCAP_F, "RXCA array parity error", -1, 1 }, 4333 { OTDD_F, "outbound request TLP discarded", -1, 1 }, 4334 { RDPE_F, "Rx data parity error", -1, 1 }, 4335 { TDUE_F, "Tx uncorrectable data error", -1, 1 }, 4336 { 0 } 4337 }; 4338 static const struct intr_info pcie_intr_info[] = { 4339 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 }, 4340 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 }, 4341 { MSIDATAPERR_F, "MSI data parity error", -1, 1 }, 4342 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4343 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4344 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4345 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4346 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 }, 4347 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 }, 4348 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4349 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 }, 4350 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4351 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4352 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 }, 4353 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4354 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4355 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4356 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4357 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4358 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4359 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4360 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 }, 4361 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 }, 4362 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4363 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 }, 4364 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 }, 4365 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 }, 4366 { PCIESINT_F, "PCI core secondary fault", -1, 1 }, 4367 { PCIEPINT_F, "PCI core primary fault", -1, 1 }, 4368 { UNXSPLCPLERR_F, "PCI unexpected split completion error", 4369 -1, 0 }, 4370 { 0 } 4371 }; 4372 4373 static struct intr_info t5_pcie_intr_info[] = { 4374 { MSTGRPPERR_F, "Master Response Read Queue parity error", 4375 -1, 1 }, 4376 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 }, 4377 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 }, 4378 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4379 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4380 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4381 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4382 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error", 4383 -1, 1 }, 4384 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error", 4385 -1, 1 }, 4386 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4387 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 }, 4388 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4389 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4390 { DREQWRPERR_F, "PCI DMA channel write request parity error", 4391 -1, 1 }, 4392 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4393 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4394 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4395 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4396 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4397 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4398 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4399 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 }, 4400 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 }, 4401 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4402 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error", 4403 -1, 1 }, 4404 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error", 4405 -1, 1 }, 4406 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 }, 4407 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 }, 4408 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 }, 4409 { READRSPERR_F, "Outbound read error", -1, 0 }, 4410 { 0 } 4411 }; 4412 4413 int fat; 4414 4415 if (is_t4(adapter->params.chip)) 4416 fat = t4_handle_intr_status(adapter, 4417 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A, 4418 sysbus_intr_info) + 4419 t4_handle_intr_status(adapter, 4420 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A, 4421 pcie_port_intr_info) + 4422 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4423 pcie_intr_info); 4424 else 4425 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4426 t5_pcie_intr_info); 4427 4428 if (fat) 4429 t4_fatal_err(adapter); 4430 } 4431 4432 /* 4433 * TP interrupt handler. 4434 */ 4435 static void tp_intr_handler(struct adapter *adapter) 4436 { 4437 static const struct intr_info tp_intr_info[] = { 4438 { 0x3fffffff, "TP parity error", -1, 1 }, 4439 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 }, 4440 { 0 } 4441 }; 4442 4443 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info)) 4444 t4_fatal_err(adapter); 4445 } 4446 4447 /* 4448 * SGE interrupt handler. 4449 */ 4450 static void sge_intr_handler(struct adapter *adapter) 4451 { 4452 u32 v = 0, perr; 4453 u32 err; 4454 4455 static const struct intr_info sge_intr_info[] = { 4456 { ERR_CPL_EXCEED_IQE_SIZE_F, 4457 "SGE received CPL exceeding IQE size", -1, 1 }, 4458 { ERR_INVALID_CIDX_INC_F, 4459 "SGE GTS CIDX increment too large", -1, 0 }, 4460 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 }, 4461 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full }, 4462 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F, 4463 "SGE IQID > 1023 received CPL for FL", -1, 0 }, 4464 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1, 4465 0 }, 4466 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1, 4467 0 }, 4468 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1, 4469 0 }, 4470 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1, 4471 0 }, 4472 { ERR_ING_CTXT_PRIO_F, 4473 "SGE too many priority ingress contexts", -1, 0 }, 4474 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 }, 4475 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 }, 4476 { 0 } 4477 }; 4478 4479 static struct intr_info t4t5_sge_intr_info[] = { 4480 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped }, 4481 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full }, 4482 { ERR_EGR_CTXT_PRIO_F, 4483 "SGE too many priority egress contexts", -1, 0 }, 4484 { 0 } 4485 }; 4486 4487 perr = t4_read_reg(adapter, SGE_INT_CAUSE1_A); 4488 if (perr) { 4489 v |= perr; 4490 dev_alert(adapter->pdev_dev, "SGE Cause1 Parity Error %#x\n", 4491 perr); 4492 } 4493 4494 perr = t4_read_reg(adapter, SGE_INT_CAUSE2_A); 4495 if (perr) { 4496 v |= perr; 4497 dev_alert(adapter->pdev_dev, "SGE Cause2 Parity Error %#x\n", 4498 perr); 4499 } 4500 4501 if (CHELSIO_CHIP_VERSION(adapter->params.chip) >= CHELSIO_T5) { 4502 perr = t4_read_reg(adapter, SGE_INT_CAUSE5_A); 4503 /* Parity error (CRC) for err_T_RxCRC is trivial, ignore it */ 4504 perr &= ~ERR_T_RXCRC_F; 4505 if (perr) { 4506 v |= perr; 4507 dev_alert(adapter->pdev_dev, 4508 "SGE Cause5 Parity Error %#x\n", perr); 4509 } 4510 } 4511 4512 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info); 4513 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4514 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, 4515 t4t5_sge_intr_info); 4516 4517 err = t4_read_reg(adapter, SGE_ERROR_STATS_A); 4518 if (err & ERROR_QID_VALID_F) { 4519 dev_err(adapter->pdev_dev, "SGE error for queue %u\n", 4520 ERROR_QID_G(err)); 4521 if (err & UNCAPTURED_ERROR_F) 4522 dev_err(adapter->pdev_dev, 4523 "SGE UNCAPTURED_ERROR set (clearing)\n"); 4524 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F | 4525 UNCAPTURED_ERROR_F); 4526 } 4527 4528 if (v != 0) 4529 t4_fatal_err(adapter); 4530 } 4531 4532 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\ 4533 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F) 4534 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\ 4535 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F) 4536 4537 /* 4538 * CIM interrupt handler. 4539 */ 4540 static void cim_intr_handler(struct adapter *adapter) 4541 { 4542 static const struct intr_info cim_intr_info[] = { 4543 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 }, 4544 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, 4545 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, 4546 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 }, 4547 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 }, 4548 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 }, 4549 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 }, 4550 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 }, 4551 { 0 } 4552 }; 4553 static const struct intr_info cim_upintr_info[] = { 4554 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 }, 4555 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 }, 4556 { ILLWRINT_F, "CIM illegal write", -1, 1 }, 4557 { ILLRDINT_F, "CIM illegal read", -1, 1 }, 4558 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 }, 4559 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 }, 4560 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 }, 4561 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 }, 4562 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 }, 4563 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 }, 4564 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 }, 4565 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 }, 4566 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 }, 4567 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 }, 4568 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 }, 4569 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 }, 4570 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 }, 4571 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 }, 4572 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 }, 4573 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 }, 4574 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 }, 4575 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 }, 4576 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 }, 4577 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 }, 4578 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 }, 4579 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 }, 4580 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 }, 4581 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 }, 4582 { 0 } 4583 }; 4584 4585 u32 val, fw_err; 4586 int fat; 4587 4588 fw_err = t4_read_reg(adapter, PCIE_FW_A); 4589 if (fw_err & PCIE_FW_ERR_F) 4590 t4_report_fw_error(adapter); 4591 4592 /* When the Firmware detects an internal error which normally 4593 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt 4594 * in order to make sure the Host sees the Firmware Crash. So 4595 * if we have a Timer0 interrupt and don't see a Firmware Crash, 4596 * ignore the Timer0 interrupt. 4597 */ 4598 4599 val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A); 4600 if (val & TIMER0INT_F) 4601 if (!(fw_err & PCIE_FW_ERR_F) || 4602 (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH)) 4603 t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A, 4604 TIMER0INT_F); 4605 4606 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A, 4607 cim_intr_info) + 4608 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A, 4609 cim_upintr_info); 4610 if (fat) 4611 t4_fatal_err(adapter); 4612 } 4613 4614 /* 4615 * ULP RX interrupt handler. 4616 */ 4617 static void ulprx_intr_handler(struct adapter *adapter) 4618 { 4619 static const struct intr_info ulprx_intr_info[] = { 4620 { 0x1800000, "ULPRX context error", -1, 1 }, 4621 { 0x7fffff, "ULPRX parity error", -1, 1 }, 4622 { 0 } 4623 }; 4624 4625 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info)) 4626 t4_fatal_err(adapter); 4627 } 4628 4629 /* 4630 * ULP TX interrupt handler. 4631 */ 4632 static void ulptx_intr_handler(struct adapter *adapter) 4633 { 4634 static const struct intr_info ulptx_intr_info[] = { 4635 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1, 4636 0 }, 4637 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1, 4638 0 }, 4639 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1, 4640 0 }, 4641 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1, 4642 0 }, 4643 { 0xfffffff, "ULPTX parity error", -1, 1 }, 4644 { 0 } 4645 }; 4646 4647 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info)) 4648 t4_fatal_err(adapter); 4649 } 4650 4651 /* 4652 * PM TX interrupt handler. 4653 */ 4654 static void pmtx_intr_handler(struct adapter *adapter) 4655 { 4656 static const struct intr_info pmtx_intr_info[] = { 4657 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 }, 4658 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 }, 4659 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 }, 4660 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 }, 4661 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 }, 4662 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 }, 4663 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", 4664 -1, 1 }, 4665 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 }, 4666 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1}, 4667 { 0 } 4668 }; 4669 4670 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info)) 4671 t4_fatal_err(adapter); 4672 } 4673 4674 /* 4675 * PM RX interrupt handler. 4676 */ 4677 static void pmrx_intr_handler(struct adapter *adapter) 4678 { 4679 static const struct intr_info pmrx_intr_info[] = { 4680 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 }, 4681 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 }, 4682 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 }, 4683 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", 4684 -1, 1 }, 4685 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 }, 4686 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1}, 4687 { 0 } 4688 }; 4689 4690 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info)) 4691 t4_fatal_err(adapter); 4692 } 4693 4694 /* 4695 * CPL switch interrupt handler. 4696 */ 4697 static void cplsw_intr_handler(struct adapter *adapter) 4698 { 4699 static const struct intr_info cplsw_intr_info[] = { 4700 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 }, 4701 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 }, 4702 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 }, 4703 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 }, 4704 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 }, 4705 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 }, 4706 { 0 } 4707 }; 4708 4709 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info)) 4710 t4_fatal_err(adapter); 4711 } 4712 4713 /* 4714 * LE interrupt handler. 4715 */ 4716 static void le_intr_handler(struct adapter *adap) 4717 { 4718 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); 4719 static const struct intr_info le_intr_info[] = { 4720 { LIPMISS_F, "LE LIP miss", -1, 0 }, 4721 { LIP0_F, "LE 0 LIP error", -1, 0 }, 4722 { PARITYERR_F, "LE parity error", -1, 1 }, 4723 { UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4724 { REQQPARERR_F, "LE request queue parity error", -1, 1 }, 4725 { 0 } 4726 }; 4727 4728 static struct intr_info t6_le_intr_info[] = { 4729 { T6_LIPMISS_F, "LE LIP miss", -1, 0 }, 4730 { T6_LIP0_F, "LE 0 LIP error", -1, 0 }, 4731 { CMDTIDERR_F, "LE cmd tid error", -1, 1 }, 4732 { TCAMINTPERR_F, "LE parity error", -1, 1 }, 4733 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4734 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 }, 4735 { HASHTBLMEMCRCERR_F, "LE hash table mem crc error", -1, 0 }, 4736 { 0 } 4737 }; 4738 4739 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A, 4740 (chip <= CHELSIO_T5) ? 4741 le_intr_info : t6_le_intr_info)) 4742 t4_fatal_err(adap); 4743 } 4744 4745 /* 4746 * MPS interrupt handler. 4747 */ 4748 static void mps_intr_handler(struct adapter *adapter) 4749 { 4750 static const struct intr_info mps_rx_intr_info[] = { 4751 { 0xffffff, "MPS Rx parity error", -1, 1 }, 4752 { 0 } 4753 }; 4754 static const struct intr_info mps_tx_intr_info[] = { 4755 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4756 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4757 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4758 -1, 1 }, 4759 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4760 -1, 1 }, 4761 { BUBBLE_F, "MPS Tx underflow", -1, 1 }, 4762 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4763 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4764 { 0 } 4765 }; 4766 static const struct intr_info t6_mps_tx_intr_info[] = { 4767 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4768 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4769 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4770 -1, 1 }, 4771 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4772 -1, 1 }, 4773 /* MPS Tx Bubble is normal for T6 */ 4774 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4775 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4776 { 0 } 4777 }; 4778 static const struct intr_info mps_trc_intr_info[] = { 4779 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 }, 4780 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error", 4781 -1, 1 }, 4782 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 }, 4783 { 0 } 4784 }; 4785 static const struct intr_info mps_stat_sram_intr_info[] = { 4786 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, 4787 { 0 } 4788 }; 4789 static const struct intr_info mps_stat_tx_intr_info[] = { 4790 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, 4791 { 0 } 4792 }; 4793 static const struct intr_info mps_stat_rx_intr_info[] = { 4794 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, 4795 { 0 } 4796 }; 4797 static const struct intr_info mps_cls_intr_info[] = { 4798 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 }, 4799 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 }, 4800 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 }, 4801 { 0 } 4802 }; 4803 4804 int fat; 4805 4806 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A, 4807 mps_rx_intr_info) + 4808 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A, 4809 is_t6(adapter->params.chip) 4810 ? t6_mps_tx_intr_info 4811 : mps_tx_intr_info) + 4812 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A, 4813 mps_trc_intr_info) + 4814 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A, 4815 mps_stat_sram_intr_info) + 4816 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A, 4817 mps_stat_tx_intr_info) + 4818 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A, 4819 mps_stat_rx_intr_info) + 4820 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A, 4821 mps_cls_intr_info); 4822 4823 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0); 4824 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */ 4825 if (fat) 4826 t4_fatal_err(adapter); 4827 } 4828 4829 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \ 4830 ECC_UE_INT_CAUSE_F) 4831 4832 /* 4833 * EDC/MC interrupt handler. 4834 */ 4835 static void mem_intr_handler(struct adapter *adapter, int idx) 4836 { 4837 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" }; 4838 4839 unsigned int addr, cnt_addr, v; 4840 4841 if (idx <= MEM_EDC1) { 4842 addr = EDC_REG(EDC_INT_CAUSE_A, idx); 4843 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx); 4844 } else if (idx == MEM_MC) { 4845 if (is_t4(adapter->params.chip)) { 4846 addr = MC_INT_CAUSE_A; 4847 cnt_addr = MC_ECC_STATUS_A; 4848 } else { 4849 addr = MC_P_INT_CAUSE_A; 4850 cnt_addr = MC_P_ECC_STATUS_A; 4851 } 4852 } else { 4853 addr = MC_REG(MC_P_INT_CAUSE_A, 1); 4854 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1); 4855 } 4856 4857 v = t4_read_reg(adapter, addr) & MEM_INT_MASK; 4858 if (v & PERR_INT_CAUSE_F) 4859 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n", 4860 name[idx]); 4861 if (v & ECC_CE_INT_CAUSE_F) { 4862 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr)); 4863 4864 t4_edc_err_read(adapter, idx); 4865 4866 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M)); 4867 if (printk_ratelimit()) 4868 dev_warn(adapter->pdev_dev, 4869 "%u %s correctable ECC data error%s\n", 4870 cnt, name[idx], cnt > 1 ? "s" : ""); 4871 } 4872 if (v & ECC_UE_INT_CAUSE_F) 4873 dev_alert(adapter->pdev_dev, 4874 "%s uncorrectable ECC data error\n", name[idx]); 4875 4876 t4_write_reg(adapter, addr, v); 4877 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F)) 4878 t4_fatal_err(adapter); 4879 } 4880 4881 /* 4882 * MA interrupt handler. 4883 */ 4884 static void ma_intr_handler(struct adapter *adap) 4885 { 4886 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A); 4887 4888 if (status & MEM_PERR_INT_CAUSE_F) { 4889 dev_alert(adap->pdev_dev, 4890 "MA parity error, parity status %#x\n", 4891 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A)); 4892 if (is_t5(adap->params.chip)) 4893 dev_alert(adap->pdev_dev, 4894 "MA parity error, parity status %#x\n", 4895 t4_read_reg(adap, 4896 MA_PARITY_ERROR_STATUS2_A)); 4897 } 4898 if (status & MEM_WRAP_INT_CAUSE_F) { 4899 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A); 4900 dev_alert(adap->pdev_dev, "MA address wrap-around error by " 4901 "client %u to address %#x\n", 4902 MEM_WRAP_CLIENT_NUM_G(v), 4903 MEM_WRAP_ADDRESS_G(v) << 4); 4904 } 4905 t4_write_reg(adap, MA_INT_CAUSE_A, status); 4906 t4_fatal_err(adap); 4907 } 4908 4909 /* 4910 * SMB interrupt handler. 4911 */ 4912 static void smb_intr_handler(struct adapter *adap) 4913 { 4914 static const struct intr_info smb_intr_info[] = { 4915 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 }, 4916 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 }, 4917 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 }, 4918 { 0 } 4919 }; 4920 4921 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info)) 4922 t4_fatal_err(adap); 4923 } 4924 4925 /* 4926 * NC-SI interrupt handler. 4927 */ 4928 static void ncsi_intr_handler(struct adapter *adap) 4929 { 4930 static const struct intr_info ncsi_intr_info[] = { 4931 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 }, 4932 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 }, 4933 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 }, 4934 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 }, 4935 { 0 } 4936 }; 4937 4938 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info)) 4939 t4_fatal_err(adap); 4940 } 4941 4942 /* 4943 * XGMAC interrupt handler. 4944 */ 4945 static void xgmac_intr_handler(struct adapter *adap, int port) 4946 { 4947 u32 v, int_cause_reg; 4948 4949 if (is_t4(adap->params.chip)) 4950 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A); 4951 else 4952 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A); 4953 4954 v = t4_read_reg(adap, int_cause_reg); 4955 4956 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F; 4957 if (!v) 4958 return; 4959 4960 if (v & TXFIFO_PRTY_ERR_F) 4961 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n", 4962 port); 4963 if (v & RXFIFO_PRTY_ERR_F) 4964 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n", 4965 port); 4966 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v); 4967 t4_fatal_err(adap); 4968 } 4969 4970 /* 4971 * PL interrupt handler. 4972 */ 4973 static void pl_intr_handler(struct adapter *adap) 4974 { 4975 static const struct intr_info pl_intr_info[] = { 4976 { FATALPERR_F, "T4 fatal parity error", -1, 1 }, 4977 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 }, 4978 { 0 } 4979 }; 4980 4981 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info)) 4982 t4_fatal_err(adap); 4983 } 4984 4985 #define PF_INTR_MASK (PFSW_F) 4986 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \ 4987 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \ 4988 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F) 4989 4990 /** 4991 * t4_slow_intr_handler - control path interrupt handler 4992 * @adapter: the adapter 4993 * 4994 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 4995 * The designation 'slow' is because it involves register reads, while 4996 * data interrupts typically don't involve any MMIOs. 4997 */ 4998 int t4_slow_intr_handler(struct adapter *adapter) 4999 { 5000 /* There are rare cases where a PL_INT_CAUSE bit may end up getting 5001 * set when the corresponding PL_INT_ENABLE bit isn't set. It's 5002 * easiest just to mask that case here. 5003 */ 5004 u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A); 5005 u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A); 5006 u32 cause = raw_cause & enable; 5007 5008 if (!(cause & GLBL_INTR_MASK)) 5009 return 0; 5010 if (cause & CIM_F) 5011 cim_intr_handler(adapter); 5012 if (cause & MPS_F) 5013 mps_intr_handler(adapter); 5014 if (cause & NCSI_F) 5015 ncsi_intr_handler(adapter); 5016 if (cause & PL_F) 5017 pl_intr_handler(adapter); 5018 if (cause & SMB_F) 5019 smb_intr_handler(adapter); 5020 if (cause & XGMAC0_F) 5021 xgmac_intr_handler(adapter, 0); 5022 if (cause & XGMAC1_F) 5023 xgmac_intr_handler(adapter, 1); 5024 if (cause & XGMAC_KR0_F) 5025 xgmac_intr_handler(adapter, 2); 5026 if (cause & XGMAC_KR1_F) 5027 xgmac_intr_handler(adapter, 3); 5028 if (cause & PCIE_F) 5029 pcie_intr_handler(adapter); 5030 if (cause & MC_F) 5031 mem_intr_handler(adapter, MEM_MC); 5032 if (is_t5(adapter->params.chip) && (cause & MC1_F)) 5033 mem_intr_handler(adapter, MEM_MC1); 5034 if (cause & EDC0_F) 5035 mem_intr_handler(adapter, MEM_EDC0); 5036 if (cause & EDC1_F) 5037 mem_intr_handler(adapter, MEM_EDC1); 5038 if (cause & LE_F) 5039 le_intr_handler(adapter); 5040 if (cause & TP_F) 5041 tp_intr_handler(adapter); 5042 if (cause & MA_F) 5043 ma_intr_handler(adapter); 5044 if (cause & PM_TX_F) 5045 pmtx_intr_handler(adapter); 5046 if (cause & PM_RX_F) 5047 pmrx_intr_handler(adapter); 5048 if (cause & ULP_RX_F) 5049 ulprx_intr_handler(adapter); 5050 if (cause & CPL_SWITCH_F) 5051 cplsw_intr_handler(adapter); 5052 if (cause & SGE_F) 5053 sge_intr_handler(adapter); 5054 if (cause & ULP_TX_F) 5055 ulptx_intr_handler(adapter); 5056 5057 /* Clear the interrupts just processed for which we are the master. */ 5058 t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK); 5059 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */ 5060 return 1; 5061 } 5062 5063 /** 5064 * t4_intr_enable - enable interrupts 5065 * @adapter: the adapter whose interrupts should be enabled 5066 * 5067 * Enable PF-specific interrupts for the calling function and the top-level 5068 * interrupt concentrator for global interrupts. Interrupts are already 5069 * enabled at each module, here we just enable the roots of the interrupt 5070 * hierarchies. 5071 * 5072 * Note: this function should be called only when the driver manages 5073 * non PF-specific interrupts from the various HW modules. Only one PCI 5074 * function at a time should be doing this. 5075 */ 5076 void t4_intr_enable(struct adapter *adapter) 5077 { 5078 u32 val = 0; 5079 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5080 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 5081 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5082 5083 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 5084 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F; 5085 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F | 5086 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F | 5087 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F | 5088 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F | 5089 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F | 5090 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F | 5091 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val); 5092 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK); 5093 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf); 5094 } 5095 5096 /** 5097 * t4_intr_disable - disable interrupts 5098 * @adapter: the adapter whose interrupts should be disabled 5099 * 5100 * Disable interrupts. We only disable the top-level interrupt 5101 * concentrators. The caller must be a PCI function managing global 5102 * interrupts. 