xref: /linux/drivers/net/ethernet/chelsio/cxgb4/t4_hw.c (revision 84de8154c516b821bd60493b90d4782c5a4905ab)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41 
42 /**
43  *	t4_wait_op_done_val - wait until an operation is completed
44  *	@adapter: the adapter performing the operation
45  *	@reg: the register to check for completion
46  *	@mask: a single-bit field within @reg that indicates completion
47  *	@polarity: the value of the field when the operation is completed
48  *	@attempts: number of check iterations
49  *	@delay: delay in usecs between iterations
50  *	@valp: where to store the value of the register at completion time
51  *
52  *	Wait until an operation is completed by checking a bit in a register
53  *	up to @attempts times.  If @valp is not NULL the value of the register
54  *	at the time it indicated completion is stored there.  Returns 0 if the
55  *	operation completes and	-EAGAIN	otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 			       int polarity, int attempts, int delay, u32 *valp)
59 {
60 	while (1) {
61 		u32 val = t4_read_reg(adapter, reg);
62 
63 		if (!!(val & mask) == polarity) {
64 			if (valp)
65 				*valp = val;
66 			return 0;
67 		}
68 		if (--attempts == 0)
69 			return -EAGAIN;
70 		if (delay)
71 			udelay(delay);
72 	}
73 }
74 
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 				  int polarity, int attempts, int delay)
77 {
78 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 				   delay, NULL);
80 }
81 
82 /**
83  *	t4_set_reg_field - set a register field to a value
84  *	@adapter: the adapter to program
85  *	@addr: the register address
86  *	@mask: specifies the portion of the register to modify
87  *	@val: the new value for the register field
88  *
89  *	Sets a register field specified by the supplied mask to the
90  *	given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 		      u32 val)
94 {
95 	u32 v = t4_read_reg(adapter, addr) & ~mask;
96 
97 	t4_write_reg(adapter, addr, v | val);
98 	(void) t4_read_reg(adapter, addr);      /* flush */
99 }
100 
101 /**
102  *	t4_read_indirect - read indirectly addressed registers
103  *	@adap: the adapter
104  *	@addr_reg: register holding the indirect address
105  *	@data_reg: register holding the value of the indirect register
106  *	@vals: where the read register values are stored
107  *	@nregs: how many indirect registers to read
108  *	@start_idx: index of first indirect register to read
109  *
110  *	Reads registers that are accessed indirectly through an address/data
111  *	register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 			     unsigned int data_reg, u32 *vals,
115 			     unsigned int nregs, unsigned int start_idx)
116 {
117 	while (nregs--) {
118 		t4_write_reg(adap, addr_reg, start_idx);
119 		*vals++ = t4_read_reg(adap, data_reg);
120 		start_idx++;
121 	}
122 }
123 
124 /**
125  *	t4_write_indirect - write indirectly addressed registers
126  *	@adap: the adapter
127  *	@addr_reg: register holding the indirect addresses
128  *	@data_reg: register holding the value for the indirect registers
129  *	@vals: values to write
130  *	@nregs: how many indirect registers to write
131  *	@start_idx: address of first indirect register to write
132  *
133  *	Writes a sequential block of registers that are accessed indirectly
134  *	through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 		       unsigned int data_reg, const u32 *vals,
138 		       unsigned int nregs, unsigned int start_idx)
139 {
140 	while (nregs--) {
141 		t4_write_reg(adap, addr_reg, start_idx++);
142 		t4_write_reg(adap, data_reg, *vals++);
143 	}
144 }
145 
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 
156 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 		req |= ENABLE_F;
158 	else
159 		req |= T6_ENABLE_F;
160 
161 	if (is_t4(adap->params.chip))
162 		req |= LOCALCFG_F;
163 
164 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 
167 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 	 * Configuration Space read.  (None of the other fields matter when
169 	 * ENABLE is 0 so a simple register write is easier than a
170 	 * read-modify-write via t4_set_reg_field().)
171 	 */
172 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174 
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 	static const char *const reason[] = {
186 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 		"Reserved",                     /* reserved */
194 	};
195 	u32 pcie_fw;
196 
197 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 	if (pcie_fw & PCIE_FW_ERR_F) {
199 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 		adap->flags &= ~CXGB4_FW_OK;
202 	}
203 }
204 
205 /*
206  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
207  */
208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
209 			 u32 mbox_addr)
210 {
211 	for ( ; nflit; nflit--, mbox_addr += 8)
212 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
213 }
214 
215 /*
216  * Handle a FW assertion reported in a mailbox.
217  */
218 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
219 {
220 	struct fw_debug_cmd asrt;
221 
222 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
223 	dev_alert(adap->pdev_dev,
224 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
225 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
226 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
227 }
228 
229 /**
230  *	t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
231  *	@adapter: the adapter
232  *	@cmd: the Firmware Mailbox Command or Reply
233  *	@size: command length in bytes
234  *	@access: the time (ms) needed to access the Firmware Mailbox
235  *	@execute: the time (ms) the command spent being executed
236  */
237 static void t4_record_mbox(struct adapter *adapter,
238 			   const __be64 *cmd, unsigned int size,
239 			   int access, int execute)
240 {
241 	struct mbox_cmd_log *log = adapter->mbox_log;
242 	struct mbox_cmd *entry;
243 	int i;
244 
245 	entry = mbox_cmd_log_entry(log, log->cursor++);
246 	if (log->cursor == log->size)
247 		log->cursor = 0;
248 
249 	for (i = 0; i < size / 8; i++)
250 		entry->cmd[i] = be64_to_cpu(cmd[i]);
251 	while (i < MBOX_LEN / 8)
252 		entry->cmd[i++] = 0;
253 	entry->timestamp = jiffies;
254 	entry->seqno = log->seqno++;
255 	entry->access = access;
256 	entry->execute = execute;
257 }
258 
259 /**
260  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
261  *	@adap: the adapter
262  *	@mbox: index of the mailbox to use
263  *	@cmd: the command to write
264  *	@size: command length in bytes
265  *	@rpl: where to optionally store the reply
266  *	@sleep_ok: if true we may sleep while awaiting command completion
267  *	@timeout: time to wait for command to finish before timing out
268  *
269  *	Sends the given command to FW through the selected mailbox and waits
270  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
271  *	store the FW's reply to the command.  The command and its optional
272  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
273  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
274  *	the response.  If sleeping is allowed we use progressive backoff
275  *	otherwise we spin.
276  *
277  *	The return value is 0 on success or a negative errno on failure.  A
278  *	failure can happen either because we are not able to execute the
279  *	command or FW executes it but signals an error.  In the latter case
280  *	the return value is the error code indicated by FW (negated).
281  */
282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
283 			    int size, void *rpl, bool sleep_ok, int timeout)
284 {
285 	static const int delay[] = {
286 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
287 	};
288 
289 	struct mbox_list entry;
290 	u16 access = 0;
291 	u16 execute = 0;
292 	u32 v;
293 	u64 res;
294 	int i, ms, delay_idx, ret;
295 	const __be64 *p = cmd;
296 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
297 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
298 	__be64 cmd_rpl[MBOX_LEN / 8];
299 	u32 pcie_fw;
300 
301 	if ((size & 15) || size > MBOX_LEN)
302 		return -EINVAL;
303 
304 	/*
305 	 * If the device is off-line, as in EEH, commands will time out.
306 	 * Fail them early so we don't waste time waiting.
307 	 */
308 	if (adap->pdev->error_state != pci_channel_io_normal)
309 		return -EIO;
310 
311 	/* If we have a negative timeout, that implies that we can't sleep. */
312 	if (timeout < 0) {
313 		sleep_ok = false;
314 		timeout = -timeout;
315 	}
316 
317 	/* Queue ourselves onto the mailbox access list.  When our entry is at
318 	 * the front of the list, we have rights to access the mailbox.  So we
319 	 * wait [for a while] till we're at the front [or bail out with an
320 	 * EBUSY] ...
321 	 */
322 	spin_lock_bh(&adap->mbox_lock);
323 	list_add_tail(&entry.list, &adap->mlist.list);
324 	spin_unlock_bh(&adap->mbox_lock);
325 
326 	delay_idx = 0;
327 	ms = delay[0];
328 
329 	for (i = 0; ; i += ms) {
330 		/* If we've waited too long, return a busy indication.  This
331 		 * really ought to be based on our initial position in the
332 		 * mailbox access list but this is a start.  We very rarely
333 		 * contend on access to the mailbox ...
334 		 */
335 		pcie_fw = t4_read_reg(adap, PCIE_FW_A);
336 		if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
337 			spin_lock_bh(&adap->mbox_lock);
338 			list_del(&entry.list);
339 			spin_unlock_bh(&adap->mbox_lock);
340 			ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
341 			t4_record_mbox(adap, cmd, size, access, ret);
342 			return ret;
343 		}
344 
345 		/* If we're at the head, break out and start the mailbox
346 		 * protocol.
347 		 */
348 		if (list_first_entry(&adap->mlist.list, struct mbox_list,
349 				     list) == &entry)
350 			break;
351 
352 		/* Delay for a bit before checking again ... */
353 		if (sleep_ok) {
354 			ms = delay[delay_idx];  /* last element may repeat */
355 			if (delay_idx < ARRAY_SIZE(delay) - 1)
356 				delay_idx++;
357 			msleep(ms);
358 		} else {
359 			mdelay(ms);
360 		}
361 	}
362 
363 	/* Loop trying to get ownership of the mailbox.  Return an error
364 	 * if we can't gain ownership.
365 	 */
366 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
368 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
369 	if (v != MBOX_OWNER_DRV) {
370 		spin_lock_bh(&adap->mbox_lock);
371 		list_del(&entry.list);
372 		spin_unlock_bh(&adap->mbox_lock);
373 		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
374 		t4_record_mbox(adap, cmd, size, access, ret);
375 		return ret;
376 	}
377 
378 	/* Copy in the new mailbox command and send it on its way ... */
379 	t4_record_mbox(adap, cmd, size, access, 0);
380 	for (i = 0; i < size; i += 8)
381 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
382 
383 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
384 	t4_read_reg(adap, ctl_reg);          /* flush write */
385 
386 	delay_idx = 0;
387 	ms = delay[0];
388 
389 	for (i = 0;
390 	     !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
391 	     i < timeout;
392 	     i += ms) {
393 		if (sleep_ok) {
394 			ms = delay[delay_idx];  /* last element may repeat */
395 			if (delay_idx < ARRAY_SIZE(delay) - 1)
396 				delay_idx++;
397 			msleep(ms);
398 		} else
399 			mdelay(ms);
400 
401 		v = t4_read_reg(adap, ctl_reg);
402 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
403 			if (!(v & MBMSGVALID_F)) {
404 				t4_write_reg(adap, ctl_reg, 0);
405 				continue;
406 			}
407 
408 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
409 			res = be64_to_cpu(cmd_rpl[0]);
410 
411 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
412 				fw_asrt(adap, data_reg);
413 				res = FW_CMD_RETVAL_V(EIO);
414 			} else if (rpl) {
415 				memcpy(rpl, cmd_rpl, size);
416 			}
417 
418 			t4_write_reg(adap, ctl_reg, 0);
419 
420 			execute = i + ms;
421 			t4_record_mbox(adap, cmd_rpl,
422 				       MBOX_LEN, access, execute);
423 			spin_lock_bh(&adap->mbox_lock);
424 			list_del(&entry.list);
425 			spin_unlock_bh(&adap->mbox_lock);
426 			return -FW_CMD_RETVAL_G((int)res);
427 		}
428 	}
429 
430 	ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
431 	t4_record_mbox(adap, cmd, size, access, ret);
432 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
433 		*(const u8 *)cmd, mbox);
434 	t4_report_fw_error(adap);
435 	spin_lock_bh(&adap->mbox_lock);
436 	list_del(&entry.list);
437 	spin_unlock_bh(&adap->mbox_lock);
438 	t4_fatal_err(adap);
439 	return ret;
440 }
441 
442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
443 		    void *rpl, bool sleep_ok)
444 {
445 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
446 				       FW_CMD_MAX_TIMEOUT);
447 }
448 
449 static int t4_edc_err_read(struct adapter *adap, int idx)
450 {
451 	u32 edc_ecc_err_addr_reg;
452 	u32 rdata_reg;
453 
454 	if (is_t4(adap->params.chip)) {
455 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
456 		return 0;
457 	}
458 	if (idx != 0 && idx != 1) {
459 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
460 		return 0;
461 	}
462 
463 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
464 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
465 
466 	CH_WARN(adap,
467 		"edc%d err addr 0x%x: 0x%x.\n",
468 		idx, edc_ecc_err_addr_reg,
469 		t4_read_reg(adap, edc_ecc_err_addr_reg));
470 	CH_WARN(adap,
471 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
472 		rdata_reg,
473 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
474 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
475 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
476 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
477 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
478 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
479 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
480 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
481 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
482 
483 	return 0;
484 }
485 
486 /**
487  * t4_memory_rw_init - Get memory window relative offset, base, and size.
488  * @adap: the adapter
489  * @win: PCI-E Memory Window to use
490  * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
491  * @mem_off: memory relative offset with respect to @mtype.
492  * @mem_base: configured memory base address.
493  * @mem_aperture: configured memory window aperture.
494  *
495  * Get the configured memory window's relative offset, base, and size.
496  */
497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
498 		      u32 *mem_base, u32 *mem_aperture)
499 {
500 	u32 edc_size, mc_size, mem_reg;
501 
502 	/* Offset into the region of memory which is being accessed
503 	 * MEM_EDC0 = 0
504 	 * MEM_EDC1 = 1
505 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
506 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
507 	 * MEM_HMA  = 4
508 	 */
509 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
510 	if (mtype == MEM_HMA) {
511 		*mem_off = 2 * (edc_size * 1024 * 1024);
512 	} else if (mtype != MEM_MC1) {
513 		*mem_off = (mtype * (edc_size * 1024 * 1024));
514 	} else {
515 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
516 						      MA_EXT_MEMORY0_BAR_A));
517 		*mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
518 	}
519 
520 	/* Each PCI-E Memory Window is programmed with a window size -- or
521 	 * "aperture" -- which controls the granularity of its mapping onto
522 	 * adapter memory.  We need to grab that aperture in order to know
523 	 * how to use the specified window.  The window is also programmed
524 	 * with the base address of the Memory Window in BAR0's address
525 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
526 	 * the address is relative to BAR0.
527 	 */
528 	mem_reg = t4_read_reg(adap,
529 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
530 						  win));
531 	/* a dead adapter will return 0xffffffff for PIO reads */
532 	if (mem_reg == 0xffffffff)
533 		return -ENXIO;
534 
535 	*mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
536 	*mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
537 	if (is_t4(adap->params.chip))
538 		*mem_base -= adap->t4_bar0;
539 
540 	return 0;
541 }
542 
543 /**
544  * t4_memory_update_win - Move memory window to specified address.
545  * @adap: the adapter
546  * @win: PCI-E Memory Window to use
547  * @addr: location to move.
548  *
549  * Move memory window to specified address.
550  */
551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
552 {
553 	t4_write_reg(adap,
554 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
555 		     addr);
556 	/* Read it back to ensure that changes propagate before we
557 	 * attempt to use the new value.
558 	 */
559 	t4_read_reg(adap,
560 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
561 }
562 
563 /**
564  * t4_memory_rw_residual - Read/Write residual data.
565  * @adap: the adapter
566  * @off: relative offset within residual to start read/write.
567  * @addr: address within indicated memory type.
568  * @buf: host memory buffer
569  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
570  *
571  * Read/Write residual data less than 32-bits.
572  */
573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
574 			   int dir)
575 {
576 	union {
577 		u32 word;
578 		char byte[4];
579 	} last;
580 	unsigned char *bp;
581 	int i;
582 
583 	if (dir == T4_MEMORY_READ) {
584 		last.word = le32_to_cpu((__force __le32)
585 					t4_read_reg(adap, addr));
586 		for (bp = (unsigned char *)buf, i = off; i < 4; i++)
587 			bp[i] = last.byte[i];
588 	} else {
589 		last.word = *buf;
590 		for (i = off; i < 4; i++)
591 			last.byte[i] = 0;
592 		t4_write_reg(adap, addr,
593 			     (__force u32)cpu_to_le32(last.word));
594 	}
595 }
596 
597 /**
598  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
599  *	@adap: the adapter
600  *	@win: PCI-E Memory Window to use
601  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
602  *	@addr: address within indicated memory type
603  *	@len: amount of memory to transfer
604  *	@hbuf: host memory buffer
605  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
606  *
607  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
608  *	firmware memory address and host buffer must be aligned on 32-bit
609  *	boundaries; the length may be arbitrary.  The memory is transferred as
610  *	a raw byte sequence from/to the firmware's memory.  If this memory
611  *	contains data structures which contain multi-byte integers, it's the
612  *	caller's responsibility to perform appropriate byte order conversions.
613  */
614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
615 		 u32 len, void *hbuf, int dir)
616 {
617 	u32 pos, offset, resid, memoffset;
618 	u32 win_pf, mem_aperture, mem_base;
619 	u32 *buf;
620 	int ret;
621 
622 	/* Argument sanity checks ...
623 	 */
624 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
625 		return -EINVAL;
626 	buf = (u32 *)hbuf;
627 
628 	/* It's convenient to be able to handle lengths which aren't a
629 	 * multiple of 32-bits because we often end up transferring files to
630 	 * the firmware.  So we'll handle that by normalizing the length here
631 	 * and then handling any residual transfer at the end.
632 	 */
633 	resid = len & 0x3;
634 	len -= resid;
635 
636 	ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
637 				&mem_aperture);
638 	if (ret)
639 		return ret;
640 
641 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
642 	addr = addr + memoffset;
643 
644 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
645 
646 	/* Calculate our initial PCI-E Memory Window Position and Offset into
647 	 * that Window.
648 	 */
649 	pos = addr & ~(mem_aperture - 1);
650 	offset = addr - pos;
651 
652 	/* Set up initial PCI-E Memory Window to cover the start of our
653 	 * transfer.
654 	 */
655 	t4_memory_update_win(adap, win, pos | win_pf);
656 
657 	/* Transfer data to/from the adapter as long as there's an integral
658 	 * number of 32-bit transfers to complete.
659 	 *
660 	 * A note on Endianness issues:
661 	 *
662 	 * The "register" reads and writes below from/to the PCI-E Memory
663 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
664 	 * Little-Endian "swizzel."  As a result, if we have the following
665 	 * data in adapter memory:
666 	 *
667 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
668 	 *     Address:      i+0  i+1  i+2  i+3
669 	 *
670 	 * Then a read of the adapter memory via the PCI-E Memory Window
671 	 * will yield:
672 	 *
673 	 *     x = readl(i)
674 	 *         31                  0
675 	 *         [ b3 | b2 | b1 | b0 ]
676 	 *
677 	 * If this value is stored into local memory on a Little-Endian system
678 	 * it will show up correctly in local memory as:
679 	 *
680 	 *     ( ..., b0, b1, b2, b3, ... )
681 	 *
682 	 * But on a Big-Endian system, the store will show up in memory
683 	 * incorrectly swizzled as:
684 	 *
685 	 *     ( ..., b3, b2, b1, b0, ... )
686 	 *
687 	 * So we need to account for this in the reads and writes to the
688 	 * PCI-E Memory Window below by undoing the register read/write
689 	 * swizzels.
690 	 */
691 	while (len > 0) {
692 		if (dir == T4_MEMORY_READ)
693 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
694 						mem_base + offset));
695 		else
696 			t4_write_reg(adap, mem_base + offset,
697 				     (__force u32)cpu_to_le32(*buf++));
698 		offset += sizeof(__be32);
699 		len -= sizeof(__be32);
700 
701 		/* If we've reached the end of our current window aperture,
702 		 * move the PCI-E Memory Window on to the next.  Note that
703 		 * doing this here after "len" may be 0 allows us to set up
704 		 * the PCI-E Memory Window for a possible final residual
705 		 * transfer below ...
706 		 */
707 		if (offset == mem_aperture) {
708 			pos += mem_aperture;
709 			offset = 0;
710 			t4_memory_update_win(adap, win, pos | win_pf);
711 		}
712 	}
713 
714 	/* If the original transfer had a length which wasn't a multiple of
715 	 * 32-bits, now's where we need to finish off the transfer of the
716 	 * residual amount.  The PCI-E Memory Window has already been moved
717 	 * above (if necessary) to cover this final transfer.
718 	 */
719 	if (resid)
720 		t4_memory_rw_residual(adap, resid, mem_base + offset,
721 				      (u8 *)buf, dir);
722 
723 	return 0;
724 }
725 
726 /* Return the specified PCI-E Configuration Space register from our Physical
727  * Function.  We try first via a Firmware LDST Command since we prefer to let
728  * the firmware own all of these registers, but if that fails we go for it
729  * directly ourselves.
730  */
731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
732 {
733 	u32 val, ldst_addrspace;
734 
735 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
736 	 * retrieve the specified PCI-E Configuration Space register.
737 	 */
738 	struct fw_ldst_cmd ldst_cmd;
739 	int ret;
740 
741 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
742 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
743 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
744 					       FW_CMD_REQUEST_F |
745 					       FW_CMD_READ_F |
746 					       ldst_addrspace);
747 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
748 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
749 	ldst_cmd.u.pcie.ctrl_to_fn =
750 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
751 	ldst_cmd.u.pcie.r = reg;
752 
753 	/* If the LDST Command succeeds, return the result, otherwise
754 	 * fall through to reading it directly ourselves ...
755 	 */
756 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
757 			 &ldst_cmd);
758 	if (ret == 0)
759 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
760 	else
761 		/* Read the desired Configuration Space register via the PCI-E
762 		 * Backdoor mechanism.
763 		 */
764 		t4_hw_pci_read_cfg4(adap, reg, &val);
765 	return val;
766 }
767 
768 /* Get the window based on base passed to it.
769  * Window aperture is currently unhandled, but there is no use case for it
770  * right now
771  */
772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
773 			 u32 memwin_base)
774 {
775 	u32 ret;
776 
777 	if (is_t4(adap->params.chip)) {
778 		u32 bar0;
779 
780 		/* Truncation intentional: we only read the bottom 32-bits of
781 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
782 		 * mechanism to read BAR0 instead of using
783 		 * pci_resource_start() because we could be operating from
784 		 * within a Virtual Machine which is trapping our accesses to
785 		 * our Configuration Space and we need to set up the PCI-E
786 		 * Memory Window decoders with the actual addresses which will
787 		 * be coming across the PCI-E link.
788 		 */
789 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
790 		bar0 &= pci_mask;
791 		adap->t4_bar0 = bar0;
792 
793 		ret = bar0 + memwin_base;
794 	} else {
795 		/* For T5, only relative offset inside the PCIe BAR is passed */
796 		ret = memwin_base;
797 	}
798 	return ret;
799 }
800 
801 /* Get the default utility window (win0) used by everyone */
802 u32 t4_get_util_window(struct adapter *adap)
803 {
804 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
805 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
806 }
807 
808 /* Set up memory window for accessing adapter memory ranges.  (Read
809  * back MA register to ensure that changes propagate before we attempt
810  * to use the new values.)
811  */
812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
813 {
814 	t4_write_reg(adap,
815 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
816 		     memwin_base | BIR_V(0) |
817 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
818 	t4_read_reg(adap,
819 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
820 }
821 
822 /**
823  *	t4_get_regs_len - return the size of the chips register set
824  *	@adapter: the adapter
825  *
826  *	Returns the size of the chip's BAR0 register space.
827  */
828 unsigned int t4_get_regs_len(struct adapter *adapter)
829 {
830 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
831 
832 	switch (chip_version) {
833 	case CHELSIO_T4:
834 		return T4_REGMAP_SIZE;
835 
836 	case CHELSIO_T5:
837 	case CHELSIO_T6:
838 		return T5_REGMAP_SIZE;
839 	}
840 
841 	dev_err(adapter->pdev_dev,
842 		"Unsupported chip version %d\n", chip_version);
843 	return 0;
844 }
845 
846 /**
847  *	t4_get_regs - read chip registers into provided buffer
848  *	@adap: the adapter
849  *	@buf: register buffer
850  *	@buf_size: size (in bytes) of register buffer
851  *
852  *	If the provided register buffer isn't large enough for the chip's
853  *	full register range, the register dump will be truncated to the
854  *	register buffer's size.
855  */
856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
857 {
858 	static const unsigned int t4_reg_ranges[] = {
859 		0x1008, 0x1108,
860 		0x1180, 0x1184,
861 		0x1190, 0x1194,
862 		0x11a0, 0x11a4,
863 		0x11b0, 0x11b4,
864 		0x11fc, 0x123c,
865 		0x1300, 0x173c,
866 		0x1800, 0x18fc,
867 		0x3000, 0x30d8,
868 		0x30e0, 0x30e4,
869 		0x30ec, 0x5910,
870 		0x5920, 0x5924,
871 		0x5960, 0x5960,
872 		0x5968, 0x5968,
873 		0x5970, 0x5970,
874 		0x5978, 0x5978,
875 		0x5980, 0x5980,
876 		0x5988, 0x5988,
877 		0x5990, 0x5990,
878 		0x5998, 0x5998,
879 		0x59a0, 0x59d4,
880 		0x5a00, 0x5ae0,
881 		0x5ae8, 0x5ae8,
882 		0x5af0, 0x5af0,
883 		0x5af8, 0x5af8,
884 		0x6000, 0x6098,
885 		0x6100, 0x6150,
886 		0x6200, 0x6208,
887 		0x6240, 0x6248,
888 		0x6280, 0x62b0,
889 		0x62c0, 0x6338,
890 		0x6370, 0x638c,
891 		0x6400, 0x643c,
892 		0x6500, 0x6524,
893 		0x6a00, 0x6a04,
894 		0x6a14, 0x6a38,
895 		0x6a60, 0x6a70,
896 		0x6a78, 0x6a78,
897 		0x6b00, 0x6b0c,
898 		0x6b1c, 0x6b84,
899 		0x6bf0, 0x6bf8,
900 		0x6c00, 0x6c0c,
901 		0x6c1c, 0x6c84,
902 		0x6cf0, 0x6cf8,
903 		0x6d00, 0x6d0c,
904 		0x6d1c, 0x6d84,
905 		0x6df0, 0x6df8,
906 		0x6e00, 0x6e0c,
907 		0x6e1c, 0x6e84,
908 		0x6ef0, 0x6ef8,
909 		0x6f00, 0x6f0c,
910 		0x6f1c, 0x6f84,
911 		0x6ff0, 0x6ff8,
912 		0x7000, 0x700c,
913 		0x701c, 0x7084,
914 		0x70f0, 0x70f8,
915 		0x7100, 0x710c,
916 		0x711c, 0x7184,
917 		0x71f0, 0x71f8,
918 		0x7200, 0x720c,
919 		0x721c, 0x7284,
920 		0x72f0, 0x72f8,
921 		0x7300, 0x730c,
922 		0x731c, 0x7384,
923 		0x73f0, 0x73f8,
924 		0x7400, 0x7450,
925 		0x7500, 0x7530,
926 		0x7600, 0x760c,
927 		0x7614, 0x761c,
928 		0x7680, 0x76cc,
929 		0x7700, 0x7798,
930 		0x77c0, 0x77fc,
931 		0x7900, 0x79fc,
932 		0x7b00, 0x7b58,
933 		0x7b60, 0x7b84,
934 		0x7b8c, 0x7c38,
935 		0x7d00, 0x7d38,
936 		0x7d40, 0x7d80,
937 		0x7d8c, 0x7ddc,
938 		0x7de4, 0x7e04,
939 		0x7e10, 0x7e1c,
940 		0x7e24, 0x7e38,
941 		0x7e40, 0x7e44,
942 		0x7e4c, 0x7e78,
943 		0x7e80, 0x7ea4,
944 		0x7eac, 0x7edc,
945 		0x7ee8, 0x7efc,
946 		0x8dc0, 0x8e04,
947 		0x8e10, 0x8e1c,
948 		0x8e30, 0x8e78,
949 		0x8ea0, 0x8eb8,
950 		0x8ec0, 0x8f6c,
951 		0x8fc0, 0x9008,
952 		0x9010, 0x9058,
953 		0x9060, 0x9060,
954 		0x9068, 0x9074,
