1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/delay.h> 36 #include "cxgb4.h" 37 #include "t4_regs.h" 38 #include "t4_values.h" 39 #include "t4fw_api.h" 40 #include "t4fw_version.h" 41 42 /** 43 * t4_wait_op_done_val - wait until an operation is completed 44 * @adapter: the adapter performing the operation 45 * @reg: the register to check for completion 46 * @mask: a single-bit field within @reg that indicates completion 47 * @polarity: the value of the field when the operation is completed 48 * @attempts: number of check iterations 49 * @delay: delay in usecs between iterations 50 * @valp: where to store the value of the register at completion time 51 * 52 * Wait until an operation is completed by checking a bit in a register 53 * up to @attempts times. If @valp is not NULL the value of the register 54 * at the time it indicated completion is stored there. Returns 0 if the 55 * operation completes and -EAGAIN otherwise. 56 */ 57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 58 int polarity, int attempts, int delay, u32 *valp) 59 { 60 while (1) { 61 u32 val = t4_read_reg(adapter, reg); 62 63 if (!!(val & mask) == polarity) { 64 if (valp) 65 *valp = val; 66 return 0; 67 } 68 if (--attempts == 0) 69 return -EAGAIN; 70 if (delay) 71 udelay(delay); 72 } 73 } 74 75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 76 int polarity, int attempts, int delay) 77 { 78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 79 delay, NULL); 80 } 81 82 /** 83 * t4_set_reg_field - set a register field to a value 84 * @adapter: the adapter to program 85 * @addr: the register address 86 * @mask: specifies the portion of the register to modify 87 * @val: the new value for the register field 88 * 89 * Sets a register field specified by the supplied mask to the 90 * given value. 91 */ 92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 93 u32 val) 94 { 95 u32 v = t4_read_reg(adapter, addr) & ~mask; 96 97 t4_write_reg(adapter, addr, v | val); 98 (void) t4_read_reg(adapter, addr); /* flush */ 99 } 100 101 /** 102 * t4_read_indirect - read indirectly addressed registers 103 * @adap: the adapter 104 * @addr_reg: register holding the indirect address 105 * @data_reg: register holding the value of the indirect register 106 * @vals: where the read register values are stored 107 * @nregs: how many indirect registers to read 108 * @start_idx: index of first indirect register to read 109 * 110 * Reads registers that are accessed indirectly through an address/data 111 * register pair. 112 */ 113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 114 unsigned int data_reg, u32 *vals, 115 unsigned int nregs, unsigned int start_idx) 116 { 117 while (nregs--) { 118 t4_write_reg(adap, addr_reg, start_idx); 119 *vals++ = t4_read_reg(adap, data_reg); 120 start_idx++; 121 } 122 } 123 124 /** 125 * t4_write_indirect - write indirectly addressed registers 126 * @adap: the adapter 127 * @addr_reg: register holding the indirect addresses 128 * @data_reg: register holding the value for the indirect registers 129 * @vals: values to write 130 * @nregs: how many indirect registers to write 131 * @start_idx: address of first indirect register to write 132 * 133 * Writes a sequential block of registers that are accessed indirectly 134 * through an address/data register pair. 135 */ 136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 137 unsigned int data_reg, const u32 *vals, 138 unsigned int nregs, unsigned int start_idx) 139 { 140 while (nregs--) { 141 t4_write_reg(adap, addr_reg, start_idx++); 142 t4_write_reg(adap, data_reg, *vals++); 143 } 144 } 145 146 /* 147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor 148 * mechanism. This guarantees that we get the real value even if we're 149 * operating within a Virtual Machine and the Hypervisor is trapping our 150 * Configuration Space accesses. 151 */ 152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val) 153 { 154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg); 155 156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 157 req |= ENABLE_F; 158 else 159 req |= T6_ENABLE_F; 160 161 if (is_t4(adap->params.chip)) 162 req |= LOCALCFG_F; 163 164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req); 165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A); 166 167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a 168 * Configuration Space read. (None of the other fields matter when 169 * ENABLE is 0 so a simple register write is easier than a 170 * read-modify-write via t4_set_reg_field().) 171 */ 172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0); 173 } 174 175 /* 176 * t4_report_fw_error - report firmware error 177 * @adap: the adapter 178 * 179 * The adapter firmware can indicate error conditions to the host. 180 * If the firmware has indicated an error, print out the reason for 181 * the firmware error. 182 */ 183 static void t4_report_fw_error(struct adapter *adap) 184 { 185 static const char *const reason[] = { 186 "Crash", /* PCIE_FW_EVAL_CRASH */ 187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */ 188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */ 189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */ 190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ 191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ 192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ 193 "Reserved", /* reserved */ 194 }; 195 u32 pcie_fw; 196 197 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 198 if (pcie_fw & PCIE_FW_ERR_F) { 199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n", 200 reason[PCIE_FW_EVAL_G(pcie_fw)]); 201 adap->flags &= ~CXGB4_FW_OK; 202 } 203 } 204 205 /* 206 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 207 */ 208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 209 u32 mbox_addr) 210 { 211 for ( ; nflit; nflit--, mbox_addr += 8) 212 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 213 } 214 215 /* 216 * Handle a FW assertion reported in a mailbox. 217 */ 218 static void fw_asrt(struct adapter *adap, u32 mbox_addr) 219 { 220 struct fw_debug_cmd asrt; 221 222 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); 223 dev_alert(adap->pdev_dev, 224 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 225 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line), 226 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y)); 227 } 228 229 /** 230 * t4_record_mbox - record a Firmware Mailbox Command/Reply in the log 231 * @adapter: the adapter 232 * @cmd: the Firmware Mailbox Command or Reply 233 * @size: command length in bytes 234 * @access: the time (ms) needed to access the Firmware Mailbox 235 * @execute: the time (ms) the command spent being executed 236 */ 237 static void t4_record_mbox(struct adapter *adapter, 238 const __be64 *cmd, unsigned int size, 239 int access, int execute) 240 { 241 struct mbox_cmd_log *log = adapter->mbox_log; 242 struct mbox_cmd *entry; 243 int i; 244 245 entry = mbox_cmd_log_entry(log, log->cursor++); 246 if (log->cursor == log->size) 247 log->cursor = 0; 248 249 for (i = 0; i < size / 8; i++) 250 entry->cmd[i] = be64_to_cpu(cmd[i]); 251 while (i < MBOX_LEN / 8) 252 entry->cmd[i++] = 0; 253 entry->timestamp = jiffies; 254 entry->seqno = log->seqno++; 255 entry->access = access; 256 entry->execute = execute; 257 } 258 259 /** 260 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox 261 * @adap: the adapter 262 * @mbox: index of the mailbox to use 263 * @cmd: the command to write 264 * @size: command length in bytes 265 * @rpl: where to optionally store the reply 266 * @sleep_ok: if true we may sleep while awaiting command completion 267 * @timeout: time to wait for command to finish before timing out 268 * 269 * Sends the given command to FW through the selected mailbox and waits 270 * for the FW to execute the command. If @rpl is not %NULL it is used to 271 * store the FW's reply to the command. The command and its optional 272 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms 273 * to respond. @sleep_ok determines whether we may sleep while awaiting 274 * the response. If sleeping is allowed we use progressive backoff 275 * otherwise we spin. 276 * 277 * The return value is 0 on success or a negative errno on failure. A 278 * failure can happen either because we are not able to execute the 279 * command or FW executes it but signals an error. In the latter case 280 * the return value is the error code indicated by FW (negated). 281 */ 282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, 283 int size, void *rpl, bool sleep_ok, int timeout) 284 { 285 static const int delay[] = { 286 1, 1, 3, 5, 10, 10, 20, 50, 100, 200 287 }; 288 289 struct mbox_list entry; 290 u16 access = 0; 291 u16 execute = 0; 292 u32 v; 293 u64 res; 294 int i, ms, delay_idx, ret; 295 const __be64 *p = cmd; 296 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); 297 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A); 298 __be64 cmd_rpl[MBOX_LEN / 8]; 299 u32 pcie_fw; 300 301 if ((size & 15) || size > MBOX_LEN) 302 return -EINVAL; 303 304 /* 305 * If the device is off-line, as in EEH, commands will time out. 306 * Fail them early so we don't waste time waiting. 307 */ 308 if (adap->pdev->error_state != pci_channel_io_normal) 309 return -EIO; 310 311 /* If we have a negative timeout, that implies that we can't sleep. */ 312 if (timeout < 0) { 313 sleep_ok = false; 314 timeout = -timeout; 315 } 316 317 /* Queue ourselves onto the mailbox access list. When our entry is at 318 * the front of the list, we have rights to access the mailbox. So we 319 * wait [for a while] till we're at the front [or bail out with an 320 * EBUSY] ... 321 */ 322 spin_lock_bh(&adap->mbox_lock); 323 list_add_tail(&entry.list, &adap->mlist.list); 324 spin_unlock_bh(&adap->mbox_lock); 325 326 delay_idx = 0; 327 ms = delay[0]; 328 329 for (i = 0; ; i += ms) { 330 /* If we've waited too long, return a busy indication. This 331 * really ought to be based on our initial position in the 332 * mailbox access list but this is a start. We very rarely 333 * contend on access to the mailbox ... 334 */ 335 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 336 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) { 337 spin_lock_bh(&adap->mbox_lock); 338 list_del(&entry.list); 339 spin_unlock_bh(&adap->mbox_lock); 340 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY; 341 t4_record_mbox(adap, cmd, size, access, ret); 342 return ret; 343 } 344 345 /* If we're at the head, break out and start the mailbox 346 * protocol. 347 */ 348 if (list_first_entry(&adap->mlist.list, struct mbox_list, 349 list) == &entry) 350 break; 351 352 /* Delay for a bit before checking again ... */ 353 if (sleep_ok) { 354 ms = delay[delay_idx]; /* last element may repeat */ 355 if (delay_idx < ARRAY_SIZE(delay) - 1) 356 delay_idx++; 357 msleep(ms); 358 } else { 359 mdelay(ms); 360 } 361 } 362 363 /* Loop trying to get ownership of the mailbox. Return an error 364 * if we can't gain ownership. 365 */ 366 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 367 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 368 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 369 if (v != MBOX_OWNER_DRV) { 370 spin_lock_bh(&adap->mbox_lock); 371 list_del(&entry.list); 372 spin_unlock_bh(&adap->mbox_lock); 373 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT; 374 t4_record_mbox(adap, cmd, size, access, ret); 375 return ret; 376 } 377 378 /* Copy in the new mailbox command and send it on its way ... */ 379 t4_record_mbox(adap, cmd, size, access, 0); 380 for (i = 0; i < size; i += 8) 381 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++)); 382 383 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW)); 384 t4_read_reg(adap, ctl_reg); /* flush write */ 385 386 delay_idx = 0; 387 ms = delay[0]; 388 389 for (i = 0; 390 !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) && 391 i < timeout; 392 i += ms) { 393 if (sleep_ok) { 394 ms = delay[delay_idx]; /* last element may repeat */ 395 if (delay_idx < ARRAY_SIZE(delay) - 1) 396 delay_idx++; 397 msleep(ms); 398 } else 399 mdelay(ms); 400 401 v = t4_read_reg(adap, ctl_reg); 402 if (MBOWNER_G(v) == MBOX_OWNER_DRV) { 403 if (!(v & MBMSGVALID_F)) { 404 t4_write_reg(adap, ctl_reg, 0); 405 continue; 406 } 407 408 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg); 409 res = be64_to_cpu(cmd_rpl[0]); 410 411 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) { 412 fw_asrt(adap, data_reg); 413 res = FW_CMD_RETVAL_V(EIO); 414 } else if (rpl) { 415 memcpy(rpl, cmd_rpl, size); 416 } 417 418 t4_write_reg(adap, ctl_reg, 0); 419 420 execute = i + ms; 421 t4_record_mbox(adap, cmd_rpl, 422 MBOX_LEN, access, execute); 423 spin_lock_bh(&adap->mbox_lock); 424 list_del(&entry.list); 425 spin_unlock_bh(&adap->mbox_lock); 426 return -FW_CMD_RETVAL_G((int)res); 427 } 428 } 429 430 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT; 431 t4_record_mbox(adap, cmd, size, access, ret); 432 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n", 433 *(const u8 *)cmd, mbox); 434 t4_report_fw_error(adap); 435 spin_lock_bh(&adap->mbox_lock); 436 list_del(&entry.list); 437 spin_unlock_bh(&adap->mbox_lock); 438 t4_fatal_err(adap); 439 return ret; 440 } 441 442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 443 void *rpl, bool sleep_ok) 444 { 445 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok, 446 FW_CMD_MAX_TIMEOUT); 447 } 448 449 static int t4_edc_err_read(struct adapter *adap, int idx) 450 { 451 u32 edc_ecc_err_addr_reg; 452 u32 rdata_reg; 453 454 if (is_t4(adap->params.chip)) { 455 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); 456 return 0; 457 } 458 if (idx != 0 && idx != 1) { 459 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); 460 return 0; 461 } 462 463 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx); 464 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx); 465 466 CH_WARN(adap, 467 "edc%d err addr 0x%x: 0x%x.\n", 468 idx, edc_ecc_err_addr_reg, 469 t4_read_reg(adap, edc_ecc_err_addr_reg)); 470 CH_WARN(adap, 471 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", 472 rdata_reg, 473 (unsigned long long)t4_read_reg64(adap, rdata_reg), 474 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8), 475 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16), 476 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24), 477 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32), 478 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40), 479 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48), 480 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56), 481 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64)); 482 483 return 0; 484 } 485 486 /** 487 * t4_memory_rw_init - Get memory window relative offset, base, and size. 488 * @adap: the adapter 489 * @win: PCI-E Memory Window to use 490 * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC 491 * @mem_off: memory relative offset with respect to @mtype. 492 * @mem_base: configured memory base address. 493 * @mem_aperture: configured memory window aperture. 494 * 495 * Get the configured memory window's relative offset, base, and size. 496 */ 497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off, 498 u32 *mem_base, u32 *mem_aperture) 499 { 500 u32 edc_size, mc_size, mem_reg; 501 502 /* Offset into the region of memory which is being accessed 503 * MEM_EDC0 = 0 504 * MEM_EDC1 = 1 505 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller 506 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5) 507 * MEM_HMA = 4 508 */ 509 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A)); 510 if (mtype == MEM_HMA) { 511 *mem_off = 2 * (edc_size * 1024 * 1024); 512 } else if (mtype != MEM_MC1) { 513 *mem_off = (mtype * (edc_size * 1024 * 1024)); 514 } else { 515 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap, 516 MA_EXT_MEMORY0_BAR_A)); 517 *mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; 518 } 519 520 /* Each PCI-E Memory Window is programmed with a window size -- or 521 * "aperture" -- which controls the granularity of its mapping onto 522 * adapter memory. We need to grab that aperture in order to know 523 * how to use the specified window. The window is also programmed 524 * with the base address of the Memory Window in BAR0's address 525 * space. For T4 this is an absolute PCI-E Bus Address. For T5 526 * the address is relative to BAR0. 527 */ 528 mem_reg = t4_read_reg(adap, 529 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 530 win)); 531 /* a dead adapter will return 0xffffffff for PIO reads */ 532 if (mem_reg == 0xffffffff) 533 return -ENXIO; 534 535 *mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X); 536 *mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X; 537 if (is_t4(adap->params.chip)) 538 *mem_base -= adap->t4_bar0; 539 540 return 0; 541 } 542 543 /** 544 * t4_memory_update_win - Move memory window to specified address. 545 * @adap: the adapter 546 * @win: PCI-E Memory Window to use 547 * @addr: location to move. 548 * 549 * Move memory window to specified address. 550 */ 551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr) 552 { 553 t4_write_reg(adap, 554 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win), 555 addr); 556 /* Read it back to ensure that changes propagate before we 557 * attempt to use the new value. 558 */ 559 t4_read_reg(adap, 560 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); 561 } 562 563 /** 564 * t4_memory_rw_residual - Read/Write residual data. 565 * @adap: the adapter 566 * @off: relative offset within residual to start read/write. 567 * @addr: address within indicated memory type. 568 * @buf: host memory buffer 569 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 570 * 571 * Read/Write residual data less than 32-bits. 572 */ 573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf, 574 int dir) 575 { 576 union { 577 u32 word; 578 char byte[4]; 579 } last; 580 unsigned char *bp; 581 int i; 582 583 if (dir == T4_MEMORY_READ) { 584 last.word = le32_to_cpu((__force __le32) 585 t4_read_reg(adap, addr)); 586 for (bp = (unsigned char *)buf, i = off; i < 4; i++) 587 bp[i] = last.byte[i]; 588 } else { 589 last.word = *buf; 590 for (i = off; i < 4; i++) 591 last.byte[i] = 0; 592 t4_write_reg(adap, addr, 593 (__force u32)cpu_to_le32(last.word)); 594 } 595 } 596 597 /** 598 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window 599 * @adap: the adapter 600 * @win: PCI-E Memory Window to use 601 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 602 * @addr: address within indicated memory type 603 * @len: amount of memory to transfer 604 * @hbuf: host memory buffer 605 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 606 * 607 * Reads/writes an [almost] arbitrary memory region in the firmware: the 608 * firmware memory address and host buffer must be aligned on 32-bit 609 * boundaries; the length may be arbitrary. The memory is transferred as 610 * a raw byte sequence from/to the firmware's memory. If this memory 611 * contains data structures which contain multi-byte integers, it's the 612 * caller's responsibility to perform appropriate byte order conversions. 613 */ 614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr, 615 u32 len, void *hbuf, int dir) 616 { 617 u32 pos, offset, resid, memoffset; 618 u32 win_pf, mem_aperture, mem_base; 619 u32 *buf; 620 int ret; 621 622 /* Argument sanity checks ... 623 */ 624 if (addr & 0x3 || (uintptr_t)hbuf & 0x3) 625 return -EINVAL; 626 buf = (u32 *)hbuf; 627 628 /* It's convenient to be able to handle lengths which aren't a 629 * multiple of 32-bits because we often end up transferring files to 630 * the firmware. So we'll handle that by normalizing the length here 631 * and then handling any residual transfer at the end. 632 */ 633 resid = len & 0x3; 634 len -= resid; 635 636 ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base, 637 &mem_aperture); 638 if (ret) 639 return ret; 640 641 /* Determine the PCIE_MEM_ACCESS_OFFSET */ 642 addr = addr + memoffset; 643 644 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf); 645 646 /* Calculate our initial PCI-E Memory Window Position and Offset into 647 * that Window. 648 */ 649 pos = addr & ~(mem_aperture - 1); 650 offset = addr - pos; 651 652 /* Set up initial PCI-E Memory Window to cover the start of our 653 * transfer. 654 */ 655 t4_memory_update_win(adap, win, pos | win_pf); 656 657 /* Transfer data to/from the adapter as long as there's an integral 658 * number of 32-bit transfers to complete. 659 * 660 * A note on Endianness issues: 661 * 662 * The "register" reads and writes below from/to the PCI-E Memory 663 * Window invoke the standard adapter Big-Endian to PCI-E Link 664 * Little-Endian "swizzel." As a result, if we have the following 665 * data in adapter memory: 666 * 667 * Memory: ... | b0 | b1 | b2 | b3 | ... 668 * Address: i+0 i+1 i+2 i+3 669 * 670 * Then a read of the adapter memory via the PCI-E Memory Window 671 * will yield: 672 * 673 * x = readl(i) 674 * 31 0 675 * [ b3 | b2 | b1 | b0 ] 676 * 677 * If this value is stored into local memory on a Little-Endian system 678 * it will show up correctly in local memory as: 679 * 680 * ( ..., b0, b1, b2, b3, ... ) 681 * 682 * But on a Big-Endian system, the store will show up in memory 683 * incorrectly swizzled as: 684 * 685 * ( ..., b3, b2, b1, b0, ... ) 686 * 687 * So we need to account for this in the reads and writes to the 688 * PCI-E Memory Window below by undoing the register read/write 689 * swizzels. 690 */ 691 while (len > 0) { 692 if (dir == T4_MEMORY_READ) 693 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap, 694 mem_base + offset)); 695 else 696 t4_write_reg(adap, mem_base + offset, 697 (__force u32)cpu_to_le32(*buf++)); 698 offset += sizeof(__be32); 699 len -= sizeof(__be32); 700 701 /* If we've reached the end of our current window aperture, 702 * move the PCI-E Memory Window on to the next. Note that 703 * doing this here after "len" may be 0 allows us to set up 704 * the PCI-E Memory Window for a possible final residual 705 * transfer below ... 706 */ 707 if (offset == mem_aperture) { 708 pos += mem_aperture; 709 offset = 0; 710 t4_memory_update_win(adap, win, pos | win_pf); 711 } 712 } 713 714 /* If the original transfer had a length which wasn't a multiple of 715 * 32-bits, now's where we need to finish off the transfer of the 716 * residual amount. The PCI-E Memory Window has already been moved 717 * above (if necessary) to cover this final transfer. 718 */ 719 if (resid) 720 t4_memory_rw_residual(adap, resid, mem_base + offset, 721 (u8 *)buf, dir); 722 723 return 0; 724 } 725 726 /* Return the specified PCI-E Configuration Space register from our Physical 727 * Function. We try first via a Firmware LDST Command since we prefer to let 728 * the firmware own all of these registers, but if that fails we go for it 729 * directly ourselves. 730 */ 731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg) 732 { 733 u32 val, ldst_addrspace; 734 735 /* If fw_attach != 0, construct and send the Firmware LDST Command to 736 * retrieve the specified PCI-E Configuration Space register. 737 */ 738 struct fw_ldst_cmd ldst_cmd; 739 int ret; 740 741 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 742 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE); 743 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 744 FW_CMD_REQUEST_F | 745 FW_CMD_READ_F | 746 ldst_addrspace); 747 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 748 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1); 749 ldst_cmd.u.pcie.ctrl_to_fn = 750 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf)); 751 ldst_cmd.u.pcie.r = reg; 752 753 /* If the LDST Command succeeds, return the result, otherwise 754 * fall through to reading it directly ourselves ... 755 */ 756 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 757 &ldst_cmd); 758 if (ret == 0) 759 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]); 760 else 761 /* Read the desired Configuration Space register via the PCI-E 762 * Backdoor mechanism. 763 */ 764 t4_hw_pci_read_cfg4(adap, reg, &val); 765 return val; 766 } 767 768 /* Get the window based on base passed to it. 769 * Window aperture is currently unhandled, but there is no use case for it 770 * right now 771 */ 772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask, 773 u32 memwin_base) 774 { 775 u32 ret; 776 777 if (is_t4(adap->params.chip)) { 778 u32 bar0; 779 780 /* Truncation intentional: we only read the bottom 32-bits of 781 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor 782 * mechanism to read BAR0 instead of using 783 * pci_resource_start() because we could be operating from 784 * within a Virtual Machine which is trapping our accesses to 785 * our Configuration Space and we need to set up the PCI-E 786 * Memory Window decoders with the actual addresses which will 787 * be coming across the PCI-E link. 788 */ 789 bar0 = t4_read_pcie_cfg4(adap, pci_base); 790 bar0 &= pci_mask; 791 adap->t4_bar0 = bar0; 792 793 ret = bar0 + memwin_base; 794 } else { 795 /* For T5, only relative offset inside the PCIe BAR is passed */ 796 ret = memwin_base; 797 } 798 return ret; 799 } 800 801 /* Get the default utility window (win0) used by everyone */ 802 u32 t4_get_util_window(struct adapter *adap) 803 { 804 return t4_get_window(adap, PCI_BASE_ADDRESS_0, 805 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE); 806 } 807 808 /* Set up memory window for accessing adapter memory ranges. (Read 809 * back MA register to ensure that changes propagate before we attempt 810 * to use the new values.) 811 */ 812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window) 813 { 814 t4_write_reg(adap, 815 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window), 816 memwin_base | BIR_V(0) | 817 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X)); 818 t4_read_reg(adap, 819 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window)); 820 } 821 822 /** 823 * t4_get_regs_len - return the size of the chips register set 824 * @adapter: the adapter 825 * 826 * Returns the size of the chip's BAR0 register space. 827 */ 828 unsigned int t4_get_regs_len(struct adapter *adapter) 829 { 830 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 831 832 switch (chip_version) { 833 case CHELSIO_T4: 834 return T4_REGMAP_SIZE; 835 836 case CHELSIO_T5: 837 case CHELSIO_T6: 838 return T5_REGMAP_SIZE; 839 } 840 841 dev_err(adapter->pdev_dev, 842 "Unsupported chip version %d\n", chip_version); 843 return 0; 844 } 845 846 /** 847 * t4_get_regs - read chip registers into provided buffer 848 * @adap: the adapter 849 * @buf: register buffer 850 * @buf_size: size (in bytes) of register buffer 851 * 852 * If the provided register buffer isn't large enough for the chip's 853 * full register range, the register dump will be truncated to the 854 * register buffer's size. 855 */ 856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size) 857 { 858 static const unsigned int t4_reg_ranges[] = { 859 0x1008, 0x1108, 860 0x1180, 0x1184, 861 0x1190, 0x1194, 862 0x11a0, 0x11a4, 863 0x11b0, 0x11b4, 864 0x11fc, 0x123c, 865 0x1300, 0x173c, 866 0x1800, 0x18fc, 867 0x3000, 0x30d8, 868 0x30e0, 0x30e4, 869 0x30ec, 0x5910, 870 0x5920, 0x5924, 871 0x5960, 0x5960, 872 0x5968, 0x5968, 873 0x5970, 0x5970, 874 0x5978, 0x5978, 875 0x5980, 0x5980, 876 0x5988, 0x5988, 877 0x5990, 0x5990, 878 0x5998, 0x5998, 879 0x59a0, 0x59d4, 880 0x5a00, 0x5ae0, 881 0x5ae8, 0x5ae8, 882 0x5af0, 0x5af0, 883 0x5af8, 0x5af8, 884 0x6000, 0x6098, 885 0x6100, 0x6150, 886 0x6200, 0x6208, 887 0x6240, 0x6248, 888 0x6280, 0x62b0, 889 0x62c0, 0x6338, 890 0x6370, 0x638c, 891 0x6400, 0x643c, 892 0x6500, 0x6524, 893 0x6a00, 0x6a04, 894 0x6a14, 0x6a38, 895 0x6a60, 0x6a70, 896 0x6a78, 0x6a78, 897 0x6b00, 0x6b0c, 898 0x6b1c, 0x6b84, 899 0x6bf0, 0x6bf8, 900 0x6c00, 0x6c0c, 901 0x6c1c, 0x6c84, 902 0x6cf0, 0x6cf8, 903 0x6d00, 0x6d0c, 904 0x6d1c, 0x6d84, 905 0x6df0, 0x6df8, 906 0x6e00, 0x6e0c, 907 0x6e1c, 0x6e84, 908 0x6ef0, 0x6ef8, 909 0x6f00, 0x6f0c, 910 0x6f1c, 0x6f84, 911 0x6ff0, 0x6ff8, 912 0x7000, 0x700c, 913 0x701c, 0x7084, 914 0x70f0, 0x70f8, 915 0x7100, 0x710c, 916 0x711c, 0x7184, 917 0x71f0, 0x71f8, 918 0x7200, 0x720c, 919 0x721c, 0x7284, 920 0x72f0, 0x72f8, 921 0x7300, 0x730c, 922 0x731c, 0x7384, 923 0x73f0, 0x73f8, 924 0x7400, 0x7450, 925 0x7500, 0x7530, 926 0x7600, 0x760c, 927 0x7614, 0x761c, 928 0x7680, 0x76cc, 929 0x7700, 0x7798, 930 0x77c0, 0x77fc, 931 0x7900, 0x79fc, 932 0x7b00, 0x7b58, 933 0x7b60, 0x7b84, 934 0x7b8c, 0x7c38, 935 0x7d00, 0x7d38, 936 0x7d40, 0x7d80, 937 0x7d8c, 0x7ddc, 938 0x7de4, 0x7e04, 939 0x7e10, 0x7e1c, 940 0x7e24, 0x7e38, 941 0x7e40, 0x7e44, 942 0x7e4c, 0x7e78, 943 0x7e80, 0x7ea4, 944 0x7eac, 0x7edc, 945 0x7ee8, 0x7efc, 946 0x8dc0, 0x8e04, 947 0x8e10, 0x8e1c, 948 0x8e30, 0x8e78, 949 0x8ea0, 0x8eb8, 950 0x8ec0, 0x8f6c, 951 0x8fc0, 0x9008, 952 0x9010, 0x9058, 953 0x9060, 0x9060, 954 0x9068, 0x9074, 955 0x90fc, 0x90fc, 956 0x9400, 0x9408, 957 0x9410, 0x9458, 958 0x9600, 0x9600, 959 0x9608, 0x9638, 960 0x9640, 0x96bc, 961 0x9800, 0x9808, 962 0x9820, 0x983c, 963 0x9850, 0x9864, 964 0x9c00, 0x9c6c, 965 0x9c80, 0x9cec, 966 0x9d00, 0x9d6c, 967 0x9d80, 0x9dec, 968 0x9e00, 0x9e6c, 969 0x9e80, 0x9eec, 970 0x9f00, 0x9f6c, 971 0x9f80, 0x9fec, 972 0xd004, 0xd004, 973 0xd010, 0xd03c, 974 0xdfc0, 0xdfe0, 975 0xe000, 0xea7c, 976 0xf000, 0x11110, 977 0x11118, 0x11190, 978 0x19040, 0x1906c, 979 0x19078, 0x19080, 980 0x1908c, 0x190e4, 981 0x190f0, 0x190f8, 982 0x19100, 0x19110, 983 0x19120, 0x19124, 984 0x19150, 0x19194, 985 0x1919c, 0x191b0, 986 0x191d0, 0x191e8, 987 0x19238, 0x1924c, 988 0x193f8, 0x1943c, 989 0x1944c, 0x19474, 990 0x19490, 0x194e0, 991 0x194f0, 0x194f8, 992 0x19800, 0x19c08, 993 0x19c10, 0x19c90, 994 0x19ca0, 0x19ce4, 995 0x19cf0, 0x19d40, 996 0x19d50, 0x19d94, 997 0x19da0, 0x19de8, 998 0x19df0, 0x19e40, 999 0x19e50, 0x19e90, 1000 0x19ea0, 0x19f4c, 1001 0x1a000, 0x1a004, 1002 0x1a010, 0x1a06c, 1003 0x1a0b0, 0x1a0e4, 1004 0x1a0ec, 0x1a0f4, 1005 0x1a100, 0x1a108, 1006 0x1a114, 0x1a120, 1007 0x1a128, 0x1a130, 1008 0x1a138, 0x1a138, 1009 0x1a190, 0x1a1c4, 1010 0x1a1fc, 0x1a1fc, 1011 0x1e040, 0x1e04c, 1012 0x1e284, 0x1e28c, 1013 0x1e2c0, 0x1e2c0, 1014 0x1e2e0, 0x1e2e0, 1015 0x1e300, 0x1e384, 1016 0x1e3c0, 0x1e3c8, 1017 0x1e440, 0x1e44c, 1018 0x1e684, 0x1e68c, 1019 0x1e6c0, 0x1e6c0, 1020 0x1e6e0, 0x1e6e0, 1021 0x1e700, 0x1e784, 1022 0x1e7c0, 0x1e7c8, 1023 0x1e840, 0x1e84c, 1024 0x1ea84, 0x1ea8c, 1025 0x1eac0, 0x1eac0, 1026 0x1eae0, 0x1eae0, 1027 0x1eb00, 0x1eb84, 1028 0x1ebc0, 0x1ebc8, 1029 0x1ec40, 0x1ec4c, 1030 0x1ee84, 0x1ee8c, 1031 0x1eec0, 0x1eec0, 1032 0x1eee0, 0x1eee0, 1033 0x1ef00, 0x1ef84, 1034 0x1efc0, 0x1efc8, 1035 0x1f040, 0x1f04c, 1036 0x1f284, 0x1f28c, 1037 0x1f2c0, 0x1f2c0, 1038 0x1f2e0, 0x1f2e0, 1039 0x1f300, 0x1f384, 1040 0x1f3c0, 0x1f3c8, 1041 0x1f440, 0x1f44c, 1042 0x1f684, 0x1f68c, 1043 0x1f6c0, 0x1f6c0, 1044 0x1f6e0, 0x1f6e0, 1045 0x1f700, 0x1f784, 1046 0x1f7c0, 0x1f7c8, 1047 0x1f840, 0x1f84c, 1048 0x1fa84, 0x1fa8c, 1049 0x1fac0, 0x1fac0, 1050 0x1fae0, 0x1fae0, 1051 0x1fb00, 0x1fb84, 1052 0x1fbc0, 0x1fbc8, 1053 0x1fc40, 0x1fc4c, 1054 0x1fe84, 0x1fe8c, 1055 0x1fec0, 0x1fec0, 1056 0x1fee0, 0x1fee0, 1057 0x1ff00, 0x1ff84, 1058 0x1ffc0, 0x1ffc8, 1059 0x20000, 0x2002c, 1060 0x20100, 0x2013c, 1061 0x20190, 0x201a0, 1062 0x201a8, 0x201b8, 1063 0x201c4, 0x201c8, 1064 0x20200, 0x20318, 1065 0x20400, 0x204b4, 1066 0x204c0, 0x20528, 1067 0x20540, 0x20614, 1068 0x21000, 0x21040, 1069 0x2104c, 0x21060, 1070 0x210c0, 0x210ec, 1071 0x21200, 0x21268, 1072 0x21270, 0x21284, 1073 0x212fc, 0x21388, 1074 0x21400, 0x21404, 1075 0x21500, 0x21500, 1076 0x21510, 0x21518, 1077 0x2152c, 0x21530, 1078 0x2153c, 0x2153c, 1079 0x21550, 0x21554, 1080 0x21600, 0x21600, 1081 0x21608, 0x2161c, 1082 0x21624, 0x21628, 1083 0x21630, 0x21634, 1084 0x2163c, 0x2163c, 1085 0x21700, 0x2171c, 1086 0x21780, 0x2178c, 1087 0x21800, 0x21818, 1088 0x21820, 0x21828, 1089 0x21830, 0x21848, 1090 0x21850, 0x21854, 1091 0x21860, 0x21868, 1092 0x21870, 0x21870, 1093 0x21878, 0x21898, 1094 0x218a0, 0x218a8, 1095 0x218b0, 0x218c8, 1096 0x218d0, 0x218d4, 1097 0x218e0, 0x218e8, 1098 0x218f0, 0x218f0, 1099 0x218f8, 0x21a18, 1100 0x21a20, 0x21a28, 1101 0x21a30, 0x21a48, 1102 0x21a50, 0x21a54, 1103 0x21a60, 0x21a68, 1104 0x21a70, 0x21a70, 1105 0x21a78, 0x21a98, 1106 0x21aa0, 0x21aa8, 1107 0x21ab0, 0x21ac8, 1108 0x21ad0, 0x21ad4, 1109 0x21ae0, 0x21ae8, 1110 0x21af0, 0x21af0, 1111 0x21af8, 0x21c18, 1112 0x21c20, 0x21c20, 1113 0x21c28, 0x21c30, 1114 0x21c38, 0x21c38, 1115 0x21c80, 0x21c98, 1116 0x21ca0, 0x21ca8, 1117 0x21cb0, 0x21cc8, 1118 0x21cd0, 0x21cd4, 1119 0x21ce0, 0x21ce8, 1120 0x21cf0, 0x21cf0, 1121 0x21cf8, 0x21d7c, 1122 0x21e00, 0x21e04, 1123 0x22000, 0x2202c, 1124 0x22100, 0x2213c, 1125 0x22190, 0x221a0, 1126 0x221a8, 0x221b8, 1127 0x221c4, 0x221c8, 1128 0x22200, 0x22318, 1129 0x22400, 0x224b4, 1130 0x224c0, 0x22528, 1131 0x22540, 0x22614, 1132 0x23000, 0x23040, 1133 0x2304c, 0x23060, 1134 0x230c0, 0x230ec, 1135 0x23200, 0x23268, 1136 0x23270, 0x23284, 1137 0x232fc, 0x23388, 1138 0x23400, 0x23404, 1139 0x23500, 0x23500, 1140 0x23510, 0x23518, 1141 0x2352c, 0x23530, 1142 0x2353c, 0x2353c, 1143 0x23550, 0x23554, 1144 0x23600, 0x23600, 1145 0x23608, 0x2361c, 1146 0x23624, 0x23628, 1147 0x23630, 0x23634, 1148 0x2363c, 0x2363c, 1149 0x23700, 0x2371c, 1150 0x23780, 0x2378c, 1151 0x23800, 0x23818, 1152 0x23820, 0x23828, 1153 0x23830, 0x23848, 1154 0x23850, 0x23854, 1155 0x23860, 0x23868, 1156 0x23870, 0x23870, 1157 0x23878, 0x23898, 1158 0x238a0, 0x238a8, 1159 0x238b0, 0x238c8, 1160 0x238d0, 0x238d4, 1161 0x238e0, 0x238e8, 1162 0x238f0, 0x238f0, 1163 0x238f8, 0x23a18, 1164 0x23a20, 0x23a28, 1165 0x23a30, 0x23a48, 1166 0x23a50, 0x23a54, 1167 0x23a60, 0x23a68, 1168 0x23a70, 0x23a70, 1169 0x23a78, 0x23a98, 1170 0x23aa0, 0x23aa8, 1171 0x23ab0, 0x23ac8, 1172 0x23ad0, 0x23ad4, 1173 0x23ae0, 0x23ae8, 1174 0x23af0, 0x23af0, 1175 0x23af8, 0x23c18, 1176 0x23c20, 0x23c20, 1177 0x23c28, 0x23c30, 1178 0x23c38, 0x23c38, 1179 0x23c80, 0x23c98, 1180 0x23ca0, 0x23ca8, 1181 0x23cb0, 0x23cc8, 1182 0x23cd0, 0x23cd4, 1183 0x23ce0, 0x23ce8, 1184 0x23cf0, 0x23cf0, 1185 0x23cf8, 0x23d7c, 1186 0x23e00, 0x23e04, 1187 0x24000, 0x2402c, 1188 0x24100, 0x2413c, 1189 0x24190, 0x241a0, 1190 0x241a8, 0x241b8, 1191 0x241c4, 0x241c8, 1192 0x24200, 0x24318, 1193 0x24400, 0x244b4, 1194 0x244c0, 0x24528, 1195 0x24540, 0x24614, 1196 0x25000, 0x25040, 1197 0x2504c, 0x25060, 1198 0x250c0, 0x250ec, 1199 0x25200, 0x25268, 1200 0x25270, 0x25284, 1201 0x252fc, 0x25388, 1202 0x25400, 0x25404, 1203 0x25500, 0x25500, 1204 0x25510, 0x25518, 1205 0x2552c, 0x25530, 1206 0x2553c, 0x2553c, 1207 0x25550, 0x25554, 1208 0x25600, 0x25600, 1209 0x25608, 0x2561c, 1210 0x25624, 0x25628, 1211 0x25630, 0x25634, 1212 0x2563c, 0x2563c, 1213 0x25700, 0x2571c, 1214 0x25780, 0x2578c, 1215 0x25800, 0x25818, 1216 0x25820, 0x25828, 1217 0x25830, 0x25848, 1218 0x25850, 0x25854, 1219 0x25860, 0x25868, 1220 0x25870, 0x25870, 1221 0x25878, 0x25898, 1222 0x258a0, 0x258a8, 1223 0x258b0, 0x258c8, 1224 0x258d0, 0x258d4, 1225 0x258e0, 0x258e8, 1226 0x258f0, 0x258f0, 1227 0x258f8, 0x25a18, 1228 0x25a20, 0x25a28, 1229 0x25a30, 0x25a48, 1230 0x25a50, 0x25a54, 1231 0x25a60, 0x25a68, 1232 0x25a70, 0x25a70, 1233 0x25a78, 0x25a98, 1234 0x25aa0, 0x25aa8, 1235 0x25ab0, 0x25ac8, 1236 0x25ad0, 0x25ad4, 1237 0x25ae0, 0x25ae8, 1238 0x25af0, 0x25af0, 1239 0x25af8, 0x25c18, 1240 0x25c20, 0x25c20, 1241 0x25c28, 0x25c30, 1242 0x25c38, 0x25c38, 1243 0x25c80, 0x25c98, 1244 0x25ca0, 0x25ca8, 1245 0x25cb0, 0x25cc8, 1246 0x25cd0, 0x25cd4, 1247 0x25ce0, 0x25ce8, 1248 0x25cf0, 0x25cf0, 1249 0x25cf8, 0x25d7c, 1250 0x25e00, 0x25e04, 1251 0x26000, 0x2602c, 1252 0x26100, 0x2613c, 1253 0x26190, 0x261a0, 1254 0x261a8, 0x261b8, 1255 0x261c4, 0x261c8, 1256 0x26200, 0x26318, 1257 0x26400, 0x264b4, 1258 0x264c0, 0x26528, 1259 0x26540, 0x26614, 1260 0x27000, 0x27040, 1261 0x2704c, 0x27060, 1262 0x270c0, 0x270ec, 1263 0x27200, 0x27268, 1264 0x27270, 0x27284, 1265 0x272fc, 0x27388, 1266 0x27400, 0x27404, 1267 0x27500, 0x27500, 1268 0x27510, 0x27518, 1269 0x2752c, 0x27530, 1270 0x2753c, 0x2753c, 1271 0x27550, 0x27554, 1272 0x27600, 0x27600, 1273 0x27608, 0x2761c, 1274 0x27624, 0x27628, 1275 0x27630, 0x27634, 1276 0x2763c, 0x2763c, 1277 0x27700, 0x2771c, 1278 0x27780, 0x2778c, 1279 0x27800, 0x27818, 1280 0x27820, 0x27828, 1281 0x27830, 0x27848, 1282 0x27850, 0x27854, 1283 0x27860, 0x27868, 1284 0x27870, 0x27870, 1285 0x27878, 0x27898, 1286 0x278a0, 0x278a8, 1287 0x278b0, 0x278c8, 1288 0x278d0, 0x278d4, 1289 0x278e0, 0x278e8, 1290 0x278f0, 0x278f0, 1291 0x278f8, 0x27a18, 1292 0x27a20, 0x27a28, 1293 0x27a30, 0x27a48, 1294 0x27a50, 0x27a54, 1295 0x27a60, 0x27a68, 1296 0x27a70, 0x27a70, 1297 0x27a78, 0x27a98, 1298 0x27aa0, 0x27aa8, 1299 0x27ab0, 0x27ac8, 1300 0x27ad0, 0x27ad4, 1301 0x27ae0, 0x27ae8, 1302 0x27af0, 0x27af0, 1303 0x27af8, 0x27c18, 1304 0x27c20, 0x27c20, 1305 0x27c28, 0x27c30, 1306 0x27c38, 0x27c38, 1307 0x27c80, 0x27c98, 1308 0x27ca0, 0x27ca8, 1309 0x27cb0, 0x27cc8, 1310 0x27cd0, 0x27cd4, 1311 0x27ce0, 0x27ce8, 1312 0x27cf0, 0x27cf0, 1313 0x27cf8, 0x27d7c, 1314 0x27e00, 0x27e04, 1315 }; 1316 1317 static const unsigned int t5_reg_ranges[] = { 1318 0x1008, 0x10c0, 1319 0x10cc, 0x10f8, 1320 0x1100, 0x1100, 1321 0x110c, 0x1148, 1322 0x1180, 0x1184, 1323 0x1190, 0x1194, 1324 0x11a0, 0x11a4, 1325 0x11b0, 0x11b4, 1326 0x11fc, 0x123c, 1327 0x1280, 0x173c, 1328 0x1800, 0x18fc, 1329 0x3000, 0x3028, 1330 0x3060, 0x30b0, 1331 0x30b8, 0x30d8, 1332 0x30e0, 0x30fc, 1333 0x3140, 0x357c, 1334 0x35a8, 0x35cc, 1335 0x35ec, 0x35ec, 1336 0x3600, 0x5624, 1337 0x56cc, 0x56ec, 1338 0x56f4, 0x5720, 1339 0x5728, 0x575c, 1340 0x580c, 0x5814, 1341 0x5890, 0x589c, 1342 0x58a4, 0x58ac, 1343 0x58b8, 0x58bc, 1344 0x5940, 0x59c8, 1345 0x59d0, 0x59dc, 1346 0x59fc, 0x5a18, 1347 0x5a60, 0x5a70, 1348 0x5a80, 0x5a9c, 1349 0x5b94, 0x5bfc, 1350 0x6000, 0x6020, 1351 0x6028, 0x6040, 1352 0x6058, 0x609c, 1353 0x60a8, 0x614c, 1354 0x7700, 0x7798, 1355 0x77c0, 0x78fc, 1356 0x7b00, 0x7b58, 1357 0x7b60, 0x7b84, 1358 0x7b8c, 0x7c54, 1359 0x7d00, 0x7d38, 1360 0x7d40, 0x7d80, 1361 0x7d8c, 0x7ddc, 1362 0x7de4, 0x7e04, 1363 0x7e10, 0x7e1c, 1364 0x7e24, 0x7e38, 1365 0x7e40, 0x7e44, 1366 0x7e4c, 0x7e78, 1367 0x7e80, 0x7edc, 1368 0x7ee8, 0x7efc, 1369 0x8dc0, 0x8de0, 1370 0x8df8, 0x8e04, 1371 0x8e10, 0x8e84, 1372 0x8ea0, 0x8f84, 1373 0x8fc0, 0x9058, 1374 0x9060, 0x9060, 1375 0x9068, 0x90f8, 1376 0x9400, 0x9408, 1377 0x9410, 0x9470, 1378 0x9600, 0x9600, 1379 0x9608, 0x9638, 1380 0x9640, 0x96f4, 1381 0x9800, 0x9808, 1382 0x9810, 0x9864, 1383 0x9c00, 0x9c6c, 1384 0x9c80, 0x9cec, 1385 0x9d00, 0x9d6c, 1386 0x9d80, 0x9dec, 1387 0x9e00, 0x9e6c, 1388 0x9e80, 0x9eec, 1389 0x9f00, 0x9f6c, 1390 0x9f80, 0xa020, 1391 0xd000, 0xd004, 1392 0xd010, 0xd03c, 1393 0xdfc0, 0xdfe0, 1394 0xe000, 0x1106c, 1395 0x11074, 0x11088, 1396 0x1109c, 0x1117c, 1397 0x11190, 0x11204, 1398 0x19040, 0x1906c, 1399 0x19078, 0x19080, 1400 0x1908c, 0x190e8, 1401 0x190f0, 0x190f8, 1402 0x19100, 0x19110, 1403 0x19120, 0x19124, 1404 0x19150, 0x19194, 1405 0x1919c, 0x191b0, 1406 0x191d0, 0x191e8, 1407 0x19238, 0x19290, 1408 0x193f8, 0x19428, 1409 0x19430, 0x19444, 1410 0x1944c, 0x1946c, 1411 0x19474, 0x19474, 1412 0x19490, 0x194cc, 1413 0x194f0, 0x194f8, 1414 0x19c00, 0x19c08, 1415 0x19c10, 0x19c60, 1416 0x19c94, 0x19ce4, 1417 0x19cf0, 0x19d40, 1418 0x19d50, 0x19d94, 1419 0x19da0, 0x19de8, 1420 0x19df0, 0x19e10, 1421 0x19e50, 0x19e90, 1422 0x19ea0, 0x19f24, 1423 0x19f34, 0x19f34, 1424 0x19f40, 0x19f50, 1425 0x19f90, 0x19fb4, 1426 0x19fc4, 0x19fe4, 1427 0x1a000, 0x1a004, 1428 0x1a010, 0x1a06c, 1429 0x1a0b0, 0x1a0e4, 1430 0x1a0ec, 0x1a0f8, 1431 0x1a100, 0x1a108, 1432 0x1a114, 0x1a130, 1433 0x1a138, 0x1a1c4, 1434 0x1a1fc, 0x1a1fc, 1435 0x1e008, 0x1e00c, 1436 0x1e040, 0x1e044, 1437 0x1e04c, 0x1e04c, 1438 0x1e284, 0x1e290, 1439 0x1e2c0, 0x1e2c0, 1440 0x1e2e0, 0x1e2e0, 1441 0x1e300, 0x1e384, 1442 0x1e3c0, 0x1e3c8, 1443 0x1e408, 0x1e40c, 1444 0x1e440, 0x1e444, 1445 0x1e44c, 0x1e44c, 1446 0x1e684, 0x1e690, 1447 0x1e6c0, 0x1e6c0, 1448 0x1e6e0, 0x1e6e0, 1449 0x1e700, 0x1e784, 1450 0x1e7c0, 0x1e7c8, 1451 0x1e808, 0x1e80c, 1452 0x1e840, 0x1e844, 1453 0x1e84c, 0x1e84c, 1454 0x1ea84, 0x1ea90, 1455 0x1eac0, 0x1eac0, 1456 0x1eae0, 0x1eae0, 1457 0x1eb00, 0x1eb84, 1458 0x1ebc0, 0x1ebc8, 1459 0x1ec08, 0x1ec0c, 1460 0x1ec40, 0x1ec44, 1461 0x1ec4c, 0x1ec4c, 1462 0x1ee84, 0x1ee90, 1463 0x1eec0, 0x1eec0, 1464 0x1eee0, 0x1eee0, 1465 0x1ef00, 0x1ef84, 1466 0x1efc0, 0x1efc8, 1467 0x1f008, 0x1f00c, 1468 0x1f040, 0x1f044, 1469 0x1f04c, 0x1f04c, 1470 0x1f284, 0x1f290, 1471 0x1f2c0, 0x1f2c0, 1472 0x1f2e0, 0x1f2e0, 1473 0x1f300, 0x1f384, 1474 0x1f3c0, 0x1f3c8, 1475 0x1f408, 0x1f40c, 1476 0x1f440, 0x1f444, 1477 0x1f44c, 0x1f44c, 1478 0x1f684, 0x1f690, 1479 0x1f6c0, 0x1f6c0, 1480 0x1f6e0, 0x1f6e0, 1481 0x1f700, 0x1f784, 1482 0x1f7c0, 0x1f7c8, 1483 0x1f808, 0x1f80c, 1484 0x1f840, 0x1f844, 1485 0x1f84c, 0x1f84c, 1486 0x1fa84, 0x1fa90, 1487 0x1fac0, 0x1fac0, 1488 0x1fae0, 0x1fae0, 1489 0x1fb00, 0x1fb84, 1490 0x1fbc0, 0x1fbc8, 1491 0x1fc08, 0x1fc0c, 1492 0x1fc40, 0x1fc44, 1493 0x1fc4c, 0x1fc4c, 1494 0x1fe84, 0x1fe90, 1495 0x1fec0, 0x1fec0, 1496 0x1fee0, 0x1fee0, 1497 0x1ff00, 0x1ff84, 1498 0x1ffc0, 0x1ffc8, 1499 0x30000, 0x30030, 1500 0x30100, 0x30144, 1501 0x30190, 0x301a0, 1502 0x301a8, 0x301b8, 1503 0x301c4, 0x301c8, 1504 0x301d0, 0x301d0, 1505 0x30200, 0x30318, 1506 0x30400, 0x304b4, 1507 0x304c0, 0x3052c, 1508 0x30540, 0x3061c, 1509 0x30800, 0x30828, 1510 0x30834, 0x30834, 1511 0x308c0, 0x30908, 1512 0x30910, 0x309ac, 1513 0x30a00, 0x30a14, 1514 0x30a1c, 0x30a2c, 1515 0x30a44, 0x30a50, 1516 0x30a74, 0x30a74, 1517 0x30a7c, 0x30afc, 1518 0x30b08, 0x30c24, 1519 0x30d00, 0x30d00, 1520 0x30d08, 0x30d14, 1521 0x30d1c, 0x30d20, 1522 0x30d3c, 0x30d3c, 1523 0x30d48, 0x30d50, 1524 0x31200, 0x3120c, 1525 0x31220, 0x31220, 1526 0x31240, 0x31240, 1527 0x31600, 0x3160c, 1528 0x31a00, 0x31a1c, 1529 0x31e00, 0x31e20, 1530 0x31e38, 0x31e3c, 1531 0x31e80, 0x31e80, 1532 0x31e88, 0x31ea8, 1533 0x31eb0, 0x31eb4, 1534 0x31ec8, 0x31ed4, 1535 0x31fb8, 0x32004, 1536 0x32200, 0x32200, 1537 0x32208, 0x32240, 1538 0x32248, 0x32280, 1539 0x32288, 0x322c0, 1540 0x322c8, 0x322fc, 1541 0x32600, 0x32630, 1542 0x32a00, 0x32abc, 1543 0x32b00, 0x32b10, 1544 0x32b20, 0x32b30, 1545 0x32b40, 0x32b50, 1546 0x32b60, 0x32b70, 1547 0x33000, 0x33028, 1548 0x33030, 0x33048, 1549 0x33060, 0x33068, 1550 0x33070, 0x3309c, 1551 0x330f0, 0x33128, 1552 0x33130, 0x33148, 1553 0x33160, 0x33168, 1554 0x33170, 0x3319c, 1555 0x331f0, 0x33238, 1556 0x33240, 0x33240, 1557 0x33248, 0x33250, 1558 0x3325c, 0x33264, 1559 0x33270, 0x332b8, 1560 0x332c0, 0x332e4, 1561 0x332f8, 0x33338, 1562 0x33340, 0x33340, 1563 0x33348, 0x33350, 1564 0x3335c, 0x33364, 1565 0x33370, 0x333b8, 1566 0x333c0, 0x333e4, 1567 0x333f8, 0x33428, 1568 0x33430, 0x33448, 1569 0x33460, 0x33468, 1570 0x33470, 0x3349c, 1571 0x334f0, 0x33528, 1572 0x33530, 0x33548, 1573 0x33560, 0x33568, 1574 0x33570, 0x3359c, 1575 0x335f0, 0x33638, 1576 0x33640, 0x33640, 1577 0x33648, 0x33650, 1578 0x3365c, 0x33664, 1579 0x33670, 0x336b8, 1580 0x336c0, 