5103 */ 5104 void t4_intr_disable(struct adapter *adapter) 5105 { 5106 u32 whoami, pf; 5107 5108 if (pci_channel_offline(adapter->pdev)) 5109 return; 5110 5111 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5112 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 5113 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5114 5115 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0); 5116 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0); 5117 } 5118 5119 unsigned int t4_chip_rss_size(struct adapter *adap) 5120 { 5121 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 5122 return RSS_NENTRIES; 5123 else 5124 return T6_RSS_NENTRIES; 5125 } 5126 5127 /** 5128 * t4_config_rss_range - configure a portion of the RSS mapping table 5129 * @adapter: the adapter 5130 * @mbox: mbox to use for the FW command 5131 * @viid: virtual interface whose RSS subtable is to be written 5132 * @start: start entry in the table to write 5133 * @n: how many table entries to write 5134 * @rspq: values for the response queue lookup table 5135 * @nrspq: number of values in @rspq 5136 * 5137 * Programs the selected part of the VI's RSS mapping table with the 5138 * provided values. If @nrspq < @n the supplied values are used repeatedly 5139 * until the full table range is populated. 5140 * 5141 * The caller must ensure the values in @rspq are in the range allowed for 5142 * @viid. 5143 */ 5144 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 5145 int start, int n, const u16 *rspq, unsigned int nrspq) 5146 { 5147 int ret; 5148 const u16 *rsp = rspq; 5149 const u16 *rsp_end = rspq + nrspq; 5150 struct fw_rss_ind_tbl_cmd cmd; 5151 5152 memset(&cmd, 0, sizeof(cmd)); 5153 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | 5154 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5155 FW_RSS_IND_TBL_CMD_VIID_V(viid)); 5156 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 5157 5158 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */ 5159 while (n > 0) { 5160 int nq = min(n, 32); 5161 __be32 *qp = &cmd.iq0_to_iq2; 5162 5163 cmd.niqid = cpu_to_be16(nq); 5164 cmd.startidx = cpu_to_be16(start); 5165 5166 start += nq; 5167 n -= nq; 5168 5169 while (nq > 0) { 5170 unsigned int v; 5171 5172 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp); 5173 if (++rsp >= rsp_end) 5174 rsp = rspq; 5175 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp); 5176 if (++rsp >= rsp_end) 5177 rsp = rspq; 5178 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp); 5179 if (++rsp >= rsp_end) 5180 rsp = rspq; 5181 5182 *qp++ = cpu_to_be32(v); 5183 nq -= 3; 5184 } 5185 5186 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 5187 if (ret) 5188 return ret; 5189 } 5190 return 0; 5191 } 5192 5193 /** 5194 * t4_config_glbl_rss - configure the global RSS mode 5195 * @adapter: the adapter 5196 * @mbox: mbox to use for the FW command 5197 * @mode: global RSS mode 5198 * @flags: mode-specific flags 5199 * 5200 * Sets the global RSS mode. 5201 */ 5202 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 5203 unsigned int flags) 5204 { 5205 struct fw_rss_glb_config_cmd c; 5206 5207 memset(&c, 0, sizeof(c)); 5208 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | 5209 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 5210 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5211 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 5212 c.u.manual.mode_pkd = 5213 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5214 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 5215 c.u.basicvirtual.mode_pkd = 5216 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5217 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); 5218 } else 5219 return -EINVAL; 5220 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5221 } 5222 5223 /** 5224 * t4_config_vi_rss - configure per VI RSS settings 5225 * @adapter: the adapter 5226 * @mbox: mbox to use for the FW command 5227 * @viid: the VI id 5228 * @flags: RSS flags 5229 * @defq: id of the default RSS queue for the VI. 5230 * 5231 * Configures VI-specific RSS properties. 5232 */ 5233 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, 5234 unsigned int flags, unsigned int defq) 5235 { 5236 struct fw_rss_vi_config_cmd c; 5237 5238 memset(&c, 0, sizeof(c)); 5239 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 5240 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5241 FW_RSS_VI_CONFIG_CMD_VIID_V(viid)); 5242 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5243 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | 5244 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq)); 5245 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5246 } 5247 5248 /* Read an RSS table row */ 5249 static int rd_rss_row(struct adapter *adap, int row, u32 *val) 5250 { 5251 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row); 5252 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1, 5253 5, 0, val); 5254 } 5255 5256 /** 5257 * t4_read_rss - read the contents of the RSS mapping table 5258 * @adapter: the adapter 5259 * @map: holds the contents of the RSS mapping table 5260 * 5261 * Reads the contents of the RSS hash->queue mapping table. 5262 */ 5263 int t4_read_rss(struct adapter *adapter, u16 *map) 5264 { 5265 int i, ret, nentries; 5266 u32 val; 5267 5268 nentries = t4_chip_rss_size(adapter); 5269 for (i = 0; i < nentries / 2; ++i) { 5270 ret = rd_rss_row(adapter, i, &val); 5271 if (ret) 5272 return ret; 5273 *map++ = LKPTBLQUEUE0_G(val); 5274 *map++ = LKPTBLQUEUE1_G(val); 5275 } 5276 return 0; 5277 } 5278 5279 static unsigned int t4_use_ldst(struct adapter *adap) 5280 { 5281 return (adap->flags & CXGB4_FW_OK) && !adap->use_bd; 5282 } 5283 5284 /** 5285 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST 5286 * @adap: the adapter 5287 * @cmd: TP fw ldst address space type 5288 * @vals: where the indirect register values are stored/written 5289 * @nregs: how many indirect registers to read/write 5290 * @start_index: index of first indirect register to read/write 5291 * @rw: Read (1) or Write (0) 5292 * @sleep_ok: if true we may sleep while awaiting command completion 5293 * 5294 * Access TP indirect registers through LDST 5295 */ 5296 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals, 5297 unsigned int nregs, unsigned int start_index, 5298 unsigned int rw, bool sleep_ok) 5299 { 5300 int ret = 0; 5301 unsigned int i; 5302 struct fw_ldst_cmd c; 5303 5304 for (i = 0; i < nregs; i++) { 5305 memset(&c, 0, sizeof(c)); 5306 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5307 FW_CMD_REQUEST_F | 5308 (rw ? FW_CMD_READ_F : 5309 FW_CMD_WRITE_F) | 5310 FW_LDST_CMD_ADDRSPACE_V(cmd)); 5311 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5312 5313 c.u.addrval.addr = cpu_to_be32(start_index + i); 5314 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); 5315 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, 5316 sleep_ok); 5317 if (ret) 5318 return ret; 5319 5320 if (rw) 5321 vals[i] = be32_to_cpu(c.u.addrval.val); 5322 } 5323 return 0; 5324 } 5325 5326 /** 5327 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor 5328 * @adap: the adapter 5329 * @reg_addr: Address Register 5330 * @reg_data: Data register 5331 * @buff: where the indirect register values are stored/written 5332 * @nregs: how many indirect registers to read/write 5333 * @start_index: index of first indirect register to read/write 5334 * @rw: READ(1) or WRITE(0) 5335 * @sleep_ok: if true we may sleep while awaiting command completion 5336 * 5337 * Read/Write TP indirect registers through LDST if possible. 5338 * Else, use backdoor access 5339 **/ 5340 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data, 5341 u32 *buff, u32 nregs, u32 start_index, int rw, 5342 bool sleep_ok) 5343 { 5344 int rc = -EINVAL; 5345 int cmd; 5346 5347 switch (reg_addr) { 5348 case TP_PIO_ADDR_A: 5349 cmd = FW_LDST_ADDRSPC_TP_PIO; 5350 break; 5351 case TP_TM_PIO_ADDR_A: 5352 cmd = FW_LDST_ADDRSPC_TP_TM_PIO; 5353 break; 5354 case TP_MIB_INDEX_A: 5355 cmd = FW_LDST_ADDRSPC_TP_MIB; 5356 break; 5357 default: 5358 goto indirect_access; 5359 } 5360 5361 if (t4_use_ldst(adap)) 5362 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw, 5363 sleep_ok); 5364 5365 indirect_access: 5366 5367 if (rc) { 5368 if (rw) 5369 t4_read_indirect(adap, reg_addr, reg_data, buff, nregs, 5370 start_index); 5371 else 5372 t4_write_indirect(adap, reg_addr, reg_data, buff, nregs, 5373 start_index); 5374 } 5375 } 5376 5377 /** 5378 * t4_tp_pio_read - Read TP PIO registers 5379 * @adap: the adapter 5380 * @buff: where the indirect register values are written 5381 * @nregs: how many indirect registers to read 5382 * @start_index: index of first indirect register to read 5383 * @sleep_ok: if true we may sleep while awaiting command completion 5384 * 5385 * Read TP PIO Registers 5386 **/ 5387 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5388 u32 start_index, bool sleep_ok) 5389 { 5390 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5391 start_index, 1, sleep_ok); 5392 } 5393 5394 /** 5395 * t4_tp_pio_write - Write TP PIO registers 5396 * @adap: the adapter 5397 * @buff: where the indirect register values are stored 5398 * @nregs: how many indirect registers to write 5399 * @start_index: index of first indirect register to write 5400 * @sleep_ok: if true we may sleep while awaiting command completion 5401 * 5402 * Write TP PIO Registers 5403 **/ 5404 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs, 5405 u32 start_index, bool sleep_ok) 5406 { 5407 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5408 start_index, 0, sleep_ok); 5409 } 5410 5411 /** 5412 * t4_tp_tm_pio_read - Read TP TM PIO registers 5413 * @adap: the adapter 5414 * @buff: where the indirect register values are written 5415 * @nregs: how many indirect registers to read 5416 * @start_index: index of first indirect register to read 5417 * @sleep_ok: if true we may sleep while awaiting command completion 5418 * 5419 * Read TP TM PIO Registers 5420 **/ 5421 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5422 u32 start_index, bool sleep_ok) 5423 { 5424 t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff, 5425 nregs, start_index, 1, sleep_ok); 5426 } 5427 5428 /** 5429 * t4_tp_mib_read - Read TP MIB registers 5430 * @adap: the adapter 5431 * @buff: where the indirect register values are written 5432 * @nregs: how many indirect registers to read 5433 * @start_index: index of first indirect register to read 5434 * @sleep_ok: if true we may sleep while awaiting command completion 5435 * 5436 * Read TP MIB Registers 5437 **/ 5438 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index, 5439 bool sleep_ok) 5440 { 5441 t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs, 5442 start_index, 1, sleep_ok); 5443 } 5444 5445 /** 5446 * t4_read_rss_key - read the global RSS key 5447 * @adap: the adapter 5448 * @key: 10-entry array holding the 320-bit RSS key 5449 * @sleep_ok: if true we may sleep while awaiting command completion 5450 * 5451 * Reads the global 320-bit RSS key. 5452 */ 5453 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok) 5454 { 5455 t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5456 } 5457 5458 /** 5459 * t4_write_rss_key - program one of the RSS keys 5460 * @adap: the adapter 5461 * @key: 10-entry array holding the 320-bit RSS key 5462 * @idx: which RSS key to write 5463 * @sleep_ok: if true we may sleep while awaiting command completion 5464 * 5465 * Writes one of the RSS keys with the given 320-bit value. If @idx is 5466 * 0..15 the corresponding entry in the RSS key table is written, 5467 * otherwise the global RSS key is written. 5468 */ 5469 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx, 5470 bool sleep_ok) 5471 { 5472 u8 rss_key_addr_cnt = 16; 5473 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A); 5474 5475 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble), 5476 * allows access to key addresses 16-63 by using KeyWrAddrX 5477 * as index[5:4](upper 2) into key table 5478 */ 5479 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) && 5480 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3)) 5481 rss_key_addr_cnt = 32; 5482 5483 t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5484 5485 if (idx >= 0 && idx < rss_key_addr_cnt) { 5486 if (rss_key_addr_cnt > 16) 5487 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5488 KEYWRADDRX_V(idx >> 4) | 5489 T6_VFWRADDR_V(idx) | KEYWREN_F); 5490 else 5491 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5492 KEYWRADDR_V(idx) | KEYWREN_F); 5493 } 5494 } 5495 5496 /** 5497 * t4_read_rss_pf_config - read PF RSS Configuration Table 5498 * @adapter: the adapter 5499 * @index: the entry in the PF RSS table to read 5500 * @valp: where to store the returned value 5501 * @sleep_ok: if true we may sleep while awaiting command completion 5502 * 5503 * Reads the PF RSS Configuration Table at the specified index and returns 5504 * the value found there. 5505 */ 5506 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, 5507 u32 *valp, bool sleep_ok) 5508 { 5509 t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok); 5510 } 5511 5512 /** 5513 * t4_read_rss_vf_config - read VF RSS Configuration Table 5514 * @adapter: the adapter 5515 * @index: the entry in the VF RSS table to read 5516 * @vfl: where to store the returned VFL 5517 * @vfh: where to store the returned VFH 5518 * @sleep_ok: if true we may sleep while awaiting command completion 5519 * 5520 * Reads the VF RSS Configuration Table at the specified index and returns 5521 * the (VFL, VFH) values found there. 5522 */ 5523 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, 5524 u32 *vfl, u32 *vfh, bool sleep_ok) 5525 { 5526 u32 vrt, mask, data; 5527 5528 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) { 5529 mask = VFWRADDR_V(VFWRADDR_M); 5530 data = VFWRADDR_V(index); 5531 } else { 5532 mask = T6_VFWRADDR_V(T6_VFWRADDR_M); 5533 data = T6_VFWRADDR_V(index); 5534 } 5535 5536 /* Request that the index'th VF Table values be read into VFL/VFH. 5537 */ 5538 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A); 5539 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask); 5540 vrt |= data | VFRDEN_F; 5541 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt); 5542 5543 /* Grab the VFL/VFH values ... 5544 */ 5545 t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok); 5546 t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok); 5547 } 5548 5549 /** 5550 * t4_read_rss_pf_map - read PF RSS Map 5551 * @adapter: the adapter 5552 * @sleep_ok: if true we may sleep while awaiting command completion 5553 * 5554 * Reads the PF RSS Map register and returns its value. 5555 */ 5556 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok) 5557 { 5558 u32 pfmap; 5559 5560 t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok); 5561 return pfmap; 5562 } 5563 5564 /** 5565 * t4_read_rss_pf_mask - read PF RSS Mask 5566 * @adapter: the adapter 5567 * @sleep_ok: if true we may sleep while awaiting command completion 5568 * 5569 * Reads the PF RSS Mask register and returns its value. 5570 */ 5571 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok) 5572 { 5573 u32 pfmask; 5574 5575 t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok); 5576 return pfmask; 5577 } 5578 5579 /** 5580 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 5581 * @adap: the adapter 5582 * @v4: holds the TCP/IP counter values 5583 * @v6: holds the TCP/IPv6 counter values 5584 * @sleep_ok: if true we may sleep while awaiting command completion 5585 * 5586 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 5587 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 5588 */ 5589 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 5590 struct tp_tcp_stats *v6, bool sleep_ok) 5591 { 5592 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1]; 5593 5594 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A) 5595 #define STAT(x) val[STAT_IDX(x)] 5596 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 5597 5598 if (v4) { 5599 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5600 TP_MIB_TCP_OUT_RST_A, sleep_ok); 5601 v4->tcp_out_rsts = STAT(OUT_RST); 5602 v4->tcp_in_segs = STAT64(IN_SEG); 5603 v4->tcp_out_segs = STAT64(OUT_SEG); 5604 v4->tcp_retrans_segs = STAT64(RXT_SEG); 5605 } 5606 if (v6) { 5607 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5608 TP_MIB_TCP_V6OUT_RST_A, sleep_ok); 5609 v6->tcp_out_rsts = STAT(OUT_RST); 5610 v6->tcp_in_segs = STAT64(IN_SEG); 5611 v6->tcp_out_segs = STAT64(OUT_SEG); 5612 v6->tcp_retrans_segs = STAT64(RXT_SEG); 5613 } 5614 #undef STAT64 5615 #undef STAT 5616 #undef STAT_IDX 5617 } 5618 5619 /** 5620 * t4_tp_get_err_stats - read TP's error MIB counters 5621 * @adap: the adapter 5622 * @st: holds the counter values 5623 * @sleep_ok: if true we may sleep while awaiting command completion 5624 * 5625 * Returns the values of TP's error counters. 5626 */ 5627 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st, 5628 bool sleep_ok) 5629 { 5630 int nchan = adap->params.arch.nchan; 5631 5632 t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A, 5633 sleep_ok); 5634 t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A, 5635 sleep_ok); 5636 t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A, 5637 sleep_ok); 5638 t4_tp_mib_read(adap, st->tnl_cong_drops, nchan, 5639 TP_MIB_TNL_CNG_DROP_0_A, sleep_ok); 5640 t4_tp_mib_read(adap, st->ofld_chan_drops, nchan, 5641 TP_MIB_OFD_CHN_DROP_0_A, sleep_ok); 5642 t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A, 5643 sleep_ok); 5644 t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan, 5645 TP_MIB_OFD_VLN_DROP_0_A, sleep_ok); 5646 t4_tp_mib_read(adap, st->tcp6_in_errs, nchan, 5647 TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok); 5648 t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A, 5649 sleep_ok); 5650 } 5651 5652 /** 5653 * t4_tp_get_cpl_stats - read TP's CPL MIB counters 5654 * @adap: the adapter 5655 * @st: holds the counter values 5656 * @sleep_ok: if true we may sleep while awaiting command completion 5657 * 5658 * Returns the values of TP's CPL counters. 5659 */ 5660 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st, 5661 bool sleep_ok) 5662 { 5663 int nchan = adap->params.arch.nchan; 5664 5665 t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok); 5666 5667 t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok); 5668 } 5669 5670 /** 5671 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters 5672 * @adap: the adapter 5673 * @st: holds the counter values 5674 * @sleep_ok: if true we may sleep while awaiting command completion 5675 * 5676 * Returns the values of TP's RDMA counters. 5677 */ 5678 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st, 5679 bool sleep_ok) 5680 { 5681 t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A, 5682 sleep_ok); 5683 } 5684 5685 /** 5686 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port 5687 * @adap: the adapter 5688 * @idx: the port index 5689 * @st: holds the counter values 5690 * @sleep_ok: if true we may sleep while awaiting command completion 5691 * 5692 * Returns the values of TP's FCoE counters for the selected port. 5693 */ 5694 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, 5695 struct tp_fcoe_stats *st, bool sleep_ok) 5696 { 5697 u32 val[2]; 5698 5699 t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx, 5700 sleep_ok); 5701 5702 t4_tp_mib_read(adap, &st->frames_drop, 1, 5703 TP_MIB_FCOE_DROP_0_A + idx, sleep_ok); 5704 5705 t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx, 5706 sleep_ok); 5707 5708 st->octets_ddp = ((u64)val[0] << 32) | val[1]; 5709 } 5710 5711 /** 5712 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters 5713 * @adap: the adapter 5714 * @st: holds the counter values 5715 * @sleep_ok: if true we may sleep while awaiting command completion 5716 * 5717 * Returns the values of TP's counters for non-TCP directly-placed packets. 5718 */ 5719 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st, 5720 bool sleep_ok) 5721 { 5722 u32 val[4]; 5723 5724 t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok); 5725 st->frames = val[0]; 5726 st->drops = val[1]; 5727 st->octets = ((u64)val[2] << 32) | val[3]; 5728 } 5729 5730 /** 5731 * t4_read_mtu_tbl - returns the values in the HW path MTU table 5732 * @adap: the adapter 5733 * @mtus: where to store the MTU values 5734 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 5735 * 5736 * Reads the HW path MTU table. 5737 */ 5738 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 5739 { 5740 u32 v; 5741 int i; 5742 5743 for (i = 0; i < NMTUS; ++i) { 5744 t4_write_reg(adap, TP_MTU_TABLE_A, 5745 MTUINDEX_V(0xff) | MTUVALUE_V(i)); 5746 v = t4_read_reg(adap, TP_MTU_TABLE_A); 5747 mtus[i] = MTUVALUE_G(v); 5748 if (mtu_log) 5749 mtu_log[i] = MTUWIDTH_G(v); 5750 } 5751 } 5752 5753 /** 5754 * t4_read_cong_tbl - reads the congestion control table 5755 * @adap: the adapter 5756 * @incr: where to store the alpha values 5757 * 5758 * Reads the additive increments programmed into the HW congestion 5759 * control table. 5760 */ 5761 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) 5762 { 5763 unsigned int mtu, w; 5764 5765 for (mtu = 0; mtu < NMTUS; ++mtu) 5766 for (w = 0; w < NCCTRL_WIN; ++w) { 5767 t4_write_reg(adap, TP_CCTRL_TABLE_A, 5768 ROWINDEX_V(0xffff) | (mtu << 5) | w); 5769 incr[mtu][w] = (u16)t4_read_reg(adap, 5770 TP_CCTRL_TABLE_A) & 0x1fff; 5771 } 5772 } 5773 5774 /** 5775 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 5776 * @adap: the adapter 5777 * @addr: the indirect TP register address 5778 * @mask: specifies the field within the register to modify 5779 * @val: new value for the field 5780 * 5781 * Sets a field of an indirect TP register to the given value. 5782 */ 5783 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 5784 unsigned int mask, unsigned int val) 5785 { 5786 t4_write_reg(adap, TP_PIO_ADDR_A, addr); 5787 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask; 5788 t4_write_reg(adap, TP_PIO_DATA_A, val); 5789 } 5790 5791 /** 5792 * init_cong_ctrl - initialize congestion control parameters 5793 * @a: the alpha values for congestion control 5794 * @b: the beta values for congestion control 5795 * 5796 * Initialize the congestion control parameters. 5797 */ 5798 static void init_cong_ctrl(unsigned short *a, unsigned short *b) 5799 { 5800 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 5801 a[9] = 2; 5802 a[10] = 3; 5803 a[11] = 4; 5804 a[12] = 5; 5805 a[13] = 6; 5806 a[14] = 7; 5807 a[15] = 8; 5808 a[16] = 9; 5809 a[17] = 10; 5810 a[18] = 14; 5811 a[19] = 17; 5812 a[20] = 21; 5813 a[21] = 25; 5814 a[22] = 30; 5815 a[23] = 35; 5816 a[24] = 45; 5817 a[25] = 60; 5818 a[26] = 80; 5819 a[27] = 100; 5820 a[28] = 200; 5821 a[29] = 300; 5822 a[30] = 400; 5823 a[31] = 500; 5824 5825 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 5826 b[9] = b[10] = 1; 5827 b[11] = b[12] = 2; 5828 b[13] = b[14] = b[15] = b[16] = 3; 5829 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 5830 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 5831 b[28] = b[29] = 6; 5832 b[30] = b[31] = 7; 5833 } 5834 5835 /* The minimum additive increment value for the congestion control table */ 5836 #define CC_MIN_INCR 2U 5837 5838 /** 5839 * t4_load_mtus - write the MTU and congestion control HW tables 5840 * @adap: the adapter 5841 * @mtus: the values for the MTU table 5842 * @alpha: the values for the congestion control alpha parameter 5843 * @beta: the values for the congestion control beta parameter 5844 * 5845 * Write the HW MTU table with the supplied MTUs and the high-speed 5846 * congestion control table with the supplied alpha, beta, and MTUs. 5847 * We write the two tables together because the additive increments 5848 * depend on the MTUs. 5849 */ 5850 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 5851 const unsigned short *alpha, const unsigned short *beta) 5852 { 5853 static const unsigned int avg_pkts[NCCTRL_WIN] = { 5854 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 5855 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 5856 28672, 40960, 57344, 81920, 114688, 163840, 229376 5857 }; 5858 5859 unsigned int i, w; 5860 5861 for (i = 0; i < NMTUS; ++i) { 5862 unsigned int mtu = mtus[i]; 5863 unsigned int log2 = fls(mtu); 5864 5865 if (!(mtu & ((1 << log2) >> 2))) /* round */ 5866 log2--; 5867 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) | 5868 MTUWIDTH_V(log2) | MTUVALUE_V(mtu)); 5869 5870 for (w = 0; w < NCCTRL_WIN; ++w) { 5871 unsigned int inc; 5872 5873 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 5874 CC_MIN_INCR); 5875 5876 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) | 5877 (w << 16) | (beta[w] << 13) | inc); 5878 } 5879 } 5880 } 5881 5882 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core 5883 * clocks. The formula is 5884 * 5885 * bytes/s = bytes256 * 256 * ClkFreq / 4096 5886 * 5887 * which is equivalent to 5888 * 5889 * bytes/s = 62.5 * bytes256 * ClkFreq_ms 5890 */ 5891 static u64 chan_rate(struct adapter *adap, unsigned int bytes256) 5892 { 5893 u64 v = bytes256 * adap->params.vpd.cclk; 5894 5895 return v * 62 + v / 2; 5896 } 5897 5898 /** 5899 * t4_get_chan_txrate - get the current per channel Tx rates 5900 * @adap: the adapter 5901 * @nic_rate: rates for NIC traffic 5902 * @ofld_rate: rates for offloaded traffic 5903 * 5904 * Return the current Tx rates in bytes/s for NIC and offloaded traffic 5905 * for each channel. 5906 */ 5907 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) 5908 { 5909 u32 v; 5910 5911 v = t4_read_reg(adap, TP_TX_TRATE_A); 5912 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v)); 5913 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v)); 5914 if (adap->params.arch.nchan == NCHAN) { 5915 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v)); 5916 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v)); 5917 } 5918 5919 v = t4_read_reg(adap, TP_TX_ORATE_A); 5920 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v)); 5921 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v)); 5922 if (adap->params.arch.nchan == NCHAN) { 5923 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v)); 5924 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v)); 5925 } 5926 } 5927 5928 /** 5929 * t4_set_trace_filter - configure one of the tracing filters 5930 * @adap: the adapter 5931 * @tp: the desired trace filter parameters 5932 * @idx: which filter to configure 5933 * @enable: whether to enable or disable the filter 5934 * 5935 * Configures one of the tracing filters available in HW. If @enable is 5936 * %0 @tp is not examined and may be %NULL. The user is responsible to 5937 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register 5938 */ 5939 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, 5940 int idx, int enable) 5941 { 5942 int i, ofst = idx * 4; 5943 u32 data_reg, mask_reg, cfg; 5944 5945 if (!enable) { 5946 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5947 return 0; 5948 } 5949 5950 cfg = t4_read_reg(adap, MPS_TRC_CFG_A); 5951 if (cfg & TRCMULTIFILTER_F) { 5952 /* If multiple tracers are enabled, then maximum 5953 * capture size is 2.5KB (FIFO size of a single channel) 5954 * minus 2 flits for CPL_TRACE_PKT header. 