955 		0x90fc, 0x90fc,
956 		0x9400, 0x9408,
957 		0x9410, 0x9458,
958 		0x9600, 0x9600,
959 		0x9608, 0x9638,
960 		0x9640, 0x96bc,
961 		0x9800, 0x9808,
962 		0x9820, 0x983c,
963 		0x9850, 0x9864,
964 		0x9c00, 0x9c6c,
965 		0x9c80, 0x9cec,
966 		0x9d00, 0x9d6c,
967 		0x9d80, 0x9dec,
968 		0x9e00, 0x9e6c,
969 		0x9e80, 0x9eec,
970 		0x9f00, 0x9f6c,
971 		0x9f80, 0x9fec,
972 		0xd004, 0xd004,
973 		0xd010, 0xd03c,
974 		0xdfc0, 0xdfe0,
975 		0xe000, 0xea7c,
976 		0xf000, 0x11110,
977 		0x11118, 0x11190,
978 		0x19040, 0x1906c,
979 		0x19078, 0x19080,
980 		0x1908c, 0x190e4,
981 		0x190f0, 0x190f8,
982 		0x19100, 0x19110,
983 		0x19120, 0x19124,
984 		0x19150, 0x19194,
985 		0x1919c, 0x191b0,
986 		0x191d0, 0x191e8,
987 		0x19238, 0x1924c,
988 		0x193f8, 0x1943c,
989 		0x1944c, 0x19474,
990 		0x19490, 0x194e0,
991 		0x194f0, 0x194f8,
992 		0x19800, 0x19c08,
993 		0x19c10, 0x19c90,
994 		0x19ca0, 0x19ce4,
995 		0x19cf0, 0x19d40,
996 		0x19d50, 0x19d94,
997 		0x19da0, 0x19de8,
998 		0x19df0, 0x19e40,
999 		0x19e50, 0x19e90,
1000 		0x19ea0, 0x19f4c,
1001 		0x1a000, 0x1a004,
1002 		0x1a010, 0x1a06c,
1003 		0x1a0b0, 0x1a0e4,
1004 		0x1a0ec, 0x1a0f4,
1005 		0x1a100, 0x1a108,
1006 		0x1a114, 0x1a120,
1007 		0x1a128, 0x1a130,
1008 		0x1a138, 0x1a138,
1009 		0x1a190, 0x1a1c4,
1010 		0x1a1fc, 0x1a1fc,
1011 		0x1e040, 0x1e04c,
1012 		0x1e284, 0x1e28c,
1013 		0x1e2c0, 0x1e2c0,
1014 		0x1e2e0, 0x1e2e0,
1015 		0x1e300, 0x1e384,
1016 		0x1e3c0, 0x1e3c8,
1017 		0x1e440, 0x1e44c,
1018 		0x1e684, 0x1e68c,
1019 		0x1e6c0, 0x1e6c0,
1020 		0x1e6e0, 0x1e6e0,
1021 		0x1e700, 0x1e784,
1022 		0x1e7c0, 0x1e7c8,
1023 		0x1e840, 0x1e84c,
1024 		0x1ea84, 0x1ea8c,
1025 		0x1eac0, 0x1eac0,
1026 		0x1eae0, 0x1eae0,
1027 		0x1eb00, 0x1eb84,
1028 		0x1ebc0, 0x1ebc8,
1029 		0x1ec40, 0x1ec4c,
1030 		0x1ee84, 0x1ee8c,
1031 		0x1eec0, 0x1eec0,
1032 		0x1eee0, 0x1eee0,
1033 		0x1ef00, 0x1ef84,
1034 		0x1efc0, 0x1efc8,
1035 		0x1f040, 0x1f04c,
1036 		0x1f284, 0x1f28c,
1037 		0x1f2c0, 0x1f2c0,
1038 		0x1f2e0, 0x1f2e0,
1039 		0x1f300, 0x1f384,
1040 		0x1f3c0, 0x1f3c8,
1041 		0x1f440, 0x1f44c,
1042 		0x1f684, 0x1f68c,
1043 		0x1f6c0, 0x1f6c0,
1044 		0x1f6e0, 0x1f6e0,
1045 		0x1f700, 0x1f784,
1046 		0x1f7c0, 0x1f7c8,
1047 		0x1f840, 0x1f84c,
1048 		0x1fa84, 0x1fa8c,
1049 		0x1fac0, 0x1fac0,
1050 		0x1fae0, 0x1fae0,
1051 		0x1fb00, 0x1fb84,
1052 		0x1fbc0, 0x1fbc8,
1053 		0x1fc40, 0x1fc4c,
1054 		0x1fe84, 0x1fe8c,
1055 		0x1fec0, 0x1fec0,
1056 		0x1fee0, 0x1fee0,
1057 		0x1ff00, 0x1ff84,
1058 		0x1ffc0, 0x1ffc8,
1059 		0x20000, 0x2002c,
1060 		0x20100, 0x2013c,
1061 		0x20190, 0x201a0,
1062 		0x201a8, 0x201b8,
1063 		0x201c4, 0x201c8,
1064 		0x20200, 0x20318,
1065 		0x20400, 0x204b4,
1066 		0x204c0, 0x20528,
1067 		0x20540, 0x20614,
1068 		0x21000, 0x21040,
1069 		0x2104c, 0x21060,
1070 		0x210c0, 0x210ec,
1071 		0x21200, 0x21268,
1072 		0x21270, 0x21284,
1073 		0x212fc, 0x21388,
1074 		0x21400, 0x21404,
1075 		0x21500, 0x21500,
1076 		0x21510, 0x21518,
1077 		0x2152c, 0x21530,
1078 		0x2153c, 0x2153c,
1079 		0x21550, 0x21554,
1080 		0x21600, 0x21600,
1081 		0x21608, 0x2161c,
1082 		0x21624, 0x21628,
1083 		0x21630, 0x21634,
1084 		0x2163c, 0x2163c,
1085 		0x21700, 0x2171c,
1086 		0x21780, 0x2178c,
1087 		0x21800, 0x21818,
1088 		0x21820, 0x21828,
1089 		0x21830, 0x21848,
1090 		0x21850, 0x21854,
1091 		0x21860, 0x21868,
1092 		0x21870, 0x21870,
1093 		0x21878, 0x21898,
1094 		0x218a0, 0x218a8,
1095 		0x218b0, 0x218c8,
1096 		0x218d0, 0x218d4,
1097 		0x218e0, 0x218e8,
1098 		0x218f0, 0x218f0,
1099 		0x218f8, 0x21a18,
1100 		0x21a20, 0x21a28,
1101 		0x21a30, 0x21a48,
1102 		0x21a50, 0x21a54,
1103 		0x21a60, 0x21a68,
1104 		0x21a70, 0x21a70,
1105 		0x21a78, 0x21a98,
1106 		0x21aa0, 0x21aa8,
1107 		0x21ab0, 0x21ac8,
1108 		0x21ad0, 0x21ad4,
1109 		0x21ae0, 0x21ae8,
1110 		0x21af0, 0x21af0,
1111 		0x21af8, 0x21c18,
1112 		0x21c20, 0x21c20,
1113 		0x21c28, 0x21c30,
1114 		0x21c38, 0x21c38,
1115 		0x21c80, 0x21c98,
1116 		0x21ca0, 0x21ca8,
1117 		0x21cb0, 0x21cc8,
1118 		0x21cd0, 0x21cd4,
1119 		0x21ce0, 0x21ce8,
1120 		0x21cf0, 0x21cf0,
1121 		0x21cf8, 0x21d7c,
1122 		0x21e00, 0x21e04,
1123 		0x22000, 0x2202c,
1124 		0x22100, 0x2213c,
1125 		0x22190, 0x221a0,
1126 		0x221a8, 0x221b8,
1127 		0x221c4, 0x221c8,
1128 		0x22200, 0x22318,
1129 		0x22400, 0x224b4,
1130 		0x224c0, 0x22528,
1131 		0x22540, 0x22614,
1132 		0x23000, 0x23040,
1133 		0x2304c, 0x23060,
1134 		0x230c0, 0x230ec,
1135 		0x23200, 0x23268,
1136 		0x23270, 0x23284,
1137 		0x232fc, 0x23388,
1138 		0x23400, 0x23404,
1139 		0x23500, 0x23500,
1140 		0x23510, 0x23518,
1141 		0x2352c, 0x23530,
1142 		0x2353c, 0x2353c,
1143 		0x23550, 0x23554,
1144 		0x23600, 0x23600,
1145 		0x23608, 0x2361c,
1146 		0x23624, 0x23628,
1147 		0x23630, 0x23634,
1148 		0x2363c, 0x2363c,
1149 		0x23700, 0x2371c,
1150 		0x23780, 0x2378c,
1151 		0x23800, 0x23818,
1152 		0x23820, 0x23828,
1153 		0x23830, 0x23848,
1154 		0x23850, 0x23854,
1155 		0x23860, 0x23868,
1156 		0x23870, 0x23870,
1157 		0x23878, 0x23898,
1158 		0x238a0, 0x238a8,
1159 		0x238b0, 0x238c8,
1160 		0x238d0, 0x238d4,
1161 		0x238e0, 0x238e8,
1162 		0x238f0, 0x238f0,
1163 		0x238f8, 0x23a18,
1164 		0x23a20, 0x23a28,
1165 		0x23a30, 0x23a48,
1166 		0x23a50, 0x23a54,
1167 		0x23a60, 0x23a68,
1168 		0x23a70, 0x23a70,
1169 		0x23a78, 0x23a98,
1170 		0x23aa0, 0x23aa8,
1171 		0x23ab0, 0x23ac8,
1172 		0x23ad0, 0x23ad4,
1173 		0x23ae0, 0x23ae8,
1174 		0x23af0, 0x23af0,
1175 		0x23af8, 0x23c18,
1176 		0x23c20, 0x23c20,
1177 		0x23c28, 0x23c30,
1178 		0x23c38, 0x23c38,
1179 		0x23c80, 0x23c98,
1180 		0x23ca0, 0x23ca8,
1181 		0x23cb0, 0x23cc8,
1182 		0x23cd0, 0x23cd4,
1183 		0x23ce0, 0x23ce8,
1184 		0x23cf0, 0x23cf0,
1185 		0x23cf8, 0x23d7c,
1186 		0x23e00, 0x23e04,
1187 		0x24000, 0x2402c,
1188 		0x24100, 0x2413c,
1189 		0x24190, 0x241a0,
1190 		0x241a8, 0x241b8,
1191 		0x241c4, 0x241c8,
1192 		0x24200, 0x24318,
1193 		0x24400, 0x244b4,
1194 		0x244c0, 0x24528,
1195 		0x24540, 0x24614,
1196 		0x25000, 0x25040,
1197 		0x2504c, 0x25060,
1198 		0x250c0, 0x250ec,
1199 		0x25200, 0x25268,
1200 		0x25270, 0x25284,
1201 		0x252fc, 0x25388,
1202 		0x25400, 0x25404,
1203 		0x25500, 0x25500,
1204 		0x25510, 0x25518,
1205 		0x2552c, 0x25530,
1206 		0x2553c, 0x2553c,
1207 		0x25550, 0x25554,
1208 		0x25600, 0x25600,
1209 		0x25608, 0x2561c,
1210 		0x25624, 0x25628,
1211 		0x25630, 0x25634,
1212 		0x2563c, 0x2563c,
1213 		0x25700, 0x2571c,
1214 		0x25780, 0x2578c,
1215 		0x25800, 0x25818,
1216 		0x25820, 0x25828,
1217 		0x25830, 0x25848,
1218 		0x25850, 0x25854,
1219 		0x25860, 0x25868,
1220 		0x25870, 0x25870,
1221 		0x25878, 0x25898,
1222 		0x258a0, 0x258a8,
1223 		0x258b0, 0x258c8,
1224 		0x258d0, 0x258d4,
1225 		0x258e0, 0x258e8,
1226 		0x258f0, 0x258f0,
1227 		0x258f8, 0x25a18,
1228 		0x25a20, 0x25a28,
1229 		0x25a30, 0x25a48,
1230 		0x25a50, 0x25a54,
1231 		0x25a60, 0x25a68,
1232 		0x25a70, 0x25a70,
1233 		0x25a78, 0x25a98,
1234 		0x25aa0, 0x25aa8,
1235 		0x25ab0, 0x25ac8,
1236 		0x25ad0, 0x25ad4,
1237 		0x25ae0, 0x25ae8,
1238 		0x25af0, 0x25af0,
1239 		0x25af8, 0x25c18,
1240 		0x25c20, 0x25c20,
1241 		0x25c28, 0x25c30,
1242 		0x25c38, 0x25c38,
1243 		0x25c80, 0x25c98,
1244 		0x25ca0, 0x25ca8,
1245 		0x25cb0, 0x25cc8,
1246 		0x25cd0, 0x25cd4,
1247 		0x25ce0, 0x25ce8,
1248 		0x25cf0, 0x25cf0,
1249 		0x25cf8, 0x25d7c,
1250 		0x25e00, 0x25e04,
1251 		0x26000, 0x2602c,
1252 		0x26100, 0x2613c,
1253 		0x26190, 0x261a0,
1254 		0x261a8, 0x261b8,
1255 		0x261c4, 0x261c8,
1256 		0x26200, 0x26318,
1257 		0x26400, 0x264b4,
1258 		0x264c0, 0x26528,
1259 		0x26540, 0x26614,
1260 		0x27000, 0x27040,
1261 		0x2704c, 0x27060,
1262 		0x270c0, 0x270ec,
1263 		0x27200, 0x27268,
1264 		0x27270, 0x27284,
1265 		0x272fc, 0x27388,
1266 		0x27400, 0x27404,
1267 		0x27500, 0x27500,
1268 		0x27510, 0x27518,
1269 		0x2752c, 0x27530,
1270 		0x2753c, 0x2753c,
1271 		0x27550, 0x27554,
1272 		0x27600, 0x27600,
1273 		0x27608, 0x2761c,
1274 		0x27624, 0x27628,
1275 		0x27630, 0x27634,
1276 		0x2763c, 0x2763c,
1277 		0x27700, 0x2771c,
1278 		0x27780, 0x2778c,
1279 		0x27800, 0x27818,
1280 		0x27820, 0x27828,
1281 		0x27830, 0x27848,
1282 		0x27850, 0x27854,
1283 		0x27860, 0x27868,
1284 		0x27870, 0x27870,
1285 		0x27878, 0x27898,
1286 		0x278a0, 0x278a8,
1287 		0x278b0, 0x278c8,
1288 		0x278d0, 0x278d4,
1289 		0x278e0, 0x278e8,
1290 		0x278f0, 0x278f0,
1291 		0x278f8, 0x27a18,
1292 		0x27a20, 0x27a28,
1293 		0x27a30, 0x27a48,
1294 		0x27a50, 0x27a54,
1295 		0x27a60, 0x27a68,
1296 		0x27a70, 0x27a70,
1297 		0x27a78, 0x27a98,
1298 		0x27aa0, 0x27aa8,
1299 		0x27ab0, 0x27ac8,
1300 		0x27ad0, 0x27ad4,
1301 		0x27ae0, 0x27ae8,
1302 		0x27af0, 0x27af0,
1303 		0x27af8, 0x27c18,
1304 		0x27c20, 0x27c20,
1305 		0x27c28, 0x27c30,
1306 		0x27c38, 0x27c38,
1307 		0x27c80, 0x27c98,
1308 		0x27ca0, 0x27ca8,
1309 		0x27cb0, 0x27cc8,
1310 		0x27cd0, 0x27cd4,
1311 		0x27ce0, 0x27ce8,
1312 		0x27cf0, 0x27cf0,
1313 		0x27cf8, 0x27d7c,
1314 		0x27e00, 0x27e04,
1315 	};
1316 
1317 	static const unsigned int t5_reg_ranges[] = {
1318 		0x1008, 0x10c0,
1319 		0x10cc, 0x10f8,
1320 		0x1100, 0x1100,
1321 		0x110c, 0x1148,
1322 		0x1180, 0x1184,
1323 		0x1190, 0x1194,
1324 		0x11a0, 0x11a4,
1325 		0x11b0, 0x11b4,
1326 		0x11fc, 0x123c,
1327 		0x1280, 0x173c,
1328 		0x1800, 0x18fc,
1329 		0x3000, 0x3028,
1330 		0x3060, 0x30b0,
1331 		0x30b8, 0x30d8,
1332 		0x30e0, 0x30fc,
1333 		0x3140, 0x357c,
1334 		0x35a8, 0x35cc,
1335 		0x35ec, 0x35ec,
1336 		0x3600, 0x5624,
1337 		0x56cc, 0x56ec,
1338 		0x56f4, 0x5720,
1339 		0x5728, 0x575c,
1340 		0x580c, 0x5814,
1341 		0x5890, 0x589c,
1342 		0x58a4, 0x58ac,
1343 		0x58b8, 0x58bc,
1344 		0x5940, 0x59c8,
1345 		0x59d0, 0x59dc,
1346 		0x59fc, 0x5a18,
1347 		0x5a60, 0x5a70,
1348 		0x5a80, 0x5a9c,
1349 		0x5b94, 0x5bfc,
1350 		0x6000, 0x6020,
1351 		0x6028, 0x6040,
1352 		0x6058, 0x609c,
1353 		0x60a8, 0x614c,
1354 		0x7700, 0x7798,
1355 		0x77c0, 0x78fc,
1356 		0x7b00, 0x7b58,
1357 		0x7b60, 0x7b84,
1358 		0x7b8c, 0x7c54,
1359 		0x7d00, 0x7d38,
1360 		0x7d40, 0x7d80,
1361 		0x7d8c, 0x7ddc,
1362 		0x7de4, 0x7e04,
1363 		0x7e10, 0x7e1c,
1364 		0x7e24, 0x7e38,
1365 		0x7e40, 0x7e44,
1366 		0x7e4c, 0x7e78,
1367 		0x7e80, 0x7edc,
1368 		0x7ee8, 0x7efc,
1369 		0x8dc0, 0x8de0,
1370 		0x8df8, 0x8e04,
1371 		0x8e10, 0x8e84,
1372 		0x8ea0, 0x8f84,
1373 		0x8fc0, 0x9058,
1374 		0x9060, 0x9060,
1375 		0x9068, 0x90f8,
1376 		0x9400, 0x9408,
1377 		0x9410, 0x9470,
1378 		0x9600, 0x9600,
1379 		0x9608, 0x9638,
1380 		0x9640, 0x96f4,
1381 		0x9800, 0x9808,
1382 		0x9810, 0x9864,
1383 		0x9c00, 0x9c6c,
1384 		0x9c80, 0x9cec,
1385 		0x9d00, 0x9d6c,
1386 		0x9d80, 0x9dec,
1387 		0x9e00, 0x9e6c,
1388 		0x9e80, 0x9eec,
1389 		0x9f00, 0x9f6c,
1390 		0x9f80, 0xa020,
1391 		0xd000, 0xd004,
1392 		0xd010, 0xd03c,
1393 		0xdfc0, 0xdfe0,
1394 		0xe000, 0x1106c,
1395 		0x11074, 0x11088,
1396 		0x1109c, 0x1117c,
1397 		0x11190, 0x11204,
1398 		0x19040, 0x1906c,
1399 		0x19078, 0x19080,
1400 		0x1908c, 0x190e8,
1401 		0x190f0, 0x190f8,
1402 		0x19100, 0x19110,
1403 		0x19120, 0x19124,
1404 		0x19150, 0x19194,
1405 		0x1919c, 0x191b0,
1406 		0x191d0, 0x191e8,
1407 		0x19238, 0x19290,
1408 		0x193f8, 0x19428,
1409 		0x19430, 0x19444,
1410 		0x1944c, 0x1946c,
1411 		0x19474, 0x19474,
1412 		0x19490, 0x194cc,
1413 		0x194f0, 0x194f8,
1414 		0x19c00, 0x19c08,
1415 		0x19c10, 0x19c60,
1416 		0x19c94, 0x19ce4,
1417 		0x19cf0, 0x19d40,
1418 		0x19d50, 0x19d94,
1419 		0x19da0, 0x19de8,
1420 		0x19df0, 0x19e10,
1421 		0x19e50, 0x19e90,
1422 		0x19ea0, 0x19f24,
1423 		0x19f34, 0x19f34,
1424 		0x19f40, 0x19f50,
1425 		0x19f90, 0x19fb4,
1426 		0x19fc4, 0x19fe4,
1427 		0x1a000, 0x1a004,
1428 		0x1a010, 0x1a06c,
1429 		0x1a0b0, 0x1a0e4,
1430 		0x1a0ec, 0x1a0f8,
1431 		0x1a100, 0x1a108,
1432 		0x1a114, 0x1a130,
1433 		0x1a138, 0x1a1c4,
1434 		0x1a1fc, 0x1a1fc,
1435 		0x1e008, 0x1e00c,
1436 		0x1e040, 0x1e044,
1437 		0x1e04c, 0x1e04c,
1438 		0x1e284, 0x1e290,
1439 		0x1e2c0, 0x1e2c0,
1440 		0x1e2e0, 0x1e2e0,
1441 		0x1e300, 0x1e384,
1442 		0x1e3c0, 0x1e3c8,
1443 		0x1e408, 0x1e40c,
1444 		0x1e440, 0x1e444,
1445 		0x1e44c, 0x1e44c,
1446 		0x1e684, 0x1e690,
1447 		0x1e6c0, 0x1e6c0,
1448 		0x1e6e0, 0x1e6e0,
1449 		0x1e700, 0x1e784,
1450 		0x1e7c0, 0x1e7c8,
1451 		0x1e808, 0x1e80c,
1452 		0x1e840, 0x1e844,
1453 		0x1e84c, 0x1e84c,
1454 		0x1ea84, 0x1ea90,
1455 		0x1eac0, 0x1eac0,
1456 		0x1eae0, 0x1eae0,
1457 		0x1eb00, 0x1eb84,
1458 		0x1ebc0, 0x1ebc8,
1459 		0x1ec08, 0x1ec0c,
1460 		0x1ec40, 0x1ec44,
1461 		0x1ec4c, 0x1ec4c,
1462 		0x1ee84, 0x1ee90,
1463 		0x1eec0, 0x1eec0,
1464 		0x1eee0, 0x1eee0,
1465 		0x1ef00, 0x1ef84,
1466 		0x1efc0, 0x1efc8,
1467 		0x1f008, 0x1f00c,
1468 		0x1f040, 0x1f044,
1469 		0x1f04c, 0x1f04c,
1470 		0x1f284, 0x1f290,
1471 		0x1f2c0, 0x1f2c0,
1472 		0x1f2e0, 0x1f2e0,
1473 		0x1f300, 0x1f384,
1474 		0x1f3c0, 0x1f3c8,
1475 		0x1f408, 0x1f40c,
1476 		0x1f440, 0x1f444,
1477 		0x1f44c, 0x1f44c,
1478 		0x1f684, 0x1f690,
1479 		0x1f6c0, 0x1f6c0,
1480 		0x1f6e0, 0x1f6e0,
1481 		0x1f700, 0x1f784,
1482 		0x1f7c0, 0x1f7c8,
1483 		0x1f808, 0x1f80c,
1484 		0x1f840, 0x1f844,
1485 		0x1f84c, 0x1f84c,
1486 		0x1fa84, 0x1fa90,
1487 		0x1fac0, 0x1fac0,
1488 		0x1fae0, 0x1fae0,
1489 		0x1fb00, 0x1fb84,
1490 		0x1fbc0, 0x1fbc8,
1491 		0x1fc08, 0x1fc0c,
1492 		0x1fc40, 0x1fc44,
1493 		0x1fc4c, 0x1fc4c,
1494 		0x1fe84, 0x1fe90,
1495 		0x1fec0, 0x1fec0,
1496 		0x1fee0, 0x1fee0,
1497 		0x1ff00, 0x1ff84,
1498 		0x1ffc0, 0x1ffc8,
1499 		0x30000, 0x30030,
1500 		0x30100, 0x30144,
1501 		0x30190, 0x301a0,
1502 		0x301a8, 0x301b8,
1503 		0x301c4, 0x301c8,
1504 		0x301d0, 0x301d0,
1505 		0x30200, 0x30318,
1506 		0x30400, 0x304b4,
1507 		0x304c0, 0x3052c,
1508 		0x30540, 0x3061c,
1509 		0x30800, 0x30828,
1510 		0x30834, 0x30834,
1511 		0x308c0, 0x30908,
1512 		0x30910, 0x309ac,
1513 		0x30a00, 0x30a14,
1514 		0x30a1c, 0x30a2c,
1515 		0x30a44, 0x30a50,
1516 		0x30a74, 0x30a74,
1517 		0x30a7c, 0x30afc,
1518 		0x30b08, 0x30c24,
1519 		0x30d00, 0x30d00,
1520 		0x30d08, 0x30d14,
1521 		0x30d1c, 0x30d20,
1522 		0x30d3c, 0x30d3c,
1523 		0x30d48, 0x30d50,
1524 		0x31200, 0x3120c,
1525 		0x31220, 0x31220,
1526 		0x31240, 0x31240,
1527 		0x31600, 0x3160c,
1528 		0x31a00, 0x31a1c,
1529 		0x31e00, 0x31e20,
1530 		0x31e38, 0x31e3c,
1531 		0x31e80, 0x31e80,
1532 		0x31e88, 0x31ea8,
1533 		0x31eb0, 0x31eb4,
1534 		0x31ec8, 0x31ed4,
1535 		0x31fb8, 0x32004,
1536 		0x32200, 0x32200,
1537 		0x32208, 0x32240,
1538 		0x32248, 0x32280,
1539 		0x32288, 0x322c0,
1540 		0x322c8, 0x322fc,
1541 		0x32600, 0x32630,
1542 		0x32a00, 0x32abc,
1543 		0x32b00, 0x32b10,
1544 		0x32b20, 0x32b30,
1545 		0x32b40, 0x32b50,
1546 		0x32b60, 0x32b70,
1547 		0x33000, 0x33028,
1548 		0x33030, 0x33048,
1549 		0x33060, 0x33068,
1550 		0x33070, 0x3309c,
1551 		0x330f0, 0x33128,
1552 		0x33130, 0x33148,
1553 		0x33160, 0x33168,
1554 		0x33170, 0x3319c,
1555 		0x331f0, 0x33238,
1556 		0x33240, 0x33240,
1557 		0x33248, 0x33250,
1558 		0x3325c, 0x33264,
1559 		0x33270, 0x332b8,
1560 		0x332c0, 0x332e4,
1561 		0x332f8, 0x33338,
1562 		0x33340, 0x33340,
1563 		0x33348, 0x33350,
1564 		0x3335c, 0x33364,
1565 		0x33370, 0x333b8,
1566 		0x333c0, 0x333e4,
1567 		0x333f8, 0x33428,
1568 		0x33430, 0x33448,
1569 		0x33460, 0x33468,
1570 		0x33470, 0x3349c,
1571 		0x334f0, 0x33528,
1572 		0x33530, 0x33548,
1573 		0x33560, 0x33568,
1574 		0x33570, 0x3359c,
1575 		0x335f0, 0x33638,
1576 		0x33640, 0x33640,
1577 		0x33648, 0x33650,
1578 		0x3365c, 0x33664,
1579 		0x33670, 0x336b8,
1580 		0x336c0, 0x336e4,
1581 		0x336f8, 0x33738,
1582 		0x33740, 0x33740,
1583 		0x33748, 0x33750,
1584 		0x3375c, 0x33764,
1585 		0x33770, 0x337b8,
1586 		0x337c0, 0x337e4,
1587 		0x337f8, 0x337fc,
1588 		0x33814, 0x33814,
1589 		0x3382c, 0x3382c,
1590 		0x33880, 0x3388c,
1591 		0x338e8, 0x338ec,
1592 		0x33900, 0x33928,
1593 		0x33930, 0x33948,
1594 		0x33960, 0x33968,
1595 		0x33970, 0x3399c,
1596 		0x339f0, 0x33a38,
1597 		0x33a40, 0x33a40,
1598 		0x33a48, 0x33a50,
1599 		0x33a5c, 0x33a64,
1600 		0x33a70, 0x33ab8,
1601 		0x33ac0, 0x33ae4,
1602 		0x33af8, 0x33b10,
1603 		0x33b28, 0x33b28,
1604 		0x33b3c, 0x33b50,
1605 		0x33bf0, 0x33c10,
1606 		0x33c28, 0x33c28,
1607 		0x33c3c, 0x33c50,
1608 		0x33cf0, 0x33cfc,
1609 		0x34000, 0x34030,
1610 		0x34100, 0x34144,
1611 		0x34190, 0x341a0,
1612 		0x341a8, 0x341b8,
1613 		0x341c4, 0x341c8,
1614 		0x341d0, 0x341d0,
1615 		0x34200, 0x34318,
1616 		0x34400, 0x344b4,
1617 		0x344c0, 0x3452c,
1618 		0x34540, 0x3461c,
1619 		0x34800, 0x34828,
1620 		0x34834, 0x34834,
1621 		0x348c0, 0x34908,
1622 		0x34910, 0x349ac,
1623 		0x34a00, 0x34a14,
1624 		0x34a1c, 0x34a2c,
1625 		0x34a44, 0x34a50,
1626 		0x34a74, 0x34a74,
1627 		0x34a7c, 0x34afc,
1628 		0x34b08, 0x34c24,
1629 		0x34d00, 0x34d00,
1630 		0x34d08, 0x34d14,
1631 		0x34d1c, 0x34d20,
1632 		0x34d3c, 0x34d3c,
1633 		0x34d48, 0x34d50,
1634 		0x35200, 0x3520c,
1635 		0x35220, 0x35220,
1636 		0x35240, 0x35240,
1637 		0x35600, 0x3560c,
1638 		0x35a00, 0x35a1c,
1639 		0x35e00, 0x35e20,
1640 		0x35e38, 0x35e3c,
1641 		0x35e80, 0x35e80,
1642 		0x35e88, 0x35ea8,
1643 		0x35eb0, 0x35eb4,
1644 		0x35ec8, 0x35ed4,
1645 		0x35fb8, 0x36004,
1646 		0x36200, 0x36200,
1647 		0x36208, 0x36240,
1648 		0x36248, 0x36280,
1649 		0x36288, 0x362c0,
1650 		0x362c8, 0x362fc,
1651 		0x36600, 0x36630,
1652 		0x36a00, 0x36abc,
1653 		0x36b00, 0x36b10,
1654 		0x36b20, 0x36b30,
1655 		0x36b40, 0x36b50,
1656 		0x36b60, 0x36b70,
1657 		0x37000, 0x37028,
1658 		0x37030, 0x37048,
1659 		0x37060, 0x37068,
1660 		0x37070, 0x3709c,
1661 		0x370f0, 0x37128,
1662 		0x37130, 0x37148,
1663 		0x37160, 0x37168,
1664 		0x37170, 0x3719c,
1665 		0x371f0, 0x37238,
1666 		0x37240, 0x37240,
1667 		0x37248, 0x37250,
1668 		0x3725c, 0x37264,
1669 		0x37270, 0x372b8,
1670 		0x372c0, 0x372e4,
1671 		0x372f8, 0x37338,
1672 		0x37340, 0x37340,
1673 		0x37348, 0x37350,
1674 		0x3735c, 0x37364,
1675 		0x37370, 0x373b8,
1676 		0x373c0, 0x373e4,
1677 		0x373f8, 0x37428,
1678 		0x37430, 0x37448,
1679 		0x37460, 0x37468,
1680 		0x37470, 0x3749c,
1681 		0x374f0, 0x37528,
1682 		0x37530, 0x37548,
1683 		0x37560, 0x37568,
1684 		0x37570, 0x3759c,
1685 		0x375f0, 0x37638,
1686 		0x37640, 0x37640,
1687 		0x37648, 0x37650,
1688 		0x3765c, 0x37664,
1689 		0x37670, 0x376b8,
1690 		0x376c0, 0x376e4,
1691 		0x376f8, 0x37738,
1692 		0x37740, 0x37740,
1693 		0x37748, 0x37750,
1694 		0x3775c, 0x37764,
1695 		0x37770, 0x377b8,
1696 		0x377c0, 0x377e4,
1697 		0x377f8, 0x377fc,
1698 		0x37814, 0x37814,
1699 		0x3782c, 0x3782c,
1700 		0x37880, 0x3788c,
1701 		0x378e8, 0x378ec,
1702 		0x37900, 0x37928,
1703 		0x37930, 0x37948,
1704 		0x37960, 0x37968,
1705 		0x37970, 0x3799c,
1706 		0x379f0, 0x37a38,
1707 		0x37a40, 0x37a40,
1708 		0x37a48, 0x37a50,
1709 		0x37a5c, 0x37a64,
1710 		0x37a70, 0x37ab8,
1711 		0x37ac0, 0x37ae4,
1712 		0x37af8, 0x37b10,
1713 		0x37b28, 0x37b28,
1714 		0x37b3c, 0x37b50,
1715 		0x37bf0, 0x37c10,
1716 		0x37c28, 0x37c28,
1717 		0x37c3c, 0x37c50,
1718 		0x37cf0, 0x37cfc,
1719 		0x38000, 0x38030,
1720 		0x38100, 0x38144,
1721 		0x38190, 0x381a0,
1722 		0x381a8, 0x381b8,
1723 		0x381c4, 0x381c8,
1724 		0x381d0, 0x381d0,
1725 		0x38200, 0x38318,
1726 		0x38400, 0x384b4,
1727 		0x384c0, 0x3852c,
1728 		0x38540, 0x3861c,
1729 		0x38800, 0x38828,
1730 		0x38834, 0x38834,
1731 		0x388c0, 0x38908,
1732 		0x38910, 0x389ac,
1733 		0x38a00, 0x38a14,
1734 		0x38a1c, 0x38a2c,
1735 		0x38a44, 0x38a50,
1736 		0x38a74, 0x38a74,
1737 		0x38a7c, 0x38afc,
1738 		0x38b08, 0x38c24,
1739 		0x38d00, 0x38d00,
1740 		0x38d08, 0x38d14,
1741 		0x38d1c, 0x38d20,
1742 		0x38d3c, 0x38d3c,
1743 		0x38d48, 0x38d50,
1744 		0x39200, 0x3920c,
1745 		0x39220, 0x39220,
1746 		0x39240, 0x39240,
1747 		0x39600, 0x3960c,
1748 		0x39a00, 0x39a1c,
1749 		0x39e00, 0x39e20,
1750 		0x39e38, 0x39e3c,
1751 		0x39e80, 0x39e80,
1752 		0x39e88, 0x39ea8,
1753 		0x39eb0, 0x39eb4,
1754 		0x39ec8, 0x39ed4,
1755 		0x39fb8, 0x3a004,
1756 		0x3a200, 0x3a200,
1757 		0x3a208, 0x3a240,
1758 		0x3a248, 0x3a280,
1759 		0x3a288, 0x3a2c0,
1760 		0x3a2c8, 0x3a2fc,
1761 		0x3a600, 0x3a630,
1762 		0x3aa00, 0x3aabc,
1763 		0x3ab00, 0x3ab10,
1764 		0x3ab20, 0x3ab30,
1765 		0x3ab40, 0x3ab50,
1766 		0x3ab60, 0x3ab70,
1767 		0x3b000, 0x3b028,
1768 		0x3b030, 0x3b048,
1769 		0x3b060, 0x3b068,
1770 		0x3b070, 0x3b09c,
1771 		0x3b0f0, 0x3b128,
1772 		0x3b130, 0x3b148,
1773 		0x3b160, 0x3b168,
1774 		0x3b170, 0x3b19c,
1775 		0x3b1f0, 0x3b238,
1776 		0x3b240, 0x3b240,
1777 		0x3b248, 0x3b250,
1778 		0x3b25c, 0x3b264,
1779 		0x3b270, 0x3b2b8,
1780 		0x3b2c0, 0x3b2e4,
1781 		0x3b2f8, 0x3b338,
1782 		0x3b340, 0x3b340,
1783 		0x3b348, 0x3b350,
1784 		0x3b35c, 0x3b364,
1785 		0x3b370, 0x3b3b8,
1786 		0x3b3c0, 0x3b3e4,
1787 		0x3b3f8, 0x3b428,
1788 		0x3b430, 0x3b448,
1789 		0x3b460, 0x3b468,
1790 		0x3b470, 0x3b49c,
1791 		0x3b4f0, 0x3b528,
1792 		0x3b530, 0x3b548,
1793 		0x3b560, 0x3b568,
1794 		0x3b570, 0x3b59c,
1795 		0x3b5f0, 0x3b638,
1796 		0x3b640, 0x3b640,
1797 		0x3b648, 0x3b650,
1798 		0x3b65c, 0x3b664,
1799 		0x3b670, 0x3b6b8,
1800 		0x3b6c0, 0x3b6e4,
1801 		0x3b6f8, 0x3b738,
1802 		0x3b740, 0x3b740,
1803 		0x3b748, 0x3b750,
1804 		0x3b75c, 0x3b764,
1805 		0x3b770, 0x3b7b8,
1806 		0x3b7c0, 0x3b7e4,
1807 		0x3b7f8, 0x3b7fc,
1808 		0x3b814, 0x3b814,
1809 		0x3b82c, 0x3b82c,
1810 		0x3b880, 0x3b88c,
1811 		0x3b8e8, 0x3b8ec,
1812 		0x3b900, 0x3b928,
1813 		0x3b930, 0x3b948,
1814 		0x3b960, 0x3b968,
1815 		0x3b970, 0x3b99c,
1816 		0x3b9f0, 0x3ba38,
1817 		0x3ba40, 0x3ba40,
1818 		0x3ba48, 0x3ba50,
1819 		0x3ba5c, 0x3ba64,
1820 		0x3ba70, 0x3bab8,
1821 		0x3bac0, 0x3bae4,
1822 		0x3baf8, 0x3bb10,
1823 		0x3bb28, 0x3bb28,
1824 		0x3bb3c, 0x3bb50,
1825 		0x3bbf0, 0x3bc10,
1826 		0x3bc28, 0x3bc28,
1827 		0x3bc3c, 0x3bc50,
1828 		0x3bcf0, 0x3bcfc,
1829 		0x3c000, 0x3c030,
1830 		0x3c100, 0x3c144,
1831 		0x3c190, 0x3c1a0,
1832 		0x3c1a8, 0x3c1b8,
1833 		0x3c1c4, 0x3c1c8,
1834 		0x3c1d0, 0x3c1d0,
1835 		0x3c200, 0x3c318,
1836 		0x3c400, 0x3c4b4,
1837 		0x3c4c0, 0x3c52c,
1838 		0x3c540, 0x3c61c,
1839 		0x3c800, 0x3c828,
1840 		0x3c834, 0x3c834,
1841 		0x3c8c0, 0x3c908,
1842 		0x3c910, 0x3c9ac,
1843 		0x3ca00, 0x3ca14,
1844 		0x3ca1c, 0x3ca2c,
1845 		0x3ca44, 0x3ca50,
1846 		0x3ca74, 0x3ca74,
1847 		0x3ca7c, 0x3cafc,
1848 		0x3cb08, 0x3cc24,
1849 		0x3cd00, 0x3cd00,
1850 		0x3cd08, 0x3cd14,
1851 		0x3cd1c, 0x3cd20,
1852 		0x3cd3c, 0x3cd3c,
1853 		0x3cd48, 0x3cd50,
1854 		0x3d200, 0x3d20c,
1855 		0x3d220, 0x3d220,
1856 		0x3d240, 0x3d240,
1857 		0x3d600, 0x3d60c,
1858 		0x3da00, 0x3da1c,
1859 		0x3de00, 0x3de20,
1860 		0x3de38, 0x3de3c,
1861 		0x3de80, 0x3de80,
1862 		0x3de88, 0x3dea8,
1863 		0x3deb0, 0x3deb4,
1864 		0x3dec8, 0x3ded4,
1865 		0x3dfb8, 0x3e004,
1866 		0x3e200, 0x3e200,
1867 		0x3e208, 0x3e240,
1868 		0x3e248, 0x3e280,
1869 		0x3e288, 0x3e2c0,
1870 		0x3e2c8, 0x3e2fc,
1871 		0x3e600, 0x3e630,
1872 		0x3ea00, 0x3eabc,
1873 		0x3eb00, 0x3eb10,
1874 		0x3eb20, 0x3eb30,
1875 		0x3eb40, 0x3eb50,
1876 		0x3eb60, 0x3eb70,
1877 		0x3f000, 0x3f028,
1878 		0x3f030, 0x3f048,
1879 		0x3f060, 0x3f068,
1880 		0x3f070, 0x3f09c,
1881 		0x3f0f0, 0x3f128,
1882 		0x3f130, 0x3f148,
1883 		0x3f160, 0x3f168,
1884 		0x3f170, 0x3f19c,
1885 		0x3f1f0, 0x3f238,
1886 		0x3f240, 0x3f240,
1887 		0x3f248, 0x3f250,
1888 		0x3f25c, 0x3f264,
1889 		0x3f270, 0x3f2b8,
1890 		0x3f2c0, 0x3f2e4,
1891 		0x3f2f8, 0x3f338,
1892 		0x3f340, 0x3f340,
1893 		0x3f348, 0x3f350,
1894 		0x3f35c, 0x3f364,
1895 		0x3f370, 0x3f3b8,
1896 		0x3f3c0, 0x3f3e4,
1897 		0x3f3f8, 0x3f428,
1898 		0x3f430, 0x3f448,
1899 		0x3f460, 0x3f468,
1900 		0x3f470, 0x3f49c,
1901 		0x3f4f0, 0x3f528,
1902 		0x3f530, 0x3f548,
1903 		0x3f560, 0x3f568,
1904 		0x3f570, 0x3f59c,
1905 		0x3f5f0, 0x3f638,
1906 		0x3f640, 0x3f640,
1907 		0x3f648, 0x3f650,
1908 		0x3f65c, 0x3f664,
1909 		0x3f670, 0x3f6b8,
1910 		0x3f6c0, 0x3f6e4,
1911 		0x3f6f8, 0x3f738,
1912 		0x3f740, 0x3f740,
1913 		0x3f748, 0x3f750,
1914 		0x3f75c, 0x3f764,
1915 		0x3f770, 0x3f7b8,
1916 		0x3f7c0, 0x3f7e4,
1917 		0x3f7f8, 0x3f7fc,
1918 		0x3f814, 0x3f814,
1919 		0x3f82c, 0x3f82c,
1920 		0x3f880, 0x3f88c,
1921 		0x3f8e8, 0x3f8ec,
1922 		0x3f900, 0x3f928,
1923 		0x3f930, 0x3f948,
1924 		0x3f960, 0x3f968,
1925 		0x3f970, 0x3f99c,
1926 		0x3f9f0, 0x3fa38,
1927 		0x3fa40, 0x3fa40,
1928 		0x3fa48, 0x3fa50,
1929 		0x3fa5c, 0x3fa64,
1930 		0x3fa70, 0x3fab8,
1931 		0x3fac0, 0x3fae4,
1932 		0x3faf8, 0x3fb10,
1933 		0x3fb28, 0x3fb28,
1934 		0x3fb3c, 0x3fb50,
1935 		0x3fbf0, 0x3fc10,
1936 		0x3fc28, 0x3fc28,
1937 		0x3fc3c, 0x3fc50,
1938 		0x3fcf0, 0x3fcfc,
1939 		0x40000, 0x4000c,
1940 		0x40040, 0x40050,
1941 		0x40060, 0x40068,
1942 		0x4007c, 0x4008c,
1943 		0x40094, 0x400b0,
1944 		0x400c0, 0x40144,
1945 		0x40180, 0x4018c,
1946 		0x40200, 0x40254,
1947 		0x40260, 0x40264,
1948 		0x40270, 0x40288,
1949 		0x40290, 0x40298,
1950 		0x402ac, 0x402c8,
1951 		0x402d0, 0x402e0,
1952 		0x402f0, 0x402f0,
1953 		0x40300, 0x4033c,
1954 		0x403f8, 0x403fc,
1955 		0x41304, 0x413c4,
1956 		0x41400, 0x4140c,
1957 		0x41414, 0x4141c,
1958 		0x41480, 0x414d0,
1959 		0x44000, 0x44054,
1960 		0x4405c, 0x44078,
1961 		0x440c0, 0x44174,
1962 		0x44180, 0x441ac,
1963 		0x441b4, 0x441b8,
1964 		0x441c0, 0x44254,
1965 		0x4425c, 0x44278,
1966 		0x442c0, 0x44374,
1967 		0x44380, 0x443ac,
1968 		0x443b4, 0x443b8,
1969 		0x443c0, 0x44454,
1970 		0x4445c, 0x44478,
1971 		0x444c0, 0x44574,
1972 		0x44580, 0x445ac,
1973 		0x445b4, 0x445b8,
1974 		0x445c0, 0x44654,
1975 		0x4465c, 0x44678,
1976 		0x446c0, 0x44774,
1977 		0x44780, 0x447ac,
1978 		0x447b4, 0x447b8,
1979 		0x447c0, 0x44854,
1980 		0x4485c, 0x44878,
1981 		0x448c0, 0x44974,
1982 		0x44980, 0x449ac,
1983 		0x449b4, 0x449b8,
1984 		0x449c0, 0x449fc,
1985 		0x45000, 0x45004,
1986 		0x45010, 0x45030,
1987 		0x45040, 0x45060,
1988 		0x45068, 0x45068,
1989 		0x45080, 0x45084,
1990 		0x450a0, 0x450b0,
1991 		0x45200, 0x45204,
1992 		0x45210, 0x45230,
1993 		0x45240, 0x45260,
1994 		0x45268, 0x45268,
1995 		0x45280, 0x45284,
1996 		0x452a0, 0x452b0,
1997 		0x460c0, 0x460e4,
1998 		0x47000, 0x4703c,
1999 		0x47044, 0x4708c,
2000 		0x47200, 0x47250,
2001 		0x47400, 0x47408,
2002 		0x47414, 0x47420,
2003 		0x47600, 0x47618,
2004 		0x47800, 0x47814,
2005 		0x48000, 0x4800c,
2006 		0x48040, 0x48050,
2007 		0x48060, 0x48068,
2008 		0x4807c, 0x4808c,
2009 		0x48094, 0x480b0,
2010 		0x480c0, 0x48144,
2011 		0x48180, 0x4818c,
2012 		0x48200, 0x48254,
2013 		0x48260, 0x48264,
2014 		0x48270, 0x48288,
2015 		0x48290, 0x48298,
2016 		0x482ac, 0x482c8,
2017 		0x482d0, 0x482e0,
2018 		0x482f0, 0x482f0,
2019 		0x48300, 0x4833c,
2020 		0x483f8, 0x483fc,
2021 		0x49304, 0x493c4,
2022 		0x49400, 0x4940c,
2023 		0x49414, 0x4941c,
2024 		0x49480, 0x494d0,
2025 		0x4c000, 0x4c054,
2026 		0x4c05c, 0x4c078,
2027 		0x4c0c0, 0x4c174,
2028 		0x4c180, 0x4c1ac,
2029 		0x4c1b4, 0x4c1b8,
2030 		0x4c1c0, 0x4c254,
2031 		0x4c25c, 0x4c278,
2032 		0x4c2c0, 0x4c374,
2033 		0x4c380, 0x4c3ac,
2034 		0x4c3b4, 0x4c3b8,
2035 		0x4c3c0, 0x4c454,
2036 		0x4c45c, 0x4c478,
2037 		0x4c4c0, 0x4c574,
2038 		0x4c580, 0x4c5ac,
2039 		0x4c5b4, 0x4c5b8,
2040 		0x4c5c0, 0x4c654,
2041 		0x4c65c, 0x4c678,
2042 		0x4c6c0, 0x4c774,
2043 		0x4c780, 0x4c7ac,
2044 		0x4c7b4, 0x4c7b8,
2045 		0x4c7c0, 0x4c854,
2046 		0x4c85c, 0x4c878,
2047 		0x4c8c0, 0x4c974,
2048 		0x4c980, 0x4c9ac,
2049 		0x4c9b4, 0x4c9b8,
2050 		0x4c9c0, 0x4c9fc,
2051 		0x4d000, 0x4d004,
2052 		0x4d010, 0x4d030,
2053 		0x4d040, 0x4d060,
2054 		0x4d068, 0x4d068,
2055 		0x4d080, 0x4d084,
2056 		0x4d0a0, 0x4d0b0,
2057 		0x4d200, 0x4d204,
2058 		0x4d210, 0x4d230,
2059 		0x4d240, 0x4d260,
2060 		0x4d268, 0x4d268,
2061 		0x4d280, 0x4d284,
2062 		0x4d2a0, 0x4d2b0,
2063 		0x4e0c0, 0x4e0e4,
2064 		0x4f000, 0x4f03c,
2065 		0x4f044, 0x4f08c,
2066 		0x4f200, 0x4f250,
2067 		0x4f400, 0x4f408,
2068 		0x4f414, 0x4f420,
2069 		0x4f600, 0x4f618,
2070 		0x4f800, 0x4f814,
2071 		0x50000, 0x50084,
2072 		0x50090, 0x500cc,
2073 		0x50400, 0x50400,
2074 		0x50800, 0x50884,
2075 		0x50890, 0x508cc,
2076 		0x50c00, 0x50c00,
2077 		0x51000, 0x5101c,
2078 		0x51300, 0x51308,
2079 	};
2080 
2081 	static const unsigned int t6_reg_ranges[] = {
2082 		0x1008, 0x101c,
2083 		0x1024, 0x10a8,
2084 		0x10b4, 0x10f8,
2085 		0x1100, 0x1114,
2086 		0x111c, 0x112c,
2087 		0x1138, 0x113c,
2088 		0x1144, 0x114c,
2089 		0x1180, 0x1184,
2090 		0x1190, 0x1194,
2091 		0x11a0, 0x11a4,
2092 		0x11b0, 0x11b4,
2093 		0x11fc, 0x1274,
2094 		0x1280, 0x133c,
2095 		0x1800, 0x18fc,
2096 		0x3000, 0x302c,
2097 		0x3060, 0x30b0,
2098 		0x30b8, 0x30d8,
2099 		0x30e0, 0x30fc,
2100 		0x3140, 0x357c,
2101 		0x35a8, 0x35cc,
2102 		0x35ec, 0x35ec,
2103 		0x3600, 0x5624,
2104 		0x56cc, 0x56ec,
2105 		0x56f4, 0x5720,
2106 		0x5728, 0x575c,
2107 		0x580c, 0x5814,
2108 		0x5890, 0x589c,
2109 		0x58a4, 0x58ac,
2110 		0x58b8, 0x58bc,
2111 		0x5940, 0x595c,
2112 		0x5980, 0x598c,
2113 		0x59b0, 0x59c8,
2114 		0x59d0, 0x59dc,
2115 		0x59fc, 0x5a18,
2116 		0x5a60, 0x5a6c,
2117 		0x5a80, 0x5a8c,
2118 		0x5a94, 0x5a9c,
2119 		0x5b94, 0x5bfc,
2120 		0x5c10, 0x5e48,
2121 		0x5e50, 0x5e94,
2122 		0x5ea0, 0x5eb0,
2123 		0x5ec0, 0x5ec0,
2124 		0x5ec8, 0x5ed0,