0x336e4, 1581 0x336f8, 0x33738, 1582 0x33740, 0x33740, 1583 0x33748, 0x33750, 1584 0x3375c, 0x33764, 1585 0x33770, 0x337b8, 1586 0x337c0, 0x337e4, 1587 0x337f8, 0x337fc, 1588 0x33814, 0x33814, 1589 0x3382c, 0x3382c, 1590 0x33880, 0x3388c, 1591 0x338e8, 0x338ec, 1592 0x33900, 0x33928, 1593 0x33930, 0x33948, 1594 0x33960, 0x33968, 1595 0x33970, 0x3399c, 1596 0x339f0, 0x33a38, 1597 0x33a40, 0x33a40, 1598 0x33a48, 0x33a50, 1599 0x33a5c, 0x33a64, 1600 0x33a70, 0x33ab8, 1601 0x33ac0, 0x33ae4, 1602 0x33af8, 0x33b10, 1603 0x33b28, 0x33b28, 1604 0x33b3c, 0x33b50, 1605 0x33bf0, 0x33c10, 1606 0x33c28, 0x33c28, 1607 0x33c3c, 0x33c50, 1608 0x33cf0, 0x33cfc, 1609 0x34000, 0x34030, 1610 0x34100, 0x34144, 1611 0x34190, 0x341a0, 1612 0x341a8, 0x341b8, 1613 0x341c4, 0x341c8, 1614 0x341d0, 0x341d0, 1615 0x34200, 0x34318, 1616 0x34400, 0x344b4, 1617 0x344c0, 0x3452c, 1618 0x34540, 0x3461c, 1619 0x34800, 0x34828, 1620 0x34834, 0x34834, 1621 0x348c0, 0x34908, 1622 0x34910, 0x349ac, 1623 0x34a00, 0x34a14, 1624 0x34a1c, 0x34a2c, 1625 0x34a44, 0x34a50, 1626 0x34a74, 0x34a74, 1627 0x34a7c, 0x34afc, 1628 0x34b08, 0x34c24, 1629 0x34d00, 0x34d00, 1630 0x34d08, 0x34d14, 1631 0x34d1c, 0x34d20, 1632 0x34d3c, 0x34d3c, 1633 0x34d48, 0x34d50, 1634 0x35200, 0x3520c, 1635 0x35220, 0x35220, 1636 0x35240, 0x35240, 1637 0x35600, 0x3560c, 1638 0x35a00, 0x35a1c, 1639 0x35e00, 0x35e20, 1640 0x35e38, 0x35e3c, 1641 0x35e80, 0x35e80, 1642 0x35e88, 0x35ea8, 1643 0x35eb0, 0x35eb4, 1644 0x35ec8, 0x35ed4, 1645 0x35fb8, 0x36004, 1646 0x36200, 0x36200, 1647 0x36208, 0x36240, 1648 0x36248, 0x36280, 1649 0x36288, 0x362c0, 1650 0x362c8, 0x362fc, 1651 0x36600, 0x36630, 1652 0x36a00, 0x36abc, 1653 0x36b00, 0x36b10, 1654 0x36b20, 0x36b30, 1655 0x36b40, 0x36b50, 1656 0x36b60, 0x36b70, 1657 0x37000, 0x37028, 1658 0x37030, 0x37048, 1659 0x37060, 0x37068, 1660 0x37070, 0x3709c, 1661 0x370f0, 0x37128, 1662 0x37130, 0x37148, 1663 0x37160, 0x37168, 1664 0x37170, 0x3719c, 1665 0x371f0, 0x37238, 1666 0x37240, 0x37240, 1667 0x37248, 0x37250, 1668 0x3725c, 0x37264, 1669 0x37270, 0x372b8, 1670 0x372c0, 0x372e4, 1671 0x372f8, 0x37338, 1672 0x37340, 0x37340, 1673 0x37348, 0x37350, 1674 0x3735c, 0x37364, 1675 0x37370, 0x373b8, 1676 0x373c0, 0x373e4, 1677 0x373f8, 0x37428, 1678 0x37430, 0x37448, 1679 0x37460, 0x37468, 1680 0x37470, 0x3749c, 1681 0x374f0, 0x37528, 1682 0x37530, 0x37548, 1683 0x37560, 0x37568, 1684 0x37570, 0x3759c, 1685 0x375f0, 0x37638, 1686 0x37640, 0x37640, 1687 0x37648, 0x37650, 1688 0x3765c, 0x37664, 1689 0x37670, 0x376b8, 1690 0x376c0, 0x376e4, 1691 0x376f8, 0x37738, 1692 0x37740, 0x37740, 1693 0x37748, 0x37750, 1694 0x3775c, 0x37764, 1695 0x37770, 0x377b8, 1696 0x377c0, 0x377e4, 1697 0x377f8, 0x377fc, 1698 0x37814, 0x37814, 1699 0x3782c, 0x3782c, 1700 0x37880, 0x3788c, 1701 0x378e8, 0x378ec, 1702 0x37900, 0x37928, 1703 0x37930, 0x37948, 1704 0x37960, 0x37968, 1705 0x37970, 0x3799c, 1706 0x379f0, 0x37a38, 1707 0x37a40, 0x37a40, 1708 0x37a48, 0x37a50, 1709 0x37a5c, 0x37a64, 1710 0x37a70, 0x37ab8, 1711 0x37ac0, 0x37ae4, 1712 0x37af8, 0x37b10, 1713 0x37b28, 0x37b28, 1714 0x37b3c, 0x37b50, 1715 0x37bf0, 0x37c10, 1716 0x37c28, 0x37c28, 1717 0x37c3c, 0x37c50, 1718 0x37cf0, 0x37cfc, 1719 0x38000, 0x38030, 1720 0x38100, 0x38144, 1721 0x38190, 0x381a0, 1722 0x381a8, 0x381b8, 1723 0x381c4, 0x381c8, 1724 0x381d0, 0x381d0, 1725 0x38200, 0x38318, 1726 0x38400, 0x384b4, 1727 0x384c0, 0x3852c, 1728 0x38540, 0x3861c, 1729 0x38800, 0x38828, 1730 0x38834, 0x38834, 1731 0x388c0, 0x38908, 1732 0x38910, 0x389ac, 1733 0x38a00, 0x38a14, 1734 0x38a1c, 0x38a2c, 1735 0x38a44, 0x38a50, 1736 0x38a74, 0x38a74, 1737 0x38a7c, 0x38afc, 1738 0x38b08, 0x38c24, 1739 0x38d00, 0x38d00, 1740 0x38d08, 0x38d14, 1741 0x38d1c, 0x38d20, 1742 0x38d3c, 0x38d3c, 1743 0x38d48, 0x38d50, 1744 0x39200, 0x3920c, 1745 0x39220, 0x39220, 1746 0x39240, 0x39240, 1747 0x39600, 0x3960c, 1748 0x39a00, 0x39a1c, 1749 0x39e00, 0x39e20, 1750 0x39e38, 0x39e3c, 1751 0x39e80, 0x39e80, 1752 0x39e88, 0x39ea8, 1753 0x39eb0, 0x39eb4, 1754 0x39ec8, 0x39ed4, 1755 0x39fb8, 0x3a004, 1756 0x3a200, 0x3a200, 1757 0x3a208, 0x3a240, 1758 0x3a248, 0x3a280, 1759 0x3a288, 0x3a2c0, 1760 0x3a2c8, 0x3a2fc, 1761 0x3a600, 0x3a630, 1762 0x3aa00, 0x3aabc, 1763 0x3ab00, 0x3ab10, 1764 0x3ab20, 0x3ab30, 1765 0x3ab40, 0x3ab50, 1766 0x3ab60, 0x3ab70, 1767 0x3b000, 0x3b028, 1768 0x3b030, 0x3b048, 1769 0x3b060, 0x3b068, 1770 0x3b070, 0x3b09c, 1771 0x3b0f0, 0x3b128, 1772 0x3b130, 0x3b148, 1773 0x3b160, 0x3b168, 1774 0x3b170, 0x3b19c, 1775 0x3b1f0, 0x3b238, 1776 0x3b240, 0x3b240, 1777 0x3b248, 0x3b250, 1778 0x3b25c, 0x3b264, 1779 0x3b270, 0x3b2b8, 1780 0x3b2c0, 0x3b2e4, 1781 0x3b2f8, 0x3b338, 1782 0x3b340, 0x3b340, 1783 0x3b348, 0x3b350, 1784 0x3b35c, 0x3b364, 1785 0x3b370, 0x3b3b8, 1786 0x3b3c0, 0x3b3e4, 1787 0x3b3f8, 0x3b428, 1788 0x3b430, 0x3b448, 1789 0x3b460, 0x3b468, 1790 0x3b470, 0x3b49c, 1791 0x3b4f0, 0x3b528, 1792 0x3b530, 0x3b548, 1793 0x3b560, 0x3b568, 1794 0x3b570, 0x3b59c, 1795 0x3b5f0, 0x3b638, 1796 0x3b640, 0x3b640, 1797 0x3b648, 0x3b650, 1798 0x3b65c, 0x3b664, 1799 0x3b670, 0x3b6b8, 1800 0x3b6c0, 0x3b6e4, 1801 0x3b6f8, 0x3b738, 1802 0x3b740, 0x3b740, 1803 0x3b748, 0x3b750, 1804 0x3b75c, 0x3b764, 1805 0x3b770, 0x3b7b8, 1806 0x3b7c0, 0x3b7e4, 1807 0x3b7f8, 0x3b7fc, 1808 0x3b814, 0x3b814, 1809 0x3b82c, 0x3b82c, 1810 0x3b880, 0x3b88c, 1811 0x3b8e8, 0x3b8ec, 1812 0x3b900, 0x3b928, 1813 0x3b930, 0x3b948, 1814 0x3b960, 0x3b968, 1815 0x3b970, 0x3b99c, 1816 0x3b9f0, 0x3ba38, 1817 0x3ba40, 0x3ba40, 1818 0x3ba48, 0x3ba50, 1819 0x3ba5c, 0x3ba64, 1820 0x3ba70, 0x3bab8, 1821 0x3bac0, 0x3bae4, 1822 0x3baf8, 0x3bb10, 1823 0x3bb28, 0x3bb28, 1824 0x3bb3c, 0x3bb50, 1825 0x3bbf0, 0x3bc10, 1826 0x3bc28, 0x3bc28, 1827 0x3bc3c, 0x3bc50, 1828 0x3bcf0, 0x3bcfc, 1829 0x3c000, 0x3c030, 1830 0x3c100, 0x3c144, 1831 0x3c190, 0x3c1a0, 1832 0x3c1a8, 0x3c1b8, 1833 0x3c1c4, 0x3c1c8, 1834 0x3c1d0, 0x3c1d0, 1835 0x3c200, 0x3c318, 1836 0x3c400, 0x3c4b4, 1837 0x3c4c0, 0x3c52c, 1838 0x3c540, 0x3c61c, 1839 0x3c800, 0x3c828, 1840 0x3c834, 0x3c834, 1841 0x3c8c0, 0x3c908, 1842 0x3c910, 0x3c9ac, 1843 0x3ca00, 0x3ca14, 1844 0x3ca1c, 0x3ca2c, 1845 0x3ca44, 0x3ca50, 1846 0x3ca74, 0x3ca74, 1847 0x3ca7c, 0x3cafc, 1848 0x3cb08, 0x3cc24, 1849 0x3cd00, 0x3cd00, 1850 0x3cd08, 0x3cd14, 1851 0x3cd1c, 0x3cd20, 1852 0x3cd3c, 0x3cd3c, 1853 0x3cd48, 0x3cd50, 1854 0x3d200, 0x3d20c, 1855 0x3d220, 0x3d220, 1856 0x3d240, 0x3d240, 1857 0x3d600, 0x3d60c, 1858 0x3da00, 0x3da1c, 1859 0x3de00, 0x3de20, 1860 0x3de38, 0x3de3c, 1861 0x3de80, 0x3de80, 1862 0x3de88, 0x3dea8, 1863 0x3deb0, 0x3deb4, 1864 0x3dec8, 0x3ded4, 1865 0x3dfb8, 0x3e004, 1866 0x3e200, 0x3e200, 1867 0x3e208, 0x3e240, 1868 0x3e248, 0x3e280, 1869 0x3e288, 0x3e2c0, 1870 0x3e2c8, 0x3e2fc, 1871 0x3e600, 0x3e630, 1872 0x3ea00, 0x3eabc, 1873 0x3eb00, 0x3eb10, 1874 0x3eb20, 0x3eb30, 1875 0x3eb40, 0x3eb50, 1876 0x3eb60, 0x3eb70, 1877 0x3f000, 0x3f028, 1878 0x3f030, 0x3f048, 1879 0x3f060, 0x3f068, 1880 0x3f070, 0x3f09c, 1881 0x3f0f0, 0x3f128, 1882 0x3f130, 0x3f148, 1883 0x3f160, 0x3f168, 1884 0x3f170, 0x3f19c, 1885 0x3f1f0, 0x3f238, 1886 0x3f240, 0x3f240, 1887 0x3f248, 0x3f250, 1888 0x3f25c, 0x3f264, 1889 0x3f270, 0x3f2b8, 1890 0x3f2c0, 0x3f2e4, 1891 0x3f2f8, 0x3f338, 1892 0x3f340, 0x3f340, 1893 0x3f348, 0x3f350, 1894 0x3f35c, 0x3f364, 1895 0x3f370, 0x3f3b8, 1896 0x3f3c0, 0x3f3e4, 1897 0x3f3f8, 0x3f428, 1898 0x3f430, 0x3f448, 1899 0x3f460, 0x3f468, 1900 0x3f470, 0x3f49c, 1901 0x3f4f0, 0x3f528, 1902 0x3f530, 0x3f548, 1903 0x3f560, 0x3f568, 1904 0x3f570, 0x3f59c, 1905 0x3f5f0, 0x3f638, 1906 0x3f640, 0x3f640, 1907 0x3f648, 0x3f650, 1908 0x3f65c, 0x3f664, 1909 0x3f670, 0x3f6b8, 1910 0x3f6c0, 0x3f6e4, 1911 0x3f6f8, 0x3f738, 1912 0x3f740, 0x3f740, 1913 0x3f748, 0x3f750, 1914 0x3f75c, 0x3f764, 1915 0x3f770, 0x3f7b8, 1916 0x3f7c0, 0x3f7e4, 1917 0x3f7f8, 0x3f7fc, 1918 0x3f814, 0x3f814, 1919 0x3f82c, 0x3f82c, 1920 0x3f880, 0x3f88c, 1921 0x3f8e8, 0x3f8ec, 1922 0x3f900, 0x3f928, 1923 0x3f930, 0x3f948, 1924 0x3f960, 0x3f968, 1925 0x3f970, 0x3f99c, 1926 0x3f9f0, 0x3fa38, 1927 0x3fa40, 0x3fa40, 1928 0x3fa48, 0x3fa50, 1929 0x3fa5c, 0x3fa64, 1930 0x3fa70, 0x3fab8, 1931 0x3fac0, 0x3fae4, 1932 0x3faf8, 0x3fb10, 1933 0x3fb28, 0x3fb28, 1934 0x3fb3c, 0x3fb50, 1935 0x3fbf0, 0x3fc10, 1936 0x3fc28, 0x3fc28, 1937 0x3fc3c, 0x3fc50, 1938 0x3fcf0, 0x3fcfc, 1939 0x40000, 0x4000c, 1940 0x40040, 0x40050, 1941 0x40060, 0x40068, 1942 0x4007c, 0x4008c, 1943 0x40094, 0x400b0, 1944 0x400c0, 0x40144, 1945 0x40180, 0x4018c, 1946 0x40200, 0x40254, 1947 0x40260, 0x40264, 1948 0x40270, 0x40288, 1949 0x40290, 0x40298, 1950 0x402ac, 0x402c8, 1951 0x402d0, 0x402e0, 1952 0x402f0, 0x402f0, 1953 0x40300, 0x4033c, 1954 0x403f8, 0x403fc, 1955 0x41304, 0x413c4, 1956 0x41400, 0x4140c, 1957 0x41414, 0x4141c, 1958 0x41480, 0x414d0, 1959 0x44000, 0x44054, 1960 0x4405c, 0x44078, 1961 0x440c0, 0x44174, 1962 0x44180, 0x441ac, 1963 0x441b4, 0x441b8, 1964 0x441c0, 0x44254, 1965 0x4425c, 0x44278, 1966 0x442c0, 0x44374, 1967 0x44380, 0x443ac, 1968 0x443b4, 0x443b8, 1969 0x443c0, 0x44454, 1970 0x4445c, 0x44478, 1971 0x444c0, 0x44574, 1972 0x44580, 0x445ac, 1973 0x445b4, 0x445b8, 1974 0x445c0, 0x44654, 1975 0x4465c, 0x44678, 1976 0x446c0, 0x44774, 1977 0x44780, 0x447ac, 1978 0x447b4, 0x447b8, 1979 0x447c0, 0x44854, 1980 0x4485c, 0x44878, 1981 0x448c0, 0x44974, 1982 0x44980, 0x449ac, 1983 0x449b4, 0x449b8, 1984 0x449c0, 0x449fc, 1985 0x45000, 0x45004, 1986 0x45010, 0x45030, 1987 0x45040, 0x45060, 1988 0x45068, 0x45068, 1989 0x45080, 0x45084, 1990 0x450a0, 0x450b0, 1991 0x45200, 0x45204, 1992 0x45210, 0x45230, 1993 0x45240, 0x45260, 1994 0x45268, 0x45268, 1995 0x45280, 0x45284, 1996 0x452a0, 0x452b0, 1997 0x460c0, 0x460e4, 1998 0x47000, 0x4703c, 1999 0x47044, 0x4708c, 2000 0x47200, 0x47250, 2001 0x47400, 0x47408, 2002 0x47414, 0x47420, 2003 0x47600, 0x47618, 2004 0x47800, 0x47814, 2005 0x48000, 0x4800c, 2006 0x48040, 0x48050, 2007 0x48060, 0x48068, 2008 0x4807c, 0x4808c, 2009 0x48094, 0x480b0, 2010 0x480c0, 0x48144, 2011 0x48180, 0x4818c, 2012 0x48200, 0x48254, 2013 0x48260, 0x48264, 2014 0x48270, 0x48288, 2015 0x48290, 0x48298, 2016 0x482ac, 0x482c8, 2017 0x482d0, 0x482e0, 2018 0x482f0, 0x482f0, 2019 0x48300, 0x4833c, 2020 0x483f8, 0x483fc, 2021 0x49304, 0x493c4, 2022 0x49400, 0x4940c, 2023 0x49414, 0x4941c, 2024 0x49480, 0x494d0, 2025 0x4c000, 0x4c054, 2026 0x4c05c, 0x4c078, 2027 0x4c0c0, 0x4c174, 2028 0x4c180, 0x4c1ac, 2029 0x4c1b4, 0x4c1b8, 2030 0x4c1c0, 0x4c254, 2031 0x4c25c, 0x4c278, 2032 0x4c2c0, 0x4c374, 2033 0x4c380, 0x4c3ac, 2034 0x4c3b4, 0x4c3b8, 2035 0x4c3c0, 0x4c454, 2036 0x4c45c, 0x4c478, 2037 0x4c4c0, 0x4c574, 2038 0x4c580, 0x4c5ac, 2039 0x4c5b4, 0x4c5b8, 2040 0x4c5c0, 0x4c654, 2041 0x4c65c, 0x4c678, 2042 0x4c6c0, 0x4c774, 2043 0x4c780, 0x4c7ac, 2044 0x4c7b4, 0x4c7b8, 2045 0x4c7c0, 0x4c854, 2046 0x4c85c, 0x4c878, 2047 0x4c8c0, 0x4c974, 2048 0x4c980, 0x4c9ac, 2049 0x4c9b4, 0x4c9b8, 2050 0x4c9c0, 0x4c9fc, 2051 0x4d000, 0x4d004, 2052 0x4d010, 0x4d030, 2053 0x4d040, 0x4d060, 2054 0x4d068, 0x4d068, 2055 0x4d080, 0x4d084, 2056 0x4d0a0, 0x4d0b0, 2057 0x4d200, 0x4d204, 2058 0x4d210, 0x4d230, 2059 0x4d240, 0x4d260, 2060 0x4d268, 0x4d268, 2061 0x4d280, 0x4d284, 2062 0x4d2a0, 0x4d2b0, 2063 0x4e0c0, 0x4e0e4, 2064 0x4f000, 0x4f03c, 2065 0x4f044, 0x4f08c, 2066 0x4f200, 0x4f250, 2067 0x4f400, 0x4f408, 2068 0x4f414, 0x4f420, 2069 0x4f600, 0x4f618, 2070 0x4f800, 0x4f814, 2071 0x50000, 0x50084, 2072 0x50090, 0x500cc, 2073 0x50400, 0x50400, 2074 0x50800, 0x50884, 2075 0x50890, 0x508cc, 2076 0x50c00, 0x50c00, 2077 0x51000, 0x5101c, 2078 0x51300, 0x51308, 2079 }; 2080 2081 static const unsigned int t6_reg_ranges[] = { 2082 0x1008, 0x101c, 2083 0x1024, 0x10a8, 2084 0x10b4, 0x10f8, 2085 0x1100, 0x1114, 2086 0x111c, 0x112c, 2087 0x1138, 0x113c, 2088 0x1144, 0x114c, 2089 0x1180, 0x1184, 2090 0x1190, 0x1194, 2091 0x11a0, 0x11a4, 2092 0x11b0, 0x11b4, 2093 0x11fc, 0x1274, 2094 0x1280, 0x133c, 2095 0x1800, 0x18fc, 2096 0x3000, 0x302c, 2097 0x3060, 0x30b0, 2098 0x30b8, 0x30d8, 2099 0x30e0, 0x30fc, 2100 0x3140, 0x357c, 2101 0x35a8, 0x35cc, 2102 0x35ec, 0x35ec, 2103 0x3600, 0x5624, 2104 0x56cc, 0x56ec, 2105 0x56f4, 0x5720, 2106 0x5728, 0x575c, 2107 0x580c, 0x5814, 2108 0x5890, 0x589c, 2109 0x58a4, 0x58ac, 2110 0x58b8, 0x58bc, 2111 0x5940, 0x595c, 2112 0x5980, 0x598c, 2113 0x59b0, 0x59c8, 2114 0x59d0, 0x59dc, 2115 0x59fc, 0x5a18, 2116 0x5a60, 0x5a6c, 2117 0x5a80, 0x5a8c, 2118 0x5a94, 0x5a9c, 2119 0x5b94, 0x5bfc, 2120 0x5c10, 0x5e48, 2121 0x5e50, 0x5e94, 2122 0x5ea0, 0x5eb0, 2123 0x5ec0, 0x5ec0, 2124 0x5ec8, 0x5ed0, 2125 0x5ee0, 0x5ee0, 2126 0x5ef0, 0x5ef0, 2127 0x5f00, 0x5f00, 2128 0x6000, 0x6020, 2129 0x6028, 0x6040, 2130 0x6058, 0x609c, 2131 0x60a8, 0x619c, 2132 0x7700, 0x7798, 2133 0x77c0, 0x7880, 2134 0x78cc, 0x78fc, 2135 0x7b00, 0x7b58, 2136 0x7b60, 0x7b84, 2137 0x7b8c, 0x7c54, 2138 0x7d00, 0x7d38, 2139 0x7d40, 0x7d84, 2140 0x7d8c, 0x7ddc, 2141 0x7de4, 0x7e04, 2142 0x7e10, 0x7e1c, 2143 0x7e24, 0x7e38, 2144 0x7e40, 0x7e44, 2145 0x7e4c, 0x7e78, 2146 0x7e80, 0x7edc, 2147 0x7ee8, 0x7efc, 2148 0x8dc0, 0x8de4, 2149 0x8df8, 0x8e04, 2150 0x8e10, 0x8e84, 2151 0x8ea0, 0x8f88, 2152 0x8fb8, 0x9058, 2153 0x9060, 0x9060, 2154 0x9068, 0x90f8, 2155 0x9100, 0x9124, 2156 0x9400, 0x9470, 2157 0x9600, 0x9600, 2158 0x9608, 0x9638, 2159 0x9640, 0x9704, 2160 0x9710, 0x971c, 2161 0x9800, 0x9808, 2162 0x9810, 0x9864, 2163 0x9c00, 0x9c6c, 2164 0x9c80, 0x9cec, 2165 0x9d00, 0x9d6c, 2166 0x9d80, 0x9dec, 2167 0x9e00, 0x9e6c, 2168 0x9e80, 0x9eec, 2169 0x9f00, 0x9f6c, 2170 0x9f80, 0xa020, 2171 0xd000, 0xd03c, 2172 0xd100, 0xd118, 2173 0xd200, 0xd214, 2174 0xd220, 0xd234, 2175 0xd240, 0xd254, 2176 0xd260, 0xd274, 2177 0xd280, 0xd294, 2178 0xd2a0, 0xd2b4, 2179 0xd2c0, 0xd2d4, 2180 0xd2e0, 0xd2f4, 2181 0xd300, 0xd31c, 2182 0xdfc0, 0xdfe0, 2183 0xe000, 0xf008, 2184 0xf010, 0xf018, 2185 0xf020, 0xf028, 2186 0x11000, 0x11014, 2187 0x11048, 0x1106c, 2188 0x11074, 0x11088, 2189 0x11098, 0x11120, 2190 0x1112c, 0x1117c, 2191 0x11190, 0x112e0, 2192 0x11300, 0x1130c, 2193 0x12000, 0x1206c, 2194 0x19040, 0x1906c, 2195 0x19078, 0x19080, 2196 0x1908c, 0x190e8, 2197 0x190f0, 0x190f8, 2198 0x19100, 0x19110, 2199 0x19120, 0x19124, 2200 0x19150, 0x19194, 2201 0x1919c, 0x191b0, 2202 0x191d0, 0x191e8, 2203 0x19238, 0x19290, 2204 0x192a4, 0x192b0, 2205 0x192bc, 0x192bc, 2206 0x19348, 0x1934c, 2207 0x193f8, 0x19418, 2208 0x19420, 0x19428, 2209 0x19430, 0x19444, 2210 0x1944c, 0x1946c, 2211 0x19474, 0x19474, 2212 0x19490, 0x194cc, 2213 0x194f0, 0x194f8, 2214 0x19c00, 0x19c48, 2215 0x19c50, 0x19c80, 2216 0x19c94, 0x19c98, 2217 0x19ca0, 0x19cbc, 2218 0x19ce4, 0x19ce4, 2219 0x19cf0, 0x19cf8, 2220 0x19d00, 0x19d28, 2221 0x19d50, 0x19d78, 2222 0x19d94, 0x19d98, 2223 0x19da0, 0x19dc8, 2224 0x19df0, 0x19e10, 2225 0x19e50, 0x19e6c, 2226 0x19ea0, 0x19ebc, 2227 0x19ec4, 0x19ef4, 2228 0x19f04, 0x19f2c, 2229 0x19f34, 0x19f34, 2230 0x19f40, 0x19f50, 2231 0x19f90, 0x19fac, 2232 0x19fc4, 0x19fc8, 2233 0x19fd0, 0x19fe4, 2234 0x1a000, 0x1a004, 2235 0x1a010, 0x1a06c, 2236 0x1a0b0, 0x1a0e4, 2237 0x1a0ec, 0x1a0f8, 2238 0x1a100, 0x1a108, 2239 0x1a114, 0x1a130, 2240 0x1a138, 0x1a1c4, 2241 0x1a1fc, 0x1a1fc, 2242 0x1e008, 0x1e00c, 2243 0x1e040, 0x1e044, 2244 0x1e04c, 0x1e04c, 2245 0x1e284, 0x1e290, 2246 0x1e2c0, 0x1e2c0, 2247 0x1e2e0, 0x1e2e0, 2248 0x1e300, 0x1e384, 2249 0x1e3c0, 0x1e3c8, 2250 0x1e408, 0x1e40c, 2251 0x1e440, 0x1e444, 2252 0x1e44c, 0x1e44c, 2253 0x1e684, 0x1e690, 2254 0x1e6c0, 0x1e6c0, 2255 0x1e6e0, 0x1e6e0, 2256 0x1e700, 0x1e784, 2257 0x1e7c0, 0x1e7c8, 2258 0x1e808, 0x1e80c, 2259 0x1e840, 0x1e844, 2260 0x1e84c, 0x1e84c, 2261 0x1ea84, 0x1ea90, 2262 0x1eac0, 0x1eac0, 2263 0x1eae0, 0x1eae0, 2264 0x1eb00, 0x1eb84, 2265 0x1ebc0, 0x1ebc8, 2266 0x1ec08, 0x1ec0c, 2267 0x1ec40, 0x1ec44, 2268 0x1ec4c, 0x1ec4c, 2269 0x1ee84, 0x1ee90, 2270 0x1eec0, 0x1eec0, 2271 0x1eee0, 0x1eee0, 2272 0x1ef00, 0x1ef84, 2273 0x1efc0, 0x1efc8, 2274 0x1f008, 0x1f00c, 2275 0x1f040, 0x1f044, 2276 0x1f04c, 0x1f04c, 2277 0x1f284, 0x1f290, 2278 0x1f2c0, 0x1f2c0, 2279 0x1f2e0, 0x1f2e0, 2280 0x1f300, 0x1f384, 2281 0x1f3c0, 0x1f3c8, 2282 0x1f408, 0x1f40c, 2283 0x1f440, 0x1f444, 2284 0x1f44c, 0x1f44c, 2285 0x1f684, 0x1f690, 2286 0x1f6c0, 0x1f6c0, 2287 0x1f6e0, 0x1f6e0, 2288 0x1f700, 0x1f784, 2289 0x1f7c0, 0x1f7c8, 2290 0x1f808, 0x1f80c, 2291 0x1f840, 0x1f844, 2292 0x1f84c, 0x1f84c, 2293 0x1fa84, 0x1fa90, 2294 0x1fac0, 0x1fac0, 2295 0x1fae0, 0x1fae0, 2296 0x1fb00, 0x1fb84, 2297 0x1fbc0, 0x1fbc8, 2298 0x1fc08, 0x1fc0c, 2299 0x1fc40, 0x1fc44, 2300 0x1fc4c, 0x1fc4c, 2301 0x1fe84, 0x1fe90, 2302 0x1fec0, 0x1fec0, 2303 0x1fee0, 0x1fee0, 2304 0x1ff00, 0x1ff84, 2305 0x1ffc0, 0x1ffc8, 2306 0x30000, 0x30030, 2307 0x30100, 0x30168, 2308 0x30190, 0x301a0, 2309 0x301a8, 0x301b8, 2310 0x301c4, 0x301c8, 2311 0x301d0, 0x301d0, 2312 0x30200, 0x30320, 2313 0x30400, 0x304b4, 2314 0x304c0, 0x3052c, 2315 0x30540, 0x3061c, 2316 0x30800, 0x308a0, 2317 0x308c0, 0x30908, 2318 0x30910, 0x309b8, 2319 0x30a00, 0x30a04, 2320 0x30a0c, 0x30a14, 2321 0x30a1c, 0x30a2c, 2322 0x30a44, 0x30a50, 2323 0x30a74, 0x30a74, 2324 0x30a7c, 0x30afc, 2325 0x30b08, 0x30c24, 2326 0x30d00, 0x30d14, 2327 0x30d1c, 0x30d3c, 2328 0x30d44, 0x30d4c, 2329 0x30d54, 0x30d74, 2330 0x30d7c, 0x30d7c, 2331 0x30de0, 0x30de0, 2332 0x30e00, 0x30ed4, 2333 0x30f00, 0x30fa4, 2334 0x30fc0, 0x30fc4, 2335 0x31000, 0x31004, 2336 0x31080, 0x310fc, 2337 0x31208, 0x31220, 2338 0x3123c, 0x31254, 2339 0x31300, 0x31300, 2340 0x31308, 0x3131c, 2341 0x31338, 0x3133c, 2342 0x31380, 0x31380, 2343 0x31388, 0x313a8, 2344 0x313b4, 0x313b4, 2345 0x31400, 0x31420, 2346 0x31438, 0x3143c, 2347 0x31480, 0x31480, 2348 0x314a8, 0x314a8, 2349 0x314b0, 0x314b4, 2350 0x314c8, 0x314d4, 2351 0x31a40, 0x31a4c, 2352 0x31af0, 0x31b20, 2353 0x31b38, 0x31b3c, 2354 0x31b80, 0x31b80, 2355 0x31ba8, 0x31ba8, 2356 0x31bb0, 0x31bb4, 2357 0x31bc8, 0x31bd4, 2358 0x32140, 0x3218c, 2359 0x321f0, 0x321f4, 2360 0x32200, 0x32200, 2361 0x32218, 0x32218, 2362 0x32400, 0x32400, 2363 0x32408, 0x3241c, 2364 0x32618, 0x32620, 2365 0x32664, 0x32664, 2366 0x326a8, 0x326a8, 2367 0x326ec, 0x326ec, 2368 0x32a00, 0x32abc, 2369 0x32b00, 0x32b18, 2370 0x32b20, 0x32b38, 2371 0x32b40, 0x32b58, 2372 0x32b60, 0x32b78, 2373 0x32c00, 0x32c00, 2374 0x32c08, 0x32c3c, 2375 0x33000, 0x3302c, 2376 0x33034, 0x33050, 2377 0x33058, 0x33058, 2378 0x33060, 0x3308c, 2379 0x3309c, 0x330ac, 2380 0x330c0, 0x330c0, 2381 0x330c8, 0x330d0, 2382 0x330d8, 0x330e0, 2383 0x330ec, 0x3312c, 2384 0x33134, 0x33150, 2385 0x33158, 0x33158, 2386 0x33160, 0x3318c, 2387 0x3319c, 0x331ac, 2388 0x331c0, 0x331c0, 2389 0x331c8, 0x331d0, 2390 0x331d8, 0x331e0, 2391 0x331ec, 0x33290, 2392 0x33298, 0x332c4, 2393 0x332e4, 0x33390, 2394 0x33398, 0x333c4, 2395 0x333e4, 0x3342c, 2396 0x33434, 0x33450, 2397 0x33458, 0x33458, 2398 0x33460, 0x3348c, 2399 0x3349c, 0x334ac, 2400 0x334c0, 0x334c0, 2401 0x334c8, 0x334d0, 2402 0x334d8, 0x334e0, 2403 0x334ec, 0x3352c, 2404 0x33534, 0x33550, 2405 0x33558, 0x33558, 2406 0x33560, 0x3358c, 2407 0x3359c, 0x335ac, 2408 0x335c0, 0x335c0, 2409 0x335c8, 0x335d0, 2410 0x335d8, 0x335e0, 2411 0x335ec, 0x33690, 2412 0x33698, 0x336c4, 2413 0x336e4, 0x33790, 2414 0x33798, 0x337c4, 2415 0x337e4, 0x337fc, 2416 0x33814, 0x33814, 2417 0x33854, 0x33868, 2418 0x33880, 0x3388c, 2419 0x338c0, 0x338d0, 2420 0x338e8, 0x338ec, 2421 0x33900, 0x3392c, 2422 0x33934, 0x33950, 2423 0x33958, 0x33958, 2424 0x33960, 0x3398c, 2425 0x3399c, 0x339ac, 2426 0x339c0, 0x339c0, 2427 0x339c8, 0x339d0, 2428 0x339d8, 0x339e0, 2429 0x339ec, 0x33a90, 2430 0x33a98, 0x33ac4, 2431 0x33ae4, 0x33b10, 2432 0x33b24, 0x33b28, 2433 0x33b38, 0x33b50, 2434 0x33bf0, 0x33c10, 2435 0x33c24, 0x33c28, 2436 0x33c38, 0x33c50, 2437 0x33cf0, 0x33cfc, 2438 0x34000, 0x34030, 2439 0x34100, 0x34168, 2440 0x34190, 0x341a0, 2441 0x341a8, 0x341b8, 2442 0x341c4, 0x341c8, 2443 0x341d0, 0x341d0, 2444 0x34200, 0x34320, 2445 0x34400, 0x344b4, 2446 0x344c0, 0x3452c, 2447 0x34540, 0x3461c, 2448 0x34800, 0x348a0, 2449 0x348c0, 0x34908, 2450 0x34910, 0x349b8, 2451 0x34a00, 0x34a04, 2452 0x34a0c, 0x34a14, 2453 0x34a1c, 0x34a2c, 2454 0x34a44, 0x34a50, 2455 0x34a74, 0x34a74, 2456 0x34a7c, 0x34afc, 2457 0x34b08, 0x34c24, 2458 0x34d00, 0x34d14, 2459 0x34d1c, 0x34d3c, 2460 0x34d44, 0x34d4c, 2461 0x34d54, 0x34d74, 2462 0x34d7c, 0x34d7c, 2463 0x34de0, 0x34de0, 2464 0x34e00, 0x34ed4, 2465 0x34f00, 0x34fa4, 2466 0x34fc0, 0x34fc4, 2467 0x35000, 0x35004, 2468 0x35080, 0x350fc, 2469 0x35208, 0x35220, 2470 0x3523c, 0x35254, 2471 0x35300, 0x35300, 2472 0x35308, 0x3531c, 2473 0x35338, 0x3533c, 2474 0x35380, 0x35380, 2475 0x35388, 0x353a8, 2476 0x353b4, 0x353b4, 2477 0x35400, 0x35420, 2478 0x35438, 0x3543c, 2479 0x35480, 0x35480, 2480 0x354a8, 0x354a8, 2481 0x354b0, 0x354b4, 2482 0x354c8, 0x354d4, 2483 0x35a40, 0x35a4c, 2484 0x35af0, 0x35b20, 2485 0x35b38, 0x35b3c, 2486 0x35b80, 0x35b80, 2487 0x35ba8, 0x35ba8, 2488 0x35bb0, 0x35bb4, 2489 0x35bc8, 0x35bd4, 2490 0x36140, 0x3618c, 2491 0x361f0, 0x361f4, 2492 0x36200, 0x36200, 2493 0x36218, 0x36218, 2494 0x36400, 0x36400, 2495 0x36408, 0x3641c, 2496 0x36618, 0x36620, 2497 0x36664, 0x36664, 2498 0x366a8, 0x366a8, 2499 0x366ec, 0x366ec, 2500 0x36a00, 0x36abc, 2501 0x36b00, 0x36b18, 2502 0x36b20, 0x36b38, 2503 0x36b40, 0x36b58, 2504 0x36b60, 0x36b78, 2505 0x36c00, 0x36c00, 2506 0x36c08, 0x36c3c, 2507 0x37000, 0x3702c, 2508 0x37034, 0x37050, 2509 0x37058, 0x37058, 2510 0x37060, 0x3708c, 2511 0x3709c, 0x370ac, 2512 0x370c0, 0x370c0, 2513 0x370c8, 0x370d0, 2514 0x370d8, 0x370e0, 2515 0x370ec, 0x3712c, 2516 0x37134, 0x37150, 2517 0x37158, 0x37158, 2518 0x37160, 0x3718c, 2519 0x3719c, 0x371ac, 2520 0x371c0, 0x371c0, 2521 0x371c8, 0x371d0, 2522 0x371d8, 0x371e0, 2523 0x371ec, 0x37290, 2524 0x37298, 0x372c4, 2525 0x372e4, 0x37390, 2526 0x37398, 0x373c4, 2527 0x373e4, 0x3742c, 2528 0x37434, 0x37450, 2529 0x37458, 0x37458, 2530 0x37460, 0x3748c, 2531 0x3749c, 0x374ac, 2532 0x374c0, 0x374c0, 2533 0x374c8, 0x374d0, 2534 0x374d8, 0x374e0, 2535 0x374ec, 0x3752c, 2536 0x37534, 0x37550, 2537 0x37558, 0x37558, 2538 0x37560, 0x3758c, 2539 0x3759c, 0x375ac, 2540 0x375c0, 0x375c0, 2541 0x375c8, 0x375d0, 2542 0x375d8, 0x375e0, 2543 0x375ec, 0x37690, 2544 0x37698, 0x376c4, 2545 0x376e4, 0x37790, 2546 0x37798, 0x377c4, 2547 0x377e4, 0x377fc, 2548 0x37814, 0x37814, 2549 0x37854, 0x37868, 2550 0x37880, 0x3788c, 2551 0x378c0, 0x378d0, 2552 0x378e8, 0x378ec, 2553 0x37900, 0x3792c, 2554 0x37934, 0x37950, 2555 0x37958, 0x37958, 2556 0x37960, 0x3798c, 2557 0x3799c, 0x379ac, 2558 0x379c0, 0x379c0, 2559 0x379c8, 0x379d0, 2560 0x379d8, 0x379e0, 2561 0x379ec, 0x37a90, 2562 0x37a98, 0x37ac4, 2563 0x37ae4, 0x37b10, 2564 0x37b24, 0x37b28, 2565 0x37b38, 0x37b50, 2566 0x37bf0, 0x37c10, 2567 0x37c24, 0x37c28, 2568 0x37c38, 0x37c50, 2569 0x37cf0, 0x37cfc, 2570 0x40040, 0x40040, 2571 0x40080, 0x40084, 2572 0x40100, 0x40100, 2573 0x40140, 0x401bc, 2574 0x40200, 0x40214, 2575 0x40228, 0x40228, 2576 0x40240, 0x40258, 2577 0x40280, 0x40280, 2578 0x40304, 0x40304, 2579 0x40330, 0x4033c, 2580 0x41304, 0x413c8, 2581 0x413d0, 0x413dc, 2582 0x413f0, 0x413f0, 2583 0x41400, 0x4140c, 2584 0x41414, 0x4141c, 2585 0x41480, 0x414d0, 2586 0x44000, 0x4407c, 2587 0x440c0, 0x441ac, 2588 0x441b4, 0x4427c, 2589 0x442c0, 0x443ac, 2590 0x443b4, 0x4447c, 2591 0x444c0, 0x445ac, 2592 0x445b4, 0x4467c, 2593 0x446c0, 0x447ac, 2594 0x447b4, 0x4487c, 2595 0x448c0, 0x449ac, 2596 0x449b4, 0x44a7c, 2597 0x44ac0, 0x44bac, 2598 0x44bb4, 0x44c7c, 2599 0x44cc0, 0x44dac, 2600 0x44db4, 0x44e7c, 2601 0x44ec0, 0x44fac, 2602 0x44fb4, 0x4507c, 2603 0x450c0, 0x451ac, 2604 0x451b4, 0x451fc, 2605 0x45800, 0x45804, 2606 0x45810, 0x45830, 2607 0x45840, 0x45860, 2608 0x45868, 0x45868, 2609 0x45880, 0x45884, 2610 0x458a0, 0x458b0, 2611 0x45a00, 0x45a04, 2612 0x45a10, 0x45a30, 2613 0x45a40, 0x45a60, 2614 0x45a68, 0x45a68, 2615 0x45a80, 0x45a84, 2616 0x45aa0, 0x45ab0, 2617 0x460c0, 0x460e4, 2618 0x47000, 0x4703c, 2619 0x47044, 0x4708c, 2620 0x47200, 0x47250, 2621 0x47400, 0x47408, 2622 0x47414, 0x47420, 2623 0x47600, 0x47618, 2624 0x47800, 0x47814, 2625 0x47820, 0x4782c, 2626 0x50000, 0x50084, 2627 0x50090, 0x500cc, 2628 0x50300, 0x50384, 2629 0x50400, 0x50400, 2630 0x50800, 0x50884, 2631 0x50890, 0x508cc, 2632 0x50b00, 0x50b84, 2633 0x50c00, 0x50c00, 2634 0x51000, 0x51020, 2635 0x51028, 0x510b0, 2636 0x51300, 0x51324, 2637 }; 2638 2639 u32 *buf_end = (u32 *)((char *)buf + buf_size); 2640 const unsigned int *reg_ranges; 2641 int reg_ranges_size, range; 2642 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 2643 2644 /* Select the right set of register ranges to dump depending on the 2645 * adapter chip type. 2646 */ 2647 switch (chip_version) { 2648 case CHELSIO_T4: 2649 reg_ranges = t4_reg_ranges; 2650 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); 2651 break; 2652 2653 case CHELSIO_T5: 2654 reg_ranges = t5_reg_ranges; 2655 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); 2656 break; 2657 2658 case CHELSIO_T6: 2659 reg_ranges = t6_reg_ranges; 2660 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); 2661 break; 2662 2663 default: 2664 dev_err(adap->pdev_dev, 2665 "Unsupported chip version %d\n", chip_version); 2666 return; 2667 } 2668 2669 /* Clear the register buffer and insert the appropriate register 2670 * values selected by the above register ranges. 2671 */ 2672 memset(buf, 0, buf_size); 2673 for (range = 0; range < reg_ranges_size; range += 2) { 2674 unsigned int reg = reg_ranges[range]; 2675 unsigned int last_reg = reg_ranges[range + 1]; 2676 u32 *bufp = (u32 *)((char *)buf + reg); 2677 2678 /* Iterate across the register range filling in the register 2679 * buffer but don't write past the end of the register buffer. 2680 */ 2681 while (reg <= last_reg && bufp < buf_end) { 2682 *bufp++ = t4_read_reg(adap, reg); 2683 reg += sizeof(u32); 2684 } 2685 } 2686 } 2687 2688 #define EEPROM_STAT_ADDR 0x7bfc 2689 #define VPD_BASE 0x400 2690 #define VPD_BASE_OLD 0 2691 #define VPD_LEN 1024 2692 2693 /** 2694 * t4_eeprom_ptov - translate a physical EEPROM address to virtual 2695 * @phys_addr: the physical EEPROM address 2696 * @fn: the PCI function number 2697 * @sz: size of function-specific area 2698 * 2699 * Translate a physical EEPROM address to virtual. The first 1K is 2700 * accessed through virtual addresses starting at 31K, the rest is 2701 * accessed through virtual addresses starting at 0. 2702 * 2703 * The mapping is as follows: 2704 * [0..1K) -> [31K..32K) 2705 * [1K..1K+A) -> [31K-A..31K) 2706 * [1K+A..ES) -> [0..ES-A-1K) 2707 * 2708 * where A = @fn * @sz, and ES = EEPROM size. 2709 */ 2710 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) 2711 { 2712 fn *= sz; 2713 if (phys_addr < 1024) 2714 return phys_addr + (31 << 10); 2715 if (phys_addr < 1024 + fn) 2716 return 31744 - fn + phys_addr - 1024; 2717 if (phys_addr < EEPROMSIZE) 2718 return phys_addr - 1024 - fn; 2719 return -EINVAL; 2720 } 2721 2722 /** 2723 * t4_seeprom_wp - enable/disable EEPROM write protection 2724 * @adapter: the adapter 2725 * @enable: whether to enable or disable write protection 2726 * 2727 * Enables or disables write protection on the serial EEPROM. 2728 */ 2729 int t4_seeprom_wp(struct adapter *adapter, bool enable) 2730 { 2731 unsigned int v = enable ? 0xc : 0; 2732 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v); 2733 return ret < 0 ? ret : 0; 2734 } 2735 2736 /** 2737 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM 2738 * @adapter: adapter to read 2739 * @p: where to store the parameters 2740 * 2741 * Reads card parameters stored in VPD EEPROM. 2742 */ 2743 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p) 2744 { 2745 int i, ret = 0, addr; 2746 int ec, sn, pn, na; 2747 u8 *vpd, csum, base_val = 0; 2748 unsigned int vpdr_len, kw_offset, id_len; 2749 2750 vpd = vmalloc(VPD_LEN); 2751 if (!vpd) 2752 return -ENOMEM; 2753 2754 /* Card information normally starts at VPD_BASE but early cards had 2755 * it at 0. 2756 */ 2757 ret = pci_read_vpd(adapter->pdev, VPD_BASE, 1, &base_val); 2758 if (ret < 0) 2759 goto out; 2760 2761 addr = base_val == PCI_VPD_LRDT_ID_STRING ? VPD_BASE : VPD_BASE_OLD; 2762 2763 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd); 2764 if (ret < 0) 2765 goto out; 2766 2767 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) { 2768 dev_err(adapter->pdev_dev, "missing VPD ID string\n"); 2769 ret = -EINVAL; 2770 goto out; 2771 } 2772 2773 id_len = pci_vpd_lrdt_size(vpd); 2774 if (id_len > ID_LEN) 2775 id_len = ID_LEN; 2776 2777 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA); 2778 if (i < 0) { 2779 dev_err(adapter->pdev_dev, "missing VPD-R section\n"); 2780 ret = -EINVAL; 2781 goto out; 2782 } 2783 2784 vpdr_len = pci_vpd_lrdt_size(&vpd[i]); 2785 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE; 2786 if (vpdr_len + kw_offset > VPD_LEN) { 2787 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len); 2788 ret = -EINVAL; 2789 goto out; 2790 } 2791 2792 #define FIND_VPD_KW(var, name) do { \ 2793 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \ 2794 if (var < 0) { \ 2795 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \ 2796 ret = -EINVAL; \ 2797 goto out; \ 2798 } \ 2799 var += PCI_VPD_INFO_FLD_HDR_SIZE; \ 2800 } while (0) 2801 2802 FIND_VPD_KW(i, "RV"); 2803 for (csum = 0; i >= 0; i--) 2804 csum += vpd[i]; 2805 2806 if (csum) { 2807 dev_err(adapter->pdev_dev, 2808 "corrupted VPD EEPROM, actual csum %u\n", csum); 2809 ret = -EINVAL; 2810 goto out; 2811 } 2812 2813 FIND_VPD_KW(ec, "EC"); 2814 FIND_VPD_KW(sn, "SN"); 2815 FIND_VPD_KW(pn, "PN"); 2816 FIND_VPD_KW(na, "NA"); 2817 #undef FIND_VPD_KW 2818 2819 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len); 2820 strim(p->id); 2821 memcpy(p->ec, vpd + ec, EC_LEN); 2822 strim(p->ec); 2823 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE); 2824 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); 2825 strim(p->sn); 2826 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE); 2827 memcpy(p->pn, vpd + pn, min(i, PN_LEN)); 2828 strim(p->pn); 2829 memcpy(p->na, vpd + na, min(i, MACADDR_LEN)); 2830 strim((char *)p->na); 2831 2832 out: 2833 vfree(vpd); 2834 return ret < 0 ? ret : 0; 2835 } 2836 2837 /** 2838 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock 2839 * @adapter: adapter to read 2840 * @p: where to store the parameters 2841 * 2842 * Reads card parameters stored in VPD EEPROM and retrieves the Core 2843 * Clock. This can only be called after a connection to the firmware 2844 * is established. 2845 */ 2846 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p) 2847 { 2848 u32 cclk_param, cclk_val; 2849 int ret; 2850 2851 /* Grab the raw VPD parameters. 2852 */ 2853 ret = t4_get_raw_vpd_params(adapter, p); 2854 if (ret) 2855 return ret; 2856 2857 /* Ask firmware for the Core Clock since it knows how to translate the 2858 * Reference Clock ('V2') VPD field into a Core Clock value ... 2859 */ 2860 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 2861 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); 2862 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 2863 1, &cclk_param, &cclk_val); 2864 2865 if (ret) 2866 return ret; 2867 p->cclk = cclk_val; 2868 2869 return 0; 2870 } 2871 2872 /** 2873 * t4_get_pfres - retrieve VF resource limits 2874 * @adapter: the adapter 2875 * 2876 * Retrieves configured resource limits and capabilities for a physical 2877 * function. The results are stored in @adapter->pfres. 2878 */ 2879 int t4_get_pfres(struct adapter *adapter) 2880 { 2881 struct pf_resources *pfres = &adapter->params.pfres; 2882 struct fw_pfvf_cmd cmd, rpl; 2883 int v; 2884 u32 word; 2885 2886 /* Execute PFVF Read command to get VF resource limits; bail out early 2887 * with error on command failure. 2888 */ 2889 memset(&cmd, 0, sizeof(cmd)); 2890 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 2891 FW_CMD_REQUEST_F | 2892 FW_CMD_READ_F | 2893 FW_PFVF_CMD_PFN_V(adapter->pf) | 2894 FW_PFVF_CMD_VFN_V(0)); 2895 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 2896 v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl); 2897 if (v != FW_SUCCESS) 2898 return v; 2899 2900 /* Extract PF resource limits and return success. 2901 */ 2902 word = be32_to_cpu(rpl.niqflint_niq); 2903 pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word); 2904 pfres->niq = FW_PFVF_CMD_NIQ_G(word); 2905 2906 word = be32_to_cpu(rpl.type_to_neq); 2907 pfres->neq = FW_PFVF_CMD_NEQ_G(word); 2908 pfres->pmask = FW_PFVF_CMD_PMASK_G(word); 2909 2910 word = be32_to_cpu(rpl.tc_to_nexactf); 2911 pfres->tc = FW_PFVF_CMD_TC_G(word); 2912 pfres->nvi = FW_PFVF_CMD_NVI_G(word); 2913 pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word); 2914 2915 word = be32_to_cpu(rpl.r_caps_to_nethctrl); 2916 pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word); 2917 pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word); 2918 pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word); 2919 2920 return 0; 2921 } 2922 2923 /* serial flash and firmware constants */ 2924 enum { 2925 SF_ATTEMPTS = 10, /* max retries for SF operations */ 2926 2927 /* flash command opcodes */ 2928 SF_PROG_PAGE = 2, /* program page */ 2929 SF_WR_DISABLE = 4, /* disable writes */ 2930 SF_RD_STATUS = 5, /* read status register */ 2931 SF_WR_ENABLE = 6, /* enable writes */ 2932 SF_RD_DATA_FAST = 0xb, /* read flash */ 2933 SF_RD_ID = 0x9f, /* read ID */ 2934 SF_ERASE_SECTOR = 0xd8, /* erase sector */ 2935 }; 2936 2937 /** 2938 * sf1_read - read data from the serial flash 2939 * @adapter: the adapter 2940 * @byte_cnt: number of bytes to read 2941 * @cont: whether another operation will be chained 2942 * @lock: whether to lock SF for PL access only 2943 * @valp: where to store the read data 2944 * 2945 * Reads up to 4 bytes of data from the serial flash. The location of 2946 * the read needs to be specified prior to calling this by issuing the 2947 * appropriate commands to the serial flash. 2948 */ 2949 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 2950 int lock, u32 *valp) 2951 { 2952 int ret; 2953 2954 if (!byte_cnt || byte_cnt > 4) 2955 return -EINVAL; 2956 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2957 return -EBUSY; 2958 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2959 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1)); 2960 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2961 if (!ret) 2962 *valp = t4_read_reg(adapter, SF_DATA_A); 2963 return ret; 2964 } 2965 2966 /** 2967 * sf1_write - write data to the serial flash 2968 * @adapter: the adapter 2969 * @byte_cnt: number of bytes to write 2970 * @cont: whether another operation will be chained 2971 * @lock: whether to lock SF for PL access only 2972 * @val: value to write 2973 * 2974 * Writes up to 4 bytes of data to the serial flash. The location of 2975 * the write needs to be specified prior to calling this by issuing the 2976 * appropriate commands to the serial flash. 2977 */ 2978 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 2979 int lock, u32 val) 2980 { 2981 if (!byte_cnt || byte_cnt > 4) 2982 return -EINVAL; 2983 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2984 return -EBUSY; 2985 t4_write_reg(adapter, SF_DATA_A, val); 2986 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2987 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1)); 2988 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2989 } 2990 2991 /** 2992 * flash_wait_op - wait for a flash operation to complete 2993 * @adapter: the adapter 2994 * @attempts: max number of polls of the status register 2995 * @delay: delay between polls in ms 2996 * 2997 * Wait for a flash operation to complete by polling the status register. 2998 */ 2999 static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 3000 { 3001 int ret; 3002 u32 status; 3003 3004 while (1) { 3005 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 3006 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 3007 return ret; 3008 if (!(status & 1)) 3009 return 0; 3010 if (--attempts == 0) 3011 return -EAGAIN; 3012 if (delay) 3013 msleep(delay); 3014 } 3015 } 3016 3017 /** 3018 * t4_read_flash - read words from serial flash 3019 * @adapter: the adapter 3020 * @addr: the start address for the read 3021 * @nwords: how many 32-bit words to read 3022 * @data: where to store the read data 3023 * @byte_oriented: whether to store data as bytes or as words 3024 * 3025 * Read the specified number of 32-bit words from the serial flash. 3026 * If @byte_oriented is set the read data is stored as a byte array 3027 * (i.e., big-endian), otherwise as 32-bit words in the platform's 3028 * natural endianness. 3029 */ 3030 int t4_read_flash(struct adapter *adapter, unsigned int addr, 3031 unsigned int nwords, u32 *data, int byte_oriented) 3032 { 3033 int ret; 3034 3035 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 3036 return -EINVAL; 3037 3038 addr = swab32(addr) | SF_RD_DATA_FAST; 3039 3040 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 3041 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 3042 return ret; 3043 3044 for ( ; nwords; nwords--, data++) { 3045 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 3046 if (nwords == 1) 3047 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3048 if (ret) 3049 return ret; 3050 if (byte_oriented) 3051 *data = (__force __u32)(cpu_to_be32(*data)); 3052 } 3053 return 0; 3054 } 3055 3056 /** 3057 * t4_write_flash - write up to a page of data to the serial flash 3058 * @adapter: the adapter 3059 * @addr: the start address to write 3060 * @n: length of data to write in bytes 3061 * @data: the data to write 3062 * 3063 * Writes up to a page of data (256 bytes) to the serial flash starting 3064 * at the given address. All the data must be written to the same page. 3065 */ 3066 static int t4_write_flash(struct adapter *adapter, unsigned int addr, 3067 unsigned int n, const u8 *data) 3068 { 3069 int ret; 3070 u32 buf[64]; 3071 unsigned int i, c, left, val, offset = addr & 0xff; 3072 3073 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 3074 return -EINVAL; 3075 3076 val = swab32(addr) | SF_PROG_PAGE; 3077 3078 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3079 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 3080 goto unlock; 3081 3082 for (left = n; left; left -= c) { 3083 c = min(left, 4U); 3084 for (val = 0, i = 0; i < c; ++i) 3085 val = (val << 8) + *data++; 3086 3087 ret = sf1_write(adapter, c, c != left, 1, val); 3088 if (ret) 3089 goto unlock; 3090 } 3091 ret = flash_wait_op(adapter, 8, 1); 3092 if (ret) 3093 goto unlock; 3094 3095 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3096 3097 /* Read the page to verify the write succeeded */ 3098 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); 3099 if (ret) 3100 return ret; 3101 3102 if (memcmp(data - n, (u8 *)buf + offset, n)) { 3103 dev_err(adapter->pdev_dev, 3104 "failed to correctly write the flash page at %#x\n", 3105 addr); 3106 return -EIO; 3107 } 3108 return 0; 3109 3110 unlock: 3111 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3112 return ret; 3113 } 3114 3115 /** 3116 * t4_get_fw_version - read the firmware version 3117 * @adapter: the adapter 3118 * @vers: where to place the version 3119 * 3120 * Reads the FW version from flash. 3121 */ 3122 int t4_get_fw_version(struct adapter *adapter, u32 *vers) 3123 { 3124 return t4_read_flash(adapter, FLASH_FW_START + 3125 offsetof(struct fw_hdr, fw_ver), 1, 3126 vers, 0); 3127 } 3128 3129 /** 3130 * t4_get_bs_version - read the firmware bootstrap version 3131 * @adapter: the adapter 3132 * @vers: where to place the version 3133 * 3134 * Reads the FW Bootstrap version from flash. 3135 */ 3136 int t4_get_bs_version(struct adapter *adapter, u32 *vers) 3137 { 3138 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START + 3139 offsetof(struct fw_hdr, fw_ver), 1, 3140 vers, 0); 3141 } 3142 3143 /** 3144 * t4_get_tp_version - read the TP microcode version 3145 * @adapter: the adapter 3146 * @vers: where to place the version 3147 * 3148 * Reads the TP microcode version from flash. 3149 */ 3150 int t4_get_tp_version(struct adapter *adapter, u32 *vers) 3151 { 3152 return t4_read_flash(adapter, FLASH_FW_START + 3153 offsetof(struct fw_hdr, tp_microcode_ver), 3154 1, vers, 0); 3155 } 3156 3157 /** 3158 * t4_get_exprom_version - return the Expansion ROM version (if any) 3159 * @adap: the adapter 3160 * @vers: where to place the version 3161 * 3162 * Reads the Expansion ROM header from FLASH and returns the version 3163 * number (if present) through the @vers return value pointer. We return 3164 * this in the Firmware Version Format since it's convenient. Return 3165 * 0 on success, -ENOENT if no Expansion ROM is present. 3166 */ 3167 int t4_get_exprom_version(struct adapter *adap, u32 *vers) 3168 { 3169 struct exprom_header { 3170 unsigned char hdr_arr[16]; /* must start with 0x55aa */ 3171 unsigned char hdr_ver[4]; /* Expansion ROM version */ 3172 } *hdr; 3173 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), 3174 sizeof(u32))]; 3175 int ret; 3176 3177 ret = t4_read_flash(adap, FLASH_EXP_ROM_START, 3178 ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 3179 0); 3180 if (ret) 3181 return ret; 3182 3183 hdr = (struct exprom_header *)exprom_header_buf; 3184 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) 3185 return -ENOENT; 3186 3187 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) | 3188 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) | 3189 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) | 3190 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3])); 3191 return 0; 3192 } 3193 3194 /** 3195 * t4_get_vpd_version - return the VPD version 3196 * @adapter: the adapter 3197 * @vers: where to place the version 3198 * 3199 * Reads the VPD via the Firmware interface (thus this can only be called 3200 * once we're ready to issue Firmware commands). The format of the 3201 * VPD version is adapter specific. Returns 0 on success, an error on 3202 * failure. 3203 * 3204 * Note that early versions of the Firmware didn't include the ability 3205 * to retrieve the VPD version, so we zero-out the return-value parameter 3206 * in that case to avoid leaving it with garbage in it. 3207 * 3208 * Also note that the Firmware will return its cached copy of the VPD 3209 * Revision ID, not the actual Revision ID as written in the Serial 3210 * EEPROM. This is only an issue if a new VPD has been written and the 3211 * Firmware/Chip haven't yet gone through a RESET sequence. So it's best 3212 * to defer calling this routine till after a FW_RESET_CMD has been issued 3213 * if the Host Driver will be performing a full adapter initialization. 3214 */ 3215 int t4_get_vpd_version(struct adapter *adapter, u32 *vers) 3216 { 3217 u32 vpdrev_param; 3218 int ret; 3219 3220 vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3221 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV)); 3222 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3223 1, &vpdrev_param, vers); 3224 if (ret) 3225 *vers = 0; 3226 return ret; 3227 } 3228 3229 /** 3230 * t4_get_scfg_version - return the Serial Configuration version 3231 * @adapter: the adapter 3232 * @vers: where to place the version 3233 * 3234 * Reads the Serial Configuration Version via the Firmware interface 3235 * (thus this can only be called once we're ready to issue Firmware 3236 * commands). The format of the Serial Configuration version is 3237 * adapter specific. Returns 0 on success, an error on failure. 