5955 */ 5956 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) 5957 return -EINVAL; 5958 } else { 5959 /* If multiple tracers are disabled, to avoid deadlocks 5960 * maximum packet capture size of 9600 bytes is recommended. 5961 * Also in this mode, only trace0 can be enabled and running. 5962 */ 5963 if (tp->snap_len > 9600 || idx) 5964 return -EINVAL; 5965 } 5966 5967 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 || 5968 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M || 5969 tp->min_len > TFMINPKTSIZE_M) 5970 return -EINVAL; 5971 5972 /* stop the tracer we'll be changing */ 5973 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5974 5975 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A); 5976 data_reg = MPS_TRC_FILTER0_MATCH_A + idx; 5977 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx; 5978 5979 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5980 t4_write_reg(adap, data_reg, tp->data[i]); 5981 t4_write_reg(adap, mask_reg, ~tp->mask[i]); 5982 } 5983 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst, 5984 TFCAPTUREMAX_V(tp->snap_len) | 5985 TFMINPKTSIZE_V(tp->min_len)); 5986 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 5987 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) | 5988 (is_t4(adap->params.chip) ? 5989 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) : 5990 T5_TFPORT_V(tp->port) | T5_TFEN_F | 5991 T5_TFINVERTMATCH_V(tp->invert))); 5992 5993 return 0; 5994 } 5995 5996 /** 5997 * t4_get_trace_filter - query one of the tracing filters 5998 * @adap: the adapter 5999 * @tp: the current trace filter parameters 6000 * @idx: which trace filter to query 6001 * @enabled: non-zero if the filter is enabled 6002 * 6003 * Returns the current settings of one of the HW tracing filters. 6004 */ 6005 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, 6006 int *enabled) 6007 { 6008 u32 ctla, ctlb; 6009 int i, ofst = idx * 4; 6010 u32 data_reg, mask_reg; 6011 6012 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst); 6013 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst); 6014 6015 if (is_t4(adap->params.chip)) { 6016 *enabled = !!(ctla & TFEN_F); 6017 tp->port = TFPORT_G(ctla); 6018 tp->invert = !!(ctla & TFINVERTMATCH_F); 6019 } else { 6020 *enabled = !!(ctla & T5_TFEN_F); 6021 tp->port = T5_TFPORT_G(ctla); 6022 tp->invert = !!(ctla & T5_TFINVERTMATCH_F); 6023 } 6024 tp->snap_len = TFCAPTUREMAX_G(ctlb); 6025 tp->min_len = TFMINPKTSIZE_G(ctlb); 6026 tp->skip_ofst = TFOFFSET_G(ctla); 6027 tp->skip_len = TFLENGTH_G(ctla); 6028 6029 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx; 6030 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst; 6031 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst; 6032 6033 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 6034 tp->mask[i] = ~t4_read_reg(adap, mask_reg); 6035 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; 6036 } 6037 } 6038 6039 /** 6040 * t4_pmtx_get_stats - returns the HW stats from PMTX 6041 * @adap: the adapter 6042 * @cnt: where to store the count statistics 6043 * @cycles: where to store the cycle statistics 6044 * 6045 * Returns performance statistics from PMTX. 6046 */ 6047 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6048 { 6049 int i; 6050 u32 data[2]; 6051 6052 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 6053 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1); 6054 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A); 6055 if (is_t4(adap->params.chip)) { 6056 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A); 6057 } else { 6058 t4_read_indirect(adap, PM_TX_DBG_CTRL_A, 6059 PM_TX_DBG_DATA_A, data, 2, 6060 PM_TX_DBG_STAT_MSB_A); 6061 cycles[i] = (((u64)data[0] << 32) | data[1]); 6062 } 6063 } 6064 } 6065 6066 /** 6067 * t4_pmrx_get_stats - returns the HW stats from PMRX 6068 * @adap: the adapter 6069 * @cnt: where to store the count statistics 6070 * @cycles: where to store the cycle statistics 6071 * 6072 * Returns performance statistics from PMRX. 6073 */ 6074 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6075 { 6076 int i; 6077 u32 data[2]; 6078 6079 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 6080 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1); 6081 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A); 6082 if (is_t4(adap->params.chip)) { 6083 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A); 6084 } else { 6085 t4_read_indirect(adap, PM_RX_DBG_CTRL_A, 6086 PM_RX_DBG_DATA_A, data, 2, 6087 PM_RX_DBG_STAT_MSB_A); 6088 cycles[i] = (((u64)data[0] << 32) | data[1]); 6089 } 6090 } 6091 } 6092 6093 /** 6094 * compute_mps_bg_map - compute the MPS Buffer Group Map for a Port 6095 * @adapter: the adapter 6096 * @pidx: the port index 6097 * 6098 * Computes and returns a bitmap indicating which MPS buffer groups are 6099 * associated with the given Port. Bit i is set if buffer group i is 6100 * used by the Port. 6101 */ 6102 static inline unsigned int compute_mps_bg_map(struct adapter *adapter, 6103 int pidx) 6104 { 6105 unsigned int chip_version, nports; 6106 6107 chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6108 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6109 6110 switch (chip_version) { 6111 case CHELSIO_T4: 6112 case CHELSIO_T5: 6113 switch (nports) { 6114 case 1: return 0xf; 6115 case 2: return 3 << (2 * pidx); 6116 case 4: return 1 << pidx; 6117 } 6118 break; 6119 6120 case CHELSIO_T6: 6121 switch (nports) { 6122 case 2: return 1 << (2 * pidx); 6123 } 6124 break; 6125 } 6126 6127 dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n", 6128 chip_version, nports); 6129 6130 return 0; 6131 } 6132 6133 /** 6134 * t4_get_mps_bg_map - return the buffer groups associated with a port 6135 * @adapter: the adapter 6136 * @pidx: the port index 6137 * 6138 * Returns a bitmap indicating which MPS buffer groups are associated 6139 * with the given Port. Bit i is set if buffer group i is used by the 6140 * Port. 6141 */ 6142 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx) 6143 { 6144 u8 *mps_bg_map; 6145 unsigned int nports; 6146 6147 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6148 if (pidx >= nports) { 6149 CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n", 6150 pidx, nports); 6151 return 0; 6152 } 6153 6154 /* If we've already retrieved/computed this, just return the result. 6155 */ 6156 mps_bg_map = adapter->params.mps_bg_map; 6157 if (mps_bg_map[pidx]) 6158 return mps_bg_map[pidx]; 6159 6160 /* Newer Firmware can tell us what the MPS Buffer Group Map is. 6161 * If we're talking to such Firmware, let it tell us. If the new 6162 * API isn't supported, revert back to old hardcoded way. The value 6163 * obtained from Firmware is encoded in below format: 6164 * 6165 * val = (( MPSBGMAP[Port 3] << 24 ) | 6166 * ( MPSBGMAP[Port 2] << 16 ) | 6167 * ( MPSBGMAP[Port 1] << 8 ) | 6168 * ( MPSBGMAP[Port 0] << 0 )) 6169 */ 6170 if (adapter->flags & CXGB4_FW_OK) { 6171 u32 param, val; 6172 int ret; 6173 6174 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6175 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP)); 6176 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf, 6177 0, 1, ¶m, &val); 6178 if (!ret) { 6179 int p; 6180 6181 /* Store the BG Map for all of the Ports in order to 6182 * avoid more calls to the Firmware in the future. 6183 */ 6184 for (p = 0; p < MAX_NPORTS; p++, val >>= 8) 6185 mps_bg_map[p] = val & 0xff; 6186 6187 return mps_bg_map[pidx]; 6188 } 6189 } 6190 6191 /* Either we're not talking to the Firmware or we're dealing with 6192 * older Firmware which doesn't support the new API to get the MPS 6193 * Buffer Group Map. Fall back to computing it ourselves. 6194 */ 6195 mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx); 6196 return mps_bg_map[pidx]; 6197 } 6198 6199 /** 6200 * t4_get_tp_e2c_map - return the E2C channel map associated with a port 6201 * @adapter: the adapter 6202 * @pidx: the port index 6203 */ 6204 static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx) 6205 { 6206 unsigned int nports; 6207 u32 param, val = 0; 6208 int ret; 6209 6210 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6211 if (pidx >= nports) { 6212 CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n", 6213 pidx, nports); 6214 return 0; 6215 } 6216 6217 /* FW version >= 1.16.44.0 can determine E2C channel map using 6218 * FW_PARAMS_PARAM_DEV_TPCHMAP API. 6219 */ 6220 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6221 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP)); 6222 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf, 6223 0, 1, ¶m, &val); 6224 if (!ret) 6225 return (val >> (8 * pidx)) & 0xff; 6226 6227 return 0; 6228 } 6229 6230 /** 6231 * t4_get_tp_ch_map - return TP ingress channels associated with a port 6232 * @adap: the adapter 6233 * @pidx: the port index 6234 * 6235 * Returns a bitmap indicating which TP Ingress Channels are associated 6236 * with a given Port. Bit i is set if TP Ingress Channel i is used by 6237 * the Port. 6238 */ 6239 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx) 6240 { 6241 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 6242 unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A)); 6243 6244 if (pidx >= nports) { 6245 dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n", 6246 pidx, nports); 6247 return 0; 6248 } 6249 6250 switch (chip_version) { 6251 case CHELSIO_T4: 6252 case CHELSIO_T5: 6253 /* Note that this happens to be the same values as the MPS 6254 * Buffer Group Map for these Chips. But we replicate the code 6255 * here because they're really separate concepts. 6256 */ 6257 switch (nports) { 6258 case 1: return 0xf; 6259 case 2: return 3 << (2 * pidx); 6260 case 4: return 1 << pidx; 6261 } 6262 break; 6263 6264 case CHELSIO_T6: 6265 switch (nports) { 6266 case 1: 6267 case 2: return 1 << pidx; 6268 } 6269 break; 6270 } 6271 6272 dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n", 6273 chip_version, nports); 6274 return 0; 6275 } 6276 6277 /** 6278 * t4_get_port_type_description - return Port Type string description 6279 * @port_type: firmware Port Type enumeration 6280 */ 6281 const char *t4_get_port_type_description(enum fw_port_type port_type) 6282 { 6283 static const char *const port_type_description[] = { 6284 "Fiber_XFI", 6285 "Fiber_XAUI", 6286 "BT_SGMII", 6287 "BT_XFI", 6288 "BT_XAUI", 6289 "KX4", 6290 "CX4", 6291 "KX", 6292 "KR", 6293 "SFP", 6294 "BP_AP", 6295 "BP4_AP", 6296 "QSFP_10G", 6297 "QSA", 6298 "QSFP", 6299 "BP40_BA", 6300 "KR4_100G", 6301 "CR4_QSFP", 6302 "CR_QSFP", 6303 "CR2_QSFP", 6304 "SFP28", 6305 "KR_SFP28", 6306 "KR_XLAUI" 6307 }; 6308 6309 if (port_type < ARRAY_SIZE(port_type_description)) 6310 return port_type_description[port_type]; 6311 return "UNKNOWN"; 6312 } 6313 6314 /** 6315 * t4_get_port_stats_offset - collect port stats relative to a previous 6316 * snapshot 6317 * @adap: The adapter 6318 * @idx: The port 6319 * @stats: Current stats to fill 6320 * @offset: Previous stats snapshot 6321 */ 6322 void t4_get_port_stats_offset(struct adapter *adap, int idx, 6323 struct port_stats *stats, 6324 struct port_stats *offset) 6325 { 6326 u64 *s, *o; 6327 int i; 6328 6329 t4_get_port_stats(adap, idx, stats); 6330 for (i = 0, s = (u64 *)stats, o = (u64 *)offset; 6331 i < (sizeof(struct port_stats) / sizeof(u64)); 6332 i++, s++, o++) 6333 *s -= *o; 6334 } 6335 6336 /** 6337 * t4_get_port_stats - collect port statistics 6338 * @adap: the adapter 6339 * @idx: the port index 6340 * @p: the stats structure to fill 6341 * 6342 * Collect statistics related to the given port from HW. 6343 */ 6344 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 6345 { 6346 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6347 u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A); 6348 6349 #define GET_STAT(name) \ 6350 t4_read_reg64(adap, \ 6351 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \ 6352 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L))) 6353 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6354 6355 p->tx_octets = GET_STAT(TX_PORT_BYTES); 6356 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 6357 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 6358 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 6359 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 6360 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 6361 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 6362 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 6363 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 6364 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 6365 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 6366 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 6367 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 6368 p->tx_drop = GET_STAT(TX_PORT_DROP); 6369 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 6370 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 6371 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 6372 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 6373 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 6374 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 6375 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 6376 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 6377 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 6378 6379 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6380 if (stat_ctl & COUNTPAUSESTATTX_F) 6381 p->tx_frames_64 -= p->tx_pause; 6382 if (stat_ctl & COUNTPAUSEMCTX_F) 6383 p->tx_mcast_frames -= p->tx_pause; 6384 } 6385 p->rx_octets = GET_STAT(RX_PORT_BYTES); 6386 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 6387 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 6388 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 6389 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 6390 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 6391 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 6392 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); 6393 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 6394 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 6395 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 6396 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 6397 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 6398 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 6399 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 6400 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 6401 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 6402 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 6403 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 6404 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 6405 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 6406 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 6407 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 6408 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 6409 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 6410 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 6411 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 6412 6413 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6414 if (stat_ctl & COUNTPAUSESTATRX_F) 6415 p->rx_frames_64 -= p->rx_pause; 6416 if (stat_ctl & COUNTPAUSEMCRX_F) 6417 p->rx_mcast_frames -= p->rx_pause; 6418 } 6419 6420 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 6421 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 6422 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 6423 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 6424 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 6425 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 6426 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 6427 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 6428 6429 #undef GET_STAT 6430 #undef GET_STAT_COM 6431 } 6432 6433 /** 6434 * t4_get_lb_stats - collect loopback port statistics 6435 * @adap: the adapter 6436 * @idx: the loopback port index 6437 * @p: the stats structure to fill 6438 * 6439 * Return HW statistics for the given loopback port. 6440 */ 6441 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) 6442 { 6443 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6444 6445 #define GET_STAT(name) \ 6446 t4_read_reg64(adap, \ 6447 (is_t4(adap->params.chip) ? \ 6448 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \ 6449 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L))) 6450 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6451 6452 p->octets = GET_STAT(BYTES); 6453 p->frames = GET_STAT(FRAMES); 6454 p->bcast_frames = GET_STAT(BCAST); 6455 p->mcast_frames = GET_STAT(MCAST); 6456 p->ucast_frames = GET_STAT(UCAST); 6457 p->error_frames = GET_STAT(ERROR); 6458 6459 p->frames_64 = GET_STAT(64B); 6460 p->frames_65_127 = GET_STAT(65B_127B); 6461 p->frames_128_255 = GET_STAT(128B_255B); 6462 p->frames_256_511 = GET_STAT(256B_511B); 6463 p->frames_512_1023 = GET_STAT(512B_1023B); 6464 p->frames_1024_1518 = GET_STAT(1024B_1518B); 6465 p->frames_1519_max = GET_STAT(1519B_MAX); 6466 p->drop = GET_STAT(DROP_FRAMES); 6467 6468 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; 6469 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; 6470 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; 6471 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; 6472 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; 6473 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; 6474 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; 6475 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; 6476 6477 #undef GET_STAT 6478 #undef GET_STAT_COM 6479 } 6480 6481 /* t4_mk_filtdelwr - create a delete filter WR 6482 * @ftid: the filter ID 6483 * @wr: the filter work request to populate 6484 * @qid: ingress queue to receive the delete notification 6485 * 6486 * Creates a filter work request to delete the supplied filter. If @qid is 6487 * negative the delete notification is suppressed. 6488 */ 6489 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 6490 { 6491 memset(wr, 0, sizeof(*wr)); 6492 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR)); 6493 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16)); 6494 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) | 6495 FW_FILTER_WR_NOREPLY_V(qid < 0)); 6496 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F); 6497 if (qid >= 0) 6498 wr->rx_chan_rx_rpl_iq = 6499 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid)); 6500 } 6501 6502 #define INIT_CMD(var, cmd, rd_wr) do { \ 6503 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \ 6504 FW_CMD_REQUEST_F | \ 6505 FW_CMD_##rd_wr##_F); \ 6506 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ 6507 } while (0) 6508 6509 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 6510 u32 addr, u32 val) 6511 { 6512 u32 ldst_addrspace; 6513 struct fw_ldst_cmd c; 6514 6515 memset(&c, 0, sizeof(c)); 6516 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE); 6517 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6518 FW_CMD_REQUEST_F | 6519 FW_CMD_WRITE_F | 6520 ldst_addrspace); 6521 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6522 c.u.addrval.addr = cpu_to_be32(addr); 6523 c.u.addrval.val = cpu_to_be32(val); 6524 6525 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6526 } 6527 6528 /** 6529 * t4_mdio_rd - read a PHY register through MDIO 6530 * @adap: the adapter 6531 * @mbox: mailbox to use for the FW command 6532 * @phy_addr: the PHY address 6533 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6534 * @reg: the register to read 6535 * @valp: where to store the value 6536 * 6537 * Issues a FW command through the given mailbox to read a PHY register. 6538 */ 6539 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6540 unsigned int mmd, unsigned int reg, u16 *valp) 6541 { 6542 int ret; 6543 u32 ldst_addrspace; 6544 struct fw_ldst_cmd c; 6545 6546 memset(&c, 0, sizeof(c)); 6547 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6548 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6549 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6550 ldst_addrspace); 6551 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6552 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6553 FW_LDST_CMD_MMD_V(mmd)); 6554 c.u.mdio.raddr = cpu_to_be16(reg); 6555 6556 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6557 if (ret == 0) 6558 *valp = be16_to_cpu(c.u.mdio.rval); 6559 return ret; 6560 } 6561 6562 /** 6563 * t4_mdio_wr - write a PHY register through MDIO 6564 * @adap: the adapter 6565 * @mbox: mailbox to use for the FW command 6566 * @phy_addr: the PHY address 6567 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6568 * @reg: the register to write 6569 * @val: value to write 6570 * 6571 * Issues a FW command through the given mailbox to write a PHY register. 6572 */ 6573 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6574 unsigned int mmd, unsigned int reg, u16 val) 6575 { 6576 u32 ldst_addrspace; 6577 struct fw_ldst_cmd c; 6578 6579 memset(&c, 0, sizeof(c)); 6580 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6581 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6582 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6583 ldst_addrspace); 6584 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6585 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6586 FW_LDST_CMD_MMD_V(mmd)); 6587 c.u.mdio.raddr = cpu_to_be16(reg); 6588 c.u.mdio.rval = cpu_to_be16(val); 6589 6590 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6591 } 6592 6593 /** 6594 * t4_sge_decode_idma_state - decode the idma state 6595 * @adapter: the adapter 6596 * @state: the state idma is stuck in 6597 */ 6598 void t4_sge_decode_idma_state(struct adapter *adapter, int state) 6599 { 6600 static const char * const t4_decode[] = { 6601 "IDMA_IDLE", 6602 "IDMA_PUSH_MORE_CPL_FIFO", 6603 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6604 "Not used", 6605 "IDMA_PHYSADDR_SEND_PCIEHDR", 6606 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6607 "IDMA_PHYSADDR_SEND_PAYLOAD", 6608 "IDMA_SEND_FIFO_TO_IMSG", 6609 "IDMA_FL_REQ_DATA_FL_PREP", 6610 "IDMA_FL_REQ_DATA_FL", 6611 "IDMA_FL_DROP", 6612 "IDMA_FL_H_REQ_HEADER_FL", 6613 "IDMA_FL_H_SEND_PCIEHDR", 6614 "IDMA_FL_H_PUSH_CPL_FIFO", 6615 "IDMA_FL_H_SEND_CPL", 6616 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6617 "IDMA_FL_H_SEND_IP_HDR", 6618 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6619 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6620 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6621 "IDMA_FL_D_SEND_PCIEHDR", 6622 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6623 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6624 "IDMA_FL_SEND_PCIEHDR", 6625 "IDMA_FL_PUSH_CPL_FIFO", 6626 "IDMA_FL_SEND_CPL", 6627 "IDMA_FL_SEND_PAYLOAD_FIRST", 6628 "IDMA_FL_SEND_PAYLOAD", 6629 "IDMA_FL_REQ_NEXT_DATA_FL", 6630 "IDMA_FL_SEND_NEXT_PCIEHDR", 6631 "IDMA_FL_SEND_PADDING", 6632 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6633 "IDMA_FL_SEND_FIFO_TO_IMSG", 6634 "IDMA_FL_REQ_DATAFL_DONE", 6635 "IDMA_FL_REQ_HEADERFL_DONE", 6636 }; 6637 static const char * const t5_decode[] = { 6638 "IDMA_IDLE", 6639 "IDMA_ALMOST_IDLE", 6640 "IDMA_PUSH_MORE_CPL_FIFO", 6641 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6642 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6643 "IDMA_PHYSADDR_SEND_PCIEHDR", 6644 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6645 "IDMA_PHYSADDR_SEND_PAYLOAD", 6646 "IDMA_SEND_FIFO_TO_IMSG", 6647 "IDMA_FL_REQ_DATA_FL", 6648 "IDMA_FL_DROP", 6649 "IDMA_FL_DROP_SEND_INC", 6650 "IDMA_FL_H_REQ_HEADER_FL", 6651 "IDMA_FL_H_SEND_PCIEHDR", 6652 "IDMA_FL_H_PUSH_CPL_FIFO", 6653 "IDMA_FL_H_SEND_CPL", 6654 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6655 "IDMA_FL_H_SEND_IP_HDR", 6656 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6657 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6658 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6659 "IDMA_FL_D_SEND_PCIEHDR", 6660 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6661 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6662 "IDMA_FL_SEND_PCIEHDR", 6663 "IDMA_FL_PUSH_CPL_FIFO", 6664 "IDMA_FL_SEND_CPL", 6665 "IDMA_FL_SEND_PAYLOAD_FIRST", 6666 "IDMA_FL_SEND_PAYLOAD", 6667 "IDMA_FL_REQ_NEXT_DATA_FL", 6668 "IDMA_FL_SEND_NEXT_PCIEHDR", 6669 "IDMA_FL_SEND_PADDING", 6670 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6671 }; 6672 static const char * const t6_decode[] = { 6673 "IDMA_IDLE", 6674 "IDMA_PUSH_MORE_CPL_FIFO", 6675 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6676 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6677 "IDMA_PHYSADDR_SEND_PCIEHDR", 6678 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6679 "IDMA_PHYSADDR_SEND_PAYLOAD", 6680 "IDMA_FL_REQ_DATA_FL", 6681 "IDMA_FL_DROP", 6682 "IDMA_FL_DROP_SEND_INC", 6683 "IDMA_FL_H_REQ_HEADER_FL", 6684 "IDMA_FL_H_SEND_PCIEHDR", 6685 "IDMA_FL_H_PUSH_CPL_FIFO", 6686 "IDMA_FL_H_SEND_CPL", 6687 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6688 "IDMA_FL_H_SEND_IP_HDR", 6689 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6690 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6691 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6692 "IDMA_FL_D_SEND_PCIEHDR", 6693 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6694 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6695 "IDMA_FL_SEND_PCIEHDR", 6696 "IDMA_FL_PUSH_CPL_FIFO", 6697 "IDMA_FL_SEND_CPL", 6698 "IDMA_FL_SEND_PAYLOAD_FIRST", 6699 "IDMA_FL_SEND_PAYLOAD", 6700 "IDMA_FL_REQ_NEXT_DATA_FL", 6701 "IDMA_FL_SEND_NEXT_PCIEHDR", 6702 "IDMA_FL_SEND_PADDING", 6703 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6704 }; 6705 static const u32 sge_regs[] = { 6706 SGE_DEBUG_DATA_LOW_INDEX_2_A, 6707 SGE_DEBUG_DATA_LOW_INDEX_3_A, 6708 SGE_DEBUG_DATA_HIGH_INDEX_10_A, 6709 }; 6710 const char **sge_idma_decode; 6711 int sge_idma_decode_nstates; 6712 int i; 6713 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6714 6715 /* Select the right set of decode strings to dump depending on the 6716 * adapter chip type. 6717 */ 6718 switch (chip_version) { 6719 case CHELSIO_T4: 6720 sge_idma_decode = (const char **)t4_decode; 6721 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6722 break; 6723 6724 case CHELSIO_T5: 6725 sge_idma_decode = (const char **)t5_decode; 6726 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6727 break; 6728 6729 case CHELSIO_T6: 6730 sge_idma_decode = (const char **)t6_decode; 6731 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); 6732 break; 6733 6734 default: 6735 dev_err(adapter->pdev_dev, 6736 "Unsupported chip version %d\n", chip_version); 6737 return; 6738 } 6739 6740 if (is_t4(adapter->params.chip)) { 6741 sge_idma_decode = (const char **)t4_decode; 6742 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6743 } else { 6744 sge_idma_decode = (const char **)t5_decode; 6745 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6746 } 6747 6748 if (state < sge_idma_decode_nstates) 6749 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); 6750 else 6751 CH_WARN(adapter, "idma state %d unknown\n", state); 6752 6753 for (i = 0; i < ARRAY_SIZE(sge_regs); i++) 6754 CH_WARN(adapter, "SGE register %#x value %#x\n", 6755 sge_regs[i], t4_read_reg(adapter, sge_regs[i])); 6756 } 6757 6758 /** 6759 * t4_sge_ctxt_flush - flush the SGE context cache 6760 * @adap: the adapter 6761 * @mbox: mailbox to use for the FW command 6762 * @ctxt_type: Egress or Ingress 6763 * 6764 * Issues a FW command through the given mailbox to flush the 6765 * SGE context cache. 