2125 		0x5ee0, 0x5ee0,
2126 		0x5ef0, 0x5ef0,
2127 		0x5f00, 0x5f00,
2128 		0x6000, 0x6020,
2129 		0x6028, 0x6040,
2130 		0x6058, 0x609c,
2131 		0x60a8, 0x619c,
2132 		0x7700, 0x7798,
2133 		0x77c0, 0x7880,
2134 		0x78cc, 0x78fc,
2135 		0x7b00, 0x7b58,
2136 		0x7b60, 0x7b84,
2137 		0x7b8c, 0x7c54,
2138 		0x7d00, 0x7d38,
2139 		0x7d40, 0x7d84,
2140 		0x7d8c, 0x7ddc,
2141 		0x7de4, 0x7e04,
2142 		0x7e10, 0x7e1c,
2143 		0x7e24, 0x7e38,
2144 		0x7e40, 0x7e44,
2145 		0x7e4c, 0x7e78,
2146 		0x7e80, 0x7edc,
2147 		0x7ee8, 0x7efc,
2148 		0x8dc0, 0x8de4,
2149 		0x8df8, 0x8e04,
2150 		0x8e10, 0x8e84,
2151 		0x8ea0, 0x8f88,
2152 		0x8fb8, 0x9058,
2153 		0x9060, 0x9060,
2154 		0x9068, 0x90f8,
2155 		0x9100, 0x9124,
2156 		0x9400, 0x9470,
2157 		0x9600, 0x9600,
2158 		0x9608, 0x9638,
2159 		0x9640, 0x9704,
2160 		0x9710, 0x971c,
2161 		0x9800, 0x9808,
2162 		0x9810, 0x9864,
2163 		0x9c00, 0x9c6c,
2164 		0x9c80, 0x9cec,
2165 		0x9d00, 0x9d6c,
2166 		0x9d80, 0x9dec,
2167 		0x9e00, 0x9e6c,
2168 		0x9e80, 0x9eec,
2169 		0x9f00, 0x9f6c,
2170 		0x9f80, 0xa020,
2171 		0xd000, 0xd03c,
2172 		0xd100, 0xd118,
2173 		0xd200, 0xd214,
2174 		0xd220, 0xd234,
2175 		0xd240, 0xd254,
2176 		0xd260, 0xd274,
2177 		0xd280, 0xd294,
2178 		0xd2a0, 0xd2b4,
2179 		0xd2c0, 0xd2d4,
2180 		0xd2e0, 0xd2f4,
2181 		0xd300, 0xd31c,
2182 		0xdfc0, 0xdfe0,
2183 		0xe000, 0xf008,
2184 		0xf010, 0xf018,
2185 		0xf020, 0xf028,
2186 		0x11000, 0x11014,
2187 		0x11048, 0x1106c,
2188 		0x11074, 0x11088,
2189 		0x11098, 0x11120,
2190 		0x1112c, 0x1117c,
2191 		0x11190, 0x112e0,
2192 		0x11300, 0x1130c,
2193 		0x12000, 0x1206c,
2194 		0x19040, 0x1906c,
2195 		0x19078, 0x19080,
2196 		0x1908c, 0x190e8,
2197 		0x190f0, 0x190f8,
2198 		0x19100, 0x19110,
2199 		0x19120, 0x19124,
2200 		0x19150, 0x19194,
2201 		0x1919c, 0x191b0,
2202 		0x191d0, 0x191e8,
2203 		0x19238, 0x19290,
2204 		0x192a4, 0x192b0,
2205 		0x192bc, 0x192bc,
2206 		0x19348, 0x1934c,
2207 		0x193f8, 0x19418,
2208 		0x19420, 0x19428,
2209 		0x19430, 0x19444,
2210 		0x1944c, 0x1946c,
2211 		0x19474, 0x19474,
2212 		0x19490, 0x194cc,
2213 		0x194f0, 0x194f8,
2214 		0x19c00, 0x19c48,
2215 		0x19c50, 0x19c80,
2216 		0x19c94, 0x19c98,
2217 		0x19ca0, 0x19cbc,
2218 		0x19ce4, 0x19ce4,
2219 		0x19cf0, 0x19cf8,
2220 		0x19d00, 0x19d28,
2221 		0x19d50, 0x19d78,
2222 		0x19d94, 0x19d98,
2223 		0x19da0, 0x19dc8,
2224 		0x19df0, 0x19e10,
2225 		0x19e50, 0x19e6c,
2226 		0x19ea0, 0x19ebc,
2227 		0x19ec4, 0x19ef4,
2228 		0x19f04, 0x19f2c,
2229 		0x19f34, 0x19f34,
2230 		0x19f40, 0x19f50,
2231 		0x19f90, 0x19fac,
2232 		0x19fc4, 0x19fc8,
2233 		0x19fd0, 0x19fe4,
2234 		0x1a000, 0x1a004,
2235 		0x1a010, 0x1a06c,
2236 		0x1a0b0, 0x1a0e4,
2237 		0x1a0ec, 0x1a0f8,
2238 		0x1a100, 0x1a108,
2239 		0x1a114, 0x1a130,
2240 		0x1a138, 0x1a1c4,
2241 		0x1a1fc, 0x1a1fc,
2242 		0x1e008, 0x1e00c,
2243 		0x1e040, 0x1e044,
2244 		0x1e04c, 0x1e04c,
2245 		0x1e284, 0x1e290,
2246 		0x1e2c0, 0x1e2c0,
2247 		0x1e2e0, 0x1e2e0,
2248 		0x1e300, 0x1e384,
2249 		0x1e3c0, 0x1e3c8,
2250 		0x1e408, 0x1e40c,
2251 		0x1e440, 0x1e444,
2252 		0x1e44c, 0x1e44c,
2253 		0x1e684, 0x1e690,
2254 		0x1e6c0, 0x1e6c0,
2255 		0x1e6e0, 0x1e6e0,
2256 		0x1e700, 0x1e784,
2257 		0x1e7c0, 0x1e7c8,
2258 		0x1e808, 0x1e80c,
2259 		0x1e840, 0x1e844,
2260 		0x1e84c, 0x1e84c,
2261 		0x1ea84, 0x1ea90,
2262 		0x1eac0, 0x1eac0,
2263 		0x1eae0, 0x1eae0,
2264 		0x1eb00, 0x1eb84,
2265 		0x1ebc0, 0x1ebc8,
2266 		0x1ec08, 0x1ec0c,
2267 		0x1ec40, 0x1ec44,
2268 		0x1ec4c, 0x1ec4c,
2269 		0x1ee84, 0x1ee90,
2270 		0x1eec0, 0x1eec0,
2271 		0x1eee0, 0x1eee0,
2272 		0x1ef00, 0x1ef84,
2273 		0x1efc0, 0x1efc8,
2274 		0x1f008, 0x1f00c,
2275 		0x1f040, 0x1f044,
2276 		0x1f04c, 0x1f04c,
2277 		0x1f284, 0x1f290,
2278 		0x1f2c0, 0x1f2c0,
2279 		0x1f2e0, 0x1f2e0,
2280 		0x1f300, 0x1f384,
2281 		0x1f3c0, 0x1f3c8,
2282 		0x1f408, 0x1f40c,
2283 		0x1f440, 0x1f444,
2284 		0x1f44c, 0x1f44c,
2285 		0x1f684, 0x1f690,
2286 		0x1f6c0, 0x1f6c0,
2287 		0x1f6e0, 0x1f6e0,
2288 		0x1f700, 0x1f784,
2289 		0x1f7c0, 0x1f7c8,
2290 		0x1f808, 0x1f80c,
2291 		0x1f840, 0x1f844,
2292 		0x1f84c, 0x1f84c,
2293 		0x1fa84, 0x1fa90,
2294 		0x1fac0, 0x1fac0,
2295 		0x1fae0, 0x1fae0,
2296 		0x1fb00, 0x1fb84,
2297 		0x1fbc0, 0x1fbc8,
2298 		0x1fc08, 0x1fc0c,
2299 		0x1fc40, 0x1fc44,
2300 		0x1fc4c, 0x1fc4c,
2301 		0x1fe84, 0x1fe90,
2302 		0x1fec0, 0x1fec0,
2303 		0x1fee0, 0x1fee0,
2304 		0x1ff00, 0x1ff84,
2305 		0x1ffc0, 0x1ffc8,
2306 		0x30000, 0x30030,
2307 		0x30100, 0x30168,
2308 		0x30190, 0x301a0,
2309 		0x301a8, 0x301b8,
2310 		0x301c4, 0x301c8,
2311 		0x301d0, 0x301d0,
2312 		0x30200, 0x30320,
2313 		0x30400, 0x304b4,
2314 		0x304c0, 0x3052c,
2315 		0x30540, 0x3061c,
2316 		0x30800, 0x308a0,
2317 		0x308c0, 0x30908,
2318 		0x30910, 0x309b8,
2319 		0x30a00, 0x30a04,
2320 		0x30a0c, 0x30a14,
2321 		0x30a1c, 0x30a2c,
2322 		0x30a44, 0x30a50,
2323 		0x30a74, 0x30a74,
2324 		0x30a7c, 0x30afc,
2325 		0x30b08, 0x30c24,
2326 		0x30d00, 0x30d14,
2327 		0x30d1c, 0x30d3c,
2328 		0x30d44, 0x30d4c,
2329 		0x30d54, 0x30d74,
2330 		0x30d7c, 0x30d7c,
2331 		0x30de0, 0x30de0,
2332 		0x30e00, 0x30ed4,
2333 		0x30f00, 0x30fa4,
2334 		0x30fc0, 0x30fc4,
2335 		0x31000, 0x31004,
2336 		0x31080, 0x310fc,
2337 		0x31208, 0x31220,
2338 		0x3123c, 0x31254,
2339 		0x31300, 0x31300,
2340 		0x31308, 0x3131c,
2341 		0x31338, 0x3133c,
2342 		0x31380, 0x31380,
2343 		0x31388, 0x313a8,
2344 		0x313b4, 0x313b4,
2345 		0x31400, 0x31420,
2346 		0x31438, 0x3143c,
2347 		0x31480, 0x31480,
2348 		0x314a8, 0x314a8,
2349 		0x314b0, 0x314b4,
2350 		0x314c8, 0x314d4,
2351 		0x31a40, 0x31a4c,
2352 		0x31af0, 0x31b20,
2353 		0x31b38, 0x31b3c,
2354 		0x31b80, 0x31b80,
2355 		0x31ba8, 0x31ba8,
2356 		0x31bb0, 0x31bb4,
2357 		0x31bc8, 0x31bd4,
2358 		0x32140, 0x3218c,
2359 		0x321f0, 0x321f4,
2360 		0x32200, 0x32200,
2361 		0x32218, 0x32218,
2362 		0x32400, 0x32400,
2363 		0x32408, 0x3241c,
2364 		0x32618, 0x32620,
2365 		0x32664, 0x32664,
2366 		0x326a8, 0x326a8,
2367 		0x326ec, 0x326ec,
2368 		0x32a00, 0x32abc,
2369 		0x32b00, 0x32b18,
2370 		0x32b20, 0x32b38,
2371 		0x32b40, 0x32b58,
2372 		0x32b60, 0x32b78,
2373 		0x32c00, 0x32c00,
2374 		0x32c08, 0x32c3c,
2375 		0x33000, 0x3302c,
2376 		0x33034, 0x33050,
2377 		0x33058, 0x33058,
2378 		0x33060, 0x3308c,
2379 		0x3309c, 0x330ac,
2380 		0x330c0, 0x330c0,
2381 		0x330c8, 0x330d0,
2382 		0x330d8, 0x330e0,
2383 		0x330ec, 0x3312c,
2384 		0x33134, 0x33150,
2385 		0x33158, 0x33158,
2386 		0x33160, 0x3318c,
2387 		0x3319c, 0x331ac,
2388 		0x331c0, 0x331c0,
2389 		0x331c8, 0x331d0,
2390 		0x331d8, 0x331e0,
2391 		0x331ec, 0x33290,
2392 		0x33298, 0x332c4,
2393 		0x332e4, 0x33390,
2394 		0x33398, 0x333c4,
2395 		0x333e4, 0x3342c,
2396 		0x33434, 0x33450,
2397 		0x33458, 0x33458,
2398 		0x33460, 0x3348c,
2399 		0x3349c, 0x334ac,
2400 		0x334c0, 0x334c0,
2401 		0x334c8, 0x334d0,
2402 		0x334d8, 0x334e0,
2403 		0x334ec, 0x3352c,
2404 		0x33534, 0x33550,
2405 		0x33558, 0x33558,
2406 		0x33560, 0x3358c,
2407 		0x3359c, 0x335ac,
2408 		0x335c0, 0x335c0,
2409 		0x335c8, 0x335d0,
2410 		0x335d8, 0x335e0,
2411 		0x335ec, 0x33690,
2412 		0x33698, 0x336c4,
2413 		0x336e4, 0x33790,
2414 		0x33798, 0x337c4,
2415 		0x337e4, 0x337fc,
2416 		0x33814, 0x33814,
2417 		0x33854, 0x33868,
2418 		0x33880, 0x3388c,
2419 		0x338c0, 0x338d0,
2420 		0x338e8, 0x338ec,
2421 		0x33900, 0x3392c,
2422 		0x33934, 0x33950,
2423 		0x33958, 0x33958,
2424 		0x33960, 0x3398c,
2425 		0x3399c, 0x339ac,
2426 		0x339c0, 0x339c0,
2427 		0x339c8, 0x339d0,
2428 		0x339d8, 0x339e0,
2429 		0x339ec, 0x33a90,
2430 		0x33a98, 0x33ac4,
2431 		0x33ae4, 0x33b10,
2432 		0x33b24, 0x33b28,
2433 		0x33b38, 0x33b50,
2434 		0x33bf0, 0x33c10,
2435 		0x33c24, 0x33c28,
2436 		0x33c38, 0x33c50,
2437 		0x33cf0, 0x33cfc,
2438 		0x34000, 0x34030,
2439 		0x34100, 0x34168,
2440 		0x34190, 0x341a0,
2441 		0x341a8, 0x341b8,
2442 		0x341c4, 0x341c8,
2443 		0x341d0, 0x341d0,
2444 		0x34200, 0x34320,
2445 		0x34400, 0x344b4,
2446 		0x344c0, 0x3452c,
2447 		0x34540, 0x3461c,
2448 		0x34800, 0x348a0,
2449 		0x348c0, 0x34908,
2450 		0x34910, 0x349b8,
2451 		0x34a00, 0x34a04,
2452 		0x34a0c, 0x34a14,
2453 		0x34a1c, 0x34a2c,
2454 		0x34a44, 0x34a50,
2455 		0x34a74, 0x34a74,
2456 		0x34a7c, 0x34afc,
2457 		0x34b08, 0x34c24,
2458 		0x34d00, 0x34d14,
2459 		0x34d1c, 0x34d3c,
2460 		0x34d44, 0x34d4c,
2461 		0x34d54, 0x34d74,
2462 		0x34d7c, 0x34d7c,
2463 		0x34de0, 0x34de0,
2464 		0x34e00, 0x34ed4,
2465 		0x34f00, 0x34fa4,
2466 		0x34fc0, 0x34fc4,
2467 		0x35000, 0x35004,
2468 		0x35080, 0x350fc,
2469 		0x35208, 0x35220,
2470 		0x3523c, 0x35254,
2471 		0x35300, 0x35300,
2472 		0x35308, 0x3531c,
2473 		0x35338, 0x3533c,
2474 		0x35380, 0x35380,
2475 		0x35388, 0x353a8,
2476 		0x353b4, 0x353b4,
2477 		0x35400, 0x35420,
2478 		0x35438, 0x3543c,
2479 		0x35480, 0x35480,
2480 		0x354a8, 0x354a8,
2481 		0x354b0, 0x354b4,
2482 		0x354c8, 0x354d4,
2483 		0x35a40, 0x35a4c,
2484 		0x35af0, 0x35b20,
2485 		0x35b38, 0x35b3c,
2486 		0x35b80, 0x35b80,
2487 		0x35ba8, 0x35ba8,
2488 		0x35bb0, 0x35bb4,
2489 		0x35bc8, 0x35bd4,
2490 		0x36140, 0x3618c,
2491 		0x361f0, 0x361f4,
2492 		0x36200, 0x36200,
2493 		0x36218, 0x36218,
2494 		0x36400, 0x36400,
2495 		0x36408, 0x3641c,
2496 		0x36618, 0x36620,
2497 		0x36664, 0x36664,
2498 		0x366a8, 0x366a8,
2499 		0x366ec, 0x366ec,
2500 		0x36a00, 0x36abc,
2501 		0x36b00, 0x36b18,
2502 		0x36b20, 0x36b38,
2503 		0x36b40, 0x36b58,
2504 		0x36b60, 0x36b78,
2505 		0x36c00, 0x36c00,
2506 		0x36c08, 0x36c3c,
2507 		0x37000, 0x3702c,
2508 		0x37034, 0x37050,
2509 		0x37058, 0x37058,
2510 		0x37060, 0x3708c,
2511 		0x3709c, 0x370ac,
2512 		0x370c0, 0x370c0,
2513 		0x370c8, 0x370d0,
2514 		0x370d8, 0x370e0,
2515 		0x370ec, 0x3712c,
2516 		0x37134, 0x37150,
2517 		0x37158, 0x37158,
2518 		0x37160, 0x3718c,
2519 		0x3719c, 0x371ac,
2520 		0x371c0, 0x371c0,
2521 		0x371c8, 0x371d0,
2522 		0x371d8, 0x371e0,
2523 		0x371ec, 0x37290,
2524 		0x37298, 0x372c4,
2525 		0x372e4, 0x37390,
2526 		0x37398, 0x373c4,
2527 		0x373e4, 0x3742c,
2528 		0x37434, 0x37450,
2529 		0x37458, 0x37458,
2530 		0x37460, 0x3748c,
2531 		0x3749c, 0x374ac,
2532 		0x374c0, 0x374c0,
2533 		0x374c8, 0x374d0,
2534 		0x374d8, 0x374e0,
2535 		0x374ec, 0x3752c,
2536 		0x37534, 0x37550,
2537 		0x37558, 0x37558,
2538 		0x37560, 0x3758c,
2539 		0x3759c, 0x375ac,
2540 		0x375c0, 0x375c0,
2541 		0x375c8, 0x375d0,
2542 		0x375d8, 0x375e0,
2543 		0x375ec, 0x37690,
2544 		0x37698, 0x376c4,
2545 		0x376e4, 0x37790,
2546 		0x37798, 0x377c4,
2547 		0x377e4, 0x377fc,
2548 		0x37814, 0x37814,
2549 		0x37854, 0x37868,
2550 		0x37880, 0x3788c,
2551 		0x378c0, 0x378d0,
2552 		0x378e8, 0x378ec,
2553 		0x37900, 0x3792c,
2554 		0x37934, 0x37950,
2555 		0x37958, 0x37958,
2556 		0x37960, 0x3798c,
2557 		0x3799c, 0x379ac,
2558 		0x379c0, 0x379c0,
2559 		0x379c8, 0x379d0,
2560 		0x379d8, 0x379e0,
2561 		0x379ec, 0x37a90,
2562 		0x37a98, 0x37ac4,
2563 		0x37ae4, 0x37b10,
2564 		0x37b24, 0x37b28,
2565 		0x37b38, 0x37b50,
2566 		0x37bf0, 0x37c10,
2567 		0x37c24, 0x37c28,
2568 		0x37c38, 0x37c50,
2569 		0x37cf0, 0x37cfc,
2570 		0x40040, 0x40040,
2571 		0x40080, 0x40084,
2572 		0x40100, 0x40100,
2573 		0x40140, 0x401bc,
2574 		0x40200, 0x40214,
2575 		0x40228, 0x40228,
2576 		0x40240, 0x40258,
2577 		0x40280, 0x40280,
2578 		0x40304, 0x40304,
2579 		0x40330, 0x4033c,
2580 		0x41304, 0x413c8,
2581 		0x413d0, 0x413dc,
2582 		0x413f0, 0x413f0,
2583 		0x41400, 0x4140c,
2584 		0x41414, 0x4141c,
2585 		0x41480, 0x414d0,
2586 		0x44000, 0x4407c,
2587 		0x440c0, 0x441ac,
2588 		0x441b4, 0x4427c,
2589 		0x442c0, 0x443ac,
2590 		0x443b4, 0x4447c,
2591 		0x444c0, 0x445ac,
2592 		0x445b4, 0x4467c,
2593 		0x446c0, 0x447ac,
2594 		0x447b4, 0x4487c,
2595 		0x448c0, 0x449ac,
2596 		0x449b4, 0x44a7c,
2597 		0x44ac0, 0x44bac,
2598 		0x44bb4, 0x44c7c,
2599 		0x44cc0, 0x44dac,
2600 		0x44db4, 0x44e7c,
2601 		0x44ec0, 0x44fac,
2602 		0x44fb4, 0x4507c,
2603 		0x450c0, 0x451ac,
2604 		0x451b4, 0x451fc,
2605 		0x45800, 0x45804,
2606 		0x45810, 0x45830,
2607 		0x45840, 0x45860,
2608 		0x45868, 0x45868,
2609 		0x45880, 0x45884,
2610 		0x458a0, 0x458b0,
2611 		0x45a00, 0x45a04,
2612 		0x45a10, 0x45a30,
2613 		0x45a40, 0x45a60,
2614 		0x45a68, 0x45a68,
2615 		0x45a80, 0x45a84,
2616 		0x45aa0, 0x45ab0,
2617 		0x460c0, 0x460e4,
2618 		0x47000, 0x4703c,
2619 		0x47044, 0x4708c,
2620 		0x47200, 0x47250,
2621 		0x47400, 0x47408,
2622 		0x47414, 0x47420,
2623 		0x47600, 0x47618,
2624 		0x47800, 0x47814,
2625 		0x47820, 0x4782c,
2626 		0x50000, 0x50084,
2627 		0x50090, 0x500cc,
2628 		0x50300, 0x50384,
2629 		0x50400, 0x50400,
2630 		0x50800, 0x50884,
2631 		0x50890, 0x508cc,
2632 		0x50b00, 0x50b84,
2633 		0x50c00, 0x50c00,
2634 		0x51000, 0x51020,
2635 		0x51028, 0x510b0,
2636 		0x51300, 0x51324,
2637 	};
2638 
2639 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2640 	const unsigned int *reg_ranges;
2641 	int reg_ranges_size, range;
2642 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2643 
2644 	/* Select the right set of register ranges to dump depending on the
2645 	 * adapter chip type.
2646 	 */
2647 	switch (chip_version) {
2648 	case CHELSIO_T4:
2649 		reg_ranges = t4_reg_ranges;
2650 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2651 		break;
2652 
2653 	case CHELSIO_T5:
2654 		reg_ranges = t5_reg_ranges;
2655 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2656 		break;
2657 
2658 	case CHELSIO_T6:
2659 		reg_ranges = t6_reg_ranges;
2660 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2661 		break;
2662 
2663 	default:
2664 		dev_err(adap->pdev_dev,
2665 			"Unsupported chip version %d\n", chip_version);
2666 		return;
2667 	}
2668 
2669 	/* Clear the register buffer and insert the appropriate register
2670 	 * values selected by the above register ranges.
2671 	 */
2672 	memset(buf, 0, buf_size);
2673 	for (range = 0; range < reg_ranges_size; range += 2) {
2674 		unsigned int reg = reg_ranges[range];
2675 		unsigned int last_reg = reg_ranges[range + 1];
2676 		u32 *bufp = (u32 *)((char *)buf + reg);
2677 
2678 		/* Iterate across the register range filling in the register
2679 		 * buffer but don't write past the end of the register buffer.
2680 		 */
2681 		while (reg <= last_reg && bufp < buf_end) {
2682 			*bufp++ = t4_read_reg(adap, reg);
2683 			reg += sizeof(u32);
2684 		}
2685 	}
2686 }
2687 
2688 #define EEPROM_STAT_ADDR   0x7bfc
2689 #define VPD_BASE           0x400
2690 #define VPD_BASE_OLD       0
2691 #define VPD_LEN            1024
2692 
2693 /**
2694  * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2695  * @phys_addr: the physical EEPROM address
2696  * @fn: the PCI function number
2697  * @sz: size of function-specific area
2698  *
2699  * Translate a physical EEPROM address to virtual.  The first 1K is
2700  * accessed through virtual addresses starting at 31K, the rest is
2701  * accessed through virtual addresses starting at 0.
2702  *
2703  * The mapping is as follows:
2704  * [0..1K) -> [31K..32K)
2705  * [1K..1K+A) -> [31K-A..31K)
2706  * [1K+A..ES) -> [0..ES-A-1K)
2707  *
2708  * where A = @fn * @sz, and ES = EEPROM size.
2709  */
2710 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2711 {
2712 	fn *= sz;
2713 	if (phys_addr < 1024)
2714 		return phys_addr + (31 << 10);
2715 	if (phys_addr < 1024 + fn)
2716 		return 31744 - fn + phys_addr - 1024;
2717 	if (phys_addr < EEPROMSIZE)
2718 		return phys_addr - 1024 - fn;
2719 	return -EINVAL;
2720 }
2721 
2722 /**
2723  *	t4_seeprom_wp - enable/disable EEPROM write protection
2724  *	@adapter: the adapter
2725  *	@enable: whether to enable or disable write protection
2726  *
2727  *	Enables or disables write protection on the serial EEPROM.
2728  */
2729 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2730 {
2731 	unsigned int v = enable ? 0xc : 0;
2732 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2733 	return ret < 0 ? ret : 0;
2734 }
2735 
2736 /**
2737  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2738  *	@adapter: adapter to read
2739  *	@p: where to store the parameters
2740  *
2741  *	Reads card parameters stored in VPD EEPROM.
2742  */
2743 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2744 {
2745 	int i, ret = 0, addr;
2746 	int ec, sn, pn, na;
2747 	u8 *vpd, csum, base_val = 0;
2748 	unsigned int vpdr_len, kw_offset, id_len;
2749 
2750 	vpd = vmalloc(VPD_LEN);
2751 	if (!vpd)
2752 		return -ENOMEM;
2753 
2754 	/* Card information normally starts at VPD_BASE but early cards had
2755 	 * it at 0.
2756 	 */
2757 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, 1, &base_val);
2758 	if (ret < 0)
2759 		goto out;
2760 
2761 	addr = base_val == PCI_VPD_LRDT_ID_STRING ? VPD_BASE : VPD_BASE_OLD;
2762 
2763 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2764 	if (ret < 0)
2765 		goto out;
2766 
2767 	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2768 		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2769 		ret = -EINVAL;
2770 		goto out;
2771 	}
2772 
2773 	id_len = pci_vpd_lrdt_size(vpd);
2774 	if (id_len > ID_LEN)
2775 		id_len = ID_LEN;
2776 
2777 	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2778 	if (i < 0) {
2779 		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2780 		ret = -EINVAL;
2781 		goto out;
2782 	}
2783 
2784 	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2785 	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2786 	if (vpdr_len + kw_offset > VPD_LEN) {
2787 		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2788 		ret = -EINVAL;
2789 		goto out;
2790 	}
2791 
2792 #define FIND_VPD_KW(var, name) do { \
2793 	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2794 	if (var < 0) { \
2795 		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2796 		ret = -EINVAL; \
2797 		goto out; \
2798 	} \
2799 	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2800 } while (0)
2801 
2802 	FIND_VPD_KW(i, "RV");
2803 	for (csum = 0; i >= 0; i--)
2804 		csum += vpd[i];
2805 
2806 	if (csum) {
2807 		dev_err(adapter->pdev_dev,
2808 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2809 		ret = -EINVAL;
2810 		goto out;
2811 	}
2812 
2813 	FIND_VPD_KW(ec, "EC");
2814 	FIND_VPD_KW(sn, "SN");
2815 	FIND_VPD_KW(pn, "PN");
2816 	FIND_VPD_KW(na, "NA");
2817 #undef FIND_VPD_KW
2818 
2819 	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2820 	strim(p->id);
2821 	memcpy(p->ec, vpd + ec, EC_LEN);
2822 	strim(p->ec);
2823 	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2824 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2825 	strim(p->sn);
2826 	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2827 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2828 	strim(p->pn);
2829 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2830 	strim((char *)p->na);
2831 
2832 out:
2833 	vfree(vpd);
2834 	return ret < 0 ? ret : 0;
2835 }
2836 
2837 /**
2838  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2839  *	@adapter: adapter to read
2840  *	@p: where to store the parameters
2841  *
2842  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2843  *	Clock.  This can only be called after a connection to the firmware
2844  *	is established.
2845  */
2846 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2847 {
2848 	u32 cclk_param, cclk_val;
2849 	int ret;
2850 
2851 	/* Grab the raw VPD parameters.
2852 	 */
2853 	ret = t4_get_raw_vpd_params(adapter, p);
2854 	if (ret)
2855 		return ret;
2856 
2857 	/* Ask firmware for the Core Clock since it knows how to translate the
2858 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2859 	 */
2860 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2861 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2862 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2863 			      1, &cclk_param, &cclk_val);
2864 
2865 	if (ret)
2866 		return ret;
2867 	p->cclk = cclk_val;
2868 
2869 	return 0;
2870 }
2871 
2872 /**
2873  *	t4_get_pfres - retrieve VF resource limits
2874  *	@adapter: the adapter
2875  *
2876  *	Retrieves configured resource limits and capabilities for a physical
2877  *	function.  The results are stored in @adapter->pfres.
2878  */
2879 int t4_get_pfres(struct adapter *adapter)
2880 {
2881 	struct pf_resources *pfres = &adapter->params.pfres;
2882 	struct fw_pfvf_cmd cmd, rpl;
2883 	int v;
2884 	u32 word;
2885 
2886 	/* Execute PFVF Read command to get VF resource limits; bail out early
2887 	 * with error on command failure.
2888 	 */
2889 	memset(&cmd, 0, sizeof(cmd));
2890 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
2891 				    FW_CMD_REQUEST_F |
2892 				    FW_CMD_READ_F |
2893 				    FW_PFVF_CMD_PFN_V(adapter->pf) |
2894 				    FW_PFVF_CMD_VFN_V(0));
2895 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2896 	v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2897 	if (v != FW_SUCCESS)
2898 		return v;
2899 
2900 	/* Extract PF resource limits and return success.
2901 	 */
2902 	word = be32_to_cpu(rpl.niqflint_niq);
2903 	pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
2904 	pfres->niq = FW_PFVF_CMD_NIQ_G(word);
2905 
2906 	word = be32_to_cpu(rpl.type_to_neq);
2907 	pfres->neq = FW_PFVF_CMD_NEQ_G(word);
2908 	pfres->pmask = FW_PFVF_CMD_PMASK_G(word);
2909 
2910 	word = be32_to_cpu(rpl.tc_to_nexactf);
2911 	pfres->tc = FW_PFVF_CMD_TC_G(word);
2912 	pfres->nvi = FW_PFVF_CMD_NVI_G(word);
2913 	pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
2914 
2915 	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2916 	pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
2917 	pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
2918 	pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
2919 
2920 	return 0;
2921 }
2922 
2923 /* serial flash and firmware constants */
2924 enum {
2925 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2926 
2927 	/* flash command opcodes */
2928 	SF_PROG_PAGE    = 2,          /* program page */
2929 	SF_WR_DISABLE   = 4,          /* disable writes */
2930 	SF_RD_STATUS    = 5,          /* read status register */
2931 	SF_WR_ENABLE    = 6,          /* enable writes */
2932 	SF_RD_DATA_FAST = 0xb,        /* read flash */
2933 	SF_RD_ID        = 0x9f,       /* read ID */
2934 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2935 };
2936 
2937 /**
2938  *	sf1_read - read data from the serial flash
2939  *	@adapter: the adapter
2940  *	@byte_cnt: number of bytes to read
2941  *	@cont: whether another operation will be chained
2942  *	@lock: whether to lock SF for PL access only
2943  *	@valp: where to store the read data
2944  *
2945  *	Reads up to 4 bytes of data from the serial flash.  The location of
2946  *	the read needs to be specified prior to calling this by issuing the
2947  *	appropriate commands to the serial flash.
2948  */
2949 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2950 		    int lock, u32 *valp)
2951 {
2952 	int ret;
2953 
2954 	if (!byte_cnt || byte_cnt > 4)
2955 		return -EINVAL;
2956 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2957 		return -EBUSY;
2958 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2959 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2960 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2961 	if (!ret)
2962 		*valp = t4_read_reg(adapter, SF_DATA_A);
2963 	return ret;
2964 }
2965 
2966 /**
2967  *	sf1_write - write data to the serial flash
2968  *	@adapter: the adapter
2969  *	@byte_cnt: number of bytes to write
2970  *	@cont: whether another operation will be chained
2971  *	@lock: whether to lock SF for PL access only
2972  *	@val: value to write
2973  *
2974  *	Writes up to 4 bytes of data to the serial flash.  The location of
2975  *	the write needs to be specified prior to calling this by issuing the
2976  *	appropriate commands to the serial flash.
2977  */
2978 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2979 		     int lock, u32 val)
2980 {
2981 	if (!byte_cnt || byte_cnt > 4)
2982 		return -EINVAL;
2983 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2984 		return -EBUSY;
2985 	t4_write_reg(adapter, SF_DATA_A, val);
2986 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2987 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2988 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2989 }
2990 
2991 /**
2992  *	flash_wait_op - wait for a flash operation to complete
2993  *	@adapter: the adapter
2994  *	@attempts: max number of polls of the status register
2995  *	@delay: delay between polls in ms
2996  *
2997  *	Wait for a flash operation to complete by polling the status register.
2998  */
2999 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3000 {
3001 	int ret;
3002 	u32 status;
3003 
3004 	while (1) {
3005 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3006 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3007 			return ret;
3008 		if (!(status & 1))
3009 			return 0;
3010 		if (--attempts == 0)
3011 			return -EAGAIN;
3012 		if (delay)
3013 			msleep(delay);
3014 	}
3015 }
3016 
3017 /**
3018  *	t4_read_flash - read words from serial flash
3019  *	@adapter: the adapter
3020  *	@addr: the start address for the read
3021  *	@nwords: how many 32-bit words to read
3022  *	@data: where to store the read data
3023  *	@byte_oriented: whether to store data as bytes or as words
3024  *
3025  *	Read the specified number of 32-bit words from the serial flash.
3026  *	If @byte_oriented is set the read data is stored as a byte array
3027  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3028  *	natural endianness.
3029  */
3030 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3031 		  unsigned int nwords, u32 *data, int byte_oriented)
3032 {
3033 	int ret;
3034 
3035 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3036 		return -EINVAL;
3037 
3038 	addr = swab32(addr) | SF_RD_DATA_FAST;
3039 
3040 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3041 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3042 		return ret;
3043 
3044 	for ( ; nwords; nwords--, data++) {
3045 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3046 		if (nwords == 1)
3047 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3048 		if (ret)
3049 			return ret;
3050 		if (byte_oriented)
3051 			*data = (__force __u32)(cpu_to_be32(*data));
3052 	}
3053 	return 0;
3054 }
3055 
3056 /**
3057  *	t4_write_flash - write up to a page of data to the serial flash
3058  *	@adapter: the adapter
3059  *	@addr: the start address to write
3060  *	@n: length of data to write in bytes
3061  *	@data: the data to write
3062  *
3063  *	Writes up to a page of data (256 bytes) to the serial flash starting
3064  *	at the given address.  All the data must be written to the same page.
3065  */
3066 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3067 			  unsigned int n, const u8 *data)
3068 {
3069 	int ret;
3070 	u32 buf[64];
3071 	unsigned int i, c, left, val, offset = addr & 0xff;
3072 
3073 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3074 		return -EINVAL;
3075 
3076 	val = swab32(addr) | SF_PROG_PAGE;
3077 
3078 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3079 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3080 		goto unlock;
3081 
3082 	for (left = n; left; left -= c) {
3083 		c = min(left, 4U);
3084 		for (val = 0, i = 0; i < c; ++i)
3085 			val = (val << 8) + *data++;
3086 
3087 		ret = sf1_write(adapter, c, c != left, 1, val);
3088 		if (ret)
3089 			goto unlock;
3090 	}
3091 	ret = flash_wait_op(adapter, 8, 1);
3092 	if (ret)
3093 		goto unlock;
3094 
3095 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3096 
3097 	/* Read the page to verify the write succeeded */
3098 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
3099 	if (ret)
3100 		return ret;
3101 
3102 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3103 		dev_err(adapter->pdev_dev,
3104 			"failed to correctly write the flash page at %#x\n",
3105 			addr);
3106 		return -EIO;
3107 	}
3108 	return 0;
3109 
3110 unlock:
3111 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3112 	return ret;
3113 }
3114 
3115 /**
3116  *	t4_get_fw_version - read the firmware version
3117  *	@adapter: the adapter
3118  *	@vers: where to place the version
3119  *
3120  *	Reads the FW version from flash.
3121  */
3122 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3123 {
3124 	return t4_read_flash(adapter, FLASH_FW_START +
3125 			     offsetof(struct fw_hdr, fw_ver), 1,
3126 			     vers, 0);
3127 }
3128 
3129 /**
3130  *	t4_get_bs_version - read the firmware bootstrap version
3131  *	@adapter: the adapter
3132  *	@vers: where to place the version
3133  *
3134  *	Reads the FW Bootstrap version from flash.
3135  */
3136 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3137 {
3138 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3139 			     offsetof(struct fw_hdr, fw_ver), 1,
3140 			     vers, 0);
3141 }
3142 
3143 /**
3144  *	t4_get_tp_version - read the TP microcode version
3145  *	@adapter: the adapter
3146  *	@vers: where to place the version
3147  *
3148  *	Reads the TP microcode version from flash.