3238 * 3239 * Note that early versions of the Firmware didn't include the ability 3240 * to retrieve the Serial Configuration version, so we zero-out the 3241 * return-value parameter in that case to avoid leaving it with 3242 * garbage in it. 3243 * 3244 * Also note that the Firmware will return its cached copy of the Serial 3245 * Initialization Revision ID, not the actual Revision ID as written in 3246 * the Serial EEPROM. This is only an issue if a new VPD has been written 3247 * and the Firmware/Chip haven't yet gone through a RESET sequence. So 3248 * it's best to defer calling this routine till after a FW_RESET_CMD has 3249 * been issued if the Host Driver will be performing a full adapter 3250 * initialization. 3251 */ 3252 int t4_get_scfg_version(struct adapter *adapter, u32 *vers) 3253 { 3254 u32 scfgrev_param; 3255 int ret; 3256 3257 scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3258 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV)); 3259 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3260 1, &scfgrev_param, vers); 3261 if (ret) 3262 *vers = 0; 3263 return ret; 3264 } 3265 3266 /** 3267 * t4_get_version_info - extract various chip/firmware version information 3268 * @adapter: the adapter 3269 * 3270 * Reads various chip/firmware version numbers and stores them into the 3271 * adapter Adapter Parameters structure. If any of the efforts fails 3272 * the first failure will be returned, but all of the version numbers 3273 * will be read. 3274 */ 3275 int t4_get_version_info(struct adapter *adapter) 3276 { 3277 int ret = 0; 3278 3279 #define FIRST_RET(__getvinfo) \ 3280 do { \ 3281 int __ret = __getvinfo; \ 3282 if (__ret && !ret) \ 3283 ret = __ret; \ 3284 } while (0) 3285 3286 FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers)); 3287 FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers)); 3288 FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers)); 3289 FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers)); 3290 FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers)); 3291 FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers)); 3292 3293 #undef FIRST_RET 3294 return ret; 3295 } 3296 3297 /** 3298 * t4_dump_version_info - dump all of the adapter configuration IDs 3299 * @adapter: the adapter 3300 * 3301 * Dumps all of the various bits of adapter configuration version/revision 3302 * IDs information. This is typically called at some point after 3303 * t4_get_version_info() has been called. 3304 */ 3305 void t4_dump_version_info(struct adapter *adapter) 3306 { 3307 /* Device information */ 3308 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n", 3309 adapter->params.vpd.id, 3310 CHELSIO_CHIP_RELEASE(adapter->params.chip)); 3311 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n", 3312 adapter->params.vpd.sn, adapter->params.vpd.pn); 3313 3314 /* Firmware Version */ 3315 if (!adapter->params.fw_vers) 3316 dev_warn(adapter->pdev_dev, "No firmware loaded\n"); 3317 else 3318 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n", 3319 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers), 3320 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers), 3321 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers), 3322 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers)); 3323 3324 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap 3325 * Firmware, so dev_info() is more appropriate here.) 3326 */ 3327 if (!adapter->params.bs_vers) 3328 dev_info(adapter->pdev_dev, "No bootstrap loaded\n"); 3329 else 3330 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n", 3331 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers), 3332 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers), 3333 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers), 3334 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers)); 3335 3336 /* TP Microcode Version */ 3337 if (!adapter->params.tp_vers) 3338 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n"); 3339 else 3340 dev_info(adapter->pdev_dev, 3341 "TP Microcode version: %u.%u.%u.%u\n", 3342 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers), 3343 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers), 3344 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers), 3345 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers)); 3346 3347 /* Expansion ROM version */ 3348 if (!adapter->params.er_vers) 3349 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n"); 3350 else 3351 dev_info(adapter->pdev_dev, 3352 "Expansion ROM version: %u.%u.%u.%u\n", 3353 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers), 3354 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers), 3355 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers), 3356 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers)); 3357 3358 /* Serial Configuration version */ 3359 dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n", 3360 adapter->params.scfg_vers); 3361 3362 /* VPD Version */ 3363 dev_info(adapter->pdev_dev, "VPD version: %#x\n", 3364 adapter->params.vpd_vers); 3365 } 3366 3367 /** 3368 * t4_check_fw_version - check if the FW is supported with this driver 3369 * @adap: the adapter 3370 * 3371 * Checks if an adapter's FW is compatible with the driver. Returns 0 3372 * if there's exact match, a negative error if the version could not be 3373 * read or there's a major version mismatch 3374 */ 3375 int t4_check_fw_version(struct adapter *adap) 3376 { 3377 int i, ret, major, minor, micro; 3378 int exp_major, exp_minor, exp_micro; 3379 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 3380 3381 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3382 /* Try multiple times before returning error */ 3383 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++) 3384 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3385 3386 if (ret) 3387 return ret; 3388 3389 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers); 3390 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers); 3391 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers); 3392 3393 switch (chip_version) { 3394 case CHELSIO_T4: 3395 exp_major = T4FW_MIN_VERSION_MAJOR; 3396 exp_minor = T4FW_MIN_VERSION_MINOR; 3397 exp_micro = T4FW_MIN_VERSION_MICRO; 3398 break; 3399 case CHELSIO_T5: 3400 exp_major = T5FW_MIN_VERSION_MAJOR; 3401 exp_minor = T5FW_MIN_VERSION_MINOR; 3402 exp_micro = T5FW_MIN_VERSION_MICRO; 3403 break; 3404 case CHELSIO_T6: 3405 exp_major = T6FW_MIN_VERSION_MAJOR; 3406 exp_minor = T6FW_MIN_VERSION_MINOR; 3407 exp_micro = T6FW_MIN_VERSION_MICRO; 3408 break; 3409 default: 3410 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n", 3411 adap->chip); 3412 return -EINVAL; 3413 } 3414 3415 if (major < exp_major || (major == exp_major && minor < exp_minor) || 3416 (major == exp_major && minor == exp_minor && micro < exp_micro)) { 3417 dev_err(adap->pdev_dev, 3418 "Card has firmware version %u.%u.%u, minimum " 3419 "supported firmware is %u.%u.%u.\n", major, minor, 3420 micro, exp_major, exp_minor, exp_micro); 3421 return -EFAULT; 3422 } 3423 return 0; 3424 } 3425 3426 /* Is the given firmware API compatible with the one the driver was compiled 3427 * with? 3428 */ 3429 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) 3430 { 3431 3432 /* short circuit if it's the exact same firmware version */ 3433 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 3434 return 1; 3435 3436 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 3437 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 3438 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) 3439 return 1; 3440 #undef SAME_INTF 3441 3442 return 0; 3443 } 3444 3445 /* The firmware in the filesystem is usable, but should it be installed? 3446 * This routine explains itself in detail if it indicates the filesystem 3447 * firmware should be installed. 3448 */ 3449 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable, 3450 int k, int c) 3451 { 3452 const char *reason; 3453 3454 if (!card_fw_usable) { 3455 reason = "incompatible or unusable"; 3456 goto install; 3457 } 3458 3459 if (k > c) { 3460 reason = "older than the version supported with this driver"; 3461 goto install; 3462 } 3463 3464 return 0; 3465 3466 install: 3467 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, " 3468 "installing firmware %u.%u.%u.%u on card.\n", 3469 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3470 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason, 3471 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3472 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3473 3474 return 1; 3475 } 3476 3477 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info, 3478 const u8 *fw_data, unsigned int fw_size, 3479 struct fw_hdr *card_fw, enum dev_state state, 3480 int *reset) 3481 { 3482 int ret, card_fw_usable, fs_fw_usable; 3483 const struct fw_hdr *fs_fw; 3484 const struct fw_hdr *drv_fw; 3485 3486 drv_fw = &fw_info->fw_hdr; 3487 3488 /* Read the header of the firmware on the card */ 3489 ret = t4_read_flash(adap, FLASH_FW_START, 3490 sizeof(*card_fw) / sizeof(uint32_t), 3491 (uint32_t *)card_fw, 1); 3492 if (ret == 0) { 3493 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); 3494 } else { 3495 dev_err(adap->pdev_dev, 3496 "Unable to read card's firmware header: %d\n", ret); 3497 card_fw_usable = 0; 3498 } 3499 3500 if (fw_data != NULL) { 3501 fs_fw = (const void *)fw_data; 3502 fs_fw_usable = fw_compatible(drv_fw, fs_fw); 3503 } else { 3504 fs_fw = NULL; 3505 fs_fw_usable = 0; 3506 } 3507 3508 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && 3509 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { 3510 /* Common case: the firmware on the card is an exact match and 3511 * the filesystem one is an exact match too, or the filesystem 3512 * one is absent/incompatible. 3513 */ 3514 } else if (fs_fw_usable && state == DEV_STATE_UNINIT && 3515 should_install_fs_fw(adap, card_fw_usable, 3516 be32_to_cpu(fs_fw->fw_ver), 3517 be32_to_cpu(card_fw->fw_ver))) { 3518 ret = t4_fw_upgrade(adap, adap->mbox, fw_data, 3519 fw_size, 0); 3520 if (ret != 0) { 3521 dev_err(adap->pdev_dev, 3522 "failed to install firmware: %d\n", ret); 3523 goto bye; 3524 } 3525 3526 /* Installed successfully, update the cached header too. */ 3527 *card_fw = *fs_fw; 3528 card_fw_usable = 1; 3529 *reset = 0; /* already reset as part of load_fw */ 3530 } 3531 3532 if (!card_fw_usable) { 3533 uint32_t d, c, k; 3534 3535 d = be32_to_cpu(drv_fw->fw_ver); 3536 c = be32_to_cpu(card_fw->fw_ver); 3537 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; 3538 3539 dev_err(adap->pdev_dev, "Cannot find a usable firmware: " 3540 "chip state %d, " 3541 "driver compiled with %d.%d.%d.%d, " 3542 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", 3543 state, 3544 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d), 3545 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d), 3546 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3547 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), 3548 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3549 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3550 ret = -EINVAL; 3551 goto bye; 3552 } 3553 3554 /* We're using whatever's on the card and it's known to be good. */ 3555 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver); 3556 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); 3557 3558 bye: 3559 return ret; 3560 } 3561 3562 /** 3563 * t4_flash_erase_sectors - erase a range of flash sectors 3564 * @adapter: the adapter 3565 * @start: the first sector to erase 3566 * @end: the last sector to erase 3567 * 3568 * Erases the sectors in the given inclusive range. 3569 */ 3570 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 3571 { 3572 int ret = 0; 3573 3574 if (end >= adapter->params.sf_nsec) 3575 return -EINVAL; 3576 3577 while (start <= end) { 3578 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3579 (ret = sf1_write(adapter, 4, 0, 1, 3580 SF_ERASE_SECTOR | (start << 8))) != 0 || 3581 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 3582 dev_err(adapter->pdev_dev, 3583 "erase of flash sector %d failed, error %d\n", 3584 start, ret); 3585 break; 3586 } 3587 start++; 3588 } 3589 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3590 return ret; 3591 } 3592 3593 /** 3594 * t4_flash_cfg_addr - return the address of the flash configuration file 3595 * @adapter: the adapter 3596 * 3597 * Return the address within the flash where the Firmware Configuration 3598 * File is stored. 3599 */ 3600 unsigned int t4_flash_cfg_addr(struct adapter *adapter) 3601 { 3602 if (adapter->params.sf_size == 0x100000) 3603 return FLASH_FPGA_CFG_START; 3604 else 3605 return FLASH_CFG_START; 3606 } 3607 3608 /* Return TRUE if the specified firmware matches the adapter. I.e. T4 3609 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead 3610 * and emit an error message for mismatched firmware to save our caller the 3611 * effort ... 3612 */ 3613 static bool t4_fw_matches_chip(const struct adapter *adap, 3614 const struct fw_hdr *hdr) 3615 { 3616 /* The expression below will return FALSE for any unsupported adapter 3617 * which will keep us "honest" in the future ... 3618 */ 3619 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) || 3620 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) || 3621 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6)) 3622 return true; 3623 3624 dev_err(adap->pdev_dev, 3625 "FW image (%d) is not suitable for this adapter (%d)\n", 3626 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip)); 3627 return false; 3628 } 3629 3630 /** 3631 * t4_load_fw - download firmware 3632 * @adap: the adapter 3633 * @fw_data: the firmware image to write 3634 * @size: image size 3635 * 3636 * Write the supplied firmware image to the card's serial flash. 3637 */ 3638 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 3639 { 3640 u32 csum; 3641 int ret, addr; 3642 unsigned int i; 3643 u8 first_page[SF_PAGE_SIZE]; 3644 const __be32 *p = (const __be32 *)fw_data; 3645 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 3646 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 3647 unsigned int fw_start_sec = FLASH_FW_START_SEC; 3648 unsigned int fw_size = FLASH_FW_MAX_SIZE; 3649 unsigned int fw_start = FLASH_FW_START; 3650 3651 if (!size) { 3652 dev_err(adap->pdev_dev, "FW image has no data\n"); 3653 return -EINVAL; 3654 } 3655 if (size & 511) { 3656 dev_err(adap->pdev_dev, 3657 "FW image size not multiple of 512 bytes\n"); 3658 return -EINVAL; 3659 } 3660 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) { 3661 dev_err(adap->pdev_dev, 3662 "FW image size differs from size in FW header\n"); 3663 return -EINVAL; 3664 } 3665 if (size > fw_size) { 3666 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n", 3667 fw_size); 3668 return -EFBIG; 3669 } 3670 if (!t4_fw_matches_chip(adap, hdr)) 3671 return -EINVAL; 3672 3673 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 3674 csum += be32_to_cpu(p[i]); 3675 3676 if (csum != 0xffffffff) { 3677 dev_err(adap->pdev_dev, 3678 "corrupted firmware image, checksum %#x\n", csum); 3679 return -EINVAL; 3680 } 3681 3682 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 3683 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 3684 if (ret) 3685 goto out; 3686 3687 /* 3688 * We write the correct version at the end so the driver can see a bad 3689 * version if the FW write fails. Start by writing a copy of the 3690 * first page with a bad version. 3691 */ 3692 memcpy(first_page, fw_data, SF_PAGE_SIZE); 3693 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); 3694 ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page); 3695 if (ret) 3696 goto out; 3697 3698 addr = fw_start; 3699 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 3700 addr += SF_PAGE_SIZE; 3701 fw_data += SF_PAGE_SIZE; 3702 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data); 3703 if (ret) 3704 goto out; 3705 } 3706 3707 ret = t4_write_flash(adap, 3708 fw_start + offsetof(struct fw_hdr, fw_ver), 3709 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver); 3710 out: 3711 if (ret) 3712 dev_err(adap->pdev_dev, "firmware download failed, error %d\n", 3713 ret); 3714 else 3715 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3716 return ret; 3717 } 3718 3719 /** 3720 * t4_phy_fw_ver - return current PHY firmware version 3721 * @adap: the adapter 3722 * @phy_fw_ver: return value buffer for PHY firmware version 3723 * 3724 * Returns the current version of external PHY firmware on the 3725 * adapter. 3726 */ 3727 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver) 3728 { 3729 u32 param, val; 3730 int ret; 3731 3732 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3733 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3734 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3735 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION)); 3736 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3737 ¶m, &val); 3738 if (ret) 3739 return ret; 3740 *phy_fw_ver = val; 3741 return 0; 3742 } 3743 3744 /** 3745 * t4_load_phy_fw - download port PHY firmware 3746 * @adap: the adapter 3747 * @win: the PCI-E Memory Window index to use for t4_memory_rw() 3748 * @phy_fw_version: function to check PHY firmware versions 3749 * @phy_fw_data: the PHY firmware image to write 3750 * @phy_fw_size: image size 3751 * 3752 * Transfer the specified PHY firmware to the adapter. If a non-NULL 3753 * @phy_fw_version is supplied, then it will be used to determine if 3754 * it's necessary to perform the transfer by comparing the version 3755 * of any existing adapter PHY firmware with that of the passed in 3756 * PHY firmware image. 3757 * 3758 * A negative error number will be returned if an error occurs. If 3759 * version number support is available and there's no need to upgrade 3760 * the firmware, 0 will be returned. If firmware is successfully 3761 * transferred to the adapter, 1 will be returned. 3762 * 3763 * NOTE: some adapters only have local RAM to store the PHY firmware. As 3764 * a result, a RESET of the adapter would cause that RAM to lose its 3765 * contents. Thus, loading PHY firmware on such adapters must happen 3766 * after any FW_RESET_CMDs ... 3767 */ 3768 int t4_load_phy_fw(struct adapter *adap, int win, 3769 int (*phy_fw_version)(const u8 *, size_t), 3770 const u8 *phy_fw_data, size_t phy_fw_size) 3771 { 3772 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0; 3773 unsigned long mtype = 0, maddr = 0; 3774 u32 param, val; 3775 int ret; 3776 3777 /* If we have version number support, then check to see if the adapter 3778 * already has up-to-date PHY firmware loaded. 3779 */ 3780 if (phy_fw_version) { 3781 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size); 3782 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3783 if (ret < 0) 3784 return ret; 3785 3786 if (cur_phy_fw_ver >= new_phy_fw_vers) { 3787 CH_WARN(adap, "PHY Firmware already up-to-date, " 3788 "version %#x\n", cur_phy_fw_ver); 3789 return 0; 3790 } 3791 } 3792 3793 /* Ask the firmware where it wants us to copy the PHY firmware image. 3794 * The size of the file requires a special version of the READ command 3795 * which will pass the file size via the values field in PARAMS_CMD and 3796 * retrieve the return value from firmware and place it in the same 3797 * buffer values 3798 */ 3799 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3800 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3801 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3802 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3803 val = phy_fw_size; 3804 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1, 3805 ¶m, &val, 1, true); 3806 if (ret < 0) 3807 return ret; 3808 mtype = val >> 8; 3809 maddr = (val & 0xff) << 16; 3810 3811 /* Copy the supplied PHY Firmware image to the adapter memory location 3812 * allocated by the adapter firmware. 3813 */ 3814 ret = t4_memory_rw(adap, win, mtype, maddr, 3815 phy_fw_size, (__be32 *)phy_fw_data, 3816 T4_MEMORY_WRITE); 3817 if (ret) 3818 return ret; 3819 3820 /* Tell the firmware that the PHY firmware image has been written to 3821 * RAM and it can now start copying it over to the PHYs. The chip 3822 * firmware will RESET the affected PHYs as part of this operation 3823 * leaving them running the new PHY firmware image. 3824 */ 3825 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3826 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3827 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3828 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3829 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 3830 ¶m, &val, 30000); 3831 3832 /* If we have version number support, then check to see that the new 3833 * firmware got loaded properly. 3834 */ 3835 if (phy_fw_version) { 3836 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3837 if (ret < 0) 3838 return ret; 3839 3840 if (cur_phy_fw_ver != new_phy_fw_vers) { 3841 CH_WARN(adap, "PHY Firmware did not update: " 3842 "version on adapter %#x, " 3843 "version flashed %#x\n", 3844 cur_phy_fw_ver, new_phy_fw_vers); 3845 return -ENXIO; 3846 } 3847 } 3848 3849 return 1; 3850 } 3851 3852 /** 3853 * t4_fwcache - firmware cache operation 3854 * @adap: the adapter 3855 * @op : the operation (flush or flush and invalidate) 3856 */ 3857 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) 3858 { 3859 struct fw_params_cmd c; 3860 3861 memset(&c, 0, sizeof(c)); 3862 c.op_to_vfn = 3863 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 3864 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 3865 FW_PARAMS_CMD_PFN_V(adap->pf) | 3866 FW_PARAMS_CMD_VFN_V(0)); 3867 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 3868 c.param[0].mnem = 3869 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3870 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE)); 3871 c.param[0].val = cpu_to_be32(op); 3872 3873 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); 3874 } 3875 3876 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, 3877 unsigned int *pif_req_wrptr, 3878 unsigned int *pif_rsp_wrptr) 3879 { 3880 int i, j; 3881 u32 cfg, val, req, rsp; 3882 3883 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3884 if (cfg & LADBGEN_F) 3885 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3886 3887 val = t4_read_reg(adap, CIM_DEBUGSTS_A); 3888 req = POLADBGWRPTR_G(val); 3889 rsp = PILADBGWRPTR_G(val); 3890 if (pif_req_wrptr) 3891 *pif_req_wrptr = req; 3892 if (pif_rsp_wrptr) 3893 *pif_rsp_wrptr = rsp; 3894 3895 for (i = 0; i < CIM_PIFLA_SIZE; i++) { 3896 for (j = 0; j < 6; j++) { 3897 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) | 3898 PILADBGRDPTR_V(rsp)); 3899 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A); 3900 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A); 3901 req++; 3902 rsp++; 3903 } 3904 req = (req + 2) & POLADBGRDPTR_M; 3905 rsp = (rsp + 2) & PILADBGRDPTR_M; 3906 } 3907 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3908 } 3909 3910 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) 3911 { 3912 u32 cfg; 3913 int i, j, idx; 3914 3915 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3916 if (cfg & LADBGEN_F) 3917 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3918 3919 for (i = 0; i < CIM_MALA_SIZE; i++) { 3920 for (j = 0; j < 5; j++) { 3921 idx = 8 * i + j; 3922 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) | 3923 PILADBGRDPTR_V(idx)); 3924 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A); 3925 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A); 3926 } 3927 } 3928 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3929 } 3930 3931 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) 3932 { 3933 unsigned int i, j; 3934 3935 for (i = 0; i < 8; i++) { 3936 u32 *p = la_buf + i; 3937 3938 t4_write_reg(adap, ULP_RX_LA_CTL_A, i); 3939 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A); 3940 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j); 3941 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) 3942 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A); 3943 } 3944 } 3945 3946 /* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port 3947 * Capabilities which we control with separate controls -- see, for instance, 3948 * Pause Frames and Forward Error Correction. In order to determine what the 3949 * full set of Advertised Port Capabilities are, the base Advertised Port 3950 * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised 3951 * Port Capabilities associated with those other controls. See 3952 * t4_link_acaps() for how this is done. 3953 */ 3954 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \ 3955 FW_PORT_CAP32_ANEG) 3956 3957 /** 3958 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits 3959 * @caps16: a 16-bit Port Capabilities value 3960 * 3961 * Returns the equivalent 32-bit Port Capabilities value. 3962 */ 3963 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16) 3964 { 3965 fw_port_cap32_t caps32 = 0; 3966 3967 #define CAP16_TO_CAP32(__cap) \ 3968 do { \ 3969 if (caps16 & FW_PORT_CAP_##__cap) \ 3970 caps32 |= FW_PORT_CAP32_##__cap; \ 3971 } while (0) 3972 3973 CAP16_TO_CAP32(SPEED_100M); 3974 CAP16_TO_CAP32(SPEED_1G); 3975 CAP16_TO_CAP32(SPEED_25G); 3976 CAP16_TO_CAP32(SPEED_10G); 3977 CAP16_TO_CAP32(SPEED_40G); 3978 CAP16_TO_CAP32(SPEED_100G); 3979 CAP16_TO_CAP32(FC_RX); 3980 CAP16_TO_CAP32(FC_TX); 3981 CAP16_TO_CAP32(ANEG); 3982 CAP16_TO_CAP32(FORCE_PAUSE); 3983 CAP16_TO_CAP32(MDIAUTO); 3984 CAP16_TO_CAP32(MDISTRAIGHT); 3985 CAP16_TO_CAP32(FEC_RS); 3986 CAP16_TO_CAP32(FEC_BASER_RS); 3987 CAP16_TO_CAP32(802_3_PAUSE); 3988 CAP16_TO_CAP32(802_3_ASM_DIR); 3989 3990 #undef CAP16_TO_CAP32 3991 3992 return caps32; 3993 } 3994 3995 /** 3996 * fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits 3997 * @caps32: a 32-bit Port Capabilities value 3998 * 3999 * Returns the equivalent 16-bit Port Capabilities value. Note that 4000 * not all 32-bit Port Capabilities can be represented in the 16-bit 4001 * Port Capabilities and some fields/values may not make it. 4002 */ 4003 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32) 4004 { 4005 fw_port_cap16_t caps16 = 0; 4006 4007 #define CAP32_TO_CAP16(__cap) \ 4008 do { \ 4009 if (caps32 & FW_PORT_CAP32_##__cap) \ 4010 caps16 |= FW_PORT_CAP_##__cap; \ 4011 } while (0) 4012 4013 CAP32_TO_CAP16(SPEED_100M); 4014 CAP32_TO_CAP16(SPEED_1G); 4015 CAP32_TO_CAP16(SPEED_10G); 4016 CAP32_TO_CAP16(SPEED_25G); 4017 CAP32_TO_CAP16(SPEED_40G); 4018 CAP32_TO_CAP16(SPEED_100G); 4019 CAP32_TO_CAP16(FC_RX); 4020 CAP32_TO_CAP16(FC_TX); 4021 CAP32_TO_CAP16(802_3_PAUSE); 4022 CAP32_TO_CAP16(802_3_ASM_DIR); 4023 CAP32_TO_CAP16(ANEG); 4024 CAP32_TO_CAP16(FORCE_PAUSE); 4025 CAP32_TO_CAP16(MDIAUTO); 4026 CAP32_TO_CAP16(MDISTRAIGHT); 4027 CAP32_TO_CAP16(FEC_RS); 4028 CAP32_TO_CAP16(FEC_BASER_RS); 4029 4030 #undef CAP32_TO_CAP16 4031 4032 return caps16; 4033 } 4034 4035 /* Translate Firmware Port Capabilities Pause specification to Common Code */ 4036 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause) 4037 { 4038 enum cc_pause cc_pause = 0; 4039 4040 if (fw_pause & FW_PORT_CAP32_FC_RX) 4041 cc_pause |= PAUSE_RX; 4042 if (fw_pause & FW_PORT_CAP32_FC_TX) 4043 cc_pause |= PAUSE_TX; 4044 4045 return cc_pause; 4046 } 4047 4048 /* Translate Common Code Pause specification into Firmware Port Capabilities */ 4049 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause) 4050 { 4051 /* Translate orthogonal RX/TX Pause Controls for L1 Configure 4052 * commands, etc. 4053 */ 4054 fw_port_cap32_t fw_pause = 0; 4055 4056 if (cc_pause & PAUSE_RX) 4057 fw_pause |= FW_PORT_CAP32_FC_RX; 4058 if (cc_pause & PAUSE_TX) 4059 fw_pause |= FW_PORT_CAP32_FC_TX; 4060 if (!(cc_pause & PAUSE_AUTONEG)) 4061 fw_pause |= FW_PORT_CAP32_FORCE_PAUSE; 4062 4063 /* Translate orthogonal Pause controls into IEEE 802.3 Pause, 4064 * Asymmetrical Pause for use in reporting to upper layer OS code, etc. 4065 * Note that these bits are ignored in L1 Configure commands. 4066 */ 4067 if (cc_pause & PAUSE_RX) { 4068 if (cc_pause & PAUSE_TX) 4069 fw_pause |= FW_PORT_CAP32_802_3_PAUSE; 4070 else 4071 fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR | 4072 FW_PORT_CAP32_802_3_PAUSE; 4073 } else if (cc_pause & PAUSE_TX) { 4074 fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR; 4075 } 4076 4077 return fw_pause; 4078 } 4079 4080 /* Translate Firmware Forward Error Correction specification to Common Code */ 4081 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec) 4082 { 4083 enum cc_fec cc_fec = 0; 4084 4085 if (fw_fec & FW_PORT_CAP32_FEC_RS) 4086 cc_fec |= FEC_RS; 4087 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) 4088 cc_fec |= FEC_BASER_RS; 4089 4090 return cc_fec; 4091 } 4092 4093 /* Translate Common Code Forward Error Correction specification to Firmware */ 4094 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec) 4095 { 4096 fw_port_cap32_t fw_fec = 0; 4097 4098 if (cc_fec & FEC_RS) 4099 fw_fec |= FW_PORT_CAP32_FEC_RS; 4100 if (cc_fec & FEC_BASER_RS) 4101 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS; 4102 4103 return fw_fec; 4104 } 4105 4106 /** 4107 * t4_link_acaps - compute Link Advertised Port Capabilities 4108 * @adapter: the adapter 4109 * @port: the Port ID 4110 * @lc: the Port's Link Configuration 4111 * 4112 * Synthesize the Advertised Port Capabilities we'll be using based on 4113 * the base Advertised Port Capabilities (which have been filtered by 4114 * ADVERT_MASK) plus the individual controls for things like Pause 4115 * Frames, Forward Error Correction, MDI, etc. 4116 */ 4117 fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port, 4118 struct link_config *lc) 4119 { 4120 fw_port_cap32_t fw_fc, fw_fec, acaps; 4121 unsigned int fw_mdi; 4122 char cc_fec; 4123 4124 fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps); 4125 4126 /* Convert driver coding of Pause Frame Flow Control settings into the 4127 * Firmware's API. 4128 */ 4129 fw_fc = cc_to_fwcap_pause(lc->requested_fc); 4130 4131 /* Convert Common Code Forward Error Control settings into the 4132 * Firmware's API. If the current Requested FEC has "Automatic" 4133 * (IEEE 802.3) specified, then we use whatever the Firmware 4134 * sent us as part of its IEEE 802.3-based interpretation of 4135 * the Transceiver Module EPROM FEC parameters. Otherwise we 4136 * use whatever is in the current Requested FEC settings. 4137 */ 4138 if (lc->requested_fec & FEC_AUTO) 4139 cc_fec = fwcap_to_cc_fec(lc->def_acaps); 4140 else 4141 cc_fec = lc->requested_fec; 4142 fw_fec = cc_to_fwcap_fec(cc_fec); 4143 4144 /* Figure out what our Requested Port Capabilities are going to be. 4145 * Note parallel structure in t4_handle_get_port_info() and 4146 * init_link_config(). 4147 */ 4148 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 4149 acaps = lc->acaps | fw_fc | fw_fec; 4150 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4151 lc->fec = cc_fec; 4152 } else if (lc->autoneg == AUTONEG_DISABLE) { 4153 acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi; 4154 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4155 lc->fec = cc_fec; 4156 } else { 4157 acaps = lc->acaps | fw_fc | fw_fec | fw_mdi; 4158 } 4159 4160 /* Some Requested Port Capabilities are trivially wrong if they exceed 4161 * the Physical Port Capabilities. We can check that here and provide 4162 * moderately useful feedback in the system log. 4163 * 4164 * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so 4165 * we need to exclude this from this check in order to maintain 4166 * compatibility ... 4167 */ 4168 if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) { 4169 dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n", 4170 acaps, lc->pcaps); 4171 return -EINVAL; 4172 } 4173 4174 return acaps; 4175 } 4176 4177 /** 4178 * t4_link_l1cfg_core - apply link configuration to MAC/PHY 4179 * @adapter: the adapter 4180 * @mbox: the Firmware Mailbox to use 4181 * @port: the Port ID 4182 * @lc: the Port's Link Configuration 4183 * @sleep_ok: if true we may sleep while awaiting command completion 4184 * @timeout: time to wait for command to finish before timing out 4185 * (negative implies @sleep_ok=false) 4186 * 4187 * Set up a port's MAC and PHY according to a desired link configuration. 4188 * - If the PHY can auto-negotiate first decide what to advertise, then 4189 * enable/disable auto-negotiation as desired, and reset. 4190 * - If the PHY does not auto-negotiate just reset it. 4191 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 4192 * otherwise do it later based on the outcome of auto-negotiation. 4193 */ 4194 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox, 4195 unsigned int port, struct link_config *lc, 4196 u8 sleep_ok, int timeout) 4197 { 4198 unsigned int fw_caps = adapter->params.fw_caps_support; 4199 struct fw_port_cmd cmd; 4200 fw_port_cap32_t rcap; 4201 int ret; 4202 4203 if (!(lc->pcaps & FW_PORT_CAP32_ANEG) && 4204 lc->autoneg == AUTONEG_ENABLE) { 4205 return -EINVAL; 4206 } 4207 4208 /* Compute our Requested Port Capabilities and send that on to the 4209 * Firmware. 4210 */ 4211 rcap = t4_link_acaps(adapter, port, lc); 4212 memset(&cmd, 0, sizeof(cmd)); 4213 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4214 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4215 FW_PORT_CMD_PORTID_V(port)); 4216 cmd.action_to_len16 = 4217 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4218 ? FW_PORT_ACTION_L1_CFG 4219 : FW_PORT_ACTION_L1_CFG32) | 4220 FW_LEN16(cmd)); 4221 if (fw_caps == FW_CAPS16) 4222 cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap)); 4223 else 4224 cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap); 4225 4226 ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL, 4227 sleep_ok, timeout); 4228 4229 /* Unfortunately, even if the Requested Port Capabilities "fit" within 4230 * the Physical Port Capabilities, some combinations of features may 4231 * still not be legal. For example, 40Gb/s and Reed-Solomon Forward 4232 * Error Correction. So if the Firmware rejects the L1 Configure 4233 * request, flag that here. 4234 */ 4235 if (ret) { 4236 dev_err(adapter->pdev_dev, 4237 "Requested Port Capabilities %#x rejected, error %d\n", 4238 rcap, -ret); 4239 return ret; 4240 } 4241 return 0; 4242 } 4243 4244 /** 4245 * t4_restart_aneg - restart autonegotiation 4246 * @adap: the adapter 4247 * @mbox: mbox to use for the FW command 4248 * @port: the port id 4249 * 4250 * Restarts autonegotiation for the selected port. 4251 */ 4252 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 4253 { 4254 unsigned int fw_caps = adap->params.fw_caps_support; 4255 struct fw_port_cmd c; 4256 4257 memset(&c, 0, sizeof(c)); 4258 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4259 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4260 FW_PORT_CMD_PORTID_V(port)); 4261 c.action_to_len16 = 4262 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4263 ? FW_PORT_ACTION_L1_CFG 4264 : FW_PORT_ACTION_L1_CFG32) | 4265 FW_LEN16(c)); 4266 if (fw_caps == FW_CAPS16) 4267 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG); 4268 else 4269 c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG); 4270 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4271 } 4272 4273 typedef void (*int_handler_t)(struct adapter *adap); 4274 4275 struct intr_info { 4276 unsigned int mask; /* bits to check in interrupt status */ 4277 const char *msg; /* message to print or NULL */ 4278 short stat_idx; /* stat counter to increment or -1 */ 4279 unsigned short fatal; /* whether the condition reported is fatal */ 4280 int_handler_t int_handler; /* platform-specific int handler */ 4281 }; 4282 4283 /** 4284 * t4_handle_intr_status - table driven interrupt handler 4285 * @adapter: the adapter that generated the interrupt 4286 * @reg: the interrupt status register to process 4287 * @acts: table of interrupt actions 4288 * 4289 * A table driven interrupt handler that applies a set of masks to an 4290 * interrupt status word and performs the corresponding actions if the 4291 * interrupts described by the mask have occurred. The actions include 4292 * optionally emitting a warning or alert message. The table is terminated 4293 * by an entry specifying mask 0. Returns the number of fatal interrupt 4294 * conditions. 4295 */ 4296 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, 4297 const struct intr_info *acts) 4298 { 4299 int fatal = 0; 4300 unsigned int mask = 0; 4301 unsigned int status = t4_read_reg(adapter, reg); 4302 4303 for ( ; acts->mask; ++acts) { 4304 if (!(status & acts->mask)) 4305 continue; 4306 if (acts->fatal) { 4307 fatal++; 4308 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4309 status & acts->mask); 4310 } else if (acts->msg && printk_ratelimit()) 4311 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4312 status & acts->mask); 4313 if (acts->int_handler) 4314 acts->int_handler(adapter); 4315 mask |= acts->mask; 4316 } 4317 status &= mask; 4318 if (status) /* clear processed interrupts */ 4319 t4_write_reg(adapter, reg, status); 4320 return fatal; 4321 } 4322 4323 /* 4324 * Interrupt handler for the PCIE module. 4325 */ 4326 static void pcie_intr_handler(struct adapter *adapter) 4327 { 4328 static const struct intr_info sysbus_intr_info[] = { 4329 { RNPP_F, "RXNP array parity error", -1, 1 }, 4330 { RPCP_F, "RXPC array parity error", -1, 1 }, 4331 { RCIP_F, "RXCIF array parity error", -1, 1 }, 4332 { RCCP_F, "Rx completions control array parity error", -1, 1 }, 4333 { RFTP_F, "RXFT array parity error", -1, 1 }, 4334 { 0 } 4335 }; 4336 static const struct intr_info pcie_port_intr_info[] = { 4337 { TPCP_F, "TXPC array parity error", -1, 1 }, 4338 { TNPP_F, "TXNP array parity error", -1, 1 }, 4339 { TFTP_F, "TXFT array parity error", -1, 1 }, 4340 { TCAP_F, "TXCA array parity error", -1, 1 }, 4341 { TCIP_F, "TXCIF array parity error", -1, 1 }, 4342 { RCAP_F, "RXCA array parity error", -1, 1 }, 4343 { OTDD_F, "outbound request TLP discarded", -1, 1 }, 4344 { RDPE_F, "Rx data parity error", -1, 1 }, 4345 { TDUE_F, "Tx uncorrectable data error", -1, 1 }, 4346 { 0 } 4347 }; 4348 static const struct intr_info pcie_intr_info[] = { 4349 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 }, 4350 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 }, 4351 { MSIDATAPERR_F, "MSI data parity error", -1, 1 }, 4352 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4353 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4354 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4355 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4356 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 }, 4357 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 }, 4358 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4359 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 }, 4360 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4361 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4362 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 }, 4363 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4364 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4365 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4366 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4367 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4368 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4369 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4370 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 }, 4371 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 }, 4372 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4373 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 }, 4374 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 }, 4375 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 }, 4376 { PCIESINT_F, "PCI core secondary fault", -1, 1 }, 4377 { PCIEPINT_F, "PCI core primary fault", -1, 1 }, 4378 { UNXSPLCPLERR_F, "PCI unexpected split completion error", 4379 -1, 0 }, 4380 { 0 } 4381 }; 4382 4383 static struct intr_info t5_pcie_intr_info[] = { 4384 { MSTGRPPERR_F, "Master Response Read Queue parity error", 4385 -1, 1 }, 4386 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 }, 4387 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 }, 4388 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4389 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4390 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4391 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4392 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error", 4393 -1, 1 }, 4394 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error", 4395 -1, 1 }, 4396 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4397 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 }, 4398 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4399 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4400 { DREQWRPERR_F, "PCI DMA channel write request parity error", 4401 -1, 1 }, 4402 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4403 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4404 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4405 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4406 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4407 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4408 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4409 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 }, 4410 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 }, 4411 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4412 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error", 4413 -1, 1 }, 4414 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error", 4415 -1, 1 }, 4416 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 }, 4417 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 }, 4418 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 }, 4419 { READRSPERR_F, "Outbound read error", -1, 0 }, 4420 { 0 } 4421 }; 4422 4423 int fat; 4424 4425 if (is_t4(adapter->params.chip)) 4426 fat = t4_handle_intr_status(adapter, 4427 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A, 4428 sysbus_intr_info) + 4429 t4_handle_intr_status(adapter, 4430 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A, 4431 pcie_port_intr_info) + 4432 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4433 pcie_intr_info); 4434 else 4435 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4436 t5_pcie_intr_info); 4437 4438 if (fat) 4439 t4_fatal_err(adapter); 4440 } 4441 4442 /* 4443 * TP interrupt handler. 4444 */ 4445 static void tp_intr_handler(struct adapter *adapter) 4446 { 4447 static const struct intr_info tp_intr_info[] = { 4448 { 0x3fffffff, "TP parity error", -1, 1 }, 4449 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 }, 4450 { 0 } 4451 }; 4452 4453 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info)) 4454 t4_fatal_err(adapter); 4455 } 4456 4457 /* 4458 * SGE interrupt handler. 