6766 */ 6767 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type) 6768 { 6769 int ret; 6770 u32 ldst_addrspace; 6771 struct fw_ldst_cmd c; 6772 6773 memset(&c, 0, sizeof(c)); 6774 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ? 6775 FW_LDST_ADDRSPC_SGE_EGRC : 6776 FW_LDST_ADDRSPC_SGE_INGC); 6777 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6778 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6779 ldst_addrspace); 6780 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6781 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F); 6782 6783 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6784 return ret; 6785 } 6786 6787 /** 6788 * t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values 6789 * @adap: the adapter 6790 * @ndbqtimers: size of the provided SGE Doorbell Queue Timer table 6791 * @dbqtimers: SGE Doorbell Queue Timer table 6792 * 6793 * Reads the SGE Doorbell Queue Timer values into the provided table. 6794 * Returns 0 on success (Firmware and Hardware support this feature), 6795 * an error on failure. 6796 */ 6797 int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers, 6798 u16 *dbqtimers) 6799 { 6800 int ret, dbqtimerix; 6801 6802 ret = 0; 6803 dbqtimerix = 0; 6804 while (dbqtimerix < ndbqtimers) { 6805 int nparams, param; 6806 u32 params[7], vals[7]; 6807 6808 nparams = ndbqtimers - dbqtimerix; 6809 if (nparams > ARRAY_SIZE(params)) 6810 nparams = ARRAY_SIZE(params); 6811 6812 for (param = 0; param < nparams; param++) 6813 params[param] = 6814 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6815 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) | 6816 FW_PARAMS_PARAM_Y_V(dbqtimerix + param)); 6817 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6818 nparams, params, vals); 6819 if (ret) 6820 break; 6821 6822 for (param = 0; param < nparams; param++) 6823 dbqtimers[dbqtimerix++] = vals[param]; 6824 } 6825 return ret; 6826 } 6827 6828 /** 6829 * t4_fw_hello - establish communication with FW 6830 * @adap: the adapter 6831 * @mbox: mailbox to use for the FW command 6832 * @evt_mbox: mailbox to receive async FW events 6833 * @master: specifies the caller's willingness to be the device master 6834 * @state: returns the current device state (if non-NULL) 6835 * 6836 * Issues a command to establish communication with FW. Returns either 6837 * an error (negative integer) or the mailbox of the Master PF. 6838 */ 6839 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 6840 enum dev_master master, enum dev_state *state) 6841 { 6842 int ret; 6843 struct fw_hello_cmd c; 6844 u32 v; 6845 unsigned int master_mbox; 6846 int retries = FW_CMD_HELLO_RETRIES; 6847 6848 retry: 6849 memset(&c, 0, sizeof(c)); 6850 INIT_CMD(c, HELLO, WRITE); 6851 c.err_to_clearinit = cpu_to_be32( 6852 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) | 6853 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) | 6854 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? 6855 mbox : FW_HELLO_CMD_MBMASTER_M) | 6856 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) | 6857 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) | 6858 FW_HELLO_CMD_CLEARINIT_F); 6859 6860 /* 6861 * Issue the HELLO command to the firmware. If it's not successful 6862 * but indicates that we got a "busy" or "timeout" condition, retry 6863 * the HELLO until we exhaust our retry limit. If we do exceed our 6864 * retry limit, check to see if the firmware left us any error 6865 * information and report that if so. 6866 */ 6867 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6868 if (ret < 0) { 6869 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 6870 goto retry; 6871 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F) 6872 t4_report_fw_error(adap); 6873 return ret; 6874 } 6875 6876 v = be32_to_cpu(c.err_to_clearinit); 6877 master_mbox = FW_HELLO_CMD_MBMASTER_G(v); 6878 if (state) { 6879 if (v & FW_HELLO_CMD_ERR_F) 6880 *state = DEV_STATE_ERR; 6881 else if (v & FW_HELLO_CMD_INIT_F) 6882 *state = DEV_STATE_INIT; 6883 else 6884 *state = DEV_STATE_UNINIT; 6885 } 6886 6887 /* 6888 * If we're not the Master PF then we need to wait around for the 6889 * Master PF Driver to finish setting up the adapter. 6890 * 6891 * Note that we also do this wait if we're a non-Master-capable PF and 6892 * there is no current Master PF; a Master PF may show up momentarily 6893 * and we wouldn't want to fail pointlessly. (This can happen when an 6894 * OS loads lots of different drivers rapidly at the same time). In 6895 * this case, the Master PF returned by the firmware will be 6896 * PCIE_FW_MASTER_M so the test below will work ... 6897 */ 6898 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 && 6899 master_mbox != mbox) { 6900 int waiting = FW_CMD_HELLO_TIMEOUT; 6901 6902 /* 6903 * Wait for the firmware to either indicate an error or 6904 * initialized state. If we see either of these we bail out 6905 * and report the issue to the caller. If we exhaust the 6906 * "hello timeout" and we haven't exhausted our retries, try 6907 * again. Otherwise bail with a timeout error. 6908 */ 6909 for (;;) { 6910 u32 pcie_fw; 6911 6912 msleep(50); 6913 waiting -= 50; 6914 6915 /* 6916 * If neither Error nor Initialized are indicated 6917 * by the firmware keep waiting till we exhaust our 6918 * timeout ... and then retry if we haven't exhausted 6919 * our retries ... 6920 */ 6921 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 6922 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) { 6923 if (waiting <= 0) { 6924 if (retries-- > 0) 6925 goto retry; 6926 6927 return -ETIMEDOUT; 6928 } 6929 continue; 6930 } 6931 6932 /* 6933 * We either have an Error or Initialized condition 6934 * report errors preferentially. 6935 */ 6936 if (state) { 6937 if (pcie_fw & PCIE_FW_ERR_F) 6938 *state = DEV_STATE_ERR; 6939 else if (pcie_fw & PCIE_FW_INIT_F) 6940 *state = DEV_STATE_INIT; 6941 } 6942 6943 /* 6944 * If we arrived before a Master PF was selected and 6945 * there's not a valid Master PF, grab its identity 6946 * for our caller. 6947 */ 6948 if (master_mbox == PCIE_FW_MASTER_M && 6949 (pcie_fw & PCIE_FW_MASTER_VLD_F)) 6950 master_mbox = PCIE_FW_MASTER_G(pcie_fw); 6951 break; 6952 } 6953 } 6954 6955 return master_mbox; 6956 } 6957 6958 /** 6959 * t4_fw_bye - end communication with FW 6960 * @adap: the adapter 6961 * @mbox: mailbox to use for the FW command 6962 * 6963 * Issues a command to terminate communication with FW. 6964 */ 6965 int t4_fw_bye(struct adapter *adap, unsigned int mbox) 6966 { 6967 struct fw_bye_cmd c; 6968 6969 memset(&c, 0, sizeof(c)); 6970 INIT_CMD(c, BYE, WRITE); 6971 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6972 } 6973 6974 /** 6975 * t4_early_init - ask FW to initialize the device 6976 * @adap: the adapter 6977 * @mbox: mailbox to use for the FW command 6978 * 6979 * Issues a command to FW to partially initialize the device. This 6980 * performs initialization that generally doesn't depend on user input. 6981 */ 6982 int t4_early_init(struct adapter *adap, unsigned int mbox) 6983 { 6984 struct fw_initialize_cmd c; 6985 6986 memset(&c, 0, sizeof(c)); 6987 INIT_CMD(c, INITIALIZE, WRITE); 6988 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6989 } 6990 6991 /** 6992 * t4_fw_reset - issue a reset to FW 6993 * @adap: the adapter 6994 * @mbox: mailbox to use for the FW command 6995 * @reset: specifies the type of reset to perform 6996 * 6997 * Issues a reset command of the specified type to FW. 6998 */ 6999 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 7000 { 7001 struct fw_reset_cmd c; 7002 7003 memset(&c, 0, sizeof(c)); 7004 INIT_CMD(c, RESET, WRITE); 7005 c.val = cpu_to_be32(reset); 7006 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7007 } 7008 7009 /** 7010 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 7011 * @adap: the adapter 7012 * @mbox: mailbox to use for the FW RESET command (if desired) 7013 * @force: force uP into RESET even if FW RESET command fails 7014 * 7015 * Issues a RESET command to firmware (if desired) with a HALT indication 7016 * and then puts the microprocessor into RESET state. The RESET command 7017 * will only be issued if a legitimate mailbox is provided (mbox <= 7018 * PCIE_FW_MASTER_M). 7019 * 7020 * This is generally used in order for the host to safely manipulate the 7021 * adapter without fear of conflicting with whatever the firmware might 7022 * be doing. The only way out of this state is to RESTART the firmware 7023 * ... 7024 */ 7025 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 7026 { 7027 int ret = 0; 7028 7029 /* 7030 * If a legitimate mailbox is provided, issue a RESET command 7031 * with a HALT indication. 7032 */ 7033 if (mbox <= PCIE_FW_MASTER_M) { 7034 struct fw_reset_cmd c; 7035 7036 memset(&c, 0, sizeof(c)); 7037 INIT_CMD(c, RESET, WRITE); 7038 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F); 7039 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F); 7040 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7041 } 7042 7043 /* 7044 * Normally we won't complete the operation if the firmware RESET 7045 * command fails but if our caller insists we'll go ahead and put the 7046 * uP into RESET. This can be useful if the firmware is hung or even 7047 * missing ... We'll have to take the risk of putting the uP into 7048 * RESET without the cooperation of firmware in that case. 7049 * 7050 * We also force the firmware's HALT flag to be on in case we bypassed 7051 * the firmware RESET command above or we're dealing with old firmware 7052 * which doesn't have the HALT capability. This will serve as a flag 7053 * for the incoming firmware to know that it's coming out of a HALT 7054 * rather than a RESET ... if it's new enough to understand that ... 7055 */ 7056 if (ret == 0 || force) { 7057 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F); 7058 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 7059 PCIE_FW_HALT_F); 7060 } 7061 7062 /* 7063 * And we always return the result of the firmware RESET command 7064 * even when we force the uP into RESET ... 7065 */ 7066 return ret; 7067 } 7068 7069 /** 7070 * t4_fw_restart - restart the firmware by taking the uP out of RESET 7071 * @adap: the adapter 7072 * @mbox: mailbox to use for the FW command 7073 * @reset: if we want to do a RESET to restart things 7074 * 7075 * Restart firmware previously halted by t4_fw_halt(). On successful 7076 * return the previous PF Master remains as the new PF Master and there 7077 * is no need to issue a new HELLO command, etc. 7078 * 7079 * We do this in two ways: 7080 * 7081 * 1. If we're dealing with newer firmware we'll simply want to take 7082 * the chip's microprocessor out of RESET. This will cause the 7083 * firmware to start up from its start vector. And then we'll loop 7084 * until the firmware indicates it's started again (PCIE_FW.HALT 7085 * reset to 0) or we timeout. 7086 * 7087 * 2. If we're dealing with older firmware then we'll need to RESET 7088 * the chip since older firmware won't recognize the PCIE_FW.HALT 7089 * flag and automatically RESET itself on startup. 7090 */ 7091 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) 7092 { 7093 if (reset) { 7094 /* 7095 * Since we're directing the RESET instead of the firmware 7096 * doing it automatically, we need to clear the PCIE_FW.HALT 7097 * bit. 7098 */ 7099 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0); 7100 7101 /* 7102 * If we've been given a valid mailbox, first try to get the 7103 * firmware to do the RESET. If that works, great and we can 7104 * return success. Otherwise, if we haven't been given a 7105 * valid mailbox or the RESET command failed, fall back to 7106 * hitting the chip with a hammer. 7107 */ 7108 if (mbox <= PCIE_FW_MASTER_M) { 7109 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 7110 msleep(100); 7111 if (t4_fw_reset(adap, mbox, 7112 PIORST_F | PIORSTMODE_F) == 0) 7113 return 0; 7114 } 7115 7116 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F); 7117 msleep(2000); 7118 } else { 7119 int ms; 7120 7121 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 7122 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 7123 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F)) 7124 return 0; 7125 msleep(100); 7126 ms += 100; 7127 } 7128 return -ETIMEDOUT; 7129 } 7130 return 0; 7131 } 7132 7133 /** 7134 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 7135 * @adap: the adapter 7136 * @mbox: mailbox to use for the FW RESET command (if desired) 7137 * @fw_data: the firmware image to write 7138 * @size: image size 7139 * @force: force upgrade even if firmware doesn't cooperate 7140 * 7141 * Perform all of the steps necessary for upgrading an adapter's 7142 * firmware image. Normally this requires the cooperation of the 7143 * existing firmware in order to halt all existing activities 7144 * but if an invalid mailbox token is passed in we skip that step 7145 * (though we'll still put the adapter microprocessor into RESET in 7146 * that case). 7147 * 7148 * On successful return the new firmware will have been loaded and 7149 * the adapter will have been fully RESET losing all previous setup 7150 * state. On unsuccessful return the adapter may be completely hosed ... 7151 * positive errno indicates that the adapter is ~probably~ intact, a 7152 * negative errno indicates that things are looking bad ... 7153 */ 7154 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 7155 const u8 *fw_data, unsigned int size, int force) 7156 { 7157 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 7158 int reset, ret; 7159 7160 if (!t4_fw_matches_chip(adap, fw_hdr)) 7161 return -EINVAL; 7162 7163 /* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag 7164 * set wont be sent when we are flashing FW. 7165 */ 7166 adap->flags &= ~CXGB4_FW_OK; 7167 7168 ret = t4_fw_halt(adap, mbox, force); 7169 if (ret < 0 && !force) 7170 goto out; 7171 7172 ret = t4_load_fw(adap, fw_data, size); 7173 if (ret < 0) 7174 goto out; 7175 7176 /* 7177 * If there was a Firmware Configuration File stored in FLASH, 7178 * there's a good chance that it won't be compatible with the new 7179 * Firmware. In order to prevent difficult to diagnose adapter 7180 * initialization issues, we clear out the Firmware Configuration File 7181 * portion of the FLASH . The user will need to re-FLASH a new 7182 * Firmware Configuration File which is compatible with the new 7183 * Firmware if that's desired. 7184 */ 7185 (void)t4_load_cfg(adap, NULL, 0); 7186 7187 /* 7188 * Older versions of the firmware don't understand the new 7189 * PCIE_FW.HALT flag and so won't know to perform a RESET when they 7190 * restart. So for newly loaded older firmware we'll have to do the 7191 * RESET for it so it starts up on a clean slate. We can tell if 7192 * the newly loaded firmware will handle this right by checking 7193 * its header flags to see if it advertises the capability. 7194 */ 7195 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); 7196 ret = t4_fw_restart(adap, mbox, reset); 7197 7198 /* Grab potentially new Firmware Device Log parameters so we can see 7199 * how healthy the new Firmware is. It's okay to contact the new 7200 * Firmware for these parameters even though, as far as it's 7201 * concerned, we've never said "HELLO" to it ... 7202 */ 7203 (void)t4_init_devlog_params(adap); 7204 out: 7205 adap->flags |= CXGB4_FW_OK; 7206 return ret; 7207 } 7208 7209 /** 7210 * t4_fl_pkt_align - return the fl packet alignment 7211 * @adap: the adapter 7212 * 7213 * T4 has a single field to specify the packing and padding boundary. 7214 * T5 onwards has separate fields for this and hence the alignment for 7215 * next packet offset is maximum of these two. 7216 * 7217 */ 7218 int t4_fl_pkt_align(struct adapter *adap) 7219 { 7220 u32 sge_control, sge_control2; 7221 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift; 7222 7223 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 7224 7225 /* T4 uses a single control field to specify both the PCIe Padding and 7226 * Packing Boundary. T5 introduced the ability to specify these 7227 * separately. The actual Ingress Packet Data alignment boundary 7228 * within Packed Buffer Mode is the maximum of these two 7229 * specifications. (Note that it makes no real practical sense to 7230 * have the Padding Boundary be larger than the Packing Boundary but you 7231 * could set the chip up that way and, in fact, legacy T4 code would 7232 * end doing this because it would initialize the Padding Boundary and 7233 * leave the Packing Boundary initialized to 0 (16 bytes).) 7234 * Padding Boundary values in T6 starts from 8B, 7235 * where as it is 32B for T4 and T5. 7236 */ 7237 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 7238 ingpad_shift = INGPADBOUNDARY_SHIFT_X; 7239 else 7240 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X; 7241 7242 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift); 7243 7244 fl_align = ingpadboundary; 7245 if (!is_t4(adap->params.chip)) { 7246 /* T5 has a weird interpretation of one of the PCIe Packing 7247 * Boundary values. No idea why ... 7248 */ 7249 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A); 7250 ingpackboundary = INGPACKBOUNDARY_G(sge_control2); 7251 if (ingpackboundary == INGPACKBOUNDARY_16B_X) 7252 ingpackboundary = 16; 7253 else 7254 ingpackboundary = 1 << (ingpackboundary + 7255 INGPACKBOUNDARY_SHIFT_X); 7256 7257 fl_align = max(ingpadboundary, ingpackboundary); 7258 } 7259 return fl_align; 7260 } 7261 7262 /** 7263 * t4_fixup_host_params - fix up host-dependent parameters 7264 * @adap: the adapter 7265 * @page_size: the host's Base Page Size 7266 * @cache_line_size: the host's Cache Line Size 7267 * 7268 * Various registers in T4 contain values which are dependent on the 7269 * host's Base Page and Cache Line Sizes. This function will fix all of 7270 * those registers with the appropriate values as passed in ... 7271 */ 7272 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size, 7273 unsigned int cache_line_size) 7274 { 7275 unsigned int page_shift = fls(page_size) - 1; 7276 unsigned int sge_hps = page_shift - 10; 7277 unsigned int stat_len = cache_line_size > 64 ? 128 : 64; 7278 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size; 7279 unsigned int fl_align_log = fls(fl_align) - 1; 7280 7281 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A, 7282 HOSTPAGESIZEPF0_V(sge_hps) | 7283 HOSTPAGESIZEPF1_V(sge_hps) | 7284 HOSTPAGESIZEPF2_V(sge_hps) | 7285 HOSTPAGESIZEPF3_V(sge_hps) | 7286 HOSTPAGESIZEPF4_V(sge_hps) | 7287 HOSTPAGESIZEPF5_V(sge_hps) | 7288 HOSTPAGESIZEPF6_V(sge_hps) | 7289 HOSTPAGESIZEPF7_V(sge_hps)); 7290 7291 if (is_t4(adap->params.chip)) { 7292 t4_set_reg_field(adap, SGE_CONTROL_A, 7293 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7294 EGRSTATUSPAGESIZE_F, 7295 INGPADBOUNDARY_V(fl_align_log - 7296 INGPADBOUNDARY_SHIFT_X) | 7297 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7298 } else { 7299 unsigned int pack_align; 7300 unsigned int ingpad, ingpack; 7301 7302 /* T5 introduced the separation of the Free List Padding and 7303 * Packing Boundaries. Thus, we can select a smaller Padding 7304 * Boundary to avoid uselessly chewing up PCIe Link and Memory 7305 * Bandwidth, and use a Packing Boundary which is large enough 7306 * to avoid false sharing between CPUs, etc. 7307 * 7308 * For the PCI Link, the smaller the Padding Boundary the 7309 * better. For the Memory Controller, a smaller Padding 7310 * Boundary is better until we cross under the Memory Line 7311 * Size (the minimum unit of transfer to/from Memory). If we 7312 * have a Padding Boundary which is smaller than the Memory 7313 * Line Size, that'll involve a Read-Modify-Write cycle on the 7314 * Memory Controller which is never good. 7315 */ 7316 7317 /* We want the Packing Boundary to be based on the Cache Line 7318 * Size in order to help avoid False Sharing performance 7319 * issues between CPUs, etc. We also want the Packing 7320 * Boundary to incorporate the PCI-E Maximum Payload Size. We 7321 * get best performance when the Packing Boundary is a 7322 * multiple of the Maximum Payload Size. 7323 */ 7324 pack_align = fl_align; 7325 if (pci_is_pcie(adap->pdev)) { 7326 unsigned int mps, mps_log; 7327 u16 devctl; 7328 7329 /* The PCIe Device Control Maximum Payload Size field 7330 * [bits 7:5] encodes sizes as powers of 2 starting at 7331 * 128 bytes. 7332 */ 7333 pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL, 7334 &devctl); 7335 mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7; 7336 mps = 1 << mps_log; 7337 if (mps > pack_align) 7338 pack_align = mps; 7339 } 7340 7341 /* N.B. T5/T6 have a crazy special interpretation of the "0" 7342 * value for the Packing Boundary. This corresponds to 16 7343 * bytes instead of the expected 32 bytes. So if we want 32 7344 * bytes, the best we can really do is 64 bytes ... 7345 */ 7346 if (pack_align <= 16) { 7347 ingpack = INGPACKBOUNDARY_16B_X; 7348 fl_align = 16; 7349 } else if (pack_align == 32) { 7350 ingpack = INGPACKBOUNDARY_64B_X; 7351 fl_align = 64; 7352 } else { 7353 unsigned int pack_align_log = fls(pack_align) - 1; 7354 7355 ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X; 7356 fl_align = pack_align; 7357 } 7358 7359 /* Use the smallest Ingress Padding which isn't smaller than 7360 * the Memory Controller Read/Write Size. We'll take that as 7361 * being 8 bytes since we don't know of any system with a 7362 * wider Memory Controller Bus Width. 7363 */ 7364 if (is_t5(adap->params.chip)) 7365 ingpad = INGPADBOUNDARY_32B_X; 7366 else 7367 ingpad = T6_INGPADBOUNDARY_8B_X; 7368 7369 t4_set_reg_field(adap, SGE_CONTROL_A, 7370 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7371 EGRSTATUSPAGESIZE_F, 7372 INGPADBOUNDARY_V(ingpad) | 7373 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7374 t4_set_reg_field(adap, SGE_CONTROL2_A, 7375 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M), 7376 INGPACKBOUNDARY_V(ingpack)); 7377 } 7378 /* 7379 * Adjust various SGE Free List Host Buffer Sizes. 7380 * 7381 * This is something of a crock since we're using fixed indices into 7382 * the array which are also known by the sge.c code and the T4 7383 * Firmware Configuration File. We need to come up with a much better 7384 * approach to managing this array. For now, the first four entries 7385 * are: 7386 * 7387 * 0: Host Page Size 7388 * 1: 64KB 7389 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode) 7390 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode) 7391 * 7392 * For the single-MTU buffers in unpacked mode we need to include 7393 * space for the SGE Control Packet Shift, 14 byte Ethernet header, 7394 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet 7395 * Padding boundary. All of these are accommodated in the Factory 7396 * Default Firmware Configuration File but we need to adjust it for 7397 * this host's cache line size. 7398 */ 7399 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size); 7400 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A, 7401 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1) 7402 & ~(fl_align-1)); 7403 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A, 7404 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1) 7405 & ~(fl_align-1)); 7406 7407 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12)); 7408 7409 return 0; 7410 } 7411 7412 /** 7413 * t4_fw_initialize - ask FW to initialize the device 7414 * @adap: the adapter 7415 * @mbox: mailbox to use for the FW command 7416 * 7417 * Issues a command to FW to partially initialize the device. This 7418 * performs initialization that generally doesn't depend on user input. 7419 */ 7420 int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 7421 { 7422 struct fw_initialize_cmd c; 7423 7424 memset(&c, 0, sizeof(c)); 7425 INIT_CMD(c, INITIALIZE, WRITE); 7426 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7427 } 7428 7429 /** 7430 * t4_query_params_rw - query FW or device parameters 7431 * @adap: the adapter 7432 * @mbox: mailbox to use for the FW command 7433 * @pf: the PF 7434 * @vf: the VF 7435 * @nparams: the number of parameters 7436 * @params: the parameter names 7437 * @val: the parameter values 7438 * @rw: Write and read flag 7439 * @sleep_ok: if true, we may sleep awaiting mbox cmd completion 7440 * 7441 * Reads the value of FW or device parameters. Up to 7 parameters can be 7442 * queried at once. 7443 */ 7444 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, 7445 unsigned int vf, unsigned int nparams, const u32 *params, 7446 u32 *val, int rw, bool sleep_ok) 7447 { 7448 int i, ret; 7449 struct fw_params_cmd c; 7450 __be32 *p = &c.param[0].mnem; 7451 7452 if (nparams > 7) 7453 return -EINVAL; 7454 7455 memset(&c, 0, sizeof(c)); 7456 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7457 FW_CMD_REQUEST_F | FW_CMD_READ_F | 7458 FW_PARAMS_CMD_PFN_V(pf) | 7459 FW_PARAMS_CMD_VFN_V(vf)); 7460 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7461 7462 for (i = 0; i < nparams; i++) { 7463 *p++ = cpu_to_be32(*params++); 7464 if (rw) 7465 *p = cpu_to_be32(*(val + i)); 7466 p++; 7467 } 7468 7469 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7470 if (ret == 0) 7471 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 7472 *val++ = be32_to_cpu(*p); 7473 return ret; 7474 } 7475 7476 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7477 unsigned int vf, unsigned int nparams, const u32 *params, 7478 u32 *val) 7479 { 7480 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7481 true); 7482 } 7483 7484 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf, 7485 unsigned int vf, unsigned int nparams, const u32 *params, 7486 u32 *val) 7487 { 7488 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7489 false); 7490 } 7491 7492 /** 7493 * t4_set_params_timeout - sets FW or device parameters 7494 * @adap: the adapter 7495 * @mbox: mailbox to use for the FW command 7496 * @pf: the PF 7497 * @vf: the VF 7498 * @nparams: the number of parameters 7499 * @params: the parameter names 7500 * @val: the parameter values 7501 * @timeout: the timeout time 7502 * 7503 * Sets the value of FW or device parameters. Up to 7 parameters can be 7504 * specified at once. 7505 */ 7506 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, 7507 unsigned int pf, unsigned int vf, 7508 unsigned int nparams, const u32 *params, 7509 const u32 *val, int timeout) 7510 { 7511 struct fw_params_cmd c; 7512 __be32 *p = &c.param[0].mnem; 7513 7514 if (nparams > 7) 7515 return -EINVAL; 7516 7517 memset(&c, 0, sizeof(c)); 7518 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7519 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7520 FW_PARAMS_CMD_PFN_V(pf) | 7521 FW_PARAMS_CMD_VFN_V(vf)); 7522 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7523 7524 while (nparams--) { 7525 *p++ = cpu_to_be32(*params++); 7526 *p++ = cpu_to_be32(*val++); 7527 } 7528 7529 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); 7530 } 7531 7532 /** 7533 * t4_set_params - sets FW or device parameters 7534 * @adap: the adapter 7535 * @mbox: mailbox to use for the FW command 7536 * @pf: the PF 7537 * @vf: the VF 7538 * @nparams: the number of parameters 7539 * @params: the parameter names 7540 * @val: the parameter values 7541 * 7542 * Sets the value of FW or device parameters. Up to 7 parameters can be 7543 * specified at once. 7544 */ 7545 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7546 unsigned int vf, unsigned int nparams, const u32 *params, 7547 const u32 *val) 7548 { 7549 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, 7550 FW_CMD_MAX_TIMEOUT); 7551 } 7552 7553 /** 7554 * t4_cfg_pfvf - configure PF/VF resource limits 7555 * @adap: the adapter 7556 * @mbox: mailbox to use for the FW command 7557 * @pf: the PF being configured 7558 * @vf: the VF being configured 7559 * @txq: the max number of egress queues 7560 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 7561 * @rxqi: the max number of interrupt-capable ingress queues 7562 * @rxq: the max number of interruptless ingress queues 7563 * @tc: the PCI traffic class 7564 * @vi: the max number of virtual interfaces 7565 * @cmask: the channel access rights mask for the PF/VF 7566 * @pmask: the port access rights mask for the PF/VF 7567 * @nexact: the maximum number of exact MPS filters 7568 * @rcaps: read capabilities 7569 * @wxcaps: write/execute capabilities 7570 * 7571 * Configures resource limits and capabilities for a physical or virtual 7572 * function. 