3149  */
3150 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3151 {
3152 	return t4_read_flash(adapter, FLASH_FW_START +
3153 			     offsetof(struct fw_hdr, tp_microcode_ver),
3154 			     1, vers, 0);
3155 }
3156 
3157 /**
3158  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3159  *	@adap: the adapter
3160  *	@vers: where to place the version
3161  *
3162  *	Reads the Expansion ROM header from FLASH and returns the version
3163  *	number (if present) through the @vers return value pointer.  We return
3164  *	this in the Firmware Version Format since it's convenient.  Return
3165  *	0 on success, -ENOENT if no Expansion ROM is present.
3166  */
3167 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3168 {
3169 	struct exprom_header {
3170 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3171 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3172 	} *hdr;
3173 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3174 					   sizeof(u32))];
3175 	int ret;
3176 
3177 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3178 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3179 			    0);
3180 	if (ret)
3181 		return ret;
3182 
3183 	hdr = (struct exprom_header *)exprom_header_buf;
3184 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3185 		return -ENOENT;
3186 
3187 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3188 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3189 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3190 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3191 	return 0;
3192 }
3193 
3194 /**
3195  *      t4_get_vpd_version - return the VPD version
3196  *      @adapter: the adapter
3197  *      @vers: where to place the version
3198  *
3199  *      Reads the VPD via the Firmware interface (thus this can only be called
3200  *      once we're ready to issue Firmware commands).  The format of the
3201  *      VPD version is adapter specific.  Returns 0 on success, an error on
3202  *      failure.
3203  *
3204  *      Note that early versions of the Firmware didn't include the ability
3205  *      to retrieve the VPD version, so we zero-out the return-value parameter
3206  *      in that case to avoid leaving it with garbage in it.
3207  *
3208  *      Also note that the Firmware will return its cached copy of the VPD
3209  *      Revision ID, not the actual Revision ID as written in the Serial
3210  *      EEPROM.  This is only an issue if a new VPD has been written and the
3211  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3212  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3213  *      if the Host Driver will be performing a full adapter initialization.
3214  */
3215 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3216 {
3217 	u32 vpdrev_param;
3218 	int ret;
3219 
3220 	vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3221 			FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3222 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3223 			      1, &vpdrev_param, vers);
3224 	if (ret)
3225 		*vers = 0;
3226 	return ret;
3227 }
3228 
3229 /**
3230  *      t4_get_scfg_version - return the Serial Configuration version
3231  *      @adapter: the adapter
3232  *      @vers: where to place the version
3233  *
3234  *      Reads the Serial Configuration Version via the Firmware interface
3235  *      (thus this can only be called once we're ready to issue Firmware
3236  *      commands).  The format of the Serial Configuration version is
3237  *      adapter specific.  Returns 0 on success, an error on failure.
3238  *
3239  *      Note that early versions of the Firmware didn't include the ability
3240  *      to retrieve the Serial Configuration version, so we zero-out the
3241  *      return-value parameter in that case to avoid leaving it with
3242  *      garbage in it.
3243  *
3244  *      Also note that the Firmware will return its cached copy of the Serial
3245  *      Initialization Revision ID, not the actual Revision ID as written in
3246  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3247  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3248  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3249  *      been issued if the Host Driver will be performing a full adapter
3250  *      initialization.
3251  */
3252 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3253 {
3254 	u32 scfgrev_param;
3255 	int ret;
3256 
3257 	scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3258 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3259 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3260 			      1, &scfgrev_param, vers);
3261 	if (ret)
3262 		*vers = 0;
3263 	return ret;
3264 }
3265 
3266 /**
3267  *      t4_get_version_info - extract various chip/firmware version information
3268  *      @adapter: the adapter
3269  *
3270  *      Reads various chip/firmware version numbers and stores them into the
3271  *      adapter Adapter Parameters structure.  If any of the efforts fails
3272  *      the first failure will be returned, but all of the version numbers
3273  *      will be read.
3274  */
3275 int t4_get_version_info(struct adapter *adapter)
3276 {
3277 	int ret = 0;
3278 
3279 	#define FIRST_RET(__getvinfo) \
3280 	do { \
3281 		int __ret = __getvinfo; \
3282 		if (__ret && !ret) \
3283 			ret = __ret; \
3284 	} while (0)
3285 
3286 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3287 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3288 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3289 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3290 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3291 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3292 
3293 	#undef FIRST_RET
3294 	return ret;
3295 }
3296 
3297 /**
3298  *      t4_dump_version_info - dump all of the adapter configuration IDs
3299  *      @adapter: the adapter
3300  *
3301  *      Dumps all of the various bits of adapter configuration version/revision
3302  *      IDs information.  This is typically called at some point after
3303  *      t4_get_version_info() has been called.
3304  */
3305 void t4_dump_version_info(struct adapter *adapter)
3306 {
3307 	/* Device information */
3308 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3309 		 adapter->params.vpd.id,
3310 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
3311 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3312 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
3313 
3314 	/* Firmware Version */
3315 	if (!adapter->params.fw_vers)
3316 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3317 	else
3318 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3319 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3320 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3321 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3322 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3323 
3324 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3325 	 * Firmware, so dev_info() is more appropriate here.)
3326 	 */
3327 	if (!adapter->params.bs_vers)
3328 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3329 	else
3330 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3331 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3332 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3333 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3334 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3335 
3336 	/* TP Microcode Version */
3337 	if (!adapter->params.tp_vers)
3338 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3339 	else
3340 		dev_info(adapter->pdev_dev,
3341 			 "TP Microcode version: %u.%u.%u.%u\n",
3342 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3343 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3344 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3345 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3346 
3347 	/* Expansion ROM version */
3348 	if (!adapter->params.er_vers)
3349 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3350 	else
3351 		dev_info(adapter->pdev_dev,
3352 			 "Expansion ROM version: %u.%u.%u.%u\n",
3353 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3354 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3355 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3356 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3357 
3358 	/* Serial Configuration version */
3359 	dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3360 		 adapter->params.scfg_vers);
3361 
3362 	/* VPD Version */
3363 	dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3364 		 adapter->params.vpd_vers);
3365 }
3366 
3367 /**
3368  *	t4_check_fw_version - check if the FW is supported with this driver
3369  *	@adap: the adapter
3370  *
3371  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
3372  *	if there's exact match, a negative error if the version could not be
3373  *	read or there's a major version mismatch
3374  */
3375 int t4_check_fw_version(struct adapter *adap)
3376 {
3377 	int i, ret, major, minor, micro;
3378 	int exp_major, exp_minor, exp_micro;
3379 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3380 
3381 	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3382 	/* Try multiple times before returning error */
3383 	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3384 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3385 
3386 	if (ret)
3387 		return ret;
3388 
3389 	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3390 	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3391 	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3392 
3393 	switch (chip_version) {
3394 	case CHELSIO_T4:
3395 		exp_major = T4FW_MIN_VERSION_MAJOR;
3396 		exp_minor = T4FW_MIN_VERSION_MINOR;
3397 		exp_micro = T4FW_MIN_VERSION_MICRO;
3398 		break;
3399 	case CHELSIO_T5:
3400 		exp_major = T5FW_MIN_VERSION_MAJOR;
3401 		exp_minor = T5FW_MIN_VERSION_MINOR;
3402 		exp_micro = T5FW_MIN_VERSION_MICRO;
3403 		break;
3404 	case CHELSIO_T6:
3405 		exp_major = T6FW_MIN_VERSION_MAJOR;
3406 		exp_minor = T6FW_MIN_VERSION_MINOR;
3407 		exp_micro = T6FW_MIN_VERSION_MICRO;
3408 		break;
3409 	default:
3410 		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3411 			adap->chip);
3412 		return -EINVAL;
3413 	}
3414 
3415 	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3416 	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3417 		dev_err(adap->pdev_dev,
3418 			"Card has firmware version %u.%u.%u, minimum "
3419 			"supported firmware is %u.%u.%u.\n", major, minor,
3420 			micro, exp_major, exp_minor, exp_micro);
3421 		return -EFAULT;
3422 	}
3423 	return 0;
3424 }
3425 
3426 /* Is the given firmware API compatible with the one the driver was compiled
3427  * with?
3428  */
3429 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3430 {
3431 
3432 	/* short circuit if it's the exact same firmware version */
3433 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3434 		return 1;
3435 
3436 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3437 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3438 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3439 		return 1;
3440 #undef SAME_INTF
3441 
3442 	return 0;
3443 }
3444 
3445 /* The firmware in the filesystem is usable, but should it be installed?
3446  * This routine explains itself in detail if it indicates the filesystem
3447  * firmware should be installed.
3448  */
3449 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3450 				int k, int c)
3451 {
3452 	const char *reason;
3453 
3454 	if (!card_fw_usable) {
3455 		reason = "incompatible or unusable";
3456 		goto install;
3457 	}
3458 
3459 	if (k > c) {
3460 		reason = "older than the version supported with this driver";
3461 		goto install;
3462 	}
3463 
3464 	return 0;
3465 
3466 install:
3467 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3468 		"installing firmware %u.%u.%u.%u on card.\n",
3469 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3470 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3471 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3472 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3473 
3474 	return 1;
3475 }
3476 
3477 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3478 	       const u8 *fw_data, unsigned int fw_size,
3479 	       struct fw_hdr *card_fw, enum dev_state state,
3480 	       int *reset)
3481 {
3482 	int ret, card_fw_usable, fs_fw_usable;
3483 	const struct fw_hdr *fs_fw;
3484 	const struct fw_hdr *drv_fw;
3485 
3486 	drv_fw = &fw_info->fw_hdr;
3487 
3488 	/* Read the header of the firmware on the card */
3489 	ret = t4_read_flash(adap, FLASH_FW_START,
3490 			    sizeof(*card_fw) / sizeof(uint32_t),
3491 			    (uint32_t *)card_fw, 1);
3492 	if (ret == 0) {
3493 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3494 	} else {
3495 		dev_err(adap->pdev_dev,
3496 			"Unable to read card's firmware header: %d\n", ret);
3497 		card_fw_usable = 0;
3498 	}
3499 
3500 	if (fw_data != NULL) {
3501 		fs_fw = (const void *)fw_data;
3502 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3503 	} else {
3504 		fs_fw = NULL;
3505 		fs_fw_usable = 0;
3506 	}
3507 
3508 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3509 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3510 		/* Common case: the firmware on the card is an exact match and
3511 		 * the filesystem one is an exact match too, or the filesystem
3512 		 * one is absent/incompatible.
3513 		 */
3514 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3515 		   should_install_fs_fw(adap, card_fw_usable,
3516 					be32_to_cpu(fs_fw->fw_ver),
3517 					be32_to_cpu(card_fw->fw_ver))) {
3518 		ret = t4_fw_upgrade(adap, adap->mbox, fw_data,
3519 				    fw_size, 0);
3520 		if (ret != 0) {
3521 			dev_err(adap->pdev_dev,
3522 				"failed to install firmware: %d\n", ret);
3523 			goto bye;
3524 		}
3525 
3526 		/* Installed successfully, update the cached header too. */
3527 		*card_fw = *fs_fw;
3528 		card_fw_usable = 1;
3529 		*reset = 0;	/* already reset as part of load_fw */
3530 	}
3531 
3532 	if (!card_fw_usable) {
3533 		uint32_t d, c, k;
3534 
3535 		d = be32_to_cpu(drv_fw->fw_ver);
3536 		c = be32_to_cpu(card_fw->fw_ver);
3537 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3538 
3539 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3540 			"chip state %d, "
3541 			"driver compiled with %d.%d.%d.%d, "
3542 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3543 			state,
3544 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3545 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3546 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3547 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3548 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3549 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3550 		ret = -EINVAL;
3551 		goto bye;
3552 	}
3553 
3554 	/* We're using whatever's on the card and it's known to be good. */
3555 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3556 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3557 
3558 bye:
3559 	return ret;
3560 }
3561 
3562 /**
3563  *	t4_flash_erase_sectors - erase a range of flash sectors
3564  *	@adapter: the adapter
3565  *	@start: the first sector to erase
3566  *	@end: the last sector to erase
3567  *
3568  *	Erases the sectors in the given inclusive range.
3569  */
3570 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3571 {
3572 	int ret = 0;
3573 
3574 	if (end >= adapter->params.sf_nsec)
3575 		return -EINVAL;
3576 
3577 	while (start <= end) {
3578 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3579 		    (ret = sf1_write(adapter, 4, 0, 1,
3580 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3581 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3582 			dev_err(adapter->pdev_dev,
3583 				"erase of flash sector %d failed, error %d\n",
3584 				start, ret);
3585 			break;
3586 		}
3587 		start++;
3588 	}
3589 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3590 	return ret;
3591 }
3592 
3593 /**
3594  *	t4_flash_cfg_addr - return the address of the flash configuration file
3595  *	@adapter: the adapter
3596  *
3597  *	Return the address within the flash where the Firmware Configuration
3598  *	File is stored.
3599  */
3600 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3601 {
3602 	if (adapter->params.sf_size == 0x100000)
3603 		return FLASH_FPGA_CFG_START;
3604 	else
3605 		return FLASH_CFG_START;
3606 }
3607 
3608 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3609  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3610  * and emit an error message for mismatched firmware to save our caller the
3611  * effort ...
3612  */
3613 static bool t4_fw_matches_chip(const struct adapter *adap,
3614 			       const struct fw_hdr *hdr)
3615 {
3616 	/* The expression below will return FALSE for any unsupported adapter
3617 	 * which will keep us "honest" in the future ...
3618 	 */
3619 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3620 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3621 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3622 		return true;
3623 
3624 	dev_err(adap->pdev_dev,
3625 		"FW image (%d) is not suitable for this adapter (%d)\n",
3626 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3627 	return false;
3628 }
3629 
3630 /**
3631  *	t4_load_fw - download firmware
3632  *	@adap: the adapter
3633  *	@fw_data: the firmware image to write
3634  *	@size: image size
3635  *
3636  *	Write the supplied firmware image to the card's serial flash.
3637  */
3638 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3639 {
3640 	u32 csum;
3641 	int ret, addr;
3642 	unsigned int i;
3643 	u8 first_page[SF_PAGE_SIZE];
3644 	const __be32 *p = (const __be32 *)fw_data;
3645 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3646 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3647 	unsigned int fw_start_sec = FLASH_FW_START_SEC;
3648 	unsigned int fw_size = FLASH_FW_MAX_SIZE;
3649 	unsigned int fw_start = FLASH_FW_START;
3650 
3651 	if (!size) {
3652 		dev_err(adap->pdev_dev, "FW image has no data\n");
3653 		return -EINVAL;
3654 	}
3655 	if (size & 511) {
3656 		dev_err(adap->pdev_dev,
3657 			"FW image size not multiple of 512 bytes\n");
3658 		return -EINVAL;
3659 	}
3660 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3661 		dev_err(adap->pdev_dev,
3662 			"FW image size differs from size in FW header\n");
3663 		return -EINVAL;
3664 	}
3665 	if (size > fw_size) {
3666 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3667 			fw_size);
3668 		return -EFBIG;
3669 	}
3670 	if (!t4_fw_matches_chip(adap, hdr))
3671 		return -EINVAL;
3672 
3673 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3674 		csum += be32_to_cpu(p[i]);
3675 
3676 	if (csum != 0xffffffff) {
3677 		dev_err(adap->pdev_dev,
3678 			"corrupted firmware image, checksum %#x\n", csum);
3679 		return -EINVAL;
3680 	}
3681 
3682 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3683 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3684 	if (ret)
3685 		goto out;
3686 
3687 	/*
3688 	 * We write the correct version at the end so the driver can see a bad
3689 	 * version if the FW write fails.  Start by writing a copy of the
3690 	 * first page with a bad version.
3691 	 */
3692 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3693 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3694 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page);
3695 	if (ret)
3696 		goto out;
3697 
3698 	addr = fw_start;
3699 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3700 		addr += SF_PAGE_SIZE;
3701 		fw_data += SF_PAGE_SIZE;
3702 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3703 		if (ret)
3704 			goto out;
3705 	}
3706 
3707 	ret = t4_write_flash(adap,
3708 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3709 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3710 out:
3711 	if (ret)
3712 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3713 			ret);
3714 	else
3715 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3716 	return ret;
3717 }
3718 
3719 /**
3720  *	t4_phy_fw_ver - return current PHY firmware version
3721  *	@adap: the adapter
3722  *	@phy_fw_ver: return value buffer for PHY firmware version
3723  *
3724  *	Returns the current version of external PHY firmware on the
3725  *	adapter.
3726  */
3727 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3728 {
3729 	u32 param, val;
3730 	int ret;
3731 
3732 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3733 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3734 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3735 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3736 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3737 			      &param, &val);
3738 	if (ret)
3739 		return ret;
3740 	*phy_fw_ver = val;
3741 	return 0;
3742 }
3743 
3744 /**
3745  *	t4_load_phy_fw - download port PHY firmware
3746  *	@adap: the adapter
3747  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3748  *	@phy_fw_version: function to check PHY firmware versions
3749  *	@phy_fw_data: the PHY firmware image to write
3750  *	@phy_fw_size: image size
3751  *
3752  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3753  *	@phy_fw_version is supplied, then it will be used to determine if
3754  *	it's necessary to perform the transfer by comparing the version
3755  *	of any existing adapter PHY firmware with that of the passed in
3756  *	PHY firmware image.
3757  *
3758  *	A negative error number will be returned if an error occurs.  If
3759  *	version number support is available and there's no need to upgrade
3760  *	the firmware, 0 will be returned.  If firmware is successfully
3761  *	transferred to the adapter, 1 will be returned.
3762  *
3763  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3764  *	a result, a RESET of the adapter would cause that RAM to lose its
3765  *	contents.  Thus, loading PHY firmware on such adapters must happen
3766  *	after any FW_RESET_CMDs ...
3767  */
3768 int t4_load_phy_fw(struct adapter *adap, int win,
3769 		   int (*phy_fw_version)(const u8 *, size_t),
3770 		   const u8 *phy_fw_data, size_t phy_fw_size)
3771 {
3772 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3773 	unsigned long mtype = 0, maddr = 0;
3774 	u32 param, val;
3775 	int ret;
3776 
3777 	/* If we have version number support, then check to see if the adapter
3778 	 * already has up-to-date PHY firmware loaded.
3779 	 */
3780 	if (phy_fw_version) {
3781 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3782 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3783 		if (ret < 0)
3784 			return ret;
3785 
3786 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3787 			CH_WARN(adap, "PHY Firmware already up-to-date, "
3788 				"version %#x\n", cur_phy_fw_ver);
3789 			return 0;
3790 		}
3791 	}
3792 
3793 	/* Ask the firmware where it wants us to copy the PHY firmware image.
3794 	 * The size of the file requires a special version of the READ command
3795 	 * which will pass the file size via the values field in PARAMS_CMD and
3796 	 * retrieve the return value from firmware and place it in the same
3797 	 * buffer values
3798 	 */
3799 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3800 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3801 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3802 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3803 	val = phy_fw_size;
3804 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3805 				 &param, &val, 1, true);
3806 	if (ret < 0)
3807 		return ret;
3808 	mtype = val >> 8;
3809 	maddr = (val & 0xff) << 16;
3810 
3811 	/* Copy the supplied PHY Firmware image to the adapter memory location
3812 	 * allocated by the adapter firmware.
3813 	 */
3814 	ret = t4_memory_rw(adap, win, mtype, maddr,
3815 			   phy_fw_size, (__be32 *)phy_fw_data,
3816 			   T4_MEMORY_WRITE);
3817 	if (ret)
3818 		return ret;
3819 
3820 	/* Tell the firmware that the PHY firmware image has been written to
3821 	 * RAM and it can now start copying it over to the PHYs.  The chip
3822 	 * firmware will RESET the affected PHYs as part of this operation
3823 	 * leaving them running the new PHY firmware image.
3824 	 */
3825 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3826 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3827 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3828 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3829 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3830 				    &param, &val, 30000);
3831 
3832 	/* If we have version number support, then check to see that the new
3833 	 * firmware got loaded properly.
3834 	 */
3835 	if (phy_fw_version) {
3836 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3837 		if (ret < 0)
3838 			return ret;
3839 
3840 		if (cur_phy_fw_ver != new_phy_fw_vers) {
3841 			CH_WARN(adap, "PHY Firmware did not update: "
3842 				"version on adapter %#x, "
3843 				"version flashed %#x\n",
3844 				cur_phy_fw_ver, new_phy_fw_vers);
3845 			return -ENXIO;
3846 		}
3847 	}
3848 
3849 	return 1;
3850 }
3851 
3852 /**
3853  *	t4_fwcache - firmware cache operation
3854  *	@adap: the adapter
3855  *	@op  : the operation (flush or flush and invalidate)
3856  */
3857 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3858 {
3859 	struct fw_params_cmd c;
3860 
3861 	memset(&c, 0, sizeof(c));
3862 	c.op_to_vfn =
3863 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3864 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3865 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3866 			    FW_PARAMS_CMD_VFN_V(0));
3867 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3868 	c.param[0].mnem =
3869 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3870 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3871 	c.param[0].val = cpu_to_be32(op);
3872 
3873 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3874 }
3875 
3876 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3877 			unsigned int *pif_req_wrptr,
3878 			unsigned int *pif_rsp_wrptr)
3879 {
3880 	int i, j;
3881 	u32 cfg, val, req, rsp;
3882 
3883 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3884 	if (cfg & LADBGEN_F)
3885 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3886 
3887 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3888 	req = POLADBGWRPTR_G(val);
3889 	rsp = PILADBGWRPTR_G(val);
3890 	if (pif_req_wrptr)
3891 		*pif_req_wrptr = req;
3892 	if (pif_rsp_wrptr)
3893 		*pif_rsp_wrptr = rsp;
3894 
3895 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3896 		for (j = 0; j < 6; j++) {
3897 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3898 				     PILADBGRDPTR_V(rsp));
3899 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3900 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3901 			req++;
3902 			rsp++;
3903 		}
3904 		req = (req + 2) & POLADBGRDPTR_M;
3905 		rsp = (rsp + 2) & PILADBGRDPTR_M;
3906 	}
3907 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3908 }
3909 
3910 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3911 {
3912 	u32 cfg;
3913 	int i, j, idx;
3914 
3915 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3916 	if (cfg & LADBGEN_F)
3917 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3918 
3919 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3920 		for (j = 0; j < 5; j++) {
3921 			idx = 8 * i + j;
3922 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3923 				     PILADBGRDPTR_V(idx));
3924 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3925 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3926 		}
3927 	}
3928 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3929 }
3930 
3931 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3932 {
3933 	unsigned int i, j;
3934 
3935 	for (i = 0; i < 8; i++) {
3936 		u32 *p = la_buf + i;
3937 
3938 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3939 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3940 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3941 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3942 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3943 	}
3944 }
3945 
3946 /* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port
3947  * Capabilities which we control with separate controls -- see, for instance,
3948  * Pause Frames and Forward Error Correction.  In order to determine what the
3949  * full set of Advertised Port Capabilities are, the base Advertised Port
3950  * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised
3951  * Port Capabilities associated with those other controls.  See
3952  * t4_link_acaps() for how this is done.
3953  */
3954 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3955 		     FW_PORT_CAP32_ANEG)
3956 
3957 /**
3958  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3959  *	@caps16: a 16-bit Port Capabilities value
3960  *
3961  *	Returns the equivalent 32-bit Port Capabilities value.
3962  */
3963 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3964 {
3965 	fw_port_cap32_t caps32 = 0;
3966 
3967 	#define CAP16_TO_CAP32(__cap) \
3968 		do { \
3969 			if (caps16 & FW_PORT_CAP_##__cap) \
3970 				caps32 |= FW_PORT_CAP32_##__cap; \
3971 		} while (0)
3972 
3973 	CAP16_TO_CAP32(SPEED_100M);
3974 	CAP16_TO_CAP32(SPEED_1G);
3975 	CAP16_TO_CAP32(SPEED_25G);
3976 	CAP16_TO_CAP32(SPEED_10G);
3977 	CAP16_TO_CAP32(SPEED_40G);
3978 	CAP16_TO_CAP32(SPEED_100G);
3979 	CAP16_TO_CAP32(FC_RX);
3980 	CAP16_TO_CAP32(FC_TX);
3981 	CAP16_TO_CAP32(ANEG);
3982 	CAP16_TO_CAP32(FORCE_PAUSE);
3983 	CAP16_TO_CAP32(MDIAUTO);
3984 	CAP16_TO_CAP32(MDISTRAIGHT);
3985 	CAP16_TO_CAP32(FEC_RS);
3986 	CAP16_TO_CAP32(FEC_BASER_RS);
3987 	CAP16_TO_CAP32(802_3_PAUSE);
3988 	CAP16_TO_CAP32(802_3_ASM_DIR);
3989 
3990 	#undef CAP16_TO_CAP32
3991 
3992 	return caps32;
3993 }
3994 
3995 /**
3996  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3997  *	@caps32: a 32-bit Port Capabilities value
3998  *
3999  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
4000  *	not all 32-bit Port Capabilities can be represented in the 16-bit
4001  *	Port Capabilities and some fields/values may not make it.
4002  */
4003 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
4004 {
4005 	fw_port_cap16_t caps16 = 0;
4006 
4007 	#define CAP32_TO_CAP16(__cap) \
4008 		do { \
4009 			if (caps32 & FW_PORT_CAP32_##__cap) \
4010 				caps16 |= FW_PORT_CAP_##__cap; \
4011 		} while (0)
4012 
4013 	CAP32_TO_CAP16(SPEED_100M);
4014 	CAP32_TO_CAP16(SPEED_1G);
4015 	CAP32_TO_CAP16(SPEED_10G);
4016 	CAP32_TO_CAP16(SPEED_25G);
4017 	CAP32_TO_CAP16(SPEED_40G);
4018 	CAP32_TO_CAP16(SPEED_100G);
4019 	CAP32_TO_CAP16(FC_RX);
4020 	CAP32_TO_CAP16(FC_TX);
4021 	CAP32_TO_CAP16(802_3_PAUSE);
4022 	CAP32_TO_CAP16(802_3_ASM_DIR);
4023 	CAP32_TO_CAP16(ANEG);
4024 	CAP32_TO_CAP16(FORCE_PAUSE);
4025 	CAP32_TO_CAP16(MDIAUTO);
4026 	CAP32_TO_CAP16(MDISTRAIGHT);
4027 	CAP32_TO_CAP16(FEC_RS);
4028 	CAP32_TO_CAP16(FEC_BASER_RS);
4029 
4030 	#undef CAP32_TO_CAP16
4031 
4032 	return caps16;
4033 }
4034 
4035 /* Translate Firmware Port Capabilities Pause specification to Common Code */
4036 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
4037 {
4038 	enum cc_pause cc_pause = 0;
4039 
4040 	if (fw_pause & FW_PORT_CAP32_FC_RX)
4041 		cc_pause |= PAUSE_RX;
4042 	if (fw_pause & FW_PORT_CAP32_FC_TX)
4043 		cc_pause |= PAUSE_TX;
4044 
4045 	return cc_pause;
4046 }
4047 
4048 /* Translate Common Code Pause specification into Firmware Port Capabilities */
4049 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4050 {
4051 	/* Translate orthogonal RX/TX Pause Controls for L1 Configure
4052 	 * commands, etc.
4053 	 */
4054 	fw_port_cap32_t fw_pause = 0;
4055 
4056 	if (cc_pause & PAUSE_RX)
4057 		fw_pause |= FW_PORT_CAP32_FC_RX;
4058 	if (cc_pause & PAUSE_TX)
4059 		fw_pause |= FW_PORT_CAP32_FC_TX;
4060 	if (!(cc_pause & PAUSE_AUTONEG))
4061 		fw_pause |= FW_PORT_CAP32_FORCE_PAUSE;
4062 
4063 	/* Translate orthogonal Pause controls into IEEE 802.3 Pause,
4064 	 * Asymmetrical Pause for use in reporting to upper layer OS code, etc.
4065 	 * Note that these bits are ignored in L1 Configure commands.
4066 	 */
4067 	if (cc_pause & PAUSE_RX) {
4068 		if (cc_pause & PAUSE_TX)
4069 			fw_pause |= FW_PORT_CAP32_802_3_PAUSE;
4070 		else
4071 			fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR |
4072 				    FW_PORT_CAP32_802_3_PAUSE;
4073 	} else if (cc_pause & PAUSE_TX) {
4074 		fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR;
4075 	}
4076 
4077 	return fw_pause;
4078 }
4079 
4080 /* Translate Firmware Forward Error Correction specification to Common Code */
4081 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4082 {
4083 	enum cc_fec cc_fec = 0;
4084 
4085 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
4086 		cc_fec |= FEC_RS;
4087 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4088 		cc_fec |= FEC_BASER_RS;
4089 
4090 	return cc_fec;
4091 }
4092 
4093 /* Translate Common Code Forward Error Correction specification to Firmware */
4094 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4095 {
4096 	fw_port_cap32_t fw_fec = 0;
4097 
4098 	if (cc_fec & FEC_RS)
4099 		fw_fec |= FW_PORT_CAP32_FEC_RS;
4100 	if (cc_fec & FEC_BASER_RS)
4101 		fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4102 
4103 	return fw_fec;
4104 }
4105 
4106 /**
4107  *	t4_link_acaps - compute Link Advertised Port Capabilities
4108  *	@adapter: the adapter
4109  *	@port: the Port ID
4110  *	@lc: the Port's Link Configuration
4111  *
4112  *	Synthesize the Advertised Port Capabilities we'll be using based on
4113  *	the base Advertised Port Capabilities (which have been filtered by
4114  *	ADVERT_MASK) plus the individual controls for things like Pause
4115  *	Frames, Forward Error Correction, MDI, etc.
4116  */
4117 fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port,
4118 			      struct link_config *lc)
4119 {
4120 	fw_port_cap32_t fw_fc, fw_fec, acaps;
4121 	unsigned int fw_mdi;
4122 	char cc_fec;
4123 
4124 	fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps);
4125 
4126 	/* Convert driver coding of Pause Frame Flow Control settings into the
4127 	 * Firmware's API.
4128 	 */
4129 	fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4130 
4131 	/* Convert Common Code Forward Error Control settings into the
4132 	 * Firmware's API.  If the current Requested FEC has "Automatic"
4133 	 * (IEEE 802.3) specified, then we use whatever the Firmware
4134 	 * sent us as part of its IEEE 802.3-based interpretation of
4135 	 * the Transceiver Module EPROM FEC parameters.  Otherwise we
4136 	 * use whatever is in the current Requested FEC settings.
4137 	 */
4138 	if (lc->requested_fec & FEC_AUTO)
4139 		cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4140 	else
4141 		cc_fec = lc->requested_fec;
4142 	fw_fec = cc_to_fwcap_fec(cc_fec);
4143 
4144 	/* Figure out what our Requested Port Capabilities are going to be.
4145 	 * Note parallel structure in t4_handle_get_port_info() and
4146 	 * init_link_config().
4147 	 */
4148 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4149 		acaps = lc->acaps | fw_fc | fw_fec;
4150 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4151 		lc->fec = cc_fec;
4152 	} else if (lc->autoneg == AUTONEG_DISABLE) {
4153 		acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4154 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4155 		lc->fec = cc_fec;
4156 	} else {
4157 		acaps = lc->acaps | fw_fc | fw_fec | fw_mdi;
4158 	}
4159 
4160 	/* Some Requested Port Capabilities are trivially wrong if they exceed
4161 	 * the Physical Port Capabilities.  We can check that here and provide
4162 	 * moderately useful feedback in the system log.
4163 	 *
4164 	 * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so
4165 	 * we need to exclude this from this check in order to maintain
4166 	 * compatibility ...
4167 	 */
4168 	if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) {
4169 		dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
4170 			acaps, lc->pcaps);
4171 		return -EINVAL;
4172 	}
4173 
4174 	return acaps;
4175 }
4176 
4177 /**
4178  *	t4_link_l1cfg_core - apply link configuration to MAC/PHY
4179  *	@adapter: the adapter
4180  *	@mbox: the Firmware Mailbox to use
4181  *	@port: the Port ID
4182  *	@lc: the Port's Link Configuration
4183  *	@sleep_ok: if true we may sleep while awaiting command completion
4184  *	@timeout: time to wait for command to finish before timing out
4185  *		(negative implies @sleep_ok=false)
4186  *
4187  *	Set up a port's MAC and PHY according to a desired link configuration.
4188  *	- If the PHY can auto-negotiate first decide what to advertise, then
4189  *	  enable/disable auto-negotiation as desired, and reset.
4190  *	- If the PHY does not auto-negotiate just reset it.
4191  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4192  *	  otherwise do it later based on the outcome of auto-negotiation.
4193  */
4194 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox,
4195 		       unsigned int port, struct link_config *lc,
4196 		       u8 sleep_ok, int timeout)
4197 {
4198 	unsigned int fw_caps = adapter->params.fw_caps_support;
4199 	struct fw_port_cmd cmd;
4200 	fw_port_cap32_t rcap;
4201 	int ret;
4202 
4203 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG) &&
4204 	    lc->autoneg == AUTONEG_ENABLE) {
4205 		return -EINVAL;
4206 	}
4207 
4208 	/* Compute our Requested Port Capabilities and send that on to the
4209 	 * Firmware.
4210 	 */
4211 	rcap = t4_link_acaps(adapter, port, lc);
4212 	memset(&cmd, 0, sizeof(cmd));
4213 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4214 				       FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4215 				       FW_PORT_CMD_PORTID_V(port));
4216 	cmd.action_to_len16 =
4217 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4218 						 ? FW_PORT_ACTION_L1_CFG
4219 						 : FW_PORT_ACTION_L1_CFG32) |
4220 						 FW_LEN16(cmd));
4221 	if (fw_caps == FW_CAPS16)
4222 		cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4223 	else
4224 		cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4225 
4226 	ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL,
4227 				      sleep_ok, timeout);
4228 
4229 	/* Unfortunately, even if the Requested Port Capabilities "fit" within
4230 	 * the Physical Port Capabilities, some combinations of features may
4231 	 * still not be legal.  For example, 40Gb/s and Reed-Solomon Forward
4232 	 * Error Correction.  So if the Firmware rejects the L1 Configure
4233 	 * request, flag that here.
4234 	 */
4235 	if (ret) {
4236 		dev_err(adapter->pdev_dev,
4237 			"Requested Port Capabilities %#x rejected, error %d\n",
4238 			rcap, -ret);
4239 		return ret;
4240 	}
4241 	return 0;
4242 }
4243 
4244 /**
4245  *	t4_restart_aneg - restart autonegotiation
4246  *	@adap: the adapter
4247  *	@mbox: mbox to use for the FW command
4248  *	@port: the port id
4249  *
4250  *	Restarts autonegotiation for the selected port.
4251  */
4252 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4253 {
4254 	unsigned int fw_caps = adap->params.fw_caps_support;
4255 	struct fw_port_cmd c;
4256 
4257 	memset(&c, 0, sizeof(c));
4258 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4259 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4260 				     FW_PORT_CMD_PORTID_V(port));
4261 	c.action_to_len16 =
4262 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4263 						 ? FW_PORT_ACTION_L1_CFG
4264 						 : FW_PORT_ACTION_L1_CFG32) |
4265 			    FW_LEN16(c));
4266 	if (fw_caps == FW_CAPS16)
4267 		c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4268 	else
4269 		c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG);
4270 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4271 }
4272 
4273 typedef void (*int_handler_t)(struct adapter *adap);
4274 
4275 struct intr_info {
4276 	unsigned int mask;       /* bits to check in interrupt status */
4277 	const char *msg;         /* message to print or NULL */
4278 	short stat_idx;          /* stat counter to increment or -1 */
4279 	unsigned short fatal;    /* whether the condition reported is fatal */
4280 	int_handler_t int_handler; /* platform-specific int handler */
4281 };
4282 
4283 /**
4284  *	t4_handle_intr_status - table driven interrupt handler
4285  *	@adapter: the adapter that generated the interrupt
4286  *	@reg: the interrupt status register to process
4287  *	@acts: table of interrupt actions
4288  *
4289  *	A table driven interrupt handler that applies a set of masks to an
4290  *	interrupt status word and performs the corresponding actions if the
4291  *	interrupts described by the mask have occurred.  The actions include
4292  *	optionally emitting a warning or alert message.  The table is terminated
4293  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
4294  *	conditions.
4295  */
4296 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4297 				 const struct intr_info *acts)
4298 {
4299 	int fatal = 0;
4300 	unsigned int mask = 0;
4301 	unsigned int status = t4_read_reg(adapter, reg);
4302 
4303 	for ( ; acts->mask; ++acts) {
4304 		if (!(status & acts->mask))
4305 			continue;
4306 		if (acts->fatal) {
4307 			fatal++;
4308 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4309 				  status & acts->mask);
4310 		} else if (acts->msg && printk_ratelimit())
4311 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4312 				 status & acts->mask);
4313 		if (acts->int_handler)
4314 			acts->int_handler(adapter);
4315 		mask |= acts->mask;
4316 	}
4317 	status &= mask;
4318 	if (status)                           /* clear processed interrupts */
4319 		t4_write_reg(adapter, reg, status);
4320 	return fatal;
4321 }
4322 
4323 /*
4324  * Interrupt handler for the PCIE module.
4325  */
4326 static void pcie_intr_handler(struct adapter *adapter)
4327 {
4328 	static const struct intr_info sysbus_intr_info[] = {
4329 		{ RNPP_F, "RXNP array parity error", -1, 1 },
4330 		{ RPCP_F, "RXPC array parity error", -1, 1 },
4331 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
4332 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
4333 		{ RFTP_F, "RXFT array parity error", -1, 1 },
4334 		{ 0 }
4335 	};
4336 	static const struct intr_info pcie_port_intr_info[] = {
4337 		{ TPCP_F, "TXPC array parity error", -1, 1 },
4338 		{ TNPP_F, "TXNP array parity error", -1, 1 },
4339 		{ TFTP_F, "TXFT array parity error", -1, 1 },
4340 		{ TCAP_F, "TXCA array parity error", -1, 1 },
4341 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
4342 		{ RCAP_F, "RXCA array parity error", -1, 1 },
4343 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
4344 		{ RDPE_F, "Rx data parity error", -1, 1 },
4345 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
4346 		{ 0 }
4347 	};
4348 	static const struct intr_info pcie_intr_info[] = {
4349 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4350 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4351 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4352 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4353 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4354 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4355 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4356 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4357 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4358 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4359 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4360 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4361 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4362 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4363 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4364 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4365 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4366 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4367 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4368 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4369 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4370 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4371 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4372 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4373 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4374 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4375 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4376 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
4377 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
4378 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
4379 		  -1, 0 },
4380 		{ 0 }
4381 	};
4382 
4383 	static struct intr_info t5_pcie_intr_info[] = {
4384 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
4385 		  -1, 1 },
4386 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4387 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4388 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4389 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4390 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4391 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4392 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4393 		  -1, 1 },
4394 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4395 		  -1, 1 },
4396 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4397 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4398 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4399 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4400 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
4401 		  -1, 1 },
4402 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4403 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4404 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4405 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4406 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4407 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4408 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4409 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4410 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4411 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4412 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4413 		  -1, 1 },
4414 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4415 		  -1, 1 },
4416 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4417 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4418 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4419 		{ READRSPERR_F, "Outbound read error", -1, 0 },
4420 		{ 0 }
4421 	};
4422 
4423 	int fat;
4424 
4425 	if (is_t4(adapter->params.chip))
4426 		fat = t4_handle_intr_status(adapter,
4427 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4428 				sysbus_intr_info) +
4429 			t4_handle_intr_status(adapter,
4430 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4431 					pcie_port_intr_info) +
4432 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4433 					      pcie_intr_info);
4434 	else
4435 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4436 					    t5_pcie_intr_info);
4437 
4438 	if (fat)
4439 		t4_fatal_err(adapter);
4440 }
4441 
4442 /*
4443  * TP interrupt handler.