4459 */ 4460 static void sge_intr_handler(struct adapter *adapter) 4461 { 4462 u32 v = 0, perr; 4463 u32 err; 4464 4465 static const struct intr_info sge_intr_info[] = { 4466 { ERR_CPL_EXCEED_IQE_SIZE_F, 4467 "SGE received CPL exceeding IQE size", -1, 1 }, 4468 { ERR_INVALID_CIDX_INC_F, 4469 "SGE GTS CIDX increment too large", -1, 0 }, 4470 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 }, 4471 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full }, 4472 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F, 4473 "SGE IQID > 1023 received CPL for FL", -1, 0 }, 4474 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1, 4475 0 }, 4476 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1, 4477 0 }, 4478 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1, 4479 0 }, 4480 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1, 4481 0 }, 4482 { ERR_ING_CTXT_PRIO_F, 4483 "SGE too many priority ingress contexts", -1, 0 }, 4484 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 }, 4485 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 }, 4486 { 0 } 4487 }; 4488 4489 static struct intr_info t4t5_sge_intr_info[] = { 4490 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped }, 4491 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full }, 4492 { ERR_EGR_CTXT_PRIO_F, 4493 "SGE too many priority egress contexts", -1, 0 }, 4494 { 0 } 4495 }; 4496 4497 perr = t4_read_reg(adapter, SGE_INT_CAUSE1_A); 4498 if (perr) { 4499 v |= perr; 4500 dev_alert(adapter->pdev_dev, "SGE Cause1 Parity Error %#x\n", 4501 perr); 4502 } 4503 4504 perr = t4_read_reg(adapter, SGE_INT_CAUSE2_A); 4505 if (perr) { 4506 v |= perr; 4507 dev_alert(adapter->pdev_dev, "SGE Cause2 Parity Error %#x\n", 4508 perr); 4509 } 4510 4511 if (CHELSIO_CHIP_VERSION(adapter->params.chip) >= CHELSIO_T5) { 4512 perr = t4_read_reg(adapter, SGE_INT_CAUSE5_A); 4513 /* Parity error (CRC) for err_T_RxCRC is trivial, ignore it */ 4514 perr &= ~ERR_T_RXCRC_F; 4515 if (perr) { 4516 v |= perr; 4517 dev_alert(adapter->pdev_dev, 4518 "SGE Cause5 Parity Error %#x\n", perr); 4519 } 4520 } 4521 4522 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info); 4523 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4524 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, 4525 t4t5_sge_intr_info); 4526 4527 err = t4_read_reg(adapter, SGE_ERROR_STATS_A); 4528 if (err & ERROR_QID_VALID_F) { 4529 dev_err(adapter->pdev_dev, "SGE error for queue %u\n", 4530 ERROR_QID_G(err)); 4531 if (err & UNCAPTURED_ERROR_F) 4532 dev_err(adapter->pdev_dev, 4533 "SGE UNCAPTURED_ERROR set (clearing)\n"); 4534 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F | 4535 UNCAPTURED_ERROR_F); 4536 } 4537 4538 if (v != 0) 4539 t4_fatal_err(adapter); 4540 } 4541 4542 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\ 4543 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F) 4544 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\ 4545 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F) 4546 4547 /* 4548 * CIM interrupt handler. 4549 */ 4550 static void cim_intr_handler(struct adapter *adapter) 4551 { 4552 static const struct intr_info cim_intr_info[] = { 4553 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 }, 4554 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, 4555 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, 4556 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 }, 4557 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 }, 4558 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 }, 4559 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 }, 4560 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 }, 4561 { 0 } 4562 }; 4563 static const struct intr_info cim_upintr_info[] = { 4564 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 }, 4565 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 }, 4566 { ILLWRINT_F, "CIM illegal write", -1, 1 }, 4567 { ILLRDINT_F, "CIM illegal read", -1, 1 }, 4568 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 }, 4569 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 }, 4570 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 }, 4571 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 }, 4572 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 }, 4573 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 }, 4574 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 }, 4575 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 }, 4576 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 }, 4577 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 }, 4578 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 }, 4579 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 }, 4580 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 }, 4581 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 }, 4582 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 }, 4583 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 }, 4584 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 }, 4585 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 }, 4586 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 }, 4587 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 }, 4588 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 }, 4589 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 }, 4590 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 }, 4591 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 }, 4592 { 0 } 4593 }; 4594 4595 u32 val, fw_err; 4596 int fat; 4597 4598 fw_err = t4_read_reg(adapter, PCIE_FW_A); 4599 if (fw_err & PCIE_FW_ERR_F) 4600 t4_report_fw_error(adapter); 4601 4602 /* When the Firmware detects an internal error which normally 4603 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt 4604 * in order to make sure the Host sees the Firmware Crash. So 4605 * if we have a Timer0 interrupt and don't see a Firmware Crash, 4606 * ignore the Timer0 interrupt. 4607 */ 4608 4609 val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A); 4610 if (val & TIMER0INT_F) 4611 if (!(fw_err & PCIE_FW_ERR_F) || 4612 (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH)) 4613 t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A, 4614 TIMER0INT_F); 4615 4616 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A, 4617 cim_intr_info) + 4618 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A, 4619 cim_upintr_info); 4620 if (fat) 4621 t4_fatal_err(adapter); 4622 } 4623 4624 /* 4625 * ULP RX interrupt handler. 4626 */ 4627 static void ulprx_intr_handler(struct adapter *adapter) 4628 { 4629 static const struct intr_info ulprx_intr_info[] = { 4630 { 0x1800000, "ULPRX context error", -1, 1 }, 4631 { 0x7fffff, "ULPRX parity error", -1, 1 }, 4632 { 0 } 4633 }; 4634 4635 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info)) 4636 t4_fatal_err(adapter); 4637 } 4638 4639 /* 4640 * ULP TX interrupt handler. 4641 */ 4642 static void ulptx_intr_handler(struct adapter *adapter) 4643 { 4644 static const struct intr_info ulptx_intr_info[] = { 4645 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1, 4646 0 }, 4647 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1, 4648 0 }, 4649 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1, 4650 0 }, 4651 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1, 4652 0 }, 4653 { 0xfffffff, "ULPTX parity error", -1, 1 }, 4654 { 0 } 4655 }; 4656 4657 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info)) 4658 t4_fatal_err(adapter); 4659 } 4660 4661 /* 4662 * PM TX interrupt handler. 4663 */ 4664 static void pmtx_intr_handler(struct adapter *adapter) 4665 { 4666 static const struct intr_info pmtx_intr_info[] = { 4667 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 }, 4668 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 }, 4669 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 }, 4670 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 }, 4671 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 }, 4672 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 }, 4673 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", 4674 -1, 1 }, 4675 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 }, 4676 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1}, 4677 { 0 } 4678 }; 4679 4680 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info)) 4681 t4_fatal_err(adapter); 4682 } 4683 4684 /* 4685 * PM RX interrupt handler. 4686 */ 4687 static void pmrx_intr_handler(struct adapter *adapter) 4688 { 4689 static const struct intr_info pmrx_intr_info[] = { 4690 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 }, 4691 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 }, 4692 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 }, 4693 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", 4694 -1, 1 }, 4695 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 }, 4696 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1}, 4697 { 0 } 4698 }; 4699 4700 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info)) 4701 t4_fatal_err(adapter); 4702 } 4703 4704 /* 4705 * CPL switch interrupt handler. 4706 */ 4707 static void cplsw_intr_handler(struct adapter *adapter) 4708 { 4709 static const struct intr_info cplsw_intr_info[] = { 4710 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 }, 4711 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 }, 4712 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 }, 4713 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 }, 4714 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 }, 4715 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 }, 4716 { 0 } 4717 }; 4718 4719 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info)) 4720 t4_fatal_err(adapter); 4721 } 4722 4723 /* 4724 * LE interrupt handler. 4725 */ 4726 static void le_intr_handler(struct adapter *adap) 4727 { 4728 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); 4729 static const struct intr_info le_intr_info[] = { 4730 { LIPMISS_F, "LE LIP miss", -1, 0 }, 4731 { LIP0_F, "LE 0 LIP error", -1, 0 }, 4732 { PARITYERR_F, "LE parity error", -1, 1 }, 4733 { UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4734 { REQQPARERR_F, "LE request queue parity error", -1, 1 }, 4735 { 0 } 4736 }; 4737 4738 static struct intr_info t6_le_intr_info[] = { 4739 { T6_LIPMISS_F, "LE LIP miss", -1, 0 }, 4740 { T6_LIP0_F, "LE 0 LIP error", -1, 0 }, 4741 { CMDTIDERR_F, "LE cmd tid error", -1, 1 }, 4742 { TCAMINTPERR_F, "LE parity error", -1, 1 }, 4743 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4744 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 }, 4745 { HASHTBLMEMCRCERR_F, "LE hash table mem crc error", -1, 0 }, 4746 { 0 } 4747 }; 4748 4749 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A, 4750 (chip <= CHELSIO_T5) ? 4751 le_intr_info : t6_le_intr_info)) 4752 t4_fatal_err(adap); 4753 } 4754 4755 /* 4756 * MPS interrupt handler. 4757 */ 4758 static void mps_intr_handler(struct adapter *adapter) 4759 { 4760 static const struct intr_info mps_rx_intr_info[] = { 4761 { 0xffffff, "MPS Rx parity error", -1, 1 }, 4762 { 0 } 4763 }; 4764 static const struct intr_info mps_tx_intr_info[] = { 4765 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4766 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4767 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4768 -1, 1 }, 4769 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4770 -1, 1 }, 4771 { BUBBLE_F, "MPS Tx underflow", -1, 1 }, 4772 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4773 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4774 { 0 } 4775 }; 4776 static const struct intr_info t6_mps_tx_intr_info[] = { 4777 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4778 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4779 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4780 -1, 1 }, 4781 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4782 -1, 1 }, 4783 /* MPS Tx Bubble is normal for T6 */ 4784 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4785 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4786 { 0 } 4787 }; 4788 static const struct intr_info mps_trc_intr_info[] = { 4789 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 }, 4790 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error", 4791 -1, 1 }, 4792 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 }, 4793 { 0 } 4794 }; 4795 static const struct intr_info mps_stat_sram_intr_info[] = { 4796 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, 4797 { 0 } 4798 }; 4799 static const struct intr_info mps_stat_tx_intr_info[] = { 4800 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, 4801 { 0 } 4802 }; 4803 static const struct intr_info mps_stat_rx_intr_info[] = { 4804 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, 4805 { 0 } 4806 }; 4807 static const struct intr_info mps_cls_intr_info[] = { 4808 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 }, 4809 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 }, 4810 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 }, 4811 { 0 } 4812 }; 4813 4814 int fat; 4815 4816 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A, 4817 mps_rx_intr_info) + 4818 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A, 4819 is_t6(adapter->params.chip) 4820 ? t6_mps_tx_intr_info 4821 : mps_tx_intr_info) + 4822 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A, 4823 mps_trc_intr_info) + 4824 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A, 4825 mps_stat_sram_intr_info) + 4826 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A, 4827 mps_stat_tx_intr_info) + 4828 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A, 4829 mps_stat_rx_intr_info) + 4830 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A, 4831 mps_cls_intr_info); 4832 4833 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0); 4834 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */ 4835 if (fat) 4836 t4_fatal_err(adapter); 4837 } 4838 4839 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \ 4840 ECC_UE_INT_CAUSE_F) 4841 4842 /* 4843 * EDC/MC interrupt handler. 4844 */ 4845 static void mem_intr_handler(struct adapter *adapter, int idx) 4846 { 4847 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" }; 4848 4849 unsigned int addr, cnt_addr, v; 4850 4851 if (idx <= MEM_EDC1) { 4852 addr = EDC_REG(EDC_INT_CAUSE_A, idx); 4853 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx); 4854 } else if (idx == MEM_MC) { 4855 if (is_t4(adapter->params.chip)) { 4856 addr = MC_INT_CAUSE_A; 4857 cnt_addr = MC_ECC_STATUS_A; 4858 } else { 4859 addr = MC_P_INT_CAUSE_A; 4860 cnt_addr = MC_P_ECC_STATUS_A; 4861 } 4862 } else { 4863 addr = MC_REG(MC_P_INT_CAUSE_A, 1); 4864 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1); 4865 } 4866 4867 v = t4_read_reg(adapter, addr) & MEM_INT_MASK; 4868 if (v & PERR_INT_CAUSE_F) 4869 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n", 4870 name[idx]); 4871 if (v & ECC_CE_INT_CAUSE_F) { 4872 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr)); 4873 4874 t4_edc_err_read(adapter, idx); 4875 4876 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M)); 4877 if (printk_ratelimit()) 4878 dev_warn(adapter->pdev_dev, 4879 "%u %s correctable ECC data error%s\n", 4880 cnt, name[idx], cnt > 1 ? "s" : ""); 4881 } 4882 if (v & ECC_UE_INT_CAUSE_F) 4883 dev_alert(adapter->pdev_dev, 4884 "%s uncorrectable ECC data error\n", name[idx]); 4885 4886 t4_write_reg(adapter, addr, v); 4887 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F)) 4888 t4_fatal_err(adapter); 4889 } 4890 4891 /* 4892 * MA interrupt handler. 4893 */ 4894 static void ma_intr_handler(struct adapter *adap) 4895 { 4896 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A); 4897 4898 if (status & MEM_PERR_INT_CAUSE_F) { 4899 dev_alert(adap->pdev_dev, 4900 "MA parity error, parity status %#x\n", 4901 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A)); 4902 if (is_t5(adap->params.chip)) 4903 dev_alert(adap->pdev_dev, 4904 "MA parity error, parity status %#x\n", 4905 t4_read_reg(adap, 4906 MA_PARITY_ERROR_STATUS2_A)); 4907 } 4908 if (status & MEM_WRAP_INT_CAUSE_F) { 4909 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A); 4910 dev_alert(adap->pdev_dev, "MA address wrap-around error by " 4911 "client %u to address %#x\n", 4912 MEM_WRAP_CLIENT_NUM_G(v), 4913 MEM_WRAP_ADDRESS_G(v) << 4); 4914 } 4915 t4_write_reg(adap, MA_INT_CAUSE_A, status); 4916 t4_fatal_err(adap); 4917 } 4918 4919 /* 4920 * SMB interrupt handler. 4921 */ 4922 static void smb_intr_handler(struct adapter *adap) 4923 { 4924 static const struct intr_info smb_intr_info[] = { 4925 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 }, 4926 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 }, 4927 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 }, 4928 { 0 } 4929 }; 4930 4931 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info)) 4932 t4_fatal_err(adap); 4933 } 4934 4935 /* 4936 * NC-SI interrupt handler. 4937 */ 4938 static void ncsi_intr_handler(struct adapter *adap) 4939 { 4940 static const struct intr_info ncsi_intr_info[] = { 4941 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 }, 4942 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 }, 4943 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 }, 4944 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 }, 4945 { 0 } 4946 }; 4947 4948 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info)) 4949 t4_fatal_err(adap); 4950 } 4951 4952 /* 4953 * XGMAC interrupt handler. 4954 */ 4955 static void xgmac_intr_handler(struct adapter *adap, int port) 4956 { 4957 u32 v, int_cause_reg; 4958 4959 if (is_t4(adap->params.chip)) 4960 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A); 4961 else 4962 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A); 4963 4964 v = t4_read_reg(adap, int_cause_reg); 4965 4966 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F; 4967 if (!v) 4968 return; 4969 4970 if (v & TXFIFO_PRTY_ERR_F) 4971 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n", 4972 port); 4973 if (v & RXFIFO_PRTY_ERR_F) 4974 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n", 4975 port); 4976 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v); 4977 t4_fatal_err(adap); 4978 } 4979 4980 /* 4981 * PL interrupt handler. 4982 */ 4983 static void pl_intr_handler(struct adapter *adap) 4984 { 4985 static const struct intr_info pl_intr_info[] = { 4986 { FATALPERR_F, "T4 fatal parity error", -1, 1 }, 4987 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 }, 4988 { 0 } 4989 }; 4990 4991 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info)) 4992 t4_fatal_err(adap); 4993 } 4994 4995 #define PF_INTR_MASK (PFSW_F) 4996 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \ 4997 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \ 4998 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F) 4999 5000 /** 5001 * t4_slow_intr_handler - control path interrupt handler 5002 * @adapter: the adapter 5003 * 5004 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 5005 * The designation 'slow' is because it involves register reads, while 5006 * data interrupts typically don't involve any MMIOs. 5007 */ 5008 int t4_slow_intr_handler(struct adapter *adapter) 5009 { 5010 /* There are rare cases where a PL_INT_CAUSE bit may end up getting 5011 * set when the corresponding PL_INT_ENABLE bit isn't set. It's 5012 * easiest just to mask that case here. 5013 */ 5014 u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A); 5015 u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A); 5016 u32 cause = raw_cause & enable; 5017 5018 if (!(cause & GLBL_INTR_MASK)) 5019 return 0; 5020 if (cause & CIM_F) 5021 cim_intr_handler(adapter); 5022 if (cause & MPS_F) 5023 mps_intr_handler(adapter); 5024 if (cause & NCSI_F) 5025 ncsi_intr_handler(adapter); 5026 if (cause & PL_F) 5027 pl_intr_handler(adapter); 5028 if (cause & SMB_F) 5029 smb_intr_handler(adapter); 5030 if (cause & XGMAC0_F) 5031 xgmac_intr_handler(adapter, 0); 5032 if (cause & XGMAC1_F) 5033 xgmac_intr_handler(adapter, 1); 5034 if (cause & XGMAC_KR0_F) 5035 xgmac_intr_handler(adapter, 2); 5036 if (cause & XGMAC_KR1_F) 5037 xgmac_intr_handler(adapter, 3); 5038 if (cause & PCIE_F) 5039 pcie_intr_handler(adapter); 5040 if (cause & MC_F) 5041 mem_intr_handler(adapter, MEM_MC); 5042 if (is_t5(adapter->params.chip) && (cause & MC1_F)) 5043 mem_intr_handler(adapter, MEM_MC1); 5044 if (cause & EDC0_F) 5045 mem_intr_handler(adapter, MEM_EDC0); 5046 if (cause & EDC1_F) 5047 mem_intr_handler(adapter, MEM_EDC1); 5048 if (cause & LE_F) 5049 le_intr_handler(adapter); 5050 if (cause & TP_F) 5051 tp_intr_handler(adapter); 5052 if (cause & MA_F) 5053 ma_intr_handler(adapter); 5054 if (cause & PM_TX_F) 5055 pmtx_intr_handler(adapter); 5056 if (cause & PM_RX_F) 5057 pmrx_intr_handler(adapter); 5058 if (cause & ULP_RX_F) 5059 ulprx_intr_handler(adapter); 5060 if (cause & CPL_SWITCH_F) 5061 cplsw_intr_handler(adapter); 5062 if (cause & SGE_F) 5063 sge_intr_handler(adapter); 5064 if (cause & ULP_TX_F) 5065 ulptx_intr_handler(adapter); 5066 5067 /* Clear the interrupts just processed for which we are the master. */ 5068 t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK); 5069 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */ 5070 return 1; 5071 } 5072 5073 /** 5074 * t4_intr_enable - enable interrupts 5075 * @adapter: the adapter whose interrupts should be enabled 5076 * 5077 * Enable PF-specific interrupts for the calling function and the top-level 5078 * interrupt concentrator for global interrupts. Interrupts are already 5079 * enabled at each module, here we just enable the roots of the interrupt 5080 * hierarchies. 5081 * 5082 * Note: this function should be called only when the driver manages 5083 * non PF-specific interrupts from the various HW modules. Only one PCI 5084 * function at a time should be doing this. 5085 */ 5086 void t4_intr_enable(struct adapter *adapter) 5087 { 5088 u32 val = 0; 5089 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5090 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 5091 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5092 5093 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 5094 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F; 5095 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F | 5096 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F | 5097 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F | 5098 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F | 5099 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F | 5100 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F | 5101 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val); 5102 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK); 5103 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf); 5104 } 5105 5106 /** 5107 * t4_intr_disable - disable interrupts 5108 * @adapter: the adapter whose interrupts should be disabled 5109 * 5110 * Disable interrupts. We only disable the top-level interrupt 5111 * concentrators. The caller must be a PCI function managing global 5112 * interrupts. 5113 */ 5114 void t4_intr_disable(struct adapter *adapter) 5115 { 5116 u32 whoami, pf; 5117 5118 if (pci_channel_offline(adapter->pdev)) 5119 return; 5120 5121 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5122 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 5123 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5124 5125 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0); 5126 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0); 5127 } 5128 5129 unsigned int t4_chip_rss_size(struct adapter *adap) 5130 { 5131 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 5132 return RSS_NENTRIES; 5133 else 5134 return T6_RSS_NENTRIES; 5135 } 5136 5137 /** 5138 * t4_config_rss_range - configure a portion of the RSS mapping table 5139 * @adapter: the adapter 5140 * @mbox: mbox to use for the FW command 5141 * @viid: virtual interface whose RSS subtable is to be written 5142 * @start: start entry in the table to write 5143 * @n: how many table entries to write 5144 * @rspq: values for the response queue lookup table 5145 * @nrspq: number of values in @rspq 5146 * 5147 * Programs the selected part of the VI's RSS mapping table with the 5148 * provided values. If @nrspq < @n the supplied values are used repeatedly 5149 * until the full table range is populated. 5150 * 5151 * The caller must ensure the values in @rspq are in the range allowed for 5152 * @viid. 5153 */ 5154 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 5155 int start, int n, const u16 *rspq, unsigned int nrspq) 5156 { 5157 int ret; 5158 const u16 *rsp = rspq; 5159 const u16 *rsp_end = rspq + nrspq; 5160 struct fw_rss_ind_tbl_cmd cmd; 5161 5162 memset(&cmd, 0, sizeof(cmd)); 5163 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | 5164 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5165 FW_RSS_IND_TBL_CMD_VIID_V(viid)); 5166 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 5167 5168 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */ 5169 while (n > 0) { 5170 int nq = min(n, 32); 5171 __be32 *qp = &cmd.iq0_to_iq2; 5172 5173 cmd.niqid = cpu_to_be16(nq); 5174 cmd.startidx = cpu_to_be16(start); 5175 5176 start += nq; 5177 n -= nq; 5178 5179 while (nq > 0) { 5180 unsigned int v; 5181 5182 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp); 5183 if (++rsp >= rsp_end) 5184 rsp = rspq; 5185 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp); 5186 if (++rsp >= rsp_end) 5187 rsp = rspq; 5188 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp); 5189 if (++rsp >= rsp_end) 5190 rsp = rspq; 5191 5192 *qp++ = cpu_to_be32(v); 5193 nq -= 3; 5194 } 5195 5196 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 5197 if (ret) 5198 return ret; 5199 } 5200 return 0; 5201 } 5202 5203 /** 5204 * t4_config_glbl_rss - configure the global RSS mode 5205 * @adapter: the adapter 5206 * @mbox: mbox to use for the FW command 5207 * @mode: global RSS mode 5208 * @flags: mode-specific flags 5209 * 5210 * Sets the global RSS mode. 5211 */ 5212 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 5213 unsigned int flags) 5214 { 5215 struct fw_rss_glb_config_cmd c; 5216 5217 memset(&c, 0, sizeof(c)); 5218 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | 5219 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 5220 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5221 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 5222 c.u.manual.mode_pkd = 5223 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5224 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 5225 c.u.basicvirtual.mode_pkd = 5226 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5227 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); 5228 } else 5229 return -EINVAL; 5230 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5231 } 5232 5233 /** 5234 * t4_config_vi_rss - configure per VI RSS settings 5235 * @adapter: the adapter 5236 * @mbox: mbox to use for the FW command 5237 * @viid: the VI id 5238 * @flags: RSS flags 5239 * @defq: id of the default RSS queue for the VI. 5240 * 5241 * Configures VI-specific RSS properties. 5242 */ 5243 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, 5244 unsigned int flags, unsigned int defq) 5245 { 5246 struct fw_rss_vi_config_cmd c; 5247 5248 memset(&c, 0, sizeof(c)); 5249 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 5250 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5251 FW_RSS_VI_CONFIG_CMD_VIID_V(viid)); 5252 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5253 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | 5254 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq)); 5255 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5256 } 5257 5258 /* Read an RSS table row */ 5259 static int rd_rss_row(struct adapter *adap, int row, u32 *val) 5260 { 5261 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row); 5262 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1, 5263 5, 0, val); 5264 } 5265 5266 /** 5267 * t4_read_rss - read the contents of the RSS mapping table 5268 * @adapter: the adapter 5269 * @map: holds the contents of the RSS mapping table 5270 * 5271 * Reads the contents of the RSS hash->queue mapping table. 5272 */ 5273 int t4_read_rss(struct adapter *adapter, u16 *map) 5274 { 5275 int i, ret, nentries; 5276 u32 val; 5277 5278 nentries = t4_chip_rss_size(adapter); 5279 for (i = 0; i < nentries / 2; ++i) { 5280 ret = rd_rss_row(adapter, i, &val); 5281 if (ret) 5282 return ret; 5283 *map++ = LKPTBLQUEUE0_G(val); 5284 *map++ = LKPTBLQUEUE1_G(val); 5285 } 5286 return 0; 5287 } 5288 5289 static unsigned int t4_use_ldst(struct adapter *adap) 5290 { 5291 return (adap->flags & CXGB4_FW_OK) && !adap->use_bd; 5292 } 5293 5294 /** 5295 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST 5296 * @adap: the adapter 5297 * @cmd: TP fw ldst address space type 5298 * @vals: where the indirect register values are stored/written 5299 * @nregs: how many indirect registers to read/write 5300 * @start_index: index of first indirect register to read/write 5301 * @rw: Read (1) or Write (0) 5302 * @sleep_ok: if true we may sleep while awaiting command completion 5303 * 5304 * Access TP indirect registers through LDST 5305 */ 5306 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals, 5307 unsigned int nregs, unsigned int start_index, 5308 unsigned int rw, bool sleep_ok) 5309 { 5310 int ret = 0; 5311 unsigned int i; 5312 struct fw_ldst_cmd c; 5313 5314 for (i = 0; i < nregs; i++) { 5315 memset(&c, 0, sizeof(c)); 5316 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5317 FW_CMD_REQUEST_F | 5318 (rw ? FW_CMD_READ_F : 5319 FW_CMD_WRITE_F) | 5320 FW_LDST_CMD_ADDRSPACE_V(cmd)); 5321 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5322 5323 c.u.addrval.addr = cpu_to_be32(start_index + i); 5324 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); 5325 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, 5326 sleep_ok); 5327 if (ret) 5328 return ret; 5329 5330 if (rw) 5331 vals[i] = be32_to_cpu(c.u.addrval.val); 5332 } 5333 return 0; 5334 } 5335 5336 /** 5337 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor 5338 * @adap: the adapter 5339 * @reg_addr: Address Register 5340 * @reg_data: Data register 5341 * @buff: where the indirect register values are stored/written 5342 * @nregs: how many indirect registers to read/write 5343 * @start_index: index of first indirect register to read/write 5344 * @rw: READ(1) or WRITE(0) 5345 * @sleep_ok: if true we may sleep while awaiting command completion 5346 * 5347 * Read/Write TP indirect registers through LDST if possible. 5348 * Else, use backdoor access 5349 **/ 5350 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data, 5351 u32 *buff, u32 nregs, u32 start_index, int rw, 5352 bool sleep_ok) 5353 { 5354 int rc = -EINVAL; 5355 int cmd; 5356 5357 switch (reg_addr) { 5358 case TP_PIO_ADDR_A: 5359 cmd = FW_LDST_ADDRSPC_TP_PIO; 5360 break; 5361 case TP_TM_PIO_ADDR_A: 5362 cmd = FW_LDST_ADDRSPC_TP_TM_PIO; 5363 break; 5364 case TP_MIB_INDEX_A: 5365 cmd = FW_LDST_ADDRSPC_TP_MIB; 5366 break; 5367 default: 5368 goto indirect_access; 5369 } 5370 5371 if (t4_use_ldst(adap)) 5372 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw, 5373 sleep_ok); 5374 5375 indirect_access: 5376 5377 if (rc) { 5378 if (rw) 5379 t4_read_indirect(adap, reg_addr, reg_data, buff, nregs, 5380 start_index); 5381 else 5382 t4_write_indirect(adap, reg_addr, reg_data, buff, nregs, 5383 start_index); 5384 } 5385 } 5386 5387 /** 5388 * t4_tp_pio_read - Read TP PIO registers 5389 * @adap: the adapter 5390 * @buff: where the indirect register values are written 5391 * @nregs: how many indirect registers to read 5392 * @start_index: index of first indirect register to read 5393 * @sleep_ok: if true we may sleep while awaiting command completion 5394 * 5395 * Read TP PIO Registers 5396 **/ 5397 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5398 u32 start_index, bool sleep_ok) 5399 { 5400 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5401 start_index, 1, sleep_ok); 5402 } 5403 5404 /** 5405 * t4_tp_pio_write - Write TP PIO registers 5406 * @adap: the adapter 5407 * @buff: where the indirect register values are stored 5408 * @nregs: how many indirect registers to write 5409 * @start_index: index of first indirect register to write 5410 * @sleep_ok: if true we may sleep while awaiting command completion 5411 * 5412 * Write TP PIO Registers 5413 **/ 5414 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs, 5415 u32 start_index, bool sleep_ok) 5416 { 5417 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5418 start_index, 0, sleep_ok); 5419 } 5420 5421 /** 5422 * t4_tp_tm_pio_read - Read TP TM PIO registers 5423 * @adap: the adapter 5424 * @buff: where the indirect register values are written 5425 * @nregs: how many indirect registers to read 5426 * @start_index: index of first indirect register to read 5427 * @sleep_ok: if true we may sleep while awaiting command completion 5428 * 5429 * Read TP TM PIO Registers 5430 **/ 5431 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5432 u32 start_index, bool sleep_ok) 5433 { 5434 t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff, 5435 nregs, start_index, 1, sleep_ok); 5436 } 5437 5438 /** 5439 * t4_tp_mib_read - Read TP MIB registers 5440 * @adap: the adapter 5441 * @buff: where the indirect register values are written 5442 * @nregs: how many indirect registers to read 5443 * @start_index: index of first indirect register to read 5444 * @sleep_ok: if true we may sleep while awaiting command completion 5445 * 5446 * Read TP MIB Registers 5447 **/ 5448 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index, 5449 bool sleep_ok) 5450 { 5451 t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs, 5452 start_index, 1, sleep_ok); 5453 } 5454 5455 /** 5456 * t4_read_rss_key - read the global RSS key 5457 * @adap: the adapter 5458 * @key: 10-entry array holding the 320-bit RSS key 5459 * @sleep_ok: if true we may sleep while awaiting command completion 5460 * 5461 * Reads the global 320-bit RSS key. 5462 */ 5463 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok) 5464 { 5465 t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5466 } 5467 5468 /** 5469 * t4_write_rss_key - program one of the RSS keys 5470 * @adap: the adapter 5471 * @key: 10-entry array holding the 320-bit RSS key 5472 * @idx: which RSS key to write 5473 * @sleep_ok: if true we may sleep while awaiting command completion 5474 * 5475 * Writes one of the RSS keys with the given 320-bit value. If @idx is 5476 * 0..15 the corresponding entry in the RSS key table is written, 5477 * otherwise the global RSS key is written. 5478 */ 5479 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx, 5480 bool sleep_ok) 5481 { 5482 u8 rss_key_addr_cnt = 16; 5483 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A); 5484 5485 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble), 5486 * allows access to key addresses 16-63 by using KeyWrAddrX 5487 * as index[5:4](upper 2) into key table 5488 */ 5489 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) && 5490 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3)) 5491 rss_key_addr_cnt = 32; 5492 5493 t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5494 5495 if (idx >= 0 && idx < rss_key_addr_cnt) { 5496 if (rss_key_addr_cnt > 16) 5497 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5498 KEYWRADDRX_V(idx >> 4) | 5499 T6_VFWRADDR_V(idx) | KEYWREN_F); 5500 else 5501 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5502 KEYWRADDR_V(idx) | KEYWREN_F); 5503 } 5504 } 5505 5506 /** 5507 * t4_read_rss_pf_config - read PF RSS Configuration Table 5508 * @adapter: the adapter 5509 * @index: the entry in the PF RSS table to read 5510 * @valp: where to store the returned value 5511 * @sleep_ok: if true we may sleep while awaiting command completion 5512 * 5513 * Reads the PF RSS Configuration Table at the specified index and returns 5514 * the value found there. 5515 */ 5516 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, 5517 u32 *valp, bool sleep_ok) 5518 { 5519 t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok); 5520 } 5521 5522 /** 5523 * t4_read_rss_vf_config - read VF RSS Configuration Table 5524 * @adapter: the adapter 5525 * @index: the entry in the VF RSS table to read 5526 * @vfl: where to store the returned VFL 5527 * @vfh: where to store the returned VFH 5528 * @sleep_ok: if true we may sleep while awaiting command completion 5529 * 5530 * Reads the VF RSS Configuration Table at the specified index and returns 5531 * the (VFL, VFH) values found there. 5532 */ 5533 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, 5534 u32 *vfl, u32 *vfh, bool sleep_ok) 5535 { 5536 u32 vrt, mask, data; 5537 5538 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) { 5539 mask = VFWRADDR_V(VFWRADDR_M); 5540 data = VFWRADDR_V(index); 5541 } else { 5542 mask = T6_VFWRADDR_V(T6_VFWRADDR_M); 5543 data = T6_VFWRADDR_V(index); 5544 } 5545 5546 /* Request that the index'th VF Table values be read into VFL/VFH. 5547 */ 5548 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A); 5549 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask); 5550 vrt |= data | VFRDEN_F; 5551 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt); 5552 5553 /* Grab the VFL/VFH values ... 5554 */ 5555 t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok); 5556 t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok); 5557 } 5558 5559 /** 5560 * t4_read_rss_pf_map - read PF RSS Map 5561 * @adapter: the adapter 5562 * @sleep_ok: if true we may sleep while awaiting command completion 5563 * 5564 * Reads the PF RSS Map register and returns its value. 5565 */ 5566 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok) 5567 { 5568 u32 pfmap; 5569 5570 t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok); 5571 return pfmap; 5572 } 5573 5574 /** 5575 * t4_read_rss_pf_mask - read PF RSS Mask 5576 * @adapter: the adapter 5577 * @sleep_ok: if true we may sleep while awaiting command completion 5578 * 5579 * Reads the PF RSS Mask register and returns its value. 5580 */ 5581 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok) 5582 { 5583 u32 pfmask; 5584 5585 t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok); 5586 return pfmask; 5587 } 5588 5589 /** 5590 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 5591 * @adap: the adapter 5592 * @v4: holds the TCP/IP counter values 5593 * @v6: holds the TCP/IPv6 counter values 5594 * @sleep_ok: if true we may sleep while awaiting command completion 5595 * 5596 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 5597 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 5598 */ 5599 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 5600 struct tp_tcp_stats *v6, bool sleep_ok) 5601 { 5602 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1]; 5603 5604 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A) 5605 #define STAT(x) val[STAT_IDX(x)] 5606 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 5607 5608 if (v4) { 5609 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5610 TP_MIB_TCP_OUT_RST_A, sleep_ok); 5611 v4->tcp_out_rsts = STAT(OUT_RST); 5612 v4->tcp_in_segs = STAT64(IN_SEG); 5613 v4->tcp_out_segs = STAT64(OUT_SEG); 5614 v4->tcp_retrans_segs = STAT64(RXT_SEG); 5615 } 5616 if (v6) { 5617 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5618 TP_MIB_TCP_V6OUT_RST_A, sleep_ok); 5619 v6->tcp_out_rsts = STAT(OUT_RST); 5620 v6->tcp_in_segs = STAT64(IN_SEG); 5621 v6->tcp_out_segs = STAT64(OUT_SEG); 5622 v6->tcp_retrans_segs = STAT64(RXT_SEG); 5623 } 5624 #undef STAT64 5625 #undef STAT 5626 #undef STAT_IDX 5627 } 5628 5629 /** 5630 * t4_tp_get_err_stats - read TP's error MIB counters 5631 * @adap: the adapter 5632 * @st: holds the counter values 5633 * @sleep_ok: if true we may sleep while awaiting command completion 5634 * 5635 * Returns the values of TP's error counters. 5636 */ 5637 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st, 5638 bool sleep_ok) 5639 { 5640 int nchan = adap->params.arch.nchan; 5641 5642 t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A, 5643 sleep_ok); 5644 t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A, 5645 sleep_ok); 5646 t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A, 5647 sleep_ok); 5648 t4_tp_mib_read(adap, st->tnl_cong_drops, nchan, 5649 TP_MIB_TNL_CNG_DROP_0_A, sleep_ok); 5650 t4_tp_mib_read(adap, st->ofld_chan_drops, nchan, 5651 TP_MIB_OFD_CHN_DROP_0_A, sleep_ok); 5652 t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A, 5653 sleep_ok); 5654 t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan, 5655 TP_MIB_OFD_VLN_DROP_0_A, sleep_ok); 5656 t4_tp_mib_read(adap, st->tcp6_in_errs, nchan, 5657 TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok); 5658 t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A, 5659 sleep_ok); 5660 } 5661 5662 /** 5663 * t4_tp_get_cpl_stats - read TP's CPL MIB counters 5664 * @adap: the adapter 5665 * @st: holds the counter values 5666 * @sleep_ok: if true we may sleep while awaiting command completion 5667 * 5668 * Returns the values of TP's CPL counters. 5669 */ 5670 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st, 5671 bool sleep_ok) 5672 { 5673 int nchan = adap->params.arch.nchan; 5674 5675 t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok); 5676 5677 t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok); 5678 } 5679 5680 /** 5681 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters 5682 * @adap: the adapter 5683 * @st: holds the counter values 5684 * @sleep_ok: if true we may sleep while awaiting command completion 5685 * 5686 * Returns the values of TP's RDMA counters. 5687 */ 5688 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st, 5689 bool sleep_ok) 5690 { 5691 t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A, 5692 sleep_ok); 5693 } 5694 5695 /** 5696 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port 5697 * @adap: the adapter 5698 * @idx: the port index 5699 * @st: holds the counter values 5700 * @sleep_ok: if true we may sleep while awaiting command completion 5701 * 5702 * Returns the values of TP's FCoE counters for the selected port. 5703 */ 5704 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, 5705 struct tp_fcoe_stats *st, bool sleep_ok) 5706 { 5707 u32 val[2]; 5708 5709 t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx, 5710 sleep_ok); 5711 5712 t4_tp_mib_read(adap, &st->frames_drop, 1, 5713 TP_MIB_FCOE_DROP_0_A + idx, sleep_ok); 5714 5715 t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx, 5716 sleep_ok); 5717 5718 st->octets_ddp = ((u64)val[0] << 32) | val[1]; 5719 } 5720 5721 /** 5722 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters 5723 * @adap: the adapter 5724 * @st: holds the counter values 5725 * @sleep_ok: if true we may sleep while awaiting command completion 5726 * 5727 * Returns the values of TP's counters for non-TCP directly-placed packets. 