7573 */ 7574 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 7575 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 7576 unsigned int rxqi, unsigned int rxq, unsigned int tc, 7577 unsigned int vi, unsigned int cmask, unsigned int pmask, 7578 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 7579 { 7580 struct fw_pfvf_cmd c; 7581 7582 memset(&c, 0, sizeof(c)); 7583 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F | 7584 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) | 7585 FW_PFVF_CMD_VFN_V(vf)); 7586 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7587 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) | 7588 FW_PFVF_CMD_NIQ_V(rxq)); 7589 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) | 7590 FW_PFVF_CMD_PMASK_V(pmask) | 7591 FW_PFVF_CMD_NEQ_V(txq)); 7592 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) | 7593 FW_PFVF_CMD_NVI_V(vi) | 7594 FW_PFVF_CMD_NEXACTF_V(nexact)); 7595 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) | 7596 FW_PFVF_CMD_WX_CAPS_V(wxcaps) | 7597 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl)); 7598 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7599 } 7600 7601 /** 7602 * t4_alloc_vi - allocate a virtual interface 7603 * @adap: the adapter 7604 * @mbox: mailbox to use for the FW command 7605 * @port: physical port associated with the VI 7606 * @pf: the PF owning the VI 7607 * @vf: the VF owning the VI 7608 * @nmac: number of MAC addresses needed (1 to 5) 7609 * @mac: the MAC addresses of the VI 7610 * @rss_size: size of RSS table slice associated with this VI 7611 * @vivld: the destination to store the VI Valid value. 7612 * @vin: the destination to store the VIN value. 7613 * 7614 * Allocates a virtual interface for the given physical port. If @mac is 7615 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 7616 * @mac should be large enough to hold @nmac Ethernet addresses, they are 7617 * stored consecutively so the space needed is @nmac * 6 bytes. 7618 * Returns a negative error number or the non-negative VI id. 7619 */ 7620 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 7621 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 7622 unsigned int *rss_size, u8 *vivld, u8 *vin) 7623 { 7624 int ret; 7625 struct fw_vi_cmd c; 7626 7627 memset(&c, 0, sizeof(c)); 7628 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | 7629 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 7630 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf)); 7631 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c)); 7632 c.portid_pkd = FW_VI_CMD_PORTID_V(port); 7633 c.nmac = nmac - 1; 7634 7635 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7636 if (ret) 7637 return ret; 7638 7639 if (mac) { 7640 memcpy(mac, c.mac, sizeof(c.mac)); 7641 switch (nmac) { 7642 case 5: 7643 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 7644 fallthrough; 7645 case 4: 7646 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 7647 fallthrough; 7648 case 3: 7649 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 7650 fallthrough; 7651 case 2: 7652 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 7653 } 7654 } 7655 if (rss_size) 7656 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd)); 7657 7658 if (vivld) 7659 *vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16)); 7660 7661 if (vin) 7662 *vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16)); 7663 7664 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid)); 7665 } 7666 7667 /** 7668 * t4_free_vi - free a virtual interface 7669 * @adap: the adapter 7670 * @mbox: mailbox to use for the FW command 7671 * @pf: the PF owning the VI 7672 * @vf: the VF owning the VI 7673 * @viid: virtual interface identifiler 7674 * 7675 * Free a previously allocated virtual interface. 7676 */ 7677 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, 7678 unsigned int vf, unsigned int viid) 7679 { 7680 struct fw_vi_cmd c; 7681 7682 memset(&c, 0, sizeof(c)); 7683 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 7684 FW_CMD_REQUEST_F | 7685 FW_CMD_EXEC_F | 7686 FW_VI_CMD_PFN_V(pf) | 7687 FW_VI_CMD_VFN_V(vf)); 7688 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c)); 7689 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid)); 7690 7691 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7692 } 7693 7694 /** 7695 * t4_set_rxmode - set Rx properties of a virtual interface 7696 * @adap: the adapter 7697 * @mbox: mailbox to use for the FW command 7698 * @viid: the VI id 7699 * @viid_mirror: the mirror VI id 7700 * @mtu: the new MTU or -1 7701 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 7702 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 7703 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 7704 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 7705 * @sleep_ok: if true we may sleep while awaiting command completion 7706 * 7707 * Sets Rx properties of a virtual interface. 7708 */ 7709 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 7710 unsigned int viid_mirror, int mtu, int promisc, int all_multi, 7711 int bcast, int vlanex, bool sleep_ok) 7712 { 7713 struct fw_vi_rxmode_cmd c, c_mirror; 7714 int ret; 7715 7716 /* convert to FW values */ 7717 if (mtu < 0) 7718 mtu = FW_RXMODE_MTU_NO_CHG; 7719 if (promisc < 0) 7720 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; 7721 if (all_multi < 0) 7722 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; 7723 if (bcast < 0) 7724 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; 7725 if (vlanex < 0) 7726 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; 7727 7728 memset(&c, 0, sizeof(c)); 7729 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 7730 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7731 FW_VI_RXMODE_CMD_VIID_V(viid)); 7732 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7733 c.mtu_to_vlanexen = 7734 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) | 7735 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | 7736 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | 7737 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | 7738 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); 7739 7740 if (viid_mirror) { 7741 memcpy(&c_mirror, &c, sizeof(c_mirror)); 7742 c_mirror.op_to_viid = 7743 cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 7744 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7745 FW_VI_RXMODE_CMD_VIID_V(viid_mirror)); 7746 } 7747 7748 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 7749 if (ret) 7750 return ret; 7751 7752 if (viid_mirror) 7753 ret = t4_wr_mbox_meat(adap, mbox, &c_mirror, sizeof(c_mirror), 7754 NULL, sleep_ok); 7755 7756 return ret; 7757 } 7758 7759 /** 7760 * t4_free_encap_mac_filt - frees MPS entry at given index 7761 * @adap: the adapter 7762 * @viid: the VI id 7763 * @idx: index of MPS entry to be freed 7764 * @sleep_ok: call is allowed to sleep 7765 * 7766 * Frees the MPS entry at supplied index 7767 * 7768 * Returns a negative error number or zero on success 7769 */ 7770 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid, 7771 int idx, bool sleep_ok) 7772 { 7773 struct fw_vi_mac_exact *p; 7774 struct fw_vi_mac_cmd c; 7775 int ret = 0; 7776 u32 exact; 7777 7778 memset(&c, 0, sizeof(c)); 7779 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7780 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7781 FW_CMD_EXEC_V(0) | 7782 FW_VI_MAC_CMD_VIID_V(viid)); 7783 exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC); 7784 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7785 exact | 7786 FW_CMD_LEN16_V(1)); 7787 p = c.u.exact; 7788 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7789 FW_VI_MAC_CMD_IDX_V(idx)); 7790 eth_zero_addr(p->macaddr); 7791 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7792 return ret; 7793 } 7794 7795 /** 7796 * t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam 7797 * @adap: the adapter 7798 * @viid: the VI id 7799 * @addr: the MAC address 7800 * @mask: the mask 7801 * @idx: index of the entry in mps tcam 7802 * @lookup_type: MAC address for inner (1) or outer (0) header 7803 * @port_id: the port index 7804 * @sleep_ok: call is allowed to sleep 7805 * 7806 * Removes the mac entry at the specified index using raw mac interface. 7807 * 7808 * Returns a negative error number on failure. 7809 */ 7810 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid, 7811 const u8 *addr, const u8 *mask, unsigned int idx, 7812 u8 lookup_type, u8 port_id, bool sleep_ok) 7813 { 7814 struct fw_vi_mac_cmd c; 7815 struct fw_vi_mac_raw *p = &c.u.raw; 7816 u32 val; 7817 7818 memset(&c, 0, sizeof(c)); 7819 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7820 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7821 FW_CMD_EXEC_V(0) | 7822 FW_VI_MAC_CMD_VIID_V(viid)); 7823 val = FW_CMD_LEN16_V(1) | 7824 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7825 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7826 FW_CMD_LEN16_V(val)); 7827 7828 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) | 7829 FW_VI_MAC_ID_BASED_FREE); 7830 7831 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7832 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7833 DATAPORTNUM_V(port_id)); 7834 /* Lookup mask and port mask */ 7835 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7836 DATAPORTNUM_V(DATAPORTNUM_M)); 7837 7838 /* Copy the address and the mask */ 7839 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7840 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7841 7842 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7843 } 7844 7845 /** 7846 * t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support 7847 * @adap: the adapter 7848 * @viid: the VI id 7849 * @addr: the MAC address 7850 * @mask: the mask 7851 * @vni: the VNI id for the tunnel protocol 7852 * @vni_mask: mask for the VNI id 7853 * @dip_hit: to enable DIP match for the MPS entry 7854 * @lookup_type: MAC address for inner (1) or outer (0) header 7855 * @sleep_ok: call is allowed to sleep 7856 * 7857 * Allocates an MPS entry with specified MAC address and VNI value. 7858 * 7859 * Returns a negative error number or the allocated index for this mac. 7860 */ 7861 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid, 7862 const u8 *addr, const u8 *mask, unsigned int vni, 7863 unsigned int vni_mask, u8 dip_hit, u8 lookup_type, 7864 bool sleep_ok) 7865 { 7866 struct fw_vi_mac_cmd c; 7867 struct fw_vi_mac_vni *p = c.u.exact_vni; 7868 int ret = 0; 7869 u32 val; 7870 7871 memset(&c, 0, sizeof(c)); 7872 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7873 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7874 FW_VI_MAC_CMD_VIID_V(viid)); 7875 val = FW_CMD_LEN16_V(1) | 7876 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI); 7877 c.freemacs_to_len16 = cpu_to_be32(val); 7878 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7879 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC)); 7880 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7881 memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask)); 7882 7883 p->lookup_type_to_vni = 7884 cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) | 7885 FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) | 7886 FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type)); 7887 p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask)); 7888 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7889 if (ret == 0) 7890 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 7891 return ret; 7892 } 7893 7894 /** 7895 * t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam 7896 * @adap: the adapter 7897 * @viid: the VI id 7898 * @addr: the MAC address 7899 * @mask: the mask 7900 * @idx: index at which to add this entry 7901 * @lookup_type: MAC address for inner (1) or outer (0) header 7902 * @port_id: the port index 7903 * @sleep_ok: call is allowed to sleep 7904 * 7905 * Adds the mac entry at the specified index using raw mac interface. 7906 * 7907 * Returns a negative error number or the allocated index for this mac. 7908 */ 7909 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid, 7910 const u8 *addr, const u8 *mask, unsigned int idx, 7911 u8 lookup_type, u8 port_id, bool sleep_ok) 7912 { 7913 int ret = 0; 7914 struct fw_vi_mac_cmd c; 7915 struct fw_vi_mac_raw *p = &c.u.raw; 7916 u32 val; 7917 7918 memset(&c, 0, sizeof(c)); 7919 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7920 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7921 FW_VI_MAC_CMD_VIID_V(viid)); 7922 val = FW_CMD_LEN16_V(1) | 7923 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7924 c.freemacs_to_len16 = cpu_to_be32(val); 7925 7926 /* Specify that this is an inner mac address */ 7927 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx)); 7928 7929 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7930 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7931 DATAPORTNUM_V(port_id)); 7932 /* Lookup mask and port mask */ 7933 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7934 DATAPORTNUM_V(DATAPORTNUM_M)); 7935 7936 /* Copy the address and the mask */ 7937 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7938 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7939 7940 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7941 if (ret == 0) { 7942 ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd)); 7943 if (ret != idx) 7944 ret = -ENOMEM; 7945 } 7946 7947 return ret; 7948 } 7949 7950 /** 7951 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 7952 * @adap: the adapter 7953 * @mbox: mailbox to use for the FW command 7954 * @viid: the VI id 7955 * @free: if true any existing filters for this VI id are first removed 7956 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7957 * @addr: the MAC address(es) 7958 * @idx: where to store the index of each allocated filter 7959 * @hash: pointer to hash address filter bitmap 7960 * @sleep_ok: call is allowed to sleep 7961 * 7962 * Allocates an exact-match filter for each of the supplied addresses and 7963 * sets it to the corresponding address. If @idx is not %NULL it should 7964 * have at least @naddr entries, each of which will be set to the index of 7965 * the filter allocated for the corresponding MAC address. If a filter 7966 * could not be allocated for an address its index is set to 0xffff. 7967 * If @hash is not %NULL addresses that fail to allocate an exact filter 7968 * are hashed and update the hash filter bitmap pointed at by @hash. 7969 * 7970 * Returns a negative error number or the number of filters allocated. 7971 */ 7972 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 7973 unsigned int viid, bool free, unsigned int naddr, 7974 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 7975 { 7976 int offset, ret = 0; 7977 struct fw_vi_mac_cmd c; 7978 unsigned int nfilters = 0; 7979 unsigned int max_naddr = adap->params.arch.mps_tcam_size; 7980 unsigned int rem = naddr; 7981 7982 if (naddr > max_naddr) 7983 return -EINVAL; 7984 7985 for (offset = 0; offset < naddr ; /**/) { 7986 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ? 7987 rem : ARRAY_SIZE(c.u.exact)); 7988 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 7989 u.exact[fw_naddr]), 16); 7990 struct fw_vi_mac_exact *p; 7991 int i; 7992 7993 memset(&c, 0, sizeof(c)); 7994 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7995 FW_CMD_REQUEST_F | 7996 FW_CMD_WRITE_F | 7997 FW_CMD_EXEC_V(free) | 7998 FW_VI_MAC_CMD_VIID_V(viid)); 7999 c.freemacs_to_len16 = 8000 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) | 8001 FW_CMD_LEN16_V(len16)); 8002 8003 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8004 p->valid_to_idx = 8005 cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 8006 FW_VI_MAC_CMD_IDX_V( 8007 FW_VI_MAC_ADD_MAC)); 8008 memcpy(p->macaddr, addr[offset + i], 8009 sizeof(p->macaddr)); 8010 } 8011 8012 /* It's okay if we run out of space in our MAC address arena. 8013 * Some of the addresses we submit may get stored so we need 8014 * to run through the reply to see what the results were ... 8015 */ 8016 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 8017 if (ret && ret != -FW_ENOMEM) 8018 break; 8019 8020 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8021 u16 index = FW_VI_MAC_CMD_IDX_G( 8022 be16_to_cpu(p->valid_to_idx)); 8023 8024 if (idx) 8025 idx[offset + i] = (index >= max_naddr ? 8026 0xffff : index); 8027 if (index < max_naddr) 8028 nfilters++; 8029 else if (hash) 8030 *hash |= (1ULL << 8031 hash_mac_addr(addr[offset + i])); 8032 } 8033 8034 free = false; 8035 offset += fw_naddr; 8036 rem -= fw_naddr; 8037 } 8038 8039 if (ret == 0 || ret == -FW_ENOMEM) 8040 ret = nfilters; 8041 return ret; 8042 } 8043 8044 /** 8045 * t4_free_mac_filt - frees exact-match filters of given MAC addresses 8046 * @adap: the adapter 8047 * @mbox: mailbox to use for the FW command 8048 * @viid: the VI id 8049 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 8050 * @addr: the MAC address(es) 8051 * @sleep_ok: call is allowed to sleep 8052 * 8053 * Frees the exact-match filter for each of the supplied addresses 8054 * 8055 * Returns a negative error number or the number of filters freed. 8056 */ 8057 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox, 8058 unsigned int viid, unsigned int naddr, 8059 const u8 **addr, bool sleep_ok) 8060 { 8061 int offset, ret = 0; 8062 struct fw_vi_mac_cmd c; 8063 unsigned int nfilters = 0; 8064 unsigned int max_naddr = is_t4(adap->params.chip) ? 8065 NUM_MPS_CLS_SRAM_L_INSTANCES : 8066 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 8067 unsigned int rem = naddr; 8068 8069 if (naddr > max_naddr) 8070 return -EINVAL; 8071 8072 for (offset = 0; offset < (int)naddr ; /**/) { 8073 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) 8074 ? rem 8075 : ARRAY_SIZE(c.u.exact)); 8076 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 8077 u.exact[fw_naddr]), 16); 8078 struct fw_vi_mac_exact *p; 8079 int i; 8080 8081 memset(&c, 0, sizeof(c)); 8082 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8083 FW_CMD_REQUEST_F | 8084 FW_CMD_WRITE_F | 8085 FW_CMD_EXEC_V(0) | 8086 FW_VI_MAC_CMD_VIID_V(viid)); 8087 c.freemacs_to_len16 = 8088 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 8089 FW_CMD_LEN16_V(len16)); 8090 8091 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) { 8092 p->valid_to_idx = cpu_to_be16( 8093 FW_VI_MAC_CMD_VALID_F | 8094 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE)); 8095 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 8096 } 8097 8098 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 8099 if (ret) 8100 break; 8101 8102 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8103 u16 index = FW_VI_MAC_CMD_IDX_G( 8104 be16_to_cpu(p->valid_to_idx)); 8105 8106 if (index < max_naddr) 8107 nfilters++; 8108 } 8109 8110 offset += fw_naddr; 8111 rem -= fw_naddr; 8112 } 8113 8114 if (ret == 0) 8115 ret = nfilters; 8116 return ret; 8117 } 8118 8119 /** 8120 * t4_change_mac - modifies the exact-match filter for a MAC address 8121 * @adap: the adapter 8122 * @mbox: mailbox to use for the FW command 8123 * @viid: the VI id 8124 * @idx: index of existing filter for old value of MAC address, or -1 8125 * @addr: the new MAC address value 8126 * @persist: whether a new MAC allocation should be persistent 8127 * @smt_idx: the destination to store the new SMT index. 8128 * 8129 * Modifies an exact-match filter and sets it to the new MAC address. 8130 * Note that in general it is not possible to modify the value of a given 8131 * filter so the generic way to modify an address filter is to free the one 8132 * being used by the old address value and allocate a new filter for the 8133 * new address value. @idx can be -1 if the address is a new addition. 8134 * 8135 * Returns a negative error number or the index of the filter with the new 8136 * MAC value. 8137 */ 8138 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 8139 int idx, const u8 *addr, bool persist, u8 *smt_idx) 8140 { 8141 int ret, mode; 8142 struct fw_vi_mac_cmd c; 8143 struct fw_vi_mac_exact *p = c.u.exact; 8144 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size; 8145 8146 if (idx < 0) /* new allocation */ 8147 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 8148 mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 8149 8150 memset(&c, 0, sizeof(c)); 8151 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8152 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 8153 FW_VI_MAC_CMD_VIID_V(viid)); 8154 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1)); 8155 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 8156 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) | 8157 FW_VI_MAC_CMD_IDX_V(idx)); 8158 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 8159 8160 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 8161 if (ret == 0) { 8162 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 8163 if (ret >= max_mac_addr) 8164 ret = -ENOMEM; 8165 if (smt_idx) { 8166 if (adap->params.viid_smt_extn_support) { 8167 *smt_idx = FW_VI_MAC_CMD_SMTID_G 8168 (be32_to_cpu(c.op_to_viid)); 8169 } else { 8170 /* In T4/T5, SMT contains 256 SMAC entries 8171 * organized in 128 rows of 2 entries each. 8172 * In T6, SMT contains 256 SMAC entries in 8173 * 256 rows. 8174 */ 8175 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= 8176 CHELSIO_T5) 8177 *smt_idx = (viid & FW_VIID_VIN_M) << 1; 8178 else 8179 *smt_idx = (viid & FW_VIID_VIN_M); 8180 } 8181 } 8182 } 8183 return ret; 8184 } 8185 8186 /** 8187 * t4_set_addr_hash - program the MAC inexact-match hash filter 8188 * @adap: the adapter 8189 * @mbox: mailbox to use for the FW command 8190 * @viid: the VI id 8191 * @ucast: whether the hash filter should also match unicast addresses 8192 * @vec: the value to be written to the hash filter 8193 * @sleep_ok: call is allowed to sleep 8194 * 8195 * Sets the 64-bit inexact-match hash filter for a virtual interface. 8196 */ 8197 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 8198 bool ucast, u64 vec, bool sleep_ok) 8199 { 8200 struct fw_vi_mac_cmd c; 8201 8202 memset(&c, 0, sizeof(c)); 8203 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8204 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 8205 FW_VI_ENABLE_CMD_VIID_V(viid)); 8206 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F | 8207 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | 8208 FW_CMD_LEN16_V(1)); 8209 c.u.hash.hashvec = cpu_to_be64(vec); 8210 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 8211 } 8212 8213 /** 8214 * t4_enable_vi_params - enable/disable a virtual interface 8215 * @adap: the adapter 8216 * @mbox: mailbox to use for the FW command 8217 * @viid: the VI id 8218 * @rx_en: 1=enable Rx, 0=disable Rx 8219 * @tx_en: 1=enable Tx, 0=disable Tx 8220 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8221 * 8222 * Enables/disables a virtual interface. Note that setting DCB Enable 8223 * only makes sense when enabling a Virtual Interface ... 8224 */ 8225 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, 8226 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) 8227 { 8228 struct fw_vi_enable_cmd c; 8229 8230 memset(&c, 0, sizeof(c)); 8231 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 8232 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8233 FW_VI_ENABLE_CMD_VIID_V(viid)); 8234 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) | 8235 FW_VI_ENABLE_CMD_EEN_V(tx_en) | 8236 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) | 8237 FW_LEN16(c)); 8238 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 8239 } 8240 8241 /** 8242 * t4_enable_vi - enable/disable a virtual interface 8243 * @adap: the adapter 8244 * @mbox: mailbox to use for the FW command 8245 * @viid: the VI id 8246 * @rx_en: 1=enable Rx, 0=disable Rx 8247 * @tx_en: 1=enable Tx, 0=disable Tx 8248 * 8249 * Enables/disables a virtual interface. 8250 */ 8251 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 8252 bool rx_en, bool tx_en) 8253 { 8254 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); 8255 } 8256 8257 /** 8258 * t4_enable_pi_params - enable/disable a Port's Virtual Interface 8259 * @adap: the adapter 8260 * @mbox: mailbox to use for the FW command 8261 * @pi: the Port Information structure 8262 * @rx_en: 1=enable Rx, 0=disable Rx 8263 * @tx_en: 1=enable Tx, 0=disable Tx 8264 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8265 * 8266 * Enables/disables a Port's Virtual Interface. Note that setting DCB 8267 * Enable only makes sense when enabling a Virtual Interface ... 8268 * If the Virtual Interface enable/disable operation is successful, 8269 * we notify the OS-specific code of a potential Link Status change 8270 * via the OS Contract API t4_os_link_changed(). 8271 */ 8272 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox, 8273 struct port_info *pi, 8274 bool rx_en, bool tx_en, bool dcb_en) 8275 { 8276 int ret = t4_enable_vi_params(adap, mbox, pi->viid, 8277 rx_en, tx_en, dcb_en); 8278 if (ret) 8279 return ret; 8280 t4_os_link_changed(adap, pi->port_id, 8281 rx_en && tx_en && pi->link_cfg.link_ok); 8282 return 0; 8283 } 8284 8285 /** 8286 * t4_identify_port - identify a VI's port by blinking its LED 8287 * @adap: the adapter 8288 * @mbox: mailbox to use for the FW command 8289 * @viid: the VI id 8290 * @nblinks: how many times to blink LED at 2.5 Hz 8291 * 8292 * Identifies a VI's port by blinking its LED. 8293 */ 8294 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 8295 unsigned int nblinks) 8296 { 8297 struct fw_vi_enable_cmd c; 8298 8299 memset(&c, 0, sizeof(c)); 8300 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 8301 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8302 FW_VI_ENABLE_CMD_VIID_V(viid)); 8303 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c)); 8304 c.blinkdur = cpu_to_be16(nblinks); 8305 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8306 } 8307 8308 /** 8309 * t4_iq_stop - stop an ingress queue and its FLs 8310 * @adap: the adapter 8311 * @mbox: mailbox to use for the FW command 8312 * @pf: the PF owning the queues 8313 * @vf: the VF owning the queues 8314 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 8315 * @iqid: ingress queue id 8316 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8317 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8318 * 8319 * Stops an ingress queue and its associated FLs, if any. This causes 8320 * any current or future data/messages destined for these queues to be 8321 * tossed. 