4444  */
4445 static void tp_intr_handler(struct adapter *adapter)
4446 {
4447 	static const struct intr_info tp_intr_info[] = {
4448 		{ 0x3fffffff, "TP parity error", -1, 1 },
4449 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4450 		{ 0 }
4451 	};
4452 
4453 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4454 		t4_fatal_err(adapter);
4455 }
4456 
4457 /*
4458  * SGE interrupt handler.
4459  */
4460 static void sge_intr_handler(struct adapter *adapter)
4461 {
4462 	u32 v = 0, perr;
4463 	u32 err;
4464 
4465 	static const struct intr_info sge_intr_info[] = {
4466 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
4467 		  "SGE received CPL exceeding IQE size", -1, 1 },
4468 		{ ERR_INVALID_CIDX_INC_F,
4469 		  "SGE GTS CIDX increment too large", -1, 0 },
4470 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4471 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4472 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4473 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4474 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4475 		  0 },
4476 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4477 		  0 },
4478 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4479 		  0 },
4480 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4481 		  0 },
4482 		{ ERR_ING_CTXT_PRIO_F,
4483 		  "SGE too many priority ingress contexts", -1, 0 },
4484 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4485 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4486 		{ 0 }
4487 	};
4488 
4489 	static struct intr_info t4t5_sge_intr_info[] = {
4490 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4491 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4492 		{ ERR_EGR_CTXT_PRIO_F,
4493 		  "SGE too many priority egress contexts", -1, 0 },
4494 		{ 0 }
4495 	};
4496 
4497 	perr = t4_read_reg(adapter, SGE_INT_CAUSE1_A);
4498 	if (perr) {
4499 		v |= perr;
4500 		dev_alert(adapter->pdev_dev, "SGE Cause1 Parity Error %#x\n",
4501 			  perr);
4502 	}
4503 
4504 	perr = t4_read_reg(adapter, SGE_INT_CAUSE2_A);
4505 	if (perr) {
4506 		v |= perr;
4507 		dev_alert(adapter->pdev_dev, "SGE Cause2 Parity Error %#x\n",
4508 			  perr);
4509 	}
4510 
4511 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) >= CHELSIO_T5) {
4512 		perr = t4_read_reg(adapter, SGE_INT_CAUSE5_A);
4513 		/* Parity error (CRC) for err_T_RxCRC is trivial, ignore it */
4514 		perr &= ~ERR_T_RXCRC_F;
4515 		if (perr) {
4516 			v |= perr;
4517 			dev_alert(adapter->pdev_dev,
4518 				  "SGE Cause5 Parity Error %#x\n", perr);
4519 		}
4520 	}
4521 
4522 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4523 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4524 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4525 					   t4t5_sge_intr_info);
4526 
4527 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4528 	if (err & ERROR_QID_VALID_F) {
4529 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4530 			ERROR_QID_G(err));
4531 		if (err & UNCAPTURED_ERROR_F)
4532 			dev_err(adapter->pdev_dev,
4533 				"SGE UNCAPTURED_ERROR set (clearing)\n");
4534 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4535 			     UNCAPTURED_ERROR_F);
4536 	}
4537 
4538 	if (v != 0)
4539 		t4_fatal_err(adapter);
4540 }
4541 
4542 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4543 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4544 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4545 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4546 
4547 /*
4548  * CIM interrupt handler.
4549  */
4550 static void cim_intr_handler(struct adapter *adapter)
4551 {
4552 	static const struct intr_info cim_intr_info[] = {
4553 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4554 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4555 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4556 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4557 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4558 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4559 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4560 		{ TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4561 		{ 0 }
4562 	};
4563 	static const struct intr_info cim_upintr_info[] = {
4564 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4565 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4566 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
4567 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
4568 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4569 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4570 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4571 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4572 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4573 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4574 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4575 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4576 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4577 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4578 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4579 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4580 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4581 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4582 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4583 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4584 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4585 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4586 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4587 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4588 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4589 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4590 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4591 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4592 		{ 0 }
4593 	};
4594 
4595 	u32 val, fw_err;
4596 	int fat;
4597 
4598 	fw_err = t4_read_reg(adapter, PCIE_FW_A);
4599 	if (fw_err & PCIE_FW_ERR_F)
4600 		t4_report_fw_error(adapter);
4601 
4602 	/* When the Firmware detects an internal error which normally
4603 	 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4604 	 * in order to make sure the Host sees the Firmware Crash.  So
4605 	 * if we have a Timer0 interrupt and don't see a Firmware Crash,
4606 	 * ignore the Timer0 interrupt.
4607 	 */
4608 
4609 	val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4610 	if (val & TIMER0INT_F)
4611 		if (!(fw_err & PCIE_FW_ERR_F) ||
4612 		    (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4613 			t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4614 				     TIMER0INT_F);
4615 
4616 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4617 				    cim_intr_info) +
4618 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4619 				    cim_upintr_info);
4620 	if (fat)
4621 		t4_fatal_err(adapter);
4622 }
4623 
4624 /*
4625  * ULP RX interrupt handler.
4626  */
4627 static void ulprx_intr_handler(struct adapter *adapter)
4628 {
4629 	static const struct intr_info ulprx_intr_info[] = {
4630 		{ 0x1800000, "ULPRX context error", -1, 1 },
4631 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4632 		{ 0 }
4633 	};
4634 
4635 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4636 		t4_fatal_err(adapter);
4637 }
4638 
4639 /*
4640  * ULP TX interrupt handler.
4641  */
4642 static void ulptx_intr_handler(struct adapter *adapter)
4643 {
4644 	static const struct intr_info ulptx_intr_info[] = {
4645 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4646 		  0 },
4647 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4648 		  0 },
4649 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4650 		  0 },
4651 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4652 		  0 },
4653 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4654 		{ 0 }
4655 	};
4656 
4657 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4658 		t4_fatal_err(adapter);
4659 }
4660 
4661 /*
4662  * PM TX interrupt handler.
4663  */
4664 static void pmtx_intr_handler(struct adapter *adapter)
4665 {
4666 	static const struct intr_info pmtx_intr_info[] = {
4667 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4668 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4669 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4670 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4671 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4672 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4673 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4674 		  -1, 1 },
4675 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4676 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4677 		{ 0 }
4678 	};
4679 
4680 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4681 		t4_fatal_err(adapter);
4682 }
4683 
4684 /*
4685  * PM RX interrupt handler.
4686  */
4687 static void pmrx_intr_handler(struct adapter *adapter)
4688 {
4689 	static const struct intr_info pmrx_intr_info[] = {
4690 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4691 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4692 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4693 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4694 		  -1, 1 },
4695 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4696 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4697 		{ 0 }
4698 	};
4699 
4700 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4701 		t4_fatal_err(adapter);
4702 }
4703 
4704 /*
4705  * CPL switch interrupt handler.
4706  */
4707 static void cplsw_intr_handler(struct adapter *adapter)
4708 {
4709 	static const struct intr_info cplsw_intr_info[] = {
4710 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4711 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4712 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4713 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4714 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4715 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4716 		{ 0 }
4717 	};
4718 
4719 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4720 		t4_fatal_err(adapter);
4721 }
4722 
4723 /*
4724  * LE interrupt handler.
4725  */
4726 static void le_intr_handler(struct adapter *adap)
4727 {
4728 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4729 	static const struct intr_info le_intr_info[] = {
4730 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4731 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4732 		{ PARITYERR_F, "LE parity error", -1, 1 },
4733 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4734 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4735 		{ 0 }
4736 	};
4737 
4738 	static struct intr_info t6_le_intr_info[] = {
4739 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4740 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4741 		{ CMDTIDERR_F, "LE cmd tid error", -1, 1 },
4742 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4743 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4744 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4745 		{ HASHTBLMEMCRCERR_F, "LE hash table mem crc error", -1, 0 },
4746 		{ 0 }
4747 	};
4748 
4749 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4750 				  (chip <= CHELSIO_T5) ?
4751 				  le_intr_info : t6_le_intr_info))
4752 		t4_fatal_err(adap);
4753 }
4754 
4755 /*
4756  * MPS interrupt handler.
4757  */
4758 static void mps_intr_handler(struct adapter *adapter)
4759 {
4760 	static const struct intr_info mps_rx_intr_info[] = {
4761 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4762 		{ 0 }
4763 	};
4764 	static const struct intr_info mps_tx_intr_info[] = {
4765 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4766 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4767 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4768 		  -1, 1 },
4769 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4770 		  -1, 1 },
4771 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4772 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4773 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4774 		{ 0 }
4775 	};
4776 	static const struct intr_info t6_mps_tx_intr_info[] = {
4777 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4778 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4779 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4780 		  -1, 1 },
4781 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4782 		  -1, 1 },
4783 		/* MPS Tx Bubble is normal for T6 */
4784 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4785 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4786 		{ 0 }
4787 	};
4788 	static const struct intr_info mps_trc_intr_info[] = {
4789 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4790 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4791 		  -1, 1 },
4792 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4793 		{ 0 }
4794 	};
4795 	static const struct intr_info mps_stat_sram_intr_info[] = {
4796 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4797 		{ 0 }
4798 	};
4799 	static const struct intr_info mps_stat_tx_intr_info[] = {
4800 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4801 		{ 0 }
4802 	};
4803 	static const struct intr_info mps_stat_rx_intr_info[] = {
4804 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4805 		{ 0 }
4806 	};
4807 	static const struct intr_info mps_cls_intr_info[] = {
4808 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4809 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4810 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4811 		{ 0 }
4812 	};
4813 
4814 	int fat;
4815 
4816 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4817 				    mps_rx_intr_info) +
4818 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4819 				    is_t6(adapter->params.chip)
4820 				    ? t6_mps_tx_intr_info
4821 				    : mps_tx_intr_info) +
4822 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4823 				    mps_trc_intr_info) +
4824 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4825 				    mps_stat_sram_intr_info) +
4826 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4827 				    mps_stat_tx_intr_info) +
4828 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4829 				    mps_stat_rx_intr_info) +
4830 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4831 				    mps_cls_intr_info);
4832 
4833 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4834 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4835 	if (fat)
4836 		t4_fatal_err(adapter);
4837 }
4838 
4839 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4840 		      ECC_UE_INT_CAUSE_F)
4841 
4842 /*
4843  * EDC/MC interrupt handler.
4844  */
4845 static void mem_intr_handler(struct adapter *adapter, int idx)
4846 {
4847 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4848 
4849 	unsigned int addr, cnt_addr, v;
4850 
4851 	if (idx <= MEM_EDC1) {
4852 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4853 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4854 	} else if (idx == MEM_MC) {
4855 		if (is_t4(adapter->params.chip)) {
4856 			addr = MC_INT_CAUSE_A;
4857 			cnt_addr = MC_ECC_STATUS_A;
4858 		} else {
4859 			addr = MC_P_INT_CAUSE_A;
4860 			cnt_addr = MC_P_ECC_STATUS_A;
4861 		}
4862 	} else {
4863 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4864 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4865 	}
4866 
4867 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4868 	if (v & PERR_INT_CAUSE_F)
4869 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4870 			  name[idx]);
4871 	if (v & ECC_CE_INT_CAUSE_F) {
4872 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4873 
4874 		t4_edc_err_read(adapter, idx);
4875 
4876 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4877 		if (printk_ratelimit())
4878 			dev_warn(adapter->pdev_dev,
4879 				 "%u %s correctable ECC data error%s\n",
4880 				 cnt, name[idx], cnt > 1 ? "s" : "");
4881 	}
4882 	if (v & ECC_UE_INT_CAUSE_F)
4883 		dev_alert(adapter->pdev_dev,
4884 			  "%s uncorrectable ECC data error\n", name[idx]);
4885 
4886 	t4_write_reg(adapter, addr, v);
4887 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4888 		t4_fatal_err(adapter);
4889 }
4890 
4891 /*
4892  * MA interrupt handler.
4893  */
4894 static void ma_intr_handler(struct adapter *adap)
4895 {
4896 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4897 
4898 	if (status & MEM_PERR_INT_CAUSE_F) {
4899 		dev_alert(adap->pdev_dev,
4900 			  "MA parity error, parity status %#x\n",
4901 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4902 		if (is_t5(adap->params.chip))
4903 			dev_alert(adap->pdev_dev,
4904 				  "MA parity error, parity status %#x\n",
4905 				  t4_read_reg(adap,
4906 					      MA_PARITY_ERROR_STATUS2_A));
4907 	}
4908 	if (status & MEM_WRAP_INT_CAUSE_F) {
4909 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4910 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4911 			  "client %u to address %#x\n",
4912 			  MEM_WRAP_CLIENT_NUM_G(v),
4913 			  MEM_WRAP_ADDRESS_G(v) << 4);
4914 	}
4915 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4916 	t4_fatal_err(adap);
4917 }
4918 
4919 /*
4920  * SMB interrupt handler.
4921  */
4922 static void smb_intr_handler(struct adapter *adap)
4923 {
4924 	static const struct intr_info smb_intr_info[] = {
4925 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4926 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4927 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4928 		{ 0 }
4929 	};
4930 
4931 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4932 		t4_fatal_err(adap);
4933 }
4934 
4935 /*
4936  * NC-SI interrupt handler.
4937  */
4938 static void ncsi_intr_handler(struct adapter *adap)
4939 {
4940 	static const struct intr_info ncsi_intr_info[] = {
4941 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4942 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4943 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4944 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4945 		{ 0 }
4946 	};
4947 
4948 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4949 		t4_fatal_err(adap);
4950 }
4951 
4952 /*
4953  * XGMAC interrupt handler.
4954  */
4955 static void xgmac_intr_handler(struct adapter *adap, int port)
4956 {
4957 	u32 v, int_cause_reg;
4958 
4959 	if (is_t4(adap->params.chip))
4960 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4961 	else
4962 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4963 
4964 	v = t4_read_reg(adap, int_cause_reg);
4965 
4966 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4967 	if (!v)
4968 		return;
4969 
4970 	if (v & TXFIFO_PRTY_ERR_F)
4971 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4972 			  port);
4973 	if (v & RXFIFO_PRTY_ERR_F)
4974 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4975 			  port);
4976 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4977 	t4_fatal_err(adap);
4978 }
4979 
4980 /*
4981  * PL interrupt handler.
4982  */
4983 static void pl_intr_handler(struct adapter *adap)
4984 {
4985 	static const struct intr_info pl_intr_info[] = {
4986 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
4987 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4988 		{ 0 }
4989 	};
4990 
4991 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4992 		t4_fatal_err(adap);
4993 }
4994 
4995 #define PF_INTR_MASK (PFSW_F)
4996 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4997 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4998 		CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
4999 
5000 /**
5001  *	t4_slow_intr_handler - control path interrupt handler
5002  *	@adapter: the adapter
5003  *
5004  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
5005  *	The designation 'slow' is because it involves register reads, while
5006  *	data interrupts typically don't involve any MMIOs.
5007  */
5008 int t4_slow_intr_handler(struct adapter *adapter)
5009 {
5010 	/* There are rare cases where a PL_INT_CAUSE bit may end up getting
5011 	 * set when the corresponding PL_INT_ENABLE bit isn't set.  It's
5012 	 * easiest just to mask that case here.
5013 	 */
5014 	u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
5015 	u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A);
5016 	u32 cause = raw_cause & enable;
5017 
5018 	if (!(cause & GLBL_INTR_MASK))
5019 		return 0;
5020 	if (cause & CIM_F)
5021 		cim_intr_handler(adapter);
5022 	if (cause & MPS_F)
5023 		mps_intr_handler(adapter);
5024 	if (cause & NCSI_F)
5025 		ncsi_intr_handler(adapter);
5026 	if (cause & PL_F)
5027 		pl_intr_handler(adapter);
5028 	if (cause & SMB_F)
5029 		smb_intr_handler(adapter);
5030 	if (cause & XGMAC0_F)
5031 		xgmac_intr_handler(adapter, 0);
5032 	if (cause & XGMAC1_F)
5033 		xgmac_intr_handler(adapter, 1);
5034 	if (cause & XGMAC_KR0_F)
5035 		xgmac_intr_handler(adapter, 2);
5036 	if (cause & XGMAC_KR1_F)
5037 		xgmac_intr_handler(adapter, 3);
5038 	if (cause & PCIE_F)
5039 		pcie_intr_handler(adapter);
5040 	if (cause & MC_F)
5041 		mem_intr_handler(adapter, MEM_MC);
5042 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
5043 		mem_intr_handler(adapter, MEM_MC1);
5044 	if (cause & EDC0_F)
5045 		mem_intr_handler(adapter, MEM_EDC0);
5046 	if (cause & EDC1_F)
5047 		mem_intr_handler(adapter, MEM_EDC1);
5048 	if (cause & LE_F)
5049 		le_intr_handler(adapter);
5050 	if (cause & TP_F)
5051 		tp_intr_handler(adapter);
5052 	if (cause & MA_F)
5053 		ma_intr_handler(adapter);
5054 	if (cause & PM_TX_F)
5055 		pmtx_intr_handler(adapter);
5056 	if (cause & PM_RX_F)
5057 		pmrx_intr_handler(adapter);
5058 	if (cause & ULP_RX_F)
5059 		ulprx_intr_handler(adapter);
5060 	if (cause & CPL_SWITCH_F)
5061 		cplsw_intr_handler(adapter);
5062 	if (cause & SGE_F)
5063 		sge_intr_handler(adapter);
5064 	if (cause & ULP_TX_F)
5065 		ulptx_intr_handler(adapter);
5066 
5067 	/* Clear the interrupts just processed for which we are the master. */
5068 	t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK);
5069 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
5070 	return 1;
5071 }
5072 
5073 /**
5074  *	t4_intr_enable - enable interrupts
5075  *	@adapter: the adapter whose interrupts should be enabled
5076  *
5077  *	Enable PF-specific interrupts for the calling function and the top-level
5078  *	interrupt concentrator for global interrupts.  Interrupts are already
5079  *	enabled at each module,	here we just enable the roots of the interrupt
5080  *	hierarchies.
5081  *
5082  *	Note: this function should be called only when the driver manages
5083  *	non PF-specific interrupts from the various HW modules.  Only one PCI
5084  *	function at a time should be doing this.
5085  */
5086 void t4_intr_enable(struct adapter *adapter)
5087 {
5088 	u32 val = 0;
5089 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5090 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5091 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5092 
5093 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
5094 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
5095 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
5096 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
5097 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
5098 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
5099 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
5100 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
5101 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
5102 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
5103 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
5104 }
5105 
5106 /**
5107  *	t4_intr_disable - disable interrupts
5108  *	@adapter: the adapter whose interrupts should be disabled
5109  *
5110  *	Disable interrupts.  We only disable the top-level interrupt
5111  *	concentrators.  The caller must be a PCI function managing global
5112  *	interrupts.
5113  */
5114 void t4_intr_disable(struct adapter *adapter)
5115 {
5116 	u32 whoami, pf;
5117 
5118 	if (pci_channel_offline(adapter->pdev))
5119 		return;
5120 
5121 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5122 	pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5123 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5124 
5125 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
5126 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
5127 }
5128 
5129 unsigned int t4_chip_rss_size(struct adapter *adap)
5130 {
5131 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
5132 		return RSS_NENTRIES;
5133 	else
5134 		return T6_RSS_NENTRIES;
5135 }
5136 
5137 /**
5138  *	t4_config_rss_range - configure a portion of the RSS mapping table
5139  *	@adapter: the adapter
5140  *	@mbox: mbox to use for the FW command
5141  *	@viid: virtual interface whose RSS subtable is to be written
5142  *	@start: start entry in the table to write
5143  *	@n: how many table entries to write
5144  *	@rspq: values for the response queue lookup table
5145  *	@nrspq: number of values in @rspq
5146  *
5147  *	Programs the selected part of the VI's RSS mapping table with the
5148  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5149  *	until the full table range is populated.
5150  *
5151  *	The caller must ensure the values in @rspq are in the range allowed for
5152  *	@viid.
5153  */
5154 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5155 			int start, int n, const u16 *rspq, unsigned int nrspq)
5156 {
5157 	int ret;
5158 	const u16 *rsp = rspq;
5159 	const u16 *rsp_end = rspq + nrspq;
5160 	struct fw_rss_ind_tbl_cmd cmd;
5161 
5162 	memset(&cmd, 0, sizeof(cmd));
5163 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5164 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5165 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
5166 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5167 
5168 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5169 	while (n > 0) {
5170 		int nq = min(n, 32);
5171 		__be32 *qp = &cmd.iq0_to_iq2;
5172 
5173 		cmd.niqid = cpu_to_be16(nq);
5174 		cmd.startidx = cpu_to_be16(start);
5175 
5176 		start += nq;
5177 		n -= nq;
5178 
5179 		while (nq > 0) {
5180 			unsigned int v;
5181 
5182 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5183 			if (++rsp >= rsp_end)
5184 				rsp = rspq;
5185 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5186 			if (++rsp >= rsp_end)
5187 				rsp = rspq;
5188 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5189 			if (++rsp >= rsp_end)
5190 				rsp = rspq;
5191 
5192 			*qp++ = cpu_to_be32(v);
5193 			nq -= 3;
5194 		}
5195 
5196 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5197 		if (ret)
5198 			return ret;
5199 	}
5200 	return 0;
5201 }
5202 
5203 /**
5204  *	t4_config_glbl_rss - configure the global RSS mode
5205  *	@adapter: the adapter
5206  *	@mbox: mbox to use for the FW command
5207  *	@mode: global RSS mode
5208  *	@flags: mode-specific flags
5209  *
5210  *	Sets the global RSS mode.
5211  */
5212 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5213 		       unsigned int flags)
5214 {
5215 	struct fw_rss_glb_config_cmd c;
5216 
5217 	memset(&c, 0, sizeof(c));
5218 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5219 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5220 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5221 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5222 		c.u.manual.mode_pkd =
5223 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5224 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5225 		c.u.basicvirtual.mode_pkd =
5226 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5227 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5228 	} else
5229 		return -EINVAL;
5230 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5231 }
5232 
5233 /**
5234  *	t4_config_vi_rss - configure per VI RSS settings
5235  *	@adapter: the adapter
5236  *	@mbox: mbox to use for the FW command
5237  *	@viid: the VI id
5238  *	@flags: RSS flags
5239  *	@defq: id of the default RSS queue for the VI.
5240  *
5241  *	Configures VI-specific RSS properties.
5242  */
5243 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5244 		     unsigned int flags, unsigned int defq)
5245 {
5246 	struct fw_rss_vi_config_cmd c;
5247 
5248 	memset(&c, 0, sizeof(c));
5249 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5250 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5251 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5252 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5253 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5254 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5255 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5256 }
5257 
5258 /* Read an RSS table row */
5259 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5260 {
5261 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5262 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5263 				   5, 0, val);
5264 }
5265 
5266 /**
5267  *	t4_read_rss - read the contents of the RSS mapping table
5268  *	@adapter: the adapter
5269  *	@map: holds the contents of the RSS mapping table
5270  *
5271  *	Reads the contents of the RSS hash->queue mapping table.
5272  */
5273 int t4_read_rss(struct adapter *adapter, u16 *map)
5274 {
5275 	int i, ret, nentries;
5276 	u32 val;
5277 
5278 	nentries = t4_chip_rss_size(adapter);
5279 	for (i = 0; i < nentries / 2; ++i) {
5280 		ret = rd_rss_row(adapter, i, &val);
5281 		if (ret)
5282 			return ret;
5283 		*map++ = LKPTBLQUEUE0_G(val);
5284 		*map++ = LKPTBLQUEUE1_G(val);
5285 	}
5286 	return 0;
5287 }
5288 
5289 static unsigned int t4_use_ldst(struct adapter *adap)
5290 {
5291 	return (adap->flags & CXGB4_FW_OK) && !adap->use_bd;
5292 }
5293 
5294 /**
5295  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5296  * @adap: the adapter
5297  * @cmd: TP fw ldst address space type
5298  * @vals: where the indirect register values are stored/written
5299  * @nregs: how many indirect registers to read/write
5300  * @start_index: index of first indirect register to read/write
5301  * @rw: Read (1) or Write (0)
5302  * @sleep_ok: if true we may sleep while awaiting command completion
5303  *
5304  * Access TP indirect registers through LDST
5305  */
5306 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5307 			    unsigned int nregs, unsigned int start_index,
5308 			    unsigned int rw, bool sleep_ok)
5309 {
5310 	int ret = 0;
5311 	unsigned int i;
5312 	struct fw_ldst_cmd c;
5313 
5314 	for (i = 0; i < nregs; i++) {
5315 		memset(&c, 0, sizeof(c));
5316 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5317 						FW_CMD_REQUEST_F |
5318 						(rw ? FW_CMD_READ_F :
5319 						      FW_CMD_WRITE_F) |
5320 						FW_LDST_CMD_ADDRSPACE_V(cmd));
5321 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5322 
5323 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5324 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5325 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5326 				      sleep_ok);
5327 		if (ret)
5328 			return ret;
5329 
5330 		if (rw)
5331 			vals[i] = be32_to_cpu(c.u.addrval.val);
5332 	}
5333 	return 0;
5334 }
5335 
5336 /**
5337  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5338  * @adap: the adapter
5339  * @reg_addr: Address Register
5340  * @reg_data: Data register
5341  * @buff: where the indirect register values are stored/written
5342  * @nregs: how many indirect registers to read/write
5343  * @start_index: index of first indirect register to read/write
5344  * @rw: READ(1) or WRITE(0)
5345  * @sleep_ok: if true we may sleep while awaiting command completion
5346  *
5347  * Read/Write TP indirect registers through LDST if possible.
5348  * Else, use backdoor access
5349  **/
5350 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5351 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5352 			      bool sleep_ok)
5353 {
5354 	int rc = -EINVAL;
5355 	int cmd;
5356 
5357 	switch (reg_addr) {
5358 	case TP_PIO_ADDR_A:
5359 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5360 		break;
5361 	case TP_TM_PIO_ADDR_A:
5362 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5363 		break;
5364 	case TP_MIB_INDEX_A:
5365 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5366 		break;
5367 	default:
5368 		goto indirect_access;
5369 	}
5370 
5371 	if (t4_use_ldst(adap))
5372 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5373 				      sleep_ok);
5374 
5375 indirect_access:
5376 
5377 	if (rc) {
5378 		if (rw)
5379 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5380 					 start_index);
5381 		else
5382 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5383 					  start_index);
5384 	}
5385 }
5386 
5387 /**
5388  * t4_tp_pio_read - Read TP PIO registers
5389  * @adap: the adapter
5390  * @buff: where the indirect register values are written
5391  * @nregs: how many indirect registers to read
5392  * @start_index: index of first indirect register to read
5393  * @sleep_ok: if true we may sleep while awaiting command completion
5394  *
5395  * Read TP PIO Registers
5396  **/
5397 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5398 		    u32 start_index, bool sleep_ok)
5399 {
5400 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5401 			  start_index, 1, sleep_ok);
5402 }
5403 
5404 /**
5405  * t4_tp_pio_write - Write TP PIO registers
5406  * @adap: the adapter
5407  * @buff: where the indirect register values are stored
5408  * @nregs: how many indirect registers to write
5409  * @start_index: index of first indirect register to write
5410  * @sleep_ok: if true we may sleep while awaiting command completion
5411  *
5412  * Write TP PIO Registers
5413  **/
5414 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5415 			    u32 start_index, bool sleep_ok)
5416 {
5417 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5418 			  start_index, 0, sleep_ok);
5419 }
5420 
5421 /**
5422  * t4_tp_tm_pio_read - Read TP TM PIO registers
5423  * @adap: the adapter
5424  * @buff: where the indirect register values are written
5425  * @nregs: how many indirect registers to read
5426  * @start_index: index of first indirect register to read
5427  * @sleep_ok: if true we may sleep while awaiting command completion
5428  *
5429  * Read TP TM PIO Registers
5430  **/
5431 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5432 		       u32 start_index, bool sleep_ok)
5433 {
5434 	t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5435 			  nregs, start_index, 1, sleep_ok);
5436 }
5437 
5438 /**
5439  * t4_tp_mib_read - Read TP MIB registers
5440  * @adap: the adapter
5441  * @buff: where the indirect register values are written
5442  * @nregs: how many indirect registers to read
5443  * @start_index: index of first indirect register to read
5444  * @sleep_ok: if true we may sleep while awaiting command completion
5445  *
5446  * Read TP MIB Registers
5447  **/
5448 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5449 		    bool sleep_ok)
5450 {
5451 	t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5452 			  start_index, 1, sleep_ok);
5453 }
5454 
5455 /**
5456  *	t4_read_rss_key - read the global RSS key
5457  *	@adap: the adapter
5458  *	@key: 10-entry array holding the 320-bit RSS key
5459  *      @sleep_ok: if true we may sleep while awaiting command completion
5460  *
5461  *	Reads the global 320-bit RSS key.
5462  */
5463 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5464 {
5465 	t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5466 }
5467 
5468 /**
5469  *	t4_write_rss_key - program one of the RSS keys
5470  *	@adap: the adapter
5471  *	@key: 10-entry array holding the 320-bit RSS key
5472  *	@idx: which RSS key to write
5473  *      @sleep_ok: if true we may sleep while awaiting command completion
5474  *
5475  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5476  *	0..15 the corresponding entry in the RSS key table is written,
5477  *	otherwise the global RSS key is written.
5478  */
5479 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5480 		      bool sleep_ok)
5481 {
5482 	u8 rss_key_addr_cnt = 16;
5483 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5484 
5485 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5486 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5487 	 * as index[5:4](upper 2) into key table
5488 	 */
5489 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5490 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5491 		rss_key_addr_cnt = 32;
5492 
5493 	t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5494 
5495 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5496 		if (rss_key_addr_cnt > 16)
5497 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5498 				     KEYWRADDRX_V(idx >> 4) |
5499 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
5500 		else
5501 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5502 				     KEYWRADDR_V(idx) | KEYWREN_F);
5503 	}
5504 }
5505 
5506 /**
5507  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5508  *	@adapter: the adapter
5509  *	@index: the entry in the PF RSS table to read
5510  *	@valp: where to store the returned value
5511  *      @sleep_ok: if true we may sleep while awaiting command completion
5512  *
5513  *	Reads the PF RSS Configuration Table at the specified index and returns
5514  *	the value found there.
5515  */
5516 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5517 			   u32 *valp, bool sleep_ok)
5518 {
5519 	t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5520 }
5521 
5522 /**
5523  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5524  *	@adapter: the adapter
5525  *	@index: the entry in the VF RSS table to read
5526  *	@vfl: where to store the returned VFL
5527  *	@vfh: where to store the returned VFH
5528  *      @sleep_ok: if true we may sleep while awaiting command completion
5529  *
5530  *	Reads the VF RSS Configuration Table at the specified index and returns
5531  *	the (VFL, VFH) values found there.
5532  */
5533 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5534 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5535 {
5536 	u32 vrt, mask, data;
5537 
5538 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5539 		mask = VFWRADDR_V(VFWRADDR_M);
5540 		data = VFWRADDR_V(index);
5541 	} else {
5542 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5543 		 data = T6_VFWRADDR_V(index);
5544 	}
5545 
5546 	/* Request that the index'th VF Table values be read into VFL/VFH.
5547 	 */
5548 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5549 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5550 	vrt |= data | VFRDEN_F;
5551 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5552 
5553 	/* Grab the VFL/VFH values ...
5554 	 */
5555 	t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5556 	t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5557 }
5558 
5559 /**
5560  *	t4_read_rss_pf_map - read PF RSS Map
5561  *	@adapter: the adapter
5562  *      @sleep_ok: if true we may sleep while awaiting command completion
5563  *
5564  *	Reads the PF RSS Map register and returns its value.
5565  */
5566 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5567 {
5568 	u32 pfmap;
5569 
5570 	t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5571 	return pfmap;
5572 }
5573 
5574 /**
5575  *	t4_read_rss_pf_mask - read PF RSS Mask
5576  *	@adapter: the adapter
5577  *      @sleep_ok: if true we may sleep while awaiting command completion
5578  *
5579  *	Reads the PF RSS Mask register and returns its value.
5580  */
5581 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5582 {
5583 	u32 pfmask;
5584 
5585 	t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5586 	return pfmask;
5587 }
5588 
5589 /**
5590  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5591  *	@adap: the adapter
5592  *	@v4: holds the TCP/IP counter values
5593  *	@v6: holds the TCP/IPv6 counter values
5594  *      @sleep_ok: if true we may sleep while awaiting command completion
5595  *
5596  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5597  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5598  */
5599 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5600 			 struct tp_tcp_stats *v6, bool sleep_ok)
5601 {
5602 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5603 
5604 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5605 #define STAT(x)     val[STAT_IDX(x)]
5606 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5607 
5608 	if (v4) {
5609 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5610 			       TP_MIB_TCP_OUT_RST_A, sleep_ok);
5611 		v4->tcp_out_rsts = STAT(OUT_RST);
5612 		v4->tcp_in_segs  = STAT64(IN_SEG);
5613 		v4->tcp_out_segs = STAT64(OUT_SEG);
5614 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5615 	}
5616 	if (v6) {
5617 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5618 			       TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5619 		v6->tcp_out_rsts = STAT(OUT_RST);
5620 		v6->tcp_in_segs  = STAT64(IN_SEG);
5621 		v6->tcp_out_segs = STAT64(OUT_SEG);
5622 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5623 	}
5624 #undef STAT64
5625 #undef STAT
5626 #undef STAT_IDX
5627 }
5628 
5629 /**
5630  *	t4_tp_get_err_stats - read TP's error MIB counters
5631  *	@adap: the adapter
5632  *	@st: holds the counter values
5633  *      @sleep_ok: if true we may sleep while awaiting command completion
5634  *
5635  *	Returns the values of TP's error counters.
5636  */
5637 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5638 			 bool sleep_ok)
5639 {
5640 	int nchan = adap->params.arch.nchan;
5641 
5642 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5643 		       sleep_ok);
5644 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5645 		       sleep_ok);
5646 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5647 		       sleep_ok);
5648 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5649 		       TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5650 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5651 		       TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5652 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5653 		       sleep_ok);
5654 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5655 		       TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5656 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5657 		       TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5658 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5659 		       sleep_ok);
5660 }
5661 
5662 /**
5663  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5664  *	@adap: the adapter
5665  *	@st: holds the counter values
5666  *      @sleep_ok: if true we may sleep while awaiting command completion
5667  *
5668  *	Returns the values of TP's CPL counters.
5669  */
5670 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5671 			 bool sleep_ok)
5672 {
5673 	int nchan = adap->params.arch.nchan;
5674 
5675 	t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5676 
5677 	t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5678 }
5679 
5680 /**
5681  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5682  *	@adap: the adapter
5683  *	@st: holds the counter values
5684  *      @sleep_ok: if true we may sleep while awaiting command completion
5685  *
5686  *	Returns the values of TP's RDMA counters.
5687  */
5688 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5689 			  bool sleep_ok)
5690 {
5691 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5692 		       sleep_ok);
5693 }
5694 
5695 /**
5696  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5697  *	@adap: the adapter
5698  *	@idx: the port index
5699  *	@st: holds the counter values
5700  *      @sleep_ok: if true we may sleep while awaiting command completion
5701  *
5702  *	Returns the values of TP's FCoE counters for the selected port.
5703  */
5704 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5705 		       struct tp_fcoe_stats *st, bool sleep_ok)
5706 {
5707 	u32 val[2];
5708 
5709 	t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5710 		       sleep_ok);
5711 
5712 	t4_tp_mib_read(adap, &st->frames_drop, 1,
5713 		       TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5714 
5715 	t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5716 		       sleep_ok);
5717 
5718 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5719 }
5720 
5721 /**
5722  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5723  *	@adap: the adapter
5724  *	@st: holds the counter values
5725  *      @sleep_ok: if true we may sleep while awaiting command completion
5726  *
5727  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5728  */
5729 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5730 		      bool sleep_ok)
5731 {
5732 	u32 val[4];
5733 
5734 	t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5735 	st->frames = val[0];
5736 	st->drops = val[1];
5737 	st->octets = ((u64)val[2] << 32) | val[3];
5738 }
5739 
5740 /**
5741  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5742  *	@adap: the adapter
5743  *	@mtus: where to store the MTU values
5744  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5745  *
5746  *	Reads the HW path MTU table.
5747  */
5748 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5749 {
5750 	u32 v;
5751 	int i;
5752 
5753 	for (i = 0; i < NMTUS; ++i) {
5754 		t4_write_reg(adap, TP_MTU_TABLE_A,
5755 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
5756 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
5757 		mtus[i] = MTUVALUE_G(v);
5758 		if (mtu_log)
5759 			mtu_log[i] = MTUWIDTH_G(v);
5760 	}
5761 }
5762 
5763 /**
5764  *	t4_read_cong_tbl - reads the congestion control table
5765  *	@adap: the adapter
5766  *	@incr: where to store the alpha values
5767  *
5768  *	Reads the additive increments programmed into the HW congestion
5769  *	control table.
5770  */
5771 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5772 {
5773 	unsigned int mtu, w;
5774 
5775 	for (mtu = 0; mtu < NMTUS; ++mtu)
5776 		for (w = 0; w < NCCTRL_WIN; ++w) {
5777 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
5778 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5779 			incr[mtu][w] = (u16)t4_read_reg(adap,
5780 						TP_CCTRL_TABLE_A) & 0x1fff;
5781 		}
5782 }
5783 
5784 /**
5785  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5786  *	@adap: the adapter
5787  *	@addr: the indirect TP register address
5788  *	@mask: specifies the field within the register to modify
5789  *	@val: new value for the field
5790  *
5791  *	Sets a field of an indirect TP register to the given value.
5792  */
5793 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5794 			    unsigned int mask, unsigned int val)
5795 {
5796 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5797 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5798 	t4_write_reg(adap, TP_PIO_DATA_A, val);
5799 }
5800 
5801 /**
5802  *	init_cong_ctrl - initialize congestion control parameters
5803  *	@a: the alpha values for congestion control
5804  *	@b: the beta values for congestion control
5805  *
5806  *	Initialize the congestion control parameters.