5728 */ 5729 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st, 5730 bool sleep_ok) 5731 { 5732 u32 val[4]; 5733 5734 t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok); 5735 st->frames = val[0]; 5736 st->drops = val[1]; 5737 st->octets = ((u64)val[2] << 32) | val[3]; 5738 } 5739 5740 /** 5741 * t4_read_mtu_tbl - returns the values in the HW path MTU table 5742 * @adap: the adapter 5743 * @mtus: where to store the MTU values 5744 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 5745 * 5746 * Reads the HW path MTU table. 5747 */ 5748 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 5749 { 5750 u32 v; 5751 int i; 5752 5753 for (i = 0; i < NMTUS; ++i) { 5754 t4_write_reg(adap, TP_MTU_TABLE_A, 5755 MTUINDEX_V(0xff) | MTUVALUE_V(i)); 5756 v = t4_read_reg(adap, TP_MTU_TABLE_A); 5757 mtus[i] = MTUVALUE_G(v); 5758 if (mtu_log) 5759 mtu_log[i] = MTUWIDTH_G(v); 5760 } 5761 } 5762 5763 /** 5764 * t4_read_cong_tbl - reads the congestion control table 5765 * @adap: the adapter 5766 * @incr: where to store the alpha values 5767 * 5768 * Reads the additive increments programmed into the HW congestion 5769 * control table. 5770 */ 5771 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) 5772 { 5773 unsigned int mtu, w; 5774 5775 for (mtu = 0; mtu < NMTUS; ++mtu) 5776 for (w = 0; w < NCCTRL_WIN; ++w) { 5777 t4_write_reg(adap, TP_CCTRL_TABLE_A, 5778 ROWINDEX_V(0xffff) | (mtu << 5) | w); 5779 incr[mtu][w] = (u16)t4_read_reg(adap, 5780 TP_CCTRL_TABLE_A) & 0x1fff; 5781 } 5782 } 5783 5784 /** 5785 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 5786 * @adap: the adapter 5787 * @addr: the indirect TP register address 5788 * @mask: specifies the field within the register to modify 5789 * @val: new value for the field 5790 * 5791 * Sets a field of an indirect TP register to the given value. 5792 */ 5793 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 5794 unsigned int mask, unsigned int val) 5795 { 5796 t4_write_reg(adap, TP_PIO_ADDR_A, addr); 5797 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask; 5798 t4_write_reg(adap, TP_PIO_DATA_A, val); 5799 } 5800 5801 /** 5802 * init_cong_ctrl - initialize congestion control parameters 5803 * @a: the alpha values for congestion control 5804 * @b: the beta values for congestion control 5805 * 5806 * Initialize the congestion control parameters. 5807 */ 5808 static void init_cong_ctrl(unsigned short *a, unsigned short *b) 5809 { 5810 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 5811 a[9] = 2; 5812 a[10] = 3; 5813 a[11] = 4; 5814 a[12] = 5; 5815 a[13] = 6; 5816 a[14] = 7; 5817 a[15] = 8; 5818 a[16] = 9; 5819 a[17] = 10; 5820 a[18] = 14; 5821 a[19] = 17; 5822 a[20] = 21; 5823 a[21] = 25; 5824 a[22] = 30; 5825 a[23] = 35; 5826 a[24] = 45; 5827 a[25] = 60; 5828 a[26] = 80; 5829 a[27] = 100; 5830 a[28] = 200; 5831 a[29] = 300; 5832 a[30] = 400; 5833 a[31] = 500; 5834 5835 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 5836 b[9] = b[10] = 1; 5837 b[11] = b[12] = 2; 5838 b[13] = b[14] = b[15] = b[16] = 3; 5839 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 5840 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 5841 b[28] = b[29] = 6; 5842 b[30] = b[31] = 7; 5843 } 5844 5845 /* The minimum additive increment value for the congestion control table */ 5846 #define CC_MIN_INCR 2U 5847 5848 /** 5849 * t4_load_mtus - write the MTU and congestion control HW tables 5850 * @adap: the adapter 5851 * @mtus: the values for the MTU table 5852 * @alpha: the values for the congestion control alpha parameter 5853 * @beta: the values for the congestion control beta parameter 5854 * 5855 * Write the HW MTU table with the supplied MTUs and the high-speed 5856 * congestion control table with the supplied alpha, beta, and MTUs. 5857 * We write the two tables together because the additive increments 5858 * depend on the MTUs. 5859 */ 5860 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 5861 const unsigned short *alpha, const unsigned short *beta) 5862 { 5863 static const unsigned int avg_pkts[NCCTRL_WIN] = { 5864 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 5865 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 5866 28672, 40960, 57344, 81920, 114688, 163840, 229376 5867 }; 5868 5869 unsigned int i, w; 5870 5871 for (i = 0; i < NMTUS; ++i) { 5872 unsigned int mtu = mtus[i]; 5873 unsigned int log2 = fls(mtu); 5874 5875 if (!(mtu & ((1 << log2) >> 2))) /* round */ 5876 log2--; 5877 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) | 5878 MTUWIDTH_V(log2) | MTUVALUE_V(mtu)); 5879 5880 for (w = 0; w < NCCTRL_WIN; ++w) { 5881 unsigned int inc; 5882 5883 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 5884 CC_MIN_INCR); 5885 5886 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) | 5887 (w << 16) | (beta[w] << 13) | inc); 5888 } 5889 } 5890 } 5891 5892 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core 5893 * clocks. The formula is 5894 * 5895 * bytes/s = bytes256 * 256 * ClkFreq / 4096 5896 * 5897 * which is equivalent to 5898 * 5899 * bytes/s = 62.5 * bytes256 * ClkFreq_ms 5900 */ 5901 static u64 chan_rate(struct adapter *adap, unsigned int bytes256) 5902 { 5903 u64 v = bytes256 * adap->params.vpd.cclk; 5904 5905 return v * 62 + v / 2; 5906 } 5907 5908 /** 5909 * t4_get_chan_txrate - get the current per channel Tx rates 5910 * @adap: the adapter 5911 * @nic_rate: rates for NIC traffic 5912 * @ofld_rate: rates for offloaded traffic 5913 * 5914 * Return the current Tx rates in bytes/s for NIC and offloaded traffic 5915 * for each channel. 5916 */ 5917 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) 5918 { 5919 u32 v; 5920 5921 v = t4_read_reg(adap, TP_TX_TRATE_A); 5922 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v)); 5923 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v)); 5924 if (adap->params.arch.nchan == NCHAN) { 5925 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v)); 5926 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v)); 5927 } 5928 5929 v = t4_read_reg(adap, TP_TX_ORATE_A); 5930 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v)); 5931 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v)); 5932 if (adap->params.arch.nchan == NCHAN) { 5933 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v)); 5934 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v)); 5935 } 5936 } 5937 5938 /** 5939 * t4_set_trace_filter - configure one of the tracing filters 5940 * @adap: the adapter 5941 * @tp: the desired trace filter parameters 5942 * @idx: which filter to configure 5943 * @enable: whether to enable or disable the filter 5944 * 5945 * Configures one of the tracing filters available in HW. If @enable is 5946 * %0 @tp is not examined and may be %NULL. The user is responsible to 5947 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register 5948 */ 5949 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, 5950 int idx, int enable) 5951 { 5952 int i, ofst = idx * 4; 5953 u32 data_reg, mask_reg, cfg; 5954 5955 if (!enable) { 5956 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5957 return 0; 5958 } 5959 5960 cfg = t4_read_reg(adap, MPS_TRC_CFG_A); 5961 if (cfg & TRCMULTIFILTER_F) { 5962 /* If multiple tracers are enabled, then maximum 5963 * capture size is 2.5KB (FIFO size of a single channel) 5964 * minus 2 flits for CPL_TRACE_PKT header. 5965 */ 5966 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) 5967 return -EINVAL; 5968 } else { 5969 /* If multiple tracers are disabled, to avoid deadlocks 5970 * maximum packet capture size of 9600 bytes is recommended. 5971 * Also in this mode, only trace0 can be enabled and running. 5972 */ 5973 if (tp->snap_len > 9600 || idx) 5974 return -EINVAL; 5975 } 5976 5977 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 || 5978 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M || 5979 tp->min_len > TFMINPKTSIZE_M) 5980 return -EINVAL; 5981 5982 /* stop the tracer we'll be changing */ 5983 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5984 5985 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A); 5986 data_reg = MPS_TRC_FILTER0_MATCH_A + idx; 5987 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx; 5988 5989 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5990 t4_write_reg(adap, data_reg, tp->data[i]); 5991 t4_write_reg(adap, mask_reg, ~tp->mask[i]); 5992 } 5993 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst, 5994 TFCAPTUREMAX_V(tp->snap_len) | 5995 TFMINPKTSIZE_V(tp->min_len)); 5996 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 5997 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) | 5998 (is_t4(adap->params.chip) ? 5999 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) : 6000 T5_TFPORT_V(tp->port) | T5_TFEN_F | 6001 T5_TFINVERTMATCH_V(tp->invert))); 6002 6003 return 0; 6004 } 6005 6006 /** 6007 * t4_get_trace_filter - query one of the tracing filters 6008 * @adap: the adapter 6009 * @tp: the current trace filter parameters 6010 * @idx: which trace filter to query 6011 * @enabled: non-zero if the filter is enabled 6012 * 6013 * Returns the current settings of one of the HW tracing filters. 6014 */ 6015 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, 6016 int *enabled) 6017 { 6018 u32 ctla, ctlb; 6019 int i, ofst = idx * 4; 6020 u32 data_reg, mask_reg; 6021 6022 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst); 6023 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst); 6024 6025 if (is_t4(adap->params.chip)) { 6026 *enabled = !!(ctla & TFEN_F); 6027 tp->port = TFPORT_G(ctla); 6028 tp->invert = !!(ctla & TFINVERTMATCH_F); 6029 } else { 6030 *enabled = !!(ctla & T5_TFEN_F); 6031 tp->port = T5_TFPORT_G(ctla); 6032 tp->invert = !!(ctla & T5_TFINVERTMATCH_F); 6033 } 6034 tp->snap_len = TFCAPTUREMAX_G(ctlb); 6035 tp->min_len = TFMINPKTSIZE_G(ctlb); 6036 tp->skip_ofst = TFOFFSET_G(ctla); 6037 tp->skip_len = TFLENGTH_G(ctla); 6038 6039 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx; 6040 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst; 6041 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst; 6042 6043 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 6044 tp->mask[i] = ~t4_read_reg(adap, mask_reg); 6045 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; 6046 } 6047 } 6048 6049 /** 6050 * t4_pmtx_get_stats - returns the HW stats from PMTX 6051 * @adap: the adapter 6052 * @cnt: where to store the count statistics 6053 * @cycles: where to store the cycle statistics 6054 * 6055 * Returns performance statistics from PMTX. 6056 */ 6057 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6058 { 6059 int i; 6060 u32 data[2]; 6061 6062 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 6063 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1); 6064 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A); 6065 if (is_t4(adap->params.chip)) { 6066 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A); 6067 } else { 6068 t4_read_indirect(adap, PM_TX_DBG_CTRL_A, 6069 PM_TX_DBG_DATA_A, data, 2, 6070 PM_TX_DBG_STAT_MSB_A); 6071 cycles[i] = (((u64)data[0] << 32) | data[1]); 6072 } 6073 } 6074 } 6075 6076 /** 6077 * t4_pmrx_get_stats - returns the HW stats from PMRX 6078 * @adap: the adapter 6079 * @cnt: where to store the count statistics 6080 * @cycles: where to store the cycle statistics 6081 * 6082 * Returns performance statistics from PMRX. 6083 */ 6084 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6085 { 6086 int i; 6087 u32 data[2]; 6088 6089 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 6090 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1); 6091 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A); 6092 if (is_t4(adap->params.chip)) { 6093 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A); 6094 } else { 6095 t4_read_indirect(adap, PM_RX_DBG_CTRL_A, 6096 PM_RX_DBG_DATA_A, data, 2, 6097 PM_RX_DBG_STAT_MSB_A); 6098 cycles[i] = (((u64)data[0] << 32) | data[1]); 6099 } 6100 } 6101 } 6102 6103 /** 6104 * compute_mps_bg_map - compute the MPS Buffer Group Map for a Port 6105 * @adapter: the adapter 6106 * @pidx: the port index 6107 * 6108 * Computes and returns a bitmap indicating which MPS buffer groups are 6109 * associated with the given Port. Bit i is set if buffer group i is 6110 * used by the Port. 6111 */ 6112 static inline unsigned int compute_mps_bg_map(struct adapter *adapter, 6113 int pidx) 6114 { 6115 unsigned int chip_version, nports; 6116 6117 chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6118 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6119 6120 switch (chip_version) { 6121 case CHELSIO_T4: 6122 case CHELSIO_T5: 6123 switch (nports) { 6124 case 1: return 0xf; 6125 case 2: return 3 << (2 * pidx); 6126 case 4: return 1 << pidx; 6127 } 6128 break; 6129 6130 case CHELSIO_T6: 6131 switch (nports) { 6132 case 2: return 1 << (2 * pidx); 6133 } 6134 break; 6135 } 6136 6137 dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n", 6138 chip_version, nports); 6139 6140 return 0; 6141 } 6142 6143 /** 6144 * t4_get_mps_bg_map - return the buffer groups associated with a port 6145 * @adapter: the adapter 6146 * @pidx: the port index 6147 * 6148 * Returns a bitmap indicating which MPS buffer groups are associated 6149 * with the given Port. Bit i is set if buffer group i is used by the 6150 * Port. 6151 */ 6152 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx) 6153 { 6154 u8 *mps_bg_map; 6155 unsigned int nports; 6156 6157 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6158 if (pidx >= nports) { 6159 CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n", 6160 pidx, nports); 6161 return 0; 6162 } 6163 6164 /* If we've already retrieved/computed this, just return the result. 6165 */ 6166 mps_bg_map = adapter->params.mps_bg_map; 6167 if (mps_bg_map[pidx]) 6168 return mps_bg_map[pidx]; 6169 6170 /* Newer Firmware can tell us what the MPS Buffer Group Map is. 6171 * If we're talking to such Firmware, let it tell us. If the new 6172 * API isn't supported, revert back to old hardcoded way. The value 6173 * obtained from Firmware is encoded in below format: 6174 * 6175 * val = (( MPSBGMAP[Port 3] << 24 ) | 6176 * ( MPSBGMAP[Port 2] << 16 ) | 6177 * ( MPSBGMAP[Port 1] << 8 ) | 6178 * ( MPSBGMAP[Port 0] << 0 )) 6179 */ 6180 if (adapter->flags & CXGB4_FW_OK) { 6181 u32 param, val; 6182 int ret; 6183 6184 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6185 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP)); 6186 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf, 6187 0, 1, ¶m, &val); 6188 if (!ret) { 6189 int p; 6190 6191 /* Store the BG Map for all of the Ports in order to 6192 * avoid more calls to the Firmware in the future. 6193 */ 6194 for (p = 0; p < MAX_NPORTS; p++, val >>= 8) 6195 mps_bg_map[p] = val & 0xff; 6196 6197 return mps_bg_map[pidx]; 6198 } 6199 } 6200 6201 /* Either we're not talking to the Firmware or we're dealing with 6202 * older Firmware which doesn't support the new API to get the MPS 6203 * Buffer Group Map. Fall back to computing it ourselves. 6204 */ 6205 mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx); 6206 return mps_bg_map[pidx]; 6207 } 6208 6209 /** 6210 * t4_get_tp_e2c_map - return the E2C channel map associated with a port 6211 * @adapter: the adapter 6212 * @pidx: the port index 6213 */ 6214 static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx) 6215 { 6216 unsigned int nports; 6217 u32 param, val = 0; 6218 int ret; 6219 6220 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6221 if (pidx >= nports) { 6222 CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n", 6223 pidx, nports); 6224 return 0; 6225 } 6226 6227 /* FW version >= 1.16.44.0 can determine E2C channel map using 6228 * FW_PARAMS_PARAM_DEV_TPCHMAP API. 6229 */ 6230 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6231 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP)); 6232 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf, 6233 0, 1, ¶m, &val); 6234 if (!ret) 6235 return (val >> (8 * pidx)) & 0xff; 6236 6237 return 0; 6238 } 6239 6240 /** 6241 * t4_get_tp_ch_map - return TP ingress channels associated with a port 6242 * @adap: the adapter 6243 * @pidx: the port index 6244 * 6245 * Returns a bitmap indicating which TP Ingress Channels are associated 6246 * with a given Port. Bit i is set if TP Ingress Channel i is used by 6247 * the Port. 6248 */ 6249 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx) 6250 { 6251 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 6252 unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A)); 6253 6254 if (pidx >= nports) { 6255 dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n", 6256 pidx, nports); 6257 return 0; 6258 } 6259 6260 switch (chip_version) { 6261 case CHELSIO_T4: 6262 case CHELSIO_T5: 6263 /* Note that this happens to be the same values as the MPS 6264 * Buffer Group Map for these Chips. But we replicate the code 6265 * here because they're really separate concepts. 6266 */ 6267 switch (nports) { 6268 case 1: return 0xf; 6269 case 2: return 3 << (2 * pidx); 6270 case 4: return 1 << pidx; 6271 } 6272 break; 6273 6274 case CHELSIO_T6: 6275 switch (nports) { 6276 case 1: 6277 case 2: return 1 << pidx; 6278 } 6279 break; 6280 } 6281 6282 dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n", 6283 chip_version, nports); 6284 return 0; 6285 } 6286 6287 /** 6288 * t4_get_port_type_description - return Port Type string description 6289 * @port_type: firmware Port Type enumeration 6290 */ 6291 const char *t4_get_port_type_description(enum fw_port_type port_type) 6292 { 6293 static const char *const port_type_description[] = { 6294 "Fiber_XFI", 6295 "Fiber_XAUI", 6296 "BT_SGMII", 6297 "BT_XFI", 6298 "BT_XAUI", 6299 "KX4", 6300 "CX4", 6301 "KX", 6302 "KR", 6303 "SFP", 6304 "BP_AP", 6305 "BP4_AP", 6306 "QSFP_10G", 6307 "QSA", 6308 "QSFP", 6309 "BP40_BA", 6310 "KR4_100G", 6311 "CR4_QSFP", 6312 "CR_QSFP", 6313 "CR2_QSFP", 6314 "SFP28", 6315 "KR_SFP28", 6316 "KR_XLAUI" 6317 }; 6318 6319 if (port_type < ARRAY_SIZE(port_type_description)) 6320 return port_type_description[port_type]; 6321 return "UNKNOWN"; 6322 } 6323 6324 /** 6325 * t4_get_port_stats_offset - collect port stats relative to a previous 6326 * snapshot 6327 * @adap: The adapter 6328 * @idx: The port 6329 * @stats: Current stats to fill 6330 * @offset: Previous stats snapshot 6331 */ 6332 void t4_get_port_stats_offset(struct adapter *adap, int idx, 6333 struct port_stats *stats, 6334 struct port_stats *offset) 6335 { 6336 u64 *s, *o; 6337 int i; 6338 6339 t4_get_port_stats(adap, idx, stats); 6340 for (i = 0, s = (u64 *)stats, o = (u64 *)offset; 6341 i < (sizeof(struct port_stats) / sizeof(u64)); 6342 i++, s++, o++) 6343 *s -= *o; 6344 } 6345 6346 /** 6347 * t4_get_port_stats - collect port statistics 6348 * @adap: the adapter 6349 * @idx: the port index 6350 * @p: the stats structure to fill 6351 * 6352 * Collect statistics related to the given port from HW. 6353 */ 6354 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 6355 { 6356 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6357 u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A); 6358 6359 #define GET_STAT(name) \ 6360 t4_read_reg64(adap, \ 6361 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \ 6362 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L))) 6363 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6364 6365 p->tx_octets = GET_STAT(TX_PORT_BYTES); 6366 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 6367 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 6368 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 6369 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 6370 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 6371 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 6372 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 6373 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 6374 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 6375 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 6376 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 6377 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 6378 p->tx_drop = GET_STAT(TX_PORT_DROP); 6379 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 6380 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 6381 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 6382 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 6383 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 6384 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 6385 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 6386 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 6387 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 6388 6389 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6390 if (stat_ctl & COUNTPAUSESTATTX_F) 6391 p->tx_frames_64 -= p->tx_pause; 6392 if (stat_ctl & COUNTPAUSEMCTX_F) 6393 p->tx_mcast_frames -= p->tx_pause; 6394 } 6395 p->rx_octets = GET_STAT(RX_PORT_BYTES); 6396 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 6397 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 6398 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 6399 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 6400 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 6401 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 6402 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); 6403 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 6404 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 6405 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 6406 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 6407 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 6408 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 6409 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 6410 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 6411 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 6412 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 6413 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 6414 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 6415 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 6416 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 6417 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 6418 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 6419 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 6420 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 6421 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 6422 6423 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6424 if (stat_ctl & COUNTPAUSESTATRX_F) 6425 p->rx_frames_64 -= p->rx_pause; 6426 if (stat_ctl & COUNTPAUSEMCRX_F) 6427 p->rx_mcast_frames -= p->rx_pause; 6428 } 6429 6430 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 6431 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 6432 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 6433 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 6434 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 6435 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 6436 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 6437 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 6438 6439 #undef GET_STAT 6440 #undef GET_STAT_COM 6441 } 6442 6443 /** 6444 * t4_get_lb_stats - collect loopback port statistics 6445 * @adap: the adapter 6446 * @idx: the loopback port index 6447 * @p: the stats structure to fill 6448 * 6449 * Return HW statistics for the given loopback port. 6450 */ 6451 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) 6452 { 6453 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6454 6455 #define GET_STAT(name) \ 6456 t4_read_reg64(adap, \ 6457 (is_t4(adap->params.chip) ? \ 6458 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \ 6459 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L))) 6460 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6461 6462 p->octets = GET_STAT(BYTES); 6463 p->frames = GET_STAT(FRAMES); 6464 p->bcast_frames = GET_STAT(BCAST); 6465 p->mcast_frames = GET_STAT(MCAST); 6466 p->ucast_frames = GET_STAT(UCAST); 6467 p->error_frames = GET_STAT(ERROR); 6468 6469 p->frames_64 = GET_STAT(64B); 6470 p->frames_65_127 = GET_STAT(65B_127B); 6471 p->frames_128_255 = GET_STAT(128B_255B); 6472 p->frames_256_511 = GET_STAT(256B_511B); 6473 p->frames_512_1023 = GET_STAT(512B_1023B); 6474 p->frames_1024_1518 = GET_STAT(1024B_1518B); 6475 p->frames_1519_max = GET_STAT(1519B_MAX); 6476 p->drop = GET_STAT(DROP_FRAMES); 6477 6478 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; 6479 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; 6480 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; 6481 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; 6482 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; 6483 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; 6484 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; 6485 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; 6486 6487 #undef GET_STAT 6488 #undef GET_STAT_COM 6489 } 6490 6491 /* t4_mk_filtdelwr - create a delete filter WR 6492 * @ftid: the filter ID 6493 * @wr: the filter work request to populate 6494 * @qid: ingress queue to receive the delete notification 6495 * 6496 * Creates a filter work request to delete the supplied filter. If @qid is 6497 * negative the delete notification is suppressed. 6498 */ 6499 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 6500 { 6501 memset(wr, 0, sizeof(*wr)); 6502 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR)); 6503 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16)); 6504 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) | 6505 FW_FILTER_WR_NOREPLY_V(qid < 0)); 6506 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F); 6507 if (qid >= 0) 6508 wr->rx_chan_rx_rpl_iq = 6509 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid)); 6510 } 6511 6512 #define INIT_CMD(var, cmd, rd_wr) do { \ 6513 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \ 6514 FW_CMD_REQUEST_F | \ 6515 FW_CMD_##rd_wr##_F); \ 6516 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ 6517 } while (0) 6518 6519 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 6520 u32 addr, u32 val) 6521 { 6522 u32 ldst_addrspace; 6523 struct fw_ldst_cmd c; 6524 6525 memset(&c, 0, sizeof(c)); 6526 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE); 6527 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6528 FW_CMD_REQUEST_F | 6529 FW_CMD_WRITE_F | 6530 ldst_addrspace); 6531 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6532 c.u.addrval.addr = cpu_to_be32(addr); 6533 c.u.addrval.val = cpu_to_be32(val); 6534 6535 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6536 } 6537 6538 /** 6539 * t4_mdio_rd - read a PHY register through MDIO 6540 * @adap: the adapter 6541 * @mbox: mailbox to use for the FW command 6542 * @phy_addr: the PHY address 6543 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6544 * @reg: the register to read 6545 * @valp: where to store the value 6546 * 6547 * Issues a FW command through the given mailbox to read a PHY register. 6548 */ 6549 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6550 unsigned int mmd, unsigned int reg, u16 *valp) 6551 { 6552 int ret; 6553 u32 ldst_addrspace; 6554 struct fw_ldst_cmd c; 6555 6556 memset(&c, 0, sizeof(c)); 6557 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6558 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6559 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6560 ldst_addrspace); 6561 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6562 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6563 FW_LDST_CMD_MMD_V(mmd)); 6564 c.u.mdio.raddr = cpu_to_be16(reg); 6565 6566 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6567 if (ret == 0) 6568 *valp = be16_to_cpu(c.u.mdio.rval); 6569 return ret; 6570 } 6571 6572 /** 6573 * t4_mdio_wr - write a PHY register through MDIO 6574 * @adap: the adapter 6575 * @mbox: mailbox to use for the FW command 6576 * @phy_addr: the PHY address 6577 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6578 * @reg: the register to write 6579 * @val: value to write 6580 * 6581 * Issues a FW command through the given mailbox to write a PHY register. 6582 */ 6583 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6584 unsigned int mmd, unsigned int reg, u16 val) 6585 { 6586 u32 ldst_addrspace; 6587 struct fw_ldst_cmd c; 6588 6589 memset(&c, 0, sizeof(c)); 6590 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6591 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6592 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6593 ldst_addrspace); 6594 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6595 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6596 FW_LDST_CMD_MMD_V(mmd)); 6597 c.u.mdio.raddr = cpu_to_be16(reg); 6598 c.u.mdio.rval = cpu_to_be16(val); 6599 6600 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6601 } 6602 6603 /** 6604 * t4_sge_decode_idma_state - decode the idma state 6605 * @adapter: the adapter 6606 * @state: the state idma is stuck in 6607 */ 6608 void t4_sge_decode_idma_state(struct adapter *adapter, int state) 6609 { 6610 static const char * const t4_decode[] = { 6611 "IDMA_IDLE", 6612 "IDMA_PUSH_MORE_CPL_FIFO", 6613 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6614 "Not used", 6615 "IDMA_PHYSADDR_SEND_PCIEHDR", 6616 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6617 "IDMA_PHYSADDR_SEND_PAYLOAD", 6618 "IDMA_SEND_FIFO_TO_IMSG", 6619 "IDMA_FL_REQ_DATA_FL_PREP", 6620 "IDMA_FL_REQ_DATA_FL", 6621 "IDMA_FL_DROP", 6622 "IDMA_FL_H_REQ_HEADER_FL", 6623 "IDMA_FL_H_SEND_PCIEHDR", 6624 "IDMA_FL_H_PUSH_CPL_FIFO", 6625 "IDMA_FL_H_SEND_CPL", 6626 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6627 "IDMA_FL_H_SEND_IP_HDR", 6628 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6629 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6630 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6631 "IDMA_FL_D_SEND_PCIEHDR", 6632 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6633 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6634 "IDMA_FL_SEND_PCIEHDR", 6635 "IDMA_FL_PUSH_CPL_FIFO", 6636 "IDMA_FL_SEND_CPL", 6637 "IDMA_FL_SEND_PAYLOAD_FIRST", 6638 "IDMA_FL_SEND_PAYLOAD", 6639 "IDMA_FL_REQ_NEXT_DATA_FL", 6640 "IDMA_FL_SEND_NEXT_PCIEHDR", 6641 "IDMA_FL_SEND_PADDING", 6642 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6643 "IDMA_FL_SEND_FIFO_TO_IMSG", 6644 "IDMA_FL_REQ_DATAFL_DONE", 6645 "IDMA_FL_REQ_HEADERFL_DONE", 6646 }; 6647 static const char * const t5_decode[] = { 6648 "IDMA_IDLE", 6649 "IDMA_ALMOST_IDLE", 6650 "IDMA_PUSH_MORE_CPL_FIFO", 6651 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6652 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6653 "IDMA_PHYSADDR_SEND_PCIEHDR", 6654 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6655 "IDMA_PHYSADDR_SEND_PAYLOAD", 6656 "IDMA_SEND_FIFO_TO_IMSG", 6657 "IDMA_FL_REQ_DATA_FL", 6658 "IDMA_FL_DROP", 6659 "IDMA_FL_DROP_SEND_INC", 6660 "IDMA_FL_H_REQ_HEADER_FL", 6661 "IDMA_FL_H_SEND_PCIEHDR", 6662 "IDMA_FL_H_PUSH_CPL_FIFO", 6663 "IDMA_FL_H_SEND_CPL", 6664 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6665 "IDMA_FL_H_SEND_IP_HDR", 6666 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6667 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6668 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6669 "IDMA_FL_D_SEND_PCIEHDR", 6670 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6671 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6672 "IDMA_FL_SEND_PCIEHDR", 6673 "IDMA_FL_PUSH_CPL_FIFO", 6674 "IDMA_FL_SEND_CPL", 6675 "IDMA_FL_SEND_PAYLOAD_FIRST", 6676 "IDMA_FL_SEND_PAYLOAD", 6677 "IDMA_FL_REQ_NEXT_DATA_FL", 6678 "IDMA_FL_SEND_NEXT_PCIEHDR", 6679 "IDMA_FL_SEND_PADDING", 6680 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6681 }; 6682 static const char * const t6_decode[] = { 6683 "IDMA_IDLE", 6684 "IDMA_PUSH_MORE_CPL_FIFO", 6685 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6686 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6687 "IDMA_PHYSADDR_SEND_PCIEHDR", 6688 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6689 "IDMA_PHYSADDR_SEND_PAYLOAD", 6690 "IDMA_FL_REQ_DATA_FL", 6691 "IDMA_FL_DROP", 6692 "IDMA_FL_DROP_SEND_INC", 6693 "IDMA_FL_H_REQ_HEADER_FL", 6694 "IDMA_FL_H_SEND_PCIEHDR", 6695 "IDMA_FL_H_PUSH_CPL_FIFO", 6696 "IDMA_FL_H_SEND_CPL", 6697 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6698 "IDMA_FL_H_SEND_IP_HDR", 6699 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6700 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6701 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6702 "IDMA_FL_D_SEND_PCIEHDR", 6703 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6704 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6705 "IDMA_FL_SEND_PCIEHDR", 6706 "IDMA_FL_PUSH_CPL_FIFO", 6707 "IDMA_FL_SEND_CPL", 6708 "IDMA_FL_SEND_PAYLOAD_FIRST", 6709 "IDMA_FL_SEND_PAYLOAD", 6710 "IDMA_FL_REQ_NEXT_DATA_FL", 6711 "IDMA_FL_SEND_NEXT_PCIEHDR", 6712 "IDMA_FL_SEND_PADDING", 6713 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6714 }; 6715 static const u32 sge_regs[] = { 6716 SGE_DEBUG_DATA_LOW_INDEX_2_A, 6717 SGE_DEBUG_DATA_LOW_INDEX_3_A, 6718 SGE_DEBUG_DATA_HIGH_INDEX_10_A, 6719 }; 6720 const char **sge_idma_decode; 6721 int sge_idma_decode_nstates; 6722 int i; 6723 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6724 6725 /* Select the right set of decode strings to dump depending on the 6726 * adapter chip type. 6727 */ 6728 switch (chip_version) { 6729 case CHELSIO_T4: 6730 sge_idma_decode = (const char **)t4_decode; 6731 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6732 break; 6733 6734 case CHELSIO_T5: 6735 sge_idma_decode = (const char **)t5_decode; 6736 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6737 break; 6738 6739 case CHELSIO_T6: 6740 sge_idma_decode = (const char **)t6_decode; 6741 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); 6742 break; 6743 6744 default: 6745 dev_err(adapter->pdev_dev, 6746 "Unsupported chip version %d\n", chip_version); 6747 return; 6748 } 6749 6750 if (is_t4(adapter->params.chip)) { 6751 sge_idma_decode = (const char **)t4_decode; 6752 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6753 } else { 6754 sge_idma_decode = (const char **)t5_decode; 6755 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6756 } 6757 6758 if (state < sge_idma_decode_nstates) 6759 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); 6760 else 6761 CH_WARN(adapter, "idma state %d unknown\n", state); 6762 6763 for (i = 0; i < ARRAY_SIZE(sge_regs); i++) 6764 CH_WARN(adapter, "SGE register %#x value %#x\n", 6765 sge_regs[i], t4_read_reg(adapter, sge_regs[i])); 6766 } 6767 6768 /** 6769 * t4_sge_ctxt_flush - flush the SGE context cache 6770 * @adap: the adapter 6771 * @mbox: mailbox to use for the FW command 6772 * @ctxt_type: Egress or Ingress 6773 * 6774 * Issues a FW command through the given mailbox to flush the 6775 * SGE context cache. 6776 */ 6777 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type) 6778 { 6779 int ret; 6780 u32 ldst_addrspace; 6781 struct fw_ldst_cmd c; 6782 6783 memset(&c, 0, sizeof(c)); 6784 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ? 6785 FW_LDST_ADDRSPC_SGE_EGRC : 6786 FW_LDST_ADDRSPC_SGE_INGC); 6787 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6788 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6789 ldst_addrspace); 6790 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6791 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F); 6792 6793 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6794 return ret; 6795 } 6796 6797 /** 6798 * t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values 6799 * @adap: the adapter 6800 * @ndbqtimers: size of the provided SGE Doorbell Queue Timer table 6801 * @dbqtimers: SGE Doorbell Queue Timer table 6802 * 6803 * Reads the SGE Doorbell Queue Timer values into the provided table. 6804 * Returns 0 on success (Firmware and Hardware support this feature), 6805 * an error on failure. 6806 */ 6807 int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers, 6808 u16 *dbqtimers) 6809 { 6810 int ret, dbqtimerix; 6811 6812 ret = 0; 6813 dbqtimerix = 0; 6814 while (dbqtimerix < ndbqtimers) { 6815 int nparams, param; 6816 u32 params[7], vals[7]; 6817 6818 nparams = ndbqtimers - dbqtimerix; 6819 if (nparams > ARRAY_SIZE(params)) 6820 nparams = ARRAY_SIZE(params); 6821 6822 for (param = 0; param < nparams; param++) 6823 params[param] = 6824 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6825 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) | 6826 FW_PARAMS_PARAM_Y_V(dbqtimerix + param)); 6827 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6828 nparams, params, vals); 6829 if (ret) 6830 break; 6831 6832 for (param = 0; param < nparams; param++) 6833 dbqtimers[dbqtimerix++] = vals[param]; 6834 } 6835 return ret; 6836 } 6837 6838 /** 6839 * t4_fw_hello - establish communication with FW 6840 * @adap: the adapter 6841 * @mbox: mailbox to use for the FW command 6842 * @evt_mbox: mailbox to receive async FW events 6843 * @master: specifies the caller's willingness to be the device master 6844 * @state: returns the current device state (if non-NULL) 6845 * 6846 * Issues a command to establish communication with FW. Returns either 6847 * an error (negative integer) or the mailbox of the Master PF. 6848 */ 6849 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 6850 enum dev_master master, enum dev_state *state) 6851 { 6852 int ret; 6853 struct fw_hello_cmd c; 6854 u32 v; 6855 unsigned int master_mbox; 6856 int retries = FW_CMD_HELLO_RETRIES; 6857 6858 retry: 6859 memset(&c, 0, sizeof(c)); 6860 INIT_CMD(c, HELLO, WRITE); 6861 c.err_to_clearinit = cpu_to_be32( 6862 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) | 6863 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) | 6864 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? 6865 mbox : FW_HELLO_CMD_MBMASTER_M) | 6866 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) | 6867 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) | 6868 FW_HELLO_CMD_CLEARINIT_F); 6869 6870 /* 6871 * Issue the HELLO command to the firmware. If it's not successful 6872 * but indicates that we got a "busy" or "timeout" condition, retry 6873 * the HELLO until we exhaust our retry limit. If we do exceed our 6874 * retry limit, check to see if the firmware left us any error 6875 * information and report that if so. 6876 */ 6877 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6878 if (ret < 0) { 6879 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 6880 goto retry; 6881 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F) 6882 t4_report_fw_error(adap); 6883 return ret; 6884 } 6885 6886 v = be32_to_cpu(c.err_to_clearinit); 6887 master_mbox = FW_HELLO_CMD_MBMASTER_G(v); 6888 if (state) { 6889 if (v & FW_HELLO_CMD_ERR_F) 6890 *state = DEV_STATE_ERR; 6891 else if (v & FW_HELLO_CMD_INIT_F) 6892 *state = DEV_STATE_INIT; 6893 else 6894 *state = DEV_STATE_UNINIT; 6895 } 6896 6897 /* 6898 * If we're not the Master PF then we need to wait around for the 6899 * Master PF Driver to finish setting up the adapter. 6900 * 6901 * Note that we also do this wait if we're a non-Master-capable PF and 6902 * there is no current Master PF; a Master PF may show up momentarily 6903 * and we wouldn't want to fail pointlessly. (This can happen when an 6904 * OS loads lots of different drivers rapidly at the same time). In 6905 * this case, the Master PF returned by the firmware will be 6906 * PCIE_FW_MASTER_M so the test below will work ... 6907 */ 6908 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 && 6909 master_mbox != mbox) { 6910 int waiting = FW_CMD_HELLO_TIMEOUT; 6911 6912 /* 6913 * Wait for the firmware to either indicate an error or 6914 * initialized state. If we see either of these we bail out 6915 * and report the issue to the caller. If we exhaust the 6916 * "hello timeout" and we haven't exhausted our retries, try 6917 * again. Otherwise bail with a timeout error. 6918 */ 6919 for (;;) { 6920 u32 pcie_fw; 6921 6922 msleep(50); 6923 waiting -= 50; 6924 6925 /* 6926 * If neither Error nor Initialized are indicated 6927 * by the firmware keep waiting till we exhaust our 6928 * timeout ... and then retry if we haven't exhausted 6929 * our retries ... 6930 */ 6931 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 6932 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) { 6933 if (waiting <= 0) { 6934 if (retries-- > 0) 6935 goto retry; 6936 6937 return -ETIMEDOUT; 6938 } 6939 continue; 6940 } 6941 6942 /* 6943 * We either have an Error or Initialized condition 6944 * report errors preferentially. 6945 */ 6946 if (state) { 6947 if (pcie_fw & PCIE_FW_ERR_F) 6948 *state = DEV_STATE_ERR; 6949 else if (pcie_fw & PCIE_FW_INIT_F) 6950 *state = DEV_STATE_INIT; 6951 } 6952 6953 /* 6954 * If we arrived before a Master PF was selected and 6955 * there's not a valid Master PF, grab its identity 6956 * for our caller. 6957 */ 6958 if (master_mbox == PCIE_FW_MASTER_M && 6959 (pcie_fw & PCIE_FW_MASTER_VLD_F)) 6960 master_mbox = PCIE_FW_MASTER_G(pcie_fw); 6961 break; 6962 } 6963 } 6964 6965 return master_mbox; 6966 } 6967 6968 /** 6969 * t4_fw_bye - end communication with FW 6970 * @adap: the adapter 6971 * @mbox: mailbox to use for the FW command 6972 * 6973 * Issues a command to terminate communication with FW. 6974 */ 6975 int t4_fw_bye(struct adapter *adap, unsigned int mbox) 6976 { 6977 struct fw_bye_cmd c; 6978 6979 memset(&c, 0, sizeof(c)); 6980 INIT_CMD(c, BYE, WRITE); 6981 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6982 } 6983 6984 /** 6985 * t4_init_cmd - ask FW to initialize the device 6986 * @adap: the adapter 6987 * @mbox: mailbox to use for the FW command 6988 * 6989 * Issues a command to FW to partially initialize the device. This 6990 * performs initialization that generally doesn't depend on user input. 6991 */ 6992 int t4_early_init(struct adapter *adap, unsigned int mbox) 6993 { 6994 struct fw_initialize_cmd c; 6995 6996 memset(&c, 0, sizeof(c)); 6997 INIT_CMD(c, INITIALIZE, WRITE); 6998 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6999 } 7000 7001 /** 7002 * t4_fw_reset - issue a reset to FW 7003 * @adap: the adapter 7004 * @mbox: mailbox to use for the FW command 7005 * @reset: specifies the type of reset to perform 7006 * 7007 * Issues a reset command of the specified type to FW. 7008 */ 7009 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 7010 { 7011 struct fw_reset_cmd c; 7012 7013 memset(&c, 0, sizeof(c)); 7014 INIT_CMD(c, RESET, WRITE); 7015 c.val = cpu_to_be32(reset); 7016 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7017 } 7018 7019 /** 7020 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 7021 * @adap: the adapter 7022 * @mbox: mailbox to use for the FW RESET command (if desired) 7023 * @force: force uP into RESET even if FW RESET command fails 7024 * 7025 * Issues a RESET command to firmware (if desired) with a HALT indication 7026 * and then puts the microprocessor into RESET state. The RESET command 7027 * will only be issued if a legitimate mailbox is provided (mbox <= 7028 * PCIE_FW_MASTER_M). 