8322 */ 8323 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, 8324 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8325 unsigned int fl0id, unsigned int fl1id) 8326 { 8327 struct fw_iq_cmd c; 8328 8329 memset(&c, 0, sizeof(c)); 8330 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 8331 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 8332 FW_IQ_CMD_VFN_V(vf)); 8333 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c)); 8334 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 8335 c.iqid = cpu_to_be16(iqid); 8336 c.fl0id = cpu_to_be16(fl0id); 8337 c.fl1id = cpu_to_be16(fl1id); 8338 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8339 } 8340 8341 /** 8342 * t4_iq_free - free an ingress queue and its FLs 8343 * @adap: the adapter 8344 * @mbox: mailbox to use for the FW command 8345 * @pf: the PF owning the queues 8346 * @vf: the VF owning the queues 8347 * @iqtype: the ingress queue type 8348 * @iqid: ingress queue id 8349 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8350 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8351 * 8352 * Frees an ingress queue and its associated FLs, if any. 8353 */ 8354 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8355 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8356 unsigned int fl0id, unsigned int fl1id) 8357 { 8358 struct fw_iq_cmd c; 8359 8360 memset(&c, 0, sizeof(c)); 8361 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 8362 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 8363 FW_IQ_CMD_VFN_V(vf)); 8364 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c)); 8365 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 8366 c.iqid = cpu_to_be16(iqid); 8367 c.fl0id = cpu_to_be16(fl0id); 8368 c.fl1id = cpu_to_be16(fl1id); 8369 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8370 } 8371 8372 /** 8373 * t4_eth_eq_free - free an Ethernet egress queue 8374 * @adap: the adapter 8375 * @mbox: mailbox to use for the FW command 8376 * @pf: the PF owning the queue 8377 * @vf: the VF owning the queue 8378 * @eqid: egress queue id 8379 * 8380 * Frees an Ethernet egress queue. 8381 */ 8382 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8383 unsigned int vf, unsigned int eqid) 8384 { 8385 struct fw_eq_eth_cmd c; 8386 8387 memset(&c, 0, sizeof(c)); 8388 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | 8389 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8390 FW_EQ_ETH_CMD_PFN_V(pf) | 8391 FW_EQ_ETH_CMD_VFN_V(vf)); 8392 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c)); 8393 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid)); 8394 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8395 } 8396 8397 /** 8398 * t4_ctrl_eq_free - free a control egress queue 8399 * @adap: the adapter 8400 * @mbox: mailbox to use for the FW command 8401 * @pf: the PF owning the queue 8402 * @vf: the VF owning the queue 8403 * @eqid: egress queue id 8404 * 8405 * Frees a control egress queue. 8406 */ 8407 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8408 unsigned int vf, unsigned int eqid) 8409 { 8410 struct fw_eq_ctrl_cmd c; 8411 8412 memset(&c, 0, sizeof(c)); 8413 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | 8414 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8415 FW_EQ_CTRL_CMD_PFN_V(pf) | 8416 FW_EQ_CTRL_CMD_VFN_V(vf)); 8417 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c)); 8418 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid)); 8419 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8420 } 8421 8422 /** 8423 * t4_ofld_eq_free - free an offload egress queue 8424 * @adap: the adapter 8425 * @mbox: mailbox to use for the FW command 8426 * @pf: the PF owning the queue 8427 * @vf: the VF owning the queue 8428 * @eqid: egress queue id 8429 * 8430 * Frees a control egress queue. 8431 */ 8432 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8433 unsigned int vf, unsigned int eqid) 8434 { 8435 struct fw_eq_ofld_cmd c; 8436 8437 memset(&c, 0, sizeof(c)); 8438 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | 8439 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8440 FW_EQ_OFLD_CMD_PFN_V(pf) | 8441 FW_EQ_OFLD_CMD_VFN_V(vf)); 8442 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c)); 8443 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid)); 8444 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8445 } 8446 8447 /** 8448 * t4_link_down_rc_str - return a string for a Link Down Reason Code 8449 * @link_down_rc: Link Down Reason Code 8450 * 8451 * Returns a string representation of the Link Down Reason Code. 8452 */ 8453 static const char *t4_link_down_rc_str(unsigned char link_down_rc) 8454 { 8455 static const char * const reason[] = { 8456 "Link Down", 8457 "Remote Fault", 8458 "Auto-negotiation Failure", 8459 "Reserved", 8460 "Insufficient Airflow", 8461 "Unable To Determine Reason", 8462 "No RX Signal Detected", 8463 "Reserved", 8464 }; 8465 8466 if (link_down_rc >= ARRAY_SIZE(reason)) 8467 return "Bad Reason Code"; 8468 8469 return reason[link_down_rc]; 8470 } 8471 8472 /* Return the highest speed set in the port capabilities, in Mb/s. */ 8473 static unsigned int fwcap_to_speed(fw_port_cap32_t caps) 8474 { 8475 #define TEST_SPEED_RETURN(__caps_speed, __speed) \ 8476 do { \ 8477 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8478 return __speed; \ 8479 } while (0) 8480 8481 TEST_SPEED_RETURN(400G, 400000); 8482 TEST_SPEED_RETURN(200G, 200000); 8483 TEST_SPEED_RETURN(100G, 100000); 8484 TEST_SPEED_RETURN(50G, 50000); 8485 TEST_SPEED_RETURN(40G, 40000); 8486 TEST_SPEED_RETURN(25G, 25000); 8487 TEST_SPEED_RETURN(10G, 10000); 8488 TEST_SPEED_RETURN(1G, 1000); 8489 TEST_SPEED_RETURN(100M, 100); 8490 8491 #undef TEST_SPEED_RETURN 8492 8493 return 0; 8494 } 8495 8496 /** 8497 * fwcap_to_fwspeed - return highest speed in Port Capabilities 8498 * @acaps: advertised Port Capabilities 8499 * 8500 * Get the highest speed for the port from the advertised Port 8501 * Capabilities. It will be either the highest speed from the list of 8502 * speeds or whatever user has set using ethtool. 8503 */ 8504 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps) 8505 { 8506 #define TEST_SPEED_RETURN(__caps_speed) \ 8507 do { \ 8508 if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8509 return FW_PORT_CAP32_SPEED_##__caps_speed; \ 8510 } while (0) 8511 8512 TEST_SPEED_RETURN(400G); 8513 TEST_SPEED_RETURN(200G); 8514 TEST_SPEED_RETURN(100G); 8515 TEST_SPEED_RETURN(50G); 8516 TEST_SPEED_RETURN(40G); 8517 TEST_SPEED_RETURN(25G); 8518 TEST_SPEED_RETURN(10G); 8519 TEST_SPEED_RETURN(1G); 8520 TEST_SPEED_RETURN(100M); 8521 8522 #undef TEST_SPEED_RETURN 8523 8524 return 0; 8525 } 8526 8527 /** 8528 * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities 8529 * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value 8530 * 8531 * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new 8532 * 32-bit Port Capabilities value. 8533 */ 8534 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus) 8535 { 8536 fw_port_cap32_t linkattr = 0; 8537 8538 /* Unfortunately the format of the Link Status in the old 8539 * 16-bit Port Information message isn't the same as the 8540 * 16-bit Port Capabilities bitfield used everywhere else ... 8541 */ 8542 if (lstatus & FW_PORT_CMD_RXPAUSE_F) 8543 linkattr |= FW_PORT_CAP32_FC_RX; 8544 if (lstatus & FW_PORT_CMD_TXPAUSE_F) 8545 linkattr |= FW_PORT_CAP32_FC_TX; 8546 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) 8547 linkattr |= FW_PORT_CAP32_SPEED_100M; 8548 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) 8549 linkattr |= FW_PORT_CAP32_SPEED_1G; 8550 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) 8551 linkattr |= FW_PORT_CAP32_SPEED_10G; 8552 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G)) 8553 linkattr |= FW_PORT_CAP32_SPEED_25G; 8554 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) 8555 linkattr |= FW_PORT_CAP32_SPEED_40G; 8556 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G)) 8557 linkattr |= FW_PORT_CAP32_SPEED_100G; 8558 8559 return linkattr; 8560 } 8561 8562 /** 8563 * t4_handle_get_port_info - process a FW reply message 8564 * @pi: the port info 8565 * @rpl: start of the FW message 8566 * 8567 * Processes a GET_PORT_INFO FW reply message. 8568 */ 8569 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl) 8570 { 8571 const struct fw_port_cmd *cmd = (const void *)rpl; 8572 fw_port_cap32_t pcaps, acaps, lpacaps, linkattr; 8573 struct link_config *lc = &pi->link_cfg; 8574 struct adapter *adapter = pi->adapter; 8575 unsigned int speed, fc, fec, adv_fc; 8576 enum fw_port_module_type mod_type; 8577 int action, link_ok, linkdnrc; 8578 enum fw_port_type port_type; 8579 8580 /* Extract the various fields from the Port Information message. 8581 */ 8582 action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16)); 8583 switch (action) { 8584 case FW_PORT_ACTION_GET_PORT_INFO: { 8585 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype); 8586 8587 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0; 8588 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus); 8589 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 8590 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus); 8591 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap)); 8592 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap)); 8593 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap)); 8594 linkattr = lstatus_to_fwcap(lstatus); 8595 break; 8596 } 8597 8598 case FW_PORT_ACTION_GET_PORT_INFO32: { 8599 u32 lstatus32; 8600 8601 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32); 8602 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0; 8603 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32); 8604 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 8605 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32); 8606 pcaps = be32_to_cpu(cmd->u.info32.pcaps32); 8607 acaps = be32_to_cpu(cmd->u.info32.acaps32); 8608 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32); 8609 linkattr = be32_to_cpu(cmd->u.info32.linkattr32); 8610 break; 8611 } 8612 8613 default: 8614 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n", 8615 be32_to_cpu(cmd->action_to_len16)); 8616 return; 8617 } 8618 8619 fec = fwcap_to_cc_fec(acaps); 8620 adv_fc = fwcap_to_cc_pause(acaps); 8621 fc = fwcap_to_cc_pause(linkattr); 8622 speed = fwcap_to_speed(linkattr); 8623 8624 /* Reset state for communicating new Transceiver Module status and 8625 * whether the OS-dependent layer wants us to redo the current 8626 * "sticky" L1 Configure Link Parameters. 8627 */ 8628 lc->new_module = false; 8629 lc->redo_l1cfg = false; 8630 8631 if (mod_type != pi->mod_type) { 8632 /* With the newer SFP28 and QSFP28 Transceiver Module Types, 8633 * various fundamental Port Capabilities which used to be 8634 * immutable can now change radically. We can now have 8635 * Speeds, Auto-Negotiation, Forward Error Correction, etc. 8636 * all change based on what Transceiver Module is inserted. 8637 * So we need to record the Physical "Port" Capabilities on 8638 * every Transceiver Module change. 8639 */ 8640 lc->pcaps = pcaps; 8641 8642 /* When a new Transceiver Module is inserted, the Firmware 8643 * will examine its i2c EPROM to determine its type and 8644 * general operating parameters including things like Forward 8645 * Error Control, etc. Various IEEE 802.3 standards dictate 8646 * how to interpret these i2c values to determine default 8647 * "sutomatic" settings. We record these for future use when 8648 * the user explicitly requests these standards-based values. 8649 */ 8650 lc->def_acaps = acaps; 8651 8652 /* Some versions of the early T6 Firmware "cheated" when 8653 * handling different Transceiver Modules by changing the 8654 * underlaying Port Type reported to the Host Drivers. As 8655 * such we need to capture whatever Port Type the Firmware 8656 * sends us and record it in case it's different from what we 8657 * were told earlier. Unfortunately, since Firmware is 8658 * forever, we'll need to keep this code here forever, but in 8659 * later T6 Firmware it should just be an assignment of the 8660 * same value already recorded. 8661 */ 8662 pi->port_type = port_type; 8663 8664 /* Record new Module Type information. 8665 */ 8666 pi->mod_type = mod_type; 8667 8668 /* Let the OS-dependent layer know if we have a new 8669 * Transceiver Module inserted. 8670 */ 8671 lc->new_module = t4_is_inserted_mod_type(mod_type); 8672 8673 t4_os_portmod_changed(adapter, pi->port_id); 8674 } 8675 8676 if (link_ok != lc->link_ok || speed != lc->speed || 8677 fc != lc->fc || adv_fc != lc->advertised_fc || 8678 fec != lc->fec) { 8679 /* something changed */ 8680 if (!link_ok && lc->link_ok) { 8681 lc->link_down_rc = linkdnrc; 8682 dev_warn_ratelimited(adapter->pdev_dev, 8683 "Port %d link down, reason: %s\n", 8684 pi->tx_chan, 8685 t4_link_down_rc_str(linkdnrc)); 8686 } 8687 lc->link_ok = link_ok; 8688 lc->speed = speed; 8689 lc->advertised_fc = adv_fc; 8690 lc->fc = fc; 8691 lc->fec = fec; 8692 8693 lc->lpacaps = lpacaps; 8694 lc->acaps = acaps & ADVERT_MASK; 8695 8696 /* If we're not physically capable of Auto-Negotiation, note 8697 * this as Auto-Negotiation disabled. Otherwise, we track 8698 * what Auto-Negotiation settings we have. Note parallel 8699 * structure in t4_link_l1cfg_core() and init_link_config(). 8700 */ 8701 if (!(lc->acaps & FW_PORT_CAP32_ANEG)) { 8702 lc->autoneg = AUTONEG_DISABLE; 8703 } else if (lc->acaps & FW_PORT_CAP32_ANEG) { 8704 lc->autoneg = AUTONEG_ENABLE; 8705 } else { 8706 /* When Autoneg is disabled, user needs to set 8707 * single speed. 8708 * Similar to cxgb4_ethtool.c: set_link_ksettings 8709 */ 8710 lc->acaps = 0; 8711 lc->speed_caps = fwcap_to_fwspeed(acaps); 8712 lc->autoneg = AUTONEG_DISABLE; 8713 } 8714 8715 t4_os_link_changed(adapter, pi->port_id, link_ok); 8716 } 8717 8718 /* If we have a new Transceiver Module and the OS-dependent code has 8719 * told us that it wants us to redo whatever "sticky" L1 Configuration 8720 * Link Parameters are set, do that now. 8721 */ 8722 if (lc->new_module && lc->redo_l1cfg) { 8723 struct link_config old_lc; 8724 int ret; 8725 8726 /* Save the current L1 Configuration and restore it if an 8727 * error occurs. We probably should fix the l1_cfg*() 8728 * routines not to change the link_config when an error 8729 * occurs ... 8730 */ 8731 old_lc = *lc; 8732 ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc); 8733 if (ret) { 8734 *lc = old_lc; 8735 dev_warn(adapter->pdev_dev, 8736 "Attempt to update new Transceiver Module settings failed\n"); 8737 } 8738 } 8739 lc->new_module = false; 8740 lc->redo_l1cfg = false; 8741 } 8742 8743 /** 8744 * t4_update_port_info - retrieve and update port information if changed 8745 * @pi: the port_info 8746 * 8747 * We issue a Get Port Information Command to the Firmware and, if 8748 * successful, we check to see if anything is different from what we 8749 * last recorded and update things accordingly. 8750 */ 8751 int t4_update_port_info(struct port_info *pi) 8752 { 8753 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8754 struct fw_port_cmd port_cmd; 8755 int ret; 8756 8757 memset(&port_cmd, 0, sizeof(port_cmd)); 8758 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8759 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8760 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8761 port_cmd.action_to_len16 = cpu_to_be32( 8762 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 8763 ? FW_PORT_ACTION_GET_PORT_INFO 8764 : FW_PORT_ACTION_GET_PORT_INFO32) | 8765 FW_LEN16(port_cmd)); 8766 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8767 &port_cmd, sizeof(port_cmd), &port_cmd); 8768 if (ret) 8769 return ret; 8770 8771 t4_handle_get_port_info(pi, (__be64 *)&port_cmd); 8772 return 0; 8773 } 8774 8775 /** 8776 * t4_get_link_params - retrieve basic link parameters for given port 8777 * @pi: the port 8778 * @link_okp: value return pointer for link up/down 8779 * @speedp: value return pointer for speed (Mb/s) 8780 * @mtup: value return pointer for mtu 8781 * 8782 * Retrieves basic link parameters for a port: link up/down, speed (Mb/s), 8783 * and MTU for a specified port. A negative error is returned on 8784 * failure; 0 on success. 8785 */ 8786 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp, 8787 unsigned int *speedp, unsigned int *mtup) 8788 { 8789 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8790 unsigned int action, link_ok, mtu; 8791 struct fw_port_cmd port_cmd; 8792 fw_port_cap32_t linkattr; 8793 int ret; 8794 8795 memset(&port_cmd, 0, sizeof(port_cmd)); 8796 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8797 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8798 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8799 action = (fw_caps == FW_CAPS16 8800 ? FW_PORT_ACTION_GET_PORT_INFO 8801 : FW_PORT_ACTION_GET_PORT_INFO32); 8802 port_cmd.action_to_len16 = cpu_to_be32( 8803 FW_PORT_CMD_ACTION_V(action) | 8804 FW_LEN16(port_cmd)); 8805 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8806 &port_cmd, sizeof(port_cmd), &port_cmd); 8807 if (ret) 8808 return ret; 8809 8810 if (action == FW_PORT_ACTION_GET_PORT_INFO) { 8811 u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype); 8812 8813 link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F); 8814 linkattr = lstatus_to_fwcap(lstatus); 8815 mtu = be16_to_cpu(port_cmd.u.info.mtu); 8816 } else { 8817 u32 lstatus32 = 8818 be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32); 8819 8820 link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F); 8821 linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32); 8822 mtu = FW_PORT_CMD_MTU32_G( 8823 be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32)); 8824 } 8825 8826 if (link_okp) 8827 *link_okp = link_ok; 8828 if (speedp) 8829 *speedp = fwcap_to_speed(linkattr); 8830 if (mtup) 8831 *mtup = mtu; 8832 8833 return 0; 8834 } 8835 8836 /** 8837 * t4_handle_fw_rpl - process a FW reply message 8838 * @adap: the adapter 8839 * @rpl: start of the FW message 8840 * 8841 * Processes a FW message, such as link state change messages. 8842 */ 8843 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 8844 { 8845 u8 opcode = *(const u8 *)rpl; 8846 8847 /* This might be a port command ... this simplifies the following 8848 * conditionals ... We can get away with pre-dereferencing 8849 * action_to_len16 because it's in the first 16 bytes and all messages 8850 * will be at least that long. 8851 */ 8852 const struct fw_port_cmd *p = (const void *)rpl; 8853 unsigned int action = 8854 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16)); 8855 8856 if (opcode == FW_PORT_CMD && 8857 (action == FW_PORT_ACTION_GET_PORT_INFO || 8858 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 8859 int i; 8860 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid)); 8861 struct port_info *pi = NULL; 8862 8863 for_each_port(adap, i) { 8864 pi = adap2pinfo(adap, i); 8865 if (pi->tx_chan == chan) 8866 break; 8867 } 8868 8869 t4_handle_get_port_info(pi, rpl); 8870 } else { 8871 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", 8872 opcode); 8873 return -EINVAL; 8874 } 8875 return 0; 8876 } 8877 8878 static void get_pci_mode(struct adapter *adapter, struct pci_params *p) 8879 { 8880 u16 val; 8881 8882 if (pci_is_pcie(adapter->pdev)) { 8883 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); 8884 p->speed = val & PCI_EXP_LNKSTA_CLS; 8885 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 8886 } 8887 } 8888 8889 /** 8890 * init_link_config - initialize a link's SW state 8891 * @lc: pointer to structure holding the link state 8892 * @pcaps: link Port Capabilities 8893 * @acaps: link current Advertised Port Capabilities 8894 * 8895 * Initializes the SW state maintained for each link, including the link's 8896 * capabilities and default speed/flow-control/autonegotiation settings. 8897 */ 8898 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps, 8899 fw_port_cap32_t acaps) 8900 { 8901 lc->pcaps = pcaps; 8902 lc->def_acaps = acaps; 8903 lc->lpacaps = 0; 8904 lc->speed_caps = 0; 8905 lc->speed = 0; 8906 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 8907 8908 /* For Forward Error Control, we default to whatever the Firmware 8909 * tells us the Link is currently advertising. 8910 */ 8911 lc->requested_fec = FEC_AUTO; 8912 lc->fec = fwcap_to_cc_fec(lc->def_acaps); 8913 8914 /* If the Port is capable of Auto-Negtotiation, initialize it as 8915 * "enabled" and copy over all of the Physical Port Capabilities 8916 * to the Advertised Port Capabilities. Otherwise mark it as 8917 * Auto-Negotiate disabled and select the highest supported speed 8918 * for the link. Note parallel structure in t4_link_l1cfg_core() 8919 * and t4_handle_get_port_info(). 8920 */ 8921 if (lc->pcaps & FW_PORT_CAP32_ANEG) { 8922 lc->acaps = lc->pcaps & ADVERT_MASK; 8923 lc->autoneg = AUTONEG_ENABLE; 8924 lc->requested_fc |= PAUSE_AUTONEG; 8925 } else { 8926 lc->acaps = 0; 8927 lc->autoneg = AUTONEG_DISABLE; 8928 lc->speed_caps = fwcap_to_fwspeed(acaps); 8929 } 8930 } 8931 8932 #define CIM_PF_NOACCESS 0xeeeeeeee 8933 8934 int t4_wait_dev_ready(void __iomem *regs) 8935 { 8936 u32 whoami; 8937 8938 whoami = readl(regs + PL_WHOAMI_A); 8939 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS) 8940 return 0; 8941 8942 msleep(500); 8943 whoami = readl(regs + PL_WHOAMI_A); 8944 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO); 8945 } 8946 8947 struct flash_desc { 8948 u32 vendor_and_model_id; 8949 u32 size_mb; 8950 }; 8951 8952 static int t4_get_flash_params(struct adapter *adap) 8953 { 8954 /* Table for non-Numonix supported flash parts. Numonix parts are left 8955 * to the preexisting code. All flash parts have 64KB sectors. 8956 */ 8957 static struct flash_desc supported_flash[] = { 8958 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ 8959 }; 8960 8961 unsigned int part, manufacturer; 8962 unsigned int density, size = 0; 8963 u32 flashid = 0; 8964 int ret; 8965 8966 /* Issue a Read ID Command to the Flash part. We decode supported 8967 * Flash parts and their sizes from this. There's a newer Query 8968 * Command which can retrieve detailed geometry information but many 8969 * Flash parts don't support it. 8970 */ 8971 8972 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID); 8973 if (!ret) 8974 ret = sf1_read(adap, 3, 0, 1, &flashid); 8975 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */ 8976 if (ret) 8977 return ret; 8978 8979 /* Check to see if it's one of our non-standard supported Flash parts. 8980 */ 8981 for (part = 0; part < ARRAY_SIZE(supported_flash); part++) 8982 if (supported_flash[part].vendor_and_model_id == flashid) { 8983 adap->params.sf_size = supported_flash[part].size_mb; 8984 adap->params.sf_nsec = 8985 adap->params.sf_size / SF_SEC_SIZE; 8986 goto found; 8987 } 8988 8989 /* Decode Flash part size. The code below looks repetitive with 8990 * common encodings, but that's not guaranteed in the JEDEC 8991 * specification for the Read JEDEC ID command. The only thing that 8992 * we're guaranteed by the JEDEC specification is where the 8993 * Manufacturer ID is in the returned result. After that each 8994 * Manufacturer ~could~ encode things completely differently. 8995 * Note, all Flash parts must have 64KB sectors. 8996 */ 8997 manufacturer = flashid & 0xff; 8998 switch (manufacturer) { 8999 case 0x20: { /* Micron/Numonix */ 9000 /* This Density -> Size decoding table is taken from Micron 9001 * Data Sheets. 9002 */ 9003 density = (flashid >> 16) & 0xff; 9004 switch (density) { 9005 case 0x14: /* 1MB */ 9006 size = 1 << 20; 9007 break; 9008 case 0x15: /* 2MB */ 9009 size = 1 << 21; 9010 break; 9011 case 0x16: /* 4MB */ 9012 size = 1 << 22; 9013 break; 9014 case 0x17: /* 8MB */ 9015 size = 1 << 23; 9016 break; 9017 case 0x18: /* 16MB */ 9018 size = 1 << 24; 9019 break; 9020 case 0x19: /* 32MB */ 9021 size = 1 << 25; 9022 break; 9023 case 0x20: /* 64MB */ 9024 size = 1 << 26; 9025 break; 9026 case 0x21: /* 128MB */ 9027 size = 1 << 27; 9028 break; 9029 case 0x22: /* 256MB */ 9030 size = 1 << 28; 9031 break; 9032 } 9033 break; 9034 } 9035 case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */ 9036 /* This Density -> Size decoding table is taken from ISSI 9037 * Data Sheets. 9038 */ 9039 density = (flashid >> 16) & 0xff; 9040 switch (density) { 9041 case 0x16: /* 32 MB */ 9042 size = 1 << 25; 9043 break; 9044 case 0x17: /* 64MB */ 9045 size = 1 << 26; 9046 break; 9047 } 9048 break; 9049 } 9050 case 0xc2: { /* Macronix */ 9051 /* This Density -> Size decoding table is taken from Macronix 9052 * Data Sheets. 9053 */ 9054 density = (flashid >> 16) & 0xff; 9055 switch (density) { 9056 case 0x17: /* 8MB */ 9057 size = 1 << 23; 9058 break; 9059 case 0x18: /* 16MB */ 9060 size = 1 << 24; 9061 break; 9062 } 9063 break; 9064 } 9065 case 0xef: { /* Winbond */ 9066 /* This Density -> Size decoding table is taken from Winbond 9067 * Data Sheets. 9068 */ 9069 density = (flashid >> 16) & 0xff; 9070 switch (density) { 9071 case 0x17: /* 8MB */ 9072 size = 1 << 23; 9073 break; 9074 case 0x18: /* 16MB */ 9075 size = 1 << 24; 9076 break; 9077 } 9078 break; 9079 } 9080 } 9081 9082 /* If we didn't recognize the FLASH part, that's no real issue: the 9083 * Hardware/Software contract says that Hardware will _*ALWAYS*_ 9084 * use a FLASH part which is at least 4MB in size and has 64KB 9085 * sectors. The unrecognized FLASH part is likely to be much larger 9086 * than 4MB, but that's all we really need. 9087 */ 9088 if (size == 0) { 9089 dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n", 9090 flashid); 9091 size = 1 << 22; 9092 } 9093 9094 /* Store decoded Flash size and fall through into vetting code. */ 9095 adap->params.sf_size = size; 9096 adap->params.sf_nsec = size / SF_SEC_SIZE; 9097 9098 found: 9099 if (adap->params.sf_size < FLASH_MIN_SIZE) 9100 dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n", 9101 flashid, adap->params.sf_size, FLASH_MIN_SIZE); 9102 return 0; 9103 } 9104 9105 /** 9106 * t4_prep_adapter - prepare SW and HW for operation 9107 * @adapter: the adapter 9108 * 9109 * Initialize adapter SW state for the various HW modules, set initial 9110 * values for some adapter tunables, take PHYs out of reset, and 9111 * initialize the MDIO interface. 