5807  */
5808 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5809 {
5810 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5811 	a[9] = 2;
5812 	a[10] = 3;
5813 	a[11] = 4;
5814 	a[12] = 5;
5815 	a[13] = 6;
5816 	a[14] = 7;
5817 	a[15] = 8;
5818 	a[16] = 9;
5819 	a[17] = 10;
5820 	a[18] = 14;
5821 	a[19] = 17;
5822 	a[20] = 21;
5823 	a[21] = 25;
5824 	a[22] = 30;
5825 	a[23] = 35;
5826 	a[24] = 45;
5827 	a[25] = 60;
5828 	a[26] = 80;
5829 	a[27] = 100;
5830 	a[28] = 200;
5831 	a[29] = 300;
5832 	a[30] = 400;
5833 	a[31] = 500;
5834 
5835 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5836 	b[9] = b[10] = 1;
5837 	b[11] = b[12] = 2;
5838 	b[13] = b[14] = b[15] = b[16] = 3;
5839 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5840 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5841 	b[28] = b[29] = 6;
5842 	b[30] = b[31] = 7;
5843 }
5844 
5845 /* The minimum additive increment value for the congestion control table */
5846 #define CC_MIN_INCR 2U
5847 
5848 /**
5849  *	t4_load_mtus - write the MTU and congestion control HW tables
5850  *	@adap: the adapter
5851  *	@mtus: the values for the MTU table
5852  *	@alpha: the values for the congestion control alpha parameter
5853  *	@beta: the values for the congestion control beta parameter
5854  *
5855  *	Write the HW MTU table with the supplied MTUs and the high-speed
5856  *	congestion control table with the supplied alpha, beta, and MTUs.
5857  *	We write the two tables together because the additive increments
5858  *	depend on the MTUs.
5859  */
5860 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5861 		  const unsigned short *alpha, const unsigned short *beta)
5862 {
5863 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5864 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5865 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5866 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5867 	};
5868 
5869 	unsigned int i, w;
5870 
5871 	for (i = 0; i < NMTUS; ++i) {
5872 		unsigned int mtu = mtus[i];
5873 		unsigned int log2 = fls(mtu);
5874 
5875 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5876 			log2--;
5877 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5878 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5879 
5880 		for (w = 0; w < NCCTRL_WIN; ++w) {
5881 			unsigned int inc;
5882 
5883 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5884 				  CC_MIN_INCR);
5885 
5886 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5887 				     (w << 16) | (beta[w] << 13) | inc);
5888 		}
5889 	}
5890 }
5891 
5892 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5893  * clocks.  The formula is
5894  *
5895  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5896  *
5897  * which is equivalent to
5898  *
5899  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5900  */
5901 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5902 {
5903 	u64 v = bytes256 * adap->params.vpd.cclk;
5904 
5905 	return v * 62 + v / 2;
5906 }
5907 
5908 /**
5909  *	t4_get_chan_txrate - get the current per channel Tx rates
5910  *	@adap: the adapter
5911  *	@nic_rate: rates for NIC traffic
5912  *	@ofld_rate: rates for offloaded traffic
5913  *
5914  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5915  *	for each channel.
5916  */
5917 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5918 {
5919 	u32 v;
5920 
5921 	v = t4_read_reg(adap, TP_TX_TRATE_A);
5922 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5923 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5924 	if (adap->params.arch.nchan == NCHAN) {
5925 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5926 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5927 	}
5928 
5929 	v = t4_read_reg(adap, TP_TX_ORATE_A);
5930 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5931 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5932 	if (adap->params.arch.nchan == NCHAN) {
5933 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5934 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5935 	}
5936 }
5937 
5938 /**
5939  *	t4_set_trace_filter - configure one of the tracing filters
5940  *	@adap: the adapter
5941  *	@tp: the desired trace filter parameters
5942  *	@idx: which filter to configure
5943  *	@enable: whether to enable or disable the filter
5944  *
5945  *	Configures one of the tracing filters available in HW.  If @enable is
5946  *	%0 @tp is not examined and may be %NULL. The user is responsible to
5947  *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5948  */
5949 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5950 			int idx, int enable)
5951 {
5952 	int i, ofst = idx * 4;
5953 	u32 data_reg, mask_reg, cfg;
5954 
5955 	if (!enable) {
5956 		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5957 		return 0;
5958 	}
5959 
5960 	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5961 	if (cfg & TRCMULTIFILTER_F) {
5962 		/* If multiple tracers are enabled, then maximum
5963 		 * capture size is 2.5KB (FIFO size of a single channel)
5964 		 * minus 2 flits for CPL_TRACE_PKT header.
5965 		 */
5966 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5967 			return -EINVAL;
5968 	} else {
5969 		/* If multiple tracers are disabled, to avoid deadlocks
5970 		 * maximum packet capture size of 9600 bytes is recommended.
5971 		 * Also in this mode, only trace0 can be enabled and running.
5972 		 */
5973 		if (tp->snap_len > 9600 || idx)
5974 			return -EINVAL;
5975 	}
5976 
5977 	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5978 	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5979 	    tp->min_len > TFMINPKTSIZE_M)
5980 		return -EINVAL;
5981 
5982 	/* stop the tracer we'll be changing */
5983 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5984 
5985 	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5986 	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5987 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5988 
5989 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5990 		t4_write_reg(adap, data_reg, tp->data[i]);
5991 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5992 	}
5993 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5994 		     TFCAPTUREMAX_V(tp->snap_len) |
5995 		     TFMINPKTSIZE_V(tp->min_len));
5996 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5997 		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5998 		     (is_t4(adap->params.chip) ?
5999 		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
6000 		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
6001 		     T5_TFINVERTMATCH_V(tp->invert)));
6002 
6003 	return 0;
6004 }
6005 
6006 /**
6007  *	t4_get_trace_filter - query one of the tracing filters
6008  *	@adap: the adapter
6009  *	@tp: the current trace filter parameters
6010  *	@idx: which trace filter to query
6011  *	@enabled: non-zero if the filter is enabled
6012  *
6013  *	Returns the current settings of one of the HW tracing filters.
6014  */
6015 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6016 			 int *enabled)
6017 {
6018 	u32 ctla, ctlb;
6019 	int i, ofst = idx * 4;
6020 	u32 data_reg, mask_reg;
6021 
6022 	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
6023 	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
6024 
6025 	if (is_t4(adap->params.chip)) {
6026 		*enabled = !!(ctla & TFEN_F);
6027 		tp->port =  TFPORT_G(ctla);
6028 		tp->invert = !!(ctla & TFINVERTMATCH_F);
6029 	} else {
6030 		*enabled = !!(ctla & T5_TFEN_F);
6031 		tp->port = T5_TFPORT_G(ctla);
6032 		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
6033 	}
6034 	tp->snap_len = TFCAPTUREMAX_G(ctlb);
6035 	tp->min_len = TFMINPKTSIZE_G(ctlb);
6036 	tp->skip_ofst = TFOFFSET_G(ctla);
6037 	tp->skip_len = TFLENGTH_G(ctla);
6038 
6039 	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
6040 	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
6041 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
6042 
6043 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6044 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6045 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6046 	}
6047 }
6048 
6049 /**
6050  *	t4_pmtx_get_stats - returns the HW stats from PMTX
6051  *	@adap: the adapter
6052  *	@cnt: where to store the count statistics
6053  *	@cycles: where to store the cycle statistics
6054  *
6055  *	Returns performance statistics from PMTX.
6056  */
6057 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6058 {
6059 	int i;
6060 	u32 data[2];
6061 
6062 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6063 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
6064 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
6065 		if (is_t4(adap->params.chip)) {
6066 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
6067 		} else {
6068 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
6069 					 PM_TX_DBG_DATA_A, data, 2,
6070 					 PM_TX_DBG_STAT_MSB_A);
6071 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6072 		}
6073 	}
6074 }
6075 
6076 /**
6077  *	t4_pmrx_get_stats - returns the HW stats from PMRX
6078  *	@adap: the adapter
6079  *	@cnt: where to store the count statistics
6080  *	@cycles: where to store the cycle statistics
6081  *
6082  *	Returns performance statistics from PMRX.
6083  */
6084 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6085 {
6086 	int i;
6087 	u32 data[2];
6088 
6089 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6090 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
6091 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
6092 		if (is_t4(adap->params.chip)) {
6093 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
6094 		} else {
6095 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
6096 					 PM_RX_DBG_DATA_A, data, 2,
6097 					 PM_RX_DBG_STAT_MSB_A);
6098 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6099 		}
6100 	}
6101 }
6102 
6103 /**
6104  *	compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
6105  *	@adapter: the adapter
6106  *	@pidx: the port index
6107  *
6108  *	Computes and returns a bitmap indicating which MPS buffer groups are
6109  *	associated with the given Port.  Bit i is set if buffer group i is
6110  *	used by the Port.
6111  */
6112 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
6113 					      int pidx)
6114 {
6115 	unsigned int chip_version, nports;
6116 
6117 	chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6118 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6119 
6120 	switch (chip_version) {
6121 	case CHELSIO_T4:
6122 	case CHELSIO_T5:
6123 		switch (nports) {
6124 		case 1: return 0xf;
6125 		case 2: return 3 << (2 * pidx);
6126 		case 4: return 1 << pidx;
6127 		}
6128 		break;
6129 
6130 	case CHELSIO_T6:
6131 		switch (nports) {
6132 		case 2: return 1 << (2 * pidx);
6133 		}
6134 		break;
6135 	}
6136 
6137 	dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
6138 		chip_version, nports);
6139 
6140 	return 0;
6141 }
6142 
6143 /**
6144  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6145  *	@adapter: the adapter
6146  *	@pidx: the port index
6147  *
6148  *	Returns a bitmap indicating which MPS buffer groups are associated
6149  *	with the given Port.  Bit i is set if buffer group i is used by the
6150  *	Port.
6151  */
6152 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6153 {
6154 	u8 *mps_bg_map;
6155 	unsigned int nports;
6156 
6157 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6158 	if (pidx >= nports) {
6159 		CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6160 			pidx, nports);
6161 		return 0;
6162 	}
6163 
6164 	/* If we've already retrieved/computed this, just return the result.
6165 	 */
6166 	mps_bg_map = adapter->params.mps_bg_map;
6167 	if (mps_bg_map[pidx])
6168 		return mps_bg_map[pidx];
6169 
6170 	/* Newer Firmware can tell us what the MPS Buffer Group Map is.
6171 	 * If we're talking to such Firmware, let it tell us.  If the new
6172 	 * API isn't supported, revert back to old hardcoded way.  The value
6173 	 * obtained from Firmware is encoded in below format:
6174 	 *
6175 	 * val = (( MPSBGMAP[Port 3] << 24 ) |
6176 	 *        ( MPSBGMAP[Port 2] << 16 ) |
6177 	 *        ( MPSBGMAP[Port 1] <<  8 ) |
6178 	 *        ( MPSBGMAP[Port 0] <<  0 ))
6179 	 */
6180 	if (adapter->flags & CXGB4_FW_OK) {
6181 		u32 param, val;
6182 		int ret;
6183 
6184 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6185 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6186 		ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6187 					 0, 1, &param, &val);
6188 		if (!ret) {
6189 			int p;
6190 
6191 			/* Store the BG Map for all of the Ports in order to
6192 			 * avoid more calls to the Firmware in the future.
6193 			 */
6194 			for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6195 				mps_bg_map[p] = val & 0xff;
6196 
6197 			return mps_bg_map[pidx];
6198 		}
6199 	}
6200 
6201 	/* Either we're not talking to the Firmware or we're dealing with
6202 	 * older Firmware which doesn't support the new API to get the MPS
6203 	 * Buffer Group Map.  Fall back to computing it ourselves.
6204 	 */
6205 	mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6206 	return mps_bg_map[pidx];
6207 }
6208 
6209 /**
6210  *      t4_get_tp_e2c_map - return the E2C channel map associated with a port
6211  *      @adapter: the adapter
6212  *      @pidx: the port index
6213  */
6214 static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx)
6215 {
6216 	unsigned int nports;
6217 	u32 param, val = 0;
6218 	int ret;
6219 
6220 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6221 	if (pidx >= nports) {
6222 		CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n",
6223 			pidx, nports);
6224 		return 0;
6225 	}
6226 
6227 	/* FW version >= 1.16.44.0 can determine E2C channel map using
6228 	 * FW_PARAMS_PARAM_DEV_TPCHMAP API.
6229 	 */
6230 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6231 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP));
6232 	ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6233 				 0, 1, &param, &val);
6234 	if (!ret)
6235 		return (val >> (8 * pidx)) & 0xff;
6236 
6237 	return 0;
6238 }
6239 
6240 /**
6241  *	t4_get_tp_ch_map - return TP ingress channels associated with a port
6242  *	@adap: the adapter
6243  *	@pidx: the port index
6244  *
6245  *	Returns a bitmap indicating which TP Ingress Channels are associated
6246  *	with a given Port.  Bit i is set if TP Ingress Channel i is used by
6247  *	the Port.
6248  */
6249 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6250 {
6251 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6252 	unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6253 
6254 	if (pidx >= nports) {
6255 		dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6256 			 pidx, nports);
6257 		return 0;
6258 	}
6259 
6260 	switch (chip_version) {
6261 	case CHELSIO_T4:
6262 	case CHELSIO_T5:
6263 		/* Note that this happens to be the same values as the MPS
6264 		 * Buffer Group Map for these Chips.  But we replicate the code
6265 		 * here because they're really separate concepts.
6266 		 */
6267 		switch (nports) {
6268 		case 1: return 0xf;
6269 		case 2: return 3 << (2 * pidx);
6270 		case 4: return 1 << pidx;
6271 		}
6272 		break;
6273 
6274 	case CHELSIO_T6:
6275 		switch (nports) {
6276 		case 1:
6277 		case 2: return 1 << pidx;
6278 		}
6279 		break;
6280 	}
6281 
6282 	dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6283 		chip_version, nports);
6284 	return 0;
6285 }
6286 
6287 /**
6288  *      t4_get_port_type_description - return Port Type string description
6289  *      @port_type: firmware Port Type enumeration
6290  */
6291 const char *t4_get_port_type_description(enum fw_port_type port_type)
6292 {
6293 	static const char *const port_type_description[] = {
6294 		"Fiber_XFI",
6295 		"Fiber_XAUI",
6296 		"BT_SGMII",
6297 		"BT_XFI",
6298 		"BT_XAUI",
6299 		"KX4",
6300 		"CX4",
6301 		"KX",
6302 		"KR",
6303 		"SFP",
6304 		"BP_AP",
6305 		"BP4_AP",
6306 		"QSFP_10G",
6307 		"QSA",
6308 		"QSFP",
6309 		"BP40_BA",
6310 		"KR4_100G",
6311 		"CR4_QSFP",
6312 		"CR_QSFP",
6313 		"CR2_QSFP",
6314 		"SFP28",
6315 		"KR_SFP28",
6316 		"KR_XLAUI"
6317 	};
6318 
6319 	if (port_type < ARRAY_SIZE(port_type_description))
6320 		return port_type_description[port_type];
6321 	return "UNKNOWN";
6322 }
6323 
6324 /**
6325  *      t4_get_port_stats_offset - collect port stats relative to a previous
6326  *                                 snapshot
6327  *      @adap: The adapter
6328  *      @idx: The port
6329  *      @stats: Current stats to fill
6330  *      @offset: Previous stats snapshot
6331  */
6332 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6333 			      struct port_stats *stats,
6334 			      struct port_stats *offset)
6335 {
6336 	u64 *s, *o;
6337 	int i;
6338 
6339 	t4_get_port_stats(adap, idx, stats);
6340 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6341 			i < (sizeof(struct port_stats) / sizeof(u64));
6342 			i++, s++, o++)
6343 		*s -= *o;
6344 }
6345 
6346 /**
6347  *	t4_get_port_stats - collect port statistics
6348  *	@adap: the adapter
6349  *	@idx: the port index
6350  *	@p: the stats structure to fill
6351  *
6352  *	Collect statistics related to the given port from HW.
6353  */
6354 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6355 {
6356 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6357 	u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6358 
6359 #define GET_STAT(name) \
6360 	t4_read_reg64(adap, \
6361 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6362 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6363 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6364 
6365 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6366 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6367 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6368 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6369 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6370 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6371 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6372 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6373 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6374 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6375 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6376 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6377 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6378 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
6379 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6380 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6381 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6382 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6383 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6384 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6385 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6386 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6387 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6388 
6389 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6390 		if (stat_ctl & COUNTPAUSESTATTX_F)
6391 			p->tx_frames_64 -= p->tx_pause;
6392 		if (stat_ctl & COUNTPAUSEMCTX_F)
6393 			p->tx_mcast_frames -= p->tx_pause;
6394 	}
6395 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6396 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6397 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6398 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6399 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6400 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6401 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6402 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6403 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6404 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6405 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6406 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6407 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6408 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6409 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6410 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6411 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6412 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6413 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6414 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6415 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6416 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6417 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6418 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6419 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6420 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6421 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6422 
6423 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6424 		if (stat_ctl & COUNTPAUSESTATRX_F)
6425 			p->rx_frames_64 -= p->rx_pause;
6426 		if (stat_ctl & COUNTPAUSEMCRX_F)
6427 			p->rx_mcast_frames -= p->rx_pause;
6428 	}
6429 
6430 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6431 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6432 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6433 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6434 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6435 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6436 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6437 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6438 
6439 #undef GET_STAT
6440 #undef GET_STAT_COM
6441 }
6442 
6443 /**
6444  *	t4_get_lb_stats - collect loopback port statistics
6445  *	@adap: the adapter
6446  *	@idx: the loopback port index
6447  *	@p: the stats structure to fill
6448  *
6449  *	Return HW statistics for the given loopback port.
6450  */
6451 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6452 {
6453 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6454 
6455 #define GET_STAT(name) \
6456 	t4_read_reg64(adap, \
6457 	(is_t4(adap->params.chip) ? \
6458 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6459 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6460 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6461 
6462 	p->octets           = GET_STAT(BYTES);
6463 	p->frames           = GET_STAT(FRAMES);
6464 	p->bcast_frames     = GET_STAT(BCAST);
6465 	p->mcast_frames     = GET_STAT(MCAST);
6466 	p->ucast_frames     = GET_STAT(UCAST);
6467 	p->error_frames     = GET_STAT(ERROR);
6468 
6469 	p->frames_64        = GET_STAT(64B);
6470 	p->frames_65_127    = GET_STAT(65B_127B);
6471 	p->frames_128_255   = GET_STAT(128B_255B);
6472 	p->frames_256_511   = GET_STAT(256B_511B);
6473 	p->frames_512_1023  = GET_STAT(512B_1023B);
6474 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
6475 	p->frames_1519_max  = GET_STAT(1519B_MAX);
6476 	p->drop             = GET_STAT(DROP_FRAMES);
6477 
6478 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6479 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6480 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6481 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6482 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6483 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6484 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6485 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6486 
6487 #undef GET_STAT
6488 #undef GET_STAT_COM
6489 }
6490 
6491 /*     t4_mk_filtdelwr - create a delete filter WR
6492  *     @ftid: the filter ID
6493  *     @wr: the filter work request to populate
6494  *     @qid: ingress queue to receive the delete notification
6495  *
6496  *     Creates a filter work request to delete the supplied filter.  If @qid is
6497  *     negative the delete notification is suppressed.
6498  */
6499 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6500 {
6501 	memset(wr, 0, sizeof(*wr));
6502 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6503 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6504 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6505 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
6506 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6507 	if (qid >= 0)
6508 		wr->rx_chan_rx_rpl_iq =
6509 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6510 }
6511 
6512 #define INIT_CMD(var, cmd, rd_wr) do { \
6513 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6514 					FW_CMD_REQUEST_F | \
6515 					FW_CMD_##rd_wr##_F); \
6516 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6517 } while (0)
6518 
6519 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6520 			  u32 addr, u32 val)
6521 {
6522 	u32 ldst_addrspace;
6523 	struct fw_ldst_cmd c;
6524 
6525 	memset(&c, 0, sizeof(c));
6526 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6527 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6528 					FW_CMD_REQUEST_F |
6529 					FW_CMD_WRITE_F |
6530 					ldst_addrspace);
6531 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6532 	c.u.addrval.addr = cpu_to_be32(addr);
6533 	c.u.addrval.val = cpu_to_be32(val);
6534 
6535 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6536 }
6537 
6538 /**
6539  *	t4_mdio_rd - read a PHY register through MDIO
6540  *	@adap: the adapter
6541  *	@mbox: mailbox to use for the FW command
6542  *	@phy_addr: the PHY address
6543  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6544  *	@reg: the register to read
6545  *	@valp: where to store the value
6546  *
6547  *	Issues a FW command through the given mailbox to read a PHY register.
6548  */
6549 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6550 	       unsigned int mmd, unsigned int reg, u16 *valp)
6551 {
6552 	int ret;
6553 	u32 ldst_addrspace;
6554 	struct fw_ldst_cmd c;
6555 
6556 	memset(&c, 0, sizeof(c));
6557 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6558 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6559 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6560 					ldst_addrspace);
6561 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6562 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6563 					 FW_LDST_CMD_MMD_V(mmd));
6564 	c.u.mdio.raddr = cpu_to_be16(reg);
6565 
6566 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6567 	if (ret == 0)
6568 		*valp = be16_to_cpu(c.u.mdio.rval);
6569 	return ret;
6570 }
6571 
6572 /**
6573  *	t4_mdio_wr - write a PHY register through MDIO
6574  *	@adap: the adapter
6575  *	@mbox: mailbox to use for the FW command
6576  *	@phy_addr: the PHY address
6577  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6578  *	@reg: the register to write
6579  *	@val: value to write
6580  *
6581  *	Issues a FW command through the given mailbox to write a PHY register.
6582  */
6583 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6584 	       unsigned int mmd, unsigned int reg, u16 val)
6585 {
6586 	u32 ldst_addrspace;
6587 	struct fw_ldst_cmd c;
6588 
6589 	memset(&c, 0, sizeof(c));
6590 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6591 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6592 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6593 					ldst_addrspace);
6594 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6595 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6596 					 FW_LDST_CMD_MMD_V(mmd));
6597 	c.u.mdio.raddr = cpu_to_be16(reg);
6598 	c.u.mdio.rval = cpu_to_be16(val);
6599 
6600 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6601 }
6602 
6603 /**
6604  *	t4_sge_decode_idma_state - decode the idma state
6605  *	@adapter: the adapter
6606  *	@state: the state idma is stuck in
6607  */
6608 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6609 {
6610 	static const char * const t4_decode[] = {
6611 		"IDMA_IDLE",
6612 		"IDMA_PUSH_MORE_CPL_FIFO",
6613 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6614 		"Not used",
6615 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6616 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6617 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6618 		"IDMA_SEND_FIFO_TO_IMSG",
6619 		"IDMA_FL_REQ_DATA_FL_PREP",
6620 		"IDMA_FL_REQ_DATA_FL",
6621 		"IDMA_FL_DROP",
6622 		"IDMA_FL_H_REQ_HEADER_FL",
6623 		"IDMA_FL_H_SEND_PCIEHDR",
6624 		"IDMA_FL_H_PUSH_CPL_FIFO",
6625 		"IDMA_FL_H_SEND_CPL",
6626 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6627 		"IDMA_FL_H_SEND_IP_HDR",
6628 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6629 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6630 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6631 		"IDMA_FL_D_SEND_PCIEHDR",
6632 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6633 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6634 		"IDMA_FL_SEND_PCIEHDR",
6635 		"IDMA_FL_PUSH_CPL_FIFO",
6636 		"IDMA_FL_SEND_CPL",
6637 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6638 		"IDMA_FL_SEND_PAYLOAD",
6639 		"IDMA_FL_REQ_NEXT_DATA_FL",
6640 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6641 		"IDMA_FL_SEND_PADDING",
6642 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6643 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6644 		"IDMA_FL_REQ_DATAFL_DONE",
6645 		"IDMA_FL_REQ_HEADERFL_DONE",
6646 	};
6647 	static const char * const t5_decode[] = {
6648 		"IDMA_IDLE",
6649 		"IDMA_ALMOST_IDLE",
6650 		"IDMA_PUSH_MORE_CPL_FIFO",
6651 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6652 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6653 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6654 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6655 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6656 		"IDMA_SEND_FIFO_TO_IMSG",
6657 		"IDMA_FL_REQ_DATA_FL",
6658 		"IDMA_FL_DROP",
6659 		"IDMA_FL_DROP_SEND_INC",
6660 		"IDMA_FL_H_REQ_HEADER_FL",
6661 		"IDMA_FL_H_SEND_PCIEHDR",
6662 		"IDMA_FL_H_PUSH_CPL_FIFO",
6663 		"IDMA_FL_H_SEND_CPL",
6664 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6665 		"IDMA_FL_H_SEND_IP_HDR",
6666 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6667 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6668 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6669 		"IDMA_FL_D_SEND_PCIEHDR",
6670 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6671 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6672 		"IDMA_FL_SEND_PCIEHDR",
6673 		"IDMA_FL_PUSH_CPL_FIFO",
6674 		"IDMA_FL_SEND_CPL",
6675 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6676 		"IDMA_FL_SEND_PAYLOAD",
6677 		"IDMA_FL_REQ_NEXT_DATA_FL",
6678 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6679 		"IDMA_FL_SEND_PADDING",
6680 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6681 	};
6682 	static const char * const t6_decode[] = {
6683 		"IDMA_IDLE",
6684 		"IDMA_PUSH_MORE_CPL_FIFO",
6685 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6686 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6687 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6688 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6689 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6690 		"IDMA_FL_REQ_DATA_FL",
6691 		"IDMA_FL_DROP",
6692 		"IDMA_FL_DROP_SEND_INC",
6693 		"IDMA_FL_H_REQ_HEADER_FL",
6694 		"IDMA_FL_H_SEND_PCIEHDR",
6695 		"IDMA_FL_H_PUSH_CPL_FIFO",
6696 		"IDMA_FL_H_SEND_CPL",
6697 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6698 		"IDMA_FL_H_SEND_IP_HDR",
6699 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6700 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6701 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6702 		"IDMA_FL_D_SEND_PCIEHDR",
6703 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6704 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6705 		"IDMA_FL_SEND_PCIEHDR",
6706 		"IDMA_FL_PUSH_CPL_FIFO",
6707 		"IDMA_FL_SEND_CPL",
6708 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6709 		"IDMA_FL_SEND_PAYLOAD",
6710 		"IDMA_FL_REQ_NEXT_DATA_FL",
6711 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6712 		"IDMA_FL_SEND_PADDING",
6713 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6714 	};
6715 	static const u32 sge_regs[] = {
6716 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
6717 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
6718 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6719 	};
6720 	const char **sge_idma_decode;
6721 	int sge_idma_decode_nstates;
6722 	int i;
6723 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6724 
6725 	/* Select the right set of decode strings to dump depending on the
6726 	 * adapter chip type.
6727 	 */
6728 	switch (chip_version) {
6729 	case CHELSIO_T4:
6730 		sge_idma_decode = (const char **)t4_decode;
6731 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6732 		break;
6733 
6734 	case CHELSIO_T5:
6735 		sge_idma_decode = (const char **)t5_decode;
6736 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6737 		break;
6738 
6739 	case CHELSIO_T6:
6740 		sge_idma_decode = (const char **)t6_decode;
6741 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6742 		break;
6743 
6744 	default:
6745 		dev_err(adapter->pdev_dev,
6746 			"Unsupported chip version %d\n", chip_version);
6747 		return;
6748 	}
6749 
6750 	if (is_t4(adapter->params.chip)) {
6751 		sge_idma_decode = (const char **)t4_decode;
6752 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6753 	} else {
6754 		sge_idma_decode = (const char **)t5_decode;
6755 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6756 	}
6757 
6758 	if (state < sge_idma_decode_nstates)
6759 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6760 	else
6761 		CH_WARN(adapter, "idma state %d unknown\n", state);
6762 
6763 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6764 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6765 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6766 }
6767 
6768 /**
6769  *      t4_sge_ctxt_flush - flush the SGE context cache
6770  *      @adap: the adapter
6771  *      @mbox: mailbox to use for the FW command
6772  *      @ctxt_type: Egress or Ingress
6773  *
6774  *      Issues a FW command through the given mailbox to flush the
6775  *      SGE context cache.
6776  */
6777 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6778 {
6779 	int ret;
6780 	u32 ldst_addrspace;
6781 	struct fw_ldst_cmd c;
6782 
6783 	memset(&c, 0, sizeof(c));
6784 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6785 						 FW_LDST_ADDRSPC_SGE_EGRC :
6786 						 FW_LDST_ADDRSPC_SGE_INGC);
6787 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6788 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6789 					ldst_addrspace);
6790 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6791 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6792 
6793 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6794 	return ret;
6795 }
6796 
6797 /**
6798  *	t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values
6799  *	@adap: the adapter
6800  *	@ndbqtimers: size of the provided SGE Doorbell Queue Timer table
6801  *	@dbqtimers: SGE Doorbell Queue Timer table
6802  *
6803  *	Reads the SGE Doorbell Queue Timer values into the provided table.
6804  *	Returns 0 on success (Firmware and Hardware support this feature),
6805  *	an error on failure.
6806  */
6807 int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers,
6808 			  u16 *dbqtimers)
6809 {
6810 	int ret, dbqtimerix;
6811 
6812 	ret = 0;
6813 	dbqtimerix = 0;
6814 	while (dbqtimerix < ndbqtimers) {
6815 		int nparams, param;
6816 		u32 params[7], vals[7];
6817 
6818 		nparams = ndbqtimers - dbqtimerix;
6819 		if (nparams > ARRAY_SIZE(params))
6820 			nparams = ARRAY_SIZE(params);
6821 
6822 		for (param = 0; param < nparams; param++)
6823 			params[param] =
6824 			  (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6825 			   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) |
6826 			   FW_PARAMS_PARAM_Y_V(dbqtimerix + param));
6827 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
6828 				      nparams, params, vals);
6829 		if (ret)
6830 			break;
6831 
6832 		for (param = 0; param < nparams; param++)
6833 			dbqtimers[dbqtimerix++] = vals[param];
6834 	}
6835 	return ret;
6836 }
6837 
6838 /**
6839  *      t4_fw_hello - establish communication with FW
6840  *      @adap: the adapter
6841  *      @mbox: mailbox to use for the FW command
6842  *      @evt_mbox: mailbox to receive async FW events
6843  *      @master: specifies the caller's willingness to be the device master
6844  *	@state: returns the current device state (if non-NULL)
6845  *
6846  *	Issues a command to establish communication with FW.  Returns either
6847  *	an error (negative integer) or the mailbox of the Master PF.
6848  */
6849 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6850 		enum dev_master master, enum dev_state *state)
6851 {
6852 	int ret;
6853 	struct fw_hello_cmd c;
6854 	u32 v;
6855 	unsigned int master_mbox;
6856 	int retries = FW_CMD_HELLO_RETRIES;
6857 
6858 retry:
6859 	memset(&c, 0, sizeof(c));
6860 	INIT_CMD(c, HELLO, WRITE);
6861 	c.err_to_clearinit = cpu_to_be32(
6862 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6863 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6864 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6865 					mbox : FW_HELLO_CMD_MBMASTER_M) |
6866 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6867 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6868 		FW_HELLO_CMD_CLEARINIT_F);
6869 
6870 	/*
6871 	 * Issue the HELLO command to the firmware.  If it's not successful
6872 	 * but indicates that we got a "busy" or "timeout" condition, retry
6873 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6874 	 * retry limit, check to see if the firmware left us any error
6875 	 * information and report that if so.
6876 	 */
6877 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6878 	if (ret < 0) {
6879 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6880 			goto retry;
6881 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6882 			t4_report_fw_error(adap);
6883 		return ret;
6884 	}
6885 
6886 	v = be32_to_cpu(c.err_to_clearinit);
6887 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6888 	if (state) {
6889 		if (v & FW_HELLO_CMD_ERR_F)
6890 			*state = DEV_STATE_ERR;
6891 		else if (v & FW_HELLO_CMD_INIT_F)
6892 			*state = DEV_STATE_INIT;
6893 		else
6894 			*state = DEV_STATE_UNINIT;
6895 	}
6896 
6897 	/*
6898 	 * If we're not the Master PF then we need to wait around for the
6899 	 * Master PF Driver to finish setting up the adapter.
6900 	 *
6901 	 * Note that we also do this wait if we're a non-Master-capable PF and
6902 	 * there is no current Master PF; a Master PF may show up momentarily
6903 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6904 	 * OS loads lots of different drivers rapidly at the same time).  In
6905 	 * this case, the Master PF returned by the firmware will be
6906 	 * PCIE_FW_MASTER_M so the test below will work ...
6907 	 */
6908 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6909 	    master_mbox != mbox) {
6910 		int waiting = FW_CMD_HELLO_TIMEOUT;
6911 
6912 		/*
6913 		 * Wait for the firmware to either indicate an error or
6914 		 * initialized state.  If we see either of these we bail out
6915 		 * and report the issue to the caller.  If we exhaust the
6916 		 * "hello timeout" and we haven't exhausted our retries, try
6917 		 * again.  Otherwise bail with a timeout error.
6918 		 */
6919 		for (;;) {
6920 			u32 pcie_fw;
6921 
6922 			msleep(50);
6923 			waiting -= 50;
6924 
6925 			/*
6926 			 * If neither Error nor Initialized are indicated
6927 			 * by the firmware keep waiting till we exhaust our
6928 			 * timeout ... and then retry if we haven't exhausted
6929 			 * our retries ...
6930 			 */
6931 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6932 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6933 				if (waiting <= 0) {
6934 					if (retries-- > 0)
6935 						goto retry;
6936 
6937 					return -ETIMEDOUT;
6938 				}
6939 				continue;
6940 			}
6941 
6942 			/*
6943 			 * We either have an Error or Initialized condition
6944 			 * report errors preferentially.
6945 			 */
6946 			if (state) {
6947 				if (pcie_fw & PCIE_FW_ERR_F)
6948 					*state = DEV_STATE_ERR;
6949 				else if (pcie_fw & PCIE_FW_INIT_F)
6950 					*state = DEV_STATE_INIT;
6951 			}
6952 
6953 			/*
6954 			 * If we arrived before a Master PF was selected and
6955 			 * there's not a valid Master PF, grab its identity
6956 			 * for our caller.
6957 			 */
6958 			if (master_mbox == PCIE_FW_MASTER_M &&
6959 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
6960 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6961 			break;
6962 		}
6963 	}
6964 
6965 	return master_mbox;
6966 }
6967 
6968 /**
6969  *	t4_fw_bye - end communication with FW
6970  *	@adap: the adapter
6971  *	@mbox: mailbox to use for the FW command
6972  *
6973  *	Issues a command to terminate communication with FW.
6974  */
6975 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6976 {
6977 	struct fw_bye_cmd c;
6978 
6979 	memset(&c, 0, sizeof(c));
6980 	INIT_CMD(c, BYE, WRITE);
6981 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6982 }
6983 
6984 /**
6985  *	t4_init_cmd - ask FW to initialize the device
6986  *	@adap: the adapter
6987  *	@mbox: mailbox to use for the FW command
6988  *
6989  *	Issues a command to FW to partially initialize the device.  This
6990  *	performs initialization that generally doesn't depend on user input.
6991  */
6992 int t4_early_init(struct adapter *adap, unsigned int mbox)
6993 {
6994 	struct fw_initialize_cmd c;
6995 
6996 	memset(&c, 0, sizeof(c));
6997 	INIT_CMD(c, INITIALIZE, WRITE);
6998 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6999 }
7000 
7001 /**
7002  *	t4_fw_reset - issue a reset to FW
7003  *	@adap: the adapter
7004  *	@mbox: mailbox to use for the FW command
7005  *	@reset: specifies the type of reset to perform
7006  *
7007  *	Issues a reset command of the specified type to FW.
7008  */
7009 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7010 {
7011 	struct fw_reset_cmd c;
7012 
7013 	memset(&c, 0, sizeof(c));
7014 	INIT_CMD(c, RESET, WRITE);
7015 	c.val = cpu_to_be32(reset);
7016 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7017 }
7018 
7019 /**
7020  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7021  *	@adap: the adapter
7022  *	@mbox: mailbox to use for the FW RESET command (if desired)
7023  *	@force: force uP into RESET even if FW RESET command fails
7024  *
7025  *	Issues a RESET command to firmware (if desired) with a HALT indication
7026  *	and then puts the microprocessor into RESET state.  The RESET command
7027  *	will only be issued if a legitimate mailbox is provided (mbox <=
7028  *	PCIE_FW_MASTER_M).
7029  *
7030  *	This is generally used in order for the host to safely manipulate the
7031  *	adapter without fear of conflicting with whatever the firmware might
7032  *	be doing.  The only way out of this state is to RESTART the firmware
7033  *	...
7034  */
7035 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7036 {
7037 	int ret = 0;
7038 
7039 	/*
7040 	 * If a legitimate mailbox is provided, issue a RESET command
7041 	 * with a HALT indication.
7042 	 */
7043 	if (mbox <= PCIE_FW_MASTER_M) {
7044 		struct fw_reset_cmd c;
7045 
7046 		memset(&c, 0, sizeof(c));
7047 		INIT_CMD(c, RESET, WRITE);
7048 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
7049 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
7050 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7051 	}
7052 
7053 	/*
7054 	 * Normally we won't complete the operation if the firmware RESET
7055 	 * command fails but if our caller insists we'll go ahead and put the
7056 	 * uP into RESET.  This can be useful if the firmware is hung or even
7057 	 * missing ...  We'll have to take the risk of putting the uP into
7058 	 * RESET without the cooperation of firmware in that case.
7059 	 *
7060 	 * We also force the firmware's HALT flag to be on in case we bypassed
7061 	 * the firmware RESET command above or we're dealing with old firmware
7062 	 * which doesn't have the HALT capability.  This will serve as a flag
7063 	 * for the incoming firmware to know that it's coming out of a HALT
7064 	 * rather than a RESET ... if it's new enough to understand that ...
7065 	 */
7066 	if (ret == 0 || force) {
7067 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
7068 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
7069 				 PCIE_FW_HALT_F);
7070 	}
7071 
7072 	/*
7073 	 * And we always return the result of the firmware RESET command
7074 	 * even when we force the uP into RESET ...
7075 	 */
7076 	return ret;
7077 }
7078 
7079 /**
7080  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
7081  *	@adap: the adapter
7082  *	@mbox: mailbox to use for the FW command
7083  *	@reset: if we want to do a RESET to restart things
7084  *
7085  *	Restart firmware previously halted by t4_fw_halt().  On successful
7086  *	return the previous PF Master remains as the new PF Master and there
7087  *	is no need to issue a new HELLO command, etc.
7088  *
7089  *	We do this in two ways:
7090  *
7091  *	 1. If we're dealing with newer firmware we'll simply want to take
7092  *	    the chip's microprocessor out of RESET.  This will cause the
7093  *	    firmware to start up from its start vector.  And then we'll loop
7094  *	    until the firmware indicates it's started again (PCIE_FW.HALT
7095  *	    reset to 0) or we timeout.
7096  *
7097  *	 2. If we're dealing with older firmware then we'll need to RESET
7098  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
7099  *	    flag and automatically RESET itself on startup.
7100  */
7101 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
7102 {
7103 	if (reset) {
7104 		/*
7105 		 * Since we're directing the RESET instead of the firmware
7106 		 * doing it automatically, we need to clear the PCIE_FW.HALT
7107 		 * bit.