7029 * 7030 * This is generally used in order for the host to safely manipulate the 7031 * adapter without fear of conflicting with whatever the firmware might 7032 * be doing. The only way out of this state is to RESTART the firmware 7033 * ... 7034 */ 7035 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 7036 { 7037 int ret = 0; 7038 7039 /* 7040 * If a legitimate mailbox is provided, issue a RESET command 7041 * with a HALT indication. 7042 */ 7043 if (mbox <= PCIE_FW_MASTER_M) { 7044 struct fw_reset_cmd c; 7045 7046 memset(&c, 0, sizeof(c)); 7047 INIT_CMD(c, RESET, WRITE); 7048 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F); 7049 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F); 7050 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7051 } 7052 7053 /* 7054 * Normally we won't complete the operation if the firmware RESET 7055 * command fails but if our caller insists we'll go ahead and put the 7056 * uP into RESET. This can be useful if the firmware is hung or even 7057 * missing ... We'll have to take the risk of putting the uP into 7058 * RESET without the cooperation of firmware in that case. 7059 * 7060 * We also force the firmware's HALT flag to be on in case we bypassed 7061 * the firmware RESET command above or we're dealing with old firmware 7062 * which doesn't have the HALT capability. This will serve as a flag 7063 * for the incoming firmware to know that it's coming out of a HALT 7064 * rather than a RESET ... if it's new enough to understand that ... 7065 */ 7066 if (ret == 0 || force) { 7067 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F); 7068 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 7069 PCIE_FW_HALT_F); 7070 } 7071 7072 /* 7073 * And we always return the result of the firmware RESET command 7074 * even when we force the uP into RESET ... 7075 */ 7076 return ret; 7077 } 7078 7079 /** 7080 * t4_fw_restart - restart the firmware by taking the uP out of RESET 7081 * @adap: the adapter 7082 * @mbox: mailbox to use for the FW command 7083 * @reset: if we want to do a RESET to restart things 7084 * 7085 * Restart firmware previously halted by t4_fw_halt(). On successful 7086 * return the previous PF Master remains as the new PF Master and there 7087 * is no need to issue a new HELLO command, etc. 7088 * 7089 * We do this in two ways: 7090 * 7091 * 1. If we're dealing with newer firmware we'll simply want to take 7092 * the chip's microprocessor out of RESET. This will cause the 7093 * firmware to start up from its start vector. And then we'll loop 7094 * until the firmware indicates it's started again (PCIE_FW.HALT 7095 * reset to 0) or we timeout. 7096 * 7097 * 2. If we're dealing with older firmware then we'll need to RESET 7098 * the chip since older firmware won't recognize the PCIE_FW.HALT 7099 * flag and automatically RESET itself on startup. 7100 */ 7101 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) 7102 { 7103 if (reset) { 7104 /* 7105 * Since we're directing the RESET instead of the firmware 7106 * doing it automatically, we need to clear the PCIE_FW.HALT 7107 * bit. 7108 */ 7109 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0); 7110 7111 /* 7112 * If we've been given a valid mailbox, first try to get the 7113 * firmware to do the RESET. If that works, great and we can 7114 * return success. Otherwise, if we haven't been given a 7115 * valid mailbox or the RESET command failed, fall back to 7116 * hitting the chip with a hammer. 7117 */ 7118 if (mbox <= PCIE_FW_MASTER_M) { 7119 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 7120 msleep(100); 7121 if (t4_fw_reset(adap, mbox, 7122 PIORST_F | PIORSTMODE_F) == 0) 7123 return 0; 7124 } 7125 7126 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F); 7127 msleep(2000); 7128 } else { 7129 int ms; 7130 7131 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 7132 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 7133 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F)) 7134 return 0; 7135 msleep(100); 7136 ms += 100; 7137 } 7138 return -ETIMEDOUT; 7139 } 7140 return 0; 7141 } 7142 7143 /** 7144 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 7145 * @adap: the adapter 7146 * @mbox: mailbox to use for the FW RESET command (if desired) 7147 * @fw_data: the firmware image to write 7148 * @size: image size 7149 * @force: force upgrade even if firmware doesn't cooperate 7150 * 7151 * Perform all of the steps necessary for upgrading an adapter's 7152 * firmware image. Normally this requires the cooperation of the 7153 * existing firmware in order to halt all existing activities 7154 * but if an invalid mailbox token is passed in we skip that step 7155 * (though we'll still put the adapter microprocessor into RESET in 7156 * that case). 7157 * 7158 * On successful return the new firmware will have been loaded and 7159 * the adapter will have been fully RESET losing all previous setup 7160 * state. On unsuccessful return the adapter may be completely hosed ... 7161 * positive errno indicates that the adapter is ~probably~ intact, a 7162 * negative errno indicates that things are looking bad ... 7163 */ 7164 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 7165 const u8 *fw_data, unsigned int size, int force) 7166 { 7167 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 7168 int reset, ret; 7169 7170 if (!t4_fw_matches_chip(adap, fw_hdr)) 7171 return -EINVAL; 7172 7173 /* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag 7174 * set wont be sent when we are flashing FW. 7175 */ 7176 adap->flags &= ~CXGB4_FW_OK; 7177 7178 ret = t4_fw_halt(adap, mbox, force); 7179 if (ret < 0 && !force) 7180 goto out; 7181 7182 ret = t4_load_fw(adap, fw_data, size); 7183 if (ret < 0) 7184 goto out; 7185 7186 /* 7187 * If there was a Firmware Configuration File stored in FLASH, 7188 * there's a good chance that it won't be compatible with the new 7189 * Firmware. In order to prevent difficult to diagnose adapter 7190 * initialization issues, we clear out the Firmware Configuration File 7191 * portion of the FLASH . The user will need to re-FLASH a new 7192 * Firmware Configuration File which is compatible with the new 7193 * Firmware if that's desired. 7194 */ 7195 (void)t4_load_cfg(adap, NULL, 0); 7196 7197 /* 7198 * Older versions of the firmware don't understand the new 7199 * PCIE_FW.HALT flag and so won't know to perform a RESET when they 7200 * restart. So for newly loaded older firmware we'll have to do the 7201 * RESET for it so it starts up on a clean slate. We can tell if 7202 * the newly loaded firmware will handle this right by checking 7203 * its header flags to see if it advertises the capability. 7204 */ 7205 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); 7206 ret = t4_fw_restart(adap, mbox, reset); 7207 7208 /* Grab potentially new Firmware Device Log parameters so we can see 7209 * how healthy the new Firmware is. It's okay to contact the new 7210 * Firmware for these parameters even though, as far as it's 7211 * concerned, we've never said "HELLO" to it ... 7212 */ 7213 (void)t4_init_devlog_params(adap); 7214 out: 7215 adap->flags |= CXGB4_FW_OK; 7216 return ret; 7217 } 7218 7219 /** 7220 * t4_fl_pkt_align - return the fl packet alignment 7221 * @adap: the adapter 7222 * 7223 * T4 has a single field to specify the packing and padding boundary. 7224 * T5 onwards has separate fields for this and hence the alignment for 7225 * next packet offset is maximum of these two. 7226 * 7227 */ 7228 int t4_fl_pkt_align(struct adapter *adap) 7229 { 7230 u32 sge_control, sge_control2; 7231 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift; 7232 7233 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 7234 7235 /* T4 uses a single control field to specify both the PCIe Padding and 7236 * Packing Boundary. T5 introduced the ability to specify these 7237 * separately. The actual Ingress Packet Data alignment boundary 7238 * within Packed Buffer Mode is the maximum of these two 7239 * specifications. (Note that it makes no real practical sense to 7240 * have the Padding Boundary be larger than the Packing Boundary but you 7241 * could set the chip up that way and, in fact, legacy T4 code would 7242 * end doing this because it would initialize the Padding Boundary and 7243 * leave the Packing Boundary initialized to 0 (16 bytes).) 7244 * Padding Boundary values in T6 starts from 8B, 7245 * where as it is 32B for T4 and T5. 7246 */ 7247 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 7248 ingpad_shift = INGPADBOUNDARY_SHIFT_X; 7249 else 7250 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X; 7251 7252 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift); 7253 7254 fl_align = ingpadboundary; 7255 if (!is_t4(adap->params.chip)) { 7256 /* T5 has a weird interpretation of one of the PCIe Packing 7257 * Boundary values. No idea why ... 7258 */ 7259 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A); 7260 ingpackboundary = INGPACKBOUNDARY_G(sge_control2); 7261 if (ingpackboundary == INGPACKBOUNDARY_16B_X) 7262 ingpackboundary = 16; 7263 else 7264 ingpackboundary = 1 << (ingpackboundary + 7265 INGPACKBOUNDARY_SHIFT_X); 7266 7267 fl_align = max(ingpadboundary, ingpackboundary); 7268 } 7269 return fl_align; 7270 } 7271 7272 /** 7273 * t4_fixup_host_params - fix up host-dependent parameters 7274 * @adap: the adapter 7275 * @page_size: the host's Base Page Size 7276 * @cache_line_size: the host's Cache Line Size 7277 * 7278 * Various registers in T4 contain values which are dependent on the 7279 * host's Base Page and Cache Line Sizes. This function will fix all of 7280 * those registers with the appropriate values as passed in ... 7281 */ 7282 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size, 7283 unsigned int cache_line_size) 7284 { 7285 unsigned int page_shift = fls(page_size) - 1; 7286 unsigned int sge_hps = page_shift - 10; 7287 unsigned int stat_len = cache_line_size > 64 ? 128 : 64; 7288 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size; 7289 unsigned int fl_align_log = fls(fl_align) - 1; 7290 7291 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A, 7292 HOSTPAGESIZEPF0_V(sge_hps) | 7293 HOSTPAGESIZEPF1_V(sge_hps) | 7294 HOSTPAGESIZEPF2_V(sge_hps) | 7295 HOSTPAGESIZEPF3_V(sge_hps) | 7296 HOSTPAGESIZEPF4_V(sge_hps) | 7297 HOSTPAGESIZEPF5_V(sge_hps) | 7298 HOSTPAGESIZEPF6_V(sge_hps) | 7299 HOSTPAGESIZEPF7_V(sge_hps)); 7300 7301 if (is_t4(adap->params.chip)) { 7302 t4_set_reg_field(adap, SGE_CONTROL_A, 7303 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7304 EGRSTATUSPAGESIZE_F, 7305 INGPADBOUNDARY_V(fl_align_log - 7306 INGPADBOUNDARY_SHIFT_X) | 7307 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7308 } else { 7309 unsigned int pack_align; 7310 unsigned int ingpad, ingpack; 7311 7312 /* T5 introduced the separation of the Free List Padding and 7313 * Packing Boundaries. Thus, we can select a smaller Padding 7314 * Boundary to avoid uselessly chewing up PCIe Link and Memory 7315 * Bandwidth, and use a Packing Boundary which is large enough 7316 * to avoid false sharing between CPUs, etc. 7317 * 7318 * For the PCI Link, the smaller the Padding Boundary the 7319 * better. For the Memory Controller, a smaller Padding 7320 * Boundary is better until we cross under the Memory Line 7321 * Size (the minimum unit of transfer to/from Memory). If we 7322 * have a Padding Boundary which is smaller than the Memory 7323 * Line Size, that'll involve a Read-Modify-Write cycle on the 7324 * Memory Controller which is never good. 7325 */ 7326 7327 /* We want the Packing Boundary to be based on the Cache Line 7328 * Size in order to help avoid False Sharing performance 7329 * issues between CPUs, etc. We also want the Packing 7330 * Boundary to incorporate the PCI-E Maximum Payload Size. We 7331 * get best performance when the Packing Boundary is a 7332 * multiple of the Maximum Payload Size. 7333 */ 7334 pack_align = fl_align; 7335 if (pci_is_pcie(adap->pdev)) { 7336 unsigned int mps, mps_log; 7337 u16 devctl; 7338 7339 /* The PCIe Device Control Maximum Payload Size field 7340 * [bits 7:5] encodes sizes as powers of 2 starting at 7341 * 128 bytes. 7342 */ 7343 pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL, 7344 &devctl); 7345 mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7; 7346 mps = 1 << mps_log; 7347 if (mps > pack_align) 7348 pack_align = mps; 7349 } 7350 7351 /* N.B. T5/T6 have a crazy special interpretation of the "0" 7352 * value for the Packing Boundary. This corresponds to 16 7353 * bytes instead of the expected 32 bytes. So if we want 32 7354 * bytes, the best we can really do is 64 bytes ... 7355 */ 7356 if (pack_align <= 16) { 7357 ingpack = INGPACKBOUNDARY_16B_X; 7358 fl_align = 16; 7359 } else if (pack_align == 32) { 7360 ingpack = INGPACKBOUNDARY_64B_X; 7361 fl_align = 64; 7362 } else { 7363 unsigned int pack_align_log = fls(pack_align) - 1; 7364 7365 ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X; 7366 fl_align = pack_align; 7367 } 7368 7369 /* Use the smallest Ingress Padding which isn't smaller than 7370 * the Memory Controller Read/Write Size. We'll take that as 7371 * being 8 bytes since we don't know of any system with a 7372 * wider Memory Controller Bus Width. 7373 */ 7374 if (is_t5(adap->params.chip)) 7375 ingpad = INGPADBOUNDARY_32B_X; 7376 else 7377 ingpad = T6_INGPADBOUNDARY_8B_X; 7378 7379 t4_set_reg_field(adap, SGE_CONTROL_A, 7380 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7381 EGRSTATUSPAGESIZE_F, 7382 INGPADBOUNDARY_V(ingpad) | 7383 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7384 t4_set_reg_field(adap, SGE_CONTROL2_A, 7385 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M), 7386 INGPACKBOUNDARY_V(ingpack)); 7387 } 7388 /* 7389 * Adjust various SGE Free List Host Buffer Sizes. 7390 * 7391 * This is something of a crock since we're using fixed indices into 7392 * the array which are also known by the sge.c code and the T4 7393 * Firmware Configuration File. We need to come up with a much better 7394 * approach to managing this array. For now, the first four entries 7395 * are: 7396 * 7397 * 0: Host Page Size 7398 * 1: 64KB 7399 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode) 7400 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode) 7401 * 7402 * For the single-MTU buffers in unpacked mode we need to include 7403 * space for the SGE Control Packet Shift, 14 byte Ethernet header, 7404 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet 7405 * Padding boundary. All of these are accommodated in the Factory 7406 * Default Firmware Configuration File but we need to adjust it for 7407 * this host's cache line size. 7408 */ 7409 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size); 7410 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A, 7411 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1) 7412 & ~(fl_align-1)); 7413 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A, 7414 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1) 7415 & ~(fl_align-1)); 7416 7417 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12)); 7418 7419 return 0; 7420 } 7421 7422 /** 7423 * t4_fw_initialize - ask FW to initialize the device 7424 * @adap: the adapter 7425 * @mbox: mailbox to use for the FW command 7426 * 7427 * Issues a command to FW to partially initialize the device. This 7428 * performs initialization that generally doesn't depend on user input. 7429 */ 7430 int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 7431 { 7432 struct fw_initialize_cmd c; 7433 7434 memset(&c, 0, sizeof(c)); 7435 INIT_CMD(c, INITIALIZE, WRITE); 7436 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7437 } 7438 7439 /** 7440 * t4_query_params_rw - query FW or device parameters 7441 * @adap: the adapter 7442 * @mbox: mailbox to use for the FW command 7443 * @pf: the PF 7444 * @vf: the VF 7445 * @nparams: the number of parameters 7446 * @params: the parameter names 7447 * @val: the parameter values 7448 * @rw: Write and read flag 7449 * @sleep_ok: if true, we may sleep awaiting mbox cmd completion 7450 * 7451 * Reads the value of FW or device parameters. Up to 7 parameters can be 7452 * queried at once. 7453 */ 7454 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, 7455 unsigned int vf, unsigned int nparams, const u32 *params, 7456 u32 *val, int rw, bool sleep_ok) 7457 { 7458 int i, ret; 7459 struct fw_params_cmd c; 7460 __be32 *p = &c.param[0].mnem; 7461 7462 if (nparams > 7) 7463 return -EINVAL; 7464 7465 memset(&c, 0, sizeof(c)); 7466 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7467 FW_CMD_REQUEST_F | FW_CMD_READ_F | 7468 FW_PARAMS_CMD_PFN_V(pf) | 7469 FW_PARAMS_CMD_VFN_V(vf)); 7470 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7471 7472 for (i = 0; i < nparams; i++) { 7473 *p++ = cpu_to_be32(*params++); 7474 if (rw) 7475 *p = cpu_to_be32(*(val + i)); 7476 p++; 7477 } 7478 7479 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7480 if (ret == 0) 7481 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 7482 *val++ = be32_to_cpu(*p); 7483 return ret; 7484 } 7485 7486 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7487 unsigned int vf, unsigned int nparams, const u32 *params, 7488 u32 *val) 7489 { 7490 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7491 true); 7492 } 7493 7494 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf, 7495 unsigned int vf, unsigned int nparams, const u32 *params, 7496 u32 *val) 7497 { 7498 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7499 false); 7500 } 7501 7502 /** 7503 * t4_set_params_timeout - sets FW or device parameters 7504 * @adap: the adapter 7505 * @mbox: mailbox to use for the FW command 7506 * @pf: the PF 7507 * @vf: the VF 7508 * @nparams: the number of parameters 7509 * @params: the parameter names 7510 * @val: the parameter values 7511 * @timeout: the timeout time 7512 * 7513 * Sets the value of FW or device parameters. Up to 7 parameters can be 7514 * specified at once. 7515 */ 7516 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, 7517 unsigned int pf, unsigned int vf, 7518 unsigned int nparams, const u32 *params, 7519 const u32 *val, int timeout) 7520 { 7521 struct fw_params_cmd c; 7522 __be32 *p = &c.param[0].mnem; 7523 7524 if (nparams > 7) 7525 return -EINVAL; 7526 7527 memset(&c, 0, sizeof(c)); 7528 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7529 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7530 FW_PARAMS_CMD_PFN_V(pf) | 7531 FW_PARAMS_CMD_VFN_V(vf)); 7532 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7533 7534 while (nparams--) { 7535 *p++ = cpu_to_be32(*params++); 7536 *p++ = cpu_to_be32(*val++); 7537 } 7538 7539 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); 7540 } 7541 7542 /** 7543 * t4_set_params - sets FW or device parameters 7544 * @adap: the adapter 7545 * @mbox: mailbox to use for the FW command 7546 * @pf: the PF 7547 * @vf: the VF 7548 * @nparams: the number of parameters 7549 * @params: the parameter names 7550 * @val: the parameter values 7551 * 7552 * Sets the value of FW or device parameters. Up to 7 parameters can be 7553 * specified at once. 7554 */ 7555 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7556 unsigned int vf, unsigned int nparams, const u32 *params, 7557 const u32 *val) 7558 { 7559 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, 7560 FW_CMD_MAX_TIMEOUT); 7561 } 7562 7563 /** 7564 * t4_cfg_pfvf - configure PF/VF resource limits 7565 * @adap: the adapter 7566 * @mbox: mailbox to use for the FW command 7567 * @pf: the PF being configured 7568 * @vf: the VF being configured 7569 * @txq: the max number of egress queues 7570 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 7571 * @rxqi: the max number of interrupt-capable ingress queues 7572 * @rxq: the max number of interruptless ingress queues 7573 * @tc: the PCI traffic class 7574 * @vi: the max number of virtual interfaces 7575 * @cmask: the channel access rights mask for the PF/VF 7576 * @pmask: the port access rights mask for the PF/VF 7577 * @nexact: the maximum number of exact MPS filters 7578 * @rcaps: read capabilities 7579 * @wxcaps: write/execute capabilities 7580 * 7581 * Configures resource limits and capabilities for a physical or virtual 7582 * function. 7583 */ 7584 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 7585 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 7586 unsigned int rxqi, unsigned int rxq, unsigned int tc, 7587 unsigned int vi, unsigned int cmask, unsigned int pmask, 7588 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 7589 { 7590 struct fw_pfvf_cmd c; 7591 7592 memset(&c, 0, sizeof(c)); 7593 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F | 7594 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) | 7595 FW_PFVF_CMD_VFN_V(vf)); 7596 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7597 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) | 7598 FW_PFVF_CMD_NIQ_V(rxq)); 7599 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) | 7600 FW_PFVF_CMD_PMASK_V(pmask) | 7601 FW_PFVF_CMD_NEQ_V(txq)); 7602 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) | 7603 FW_PFVF_CMD_NVI_V(vi) | 7604 FW_PFVF_CMD_NEXACTF_V(nexact)); 7605 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) | 7606 FW_PFVF_CMD_WX_CAPS_V(wxcaps) | 7607 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl)); 7608 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7609 } 7610 7611 /** 7612 * t4_alloc_vi - allocate a virtual interface 7613 * @adap: the adapter 7614 * @mbox: mailbox to use for the FW command 7615 * @port: physical port associated with the VI 7616 * @pf: the PF owning the VI 7617 * @vf: the VF owning the VI 7618 * @nmac: number of MAC addresses needed (1 to 5) 7619 * @mac: the MAC addresses of the VI 7620 * @rss_size: size of RSS table slice associated with this VI 7621 * @vivld: the destination to store the VI Valid value. 7622 * @vin: the destination to store the VIN value. 7623 * 7624 * Allocates a virtual interface for the given physical port. If @mac is 7625 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 7626 * @mac should be large enough to hold @nmac Ethernet addresses, they are 7627 * stored consecutively so the space needed is @nmac * 6 bytes. 7628 * Returns a negative error number or the non-negative VI id. 7629 */ 7630 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 7631 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 7632 unsigned int *rss_size, u8 *vivld, u8 *vin) 7633 { 7634 int ret; 7635 struct fw_vi_cmd c; 7636 7637 memset(&c, 0, sizeof(c)); 7638 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | 7639 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 7640 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf)); 7641 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c)); 7642 c.portid_pkd = FW_VI_CMD_PORTID_V(port); 7643 c.nmac = nmac - 1; 7644 7645 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7646 if (ret) 7647 return ret; 7648 7649 if (mac) { 7650 memcpy(mac, c.mac, sizeof(c.mac)); 7651 switch (nmac) { 7652 case 5: 7653 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 7654 fallthrough; 7655 case 4: 7656 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 7657 fallthrough; 7658 case 3: 7659 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 7660 fallthrough; 7661 case 2: 7662 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 7663 } 7664 } 7665 if (rss_size) 7666 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd)); 7667 7668 if (vivld) 7669 *vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16)); 7670 7671 if (vin) 7672 *vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16)); 7673 7674 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid)); 7675 } 7676 7677 /** 7678 * t4_free_vi - free a virtual interface 7679 * @adap: the adapter 7680 * @mbox: mailbox to use for the FW command 7681 * @pf: the PF owning the VI 7682 * @vf: the VF owning the VI 7683 * @viid: virtual interface identifiler 7684 * 7685 * Free a previously allocated virtual interface. 7686 */ 7687 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, 7688 unsigned int vf, unsigned int viid) 7689 { 7690 struct fw_vi_cmd c; 7691 7692 memset(&c, 0, sizeof(c)); 7693 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 7694 FW_CMD_REQUEST_F | 7695 FW_CMD_EXEC_F | 7696 FW_VI_CMD_PFN_V(pf) | 7697 FW_VI_CMD_VFN_V(vf)); 7698 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c)); 7699 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid)); 7700 7701 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7702 } 7703 7704 /** 7705 * t4_set_rxmode - set Rx properties of a virtual interface 7706 * @adap: the adapter 7707 * @mbox: mailbox to use for the FW command 7708 * @viid: the VI id 7709 * @viid_mirror: the mirror VI id 7710 * @mtu: the new MTU or -1 7711 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 7712 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 7713 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 7714 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 7715 * @sleep_ok: if true we may sleep while awaiting command completion 7716 * 7717 * Sets Rx properties of a virtual interface. 7718 */ 7719 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 7720 unsigned int viid_mirror, int mtu, int promisc, int all_multi, 7721 int bcast, int vlanex, bool sleep_ok) 7722 { 7723 struct fw_vi_rxmode_cmd c, c_mirror; 7724 int ret; 7725 7726 /* convert to FW values */ 7727 if (mtu < 0) 7728 mtu = FW_RXMODE_MTU_NO_CHG; 7729 if (promisc < 0) 7730 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; 7731 if (all_multi < 0) 7732 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; 7733 if (bcast < 0) 7734 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; 7735 if (vlanex < 0) 7736 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; 7737 7738 memset(&c, 0, sizeof(c)); 7739 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 7740 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7741 FW_VI_RXMODE_CMD_VIID_V(viid)); 7742 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7743 c.mtu_to_vlanexen = 7744 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) | 7745 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | 7746 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | 7747 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | 7748 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); 7749 7750 if (viid_mirror) { 7751 memcpy(&c_mirror, &c, sizeof(c_mirror)); 7752 c_mirror.op_to_viid = 7753 cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 7754 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7755 FW_VI_RXMODE_CMD_VIID_V(viid_mirror)); 7756 } 7757 7758 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 7759 if (ret) 7760 return ret; 7761 7762 if (viid_mirror) 7763 ret = t4_wr_mbox_meat(adap, mbox, &c_mirror, sizeof(c_mirror), 7764 NULL, sleep_ok); 7765 7766 return ret; 7767 } 7768 7769 /** 7770 * t4_free_encap_mac_filt - frees MPS entry at given index 7771 * @adap: the adapter 7772 * @viid: the VI id 7773 * @idx: index of MPS entry to be freed 7774 * @sleep_ok: call is allowed to sleep 7775 * 7776 * Frees the MPS entry at supplied index 7777 * 7778 * Returns a negative error number or zero on success 7779 */ 7780 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid, 7781 int idx, bool sleep_ok) 7782 { 7783 struct fw_vi_mac_exact *p; 7784 u8 addr[] = {0, 0, 0, 0, 0, 0}; 7785 struct fw_vi_mac_cmd c; 7786 int ret = 0; 7787 u32 exact; 7788 7789 memset(&c, 0, sizeof(c)); 7790 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7791 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7792 FW_CMD_EXEC_V(0) | 7793 FW_VI_MAC_CMD_VIID_V(viid)); 7794 exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC); 7795 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7796 exact | 7797 FW_CMD_LEN16_V(1)); 7798 p = c.u.exact; 7799 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7800 FW_VI_MAC_CMD_IDX_V(idx)); 7801 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7802 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7803 return ret; 7804 } 7805 7806 /** 7807 * t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam 7808 * @adap: the adapter 7809 * @viid: the VI id 7810 * @addr: the MAC address 7811 * @mask: the mask 7812 * @idx: index of the entry in mps tcam 7813 * @lookup_type: MAC address for inner (1) or outer (0) header 7814 * @port_id: the port index 7815 * @sleep_ok: call is allowed to sleep 7816 * 7817 * Removes the mac entry at the specified index using raw mac interface. 7818 * 7819 * Returns a negative error number on failure. 7820 */ 7821 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid, 7822 const u8 *addr, const u8 *mask, unsigned int idx, 7823 u8 lookup_type, u8 port_id, bool sleep_ok) 7824 { 7825 struct fw_vi_mac_cmd c; 7826 struct fw_vi_mac_raw *p = &c.u.raw; 7827 u32 val; 7828 7829 memset(&c, 0, sizeof(c)); 7830 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7831 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7832 FW_CMD_EXEC_V(0) | 7833 FW_VI_MAC_CMD_VIID_V(viid)); 7834 val = FW_CMD_LEN16_V(1) | 7835 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7836 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7837 FW_CMD_LEN16_V(val)); 7838 7839 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) | 7840 FW_VI_MAC_ID_BASED_FREE); 7841 7842 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7843 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7844 DATAPORTNUM_V(port_id)); 7845 /* Lookup mask and port mask */ 7846 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7847 DATAPORTNUM_V(DATAPORTNUM_M)); 7848 7849 /* Copy the address and the mask */ 7850 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7851 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7852 7853 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7854 } 7855 7856 /** 7857 * t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support 7858 * @adap: the adapter 7859 * @viid: the VI id 7860 * @addr: the MAC address 7861 * @mask: the mask 7862 * @vni: the VNI id for the tunnel protocol 7863 * @vni_mask: mask for the VNI id 7864 * @dip_hit: to enable DIP match for the MPS entry 7865 * @lookup_type: MAC address for inner (1) or outer (0) header 7866 * @sleep_ok: call is allowed to sleep 7867 * 7868 * Allocates an MPS entry with specified MAC address and VNI value. 7869 * 7870 * Returns a negative error number or the allocated index for this mac. 7871 */ 7872 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid, 7873 const u8 *addr, const u8 *mask, unsigned int vni, 7874 unsigned int vni_mask, u8 dip_hit, u8 lookup_type, 7875 bool sleep_ok) 7876 { 7877 struct fw_vi_mac_cmd c; 7878 struct fw_vi_mac_vni *p = c.u.exact_vni; 7879 int ret = 0; 7880 u32 val; 7881 7882 memset(&c, 0, sizeof(c)); 7883 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7884 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7885 FW_VI_MAC_CMD_VIID_V(viid)); 7886 val = FW_CMD_LEN16_V(1) | 7887 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI); 7888 c.freemacs_to_len16 = cpu_to_be32(val); 7889 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7890 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC)); 7891 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7892 memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask)); 7893 7894 p->lookup_type_to_vni = 7895 cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) | 7896 FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) | 7897 FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type)); 7898 p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask)); 7899 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7900 if (ret == 0) 7901 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 7902 return ret; 7903 } 7904 7905 /** 7906 * t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam 7907 * @adap: the adapter 7908 * @viid: the VI id 7909 * @addr: the MAC address 7910 * @mask: the mask 7911 * @idx: index at which to add this entry 7912 * @lookup_type: MAC address for inner (1) or outer (0) header 7913 * @port_id: the port index 7914 * @sleep_ok: call is allowed to sleep 7915 * 7916 * Adds the mac entry at the specified index using raw mac interface. 7917 * 7918 * Returns a negative error number or the allocated index for this mac. 7919 */ 7920 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid, 7921 const u8 *addr, const u8 *mask, unsigned int idx, 7922 u8 lookup_type, u8 port_id, bool sleep_ok) 7923 { 7924 int ret = 0; 7925 struct fw_vi_mac_cmd c; 7926 struct fw_vi_mac_raw *p = &c.u.raw; 7927 u32 val; 7928 7929 memset(&c, 0, sizeof(c)); 7930 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7931 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7932 FW_VI_MAC_CMD_VIID_V(viid)); 7933 val = FW_CMD_LEN16_V(1) | 7934 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7935 c.freemacs_to_len16 = cpu_to_be32(val); 7936 7937 /* Specify that this is an inner mac address */ 7938 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx)); 7939 7940 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7941 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7942 DATAPORTNUM_V(port_id)); 7943 /* Lookup mask and port mask */ 7944 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7945 DATAPORTNUM_V(DATAPORTNUM_M)); 7946 7947 /* Copy the address and the mask */ 7948 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7949 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7950 7951 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7952 if (ret == 0) { 7953 ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd)); 7954 if (ret != idx) 7955 ret = -ENOMEM; 7956 } 7957 7958 return ret; 7959 } 7960 7961 /** 7962 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 7963 * @adap: the adapter 7964 * @mbox: mailbox to use for the FW command 7965 * @viid: the VI id 7966 * @free: if true any existing filters for this VI id are first removed 7967 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7968 * @addr: the MAC address(es) 7969 * @idx: where to store the index of each allocated filter 7970 * @hash: pointer to hash address filter bitmap 7971 * @sleep_ok: call is allowed to sleep 7972 * 7973 * Allocates an exact-match filter for each of the supplied addresses and 7974 * sets it to the corresponding address. If @idx is not %NULL it should 7975 * have at least @naddr entries, each of which will be set to the index of 7976 * the filter allocated for the corresponding MAC address. If a filter 7977 * could not be allocated for an address its index is set to 0xffff. 7978 * If @hash is not %NULL addresses that fail to allocate an exact filter 7979 * are hashed and update the hash filter bitmap pointed at by @hash. 7980 * 7981 * Returns a negative error number or the number of filters allocated. 7982 */ 7983 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 7984 unsigned int viid, bool free, unsigned int naddr, 7985 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 7986 { 7987 int offset, ret = 0; 7988 struct fw_vi_mac_cmd c; 7989 unsigned int nfilters = 0; 7990 unsigned int max_naddr = adap->params.arch.mps_tcam_size; 7991 unsigned int rem = naddr; 7992 7993 if (naddr > max_naddr) 7994 return -EINVAL; 7995 7996 for (offset = 0; offset < naddr ; /**/) { 7997 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ? 7998 rem : ARRAY_SIZE(c.u.exact)); 7999 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 8000 u.exact[fw_naddr]), 16); 8001 struct fw_vi_mac_exact *p; 8002 int i; 8003 8004 memset(&c, 0, sizeof(c)); 8005 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8006 FW_CMD_REQUEST_F | 8007 FW_CMD_WRITE_F | 8008 FW_CMD_EXEC_V(free) | 8009 FW_VI_MAC_CMD_VIID_V(viid)); 8010 c.freemacs_to_len16 = 8011 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) | 8012 FW_CMD_LEN16_V(len16)); 8013 8014 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8015 p->valid_to_idx = 8016 cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 8017 FW_VI_MAC_CMD_IDX_V( 8018 FW_VI_MAC_ADD_MAC)); 8019 memcpy(p->macaddr, addr[offset + i], 8020 sizeof(p->macaddr)); 8021 } 8022 8023 /* It's okay if we run out of space in our MAC address arena. 8024 * Some of the addresses we submit may get stored so we need 8025 * to run through the reply to see what the results were ... 8026 */ 8027 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 8028 if (ret && ret != -FW_ENOMEM) 8029 break; 8030 8031 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8032 u16 index = FW_VI_MAC_CMD_IDX_G( 8033 be16_to_cpu(p->valid_to_idx)); 8034 8035 if (idx) 8036 idx[offset + i] = (index >= max_naddr ? 8037 0xffff : index); 8038 if (index < max_naddr) 8039 nfilters++; 8040 else if (hash) 8041 *hash |= (1ULL << 8042 hash_mac_addr(addr[offset + i])); 8043 } 8044 8045 free = false; 8046 offset += fw_naddr; 8047 rem -= fw_naddr; 8048 } 8049 8050 if (ret == 0 || ret == -FW_ENOMEM) 8051 ret = nfilters; 8052 return ret; 8053 } 8054 8055 /** 8056 * t4_free_mac_filt - frees exact-match filters of given MAC addresses 8057 * @adap: the adapter 8058 * @mbox: mailbox to use for the FW command 8059 * @viid: the VI id 8060 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 8061 * @addr: the MAC address(es) 8062 * @sleep_ok: call is allowed to sleep 8063 * 8064 * Frees the exact-match filter for each of the supplied addresses 8065 * 8066 * Returns a negative error number or the number of filters freed. 8067 */ 8068 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox, 8069 unsigned int viid, unsigned int naddr, 8070 const u8 **addr, bool sleep_ok) 8071 { 8072 int offset, ret = 0; 8073 struct fw_vi_mac_cmd c; 8074 unsigned int nfilters = 0; 8075 unsigned int max_naddr = is_t4(adap->params.chip) ? 8076 NUM_MPS_CLS_SRAM_L_INSTANCES : 8077 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 8078 unsigned int rem = naddr; 8079 8080 if (naddr > max_naddr) 8081 return -EINVAL; 8082 8083 for (offset = 0; offset < (int)naddr ; /**/) { 8084 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) 8085 ? rem 8086 : ARRAY_SIZE(c.u.exact)); 8087 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 8088 u.exact[fw_naddr]), 16); 8089 struct fw_vi_mac_exact *p; 8090 int i; 8091 8092 memset(&c, 0, sizeof(c)); 8093 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8094 FW_CMD_REQUEST_F | 8095 FW_CMD_WRITE_F | 8096 FW_CMD_EXEC_V(0) | 8097 FW_VI_MAC_CMD_VIID_V(viid)); 8098 c.freemacs_to_len16 = 8099 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 8100 FW_CMD_LEN16_V(len16)); 8101 8102 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) { 8103 p->valid_to_idx = cpu_to_be16( 8104 FW_VI_MAC_CMD_VALID_F | 8105 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE)); 8106 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 8107 } 8108 8109 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 8110 if (ret) 8111 break; 8112 8113 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8114 u16 index = FW_VI_MAC_CMD_IDX_G( 8115 be16_to_cpu(p->valid_to_idx)); 8116 8117 if (index < max_naddr) 8118 nfilters++; 8119 } 8120 8121 offset += fw_naddr; 8122 rem -= fw_naddr; 8123 } 8124 8125 if (ret == 0) 8126 ret = nfilters; 8127 return ret; 8128 } 8129 8130 /** 8131 * t4_change_mac - modifies the exact-match filter for a MAC address 8132 * @adap: the adapter 8133 * @mbox: mailbox to use for the FW command 8134 * @viid: the VI id 8135 * @idx: index of existing filter for old value of MAC address, or -1 8136 * @addr: the new MAC address value 8137 * @persist: whether a new MAC allocation should be persistent 8138 * @smt_idx: the destination to store the new SMT index. 8139 * 8140 * Modifies an exact-match filter and sets it to the new MAC address. 8141 * Note that in general it is not possible to modify the value of a given 8142 * filter so the generic way to modify an address filter is to free the one 8143 * being used by the old address value and allocate a new filter for the 8144 * new address value. @idx can be -1 if the address is a new addition. 8145 * 8146 * Returns a negative error number or the index of the filter with the new 8147 * MAC value. 8148 */ 8149 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 8150 int idx, const u8 *addr, bool persist, u8 *smt_idx) 8151 { 8152 int ret, mode; 8153 struct fw_vi_mac_cmd c; 8154 struct fw_vi_mac_exact *p = c.u.exact; 8155 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size; 8156 8157 if (idx < 0) /* new allocation */ 8158 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 8159 mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 8160 8161 memset(&c, 0, sizeof(c)); 8162 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8163 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 8164 FW_VI_MAC_CMD_VIID_V(viid)); 8165 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1)); 8166 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 8167 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) | 8168 FW_VI_MAC_CMD_IDX_V(idx)); 8169 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 8170 8171 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 8172 if (ret == 0) { 8173 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 8174 if (ret >= max_mac_addr) 8175 ret = -ENOMEM; 8176 if (smt_idx) { 8177 if (adap->params.viid_smt_extn_support) { 8178 *smt_idx = FW_VI_MAC_CMD_SMTID_G 8179 (be32_to_cpu(c.op_to_viid)); 8180 } else { 8181 /* In T4/T5, SMT contains 256 SMAC entries 8182 * organized in 128 rows of 2 entries each. 8183 * In T6, SMT contains 256 SMAC entries in 8184 * 256 rows. 8185 */ 8186 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= 8187 CHELSIO_T5) 8188 *smt_idx = (viid & FW_VIID_VIN_M) << 1; 8189 else 8190 *smt_idx = (viid & FW_VIID_VIN_M); 8191 } 8192 } 8193 } 8194 return ret; 8195 } 8196 8197 /** 8198 * t4_set_addr_hash - program the MAC inexact-match hash filter 8199 * @adap: the adapter 8200 * @mbox: mailbox to use for the FW command 8201 * @viid: the VI id 8202 * @ucast: whether the hash filter should also match unicast addresses 8203 * @vec: the value to be written to the hash filter 8204 * @sleep_ok: call is allowed to sleep 8205 * 8206 * Sets the 64-bit inexact-match hash filter for a virtual interface. 8207 */ 8208 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 8209 bool ucast, u64 vec, bool sleep_ok) 8210 { 8211 struct fw_vi_mac_cmd c; 8212 8213 memset(&c, 0, sizeof(c)); 8214 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8215 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 8216 FW_VI_ENABLE_CMD_VIID_V(viid)); 8217 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F | 8218 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | 8219 FW_CMD_LEN16_V(1)); 8220 c.u.hash.hashvec = cpu_to_be64(vec); 8221 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 8222 } 8223 8224 /** 8225 * t4_enable_vi_params - enable/disable a virtual interface 8226 * @adap: the adapter 8227 * @mbox: mailbox to use for the FW command 8228 * @viid: the VI id 8229 * @rx_en: 1=enable Rx, 0=disable Rx 8230 * @tx_en: 1=enable Tx, 0=disable Tx 8231 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8232 * 8233 * Enables/disables a virtual interface. Note that setting DCB Enable 8234 * only makes sense when enabling a Virtual Interface ... 