9112 */ 9113 int t4_prep_adapter(struct adapter *adapter) 9114 { 9115 int ret, ver; 9116 uint16_t device_id; 9117 u32 pl_rev; 9118 9119 get_pci_mode(adapter, &adapter->params.pci); 9120 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A)); 9121 9122 ret = t4_get_flash_params(adapter); 9123 if (ret < 0) { 9124 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret); 9125 return ret; 9126 } 9127 9128 /* Retrieve adapter's device ID 9129 */ 9130 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id); 9131 ver = device_id >> 12; 9132 adapter->params.chip = 0; 9133 switch (ver) { 9134 case CHELSIO_T4: 9135 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 9136 adapter->params.arch.sge_fl_db = DBPRIO_F; 9137 adapter->params.arch.mps_tcam_size = 9138 NUM_MPS_CLS_SRAM_L_INSTANCES; 9139 adapter->params.arch.mps_rplc_size = 128; 9140 adapter->params.arch.nchan = NCHAN; 9141 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 9142 adapter->params.arch.vfcount = 128; 9143 /* Congestion map is for 4 channels so that 9144 * MPS can have 4 priority per port. 9145 */ 9146 adapter->params.arch.cng_ch_bits_log = 2; 9147 break; 9148 case CHELSIO_T5: 9149 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 9150 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F; 9151 adapter->params.arch.mps_tcam_size = 9152 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 9153 adapter->params.arch.mps_rplc_size = 128; 9154 adapter->params.arch.nchan = NCHAN; 9155 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 9156 adapter->params.arch.vfcount = 128; 9157 adapter->params.arch.cng_ch_bits_log = 2; 9158 break; 9159 case CHELSIO_T6: 9160 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 9161 adapter->params.arch.sge_fl_db = 0; 9162 adapter->params.arch.mps_tcam_size = 9163 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 9164 adapter->params.arch.mps_rplc_size = 256; 9165 adapter->params.arch.nchan = 2; 9166 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS; 9167 adapter->params.arch.vfcount = 256; 9168 /* Congestion map will be for 2 channels so that 9169 * MPS can have 8 priority per port. 9170 */ 9171 adapter->params.arch.cng_ch_bits_log = 3; 9172 break; 9173 default: 9174 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 9175 device_id); 9176 return -EINVAL; 9177 } 9178 9179 adapter->params.cim_la_size = CIMLA_SIZE; 9180 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 9181 9182 /* 9183 * Default port for debugging in case we can't reach FW. 9184 */ 9185 adapter->params.nports = 1; 9186 adapter->params.portvec = 1; 9187 adapter->params.vpd.cclk = 50000; 9188 9189 /* Set PCIe completion timeout to 4 seconds. */ 9190 pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2, 9191 PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd); 9192 return 0; 9193 } 9194 9195 /** 9196 * t4_shutdown_adapter - shut down adapter, host & wire 9197 * @adapter: the adapter 9198 * 9199 * Perform an emergency shutdown of the adapter and stop it from 9200 * continuing any further communication on the ports or DMA to the 9201 * host. This is typically used when the adapter and/or firmware 9202 * have crashed and we want to prevent any further accidental 9203 * communication with the rest of the world. This will also force 9204 * the port Link Status to go down -- if register writes work -- 9205 * which should help our peers figure out that we're down. 9206 */ 9207 int t4_shutdown_adapter(struct adapter *adapter) 9208 { 9209 int port; 9210 9211 t4_intr_disable(adapter); 9212 t4_write_reg(adapter, DBG_GPIO_EN_A, 0); 9213 for_each_port(adapter, port) { 9214 u32 a_port_cfg = is_t4(adapter->params.chip) ? 9215 PORT_REG(port, XGMAC_PORT_CFG_A) : 9216 T5_PORT_REG(port, MAC_PORT_CFG_A); 9217 9218 t4_write_reg(adapter, a_port_cfg, 9219 t4_read_reg(adapter, a_port_cfg) 9220 & ~SIGNAL_DET_V(1)); 9221 } 9222 t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0); 9223 9224 return 0; 9225 } 9226 9227 /** 9228 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information 9229 * @adapter: the adapter 9230 * @qid: the Queue ID 9231 * @qtype: the Ingress or Egress type for @qid 9232 * @user: true if this request is for a user mode queue 9233 * @pbar2_qoffset: BAR2 Queue Offset 9234 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 9235 * 9236 * Returns the BAR2 SGE Queue Registers information associated with the 9237 * indicated Absolute Queue ID. These are passed back in return value 9238 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 9239 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 9240 * 9241 * This may return an error which indicates that BAR2 SGE Queue 9242 * registers aren't available. If an error is not returned, then the 9243 * following values are returned: 9244 * 9245 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 9246 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 9247 * 9248 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 9249 * require the "Inferred Queue ID" ability may be used. E.g. the 9250 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 9251 * then these "Inferred Queue ID" register may not be used. 9252 */ 9253 int t4_bar2_sge_qregs(struct adapter *adapter, 9254 unsigned int qid, 9255 enum t4_bar2_qtype qtype, 9256 int user, 9257 u64 *pbar2_qoffset, 9258 unsigned int *pbar2_qid) 9259 { 9260 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 9261 u64 bar2_page_offset, bar2_qoffset; 9262 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 9263 9264 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */ 9265 if (!user && is_t4(adapter->params.chip)) 9266 return -EINVAL; 9267 9268 /* Get our SGE Page Size parameters. 9269 */ 9270 page_shift = adapter->params.sge.hps + 10; 9271 page_size = 1 << page_shift; 9272 9273 /* Get the right Queues per Page parameters for our Queue. 9274 */ 9275 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 9276 ? adapter->params.sge.eq_qpp 9277 : adapter->params.sge.iq_qpp); 9278 qpp_mask = (1 << qpp_shift) - 1; 9279 9280 /* Calculate the basics of the BAR2 SGE Queue register area: 9281 * o The BAR2 page the Queue registers will be in. 9282 * o The BAR2 Queue ID. 9283 * o The BAR2 Queue ID Offset into the BAR2 page. 9284 */ 9285 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 9286 bar2_qid = qid & qpp_mask; 9287 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 9288 9289 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 9290 * hardware will infer the Absolute Queue ID simply from the writes to 9291 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 9292 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 9293 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 9294 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 9295 * from the BAR2 Page and BAR2 Queue ID. 9296 * 9297 * One important censequence of this is that some BAR2 SGE registers 9298 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 9299 * there. But other registers synthesize the SGE Queue ID purely 9300 * from the writes to the registers -- the Write Combined Doorbell 9301 * Buffer is a good example. These BAR2 SGE Registers are only 9302 * available for those BAR2 SGE Register areas where the SGE Absolute 9303 * Queue ID can be inferred from simple writes. 9304 */ 9305 bar2_qoffset = bar2_page_offset; 9306 bar2_qinferred = (bar2_qid_offset < page_size); 9307 if (bar2_qinferred) { 9308 bar2_qoffset += bar2_qid_offset; 9309 bar2_qid = 0; 9310 } 9311 9312 *pbar2_qoffset = bar2_qoffset; 9313 *pbar2_qid = bar2_qid; 9314 return 0; 9315 } 9316 9317 /** 9318 * t4_init_devlog_params - initialize adapter->params.devlog 9319 * @adap: the adapter 9320 * 9321 * Initialize various fields of the adapter's Firmware Device Log 9322 * Parameters structure. 9323 */ 9324 int t4_init_devlog_params(struct adapter *adap) 9325 { 9326 struct devlog_params *dparams = &adap->params.devlog; 9327 u32 pf_dparams; 9328 unsigned int devlog_meminfo; 9329 struct fw_devlog_cmd devlog_cmd; 9330 int ret; 9331 9332 /* If we're dealing with newer firmware, the Device Log Parameters 9333 * are stored in a designated register which allows us to access the 9334 * Device Log even if we can't talk to the firmware. 9335 */ 9336 pf_dparams = 9337 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG)); 9338 if (pf_dparams) { 9339 unsigned int nentries, nentries128; 9340 9341 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams); 9342 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4; 9343 9344 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams); 9345 nentries = (nentries128 + 1) * 128; 9346 dparams->size = nentries * sizeof(struct fw_devlog_e); 9347 9348 return 0; 9349 } 9350 9351 /* Otherwise, ask the firmware for it's Device Log Parameters. 9352 */ 9353 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 9354 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) | 9355 FW_CMD_REQUEST_F | FW_CMD_READ_F); 9356 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 9357 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), 9358 &devlog_cmd); 9359 if (ret) 9360 return ret; 9361 9362 devlog_meminfo = 9363 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); 9364 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo); 9365 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4; 9366 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); 9367 9368 return 0; 9369 } 9370 9371 /** 9372 * t4_init_sge_params - initialize adap->params.sge 9373 * @adapter: the adapter 9374 * 9375 * Initialize various fields of the adapter's SGE Parameters structure. 9376 */ 9377 int t4_init_sge_params(struct adapter *adapter) 9378 { 9379 struct sge_params *sge_params = &adapter->params.sge; 9380 u32 hps, qpp; 9381 unsigned int s_hps, s_qpp; 9382 9383 /* Extract the SGE Page Size for our PF. 9384 */ 9385 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A); 9386 s_hps = (HOSTPAGESIZEPF0_S + 9387 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf); 9388 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M); 9389 9390 /* Extract the SGE Egress and Ingess Queues Per Page for our PF. 9391 */ 9392 s_qpp = (QUEUESPERPAGEPF0_S + 9393 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf); 9394 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A); 9395 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 9396 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A); 9397 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 9398 9399 return 0; 9400 } 9401 9402 /** 9403 * t4_init_tp_params - initialize adap->params.tp 9404 * @adap: the adapter 9405 * @sleep_ok: if true we may sleep while awaiting command completion 9406 * 9407 * Initialize various fields of the adapter's TP Parameters structure. 9408 */ 9409 int t4_init_tp_params(struct adapter *adap, bool sleep_ok) 9410 { 9411 u32 param, val, v; 9412 int chan, ret; 9413 9414 9415 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A); 9416 adap->params.tp.tre = TIMERRESOLUTION_G(v); 9417 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v); 9418 9419 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 9420 for (chan = 0; chan < NCHAN; chan++) 9421 adap->params.tp.tx_modq[chan] = chan; 9422 9423 /* Cache the adapter's Compressed Filter Mode/Mask and global Ingress 9424 * Configuration. 9425 */ 9426 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 9427 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) | 9428 FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK)); 9429 9430 /* Read current value */ 9431 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 9432 ¶m, &val); 9433 if (ret == 0) { 9434 dev_info(adap->pdev_dev, 9435 "Current filter mode/mask 0x%x:0x%x\n", 9436 FW_PARAMS_PARAM_FILTER_MODE_G(val), 9437 FW_PARAMS_PARAM_FILTER_MASK_G(val)); 9438 adap->params.tp.vlan_pri_map = 9439 FW_PARAMS_PARAM_FILTER_MODE_G(val); 9440 adap->params.tp.filter_mask = 9441 FW_PARAMS_PARAM_FILTER_MASK_G(val); 9442 } else { 9443 dev_info(adap->pdev_dev, 9444 "Failed to read filter mode/mask via fw api, using indirect-reg-read\n"); 9445 9446 /* Incase of older-fw (which doesn't expose the api 9447 * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses 9448 * the fw api) combination, fall-back to older method of reading 9449 * the filter mode from indirect-register 9450 */ 9451 t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1, 9452 TP_VLAN_PRI_MAP_A, sleep_ok); 9453 9454 /* With the older-fw and newer-driver combination we might run 9455 * into an issue when user wants to use hash filter region but 9456 * the filter_mask is zero, in this case filter_mask validation 9457 * is tough. To avoid that we set the filter_mask same as filter 9458 * mode, which will behave exactly as the older way of ignoring 9459 * the filter mask validation. 9460 */ 9461 adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map; 9462 } 9463 9464 t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1, 9465 TP_INGRESS_CONFIG_A, sleep_ok); 9466 9467 /* For T6, cache the adapter's compressed error vector 9468 * and passing outer header info for encapsulated packets. 9469 */ 9470 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 9471 v = t4_read_reg(adap, TP_OUT_CONFIG_A); 9472 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0; 9473 } 9474 9475 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field 9476 * shift positions of several elements of the Compressed Filter Tuple 9477 * for this adapter which we need frequently ... 9478 */ 9479 adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F); 9480 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F); 9481 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F); 9482 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F); 9483 adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F); 9484 adap->params.tp.protocol_shift = t4_filter_field_shift(adap, 9485 PROTOCOL_F); 9486 adap->params.tp.ethertype_shift = t4_filter_field_shift(adap, 9487 ETHERTYPE_F); 9488 adap->params.tp.macmatch_shift = t4_filter_field_shift(adap, 9489 MACMATCH_F); 9490 adap->params.tp.matchtype_shift = t4_filter_field_shift(adap, 9491 MPSHITTYPE_F); 9492 adap->params.tp.frag_shift = t4_filter_field_shift(adap, 9493 FRAGMENTATION_F); 9494 9495 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID 9496 * represents the presence of an Outer VLAN instead of a VNIC ID. 9497 */ 9498 if ((adap->params.tp.ingress_config & VNIC_F) == 0) 9499 adap->params.tp.vnic_shift = -1; 9500 9501 v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A); 9502 adap->params.tp.hash_filter_mask = v; 9503 v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A); 9504 adap->params.tp.hash_filter_mask |= ((u64)v << 32); 9505 return 0; 9506 } 9507 9508 /** 9509 * t4_filter_field_shift - calculate filter field shift 9510 * @adap: the adapter 9511 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) 9512 * 9513 * Return the shift position of a filter field within the Compressed 9514 * Filter Tuple. The filter field is specified via its selection bit 9515 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. 9516 */ 9517 int t4_filter_field_shift(const struct adapter *adap, int filter_sel) 9518 { 9519 unsigned int filter_mode = adap->params.tp.vlan_pri_map; 9520 unsigned int sel; 9521 int field_shift; 9522 9523 if ((filter_mode & filter_sel) == 0) 9524 return -1; 9525 9526 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { 9527 switch (filter_mode & sel) { 9528 case FCOE_F: 9529 field_shift += FT_FCOE_W; 9530 break; 9531 case PORT_F: 9532 field_shift += FT_PORT_W; 9533 break; 9534 case VNIC_ID_F: 9535 field_shift += FT_VNIC_ID_W; 9536 break; 9537 case VLAN_F: 9538 field_shift += FT_VLAN_W; 9539 break; 9540 case TOS_F: 9541 field_shift += FT_TOS_W; 9542 break; 9543 case PROTOCOL_F: 9544 field_shift += FT_PROTOCOL_W; 9545 break; 9546 case ETHERTYPE_F: 9547 field_shift += FT_ETHERTYPE_W; 9548 break; 9549 case MACMATCH_F: 9550 field_shift += FT_MACMATCH_W; 9551 break; 9552 case MPSHITTYPE_F: 9553 field_shift += FT_MPSHITTYPE_W; 9554 break; 9555 case FRAGMENTATION_F: 9556 field_shift += FT_FRAGMENTATION_W; 9557 break; 9558 } 9559 } 9560 return field_shift; 9561 } 9562 9563 int t4_init_rss_mode(struct adapter *adap, int mbox) 9564 { 9565 int i, ret; 9566 struct fw_rss_vi_config_cmd rvc; 9567 9568 memset(&rvc, 0, sizeof(rvc)); 9569 9570 for_each_port(adap, i) { 9571 struct port_info *p = adap2pinfo(adap, i); 9572 9573 rvc.op_to_viid = 9574 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 9575 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9576 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid)); 9577 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc)); 9578 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); 9579 if (ret) 9580 return ret; 9581 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen); 9582 } 9583 return 0; 9584 } 9585 9586 /** 9587 * t4_init_portinfo - allocate a virtual interface and initialize port_info 9588 * @pi: the port_info 9589 * @mbox: mailbox to use for the FW command 9590 * @port: physical port associated with the VI 9591 * @pf: the PF owning the VI 9592 * @vf: the VF owning the VI 9593 * @mac: the MAC address of the VI 9594 * 9595 * Allocates a virtual interface for the given physical port. If @mac is 9596 * not %NULL it contains the MAC address of the VI as assigned by FW. 9597 * @mac should be large enough to hold an Ethernet address. 9598 * Returns < 0 on error. 9599 */ 9600 int t4_init_portinfo(struct port_info *pi, int mbox, 9601 int port, int pf, int vf, u8 mac[]) 9602 { 9603 struct adapter *adapter = pi->adapter; 9604 unsigned int fw_caps = adapter->params.fw_caps_support; 9605 struct fw_port_cmd cmd; 9606 unsigned int rss_size; 9607 enum fw_port_type port_type; 9608 int mdio_addr; 9609 fw_port_cap32_t pcaps, acaps; 9610 u8 vivld = 0, vin = 0; 9611 int ret; 9612 9613 /* If we haven't yet determined whether we're talking to Firmware 9614 * which knows the new 32-bit Port Capabilities, it's time to find 9615 * out now. This will also tell new Firmware to send us Port Status 9616 * Updates using the new 32-bit Port Capabilities version of the 9617 * Port Information message. 9618 */ 9619 if (fw_caps == FW_CAPS_UNKNOWN) { 9620 u32 param, val; 9621 9622 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 9623 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32)); 9624 val = 1; 9625 ret = t4_set_params(adapter, mbox, pf, vf, 1, ¶m, &val); 9626 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16); 9627 adapter->params.fw_caps_support = fw_caps; 9628 } 9629 9630 memset(&cmd, 0, sizeof(cmd)); 9631 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 9632 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9633 FW_PORT_CMD_PORTID_V(port)); 9634 cmd.action_to_len16 = cpu_to_be32( 9635 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 9636 ? FW_PORT_ACTION_GET_PORT_INFO 9637 : FW_PORT_ACTION_GET_PORT_INFO32) | 9638 FW_LEN16(cmd)); 9639 ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd); 9640 if (ret) 9641 return ret; 9642 9643 /* Extract the various fields from the Port Information message. 9644 */ 9645 if (fw_caps == FW_CAPS16) { 9646 u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype); 9647 9648 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 9649 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F) 9650 ? FW_PORT_CMD_MDIOADDR_G(lstatus) 9651 : -1); 9652 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap)); 9653 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap)); 9654 } else { 9655 u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32); 9656 9657 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 9658 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F) 9659 ? FW_PORT_CMD_MDIOADDR32_G(lstatus32) 9660 : -1); 9661 pcaps = be32_to_cpu(cmd.u.info32.pcaps32); 9662 acaps = be32_to_cpu(cmd.u.info32.acaps32); 9663 } 9664 9665 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size, 9666 &vivld, &vin); 9667 if (ret < 0) 9668 return ret; 9669 9670 pi->viid = ret; 9671 pi->tx_chan = port; 9672 pi->lport = port; 9673 pi->rss_size = rss_size; 9674 pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port); 9675 9676 /* If fw supports returning the VIN as part of FW_VI_CMD, 9677 * save the returned values. 9678 */ 9679 if (adapter->params.viid_smt_extn_support) { 9680 pi->vivld = vivld; 9681 pi->vin = vin; 9682 } else { 9683 /* Retrieve the values from VIID */ 9684 pi->vivld = FW_VIID_VIVLD_G(pi->viid); 9685 pi->vin = FW_VIID_VIN_G(pi->viid); 9686 } 9687 9688 pi->port_type = port_type; 9689 pi->mdio_addr = mdio_addr; 9690 pi->mod_type = FW_PORT_MOD_TYPE_NA; 9691 9692 init_link_config(&pi->link_cfg, pcaps, acaps); 9693 return 0; 9694 } 9695 9696 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf) 9697 { 9698 u8 addr[6]; 9699 int ret, i, j = 0; 9700 9701 for_each_port(adap, i) { 9702 struct port_info *pi = adap2pinfo(adap, i); 9703 9704 while ((adap->params.portvec & (1 << j)) == 0) 9705 j++; 9706 9707 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr); 9708 if (ret) 9709 return ret; 9710 9711 eth_hw_addr_set(adap->port[i], addr); 9712 j++; 9713 } 9714 return 0; 9715 } 9716 9717 int t4_init_port_mirror(struct port_info *pi, u8 mbox, u8 port, u8 pf, u8 vf, 9718 u16 *mirror_viid) 9719 { 9720 int ret; 9721 9722 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, NULL, NULL, 9723 NULL, NULL); 9724 if (ret < 0) 9725 return ret; 9726 9727 if (mirror_viid) 9728 *mirror_viid = ret; 9729 9730 return 0; 9731 } 9732 9733 /** 9734 * t4_read_cimq_cfg - read CIM queue configuration 9735 * @adap: the adapter 9736 * @base: holds the queue base addresses in bytes 9737 * @size: holds the queue sizes in bytes 9738 * @thres: holds the queue full thresholds in bytes 9739 * 9740 * Returns the current configuration of the CIM queues, starting with 9741 * the IBQs, then the OBQs. 9742 */ 9743 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) 9744 { 9745 unsigned int i, v; 9746 int cim_num_obq = is_t4(adap->params.chip) ? 9747 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9748 9749 for (i = 0; i < CIM_NUM_IBQ; i++) { 9750 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F | 9751 QUENUMSELECT_V(i)); 9752 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9753 /* value is in 256-byte units */ 9754 *base++ = CIMQBASE_G(v) * 256; 9755 *size++ = CIMQSIZE_G(v) * 256; 9756 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */ 9757 } 9758 for (i = 0; i < cim_num_obq; i++) { 9759 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9760 QUENUMSELECT_V(i)); 9761 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9762 /* value is in 256-byte units */ 9763 *base++ = CIMQBASE_G(v) * 256; 9764 *size++ = CIMQSIZE_G(v) * 256; 9765 } 9766 } 9767 9768 /** 9769 * t4_read_cim_ibq - read the contents of a CIM inbound queue 9770 * @adap: the adapter 9771 * @qid: the queue index 9772 * @data: where to store the queue contents 9773 * @n: capacity of @data in 32-bit words 9774 * 9775 * Reads the contents of the selected CIM queue starting at address 0 up 9776 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9777 * error and the number of 32-bit words actually read on success. 9778 */ 9779 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9780 { 9781 int i, err, attempts; 9782 unsigned int addr; 9783 const unsigned int nwords = CIM_IBQ_SIZE * 4; 9784 9785 if (qid > 5 || (n & 3)) 9786 return -EINVAL; 9787 9788 addr = qid * nwords; 9789 if (n > nwords) 9790 n = nwords; 9791 9792 /* It might take 3-10ms before the IBQ debug read access is allowed. 9793 * Wait for 1 Sec with a delay of 1 usec. 9794 */ 9795 attempts = 1000000; 9796 9797 for (i = 0; i < n; i++, addr++) { 9798 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) | 9799 IBQDBGEN_F); 9800 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0, 9801 attempts, 1); 9802 if (err) 9803 return err; 9804 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A); 9805 } 9806 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0); 9807 return i; 9808 } 9809 9810 /** 9811 * t4_read_cim_obq - read the contents of a CIM outbound queue 9812 * @adap: the adapter 9813 * @qid: the queue index 9814 * @data: where to store the queue contents 9815 * @n: capacity of @data in 32-bit words 9816 * 9817 * Reads the contents of the selected CIM queue starting at address 0 up 9818 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9819 * error and the number of 32-bit words actually read on success. 9820 */ 9821 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9822 { 9823 int i, err; 9824 unsigned int addr, v, nwords; 9825 int cim_num_obq = is_t4(adap->params.chip) ? 9826 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9827 9828 if ((qid > (cim_num_obq - 1)) || (n & 3)) 9829 return -EINVAL; 9830 9831 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9832 QUENUMSELECT_V(qid)); 9833 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9834 9835 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */ 9836 nwords = CIMQSIZE_G(v) * 64; /* same */ 9837 if (n > nwords) 9838 n = nwords; 9839 9840 for (i = 0; i < n; i++, addr++) { 9841 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) | 9842 OBQDBGEN_F); 9843 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0, 9844 2, 1); 9845 if (err) 9846 return err; 9847 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A); 9848 } 9849 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0); 9850 return i; 9851 } 9852 9853 /** 9854 * t4_cim_read - read a block from CIM internal address space 9855 * @adap: the adapter 9856 * @addr: the start address within the CIM address space 9857 * @n: number of words to read 9858 * @valp: where to store the result 9859 * 9860 * Reads a block of 4-byte words from the CIM intenal address space. 9861 */ 9862 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, 9863 unsigned int *valp) 9864 { 9865 int ret = 0; 9866 9867 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9868 return -EBUSY; 9869 9870 for ( ; !ret && n--; addr += 4) { 9871 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr); 9872 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9873 0, 5, 2); 9874 if (!ret) 9875 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A); 9876 } 9877 return ret; 9878 } 9879 9880 /** 9881 * t4_cim_write - write a block into CIM internal address space 9882 * @adap: the adapter 9883 * @addr: the start address within the CIM address space 9884 * @n: number of words to write 9885 * @valp: set of values to write 9886 * 9887 * Writes a block of 4-byte words into the CIM intenal address space. 9888 */ 9889 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, 9890 const unsigned int *valp) 9891 { 9892 int ret = 0; 9893 9894 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9895 return -EBUSY; 9896 9897 for ( ; !ret && n--; addr += 4) { 9898 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++); 9899 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F); 9900 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9901 0, 5, 2); 9902 } 9903 return ret; 9904 } 9905 9906 static int t4_cim_write1(struct adapter *adap, unsigned int addr, 9907 unsigned int val) 9908 { 9909 return t4_cim_write(adap, addr, 1, &val); 9910 } 9911 9912 /** 9913 * t4_cim_read_la - read CIM LA capture buffer 9914 * @adap: the adapter 9915 * @la_buf: where to store the LA data 9916 * @wrptr: the HW write pointer within the capture buffer 9917 * 9918 * Reads the contents of the CIM LA buffer with the most recent entry at 9919 * the end of the returned data and with the entry at @wrptr first. 9920 * We try to leave the LA in the running state we find it in. 9921 */ 9922 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) 9923 { 9924 int i, ret; 9925 unsigned int cfg, val, idx; 9926 9927 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg); 9928 if (ret) 9929 return ret; 9930 9931 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */ 9932 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0); 9933 if (ret) 9934 return ret; 9935 } 9936 9937 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9938 if (ret) 9939 goto restart; 9940 9941 idx = UPDBGLAWRPTR_G(val); 9942 if (wrptr) 9943 *wrptr = idx; 9944 9945 for (i = 0; i < adap->params.cim_la_size; i++) { 9946 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9947 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F); 9948 if (ret) 9949 break; 9950 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9951 if (ret) 9952 break; 9953 if (val & UPDBGLARDEN_F) { 9954 ret = -ETIMEDOUT; 9955 break; 9956 } 9957 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]); 9958 if (ret) 9959 break; 9960 9961 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to 9962 * identify the 32-bit portion of the full 312-bit data 9963 */ 9964 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9) 9965 idx = (idx & 0xff0) + 0x10; 9966 else 9967 idx++; 9968 /* address can't exceed 0xfff */ 9969 idx &= UPDBGLARDPTR_M; 9970 } 9971 restart: 9972 if (cfg & UPDBGLAEN_F) { 9973 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9974 cfg & ~UPDBGLARDEN_F); 9975 if (!ret) 9976 ret = r; 9977 } 9978 return ret; 9979 } 9980 9981 /** 9982 * t4_tp_read_la - read TP LA capture buffer 9983 * @adap: the adapter 9984 * @la_buf: where to store the LA data 9985 * @wrptr: the HW write pointer within the capture buffer 9986 * 9987 * Reads the contents of the TP LA buffer with the most recent entry at 9988 * the end of the returned data and with the entry at @wrptr first. 