7108 		 */
7109 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
7110 
7111 		/*
7112 		 * If we've been given a valid mailbox, first try to get the
7113 		 * firmware to do the RESET.  If that works, great and we can
7114 		 * return success.  Otherwise, if we haven't been given a
7115 		 * valid mailbox or the RESET command failed, fall back to
7116 		 * hitting the chip with a hammer.
7117 		 */
7118 		if (mbox <= PCIE_FW_MASTER_M) {
7119 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7120 			msleep(100);
7121 			if (t4_fw_reset(adap, mbox,
7122 					PIORST_F | PIORSTMODE_F) == 0)
7123 				return 0;
7124 		}
7125 
7126 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
7127 		msleep(2000);
7128 	} else {
7129 		int ms;
7130 
7131 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7132 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7133 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
7134 				return 0;
7135 			msleep(100);
7136 			ms += 100;
7137 		}
7138 		return -ETIMEDOUT;
7139 	}
7140 	return 0;
7141 }
7142 
7143 /**
7144  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7145  *	@adap: the adapter
7146  *	@mbox: mailbox to use for the FW RESET command (if desired)
7147  *	@fw_data: the firmware image to write
7148  *	@size: image size
7149  *	@force: force upgrade even if firmware doesn't cooperate
7150  *
7151  *	Perform all of the steps necessary for upgrading an adapter's
7152  *	firmware image.  Normally this requires the cooperation of the
7153  *	existing firmware in order to halt all existing activities
7154  *	but if an invalid mailbox token is passed in we skip that step
7155  *	(though we'll still put the adapter microprocessor into RESET in
7156  *	that case).
7157  *
7158  *	On successful return the new firmware will have been loaded and
7159  *	the adapter will have been fully RESET losing all previous setup
7160  *	state.  On unsuccessful return the adapter may be completely hosed ...
7161  *	positive errno indicates that the adapter is ~probably~ intact, a
7162  *	negative errno indicates that things are looking bad ...
7163  */
7164 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7165 		  const u8 *fw_data, unsigned int size, int force)
7166 {
7167 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7168 	int reset, ret;
7169 
7170 	if (!t4_fw_matches_chip(adap, fw_hdr))
7171 		return -EINVAL;
7172 
7173 	/* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag
7174 	 * set wont be sent when we are flashing FW.
7175 	 */
7176 	adap->flags &= ~CXGB4_FW_OK;
7177 
7178 	ret = t4_fw_halt(adap, mbox, force);
7179 	if (ret < 0 && !force)
7180 		goto out;
7181 
7182 	ret = t4_load_fw(adap, fw_data, size);
7183 	if (ret < 0)
7184 		goto out;
7185 
7186 	/*
7187 	 * If there was a Firmware Configuration File stored in FLASH,
7188 	 * there's a good chance that it won't be compatible with the new
7189 	 * Firmware.  In order to prevent difficult to diagnose adapter
7190 	 * initialization issues, we clear out the Firmware Configuration File
7191 	 * portion of the FLASH .  The user will need to re-FLASH a new
7192 	 * Firmware Configuration File which is compatible with the new
7193 	 * Firmware if that's desired.
7194 	 */
7195 	(void)t4_load_cfg(adap, NULL, 0);
7196 
7197 	/*
7198 	 * Older versions of the firmware don't understand the new
7199 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7200 	 * restart.  So for newly loaded older firmware we'll have to do the
7201 	 * RESET for it so it starts up on a clean slate.  We can tell if
7202 	 * the newly loaded firmware will handle this right by checking
7203 	 * its header flags to see if it advertises the capability.
7204 	 */
7205 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
7206 	ret = t4_fw_restart(adap, mbox, reset);
7207 
7208 	/* Grab potentially new Firmware Device Log parameters so we can see
7209 	 * how healthy the new Firmware is.  It's okay to contact the new
7210 	 * Firmware for these parameters even though, as far as it's
7211 	 * concerned, we've never said "HELLO" to it ...
7212 	 */
7213 	(void)t4_init_devlog_params(adap);
7214 out:
7215 	adap->flags |= CXGB4_FW_OK;
7216 	return ret;
7217 }
7218 
7219 /**
7220  *	t4_fl_pkt_align - return the fl packet alignment
7221  *	@adap: the adapter
7222  *
7223  *	T4 has a single field to specify the packing and padding boundary.
7224  *	T5 onwards has separate fields for this and hence the alignment for
7225  *	next packet offset is maximum of these two.
7226  *
7227  */
7228 int t4_fl_pkt_align(struct adapter *adap)
7229 {
7230 	u32 sge_control, sge_control2;
7231 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7232 
7233 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7234 
7235 	/* T4 uses a single control field to specify both the PCIe Padding and
7236 	 * Packing Boundary.  T5 introduced the ability to specify these
7237 	 * separately.  The actual Ingress Packet Data alignment boundary
7238 	 * within Packed Buffer Mode is the maximum of these two
7239 	 * specifications.  (Note that it makes no real practical sense to
7240 	 * have the Padding Boundary be larger than the Packing Boundary but you
7241 	 * could set the chip up that way and, in fact, legacy T4 code would
7242 	 * end doing this because it would initialize the Padding Boundary and
7243 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
7244 	 * Padding Boundary values in T6 starts from 8B,
7245 	 * where as it is 32B for T4 and T5.
7246 	 */
7247 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7248 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7249 	else
7250 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7251 
7252 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7253 
7254 	fl_align = ingpadboundary;
7255 	if (!is_t4(adap->params.chip)) {
7256 		/* T5 has a weird interpretation of one of the PCIe Packing
7257 		 * Boundary values.  No idea why ...
7258 		 */
7259 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7260 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7261 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7262 			ingpackboundary = 16;
7263 		else
7264 			ingpackboundary = 1 << (ingpackboundary +
7265 						INGPACKBOUNDARY_SHIFT_X);
7266 
7267 		fl_align = max(ingpadboundary, ingpackboundary);
7268 	}
7269 	return fl_align;
7270 }
7271 
7272 /**
7273  *	t4_fixup_host_params - fix up host-dependent parameters
7274  *	@adap: the adapter
7275  *	@page_size: the host's Base Page Size
7276  *	@cache_line_size: the host's Cache Line Size
7277  *
7278  *	Various registers in T4 contain values which are dependent on the
7279  *	host's Base Page and Cache Line Sizes.  This function will fix all of
7280  *	those registers with the appropriate values as passed in ...
7281  */
7282 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7283 			 unsigned int cache_line_size)
7284 {
7285 	unsigned int page_shift = fls(page_size) - 1;
7286 	unsigned int sge_hps = page_shift - 10;
7287 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7288 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7289 	unsigned int fl_align_log = fls(fl_align) - 1;
7290 
7291 	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7292 		     HOSTPAGESIZEPF0_V(sge_hps) |
7293 		     HOSTPAGESIZEPF1_V(sge_hps) |
7294 		     HOSTPAGESIZEPF2_V(sge_hps) |
7295 		     HOSTPAGESIZEPF3_V(sge_hps) |
7296 		     HOSTPAGESIZEPF4_V(sge_hps) |
7297 		     HOSTPAGESIZEPF5_V(sge_hps) |
7298 		     HOSTPAGESIZEPF6_V(sge_hps) |
7299 		     HOSTPAGESIZEPF7_V(sge_hps));
7300 
7301 	if (is_t4(adap->params.chip)) {
7302 		t4_set_reg_field(adap, SGE_CONTROL_A,
7303 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7304 				 EGRSTATUSPAGESIZE_F,
7305 				 INGPADBOUNDARY_V(fl_align_log -
7306 						  INGPADBOUNDARY_SHIFT_X) |
7307 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7308 	} else {
7309 		unsigned int pack_align;
7310 		unsigned int ingpad, ingpack;
7311 
7312 		/* T5 introduced the separation of the Free List Padding and
7313 		 * Packing Boundaries.  Thus, we can select a smaller Padding
7314 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
7315 		 * Bandwidth, and use a Packing Boundary which is large enough
7316 		 * to avoid false sharing between CPUs, etc.
7317 		 *
7318 		 * For the PCI Link, the smaller the Padding Boundary the
7319 		 * better.  For the Memory Controller, a smaller Padding
7320 		 * Boundary is better until we cross under the Memory Line
7321 		 * Size (the minimum unit of transfer to/from Memory).  If we
7322 		 * have a Padding Boundary which is smaller than the Memory
7323 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
7324 		 * Memory Controller which is never good.
7325 		 */
7326 
7327 		/* We want the Packing Boundary to be based on the Cache Line
7328 		 * Size in order to help avoid False Sharing performance
7329 		 * issues between CPUs, etc.  We also want the Packing
7330 		 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7331 		 * get best performance when the Packing Boundary is a
7332 		 * multiple of the Maximum Payload Size.
7333 		 */
7334 		pack_align = fl_align;
7335 		if (pci_is_pcie(adap->pdev)) {
7336 			unsigned int mps, mps_log;
7337 			u16 devctl;
7338 
7339 			/* The PCIe Device Control Maximum Payload Size field
7340 			 * [bits 7:5] encodes sizes as powers of 2 starting at
7341 			 * 128 bytes.
7342 			 */
7343 			pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL,
7344 						  &devctl);
7345 			mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7346 			mps = 1 << mps_log;
7347 			if (mps > pack_align)
7348 				pack_align = mps;
7349 		}
7350 
7351 		/* N.B. T5/T6 have a crazy special interpretation of the "0"
7352 		 * value for the Packing Boundary.  This corresponds to 16
7353 		 * bytes instead of the expected 32 bytes.  So if we want 32
7354 		 * bytes, the best we can really do is 64 bytes ...
7355 		 */
7356 		if (pack_align <= 16) {
7357 			ingpack = INGPACKBOUNDARY_16B_X;
7358 			fl_align = 16;
7359 		} else if (pack_align == 32) {
7360 			ingpack = INGPACKBOUNDARY_64B_X;
7361 			fl_align = 64;
7362 		} else {
7363 			unsigned int pack_align_log = fls(pack_align) - 1;
7364 
7365 			ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7366 			fl_align = pack_align;
7367 		}
7368 
7369 		/* Use the smallest Ingress Padding which isn't smaller than
7370 		 * the Memory Controller Read/Write Size.  We'll take that as
7371 		 * being 8 bytes since we don't know of any system with a
7372 		 * wider Memory Controller Bus Width.
7373 		 */
7374 		if (is_t5(adap->params.chip))
7375 			ingpad = INGPADBOUNDARY_32B_X;
7376 		else
7377 			ingpad = T6_INGPADBOUNDARY_8B_X;
7378 
7379 		t4_set_reg_field(adap, SGE_CONTROL_A,
7380 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7381 				 EGRSTATUSPAGESIZE_F,
7382 				 INGPADBOUNDARY_V(ingpad) |
7383 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7384 		t4_set_reg_field(adap, SGE_CONTROL2_A,
7385 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7386 				 INGPACKBOUNDARY_V(ingpack));
7387 	}
7388 	/*
7389 	 * Adjust various SGE Free List Host Buffer Sizes.
7390 	 *
7391 	 * This is something of a crock since we're using fixed indices into
7392 	 * the array which are also known by the sge.c code and the T4
7393 	 * Firmware Configuration File.  We need to come up with a much better
7394 	 * approach to managing this array.  For now, the first four entries
7395 	 * are:
7396 	 *
7397 	 *   0: Host Page Size
7398 	 *   1: 64KB
7399 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7400 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7401 	 *
7402 	 * For the single-MTU buffers in unpacked mode we need to include
7403 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7404 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7405 	 * Padding boundary.  All of these are accommodated in the Factory
7406 	 * Default Firmware Configuration File but we need to adjust it for
7407 	 * this host's cache line size.
7408 	 */
7409 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7410 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7411 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7412 		     & ~(fl_align-1));
7413 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7414 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7415 		     & ~(fl_align-1));
7416 
7417 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7418 
7419 	return 0;
7420 }
7421 
7422 /**
7423  *	t4_fw_initialize - ask FW to initialize the device
7424  *	@adap: the adapter
7425  *	@mbox: mailbox to use for the FW command
7426  *
7427  *	Issues a command to FW to partially initialize the device.  This
7428  *	performs initialization that generally doesn't depend on user input.
7429  */
7430 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7431 {
7432 	struct fw_initialize_cmd c;
7433 
7434 	memset(&c, 0, sizeof(c));
7435 	INIT_CMD(c, INITIALIZE, WRITE);
7436 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7437 }
7438 
7439 /**
7440  *	t4_query_params_rw - query FW or device parameters
7441  *	@adap: the adapter
7442  *	@mbox: mailbox to use for the FW command
7443  *	@pf: the PF
7444  *	@vf: the VF
7445  *	@nparams: the number of parameters
7446  *	@params: the parameter names
7447  *	@val: the parameter values
7448  *	@rw: Write and read flag
7449  *	@sleep_ok: if true, we may sleep awaiting mbox cmd completion
7450  *
7451  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7452  *	queried at once.
7453  */
7454 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7455 		       unsigned int vf, unsigned int nparams, const u32 *params,
7456 		       u32 *val, int rw, bool sleep_ok)
7457 {
7458 	int i, ret;
7459 	struct fw_params_cmd c;
7460 	__be32 *p = &c.param[0].mnem;
7461 
7462 	if (nparams > 7)
7463 		return -EINVAL;
7464 
7465 	memset(&c, 0, sizeof(c));
7466 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7467 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
7468 				  FW_PARAMS_CMD_PFN_V(pf) |
7469 				  FW_PARAMS_CMD_VFN_V(vf));
7470 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7471 
7472 	for (i = 0; i < nparams; i++) {
7473 		*p++ = cpu_to_be32(*params++);
7474 		if (rw)
7475 			*p = cpu_to_be32(*(val + i));
7476 		p++;
7477 	}
7478 
7479 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7480 	if (ret == 0)
7481 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7482 			*val++ = be32_to_cpu(*p);
7483 	return ret;
7484 }
7485 
7486 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7487 		    unsigned int vf, unsigned int nparams, const u32 *params,
7488 		    u32 *val)
7489 {
7490 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7491 				  true);
7492 }
7493 
7494 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7495 		       unsigned int vf, unsigned int nparams, const u32 *params,
7496 		       u32 *val)
7497 {
7498 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7499 				  false);
7500 }
7501 
7502 /**
7503  *      t4_set_params_timeout - sets FW or device parameters
7504  *      @adap: the adapter
7505  *      @mbox: mailbox to use for the FW command
7506  *      @pf: the PF
7507  *      @vf: the VF
7508  *      @nparams: the number of parameters
7509  *      @params: the parameter names
7510  *      @val: the parameter values
7511  *      @timeout: the timeout time
7512  *
7513  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7514  *      specified at once.
7515  */
7516 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7517 			  unsigned int pf, unsigned int vf,
7518 			  unsigned int nparams, const u32 *params,
7519 			  const u32 *val, int timeout)
7520 {
7521 	struct fw_params_cmd c;
7522 	__be32 *p = &c.param[0].mnem;
7523 
7524 	if (nparams > 7)
7525 		return -EINVAL;
7526 
7527 	memset(&c, 0, sizeof(c));
7528 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7529 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7530 				  FW_PARAMS_CMD_PFN_V(pf) |
7531 				  FW_PARAMS_CMD_VFN_V(vf));
7532 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7533 
7534 	while (nparams--) {
7535 		*p++ = cpu_to_be32(*params++);
7536 		*p++ = cpu_to_be32(*val++);
7537 	}
7538 
7539 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7540 }
7541 
7542 /**
7543  *	t4_set_params - sets FW or device parameters
7544  *	@adap: the adapter
7545  *	@mbox: mailbox to use for the FW command
7546  *	@pf: the PF
7547  *	@vf: the VF
7548  *	@nparams: the number of parameters
7549  *	@params: the parameter names
7550  *	@val: the parameter values
7551  *
7552  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7553  *	specified at once.
7554  */
7555 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7556 		  unsigned int vf, unsigned int nparams, const u32 *params,
7557 		  const u32 *val)
7558 {
7559 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7560 				     FW_CMD_MAX_TIMEOUT);
7561 }
7562 
7563 /**
7564  *	t4_cfg_pfvf - configure PF/VF resource limits
7565  *	@adap: the adapter
7566  *	@mbox: mailbox to use for the FW command
7567  *	@pf: the PF being configured
7568  *	@vf: the VF being configured
7569  *	@txq: the max number of egress queues
7570  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7571  *	@rxqi: the max number of interrupt-capable ingress queues
7572  *	@rxq: the max number of interruptless ingress queues
7573  *	@tc: the PCI traffic class
7574  *	@vi: the max number of virtual interfaces
7575  *	@cmask: the channel access rights mask for the PF/VF
7576  *	@pmask: the port access rights mask for the PF/VF
7577  *	@nexact: the maximum number of exact MPS filters
7578  *	@rcaps: read capabilities
7579  *	@wxcaps: write/execute capabilities
7580  *
7581  *	Configures resource limits and capabilities for a physical or virtual
7582  *	function.
7583  */
7584 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7585 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7586 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7587 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7588 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7589 {
7590 	struct fw_pfvf_cmd c;
7591 
7592 	memset(&c, 0, sizeof(c));
7593 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7594 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7595 				  FW_PFVF_CMD_VFN_V(vf));
7596 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7597 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7598 				     FW_PFVF_CMD_NIQ_V(rxq));
7599 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7600 				    FW_PFVF_CMD_PMASK_V(pmask) |
7601 				    FW_PFVF_CMD_NEQ_V(txq));
7602 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7603 				      FW_PFVF_CMD_NVI_V(vi) |
7604 				      FW_PFVF_CMD_NEXACTF_V(nexact));
7605 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7606 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7607 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7608 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7609 }
7610 
7611 /**
7612  *	t4_alloc_vi - allocate a virtual interface
7613  *	@adap: the adapter
7614  *	@mbox: mailbox to use for the FW command
7615  *	@port: physical port associated with the VI
7616  *	@pf: the PF owning the VI
7617  *	@vf: the VF owning the VI
7618  *	@nmac: number of MAC addresses needed (1 to 5)
7619  *	@mac: the MAC addresses of the VI
7620  *	@rss_size: size of RSS table slice associated with this VI
7621  *	@vivld: the destination to store the VI Valid value.
7622  *	@vin: the destination to store the VIN value.
7623  *
7624  *	Allocates a virtual interface for the given physical port.  If @mac is
7625  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7626  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7627  *	stored consecutively so the space needed is @nmac * 6 bytes.
7628  *	Returns a negative error number or the non-negative VI id.
7629  */
7630 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7631 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7632 		unsigned int *rss_size, u8 *vivld, u8 *vin)
7633 {
7634 	int ret;
7635 	struct fw_vi_cmd c;
7636 
7637 	memset(&c, 0, sizeof(c));
7638 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7639 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7640 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7641 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7642 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7643 	c.nmac = nmac - 1;
7644 
7645 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7646 	if (ret)
7647 		return ret;
7648 
7649 	if (mac) {
7650 		memcpy(mac, c.mac, sizeof(c.mac));
7651 		switch (nmac) {
7652 		case 5:
7653 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7654 			fallthrough;
7655 		case 4:
7656 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7657 			fallthrough;
7658 		case 3:
7659 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7660 			fallthrough;
7661 		case 2:
7662 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7663 		}
7664 	}
7665 	if (rss_size)
7666 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7667 
7668 	if (vivld)
7669 		*vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16));
7670 
7671 	if (vin)
7672 		*vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16));
7673 
7674 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7675 }
7676 
7677 /**
7678  *	t4_free_vi - free a virtual interface
7679  *	@adap: the adapter
7680  *	@mbox: mailbox to use for the FW command
7681  *	@pf: the PF owning the VI
7682  *	@vf: the VF owning the VI
7683  *	@viid: virtual interface identifiler
7684  *
7685  *	Free a previously allocated virtual interface.
7686  */
7687 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7688 	       unsigned int vf, unsigned int viid)
7689 {
7690 	struct fw_vi_cmd c;
7691 
7692 	memset(&c, 0, sizeof(c));
7693 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7694 				  FW_CMD_REQUEST_F |
7695 				  FW_CMD_EXEC_F |
7696 				  FW_VI_CMD_PFN_V(pf) |
7697 				  FW_VI_CMD_VFN_V(vf));
7698 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7699 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7700 
7701 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7702 }
7703 
7704 /**
7705  *	t4_set_rxmode - set Rx properties of a virtual interface
7706  *	@adap: the adapter
7707  *	@mbox: mailbox to use for the FW command
7708  *	@viid: the VI id
7709  *	@viid_mirror: the mirror VI id
7710  *	@mtu: the new MTU or -1
7711  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7712  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7713  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7714  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7715  *	@sleep_ok: if true we may sleep while awaiting command completion
7716  *
7717  *	Sets Rx properties of a virtual interface.
7718  */
7719 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7720 		  unsigned int viid_mirror, int mtu, int promisc, int all_multi,
7721 		  int bcast, int vlanex, bool sleep_ok)
7722 {
7723 	struct fw_vi_rxmode_cmd c, c_mirror;
7724 	int ret;
7725 
7726 	/* convert to FW values */
7727 	if (mtu < 0)
7728 		mtu = FW_RXMODE_MTU_NO_CHG;
7729 	if (promisc < 0)
7730 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7731 	if (all_multi < 0)
7732 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7733 	if (bcast < 0)
7734 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7735 	if (vlanex < 0)
7736 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7737 
7738 	memset(&c, 0, sizeof(c));
7739 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7740 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7741 				   FW_VI_RXMODE_CMD_VIID_V(viid));
7742 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7743 	c.mtu_to_vlanexen =
7744 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7745 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7746 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7747 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7748 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7749 
7750 	if (viid_mirror) {
7751 		memcpy(&c_mirror, &c, sizeof(c_mirror));
7752 		c_mirror.op_to_viid =
7753 			cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7754 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7755 				    FW_VI_RXMODE_CMD_VIID_V(viid_mirror));
7756 	}
7757 
7758 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7759 	if (ret)
7760 		return ret;
7761 
7762 	if (viid_mirror)
7763 		ret = t4_wr_mbox_meat(adap, mbox, &c_mirror, sizeof(c_mirror),
7764 				      NULL, sleep_ok);
7765 
7766 	return ret;
7767 }
7768 
7769 /**
7770  *      t4_free_encap_mac_filt - frees MPS entry at given index
7771  *      @adap: the adapter
7772  *      @viid: the VI id
7773  *      @idx: index of MPS entry to be freed
7774  *      @sleep_ok: call is allowed to sleep
7775  *
7776  *      Frees the MPS entry at supplied index
7777  *
7778  *      Returns a negative error number or zero on success
7779  */
7780 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
7781 			   int idx, bool sleep_ok)
7782 {
7783 	struct fw_vi_mac_exact *p;
7784 	u8 addr[] = {0, 0, 0, 0, 0, 0};
7785 	struct fw_vi_mac_cmd c;
7786 	int ret = 0;
7787 	u32 exact;
7788 
7789 	memset(&c, 0, sizeof(c));
7790 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7791 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7792 				   FW_CMD_EXEC_V(0) |
7793 				   FW_VI_MAC_CMD_VIID_V(viid));
7794 	exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC);
7795 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7796 					  exact |
7797 					  FW_CMD_LEN16_V(1));
7798 	p = c.u.exact;
7799 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7800 				      FW_VI_MAC_CMD_IDX_V(idx));
7801 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7802 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7803 	return ret;
7804 }
7805 
7806 /**
7807  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7808  *	@adap: the adapter
7809  *	@viid: the VI id
7810  *	@addr: the MAC address
7811  *	@mask: the mask
7812  *	@idx: index of the entry in mps tcam
7813  *	@lookup_type: MAC address for inner (1) or outer (0) header
7814  *	@port_id: the port index
7815  *	@sleep_ok: call is allowed to sleep
7816  *
7817  *	Removes the mac entry at the specified index using raw mac interface.
7818  *
7819  *	Returns a negative error number on failure.
7820  */
7821 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7822 			 const u8 *addr, const u8 *mask, unsigned int idx,
7823 			 u8 lookup_type, u8 port_id, bool sleep_ok)
7824 {
7825 	struct fw_vi_mac_cmd c;
7826 	struct fw_vi_mac_raw *p = &c.u.raw;
7827 	u32 val;
7828 
7829 	memset(&c, 0, sizeof(c));
7830 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7831 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7832 				   FW_CMD_EXEC_V(0) |
7833 				   FW_VI_MAC_CMD_VIID_V(viid));
7834 	val = FW_CMD_LEN16_V(1) |
7835 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7836 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7837 					  FW_CMD_LEN16_V(val));
7838 
7839 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7840 				     FW_VI_MAC_ID_BASED_FREE);
7841 
7842 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7843 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7844 				   DATAPORTNUM_V(port_id));
7845 	/* Lookup mask and port mask */
7846 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7847 				    DATAPORTNUM_V(DATAPORTNUM_M));
7848 
7849 	/* Copy the address and the mask */
7850 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7851 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7852 
7853 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7854 }
7855 
7856 /**
7857  *      t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
7858  *      @adap: the adapter
7859  *      @viid: the VI id
7860  *      @addr: the MAC address
7861  *      @mask: the mask
7862  *      @vni: the VNI id for the tunnel protocol
7863  *      @vni_mask: mask for the VNI id
7864  *      @dip_hit: to enable DIP match for the MPS entry
7865  *      @lookup_type: MAC address for inner (1) or outer (0) header
7866  *      @sleep_ok: call is allowed to sleep
7867  *
7868  *      Allocates an MPS entry with specified MAC address and VNI value.
7869  *
7870  *      Returns a negative error number or the allocated index for this mac.
7871  */
7872 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
7873 			    const u8 *addr, const u8 *mask, unsigned int vni,
7874 			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
7875 			    bool sleep_ok)
7876 {
7877 	struct fw_vi_mac_cmd c;
7878 	struct fw_vi_mac_vni *p = c.u.exact_vni;
7879 	int ret = 0;
7880 	u32 val;
7881 
7882 	memset(&c, 0, sizeof(c));
7883 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7884 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7885 				   FW_VI_MAC_CMD_VIID_V(viid));
7886 	val = FW_CMD_LEN16_V(1) |
7887 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI);
7888 	c.freemacs_to_len16 = cpu_to_be32(val);
7889 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7890 				      FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
7891 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7892 	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
7893 
7894 	p->lookup_type_to_vni =
7895 		cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) |
7896 			    FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) |
7897 			    FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type));
7898 	p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask));
7899 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7900 	if (ret == 0)
7901 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7902 	return ret;
7903 }
7904 
7905 /**
7906  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7907  *	@adap: the adapter
7908  *	@viid: the VI id
7909  *	@addr: the MAC address
7910  *	@mask: the mask
7911  *	@idx: index at which to add this entry
7912  *	@lookup_type: MAC address for inner (1) or outer (0) header
7913  *	@port_id: the port index
7914  *	@sleep_ok: call is allowed to sleep
7915  *
7916  *	Adds the mac entry at the specified index using raw mac interface.
7917  *
7918  *	Returns a negative error number or the allocated index for this mac.
7919  */
7920 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7921 			  const u8 *addr, const u8 *mask, unsigned int idx,
7922 			  u8 lookup_type, u8 port_id, bool sleep_ok)
7923 {
7924 	int ret = 0;
7925 	struct fw_vi_mac_cmd c;
7926 	struct fw_vi_mac_raw *p = &c.u.raw;
7927 	u32 val;
7928 
7929 	memset(&c, 0, sizeof(c));
7930 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7931 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7932 				   FW_VI_MAC_CMD_VIID_V(viid));
7933 	val = FW_CMD_LEN16_V(1) |
7934 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7935 	c.freemacs_to_len16 = cpu_to_be32(val);
7936 
7937 	/* Specify that this is an inner mac address */
7938 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7939 
7940 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7941 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7942 				   DATAPORTNUM_V(port_id));
7943 	/* Lookup mask and port mask */
7944 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7945 				    DATAPORTNUM_V(DATAPORTNUM_M));
7946 
7947 	/* Copy the address and the mask */
7948 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7949 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7950 
7951 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7952 	if (ret == 0) {
7953 		ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7954 		if (ret != idx)
7955 			ret = -ENOMEM;
7956 	}
7957 
7958 	return ret;
7959 }
7960 
7961 /**
7962  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7963  *	@adap: the adapter
7964  *	@mbox: mailbox to use for the FW command
7965  *	@viid: the VI id
7966  *	@free: if true any existing filters for this VI id are first removed
7967  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7968  *	@addr: the MAC address(es)
7969  *	@idx: where to store the index of each allocated filter
7970  *	@hash: pointer to hash address filter bitmap
7971  *	@sleep_ok: call is allowed to sleep
7972  *
7973  *	Allocates an exact-match filter for each of the supplied addresses and
7974  *	sets it to the corresponding address.  If @idx is not %NULL it should
7975  *	have at least @naddr entries, each of which will be set to the index of
7976  *	the filter allocated for the corresponding MAC address.  If a filter
7977  *	could not be allocated for an address its index is set to 0xffff.
7978  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7979  *	are hashed and update the hash filter bitmap pointed at by @hash.
7980  *
7981  *	Returns a negative error number or the number of filters allocated.
7982  */
7983 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7984 		      unsigned int viid, bool free, unsigned int naddr,
7985 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7986 {
7987 	int offset, ret = 0;
7988 	struct fw_vi_mac_cmd c;
7989 	unsigned int nfilters = 0;
7990 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7991 	unsigned int rem = naddr;
7992 
7993 	if (naddr > max_naddr)
7994 		return -EINVAL;
7995 
7996 	for (offset = 0; offset < naddr ; /**/) {
7997 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7998 					 rem : ARRAY_SIZE(c.u.exact));
7999 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8000 						     u.exact[fw_naddr]), 16);
8001 		struct fw_vi_mac_exact *p;
8002 		int i;
8003 
8004 		memset(&c, 0, sizeof(c));
8005 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8006 					   FW_CMD_REQUEST_F |
8007 					   FW_CMD_WRITE_F |
8008 					   FW_CMD_EXEC_V(free) |
8009 					   FW_VI_MAC_CMD_VIID_V(viid));
8010 		c.freemacs_to_len16 =
8011 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
8012 				    FW_CMD_LEN16_V(len16));
8013 
8014 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8015 			p->valid_to_idx =
8016 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8017 					    FW_VI_MAC_CMD_IDX_V(
8018 						    FW_VI_MAC_ADD_MAC));
8019 			memcpy(p->macaddr, addr[offset + i],
8020 			       sizeof(p->macaddr));
8021 		}
8022 
8023 		/* It's okay if we run out of space in our MAC address arena.
8024 		 * Some of the addresses we submit may get stored so we need
8025 		 * to run through the reply to see what the results were ...
8026 		 */
8027 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8028 		if (ret && ret != -FW_ENOMEM)
8029 			break;
8030 
8031 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8032 			u16 index = FW_VI_MAC_CMD_IDX_G(
8033 					be16_to_cpu(p->valid_to_idx));
8034 
8035 			if (idx)
8036 				idx[offset + i] = (index >= max_naddr ?
8037 						   0xffff : index);
8038 			if (index < max_naddr)
8039 				nfilters++;
8040 			else if (hash)
8041 				*hash |= (1ULL <<
8042 					  hash_mac_addr(addr[offset + i]));
8043 		}
8044 
8045 		free = false;
8046 		offset += fw_naddr;
8047 		rem -= fw_naddr;
8048 	}
8049 
8050 	if (ret == 0 || ret == -FW_ENOMEM)
8051 		ret = nfilters;
8052 	return ret;
8053 }
8054 
8055 /**
8056  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
8057  *	@adap: the adapter
8058  *	@mbox: mailbox to use for the FW command
8059  *	@viid: the VI id
8060  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8061  *	@addr: the MAC address(es)
8062  *	@sleep_ok: call is allowed to sleep
8063  *
8064  *	Frees the exact-match filter for each of the supplied addresses
8065  *
8066  *	Returns a negative error number or the number of filters freed.
8067  */
8068 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8069 		     unsigned int viid, unsigned int naddr,
8070 		     const u8 **addr, bool sleep_ok)
8071 {
8072 	int offset, ret = 0;
8073 	struct fw_vi_mac_cmd c;
8074 	unsigned int nfilters = 0;
8075 	unsigned int max_naddr = is_t4(adap->params.chip) ?
8076 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
8077 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8078 	unsigned int rem = naddr;
8079 
8080 	if (naddr > max_naddr)
8081 		return -EINVAL;
8082 
8083 	for (offset = 0; offset < (int)naddr ; /**/) {
8084 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8085 					 ? rem
8086 					 : ARRAY_SIZE(c.u.exact));
8087 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8088 						     u.exact[fw_naddr]), 16);
8089 		struct fw_vi_mac_exact *p;
8090 		int i;
8091 
8092 		memset(&c, 0, sizeof(c));
8093 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8094 				     FW_CMD_REQUEST_F |
8095 				     FW_CMD_WRITE_F |
8096 				     FW_CMD_EXEC_V(0) |
8097 				     FW_VI_MAC_CMD_VIID_V(viid));
8098 		c.freemacs_to_len16 =
8099 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
8100 					    FW_CMD_LEN16_V(len16));
8101 
8102 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8103 			p->valid_to_idx = cpu_to_be16(
8104 				FW_VI_MAC_CMD_VALID_F |
8105 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
8106 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8107 		}
8108 
8109 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8110 		if (ret)
8111 			break;
8112 
8113 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8114 			u16 index = FW_VI_MAC_CMD_IDX_G(
8115 						be16_to_cpu(p->valid_to_idx));
8116 
8117 			if (index < max_naddr)
8118 				nfilters++;
8119 		}
8120 
8121 		offset += fw_naddr;
8122 		rem -= fw_naddr;
8123 	}
8124 
8125 	if (ret == 0)
8126 		ret = nfilters;
8127 	return ret;
8128 }
8129 
8130 /**
8131  *	t4_change_mac - modifies the exact-match filter for a MAC address
8132  *	@adap: the adapter
8133  *	@mbox: mailbox to use for the FW command
8134  *	@viid: the VI id
8135  *	@idx: index of existing filter for old value of MAC address, or -1
8136  *	@addr: the new MAC address value
8137  *	@persist: whether a new MAC allocation should be persistent
8138  *	@smt_idx: the destination to store the new SMT index.
8139  *
8140  *	Modifies an exact-match filter and sets it to the new MAC address.
8141  *	Note that in general it is not possible to modify the value of a given
8142  *	filter so the generic way to modify an address filter is to free the one
8143  *	being used by the old address value and allocate a new filter for the
8144  *	new address value.  @idx can be -1 if the address is a new addition.
8145  *
8146  *	Returns a negative error number or the index of the filter with the new
8147  *	MAC value.
8148  */
8149 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8150 		  int idx, const u8 *addr, bool persist, u8 *smt_idx)
8151 {
8152 	int ret, mode;
8153 	struct fw_vi_mac_cmd c;
8154 	struct fw_vi_mac_exact *p = c.u.exact;
8155 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
8156 
8157 	if (idx < 0)                             /* new allocation */
8158 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8159 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8160 
8161 	memset(&c, 0, sizeof(c));
8162 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8163 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8164 				   FW_VI_MAC_CMD_VIID_V(viid));
8165 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
8166 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8167 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
8168 				      FW_VI_MAC_CMD_IDX_V(idx));
8169 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8170 
8171 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8172 	if (ret == 0) {
8173 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
8174 		if (ret >= max_mac_addr)
8175 			ret = -ENOMEM;
8176 		if (smt_idx) {
8177 			if (adap->params.viid_smt_extn_support) {
8178 				*smt_idx = FW_VI_MAC_CMD_SMTID_G
8179 						    (be32_to_cpu(c.op_to_viid));
8180 			} else {
8181 				/* In T4/T5, SMT contains 256 SMAC entries
8182 				 * organized in 128 rows of 2 entries each.
8183 				 * In T6, SMT contains 256 SMAC entries in
8184 				 * 256 rows.
8185 				 */
8186 				if (CHELSIO_CHIP_VERSION(adap->params.chip) <=
8187 								     CHELSIO_T5)
8188 					*smt_idx = (viid & FW_VIID_VIN_M) << 1;
8189 				else
8190 					*smt_idx = (viid & FW_VIID_VIN_M);
8191 			}
8192 		}
8193 	}
8194 	return ret;
8195 }
8196 
8197 /**
8198  *	t4_set_addr_hash - program the MAC inexact-match hash filter
8199  *	@adap: the adapter
8200  *	@mbox: mailbox to use for the FW command
8201  *	@viid: the VI id
8202  *	@ucast: whether the hash filter should also match unicast addresses
8203  *	@vec: the value to be written to the hash filter
8204  *	@sleep_ok: call is allowed to sleep
8205  *
8206  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8207  */
8208 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8209 		     bool ucast, u64 vec, bool sleep_ok)
8210 {
8211 	struct fw_vi_mac_cmd c;
8212 
8213 	memset(&c, 0, sizeof(c));
8214 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8215 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8216 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8217 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
8218 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
8219 					  FW_CMD_LEN16_V(1));
8220 	c.u.hash.hashvec = cpu_to_be64(vec);
8221 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8222 }
8223 
8224 /**
8225  *      t4_enable_vi_params - enable/disable a virtual interface
8226  *      @adap: the adapter
8227  *      @mbox: mailbox to use for the FW command
8228  *      @viid: the VI id
8229  *      @rx_en: 1=enable Rx, 0=disable Rx
8230  *      @tx_en: 1=enable Tx, 0=disable Tx
8231  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8232  *
8233  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8234  *      only makes sense when enabling a Virtual Interface ...
8235  */
8236 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8237 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8238 {
8239 	struct fw_vi_enable_cmd c;
8240 
8241 	memset(&c, 0, sizeof(c));
8242 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8243 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8244 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8245 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
8246 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
8247 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
8248 				     FW_LEN16(c));
8249 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8250 }
8251 
8252 /**
8253  *	t4_enable_vi - enable/disable a virtual interface
8254  *	@adap: the adapter
8255  *	@mbox: mailbox to use for the FW command
8256  *	@viid: the VI id
8257  *	@rx_en: 1=enable Rx, 0=disable Rx
8258  *	@tx_en: 1=enable Tx, 0=disable Tx
8259  *
8260  *	Enables/disables a virtual interface.
8261  */
8262 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8263 		 bool rx_en, bool tx_en)
8264 {
8265 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8266 }
8267 
8268 /**
8269  *	t4_enable_pi_params - enable/disable a Port's Virtual Interface
8270  *      @adap: the adapter
8271  *      @mbox: mailbox to use for the FW command
8272  *      @pi: the Port Information structure
8273  *      @rx_en: 1=enable Rx, 0=disable Rx
8274  *      @tx_en: 1=enable Tx, 0=disable Tx
8275  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8276  *
8277  *      Enables/disables a Port's Virtual Interface.  Note that setting DCB
8278  *	Enable only makes sense when enabling a Virtual Interface ...
8279  *	If the Virtual Interface enable/disable operation is successful,
8280  *	we notify the OS-specific code of a potential Link Status change
8281  *	via the OS Contract API t4_os_link_changed().