8235 */ 8236 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, 8237 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) 8238 { 8239 struct fw_vi_enable_cmd c; 8240 8241 memset(&c, 0, sizeof(c)); 8242 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 8243 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8244 FW_VI_ENABLE_CMD_VIID_V(viid)); 8245 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) | 8246 FW_VI_ENABLE_CMD_EEN_V(tx_en) | 8247 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) | 8248 FW_LEN16(c)); 8249 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 8250 } 8251 8252 /** 8253 * t4_enable_vi - enable/disable a virtual interface 8254 * @adap: the adapter 8255 * @mbox: mailbox to use for the FW command 8256 * @viid: the VI id 8257 * @rx_en: 1=enable Rx, 0=disable Rx 8258 * @tx_en: 1=enable Tx, 0=disable Tx 8259 * 8260 * Enables/disables a virtual interface. 8261 */ 8262 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 8263 bool rx_en, bool tx_en) 8264 { 8265 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); 8266 } 8267 8268 /** 8269 * t4_enable_pi_params - enable/disable a Port's Virtual Interface 8270 * @adap: the adapter 8271 * @mbox: mailbox to use for the FW command 8272 * @pi: the Port Information structure 8273 * @rx_en: 1=enable Rx, 0=disable Rx 8274 * @tx_en: 1=enable Tx, 0=disable Tx 8275 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8276 * 8277 * Enables/disables a Port's Virtual Interface. Note that setting DCB 8278 * Enable only makes sense when enabling a Virtual Interface ... 8279 * If the Virtual Interface enable/disable operation is successful, 8280 * we notify the OS-specific code of a potential Link Status change 8281 * via the OS Contract API t4_os_link_changed(). 8282 */ 8283 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox, 8284 struct port_info *pi, 8285 bool rx_en, bool tx_en, bool dcb_en) 8286 { 8287 int ret = t4_enable_vi_params(adap, mbox, pi->viid, 8288 rx_en, tx_en, dcb_en); 8289 if (ret) 8290 return ret; 8291 t4_os_link_changed(adap, pi->port_id, 8292 rx_en && tx_en && pi->link_cfg.link_ok); 8293 return 0; 8294 } 8295 8296 /** 8297 * t4_identify_port - identify a VI's port by blinking its LED 8298 * @adap: the adapter 8299 * @mbox: mailbox to use for the FW command 8300 * @viid: the VI id 8301 * @nblinks: how many times to blink LED at 2.5 Hz 8302 * 8303 * Identifies a VI's port by blinking its LED. 8304 */ 8305 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 8306 unsigned int nblinks) 8307 { 8308 struct fw_vi_enable_cmd c; 8309 8310 memset(&c, 0, sizeof(c)); 8311 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 8312 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8313 FW_VI_ENABLE_CMD_VIID_V(viid)); 8314 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c)); 8315 c.blinkdur = cpu_to_be16(nblinks); 8316 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8317 } 8318 8319 /** 8320 * t4_iq_stop - stop an ingress queue and its FLs 8321 * @adap: the adapter 8322 * @mbox: mailbox to use for the FW command 8323 * @pf: the PF owning the queues 8324 * @vf: the VF owning the queues 8325 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 8326 * @iqid: ingress queue id 8327 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8328 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8329 * 8330 * Stops an ingress queue and its associated FLs, if any. This causes 8331 * any current or future data/messages destined for these queues to be 8332 * tossed. 8333 */ 8334 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, 8335 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8336 unsigned int fl0id, unsigned int fl1id) 8337 { 8338 struct fw_iq_cmd c; 8339 8340 memset(&c, 0, sizeof(c)); 8341 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 8342 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 8343 FW_IQ_CMD_VFN_V(vf)); 8344 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c)); 8345 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 8346 c.iqid = cpu_to_be16(iqid); 8347 c.fl0id = cpu_to_be16(fl0id); 8348 c.fl1id = cpu_to_be16(fl1id); 8349 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8350 } 8351 8352 /** 8353 * t4_iq_free - free an ingress queue and its FLs 8354 * @adap: the adapter 8355 * @mbox: mailbox to use for the FW command 8356 * @pf: the PF owning the queues 8357 * @vf: the VF owning the queues 8358 * @iqtype: the ingress queue type 8359 * @iqid: ingress queue id 8360 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8361 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8362 * 8363 * Frees an ingress queue and its associated FLs, if any. 8364 */ 8365 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8366 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8367 unsigned int fl0id, unsigned int fl1id) 8368 { 8369 struct fw_iq_cmd c; 8370 8371 memset(&c, 0, sizeof(c)); 8372 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 8373 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 8374 FW_IQ_CMD_VFN_V(vf)); 8375 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c)); 8376 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 8377 c.iqid = cpu_to_be16(iqid); 8378 c.fl0id = cpu_to_be16(fl0id); 8379 c.fl1id = cpu_to_be16(fl1id); 8380 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8381 } 8382 8383 /** 8384 * t4_eth_eq_free - free an Ethernet egress queue 8385 * @adap: the adapter 8386 * @mbox: mailbox to use for the FW command 8387 * @pf: the PF owning the queue 8388 * @vf: the VF owning the queue 8389 * @eqid: egress queue id 8390 * 8391 * Frees an Ethernet egress queue. 8392 */ 8393 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8394 unsigned int vf, unsigned int eqid) 8395 { 8396 struct fw_eq_eth_cmd c; 8397 8398 memset(&c, 0, sizeof(c)); 8399 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | 8400 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8401 FW_EQ_ETH_CMD_PFN_V(pf) | 8402 FW_EQ_ETH_CMD_VFN_V(vf)); 8403 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c)); 8404 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid)); 8405 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8406 } 8407 8408 /** 8409 * t4_ctrl_eq_free - free a control egress queue 8410 * @adap: the adapter 8411 * @mbox: mailbox to use for the FW command 8412 * @pf: the PF owning the queue 8413 * @vf: the VF owning the queue 8414 * @eqid: egress queue id 8415 * 8416 * Frees a control egress queue. 8417 */ 8418 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8419 unsigned int vf, unsigned int eqid) 8420 { 8421 struct fw_eq_ctrl_cmd c; 8422 8423 memset(&c, 0, sizeof(c)); 8424 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | 8425 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8426 FW_EQ_CTRL_CMD_PFN_V(pf) | 8427 FW_EQ_CTRL_CMD_VFN_V(vf)); 8428 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c)); 8429 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid)); 8430 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8431 } 8432 8433 /** 8434 * t4_ofld_eq_free - free an offload egress queue 8435 * @adap: the adapter 8436 * @mbox: mailbox to use for the FW command 8437 * @pf: the PF owning the queue 8438 * @vf: the VF owning the queue 8439 * @eqid: egress queue id 8440 * 8441 * Frees a control egress queue. 8442 */ 8443 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8444 unsigned int vf, unsigned int eqid) 8445 { 8446 struct fw_eq_ofld_cmd c; 8447 8448 memset(&c, 0, sizeof(c)); 8449 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | 8450 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8451 FW_EQ_OFLD_CMD_PFN_V(pf) | 8452 FW_EQ_OFLD_CMD_VFN_V(vf)); 8453 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c)); 8454 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid)); 8455 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8456 } 8457 8458 /** 8459 * t4_link_down_rc_str - return a string for a Link Down Reason Code 8460 * @link_down_rc: Link Down Reason Code 8461 * 8462 * Returns a string representation of the Link Down Reason Code. 8463 */ 8464 static const char *t4_link_down_rc_str(unsigned char link_down_rc) 8465 { 8466 static const char * const reason[] = { 8467 "Link Down", 8468 "Remote Fault", 8469 "Auto-negotiation Failure", 8470 "Reserved", 8471 "Insufficient Airflow", 8472 "Unable To Determine Reason", 8473 "No RX Signal Detected", 8474 "Reserved", 8475 }; 8476 8477 if (link_down_rc >= ARRAY_SIZE(reason)) 8478 return "Bad Reason Code"; 8479 8480 return reason[link_down_rc]; 8481 } 8482 8483 /* Return the highest speed set in the port capabilities, in Mb/s. */ 8484 static unsigned int fwcap_to_speed(fw_port_cap32_t caps) 8485 { 8486 #define TEST_SPEED_RETURN(__caps_speed, __speed) \ 8487 do { \ 8488 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8489 return __speed; \ 8490 } while (0) 8491 8492 TEST_SPEED_RETURN(400G, 400000); 8493 TEST_SPEED_RETURN(200G, 200000); 8494 TEST_SPEED_RETURN(100G, 100000); 8495 TEST_SPEED_RETURN(50G, 50000); 8496 TEST_SPEED_RETURN(40G, 40000); 8497 TEST_SPEED_RETURN(25G, 25000); 8498 TEST_SPEED_RETURN(10G, 10000); 8499 TEST_SPEED_RETURN(1G, 1000); 8500 TEST_SPEED_RETURN(100M, 100); 8501 8502 #undef TEST_SPEED_RETURN 8503 8504 return 0; 8505 } 8506 8507 /** 8508 * fwcap_to_fwspeed - return highest speed in Port Capabilities 8509 * @acaps: advertised Port Capabilities 8510 * 8511 * Get the highest speed for the port from the advertised Port 8512 * Capabilities. It will be either the highest speed from the list of 8513 * speeds or whatever user has set using ethtool. 8514 */ 8515 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps) 8516 { 8517 #define TEST_SPEED_RETURN(__caps_speed) \ 8518 do { \ 8519 if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8520 return FW_PORT_CAP32_SPEED_##__caps_speed; \ 8521 } while (0) 8522 8523 TEST_SPEED_RETURN(400G); 8524 TEST_SPEED_RETURN(200G); 8525 TEST_SPEED_RETURN(100G); 8526 TEST_SPEED_RETURN(50G); 8527 TEST_SPEED_RETURN(40G); 8528 TEST_SPEED_RETURN(25G); 8529 TEST_SPEED_RETURN(10G); 8530 TEST_SPEED_RETURN(1G); 8531 TEST_SPEED_RETURN(100M); 8532 8533 #undef TEST_SPEED_RETURN 8534 8535 return 0; 8536 } 8537 8538 /** 8539 * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities 8540 * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value 8541 * 8542 * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new 8543 * 32-bit Port Capabilities value. 8544 */ 8545 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus) 8546 { 8547 fw_port_cap32_t linkattr = 0; 8548 8549 /* Unfortunately the format of the Link Status in the old 8550 * 16-bit Port Information message isn't the same as the 8551 * 16-bit Port Capabilities bitfield used everywhere else ... 8552 */ 8553 if (lstatus & FW_PORT_CMD_RXPAUSE_F) 8554 linkattr |= FW_PORT_CAP32_FC_RX; 8555 if (lstatus & FW_PORT_CMD_TXPAUSE_F) 8556 linkattr |= FW_PORT_CAP32_FC_TX; 8557 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) 8558 linkattr |= FW_PORT_CAP32_SPEED_100M; 8559 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) 8560 linkattr |= FW_PORT_CAP32_SPEED_1G; 8561 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) 8562 linkattr |= FW_PORT_CAP32_SPEED_10G; 8563 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G)) 8564 linkattr |= FW_PORT_CAP32_SPEED_25G; 8565 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) 8566 linkattr |= FW_PORT_CAP32_SPEED_40G; 8567 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G)) 8568 linkattr |= FW_PORT_CAP32_SPEED_100G; 8569 8570 return linkattr; 8571 } 8572 8573 /** 8574 * t4_handle_get_port_info - process a FW reply message 8575 * @pi: the port info 8576 * @rpl: start of the FW message 8577 * 8578 * Processes a GET_PORT_INFO FW reply message. 8579 */ 8580 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl) 8581 { 8582 const struct fw_port_cmd *cmd = (const void *)rpl; 8583 fw_port_cap32_t pcaps, acaps, lpacaps, linkattr; 8584 struct link_config *lc = &pi->link_cfg; 8585 struct adapter *adapter = pi->adapter; 8586 unsigned int speed, fc, fec, adv_fc; 8587 enum fw_port_module_type mod_type; 8588 int action, link_ok, linkdnrc; 8589 enum fw_port_type port_type; 8590 8591 /* Extract the various fields from the Port Information message. 8592 */ 8593 action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16)); 8594 switch (action) { 8595 case FW_PORT_ACTION_GET_PORT_INFO: { 8596 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype); 8597 8598 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0; 8599 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus); 8600 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 8601 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus); 8602 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap)); 8603 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap)); 8604 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap)); 8605 linkattr = lstatus_to_fwcap(lstatus); 8606 break; 8607 } 8608 8609 case FW_PORT_ACTION_GET_PORT_INFO32: { 8610 u32 lstatus32; 8611 8612 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32); 8613 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0; 8614 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32); 8615 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 8616 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32); 8617 pcaps = be32_to_cpu(cmd->u.info32.pcaps32); 8618 acaps = be32_to_cpu(cmd->u.info32.acaps32); 8619 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32); 8620 linkattr = be32_to_cpu(cmd->u.info32.linkattr32); 8621 break; 8622 } 8623 8624 default: 8625 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n", 8626 be32_to_cpu(cmd->action_to_len16)); 8627 return; 8628 } 8629 8630 fec = fwcap_to_cc_fec(acaps); 8631 adv_fc = fwcap_to_cc_pause(acaps); 8632 fc = fwcap_to_cc_pause(linkattr); 8633 speed = fwcap_to_speed(linkattr); 8634 8635 /* Reset state for communicating new Transceiver Module status and 8636 * whether the OS-dependent layer wants us to redo the current 8637 * "sticky" L1 Configure Link Parameters. 8638 */ 8639 lc->new_module = false; 8640 lc->redo_l1cfg = false; 8641 8642 if (mod_type != pi->mod_type) { 8643 /* With the newer SFP28 and QSFP28 Transceiver Module Types, 8644 * various fundamental Port Capabilities which used to be 8645 * immutable can now change radically. We can now have 8646 * Speeds, Auto-Negotiation, Forward Error Correction, etc. 8647 * all change based on what Transceiver Module is inserted. 8648 * So we need to record the Physical "Port" Capabilities on 8649 * every Transceiver Module change. 8650 */ 8651 lc->pcaps = pcaps; 8652 8653 /* When a new Transceiver Module is inserted, the Firmware 8654 * will examine its i2c EPROM to determine its type and 8655 * general operating parameters including things like Forward 8656 * Error Control, etc. Various IEEE 802.3 standards dictate 8657 * how to interpret these i2c values to determine default 8658 * "sutomatic" settings. We record these for future use when 8659 * the user explicitly requests these standards-based values. 8660 */ 8661 lc->def_acaps = acaps; 8662 8663 /* Some versions of the early T6 Firmware "cheated" when 8664 * handling different Transceiver Modules by changing the 8665 * underlaying Port Type reported to the Host Drivers. As 8666 * such we need to capture whatever Port Type the Firmware 8667 * sends us and record it in case it's different from what we 8668 * were told earlier. Unfortunately, since Firmware is 8669 * forever, we'll need to keep this code here forever, but in 8670 * later T6 Firmware it should just be an assignment of the 8671 * same value already recorded. 8672 */ 8673 pi->port_type = port_type; 8674 8675 /* Record new Module Type information. 8676 */ 8677 pi->mod_type = mod_type; 8678 8679 /* Let the OS-dependent layer know if we have a new 8680 * Transceiver Module inserted. 8681 */ 8682 lc->new_module = t4_is_inserted_mod_type(mod_type); 8683 8684 t4_os_portmod_changed(adapter, pi->port_id); 8685 } 8686 8687 if (link_ok != lc->link_ok || speed != lc->speed || 8688 fc != lc->fc || adv_fc != lc->advertised_fc || 8689 fec != lc->fec) { 8690 /* something changed */ 8691 if (!link_ok && lc->link_ok) { 8692 lc->link_down_rc = linkdnrc; 8693 dev_warn_ratelimited(adapter->pdev_dev, 8694 "Port %d link down, reason: %s\n", 8695 pi->tx_chan, 8696 t4_link_down_rc_str(linkdnrc)); 8697 } 8698 lc->link_ok = link_ok; 8699 lc->speed = speed; 8700 lc->advertised_fc = adv_fc; 8701 lc->fc = fc; 8702 lc->fec = fec; 8703 8704 lc->lpacaps = lpacaps; 8705 lc->acaps = acaps & ADVERT_MASK; 8706 8707 /* If we're not physically capable of Auto-Negotiation, note 8708 * this as Auto-Negotiation disabled. Otherwise, we track 8709 * what Auto-Negotiation settings we have. Note parallel 8710 * structure in t4_link_l1cfg_core() and init_link_config(). 8711 */ 8712 if (!(lc->acaps & FW_PORT_CAP32_ANEG)) { 8713 lc->autoneg = AUTONEG_DISABLE; 8714 } else if (lc->acaps & FW_PORT_CAP32_ANEG) { 8715 lc->autoneg = AUTONEG_ENABLE; 8716 } else { 8717 /* When Autoneg is disabled, user needs to set 8718 * single speed. 8719 * Similar to cxgb4_ethtool.c: set_link_ksettings 8720 */ 8721 lc->acaps = 0; 8722 lc->speed_caps = fwcap_to_fwspeed(acaps); 8723 lc->autoneg = AUTONEG_DISABLE; 8724 } 8725 8726 t4_os_link_changed(adapter, pi->port_id, link_ok); 8727 } 8728 8729 /* If we have a new Transceiver Module and the OS-dependent code has 8730 * told us that it wants us to redo whatever "sticky" L1 Configuration 8731 * Link Parameters are set, do that now. 8732 */ 8733 if (lc->new_module && lc->redo_l1cfg) { 8734 struct link_config old_lc; 8735 int ret; 8736 8737 /* Save the current L1 Configuration and restore it if an 8738 * error occurs. We probably should fix the l1_cfg*() 8739 * routines not to change the link_config when an error 8740 * occurs ... 8741 */ 8742 old_lc = *lc; 8743 ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc); 8744 if (ret) { 8745 *lc = old_lc; 8746 dev_warn(adapter->pdev_dev, 8747 "Attempt to update new Transceiver Module settings failed\n"); 8748 } 8749 } 8750 lc->new_module = false; 8751 lc->redo_l1cfg = false; 8752 } 8753 8754 /** 8755 * t4_update_port_info - retrieve and update port information if changed 8756 * @pi: the port_info 8757 * 8758 * We issue a Get Port Information Command to the Firmware and, if 8759 * successful, we check to see if anything is different from what we 8760 * last recorded and update things accordingly. 8761 */ 8762 int t4_update_port_info(struct port_info *pi) 8763 { 8764 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8765 struct fw_port_cmd port_cmd; 8766 int ret; 8767 8768 memset(&port_cmd, 0, sizeof(port_cmd)); 8769 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8770 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8771 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8772 port_cmd.action_to_len16 = cpu_to_be32( 8773 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 8774 ? FW_PORT_ACTION_GET_PORT_INFO 8775 : FW_PORT_ACTION_GET_PORT_INFO32) | 8776 FW_LEN16(port_cmd)); 8777 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8778 &port_cmd, sizeof(port_cmd), &port_cmd); 8779 if (ret) 8780 return ret; 8781 8782 t4_handle_get_port_info(pi, (__be64 *)&port_cmd); 8783 return 0; 8784 } 8785 8786 /** 8787 * t4_get_link_params - retrieve basic link parameters for given port 8788 * @pi: the port 8789 * @link_okp: value return pointer for link up/down 8790 * @speedp: value return pointer for speed (Mb/s) 8791 * @mtup: value return pointer for mtu 8792 * 8793 * Retrieves basic link parameters for a port: link up/down, speed (Mb/s), 8794 * and MTU for a specified port. A negative error is returned on 8795 * failure; 0 on success. 8796 */ 8797 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp, 8798 unsigned int *speedp, unsigned int *mtup) 8799 { 8800 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8801 unsigned int action, link_ok, mtu; 8802 struct fw_port_cmd port_cmd; 8803 fw_port_cap32_t linkattr; 8804 int ret; 8805 8806 memset(&port_cmd, 0, sizeof(port_cmd)); 8807 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8808 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8809 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8810 action = (fw_caps == FW_CAPS16 8811 ? FW_PORT_ACTION_GET_PORT_INFO 8812 : FW_PORT_ACTION_GET_PORT_INFO32); 8813 port_cmd.action_to_len16 = cpu_to_be32( 8814 FW_PORT_CMD_ACTION_V(action) | 8815 FW_LEN16(port_cmd)); 8816 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8817 &port_cmd, sizeof(port_cmd), &port_cmd); 8818 if (ret) 8819 return ret; 8820 8821 if (action == FW_PORT_ACTION_GET_PORT_INFO) { 8822 u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype); 8823 8824 link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F); 8825 linkattr = lstatus_to_fwcap(lstatus); 8826 mtu = be16_to_cpu(port_cmd.u.info.mtu); 8827 } else { 8828 u32 lstatus32 = 8829 be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32); 8830 8831 link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F); 8832 linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32); 8833 mtu = FW_PORT_CMD_MTU32_G( 8834 be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32)); 8835 } 8836 8837 if (link_okp) 8838 *link_okp = link_ok; 8839 if (speedp) 8840 *speedp = fwcap_to_speed(linkattr); 8841 if (mtup) 8842 *mtup = mtu; 8843 8844 return 0; 8845 } 8846 8847 /** 8848 * t4_handle_fw_rpl - process a FW reply message 8849 * @adap: the adapter 8850 * @rpl: start of the FW message 8851 * 8852 * Processes a FW message, such as link state change messages. 8853 */ 8854 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 8855 { 8856 u8 opcode = *(const u8 *)rpl; 8857 8858 /* This might be a port command ... this simplifies the following 8859 * conditionals ... We can get away with pre-dereferencing 8860 * action_to_len16 because it's in the first 16 bytes and all messages 8861 * will be at least that long. 8862 */ 8863 const struct fw_port_cmd *p = (const void *)rpl; 8864 unsigned int action = 8865 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16)); 8866 8867 if (opcode == FW_PORT_CMD && 8868 (action == FW_PORT_ACTION_GET_PORT_INFO || 8869 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 8870 int i; 8871 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid)); 8872 struct port_info *pi = NULL; 8873 8874 for_each_port(adap, i) { 8875 pi = adap2pinfo(adap, i); 8876 if (pi->tx_chan == chan) 8877 break; 8878 } 8879 8880 t4_handle_get_port_info(pi, rpl); 8881 } else { 8882 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", 8883 opcode); 8884 return -EINVAL; 8885 } 8886 return 0; 8887 } 8888 8889 static void get_pci_mode(struct adapter *adapter, struct pci_params *p) 8890 { 8891 u16 val; 8892 8893 if (pci_is_pcie(adapter->pdev)) { 8894 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); 8895 p->speed = val & PCI_EXP_LNKSTA_CLS; 8896 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 8897 } 8898 } 8899 8900 /** 8901 * init_link_config - initialize a link's SW state 8902 * @lc: pointer to structure holding the link state 8903 * @pcaps: link Port Capabilities 8904 * @acaps: link current Advertised Port Capabilities 8905 * 8906 * Initializes the SW state maintained for each link, including the link's 8907 * capabilities and default speed/flow-control/autonegotiation settings. 8908 */ 8909 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps, 8910 fw_port_cap32_t acaps) 8911 { 8912 lc->pcaps = pcaps; 8913 lc->def_acaps = acaps; 8914 lc->lpacaps = 0; 8915 lc->speed_caps = 0; 8916 lc->speed = 0; 8917 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 8918 8919 /* For Forward Error Control, we default to whatever the Firmware 8920 * tells us the Link is currently advertising. 8921 */ 8922 lc->requested_fec = FEC_AUTO; 8923 lc->fec = fwcap_to_cc_fec(lc->def_acaps); 8924 8925 /* If the Port is capable of Auto-Negtotiation, initialize it as 8926 * "enabled" and copy over all of the Physical Port Capabilities 8927 * to the Advertised Port Capabilities. Otherwise mark it as 8928 * Auto-Negotiate disabled and select the highest supported speed 8929 * for the link. Note parallel structure in t4_link_l1cfg_core() 8930 * and t4_handle_get_port_info(). 8931 */ 8932 if (lc->pcaps & FW_PORT_CAP32_ANEG) { 8933 lc->acaps = lc->pcaps & ADVERT_MASK; 8934 lc->autoneg = AUTONEG_ENABLE; 8935 lc->requested_fc |= PAUSE_AUTONEG; 8936 } else { 8937 lc->acaps = 0; 8938 lc->autoneg = AUTONEG_DISABLE; 8939 lc->speed_caps = fwcap_to_fwspeed(acaps); 8940 } 8941 } 8942 8943 #define CIM_PF_NOACCESS 0xeeeeeeee 8944 8945 int t4_wait_dev_ready(void __iomem *regs) 8946 { 8947 u32 whoami; 8948 8949 whoami = readl(regs + PL_WHOAMI_A); 8950 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS) 8951 return 0; 8952 8953 msleep(500); 8954 whoami = readl(regs + PL_WHOAMI_A); 8955 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO); 8956 } 8957 8958 struct flash_desc { 8959 u32 vendor_and_model_id; 8960 u32 size_mb; 8961 }; 8962 8963 static int t4_get_flash_params(struct adapter *adap) 8964 { 8965 /* Table for non-Numonix supported flash parts. Numonix parts are left 8966 * to the preexisting code. All flash parts have 64KB sectors. 8967 */ 8968 static struct flash_desc supported_flash[] = { 8969 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ 8970 }; 8971 8972 unsigned int part, manufacturer; 8973 unsigned int density, size = 0; 8974 u32 flashid = 0; 8975 int ret; 8976 8977 /* Issue a Read ID Command to the Flash part. We decode supported 8978 * Flash parts and their sizes from this. There's a newer Query 8979 * Command which can retrieve detailed geometry information but many 8980 * Flash parts don't support it. 8981 */ 8982 8983 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID); 8984 if (!ret) 8985 ret = sf1_read(adap, 3, 0, 1, &flashid); 8986 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */ 8987 if (ret) 8988 return ret; 8989 8990 /* Check to see if it's one of our non-standard supported Flash parts. 8991 */ 8992 for (part = 0; part < ARRAY_SIZE(supported_flash); part++) 8993 if (supported_flash[part].vendor_and_model_id == flashid) { 8994 adap->params.sf_size = supported_flash[part].size_mb; 8995 adap->params.sf_nsec = 8996 adap->params.sf_size / SF_SEC_SIZE; 8997 goto found; 8998 } 8999 9000 /* Decode Flash part size. The code below looks repetitive with 9001 * common encodings, but that's not guaranteed in the JEDEC 9002 * specification for the Read JEDEC ID command. The only thing that 9003 * we're guaranteed by the JEDEC specification is where the 9004 * Manufacturer ID is in the returned result. After that each 9005 * Manufacturer ~could~ encode things completely differently. 9006 * Note, all Flash parts must have 64KB sectors. 9007 */ 9008 manufacturer = flashid & 0xff; 9009 switch (manufacturer) { 9010 case 0x20: { /* Micron/Numonix */ 9011 /* This Density -> Size decoding table is taken from Micron 9012 * Data Sheets. 9013 */ 9014 density = (flashid >> 16) & 0xff; 9015 switch (density) { 9016 case 0x14: /* 1MB */ 9017 size = 1 << 20; 9018 break; 9019 case 0x15: /* 2MB */ 9020 size = 1 << 21; 9021 break; 9022 case 0x16: /* 4MB */ 9023 size = 1 << 22; 9024 break; 9025 case 0x17: /* 8MB */ 9026 size = 1 << 23; 9027 break; 9028 case 0x18: /* 16MB */ 9029 size = 1 << 24; 9030 break; 9031 case 0x19: /* 32MB */ 9032 size = 1 << 25; 9033 break; 9034 case 0x20: /* 64MB */ 9035 size = 1 << 26; 9036 break; 9037 case 0x21: /* 128MB */ 9038 size = 1 << 27; 9039 break; 9040 case 0x22: /* 256MB */ 9041 size = 1 << 28; 9042 break; 9043 } 9044 break; 9045 } 9046 case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */ 9047 /* This Density -> Size decoding table is taken from ISSI 9048 * Data Sheets. 9049 */ 9050 density = (flashid >> 16) & 0xff; 9051 switch (density) { 9052 case 0x16: /* 32 MB */ 9053 size = 1 << 25; 9054 break; 9055 case 0x17: /* 64MB */ 9056 size = 1 << 26; 9057 break; 9058 } 9059 break; 9060 } 9061 case 0xc2: { /* Macronix */ 9062 /* This Density -> Size decoding table is taken from Macronix 9063 * Data Sheets. 9064 */ 9065 density = (flashid >> 16) & 0xff; 9066 switch (density) { 9067 case 0x17: /* 8MB */ 9068 size = 1 << 23; 9069 break; 9070 case 0x18: /* 16MB */ 9071 size = 1 << 24; 9072 break; 9073 } 9074 break; 9075 } 9076 case 0xef: { /* Winbond */ 9077 /* This Density -> Size decoding table is taken from Winbond 9078 * Data Sheets. 9079 */ 9080 density = (flashid >> 16) & 0xff; 9081 switch (density) { 9082 case 0x17: /* 8MB */ 9083 size = 1 << 23; 9084 break; 9085 case 0x18: /* 16MB */ 9086 size = 1 << 24; 9087 break; 9088 } 9089 break; 9090 } 9091 } 9092 9093 /* If we didn't recognize the FLASH part, that's no real issue: the 9094 * Hardware/Software contract says that Hardware will _*ALWAYS*_ 9095 * use a FLASH part which is at least 4MB in size and has 64KB 9096 * sectors. The unrecognized FLASH part is likely to be much larger 9097 * than 4MB, but that's all we really need. 9098 */ 9099 if (size == 0) { 9100 dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n", 9101 flashid); 9102 size = 1 << 22; 9103 } 9104 9105 /* Store decoded Flash size and fall through into vetting code. */ 9106 adap->params.sf_size = size; 9107 adap->params.sf_nsec = size / SF_SEC_SIZE; 9108 9109 found: 9110 if (adap->params.sf_size < FLASH_MIN_SIZE) 9111 dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n", 9112 flashid, adap->params.sf_size, FLASH_MIN_SIZE); 9113 return 0; 9114 } 9115 9116 /** 9117 * t4_prep_adapter - prepare SW and HW for operation 9118 * @adapter: the adapter 9119 * 9120 * Initialize adapter SW state for the various HW modules, set initial 9121 * values for some adapter tunables, take PHYs out of reset, and 9122 * initialize the MDIO interface. 9123 */ 9124 int t4_prep_adapter(struct adapter *adapter) 9125 { 9126 int ret, ver; 9127 uint16_t device_id; 9128 u32 pl_rev; 9129 9130 get_pci_mode(adapter, &adapter->params.pci); 9131 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A)); 9132 9133 ret = t4_get_flash_params(adapter); 9134 if (ret < 0) { 9135 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret); 9136 return ret; 9137 } 9138 9139 /* Retrieve adapter's device ID 9140 */ 9141 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id); 9142 ver = device_id >> 12; 9143 adapter->params.chip = 0; 9144 switch (ver) { 9145 case CHELSIO_T4: 9146 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 9147 adapter->params.arch.sge_fl_db = DBPRIO_F; 9148 adapter->params.arch.mps_tcam_size = 9149 NUM_MPS_CLS_SRAM_L_INSTANCES; 9150 adapter->params.arch.mps_rplc_size = 128; 9151 adapter->params.arch.nchan = NCHAN; 9152 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 9153 adapter->params.arch.vfcount = 128; 9154 /* Congestion map is for 4 channels so that 9155 * MPS can have 4 priority per port. 9156 */ 9157 adapter->params.arch.cng_ch_bits_log = 2; 9158 break; 9159 case CHELSIO_T5: 9160 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 9161 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F; 9162 adapter->params.arch.mps_tcam_size = 9163 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 9164 adapter->params.arch.mps_rplc_size = 128; 9165 adapter->params.arch.nchan = NCHAN; 9166 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 9167 adapter->params.arch.vfcount = 128; 9168 adapter->params.arch.cng_ch_bits_log = 2; 9169 break; 9170 case CHELSIO_T6: 9171 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 9172 adapter->params.arch.sge_fl_db = 0; 9173 adapter->params.arch.mps_tcam_size = 9174 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 9175 adapter->params.arch.mps_rplc_size = 256; 9176 adapter->params.arch.nchan = 2; 9177 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS; 9178 adapter->params.arch.vfcount = 256; 9179 /* Congestion map will be for 2 channels so that 9180 * MPS can have 8 priority per port. 9181 */ 9182 adapter->params.arch.cng_ch_bits_log = 3; 9183 break; 9184 default: 9185 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 9186 device_id); 9187 return -EINVAL; 9188 } 9189 9190 adapter->params.cim_la_size = CIMLA_SIZE; 9191 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 9192 9193 /* 9194 * Default port for debugging in case we can't reach FW. 9195 */ 9196 adapter->params.nports = 1; 9197 adapter->params.portvec = 1; 9198 adapter->params.vpd.cclk = 50000; 9199 9200 /* Set PCIe completion timeout to 4 seconds. */ 9201 pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2, 9202 PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd); 9203 return 0; 9204 } 9205 9206 /** 9207 * t4_shutdown_adapter - shut down adapter, host & wire 9208 * @adapter: the adapter 9209 * 9210 * Perform an emergency shutdown of the adapter and stop it from 9211 * continuing any further communication on the ports or DMA to the 9212 * host. This is typically used when the adapter and/or firmware 9213 * have crashed and we want to prevent any further accidental 9214 * communication with the rest of the world. This will also force 9215 * the port Link Status to go down -- if register writes work -- 9216 * which should help our peers figure out that we're down. 9217 */ 9218 int t4_shutdown_adapter(struct adapter *adapter) 9219 { 9220 int port; 9221 9222 t4_intr_disable(adapter); 9223 t4_write_reg(adapter, DBG_GPIO_EN_A, 0); 9224 for_each_port(adapter, port) { 9225 u32 a_port_cfg = is_t4(adapter->params.chip) ? 9226 PORT_REG(port, XGMAC_PORT_CFG_A) : 9227 T5_PORT_REG(port, MAC_PORT_CFG_A); 9228 9229 t4_write_reg(adapter, a_port_cfg, 9230 t4_read_reg(adapter, a_port_cfg) 9231 & ~SIGNAL_DET_V(1)); 9232 } 9233 t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0); 9234 9235 return 0; 9236 } 9237 9238 /** 9239 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information 9240 * @adapter: the adapter 9241 * @qid: the Queue ID 9242 * @qtype: the Ingress or Egress type for @qid 9243 * @user: true if this request is for a user mode queue 9244 * @pbar2_qoffset: BAR2 Queue Offset 9245 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 9246 * 9247 * Returns the BAR2 SGE Queue Registers information associated with the 9248 * indicated Absolute Queue ID. These are passed back in return value 9249 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 9250 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 9251 * 9252 * This may return an error which indicates that BAR2 SGE Queue 9253 * registers aren't available. If an error is not returned, then the 9254 * following values are returned: 9255 * 9256 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 9257 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 9258 * 9259 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 9260 * require the "Inferred Queue ID" ability may be used. E.g. the 9261 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 9262 * then these "Inferred Queue ID" register may not be used. 9263 */ 9264 int t4_bar2_sge_qregs(struct adapter *adapter, 9265 unsigned int qid, 9266 enum t4_bar2_qtype qtype, 9267 int user, 9268 u64 *pbar2_qoffset, 9269 unsigned int *pbar2_qid) 9270 { 9271 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 9272 u64 bar2_page_offset, bar2_qoffset; 9273 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 9274 9275 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */ 9276 if (!user && is_t4(adapter->params.chip)) 9277 return -EINVAL; 9278 9279 /* Get our SGE Page Size parameters. 9280 */ 9281 page_shift = adapter->params.sge.hps + 10; 9282 page_size = 1 << page_shift; 9283 9284 /* Get the right Queues per Page parameters for our Queue. 9285 */ 9286 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 9287 ? adapter->params.sge.eq_qpp 9288 : adapter->params.sge.iq_qpp); 9289 qpp_mask = (1 << qpp_shift) - 1; 9290 9291 /* Calculate the basics of the BAR2 SGE Queue register area: 9292 * o The BAR2 page the Queue registers will be in. 9293 * o The BAR2 Queue ID. 9294 * o The BAR2 Queue ID Offset into the BAR2 page. 9295 */ 9296 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 9297 bar2_qid = qid & qpp_mask; 9298 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 9299 9300 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 9301 * hardware will infer the Absolute Queue ID simply from the writes to 9302 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 9303 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 9304 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 9305 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 9306 * from the BAR2 Page and BAR2 Queue ID. 9307 * 9308 * One important censequence of this is that some BAR2 SGE registers 9309 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 9310 * there. But other registers synthesize the SGE Queue ID purely 9311 * from the writes to the registers -- the Write Combined Doorbell 9312 * Buffer is a good example. These BAR2 SGE Registers are only 9313 * available for those BAR2 SGE Register areas where the SGE Absolute 9314 * Queue ID can be inferred from simple writes. 9315 */ 9316 bar2_qoffset = bar2_page_offset; 9317 bar2_qinferred = (bar2_qid_offset < page_size); 9318 if (bar2_qinferred) { 9319 bar2_qoffset += bar2_qid_offset; 9320 bar2_qid = 0; 9321 } 9322 9323 *pbar2_qoffset = bar2_qoffset; 9324 *pbar2_qid = bar2_qid; 9325 return 0; 9326 } 9327 9328 /** 9329 * t4_init_devlog_params - initialize adapter->params.devlog 9330 * @adap: the adapter 9331 * 9332 * Initialize various fields of the adapter's Firmware Device Log 9333 * Parameters structure. 9334 */ 9335 int t4_init_devlog_params(struct adapter *adap) 9336 { 9337 struct devlog_params *dparams = &adap->params.devlog; 9338 u32 pf_dparams; 9339 unsigned int devlog_meminfo; 9340 struct fw_devlog_cmd devlog_cmd; 9341 int ret; 9342 9343 /* If we're dealing with newer firmware, the Device Log Parameters 9344 * are stored in a designated register which allows us to access the 9345 * Device Log even if we can't talk to the firmware. 9346 */ 9347 pf_dparams = 9348 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG)); 9349 if (pf_dparams) { 9350 unsigned int nentries, nentries128; 9351 9352 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams); 9353 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4; 9354 9355 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams); 9356 nentries = (nentries128 + 1) * 128; 9357 dparams->size = nentries * sizeof(struct fw_devlog_e); 9358 9359 return 0; 9360 } 9361 9362 /* Otherwise, ask the firmware for it's Device Log Parameters. 9363 */ 9364 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 9365 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) | 9366 FW_CMD_REQUEST_F | FW_CMD_READ_F); 9367 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 9368 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), 9369 &devlog_cmd); 9370 if (ret) 9371 return ret; 9372 9373 devlog_meminfo = 9374 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); 9375 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo); 9376 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4; 9377 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); 9378 9379 return 0; 9380 } 9381 9382 /** 9383 * t4_init_sge_params - initialize adap->params.sge 9384 * @adapter: the adapter 9385 * 9386 * Initialize various fields of the adapter's SGE Parameters structure. 9387 */ 9388 int t4_init_sge_params(struct adapter *adapter) 9389 { 9390 struct sge_params *sge_params = &adapter->params.sge; 9391 u32 hps, qpp; 9392 unsigned int s_hps, s_qpp; 9393 9394 /* Extract the SGE Page Size for our PF. 9395 */ 9396 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A); 9397 s_hps = (HOSTPAGESIZEPF0_S + 9398 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf); 9399 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M); 9400 9401 /* Extract the SGE Egress and Ingess Queues Per Page for our PF. 9402 */ 9403 s_qpp = (QUEUESPERPAGEPF0_S + 9404 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf); 9405 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A); 9406 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 9407 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A); 9408 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 9409 9410 return 0; 9411 } 9412 9413 /** 9414 * t4_init_tp_params - initialize adap->params.tp 9415 * @adap: the adapter 9416 * @sleep_ok: if true we may sleep while awaiting command completion 9417 * 9418 * Initialize various fields of the adapter's TP Parameters structure. 9419 */ 9420 int t4_init_tp_params(struct adapter *adap, bool sleep_ok) 9421 { 9422 u32 param, val, v; 9423 int chan, ret; 9424 9425 9426 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A); 9427 adap->params.tp.tre = TIMERRESOLUTION_G(v); 9428 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v); 9429 9430 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 9431 for (chan = 0; chan < NCHAN; chan++) 9432 adap->params.tp.tx_modq[chan] = chan; 9433 9434 /* Cache the adapter's Compressed Filter Mode/Mask and global Ingress 9435 * Configuration. 9436 */ 9437 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 9438 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) | 9439 FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK)); 9440 9441 /* Read current value */ 9442 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 9443 ¶m, &val); 9444 if (ret == 0) { 9445 dev_info(adap->pdev_dev, 9446 "Current filter mode/mask 0x%x:0x%x\n", 9447 FW_PARAMS_PARAM_FILTER_MODE_G(val), 9448 FW_PARAMS_PARAM_FILTER_MASK_G(val)); 9449 adap->params.tp.vlan_pri_map = 9450 FW_PARAMS_PARAM_FILTER_MODE_G(val); 9451 adap->params.tp.filter_mask = 9452 FW_PARAMS_PARAM_FILTER_MASK_G(val); 9453 } else { 9454 dev_info(adap->pdev_dev, 9455 "Failed to read filter mode/mask via fw api, using indirect-reg-read\n"); 9456 9457 /* Incase of older-fw (which doesn't expose the api 9458 * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses 9459 * the fw api) combination, fall-back to older method of reading 9460 * the filter mode from indirect-register 9461 */ 9462 t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1, 9463 TP_VLAN_PRI_MAP_A, sleep_ok); 9464 9465 /* With the older-fw and newer-driver combination we might run 9466 * into an issue when user wants to use hash filter region but 9467 * the filter_mask is zero, in this case filter_mask validation 9468 * is tough. To avoid that we set the filter_mask same as filter 9469 * mode, which will behave exactly as the older way of ignoring 9470 * the filter mask validation. 9471 */ 9472 adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map; 9473 } 9474 9475 t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1, 9476 TP_INGRESS_CONFIG_A, sleep_ok); 9477 9478 /* For T6, cache the adapter's compressed error vector 9479 * and passing outer header info for encapsulated packets. 