9989 * We leave the LA in the running state we find it in. 9990 */ 9991 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) 9992 { 9993 bool last_incomplete; 9994 unsigned int i, cfg, val, idx; 9995 9996 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff; 9997 if (cfg & DBGLAENABLE_F) /* freeze LA */ 9998 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 9999 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F)); 10000 10001 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A); 10002 idx = DBGLAWPTR_G(val); 10003 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0; 10004 if (last_incomplete) 10005 idx = (idx + 1) & DBGLARPTR_M; 10006 if (wrptr) 10007 *wrptr = idx; 10008 10009 val &= 0xffff; 10010 val &= ~DBGLARPTR_V(DBGLARPTR_M); 10011 val |= adap->params.tp.la_mask; 10012 10013 for (i = 0; i < TPLA_SIZE; i++) { 10014 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val); 10015 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A); 10016 idx = (idx + 1) & DBGLARPTR_M; 10017 } 10018 10019 /* Wipe out last entry if it isn't valid */ 10020 if (last_incomplete) 10021 la_buf[TPLA_SIZE - 1] = ~0ULL; 10022 10023 if (cfg & DBGLAENABLE_F) /* restore running state */ 10024 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 10025 cfg | adap->params.tp.la_mask); 10026 } 10027 10028 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in 10029 * seconds). If we find one of the SGE Ingress DMA State Machines in the same 10030 * state for more than the Warning Threshold then we'll issue a warning about 10031 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel 10032 * appears to be hung every Warning Repeat second till the situation clears. 10033 * If the situation clears, we'll note that as well. 10034 */ 10035 #define SGE_IDMA_WARN_THRESH 1 10036 #define SGE_IDMA_WARN_REPEAT 300 10037 10038 /** 10039 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor 10040 * @adapter: the adapter 10041 * @idma: the adapter IDMA Monitor state 10042 * 10043 * Initialize the state of an SGE Ingress DMA Monitor. 10044 */ 10045 void t4_idma_monitor_init(struct adapter *adapter, 10046 struct sge_idma_monitor_state *idma) 10047 { 10048 /* Initialize the state variables for detecting an SGE Ingress DMA 10049 * hang. The SGE has internal counters which count up on each clock 10050 * tick whenever the SGE finds its Ingress DMA State Engines in the 10051 * same state they were on the previous clock tick. The clock used is 10052 * the Core Clock so we have a limit on the maximum "time" they can 10053 * record; typically a very small number of seconds. For instance, 10054 * with a 600MHz Core Clock, we can only count up to a bit more than 10055 * 7s. So we'll synthesize a larger counter in order to not run the 10056 * risk of having the "timers" overflow and give us the flexibility to 10057 * maintain a Hung SGE State Machine of our own which operates across 10058 * a longer time frame. 10059 */ 10060 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ 10061 idma->idma_stalled[0] = 0; 10062 idma->idma_stalled[1] = 0; 10063 } 10064 10065 /** 10066 * t4_idma_monitor - monitor SGE Ingress DMA state 10067 * @adapter: the adapter 10068 * @idma: the adapter IDMA Monitor state 10069 * @hz: number of ticks/second 10070 * @ticks: number of ticks since the last IDMA Monitor call 10071 */ 10072 void t4_idma_monitor(struct adapter *adapter, 10073 struct sge_idma_monitor_state *idma, 10074 int hz, int ticks) 10075 { 10076 int i, idma_same_state_cnt[2]; 10077 10078 /* Read the SGE Debug Ingress DMA Same State Count registers. These 10079 * are counters inside the SGE which count up on each clock when the 10080 * SGE finds its Ingress DMA State Engines in the same states they 10081 * were in the previous clock. The counters will peg out at 10082 * 0xffffffff without wrapping around so once they pass the 1s 10083 * threshold they'll stay above that till the IDMA state changes. 10084 */ 10085 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13); 10086 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A); 10087 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 10088 10089 for (i = 0; i < 2; i++) { 10090 u32 debug0, debug11; 10091 10092 /* If the Ingress DMA Same State Counter ("timer") is less 10093 * than 1s, then we can reset our synthesized Stall Timer and 10094 * continue. If we have previously emitted warnings about a 10095 * potential stalled Ingress Queue, issue a note indicating 10096 * that the Ingress Queue has resumed forward progress. 10097 */ 10098 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { 10099 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz) 10100 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, " 10101 "resumed after %d seconds\n", 10102 i, idma->idma_qid[i], 10103 idma->idma_stalled[i] / hz); 10104 idma->idma_stalled[i] = 0; 10105 continue; 10106 } 10107 10108 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 10109 * domain. The first time we get here it'll be because we 10110 * passed the 1s Threshold; each additional time it'll be 10111 * because the RX Timer Callback is being fired on its regular 10112 * schedule. 10113 * 10114 * If the stall is below our Potential Hung Ingress Queue 10115 * Warning Threshold, continue. 10116 */ 10117 if (idma->idma_stalled[i] == 0) { 10118 idma->idma_stalled[i] = hz; 10119 idma->idma_warn[i] = 0; 10120 } else { 10121 idma->idma_stalled[i] += ticks; 10122 idma->idma_warn[i] -= ticks; 10123 } 10124 10125 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz) 10126 continue; 10127 10128 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. 10129 */ 10130 if (idma->idma_warn[i] > 0) 10131 continue; 10132 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz; 10133 10134 /* Read and save the SGE IDMA State and Queue ID information. 10135 * We do this every time in case it changes across time ... 10136 * can't be too careful ... 10137 */ 10138 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0); 10139 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 10140 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 10141 10142 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11); 10143 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 10144 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 10145 10146 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in " 10147 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n", 10148 i, idma->idma_qid[i], idma->idma_state[i], 10149 idma->idma_stalled[i] / hz, 10150 debug0, debug11); 10151 t4_sge_decode_idma_state(adapter, idma->idma_state[i]); 10152 } 10153 } 10154 10155 /** 10156 * t4_load_cfg - download config file 10157 * @adap: the adapter 10158 * @cfg_data: the cfg text file to write 10159 * @size: text file size 10160 * 10161 * Write the supplied config text file to the card's serial flash. 10162 */ 10163 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 10164 { 10165 int ret, i, n, cfg_addr; 10166 unsigned int addr; 10167 unsigned int flash_cfg_start_sec; 10168 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10169 10170 cfg_addr = t4_flash_cfg_addr(adap); 10171 if (cfg_addr < 0) 10172 return cfg_addr; 10173 10174 addr = cfg_addr; 10175 flash_cfg_start_sec = addr / SF_SEC_SIZE; 10176 10177 if (size > FLASH_CFG_MAX_SIZE) { 10178 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n", 10179 FLASH_CFG_MAX_SIZE); 10180 return -EFBIG; 10181 } 10182 10183 i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ 10184 sf_sec_size); 10185 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 10186 flash_cfg_start_sec + i - 1); 10187 /* If size == 0 then we're simply erasing the FLASH sectors associated 10188 * with the on-adapter Firmware Configuration File. 10189 */ 10190 if (ret || size == 0) 10191 goto out; 10192 10193 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 10194 for (i = 0; i < size; i += SF_PAGE_SIZE) { 10195 if ((size - i) < SF_PAGE_SIZE) 10196 n = size - i; 10197 else 10198 n = SF_PAGE_SIZE; 10199 ret = t4_write_flash(adap, addr, n, cfg_data, true); 10200 if (ret) 10201 goto out; 10202 10203 addr += SF_PAGE_SIZE; 10204 cfg_data += SF_PAGE_SIZE; 10205 } 10206 10207 out: 10208 if (ret) 10209 dev_err(adap->pdev_dev, "config file %s failed %d\n", 10210 (size == 0 ? "clear" : "download"), ret); 10211 return ret; 10212 } 10213 10214 /** 10215 * t4_set_vf_mac_acl - Set MAC address for the specified VF 10216 * @adapter: The adapter 10217 * @vf: one of the VFs instantiated by the specified PF 10218 * @start: The start port id associated with specified VF 10219 * @naddr: the number of MAC addresses 10220 * @addr: the MAC address(es) to be set to the specified VF 10221 */ 10222 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf, 10223 u8 start, unsigned int naddr, u8 *addr) 10224 { 10225 struct fw_acl_mac_cmd cmd; 10226 10227 memset(&cmd, 0, sizeof(cmd)); 10228 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) | 10229 FW_CMD_REQUEST_F | 10230 FW_CMD_WRITE_F | 10231 FW_ACL_MAC_CMD_PFN_V(adapter->pf) | 10232 FW_ACL_MAC_CMD_VFN_V(vf)); 10233 10234 /* Note: Do not enable the ACL */ 10235 cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd)); 10236 cmd.nmac = naddr; 10237 10238 switch (start) { 10239 case 3: 10240 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3)); 10241 break; 10242 case 2: 10243 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2)); 10244 break; 10245 case 1: 10246 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1)); 10247 break; 10248 case 0: 10249 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0)); 10250 break; 10251 } 10252 10253 return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd); 10254 } 10255 10256 /** 10257 * t4_read_pace_tbl - read the pace table 10258 * @adap: the adapter 10259 * @pace_vals: holds the returned values 10260 * 10261 * Returns the values of TP's pace table in microseconds. 10262 */ 10263 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED]) 10264 { 10265 unsigned int i, v; 10266 10267 for (i = 0; i < NTX_SCHED; i++) { 10268 t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i); 10269 v = t4_read_reg(adap, TP_PACE_TABLE_A); 10270 pace_vals[i] = dack_ticks_to_usec(adap, v); 10271 } 10272 } 10273 10274 /** 10275 * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler 10276 * @adap: the adapter 10277 * @sched: the scheduler index 10278 * @kbps: the byte rate in Kbps 10279 * @ipg: the interpacket delay in tenths of nanoseconds 10280 * @sleep_ok: if true we may sleep while awaiting command completion 10281 * 10282 * Return the current configuration of a HW Tx scheduler. 10283 */ 10284 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, 10285 unsigned int *kbps, unsigned int *ipg, bool sleep_ok) 10286 { 10287 unsigned int v, addr, bpt, cpt; 10288 10289 if (kbps) { 10290 addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2; 10291 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 10292 if (sched & 1) 10293 v >>= 16; 10294 bpt = (v >> 8) & 0xff; 10295 cpt = v & 0xff; 10296 if (!cpt) { 10297 *kbps = 0; /* scheduler disabled */ 10298 } else { 10299 v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */ 10300 *kbps = (v * bpt) / 125; 10301 } 10302 } 10303 if (ipg) { 10304 addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2; 10305 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 10306 if (sched & 1) 10307 v >>= 16; 10308 v &= 0xffff; 10309 *ipg = (10000 * v) / core_ticks_per_usec(adap); 10310 } 10311 } 10312 10313 /* t4_sge_ctxt_rd - read an SGE context through FW 10314 * @adap: the adapter 10315 * @mbox: mailbox to use for the FW command 10316 * @cid: the context id 10317 * @ctype: the context type 10318 * @data: where to store the context data 10319 * 10320 * Issues a FW command through the given mailbox to read an SGE context. 10321 */ 10322 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid, 10323 enum ctxt_type ctype, u32 *data) 10324 { 10325 struct fw_ldst_cmd c; 10326 int ret; 10327 10328 if (ctype == CTXT_FLM) 10329 ret = FW_LDST_ADDRSPC_SGE_FLMC; 10330 else 10331 ret = FW_LDST_ADDRSPC_SGE_CONMC; 10332 10333 memset(&c, 0, sizeof(c)); 10334 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 10335 FW_CMD_REQUEST_F | FW_CMD_READ_F | 10336 FW_LDST_CMD_ADDRSPACE_V(ret)); 10337 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 10338 c.u.idctxt.physid = cpu_to_be32(cid); 10339 10340 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 10341 if (ret == 0) { 10342 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0); 10343 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1); 10344 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2); 10345 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3); 10346 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4); 10347 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5); 10348 } 10349 return ret; 10350 } 10351 10352 /** 10353 * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW 10354 * @adap: the adapter 10355 * @cid: the context id 10356 * @ctype: the context type 10357 * @data: where to store the context data 10358 * 10359 * Reads an SGE context directly, bypassing FW. This is only for 10360 * debugging when FW is unavailable. 10361 */ 10362 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, 10363 enum ctxt_type ctype, u32 *data) 10364 { 10365 int i, ret; 10366 10367 t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype)); 10368 ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1); 10369 if (!ret) 10370 for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4) 10371 *data++ = t4_read_reg(adap, i); 10372 return ret; 10373 } 10374 10375 int t4_sched_params(struct adapter *adapter, u8 type, u8 level, u8 mode, 10376 u8 rateunit, u8 ratemode, u8 channel, u8 class, 10377 u32 minrate, u32 maxrate, u16 weight, u16 pktsize, 10378 u16 burstsize) 10379 { 10380 struct fw_sched_cmd cmd; 10381 10382 memset(&cmd, 0, sizeof(cmd)); 10383 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) | 10384 FW_CMD_REQUEST_F | 10385 FW_CMD_WRITE_F); 10386 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10387 10388 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10389 cmd.u.params.type = type; 10390 cmd.u.params.level = level; 10391 cmd.u.params.mode = mode; 10392 cmd.u.params.ch = channel; 10393 cmd.u.params.cl = class; 10394 cmd.u.params.unit = rateunit; 10395 cmd.u.params.rate = ratemode; 10396 cmd.u.params.min = cpu_to_be32(minrate); 10397 cmd.u.params.max = cpu_to_be32(maxrate); 10398 cmd.u.params.weight = cpu_to_be16(weight); 10399 cmd.u.params.pktsize = cpu_to_be16(pktsize); 10400 cmd.u.params.burstsize = cpu_to_be16(burstsize); 10401 10402 return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd), 10403 NULL, 1); 10404 } 10405 10406 /** 10407 * t4_i2c_rd - read I2C data from adapter 10408 * @adap: the adapter 10409 * @mbox: mailbox to use for the FW command 10410 * @port: Port number if per-port device; <0 if not 10411 * @devid: per-port device ID or absolute device ID 10412 * @offset: byte offset into device I2C space 10413 * @len: byte length of I2C space data 10414 * @buf: buffer in which to return I2C data 10415 * 10416 * Reads the I2C data from the indicated device and location. 10417 */ 10418 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port, 10419 unsigned int devid, unsigned int offset, 10420 unsigned int len, u8 *buf) 10421 { 10422 struct fw_ldst_cmd ldst_cmd, ldst_rpl; 10423 unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data); 10424 int ret = 0; 10425 10426 if (len > I2C_PAGE_SIZE) 10427 return -EINVAL; 10428 10429 /* Dont allow reads that spans multiple pages */ 10430 if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE) 10431 return -EINVAL; 10432 10433 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10434 ldst_cmd.op_to_addrspace = 10435 cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 10436 FW_CMD_REQUEST_F | 10437 FW_CMD_READ_F | 10438 FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C)); 10439 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 10440 ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port); 10441 ldst_cmd.u.i2c.did = devid; 10442 10443 while (len > 0) { 10444 unsigned int i2c_len = (len < i2c_max) ? len : i2c_max; 10445 10446 ldst_cmd.u.i2c.boffset = offset; 10447 ldst_cmd.u.i2c.blen = i2c_len; 10448 10449 ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd), 10450 &ldst_rpl); 10451 if (ret) 10452 break; 10453 10454 memcpy(buf, ldst_rpl.u.i2c.data, i2c_len); 10455 offset += i2c_len; 10456 buf += i2c_len; 10457 len -= i2c_len; 10458 } 10459 10460 return ret; 10461 } 10462 10463 /** 10464 * t4_set_vlan_acl - Set a VLAN id for the specified VF 10465 * @adap: the adapter 10466 * @mbox: mailbox to use for the FW command 10467 * @vf: one of the VFs instantiated by the specified PF 10468 * @vlan: The vlanid to be set 10469 */ 10470 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf, 10471 u16 vlan) 10472 { 10473 struct fw_acl_vlan_cmd vlan_cmd; 10474 unsigned int enable; 10475 10476 enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0); 10477 memset(&vlan_cmd, 0, sizeof(vlan_cmd)); 10478 vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) | 10479 FW_CMD_REQUEST_F | 10480 FW_CMD_WRITE_F | 10481 FW_CMD_EXEC_F | 10482 FW_ACL_VLAN_CMD_PFN_V(adap->pf) | 10483 FW_ACL_VLAN_CMD_VFN_V(vf)); 10484 vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd)); 10485 /* Drop all packets that donot match vlan id */ 10486 vlan_cmd.dropnovlan_fm = (enable 10487 ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F | 10488 FW_ACL_VLAN_CMD_FM_F) : 0); 10489 if (enable != 0) { 10490 vlan_cmd.nvlan = 1; 10491 vlan_cmd.vlanid[0] = cpu_to_be16(vlan); 10492 } 10493 10494 return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL); 10495 } 10496 10497 /** 10498 * modify_device_id - Modifies the device ID of the Boot BIOS image 10499 * @device_id: the device ID to write. 10500 * @boot_data: the boot image to modify. 10501 * 10502 * Write the supplied device ID to the boot BIOS image. 10503 */ 10504 static void modify_device_id(int device_id, u8 *boot_data) 10505 { 10506 struct cxgb4_pcir_data *pcir_header; 10507 struct legacy_pci_rom_hdr *header; 10508 u8 *cur_header = boot_data; 10509 u16 pcir_offset; 10510 10511 /* Loop through all chained images and change the device ID's */ 10512 do { 10513 header = (struct legacy_pci_rom_hdr *)cur_header; 10514 pcir_offset = le16_to_cpu(header->pcir_offset); 10515 pcir_header = (struct cxgb4_pcir_data *)(cur_header + 10516 pcir_offset); 10517 10518 /** 10519 * Only modify the Device ID if code type is Legacy or HP. 10520 * 0x00: Okay to modify 10521 * 0x01: FCODE. Do not modify 10522 * 0x03: Okay to modify 10523 * 0x04-0xFF: Do not modify 10524 */ 10525 if (pcir_header->code_type == CXGB4_HDR_CODE1) { 10526 u8 csum = 0; 10527 int i; 10528 10529 /** 10530 * Modify Device ID to match current adatper 10531 */ 10532 pcir_header->device_id = cpu_to_le16(device_id); 10533 10534 /** 10535 * Set checksum temporarily to 0. 10536 * We will recalculate it later. 10537 */ 10538 header->cksum = 0x0; 10539 10540 /** 10541 * Calculate and update checksum 10542 */ 10543 for (i = 0; i < (header->size512 * 512); i++) 10544 csum += cur_header[i]; 10545 10546 /** 10547 * Invert summed value to create the checksum 10548 * Writing new checksum value directly to the boot data 10549 */ 10550 cur_header[7] = -csum; 10551 10552 } else if (pcir_header->code_type == CXGB4_HDR_CODE2) { 10553 /** 10554 * Modify Device ID to match current adatper 10555 */ 10556 pcir_header->device_id = cpu_to_le16(device_id); 10557 } 10558 10559 /** 10560 * Move header pointer up to the next image in the ROM. 10561 */ 10562 cur_header += header->size512 * 512; 10563 } while (!(pcir_header->indicator & CXGB4_HDR_INDI)); 10564 } 10565 10566 /** 10567 * t4_load_boot - download boot flash 10568 * @adap: the adapter 10569 * @boot_data: the boot image to write 10570 * @boot_addr: offset in flash to write boot_data 10571 * @size: image size 10572 * 10573 * Write the supplied boot image to the card's serial flash. 10574 * The boot image has the following sections: a 28-byte header and the 10575 * boot image. 10576 */ 10577 int t4_load_boot(struct adapter *adap, u8 *boot_data, 10578 unsigned int boot_addr, unsigned int size) 10579 { 10580 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10581 unsigned int boot_sector = (boot_addr * 1024); 10582 struct cxgb4_pci_exp_rom_header *header; 10583 struct cxgb4_pcir_data *pcir_header; 10584 int pcir_offset; 10585 unsigned int i; 10586 u16 device_id; 10587 int ret, addr; 10588 10589 /** 10590 * Make sure the boot image does not encroach on the firmware region 10591 */ 10592 if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) { 10593 dev_err(adap->pdev_dev, "boot image encroaching on firmware region\n"); 10594 return -EFBIG; 10595 } 10596 10597 /* Get boot header */ 10598 header = (struct cxgb4_pci_exp_rom_header *)boot_data; 10599 pcir_offset = le16_to_cpu(header->pcir_offset); 10600 /* PCIR Data Structure */ 10601 pcir_header = (struct cxgb4_pcir_data *)&boot_data[pcir_offset]; 10602 10603 /** 10604 * Perform some primitive sanity testing to avoid accidentally 10605 * writing garbage over the boot sectors. We ought to check for 10606 * more but it's not worth it for now ... 10607 */ 10608 if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) { 10609 dev_err(adap->pdev_dev, "boot image too small/large\n"); 10610 return -EFBIG; 10611 } 10612 10613 if (le16_to_cpu(header->signature) != BOOT_SIGNATURE) { 10614 dev_err(adap->pdev_dev, "Boot image missing signature\n"); 10615 return -EINVAL; 10616 } 10617 10618 /* Check PCI header signature */ 10619 if (le32_to_cpu(pcir_header->signature) != PCIR_SIGNATURE) { 10620 dev_err(adap->pdev_dev, "PCI header missing signature\n"); 10621 return -EINVAL; 10622 } 10623 10624 /* Check Vendor ID matches Chelsio ID*/ 10625 if (le16_to_cpu(pcir_header->vendor_id) != PCI_VENDOR_ID_CHELSIO) { 10626 dev_err(adap->pdev_dev, "Vendor ID missing signature\n"); 10627 return -EINVAL; 10628 } 10629 10630 /** 10631 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot, 10632 * and Boot configuration data sections. These 3 boot sections span 10633 * sectors 0 to 7 in flash and live right before the FW image location. 10634 */ 10635 i = DIV_ROUND_UP(size ? size : FLASH_FW_START, sf_sec_size); 10636 ret = t4_flash_erase_sectors(adap, boot_sector >> 16, 10637 (boot_sector >> 16) + i - 1); 10638 10639 /** 10640 * If size == 0 then we're simply erasing the FLASH sectors associated 10641 * with the on-adapter option ROM file 10642 */ 10643 if (ret || size == 0) 10644 goto out; 10645 /* Retrieve adapter's device ID */ 10646 pci_read_config_word(adap->pdev, PCI_DEVICE_ID, &device_id); 10647 /* Want to deal with PF 0 so I strip off PF 4 indicator */ 10648 device_id = device_id & 0xf0ff; 10649 10650 /* Check PCIE Device ID */ 10651 if (le16_to_cpu(pcir_header->device_id) != device_id) { 10652 /** 10653 * Change the device ID in the Boot BIOS image to match 10654 * the Device ID of the current adapter. 10655 */ 10656 modify_device_id(device_id, boot_data); 10657 } 10658 10659 /** 10660 * Skip over the first SF_PAGE_SIZE worth of data and write it after 10661 * we finish copying the rest of the boot image. This will ensure 10662 * that the BIOS boot header will only be written if the boot image 10663 * was written in full. 10664 */ 10665 addr = boot_sector; 10666 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 10667 addr += SF_PAGE_SIZE; 10668 boot_data += SF_PAGE_SIZE; 10669 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 10670 false); 10671 if (ret) 10672 goto out; 10673 } 10674 10675 ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE, 10676 (const u8 *)header, false); 10677 10678 out: 10679 if (ret) 10680 dev_err(adap->pdev_dev, "boot image load failed, error %d\n", 10681 ret); 10682 return ret; 10683 } 10684 10685 /** 10686 * t4_flash_bootcfg_addr - return the address of the flash 10687 * optionrom configuration 10688 * @adapter: the adapter 10689 * 10690 * Return the address within the flash where the OptionROM Configuration 10691 * is stored, or an error if the device FLASH is too small to contain 10692 * a OptionROM Configuration. 10693 */ 10694 static int t4_flash_bootcfg_addr(struct adapter *adapter) 10695 { 10696 /** 10697 * If the device FLASH isn't large enough to hold a Firmware 10698 * Configuration File, return an error. 10699 */ 10700 if (adapter->params.sf_size < 10701 FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE) 10702 return -ENOSPC; 10703 10704 return FLASH_BOOTCFG_START; 10705 } 10706 10707 int t4_load_bootcfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 10708 { 10709 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10710 struct cxgb4_bootcfg_data *header; 10711 unsigned int flash_cfg_start_sec; 10712 unsigned int addr, npad; 10713 int ret, i, n, cfg_addr; 10714 10715 cfg_addr = t4_flash_bootcfg_addr(adap); 10716 if (cfg_addr < 0) 10717 return cfg_addr; 10718 10719 addr = cfg_addr; 10720 flash_cfg_start_sec = addr / SF_SEC_SIZE; 10721 10722 if (size > FLASH_BOOTCFG_MAX_SIZE) { 10723 dev_err(adap->pdev_dev, "bootcfg file too large, max is %u bytes\n", 10724 FLASH_BOOTCFG_MAX_SIZE); 10725 return -EFBIG; 10726 } 10727 10728 header = (struct cxgb4_bootcfg_data *)cfg_data; 10729 if (le16_to_cpu(header->signature) != BOOT_CFG_SIG) { 10730 dev_err(adap->pdev_dev, "Wrong bootcfg signature\n"); 10731 ret = -EINVAL; 10732 goto out; 10733 } 10734 10735 i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE, 10736 sf_sec_size); 10737 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 10738 flash_cfg_start_sec + i - 1); 10739 10740 /** 10741 * If size == 0 then we're simply erasing the FLASH sectors associated 10742 * with the on-adapter OptionROM Configuration File. 10743 */ 10744 if (ret || size == 0) 10745 goto out; 10746 10747 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 10748 for (i = 0; i < size; i += SF_PAGE_SIZE) { 10749 n = min_t(u32, size - i, SF_PAGE_SIZE); 10750 10751 ret = t4_write_flash(adap, addr, n, cfg_data, false); 10752 if (ret) 10753 goto out; 10754 10755 addr += SF_PAGE_SIZE; 10756 cfg_data += SF_PAGE_SIZE; 10757 } 10758 10759 npad = ((size + 4 - 1) & ~3) - size; 10760 for (i = 0; i < npad; i++) { 10761 u8 data = 0; 10762 10763 ret = t4_write_flash(adap, cfg_addr + size + i, 1, &data, 10764 false); 10765 if (ret) 10766 goto out; 10767 } 10768 10769 out: 10770 if (ret) 10771 dev_err(adap->pdev_dev, "boot config data %s failed %d\n", 10772 (size == 0 ? "clear" : "download"), ret); 10773 return ret; 10774 } 10775