9480 */ 9481 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 9482 v = t4_read_reg(adap, TP_OUT_CONFIG_A); 9483 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0; 9484 } 9485 9486 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field 9487 * shift positions of several elements of the Compressed Filter Tuple 9488 * for this adapter which we need frequently ... 9489 */ 9490 adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F); 9491 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F); 9492 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F); 9493 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F); 9494 adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F); 9495 adap->params.tp.protocol_shift = t4_filter_field_shift(adap, 9496 PROTOCOL_F); 9497 adap->params.tp.ethertype_shift = t4_filter_field_shift(adap, 9498 ETHERTYPE_F); 9499 adap->params.tp.macmatch_shift = t4_filter_field_shift(adap, 9500 MACMATCH_F); 9501 adap->params.tp.matchtype_shift = t4_filter_field_shift(adap, 9502 MPSHITTYPE_F); 9503 adap->params.tp.frag_shift = t4_filter_field_shift(adap, 9504 FRAGMENTATION_F); 9505 9506 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID 9507 * represents the presence of an Outer VLAN instead of a VNIC ID. 9508 */ 9509 if ((adap->params.tp.ingress_config & VNIC_F) == 0) 9510 adap->params.tp.vnic_shift = -1; 9511 9512 v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A); 9513 adap->params.tp.hash_filter_mask = v; 9514 v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A); 9515 adap->params.tp.hash_filter_mask |= ((u64)v << 32); 9516 return 0; 9517 } 9518 9519 /** 9520 * t4_filter_field_shift - calculate filter field shift 9521 * @adap: the adapter 9522 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) 9523 * 9524 * Return the shift position of a filter field within the Compressed 9525 * Filter Tuple. The filter field is specified via its selection bit 9526 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. 9527 */ 9528 int t4_filter_field_shift(const struct adapter *adap, int filter_sel) 9529 { 9530 unsigned int filter_mode = adap->params.tp.vlan_pri_map; 9531 unsigned int sel; 9532 int field_shift; 9533 9534 if ((filter_mode & filter_sel) == 0) 9535 return -1; 9536 9537 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { 9538 switch (filter_mode & sel) { 9539 case FCOE_F: 9540 field_shift += FT_FCOE_W; 9541 break; 9542 case PORT_F: 9543 field_shift += FT_PORT_W; 9544 break; 9545 case VNIC_ID_F: 9546 field_shift += FT_VNIC_ID_W; 9547 break; 9548 case VLAN_F: 9549 field_shift += FT_VLAN_W; 9550 break; 9551 case TOS_F: 9552 field_shift += FT_TOS_W; 9553 break; 9554 case PROTOCOL_F: 9555 field_shift += FT_PROTOCOL_W; 9556 break; 9557 case ETHERTYPE_F: 9558 field_shift += FT_ETHERTYPE_W; 9559 break; 9560 case MACMATCH_F: 9561 field_shift += FT_MACMATCH_W; 9562 break; 9563 case MPSHITTYPE_F: 9564 field_shift += FT_MPSHITTYPE_W; 9565 break; 9566 case FRAGMENTATION_F: 9567 field_shift += FT_FRAGMENTATION_W; 9568 break; 9569 } 9570 } 9571 return field_shift; 9572 } 9573 9574 int t4_init_rss_mode(struct adapter *adap, int mbox) 9575 { 9576 int i, ret; 9577 struct fw_rss_vi_config_cmd rvc; 9578 9579 memset(&rvc, 0, sizeof(rvc)); 9580 9581 for_each_port(adap, i) { 9582 struct port_info *p = adap2pinfo(adap, i); 9583 9584 rvc.op_to_viid = 9585 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 9586 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9587 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid)); 9588 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc)); 9589 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); 9590 if (ret) 9591 return ret; 9592 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen); 9593 } 9594 return 0; 9595 } 9596 9597 /** 9598 * t4_init_portinfo - allocate a virtual interface and initialize port_info 9599 * @pi: the port_info 9600 * @mbox: mailbox to use for the FW command 9601 * @port: physical port associated with the VI 9602 * @pf: the PF owning the VI 9603 * @vf: the VF owning the VI 9604 * @mac: the MAC address of the VI 9605 * 9606 * Allocates a virtual interface for the given physical port. If @mac is 9607 * not %NULL it contains the MAC address of the VI as assigned by FW. 9608 * @mac should be large enough to hold an Ethernet address. 9609 * Returns < 0 on error. 9610 */ 9611 int t4_init_portinfo(struct port_info *pi, int mbox, 9612 int port, int pf, int vf, u8 mac[]) 9613 { 9614 struct adapter *adapter = pi->adapter; 9615 unsigned int fw_caps = adapter->params.fw_caps_support; 9616 struct fw_port_cmd cmd; 9617 unsigned int rss_size; 9618 enum fw_port_type port_type; 9619 int mdio_addr; 9620 fw_port_cap32_t pcaps, acaps; 9621 u8 vivld = 0, vin = 0; 9622 int ret; 9623 9624 /* If we haven't yet determined whether we're talking to Firmware 9625 * which knows the new 32-bit Port Capabilities, it's time to find 9626 * out now. This will also tell new Firmware to send us Port Status 9627 * Updates using the new 32-bit Port Capabilities version of the 9628 * Port Information message. 9629 */ 9630 if (fw_caps == FW_CAPS_UNKNOWN) { 9631 u32 param, val; 9632 9633 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 9634 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32)); 9635 val = 1; 9636 ret = t4_set_params(adapter, mbox, pf, vf, 1, ¶m, &val); 9637 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16); 9638 adapter->params.fw_caps_support = fw_caps; 9639 } 9640 9641 memset(&cmd, 0, sizeof(cmd)); 9642 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 9643 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9644 FW_PORT_CMD_PORTID_V(port)); 9645 cmd.action_to_len16 = cpu_to_be32( 9646 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 9647 ? FW_PORT_ACTION_GET_PORT_INFO 9648 : FW_PORT_ACTION_GET_PORT_INFO32) | 9649 FW_LEN16(cmd)); 9650 ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd); 9651 if (ret) 9652 return ret; 9653 9654 /* Extract the various fields from the Port Information message. 9655 */ 9656 if (fw_caps == FW_CAPS16) { 9657 u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype); 9658 9659 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 9660 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F) 9661 ? FW_PORT_CMD_MDIOADDR_G(lstatus) 9662 : -1); 9663 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap)); 9664 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap)); 9665 } else { 9666 u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32); 9667 9668 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 9669 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F) 9670 ? FW_PORT_CMD_MDIOADDR32_G(lstatus32) 9671 : -1); 9672 pcaps = be32_to_cpu(cmd.u.info32.pcaps32); 9673 acaps = be32_to_cpu(cmd.u.info32.acaps32); 9674 } 9675 9676 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size, 9677 &vivld, &vin); 9678 if (ret < 0) 9679 return ret; 9680 9681 pi->viid = ret; 9682 pi->tx_chan = port; 9683 pi->lport = port; 9684 pi->rss_size = rss_size; 9685 pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port); 9686 9687 /* If fw supports returning the VIN as part of FW_VI_CMD, 9688 * save the returned values. 9689 */ 9690 if (adapter->params.viid_smt_extn_support) { 9691 pi->vivld = vivld; 9692 pi->vin = vin; 9693 } else { 9694 /* Retrieve the values from VIID */ 9695 pi->vivld = FW_VIID_VIVLD_G(pi->viid); 9696 pi->vin = FW_VIID_VIN_G(pi->viid); 9697 } 9698 9699 pi->port_type = port_type; 9700 pi->mdio_addr = mdio_addr; 9701 pi->mod_type = FW_PORT_MOD_TYPE_NA; 9702 9703 init_link_config(&pi->link_cfg, pcaps, acaps); 9704 return 0; 9705 } 9706 9707 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf) 9708 { 9709 u8 addr[6]; 9710 int ret, i, j = 0; 9711 9712 for_each_port(adap, i) { 9713 struct port_info *pi = adap2pinfo(adap, i); 9714 9715 while ((adap->params.portvec & (1 << j)) == 0) 9716 j++; 9717 9718 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr); 9719 if (ret) 9720 return ret; 9721 9722 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN); 9723 j++; 9724 } 9725 return 0; 9726 } 9727 9728 int t4_init_port_mirror(struct port_info *pi, u8 mbox, u8 port, u8 pf, u8 vf, 9729 u16 *mirror_viid) 9730 { 9731 int ret; 9732 9733 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, NULL, NULL, 9734 NULL, NULL); 9735 if (ret < 0) 9736 return ret; 9737 9738 if (mirror_viid) 9739 *mirror_viid = ret; 9740 9741 return 0; 9742 } 9743 9744 /** 9745 * t4_read_cimq_cfg - read CIM queue configuration 9746 * @adap: the adapter 9747 * @base: holds the queue base addresses in bytes 9748 * @size: holds the queue sizes in bytes 9749 * @thres: holds the queue full thresholds in bytes 9750 * 9751 * Returns the current configuration of the CIM queues, starting with 9752 * the IBQs, then the OBQs. 9753 */ 9754 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) 9755 { 9756 unsigned int i, v; 9757 int cim_num_obq = is_t4(adap->params.chip) ? 9758 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9759 9760 for (i = 0; i < CIM_NUM_IBQ; i++) { 9761 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F | 9762 QUENUMSELECT_V(i)); 9763 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9764 /* value is in 256-byte units */ 9765 *base++ = CIMQBASE_G(v) * 256; 9766 *size++ = CIMQSIZE_G(v) * 256; 9767 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */ 9768 } 9769 for (i = 0; i < cim_num_obq; i++) { 9770 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9771 QUENUMSELECT_V(i)); 9772 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9773 /* value is in 256-byte units */ 9774 *base++ = CIMQBASE_G(v) * 256; 9775 *size++ = CIMQSIZE_G(v) * 256; 9776 } 9777 } 9778 9779 /** 9780 * t4_read_cim_ibq - read the contents of a CIM inbound queue 9781 * @adap: the adapter 9782 * @qid: the queue index 9783 * @data: where to store the queue contents 9784 * @n: capacity of @data in 32-bit words 9785 * 9786 * Reads the contents of the selected CIM queue starting at address 0 up 9787 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9788 * error and the number of 32-bit words actually read on success. 9789 */ 9790 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9791 { 9792 int i, err, attempts; 9793 unsigned int addr; 9794 const unsigned int nwords = CIM_IBQ_SIZE * 4; 9795 9796 if (qid > 5 || (n & 3)) 9797 return -EINVAL; 9798 9799 addr = qid * nwords; 9800 if (n > nwords) 9801 n = nwords; 9802 9803 /* It might take 3-10ms before the IBQ debug read access is allowed. 9804 * Wait for 1 Sec with a delay of 1 usec. 9805 */ 9806 attempts = 1000000; 9807 9808 for (i = 0; i < n; i++, addr++) { 9809 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) | 9810 IBQDBGEN_F); 9811 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0, 9812 attempts, 1); 9813 if (err) 9814 return err; 9815 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A); 9816 } 9817 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0); 9818 return i; 9819 } 9820 9821 /** 9822 * t4_read_cim_obq - read the contents of a CIM outbound queue 9823 * @adap: the adapter 9824 * @qid: the queue index 9825 * @data: where to store the queue contents 9826 * @n: capacity of @data in 32-bit words 9827 * 9828 * Reads the contents of the selected CIM queue starting at address 0 up 9829 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9830 * error and the number of 32-bit words actually read on success. 9831 */ 9832 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9833 { 9834 int i, err; 9835 unsigned int addr, v, nwords; 9836 int cim_num_obq = is_t4(adap->params.chip) ? 9837 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9838 9839 if ((qid > (cim_num_obq - 1)) || (n & 3)) 9840 return -EINVAL; 9841 9842 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9843 QUENUMSELECT_V(qid)); 9844 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9845 9846 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */ 9847 nwords = CIMQSIZE_G(v) * 64; /* same */ 9848 if (n > nwords) 9849 n = nwords; 9850 9851 for (i = 0; i < n; i++, addr++) { 9852 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) | 9853 OBQDBGEN_F); 9854 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0, 9855 2, 1); 9856 if (err) 9857 return err; 9858 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A); 9859 } 9860 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0); 9861 return i; 9862 } 9863 9864 /** 9865 * t4_cim_read - read a block from CIM internal address space 9866 * @adap: the adapter 9867 * @addr: the start address within the CIM address space 9868 * @n: number of words to read 9869 * @valp: where to store the result 9870 * 9871 * Reads a block of 4-byte words from the CIM intenal address space. 9872 */ 9873 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, 9874 unsigned int *valp) 9875 { 9876 int ret = 0; 9877 9878 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9879 return -EBUSY; 9880 9881 for ( ; !ret && n--; addr += 4) { 9882 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr); 9883 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9884 0, 5, 2); 9885 if (!ret) 9886 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A); 9887 } 9888 return ret; 9889 } 9890 9891 /** 9892 * t4_cim_write - write a block into CIM internal address space 9893 * @adap: the adapter 9894 * @addr: the start address within the CIM address space 9895 * @n: number of words to write 9896 * @valp: set of values to write 9897 * 9898 * Writes a block of 4-byte words into the CIM intenal address space. 9899 */ 9900 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, 9901 const unsigned int *valp) 9902 { 9903 int ret = 0; 9904 9905 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9906 return -EBUSY; 9907 9908 for ( ; !ret && n--; addr += 4) { 9909 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++); 9910 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F); 9911 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9912 0, 5, 2); 9913 } 9914 return ret; 9915 } 9916 9917 static int t4_cim_write1(struct adapter *adap, unsigned int addr, 9918 unsigned int val) 9919 { 9920 return t4_cim_write(adap, addr, 1, &val); 9921 } 9922 9923 /** 9924 * t4_cim_read_la - read CIM LA capture buffer 9925 * @adap: the adapter 9926 * @la_buf: where to store the LA data 9927 * @wrptr: the HW write pointer within the capture buffer 9928 * 9929 * Reads the contents of the CIM LA buffer with the most recent entry at 9930 * the end of the returned data and with the entry at @wrptr first. 9931 * We try to leave the LA in the running state we find it in. 9932 */ 9933 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) 9934 { 9935 int i, ret; 9936 unsigned int cfg, val, idx; 9937 9938 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg); 9939 if (ret) 9940 return ret; 9941 9942 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */ 9943 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0); 9944 if (ret) 9945 return ret; 9946 } 9947 9948 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9949 if (ret) 9950 goto restart; 9951 9952 idx = UPDBGLAWRPTR_G(val); 9953 if (wrptr) 9954 *wrptr = idx; 9955 9956 for (i = 0; i < adap->params.cim_la_size; i++) { 9957 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9958 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F); 9959 if (ret) 9960 break; 9961 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9962 if (ret) 9963 break; 9964 if (val & UPDBGLARDEN_F) { 9965 ret = -ETIMEDOUT; 9966 break; 9967 } 9968 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]); 9969 if (ret) 9970 break; 9971 9972 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to 9973 * identify the 32-bit portion of the full 312-bit data 9974 */ 9975 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9) 9976 idx = (idx & 0xff0) + 0x10; 9977 else 9978 idx++; 9979 /* address can't exceed 0xfff */ 9980 idx &= UPDBGLARDPTR_M; 9981 } 9982 restart: 9983 if (cfg & UPDBGLAEN_F) { 9984 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9985 cfg & ~UPDBGLARDEN_F); 9986 if (!ret) 9987 ret = r; 9988 } 9989 return ret; 9990 } 9991 9992 /** 9993 * t4_tp_read_la - read TP LA capture buffer 9994 * @adap: the adapter 9995 * @la_buf: where to store the LA data 9996 * @wrptr: the HW write pointer within the capture buffer 9997 * 9998 * Reads the contents of the TP LA buffer with the most recent entry at 9999 * the end of the returned data and with the entry at @wrptr first. 10000 * We leave the LA in the running state we find it in. 10001 */ 10002 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) 10003 { 10004 bool last_incomplete; 10005 unsigned int i, cfg, val, idx; 10006 10007 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff; 10008 if (cfg & DBGLAENABLE_F) /* freeze LA */ 10009 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 10010 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F)); 10011 10012 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A); 10013 idx = DBGLAWPTR_G(val); 10014 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0; 10015 if (last_incomplete) 10016 idx = (idx + 1) & DBGLARPTR_M; 10017 if (wrptr) 10018 *wrptr = idx; 10019 10020 val &= 0xffff; 10021 val &= ~DBGLARPTR_V(DBGLARPTR_M); 10022 val |= adap->params.tp.la_mask; 10023 10024 for (i = 0; i < TPLA_SIZE; i++) { 10025 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val); 10026 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A); 10027 idx = (idx + 1) & DBGLARPTR_M; 10028 } 10029 10030 /* Wipe out last entry if it isn't valid */ 10031 if (last_incomplete) 10032 la_buf[TPLA_SIZE - 1] = ~0ULL; 10033 10034 if (cfg & DBGLAENABLE_F) /* restore running state */ 10035 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 10036 cfg | adap->params.tp.la_mask); 10037 } 10038 10039 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in 10040 * seconds). If we find one of the SGE Ingress DMA State Machines in the same 10041 * state for more than the Warning Threshold then we'll issue a warning about 10042 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel 10043 * appears to be hung every Warning Repeat second till the situation clears. 10044 * If the situation clears, we'll note that as well. 10045 */ 10046 #define SGE_IDMA_WARN_THRESH 1 10047 #define SGE_IDMA_WARN_REPEAT 300 10048 10049 /** 10050 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor 10051 * @adapter: the adapter 10052 * @idma: the adapter IDMA Monitor state 10053 * 10054 * Initialize the state of an SGE Ingress DMA Monitor. 10055 */ 10056 void t4_idma_monitor_init(struct adapter *adapter, 10057 struct sge_idma_monitor_state *idma) 10058 { 10059 /* Initialize the state variables for detecting an SGE Ingress DMA 10060 * hang. The SGE has internal counters which count up on each clock 10061 * tick whenever the SGE finds its Ingress DMA State Engines in the 10062 * same state they were on the previous clock tick. The clock used is 10063 * the Core Clock so we have a limit on the maximum "time" they can 10064 * record; typically a very small number of seconds. For instance, 10065 * with a 600MHz Core Clock, we can only count up to a bit more than 10066 * 7s. So we'll synthesize a larger counter in order to not run the 10067 * risk of having the "timers" overflow and give us the flexibility to 10068 * maintain a Hung SGE State Machine of our own which operates across 10069 * a longer time frame. 10070 */ 10071 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ 10072 idma->idma_stalled[0] = 0; 10073 idma->idma_stalled[1] = 0; 10074 } 10075 10076 /** 10077 * t4_idma_monitor - monitor SGE Ingress DMA state 10078 * @adapter: the adapter 10079 * @idma: the adapter IDMA Monitor state 10080 * @hz: number of ticks/second 10081 * @ticks: number of ticks since the last IDMA Monitor call 10082 */ 10083 void t4_idma_monitor(struct adapter *adapter, 10084 struct sge_idma_monitor_state *idma, 10085 int hz, int ticks) 10086 { 10087 int i, idma_same_state_cnt[2]; 10088 10089 /* Read the SGE Debug Ingress DMA Same State Count registers. These 10090 * are counters inside the SGE which count up on each clock when the 10091 * SGE finds its Ingress DMA State Engines in the same states they 10092 * were in the previous clock. The counters will peg out at 10093 * 0xffffffff without wrapping around so once they pass the 1s 10094 * threshold they'll stay above that till the IDMA state changes. 10095 */ 10096 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13); 10097 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A); 10098 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 10099 10100 for (i = 0; i < 2; i++) { 10101 u32 debug0, debug11; 10102 10103 /* If the Ingress DMA Same State Counter ("timer") is less 10104 * than 1s, then we can reset our synthesized Stall Timer and 10105 * continue. If we have previously emitted warnings about a 10106 * potential stalled Ingress Queue, issue a note indicating 10107 * that the Ingress Queue has resumed forward progress. 10108 */ 10109 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { 10110 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz) 10111 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, " 10112 "resumed after %d seconds\n", 10113 i, idma->idma_qid[i], 10114 idma->idma_stalled[i] / hz); 10115 idma->idma_stalled[i] = 0; 10116 continue; 10117 } 10118 10119 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 10120 * domain. The first time we get here it'll be because we 10121 * passed the 1s Threshold; each additional time it'll be 10122 * because the RX Timer Callback is being fired on its regular 10123 * schedule. 10124 * 10125 * If the stall is below our Potential Hung Ingress Queue 10126 * Warning Threshold, continue. 10127 */ 10128 if (idma->idma_stalled[i] == 0) { 10129 idma->idma_stalled[i] = hz; 10130 idma->idma_warn[i] = 0; 10131 } else { 10132 idma->idma_stalled[i] += ticks; 10133 idma->idma_warn[i] -= ticks; 10134 } 10135 10136 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz) 10137 continue; 10138 10139 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. 10140 */ 10141 if (idma->idma_warn[i] > 0) 10142 continue; 10143 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz; 10144 10145 /* Read and save the SGE IDMA State and Queue ID information. 10146 * We do this every time in case it changes across time ... 10147 * can't be too careful ... 10148 */ 10149 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0); 10150 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 10151 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 10152 10153 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11); 10154 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 10155 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 10156 10157 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in " 10158 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n", 10159 i, idma->idma_qid[i], idma->idma_state[i], 10160 idma->idma_stalled[i] / hz, 10161 debug0, debug11); 10162 t4_sge_decode_idma_state(adapter, idma->idma_state[i]); 10163 } 10164 } 10165 10166 /** 10167 * t4_load_cfg - download config file 10168 * @adap: the adapter 10169 * @cfg_data: the cfg text file to write 10170 * @size: text file size 10171 * 10172 * Write the supplied config text file to the card's serial flash. 10173 */ 10174 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 10175 { 10176 int ret, i, n, cfg_addr; 10177 unsigned int addr; 10178 unsigned int flash_cfg_start_sec; 10179 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10180 10181 cfg_addr = t4_flash_cfg_addr(adap); 10182 if (cfg_addr < 0) 10183 return cfg_addr; 10184 10185 addr = cfg_addr; 10186 flash_cfg_start_sec = addr / SF_SEC_SIZE; 10187 10188 if (size > FLASH_CFG_MAX_SIZE) { 10189 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n", 10190 FLASH_CFG_MAX_SIZE); 10191 return -EFBIG; 10192 } 10193 10194 i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ 10195 sf_sec_size); 10196 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 10197 flash_cfg_start_sec + i - 1); 10198 /* If size == 0 then we're simply erasing the FLASH sectors associated 10199 * with the on-adapter Firmware Configuration File. 10200 */ 10201 if (ret || size == 0) 10202 goto out; 10203 10204 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 10205 for (i = 0; i < size; i += SF_PAGE_SIZE) { 10206 if ((size - i) < SF_PAGE_SIZE) 10207 n = size - i; 10208 else 10209 n = SF_PAGE_SIZE; 10210 ret = t4_write_flash(adap, addr, n, cfg_data); 10211 if (ret) 10212 goto out; 10213 10214 addr += SF_PAGE_SIZE; 10215 cfg_data += SF_PAGE_SIZE; 10216 } 10217 10218 out: 10219 if (ret) 10220 dev_err(adap->pdev_dev, "config file %s failed %d\n", 10221 (size == 0 ? "clear" : "download"), ret); 10222 return ret; 10223 } 10224 10225 /** 10226 * t4_set_vf_mac - Set MAC address for the specified VF 10227 * @adapter: The adapter 10228 * @vf: one of the VFs instantiated by the specified PF 10229 * @naddr: the number of MAC addresses 10230 * @addr: the MAC address(es) to be set to the specified VF 10231 */ 10232 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf, 10233 unsigned int naddr, u8 *addr) 10234 { 10235 struct fw_acl_mac_cmd cmd; 10236 10237 memset(&cmd, 0, sizeof(cmd)); 10238 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) | 10239 FW_CMD_REQUEST_F | 10240 FW_CMD_WRITE_F | 10241 FW_ACL_MAC_CMD_PFN_V(adapter->pf) | 10242 FW_ACL_MAC_CMD_VFN_V(vf)); 10243 10244 /* Note: Do not enable the ACL */ 10245 cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd)); 10246 cmd.nmac = naddr; 10247 10248 switch (adapter->pf) { 10249 case 3: 10250 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3)); 10251 break; 10252 case 2: 10253 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2)); 10254 break; 10255 case 1: 10256 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1)); 10257 break; 10258 case 0: 10259 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0)); 10260 break; 10261 } 10262 10263 return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd); 10264 } 10265 10266 /** 10267 * t4_read_pace_tbl - read the pace table 10268 * @adap: the adapter 10269 * @pace_vals: holds the returned values 10270 * 10271 * Returns the values of TP's pace table in microseconds. 10272 */ 10273 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED]) 10274 { 10275 unsigned int i, v; 10276 10277 for (i = 0; i < NTX_SCHED; i++) { 10278 t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i); 10279 v = t4_read_reg(adap, TP_PACE_TABLE_A); 10280 pace_vals[i] = dack_ticks_to_usec(adap, v); 10281 } 10282 } 10283 10284 /** 10285 * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler 10286 * @adap: the adapter 10287 * @sched: the scheduler index 10288 * @kbps: the byte rate in Kbps 10289 * @ipg: the interpacket delay in tenths of nanoseconds 10290 * @sleep_ok: if true we may sleep while awaiting command completion 10291 * 10292 * Return the current configuration of a HW Tx scheduler. 10293 */ 10294 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, 10295 unsigned int *kbps, unsigned int *ipg, bool sleep_ok) 10296 { 10297 unsigned int v, addr, bpt, cpt; 10298 10299 if (kbps) { 10300 addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2; 10301 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 10302 if (sched & 1) 10303 v >>= 16; 10304 bpt = (v >> 8) & 0xff; 10305 cpt = v & 0xff; 10306 if (!cpt) { 10307 *kbps = 0; /* scheduler disabled */ 10308 } else { 10309 v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */ 10310 *kbps = (v * bpt) / 125; 10311 } 10312 } 10313 if (ipg) { 10314 addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2; 10315 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 10316 if (sched & 1) 10317 v >>= 16; 10318 v &= 0xffff; 10319 *ipg = (10000 * v) / core_ticks_per_usec(adap); 10320 } 10321 } 10322 10323 /* t4_sge_ctxt_rd - read an SGE context through FW 10324 * @adap: the adapter 10325 * @mbox: mailbox to use for the FW command 10326 * @cid: the context id 10327 * @ctype: the context type 10328 * @data: where to store the context data 10329 * 10330 * Issues a FW command through the given mailbox to read an SGE context. 10331 */ 10332 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid, 10333 enum ctxt_type ctype, u32 *data) 10334 { 10335 struct fw_ldst_cmd c; 10336 int ret; 10337 10338 if (ctype == CTXT_FLM) 10339 ret = FW_LDST_ADDRSPC_SGE_FLMC; 10340 else 10341 ret = FW_LDST_ADDRSPC_SGE_CONMC; 10342 10343 memset(&c, 0, sizeof(c)); 10344 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 10345 FW_CMD_REQUEST_F | FW_CMD_READ_F | 10346 FW_LDST_CMD_ADDRSPACE_V(ret)); 10347 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 10348 c.u.idctxt.physid = cpu_to_be32(cid); 10349 10350 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 10351 if (ret == 0) { 10352 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0); 10353 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1); 10354 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2); 10355 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3); 10356 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4); 10357 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5); 10358 } 10359 return ret; 10360 } 10361 10362 /** 10363 * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW 10364 * @adap: the adapter 10365 * @cid: the context id 10366 * @ctype: the context type 10367 * @data: where to store the context data 10368 * 10369 * Reads an SGE context directly, bypassing FW. This is only for 10370 * debugging when FW is unavailable. 10371 */ 10372 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, 10373 enum ctxt_type ctype, u32 *data) 10374 { 10375 int i, ret; 10376 10377 t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype)); 10378 ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1); 10379 if (!ret) 10380 for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4) 10381 *data++ = t4_read_reg(adap, i); 10382 return ret; 10383 } 10384 10385 int t4_sched_params(struct adapter *adapter, u8 type, u8 level, u8 mode, 10386 u8 rateunit, u8 ratemode, u8 channel, u8 class, 10387 u32 minrate, u32 maxrate, u16 weight, u16 pktsize, 10388 u16 burstsize) 10389 { 10390 struct fw_sched_cmd cmd; 10391 10392 memset(&cmd, 0, sizeof(cmd)); 10393 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) | 10394 FW_CMD_REQUEST_F | 10395 FW_CMD_WRITE_F); 10396 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10397 10398 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10399 cmd.u.params.type = type; 10400 cmd.u.params.level = level; 10401 cmd.u.params.mode = mode; 10402 cmd.u.params.ch = channel; 10403 cmd.u.params.cl = class; 10404 cmd.u.params.unit = rateunit; 10405 cmd.u.params.rate = ratemode; 10406 cmd.u.params.min = cpu_to_be32(minrate); 10407 cmd.u.params.max = cpu_to_be32(maxrate); 10408 cmd.u.params.weight = cpu_to_be16(weight); 10409 cmd.u.params.pktsize = cpu_to_be16(pktsize); 10410 cmd.u.params.burstsize = cpu_to_be16(burstsize); 10411 10412 return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd), 10413 NULL, 1); 10414 } 10415 10416 /** 10417 * t4_i2c_rd - read I2C data from adapter 10418 * @adap: the adapter 10419 * @mbox: mailbox to use for the FW command 10420 * @port: Port number if per-port device; <0 if not 10421 * @devid: per-port device ID or absolute device ID 10422 * @offset: byte offset into device I2C space 10423 * @len: byte length of I2C space data 10424 * @buf: buffer in which to return I2C data 10425 * 10426 * Reads the I2C data from the indicated device and location. 10427 */ 10428 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port, 10429 unsigned int devid, unsigned int offset, 10430 unsigned int len, u8 *buf) 10431 { 10432 struct fw_ldst_cmd ldst_cmd, ldst_rpl; 10433 unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data); 10434 int ret = 0; 10435 10436 if (len > I2C_PAGE_SIZE) 10437 return -EINVAL; 10438 10439 /* Dont allow reads that spans multiple pages */ 10440 if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE) 10441 return -EINVAL; 10442 10443 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10444 ldst_cmd.op_to_addrspace = 10445 cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 10446 FW_CMD_REQUEST_F | 10447 FW_CMD_READ_F | 10448 FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C)); 10449 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 10450 ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port); 10451 ldst_cmd.u.i2c.did = devid; 10452 10453 while (len > 0) { 10454 unsigned int i2c_len = (len < i2c_max) ? len : i2c_max; 10455 10456 ldst_cmd.u.i2c.boffset = offset; 10457 ldst_cmd.u.i2c.blen = i2c_len; 10458 10459 ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd), 10460 &ldst_rpl); 10461 if (ret) 10462 break; 10463 10464 memcpy(buf, ldst_rpl.u.i2c.data, i2c_len); 10465 offset += i2c_len; 10466 buf += i2c_len; 10467 len -= i2c_len; 10468 } 10469 10470 return ret; 10471 } 10472 10473 /** 10474 * t4_set_vlan_acl - Set a VLAN id for the specified VF 10475 * @adap: the adapter 10476 * @mbox: mailbox to use for the FW command 10477 * @vf: one of the VFs instantiated by the specified PF 10478 * @vlan: The vlanid to be set 10479 */ 10480 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf, 10481 u16 vlan) 10482 { 10483 struct fw_acl_vlan_cmd vlan_cmd; 10484 unsigned int enable; 10485 10486 enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0); 10487 memset(&vlan_cmd, 0, sizeof(vlan_cmd)); 10488 vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) | 10489 FW_CMD_REQUEST_F | 10490 FW_CMD_WRITE_F | 10491 FW_CMD_EXEC_F | 10492 FW_ACL_VLAN_CMD_PFN_V(adap->pf) | 10493 FW_ACL_VLAN_CMD_VFN_V(vf)); 10494 vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd)); 10495 /* Drop all packets that donot match vlan id */ 10496 vlan_cmd.dropnovlan_fm = (enable 10497 ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F | 10498 FW_ACL_VLAN_CMD_FM_F) : 0); 10499 if (enable != 0) { 10500 vlan_cmd.nvlan = 1; 10501 vlan_cmd.vlanid[0] = cpu_to_be16(vlan); 10502 } 10503 10504 return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL); 10505 } 10506 10507 /** 10508 * modify_device_id - Modifies the device ID of the Boot BIOS image 10509 * @device_id: the device ID to write. 10510 * @boot_data: the boot image to modify. 10511 * 10512 * Write the supplied device ID to the boot BIOS image. 10513 */ 10514 static void modify_device_id(int device_id, u8 *boot_data) 10515 { 10516 struct cxgb4_pcir_data *pcir_header; 10517 struct legacy_pci_rom_hdr *header; 10518 u8 *cur_header = boot_data; 10519 u16 pcir_offset; 10520 10521 /* Loop through all chained images and change the device ID's */ 10522 do { 10523 header = (struct legacy_pci_rom_hdr *)cur_header; 10524 pcir_offset = le16_to_cpu(header->pcir_offset); 10525 pcir_header = (struct cxgb4_pcir_data *)(cur_header + 10526 pcir_offset); 10527 10528 /** 10529 * Only modify the Device ID if code type is Legacy or HP. 10530 * 0x00: Okay to modify 10531 * 0x01: FCODE. Do not modify 10532 * 0x03: Okay to modify 10533 * 0x04-0xFF: Do not modify 10534 */ 10535 if (pcir_header->code_type == CXGB4_HDR_CODE1) { 10536 u8 csum = 0; 10537 int i; 10538 10539 /** 10540 * Modify Device ID to match current adatper 10541 */ 10542 pcir_header->device_id = cpu_to_le16(device_id); 10543 10544 /** 10545 * Set checksum temporarily to 0. 10546 * We will recalculate it later. 10547 */ 10548 header->cksum = 0x0; 10549 10550 /** 10551 * Calculate and update checksum 10552 */ 10553 for (i = 0; i < (header->size512 * 512); i++) 10554 csum += cur_header[i]; 10555 10556 /** 10557 * Invert summed value to create the checksum 10558 * Writing new checksum value directly to the boot data 10559 */ 10560 cur_header[7] = -csum; 10561 10562 } else if (pcir_header->code_type == CXGB4_HDR_CODE2) { 10563 /** 10564 * Modify Device ID to match current adatper 10565 */ 10566 pcir_header->device_id = cpu_to_le16(device_id); 10567 } 10568 10569 /** 10570 * Move header pointer up to the next image in the ROM. 10571 */ 10572 cur_header += header->size512 * 512; 10573 } while (!(pcir_header->indicator & CXGB4_HDR_INDI)); 10574 } 10575 10576 /** 10577 * t4_load_boot - download boot flash 10578 * @adap: the adapter 10579 * @boot_data: the boot image to write 10580 * @boot_addr: offset in flash to write boot_data 10581 * @size: image size 10582 * 10583 * Write the supplied boot image to the card's serial flash. 10584 * The boot image has the following sections: a 28-byte header and the 10585 * boot image. 10586 */ 10587 int t4_load_boot(struct adapter *adap, u8 *boot_data, 10588 unsigned int boot_addr, unsigned int size) 10589 { 10590 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10591 unsigned int boot_sector = (boot_addr * 1024); 10592 struct cxgb4_pci_exp_rom_header *header; 10593 struct cxgb4_pcir_data *pcir_header; 10594 int pcir_offset; 10595 unsigned int i; 10596 u16 device_id; 10597 int ret, addr; 10598 10599 /** 10600 * Make sure the boot image does not encroach on the firmware region 10601 */ 10602 if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) { 10603 dev_err(adap->pdev_dev, "boot image encroaching on firmware region\n"); 10604 return -EFBIG; 10605 } 10606 10607 /* Get boot header */ 10608 header = (struct cxgb4_pci_exp_rom_header *)boot_data; 10609 pcir_offset = le16_to_cpu(header->pcir_offset); 10610 /* PCIR Data Structure */ 10611 pcir_header = (struct cxgb4_pcir_data *)&boot_data[pcir_offset]; 10612 10613 /** 10614 * Perform some primitive sanity testing to avoid accidentally 10615 * writing garbage over the boot sectors. We ought to check for 10616 * more but it's not worth it for now ... 10617 */ 10618 if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) { 10619 dev_err(adap->pdev_dev, "boot image too small/large\n"); 10620 return -EFBIG; 10621 } 10622 10623 if (le16_to_cpu(header->signature) != BOOT_SIGNATURE) { 10624 dev_err(adap->pdev_dev, "Boot image missing signature\n"); 10625 return -EINVAL; 10626 } 10627 10628 /* Check PCI header signature */ 10629 if (le32_to_cpu(pcir_header->signature) != PCIR_SIGNATURE) { 10630 dev_err(adap->pdev_dev, "PCI header missing signature\n"); 10631 return -EINVAL; 10632 } 10633 10634 /* Check Vendor ID matches Chelsio ID*/ 10635 if (le16_to_cpu(pcir_header->vendor_id) != PCI_VENDOR_ID_CHELSIO) { 10636 dev_err(adap->pdev_dev, "Vendor ID missing signature\n"); 10637 return -EINVAL; 10638 } 10639 10640 /** 10641 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot, 10642 * and Boot configuration data sections. These 3 boot sections span 10643 * sectors 0 to 7 in flash and live right before the FW image location. 10644 */ 10645 i = DIV_ROUND_UP(size ? size : FLASH_FW_START, sf_sec_size); 10646 ret = t4_flash_erase_sectors(adap, boot_sector >> 16, 10647 (boot_sector >> 16) + i - 1); 10648 10649 /** 10650 * If size == 0 then we're simply erasing the FLASH sectors associated 10651 * with the on-adapter option ROM file 10652 */ 10653 if (ret || size == 0) 10654 goto out; 10655 /* Retrieve adapter's device ID */ 10656 pci_read_config_word(adap->pdev, PCI_DEVICE_ID, &device_id); 10657 /* Want to deal with PF 0 so I strip off PF 4 indicator */ 10658 device_id = device_id & 0xf0ff; 10659 10660 /* Check PCIE Device ID */ 10661 if (le16_to_cpu(pcir_header->device_id) != device_id) { 10662 /** 10663 * Change the device ID in the Boot BIOS image to match 10664 * the Device ID of the current adapter. 10665 */ 10666 modify_device_id(device_id, boot_data); 10667 } 10668 10669 /** 10670 * Skip over the first SF_PAGE_SIZE worth of data and write it after 10671 * we finish copying the rest of the boot image. This will ensure 10672 * that the BIOS boot header will only be written if the boot image 10673 * was written in full. 10674 */ 10675 addr = boot_sector; 10676 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 10677 addr += SF_PAGE_SIZE; 10678 boot_data += SF_PAGE_SIZE; 10679 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data); 10680 if (ret) 10681 goto out; 10682 } 10683 10684 ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE, 10685 (const u8 *)header); 10686 10687 out: 10688 if (ret) 10689 dev_err(adap->pdev_dev, "boot image load failed, error %d\n", 10690 ret); 10691 return ret; 10692 } 10693 10694 /** 10695 * t4_flash_bootcfg_addr - return the address of the flash 10696 * optionrom configuration 10697 * @adapter: the adapter 10698 * 10699 * Return the address within the flash where the OptionROM Configuration 10700 * is stored, or an error if the device FLASH is too small to contain 10701 * a OptionROM Configuration. 10702 */ 10703 static int t4_flash_bootcfg_addr(struct adapter *adapter) 10704 { 10705 /** 10706 * If the device FLASH isn't large enough to hold a Firmware 10707 * Configuration File, return an error. 10708 */ 10709 if (adapter->params.sf_size < 10710 FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE) 10711 return -ENOSPC; 10712 10713 return FLASH_BOOTCFG_START; 10714 } 10715 10716 int t4_load_bootcfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 10717 { 10718 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10719 struct cxgb4_bootcfg_data *header; 10720 unsigned int flash_cfg_start_sec; 10721 unsigned int addr, npad; 10722 int ret, i, n, cfg_addr; 10723 10724 cfg_addr = t4_flash_bootcfg_addr(adap); 10725 if (cfg_addr < 0) 10726 return cfg_addr; 10727 10728 addr = cfg_addr; 10729 flash_cfg_start_sec = addr / SF_SEC_SIZE; 10730 10731 if (size > FLASH_BOOTCFG_MAX_SIZE) { 10732 dev_err(adap->pdev_dev, "bootcfg file too large, max is %u bytes\n", 10733 FLASH_BOOTCFG_MAX_SIZE); 10734 return -EFBIG; 10735 } 10736 10737 header = (struct cxgb4_bootcfg_data *)cfg_data; 10738 if (le16_to_cpu(header->signature) != BOOT_CFG_SIG) { 10739 dev_err(adap->pdev_dev, "Wrong bootcfg signature\n"); 10740 ret = -EINVAL; 10741 goto out; 10742 } 10743 10744 i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE, 10745 sf_sec_size); 10746 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 10747 flash_cfg_start_sec + i - 1); 10748 10749 /** 10750 * If size == 0 then we're simply erasing the FLASH sectors associated 10751 * with the on-adapter OptionROM Configuration File. 10752 */ 10753 if (ret || size == 0) 10754 goto out; 10755 10756 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 10757 for (i = 0; i < size; i += SF_PAGE_SIZE) { 10758 n = min_t(u32, size - i, SF_PAGE_SIZE); 10759 10760 ret = t4_write_flash(adap, addr, n, cfg_data); 10761 if (ret) 10762 goto out; 10763 10764 addr += SF_PAGE_SIZE; 10765 cfg_data += SF_PAGE_SIZE; 10766 } 10767 10768 npad = ((size + 4 - 1) & ~3) - size; 10769 for (i = 0; i < npad; i++) { 10770 u8 data = 0; 10771 10772 ret = t4_write_flash(adap, cfg_addr + size + i, 1, &data); 10773 if (ret) 10774 goto out; 10775 } 10776 10777 out: 10778 if (ret) 10779 dev_err(adap->pdev_dev, "boot config data %s failed %d\n", 10780 (size == 0 ? "clear" : "download"), ret); 10781 return ret; 10782 } 10783