8282  */
8283 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox,
8284 			struct port_info *pi,
8285 			bool rx_en, bool tx_en, bool dcb_en)
8286 {
8287 	int ret = t4_enable_vi_params(adap, mbox, pi->viid,
8288 				      rx_en, tx_en, dcb_en);
8289 	if (ret)
8290 		return ret;
8291 	t4_os_link_changed(adap, pi->port_id,
8292 			   rx_en && tx_en && pi->link_cfg.link_ok);
8293 	return 0;
8294 }
8295 
8296 /**
8297  *	t4_identify_port - identify a VI's port by blinking its LED
8298  *	@adap: the adapter
8299  *	@mbox: mailbox to use for the FW command
8300  *	@viid: the VI id
8301  *	@nblinks: how many times to blink LED at 2.5 Hz
8302  *
8303  *	Identifies a VI's port by blinking its LED.
8304  */
8305 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8306 		     unsigned int nblinks)
8307 {
8308 	struct fw_vi_enable_cmd c;
8309 
8310 	memset(&c, 0, sizeof(c));
8311 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8312 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8313 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8314 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
8315 	c.blinkdur = cpu_to_be16(nblinks);
8316 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8317 }
8318 
8319 /**
8320  *	t4_iq_stop - stop an ingress queue and its FLs
8321  *	@adap: the adapter
8322  *	@mbox: mailbox to use for the FW command
8323  *	@pf: the PF owning the queues
8324  *	@vf: the VF owning the queues
8325  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8326  *	@iqid: ingress queue id
8327  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8328  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8329  *
8330  *	Stops an ingress queue and its associated FLs, if any.  This causes
8331  *	any current or future data/messages destined for these queues to be
8332  *	tossed.
8333  */
8334 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8335 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8336 	       unsigned int fl0id, unsigned int fl1id)
8337 {
8338 	struct fw_iq_cmd c;
8339 
8340 	memset(&c, 0, sizeof(c));
8341 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8342 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8343 				  FW_IQ_CMD_VFN_V(vf));
8344 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
8345 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8346 	c.iqid = cpu_to_be16(iqid);
8347 	c.fl0id = cpu_to_be16(fl0id);
8348 	c.fl1id = cpu_to_be16(fl1id);
8349 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8350 }
8351 
8352 /**
8353  *	t4_iq_free - free an ingress queue and its FLs
8354  *	@adap: the adapter
8355  *	@mbox: mailbox to use for the FW command
8356  *	@pf: the PF owning the queues
8357  *	@vf: the VF owning the queues
8358  *	@iqtype: the ingress queue type
8359  *	@iqid: ingress queue id
8360  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8361  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8362  *
8363  *	Frees an ingress queue and its associated FLs, if any.
8364  */
8365 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8366 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8367 	       unsigned int fl0id, unsigned int fl1id)
8368 {
8369 	struct fw_iq_cmd c;
8370 
8371 	memset(&c, 0, sizeof(c));
8372 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8373 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8374 				  FW_IQ_CMD_VFN_V(vf));
8375 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
8376 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8377 	c.iqid = cpu_to_be16(iqid);
8378 	c.fl0id = cpu_to_be16(fl0id);
8379 	c.fl1id = cpu_to_be16(fl1id);
8380 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8381 }
8382 
8383 /**
8384  *	t4_eth_eq_free - free an Ethernet egress queue
8385  *	@adap: the adapter
8386  *	@mbox: mailbox to use for the FW command
8387  *	@pf: the PF owning the queue
8388  *	@vf: the VF owning the queue
8389  *	@eqid: egress queue id
8390  *
8391  *	Frees an Ethernet egress queue.
8392  */
8393 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8394 		   unsigned int vf, unsigned int eqid)
8395 {
8396 	struct fw_eq_eth_cmd c;
8397 
8398 	memset(&c, 0, sizeof(c));
8399 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8400 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8401 				  FW_EQ_ETH_CMD_PFN_V(pf) |
8402 				  FW_EQ_ETH_CMD_VFN_V(vf));
8403 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8404 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8405 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8406 }
8407 
8408 /**
8409  *	t4_ctrl_eq_free - free a control egress queue
8410  *	@adap: the adapter
8411  *	@mbox: mailbox to use for the FW command
8412  *	@pf: the PF owning the queue
8413  *	@vf: the VF owning the queue
8414  *	@eqid: egress queue id
8415  *
8416  *	Frees a control egress queue.
8417  */
8418 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8419 		    unsigned int vf, unsigned int eqid)
8420 {
8421 	struct fw_eq_ctrl_cmd c;
8422 
8423 	memset(&c, 0, sizeof(c));
8424 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8425 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8426 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
8427 				  FW_EQ_CTRL_CMD_VFN_V(vf));
8428 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8429 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8430 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8431 }
8432 
8433 /**
8434  *	t4_ofld_eq_free - free an offload egress queue
8435  *	@adap: the adapter
8436  *	@mbox: mailbox to use for the FW command
8437  *	@pf: the PF owning the queue
8438  *	@vf: the VF owning the queue
8439  *	@eqid: egress queue id
8440  *
8441  *	Frees a control egress queue.
8442  */
8443 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8444 		    unsigned int vf, unsigned int eqid)
8445 {
8446 	struct fw_eq_ofld_cmd c;
8447 
8448 	memset(&c, 0, sizeof(c));
8449 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8450 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8451 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
8452 				  FW_EQ_OFLD_CMD_VFN_V(vf));
8453 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8454 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8455 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8456 }
8457 
8458 /**
8459  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8460  *	@link_down_rc: Link Down Reason Code
8461  *
8462  *	Returns a string representation of the Link Down Reason Code.
8463  */
8464 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8465 {
8466 	static const char * const reason[] = {
8467 		"Link Down",
8468 		"Remote Fault",
8469 		"Auto-negotiation Failure",
8470 		"Reserved",
8471 		"Insufficient Airflow",
8472 		"Unable To Determine Reason",
8473 		"No RX Signal Detected",
8474 		"Reserved",
8475 	};
8476 
8477 	if (link_down_rc >= ARRAY_SIZE(reason))
8478 		return "Bad Reason Code";
8479 
8480 	return reason[link_down_rc];
8481 }
8482 
8483 /* Return the highest speed set in the port capabilities, in Mb/s. */
8484 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8485 {
8486 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8487 		do { \
8488 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8489 				return __speed; \
8490 		} while (0)
8491 
8492 	TEST_SPEED_RETURN(400G, 400000);
8493 	TEST_SPEED_RETURN(200G, 200000);
8494 	TEST_SPEED_RETURN(100G, 100000);
8495 	TEST_SPEED_RETURN(50G,   50000);
8496 	TEST_SPEED_RETURN(40G,   40000);
8497 	TEST_SPEED_RETURN(25G,   25000);
8498 	TEST_SPEED_RETURN(10G,   10000);
8499 	TEST_SPEED_RETURN(1G,     1000);
8500 	TEST_SPEED_RETURN(100M,    100);
8501 
8502 	#undef TEST_SPEED_RETURN
8503 
8504 	return 0;
8505 }
8506 
8507 /**
8508  *	fwcap_to_fwspeed - return highest speed in Port Capabilities
8509  *	@acaps: advertised Port Capabilities
8510  *
8511  *	Get the highest speed for the port from the advertised Port
8512  *	Capabilities.  It will be either the highest speed from the list of
8513  *	speeds or whatever user has set using ethtool.
8514  */
8515 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8516 {
8517 	#define TEST_SPEED_RETURN(__caps_speed) \
8518 		do { \
8519 			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8520 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8521 		} while (0)
8522 
8523 	TEST_SPEED_RETURN(400G);
8524 	TEST_SPEED_RETURN(200G);
8525 	TEST_SPEED_RETURN(100G);
8526 	TEST_SPEED_RETURN(50G);
8527 	TEST_SPEED_RETURN(40G);
8528 	TEST_SPEED_RETURN(25G);
8529 	TEST_SPEED_RETURN(10G);
8530 	TEST_SPEED_RETURN(1G);
8531 	TEST_SPEED_RETURN(100M);
8532 
8533 	#undef TEST_SPEED_RETURN
8534 
8535 	return 0;
8536 }
8537 
8538 /**
8539  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8540  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8541  *
8542  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8543  *	32-bit Port Capabilities value.
8544  */
8545 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8546 {
8547 	fw_port_cap32_t linkattr = 0;
8548 
8549 	/* Unfortunately the format of the Link Status in the old
8550 	 * 16-bit Port Information message isn't the same as the
8551 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8552 	 */
8553 	if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8554 		linkattr |= FW_PORT_CAP32_FC_RX;
8555 	if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8556 		linkattr |= FW_PORT_CAP32_FC_TX;
8557 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8558 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8559 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8560 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8561 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8562 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8563 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8564 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8565 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8566 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8567 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8568 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8569 
8570 	return linkattr;
8571 }
8572 
8573 /**
8574  *	t4_handle_get_port_info - process a FW reply message
8575  *	@pi: the port info
8576  *	@rpl: start of the FW message
8577  *
8578  *	Processes a GET_PORT_INFO FW reply message.
8579  */
8580 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8581 {
8582 	const struct fw_port_cmd *cmd = (const void *)rpl;
8583 	fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8584 	struct link_config *lc = &pi->link_cfg;
8585 	struct adapter *adapter = pi->adapter;
8586 	unsigned int speed, fc, fec, adv_fc;
8587 	enum fw_port_module_type mod_type;
8588 	int action, link_ok, linkdnrc;
8589 	enum fw_port_type port_type;
8590 
8591 	/* Extract the various fields from the Port Information message.
8592 	 */
8593 	action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8594 	switch (action) {
8595 	case FW_PORT_ACTION_GET_PORT_INFO: {
8596 		u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8597 
8598 		link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8599 		linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8600 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8601 		mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8602 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8603 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8604 		lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8605 		linkattr = lstatus_to_fwcap(lstatus);
8606 		break;
8607 	}
8608 
8609 	case FW_PORT_ACTION_GET_PORT_INFO32: {
8610 		u32 lstatus32;
8611 
8612 		lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8613 		link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8614 		linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8615 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8616 		mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8617 		pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8618 		acaps = be32_to_cpu(cmd->u.info32.acaps32);
8619 		lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8620 		linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8621 		break;
8622 	}
8623 
8624 	default:
8625 		dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8626 			be32_to_cpu(cmd->action_to_len16));
8627 		return;
8628 	}
8629 
8630 	fec = fwcap_to_cc_fec(acaps);
8631 	adv_fc = fwcap_to_cc_pause(acaps);
8632 	fc = fwcap_to_cc_pause(linkattr);
8633 	speed = fwcap_to_speed(linkattr);
8634 
8635 	/* Reset state for communicating new Transceiver Module status and
8636 	 * whether the OS-dependent layer wants us to redo the current
8637 	 * "sticky" L1 Configure Link Parameters.
8638 	 */
8639 	lc->new_module = false;
8640 	lc->redo_l1cfg = false;
8641 
8642 	if (mod_type != pi->mod_type) {
8643 		/* With the newer SFP28 and QSFP28 Transceiver Module Types,
8644 		 * various fundamental Port Capabilities which used to be
8645 		 * immutable can now change radically.  We can now have
8646 		 * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8647 		 * all change based on what Transceiver Module is inserted.
8648 		 * So we need to record the Physical "Port" Capabilities on
8649 		 * every Transceiver Module change.
8650 		 */
8651 		lc->pcaps = pcaps;
8652 
8653 		/* When a new Transceiver Module is inserted, the Firmware
8654 		 * will examine its i2c EPROM to determine its type and
8655 		 * general operating parameters including things like Forward
8656 		 * Error Control, etc.  Various IEEE 802.3 standards dictate
8657 		 * how to interpret these i2c values to determine default
8658 		 * "sutomatic" settings.  We record these for future use when
8659 		 * the user explicitly requests these standards-based values.
8660 		 */
8661 		lc->def_acaps = acaps;
8662 
8663 		/* Some versions of the early T6 Firmware "cheated" when
8664 		 * handling different Transceiver Modules by changing the
8665 		 * underlaying Port Type reported to the Host Drivers.  As
8666 		 * such we need to capture whatever Port Type the Firmware
8667 		 * sends us and record it in case it's different from what we
8668 		 * were told earlier.  Unfortunately, since Firmware is
8669 		 * forever, we'll need to keep this code here forever, but in
8670 		 * later T6 Firmware it should just be an assignment of the
8671 		 * same value already recorded.
8672 		 */
8673 		pi->port_type = port_type;
8674 
8675 		/* Record new Module Type information.
8676 		 */
8677 		pi->mod_type = mod_type;
8678 
8679 		/* Let the OS-dependent layer know if we have a new
8680 		 * Transceiver Module inserted.
8681 		 */
8682 		lc->new_module = t4_is_inserted_mod_type(mod_type);
8683 
8684 		t4_os_portmod_changed(adapter, pi->port_id);
8685 	}
8686 
8687 	if (link_ok != lc->link_ok || speed != lc->speed ||
8688 	    fc != lc->fc || adv_fc != lc->advertised_fc ||
8689 	    fec != lc->fec) {
8690 		/* something changed */
8691 		if (!link_ok && lc->link_ok) {
8692 			lc->link_down_rc = linkdnrc;
8693 			dev_warn_ratelimited(adapter->pdev_dev,
8694 					     "Port %d link down, reason: %s\n",
8695 					     pi->tx_chan,
8696 					     t4_link_down_rc_str(linkdnrc));
8697 		}
8698 		lc->link_ok = link_ok;
8699 		lc->speed = speed;
8700 		lc->advertised_fc = adv_fc;
8701 		lc->fc = fc;
8702 		lc->fec = fec;
8703 
8704 		lc->lpacaps = lpacaps;
8705 		lc->acaps = acaps & ADVERT_MASK;
8706 
8707 		/* If we're not physically capable of Auto-Negotiation, note
8708 		 * this as Auto-Negotiation disabled.  Otherwise, we track
8709 		 * what Auto-Negotiation settings we have.  Note parallel
8710 		 * structure in t4_link_l1cfg_core() and init_link_config().
8711 		 */
8712 		if (!(lc->acaps & FW_PORT_CAP32_ANEG)) {
8713 			lc->autoneg = AUTONEG_DISABLE;
8714 		} else if (lc->acaps & FW_PORT_CAP32_ANEG) {
8715 			lc->autoneg = AUTONEG_ENABLE;
8716 		} else {
8717 			/* When Autoneg is disabled, user needs to set
8718 			 * single speed.
8719 			 * Similar to cxgb4_ethtool.c: set_link_ksettings
8720 			 */
8721 			lc->acaps = 0;
8722 			lc->speed_caps = fwcap_to_fwspeed(acaps);
8723 			lc->autoneg = AUTONEG_DISABLE;
8724 		}
8725 
8726 		t4_os_link_changed(adapter, pi->port_id, link_ok);
8727 	}
8728 
8729 	/* If we have a new Transceiver Module and the OS-dependent code has
8730 	 * told us that it wants us to redo whatever "sticky" L1 Configuration
8731 	 * Link Parameters are set, do that now.
8732 	 */
8733 	if (lc->new_module && lc->redo_l1cfg) {
8734 		struct link_config old_lc;
8735 		int ret;
8736 
8737 		/* Save the current L1 Configuration and restore it if an
8738 		 * error occurs.  We probably should fix the l1_cfg*()
8739 		 * routines not to change the link_config when an error
8740 		 * occurs ...
8741 		 */
8742 		old_lc = *lc;
8743 		ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc);
8744 		if (ret) {
8745 			*lc = old_lc;
8746 			dev_warn(adapter->pdev_dev,
8747 				 "Attempt to update new Transceiver Module settings failed\n");
8748 		}
8749 	}
8750 	lc->new_module = false;
8751 	lc->redo_l1cfg = false;
8752 }
8753 
8754 /**
8755  *	t4_update_port_info - retrieve and update port information if changed
8756  *	@pi: the port_info
8757  *
8758  *	We issue a Get Port Information Command to the Firmware and, if
8759  *	successful, we check to see if anything is different from what we
8760  *	last recorded and update things accordingly.
8761  */
8762 int t4_update_port_info(struct port_info *pi)
8763 {
8764 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8765 	struct fw_port_cmd port_cmd;
8766 	int ret;
8767 
8768 	memset(&port_cmd, 0, sizeof(port_cmd));
8769 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8770 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8771 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8772 	port_cmd.action_to_len16 = cpu_to_be32(
8773 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8774 				     ? FW_PORT_ACTION_GET_PORT_INFO
8775 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
8776 		FW_LEN16(port_cmd));
8777 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8778 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8779 	if (ret)
8780 		return ret;
8781 
8782 	t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8783 	return 0;
8784 }
8785 
8786 /**
8787  *	t4_get_link_params - retrieve basic link parameters for given port
8788  *	@pi: the port
8789  *	@link_okp: value return pointer for link up/down
8790  *	@speedp: value return pointer for speed (Mb/s)
8791  *	@mtup: value return pointer for mtu
8792  *
8793  *	Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8794  *	and MTU for a specified port.  A negative error is returned on
8795  *	failure; 0 on success.
8796  */
8797 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8798 		       unsigned int *speedp, unsigned int *mtup)
8799 {
8800 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8801 	unsigned int action, link_ok, mtu;
8802 	struct fw_port_cmd port_cmd;
8803 	fw_port_cap32_t linkattr;
8804 	int ret;
8805 
8806 	memset(&port_cmd, 0, sizeof(port_cmd));
8807 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8808 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8809 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8810 	action = (fw_caps == FW_CAPS16
8811 		  ? FW_PORT_ACTION_GET_PORT_INFO
8812 		  : FW_PORT_ACTION_GET_PORT_INFO32);
8813 	port_cmd.action_to_len16 = cpu_to_be32(
8814 		FW_PORT_CMD_ACTION_V(action) |
8815 		FW_LEN16(port_cmd));
8816 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8817 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8818 	if (ret)
8819 		return ret;
8820 
8821 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8822 		u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8823 
8824 		link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8825 		linkattr = lstatus_to_fwcap(lstatus);
8826 		mtu = be16_to_cpu(port_cmd.u.info.mtu);
8827 	} else {
8828 		u32 lstatus32 =
8829 			   be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8830 
8831 		link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8832 		linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8833 		mtu = FW_PORT_CMD_MTU32_G(
8834 			be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8835 	}
8836 
8837 	if (link_okp)
8838 		*link_okp = link_ok;
8839 	if (speedp)
8840 		*speedp = fwcap_to_speed(linkattr);
8841 	if (mtup)
8842 		*mtup = mtu;
8843 
8844 	return 0;
8845 }
8846 
8847 /**
8848  *      t4_handle_fw_rpl - process a FW reply message
8849  *      @adap: the adapter
8850  *      @rpl: start of the FW message
8851  *
8852  *      Processes a FW message, such as link state change messages.
8853  */
8854 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8855 {
8856 	u8 opcode = *(const u8 *)rpl;
8857 
8858 	/* This might be a port command ... this simplifies the following
8859 	 * conditionals ...  We can get away with pre-dereferencing
8860 	 * action_to_len16 because it's in the first 16 bytes and all messages
8861 	 * will be at least that long.
8862 	 */
8863 	const struct fw_port_cmd *p = (const void *)rpl;
8864 	unsigned int action =
8865 		FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8866 
8867 	if (opcode == FW_PORT_CMD &&
8868 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8869 	     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8870 		int i;
8871 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8872 		struct port_info *pi = NULL;
8873 
8874 		for_each_port(adap, i) {
8875 			pi = adap2pinfo(adap, i);
8876 			if (pi->tx_chan == chan)
8877 				break;
8878 		}
8879 
8880 		t4_handle_get_port_info(pi, rpl);
8881 	} else {
8882 		dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8883 			 opcode);
8884 		return -EINVAL;
8885 	}
8886 	return 0;
8887 }
8888 
8889 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8890 {
8891 	u16 val;
8892 
8893 	if (pci_is_pcie(adapter->pdev)) {
8894 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8895 		p->speed = val & PCI_EXP_LNKSTA_CLS;
8896 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8897 	}
8898 }
8899 
8900 /**
8901  *	init_link_config - initialize a link's SW state
8902  *	@lc: pointer to structure holding the link state
8903  *	@pcaps: link Port Capabilities
8904  *	@acaps: link current Advertised Port Capabilities
8905  *
8906  *	Initializes the SW state maintained for each link, including the link's
8907  *	capabilities and default speed/flow-control/autonegotiation settings.
8908  */
8909 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8910 			     fw_port_cap32_t acaps)
8911 {
8912 	lc->pcaps = pcaps;
8913 	lc->def_acaps = acaps;
8914 	lc->lpacaps = 0;
8915 	lc->speed_caps = 0;
8916 	lc->speed = 0;
8917 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8918 
8919 	/* For Forward Error Control, we default to whatever the Firmware
8920 	 * tells us the Link is currently advertising.
8921 	 */
8922 	lc->requested_fec = FEC_AUTO;
8923 	lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8924 
8925 	/* If the Port is capable of Auto-Negtotiation, initialize it as
8926 	 * "enabled" and copy over all of the Physical Port Capabilities
8927 	 * to the Advertised Port Capabilities.  Otherwise mark it as
8928 	 * Auto-Negotiate disabled and select the highest supported speed
8929 	 * for the link.  Note parallel structure in t4_link_l1cfg_core()
8930 	 * and t4_handle_get_port_info().
8931 	 */
8932 	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8933 		lc->acaps = lc->pcaps & ADVERT_MASK;
8934 		lc->autoneg = AUTONEG_ENABLE;
8935 		lc->requested_fc |= PAUSE_AUTONEG;
8936 	} else {
8937 		lc->acaps = 0;
8938 		lc->autoneg = AUTONEG_DISABLE;
8939 		lc->speed_caps = fwcap_to_fwspeed(acaps);
8940 	}
8941 }
8942 
8943 #define CIM_PF_NOACCESS 0xeeeeeeee
8944 
8945 int t4_wait_dev_ready(void __iomem *regs)
8946 {
8947 	u32 whoami;
8948 
8949 	whoami = readl(regs + PL_WHOAMI_A);
8950 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8951 		return 0;
8952 
8953 	msleep(500);
8954 	whoami = readl(regs + PL_WHOAMI_A);
8955 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8956 }
8957 
8958 struct flash_desc {
8959 	u32 vendor_and_model_id;
8960 	u32 size_mb;
8961 };
8962 
8963 static int t4_get_flash_params(struct adapter *adap)
8964 {
8965 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
8966 	 * to the preexisting code.  All flash parts have 64KB sectors.
8967 	 */
8968 	static struct flash_desc supported_flash[] = {
8969 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8970 	};
8971 
8972 	unsigned int part, manufacturer;
8973 	unsigned int density, size = 0;
8974 	u32 flashid = 0;
8975 	int ret;
8976 
8977 	/* Issue a Read ID Command to the Flash part.  We decode supported
8978 	 * Flash parts and their sizes from this.  There's a newer Query
8979 	 * Command which can retrieve detailed geometry information but many
8980 	 * Flash parts don't support it.
8981 	 */
8982 
8983 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8984 	if (!ret)
8985 		ret = sf1_read(adap, 3, 0, 1, &flashid);
8986 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8987 	if (ret)
8988 		return ret;
8989 
8990 	/* Check to see if it's one of our non-standard supported Flash parts.
8991 	 */
8992 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8993 		if (supported_flash[part].vendor_and_model_id == flashid) {
8994 			adap->params.sf_size = supported_flash[part].size_mb;
8995 			adap->params.sf_nsec =
8996 				adap->params.sf_size / SF_SEC_SIZE;
8997 			goto found;
8998 		}
8999 
9000 	/* Decode Flash part size.  The code below looks repetitive with
9001 	 * common encodings, but that's not guaranteed in the JEDEC
9002 	 * specification for the Read JEDEC ID command.  The only thing that
9003 	 * we're guaranteed by the JEDEC specification is where the
9004 	 * Manufacturer ID is in the returned result.  After that each
9005 	 * Manufacturer ~could~ encode things completely differently.
9006 	 * Note, all Flash parts must have 64KB sectors.
9007 	 */
9008 	manufacturer = flashid & 0xff;
9009 	switch (manufacturer) {
9010 	case 0x20: { /* Micron/Numonix */
9011 		/* This Density -> Size decoding table is taken from Micron
9012 		 * Data Sheets.
9013 		 */
9014 		density = (flashid >> 16) & 0xff;
9015 		switch (density) {
9016 		case 0x14: /* 1MB */
9017 			size = 1 << 20;
9018 			break;
9019 		case 0x15: /* 2MB */
9020 			size = 1 << 21;
9021 			break;
9022 		case 0x16: /* 4MB */
9023 			size = 1 << 22;
9024 			break;
9025 		case 0x17: /* 8MB */
9026 			size = 1 << 23;
9027 			break;
9028 		case 0x18: /* 16MB */
9029 			size = 1 << 24;
9030 			break;
9031 		case 0x19: /* 32MB */
9032 			size = 1 << 25;
9033 			break;
9034 		case 0x20: /* 64MB */
9035 			size = 1 << 26;
9036 			break;
9037 		case 0x21: /* 128MB */
9038 			size = 1 << 27;
9039 			break;
9040 		case 0x22: /* 256MB */
9041 			size = 1 << 28;
9042 			break;
9043 		}
9044 		break;
9045 	}
9046 	case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
9047 		/* This Density -> Size decoding table is taken from ISSI
9048 		 * Data Sheets.
9049 		 */
9050 		density = (flashid >> 16) & 0xff;
9051 		switch (density) {
9052 		case 0x16: /* 32 MB */
9053 			size = 1 << 25;
9054 			break;
9055 		case 0x17: /* 64MB */
9056 			size = 1 << 26;
9057 			break;
9058 		}
9059 		break;
9060 	}
9061 	case 0xc2: { /* Macronix */
9062 		/* This Density -> Size decoding table is taken from Macronix
9063 		 * Data Sheets.
9064 		 */
9065 		density = (flashid >> 16) & 0xff;
9066 		switch (density) {
9067 		case 0x17: /* 8MB */
9068 			size = 1 << 23;
9069 			break;
9070 		case 0x18: /* 16MB */
9071 			size = 1 << 24;
9072 			break;
9073 		}
9074 		break;
9075 	}
9076 	case 0xef: { /* Winbond */
9077 		/* This Density -> Size decoding table is taken from Winbond
9078 		 * Data Sheets.
9079 		 */
9080 		density = (flashid >> 16) & 0xff;
9081 		switch (density) {
9082 		case 0x17: /* 8MB */
9083 			size = 1 << 23;
9084 			break;
9085 		case 0x18: /* 16MB */
9086 			size = 1 << 24;
9087 			break;
9088 		}
9089 		break;
9090 	}
9091 	}
9092 
9093 	/* If we didn't recognize the FLASH part, that's no real issue: the
9094 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
9095 	 * use a FLASH part which is at least 4MB in size and has 64KB
9096 	 * sectors.  The unrecognized FLASH part is likely to be much larger
9097 	 * than 4MB, but that's all we really need.
9098 	 */
9099 	if (size == 0) {
9100 		dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
9101 			 flashid);
9102 		size = 1 << 22;
9103 	}
9104 
9105 	/* Store decoded Flash size and fall through into vetting code. */
9106 	adap->params.sf_size = size;
9107 	adap->params.sf_nsec = size / SF_SEC_SIZE;
9108 
9109 found:
9110 	if (adap->params.sf_size < FLASH_MIN_SIZE)
9111 		dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9112 			 flashid, adap->params.sf_size, FLASH_MIN_SIZE);
9113 	return 0;
9114 }
9115 
9116 /**
9117  *	t4_prep_adapter - prepare SW and HW for operation
9118  *	@adapter: the adapter
9119  *
9120  *	Initialize adapter SW state for the various HW modules, set initial
9121  *	values for some adapter tunables, take PHYs out of reset, and
9122  *	initialize the MDIO interface.
9123  */
9124 int t4_prep_adapter(struct adapter *adapter)
9125 {
9126 	int ret, ver;
9127 	uint16_t device_id;
9128 	u32 pl_rev;
9129 
9130 	get_pci_mode(adapter, &adapter->params.pci);
9131 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
9132 
9133 	ret = t4_get_flash_params(adapter);
9134 	if (ret < 0) {
9135 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
9136 		return ret;
9137 	}
9138 
9139 	/* Retrieve adapter's device ID
9140 	 */
9141 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
9142 	ver = device_id >> 12;
9143 	adapter->params.chip = 0;
9144 	switch (ver) {
9145 	case CHELSIO_T4:
9146 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
9147 		adapter->params.arch.sge_fl_db = DBPRIO_F;
9148 		adapter->params.arch.mps_tcam_size =
9149 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
9150 		adapter->params.arch.mps_rplc_size = 128;
9151 		adapter->params.arch.nchan = NCHAN;
9152 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9153 		adapter->params.arch.vfcount = 128;
9154 		/* Congestion map is for 4 channels so that
9155 		 * MPS can have 4 priority per port.
9156 		 */
9157 		adapter->params.arch.cng_ch_bits_log = 2;
9158 		break;
9159 	case CHELSIO_T5:
9160 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
9161 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
9162 		adapter->params.arch.mps_tcam_size =
9163 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9164 		adapter->params.arch.mps_rplc_size = 128;
9165 		adapter->params.arch.nchan = NCHAN;
9166 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9167 		adapter->params.arch.vfcount = 128;
9168 		adapter->params.arch.cng_ch_bits_log = 2;
9169 		break;
9170 	case CHELSIO_T6:
9171 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
9172 		adapter->params.arch.sge_fl_db = 0;
9173 		adapter->params.arch.mps_tcam_size =
9174 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9175 		adapter->params.arch.mps_rplc_size = 256;
9176 		adapter->params.arch.nchan = 2;
9177 		adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
9178 		adapter->params.arch.vfcount = 256;
9179 		/* Congestion map will be for 2 channels so that
9180 		 * MPS can have 8 priority per port.
9181 		 */
9182 		adapter->params.arch.cng_ch_bits_log = 3;
9183 		break;
9184 	default:
9185 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
9186 			device_id);
9187 		return -EINVAL;
9188 	}
9189 
9190 	adapter->params.cim_la_size = CIMLA_SIZE;
9191 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9192 
9193 	/*
9194 	 * Default port for debugging in case we can't reach FW.
9195 	 */
9196 	adapter->params.nports = 1;
9197 	adapter->params.portvec = 1;
9198 	adapter->params.vpd.cclk = 50000;
9199 
9200 	/* Set PCIe completion timeout to 4 seconds. */
9201 	pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
9202 					   PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
9203 	return 0;
9204 }
9205 
9206 /**
9207  *	t4_shutdown_adapter - shut down adapter, host & wire
9208  *	@adapter: the adapter
9209  *
9210  *	Perform an emergency shutdown of the adapter and stop it from
9211  *	continuing any further communication on the ports or DMA to the
9212  *	host.  This is typically used when the adapter and/or firmware
9213  *	have crashed and we want to prevent any further accidental
9214  *	communication with the rest of the world.  This will also force
9215  *	the port Link Status to go down -- if register writes work --
9216  *	which should help our peers figure out that we're down.
9217  */
9218 int t4_shutdown_adapter(struct adapter *adapter)
9219 {
9220 	int port;
9221 
9222 	t4_intr_disable(adapter);
9223 	t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
9224 	for_each_port(adapter, port) {
9225 		u32 a_port_cfg = is_t4(adapter->params.chip) ?
9226 				       PORT_REG(port, XGMAC_PORT_CFG_A) :
9227 				       T5_PORT_REG(port, MAC_PORT_CFG_A);
9228 
9229 		t4_write_reg(adapter, a_port_cfg,
9230 			     t4_read_reg(adapter, a_port_cfg)
9231 			     & ~SIGNAL_DET_V(1));
9232 	}
9233 	t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
9234 
9235 	return 0;
9236 }
9237 
9238 /**
9239  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9240  *	@adapter: the adapter
9241  *	@qid: the Queue ID
9242  *	@qtype: the Ingress or Egress type for @qid
9243  *	@user: true if this request is for a user mode queue
9244  *	@pbar2_qoffset: BAR2 Queue Offset
9245  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9246  *
9247  *	Returns the BAR2 SGE Queue Registers information associated with the
9248  *	indicated Absolute Queue ID.  These are passed back in return value
9249  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9250  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9251  *
9252  *	This may return an error which indicates that BAR2 SGE Queue
9253  *	registers aren't available.  If an error is not returned, then the
9254  *	following values are returned:
9255  *
9256  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9257  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9258  *
9259  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9260  *	require the "Inferred Queue ID" ability may be used.  E.g. the
9261  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9262  *	then these "Inferred Queue ID" register may not be used.
9263  */
9264 int t4_bar2_sge_qregs(struct adapter *adapter,
9265 		      unsigned int qid,
9266 		      enum t4_bar2_qtype qtype,
9267 		      int user,
9268 		      u64 *pbar2_qoffset,
9269 		      unsigned int *pbar2_qid)
9270 {
9271 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9272 	u64 bar2_page_offset, bar2_qoffset;
9273 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9274 
9275 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
9276 	if (!user && is_t4(adapter->params.chip))
9277 		return -EINVAL;
9278 
9279 	/* Get our SGE Page Size parameters.
9280 	 */
9281 	page_shift = adapter->params.sge.hps + 10;
9282 	page_size = 1 << page_shift;
9283 
9284 	/* Get the right Queues per Page parameters for our Queue.
9285 	 */
9286 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9287 		     ? adapter->params.sge.eq_qpp
9288 		     : adapter->params.sge.iq_qpp);
9289 	qpp_mask = (1 << qpp_shift) - 1;
9290 
9291 	/*  Calculate the basics of the BAR2 SGE Queue register area:
9292 	 *  o The BAR2 page the Queue registers will be in.
9293 	 *  o The BAR2 Queue ID.
9294 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9295 	 */
9296 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9297 	bar2_qid = qid & qpp_mask;
9298 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9299 
9300 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9301 	 * hardware will infer the Absolute Queue ID simply from the writes to
9302 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9303 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9304 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9305 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9306 	 * from the BAR2 Page and BAR2 Queue ID.
9307 	 *
9308 	 * One important censequence of this is that some BAR2 SGE registers
9309 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9310 	 * there.  But other registers synthesize the SGE Queue ID purely
9311 	 * from the writes to the registers -- the Write Combined Doorbell
9312 	 * Buffer is a good example.  These BAR2 SGE Registers are only
9313 	 * available for those BAR2 SGE Register areas where the SGE Absolute
9314 	 * Queue ID can be inferred from simple writes.
9315 	 */
9316 	bar2_qoffset = bar2_page_offset;
9317 	bar2_qinferred = (bar2_qid_offset < page_size);
9318 	if (bar2_qinferred) {
9319 		bar2_qoffset += bar2_qid_offset;
9320 		bar2_qid = 0;
9321 	}
9322 
9323 	*pbar2_qoffset = bar2_qoffset;
9324 	*pbar2_qid = bar2_qid;
9325 	return 0;
9326 }
9327 
9328 /**
9329  *	t4_init_devlog_params - initialize adapter->params.devlog
9330  *	@adap: the adapter
9331  *
9332  *	Initialize various fields of the adapter's Firmware Device Log
9333  *	Parameters structure.
9334  */
9335 int t4_init_devlog_params(struct adapter *adap)
9336 {
9337 	struct devlog_params *dparams = &adap->params.devlog;
9338 	u32 pf_dparams;
9339 	unsigned int devlog_meminfo;
9340 	struct fw_devlog_cmd devlog_cmd;
9341 	int ret;
9342 
9343 	/* If we're dealing with newer firmware, the Device Log Parameters
9344 	 * are stored in a designated register which allows us to access the
9345 	 * Device Log even if we can't talk to the firmware.
9346 	 */
9347 	pf_dparams =
9348 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
9349 	if (pf_dparams) {
9350 		unsigned int nentries, nentries128;
9351 
9352 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
9353 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
9354 
9355 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
9356 		nentries = (nentries128 + 1) * 128;
9357 		dparams->size = nentries * sizeof(struct fw_devlog_e);
9358 
9359 		return 0;
9360 	}
9361 
9362 	/* Otherwise, ask the firmware for it's Device Log Parameters.
9363 	 */
9364 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9365 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
9366 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
9367 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9368 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9369 			 &devlog_cmd);
9370 	if (ret)
9371 		return ret;
9372 
9373 	devlog_meminfo =
9374 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9375 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
9376 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
9377 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9378 
9379 	return 0;
9380 }
9381 
9382 /**
9383  *	t4_init_sge_params - initialize adap->params.sge
9384  *	@adapter: the adapter
9385  *
9386  *	Initialize various fields of the adapter's SGE Parameters structure.
9387  */
9388 int t4_init_sge_params(struct adapter *adapter)
9389 {
9390 	struct sge_params *sge_params = &adapter->params.sge;
9391 	u32 hps, qpp;
9392 	unsigned int s_hps, s_qpp;
9393 
9394 	/* Extract the SGE Page Size for our PF.
9395 	 */
9396 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
9397 	s_hps = (HOSTPAGESIZEPF0_S +
9398 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
9399 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
9400 
9401 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
9402 	 */
9403 	s_qpp = (QUEUESPERPAGEPF0_S +
9404 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
9405 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
9406 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9407 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
9408 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9409 
9410 	return 0;
9411 }
9412 
9413 /**
9414  *      t4_init_tp_params - initialize adap->params.tp
9415  *      @adap: the adapter
9416  *      @sleep_ok: if true we may sleep while awaiting command completion
9417  *
9418  *      Initialize various fields of the adapter's TP Parameters structure.
9419  */
9420 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9421 {
9422 	u32 param, val, v;
9423 	int chan, ret;
9424 
9425 
9426 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
9427 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
9428 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
9429 
9430 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9431 	for (chan = 0; chan < NCHAN; chan++)
9432 		adap->params.tp.tx_modq[chan] = chan;
9433 
9434 	/* Cache the adapter's Compressed Filter Mode/Mask and global Ingress
9435 	 * Configuration.
9436 	 */
9437 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
9438 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) |
9439 		 FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK));
9440 
9441 	/* Read current value */
9442 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
9443 			      &param, &val);
9444 	if (ret == 0) {
9445 		dev_info(adap->pdev_dev,
9446 			 "Current filter mode/mask 0x%x:0x%x\n",
9447 			 FW_PARAMS_PARAM_FILTER_MODE_G(val),
9448 			 FW_PARAMS_PARAM_FILTER_MASK_G(val));
9449 		adap->params.tp.vlan_pri_map =
9450 			FW_PARAMS_PARAM_FILTER_MODE_G(val);
9451 		adap->params.tp.filter_mask =
9452 			FW_PARAMS_PARAM_FILTER_MASK_G(val);
9453 	} else {
9454 		dev_info(adap->pdev_dev,
9455 			 "Failed to read filter mode/mask via fw api, using indirect-reg-read\n");
9456 
9457 		/* Incase of older-fw (which doesn't expose the api
9458 		 * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses
9459 		 * the fw api) combination, fall-back to older method of reading
9460 		 * the filter mode from indirect-register
9461 		 */
9462 		t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9463 			       TP_VLAN_PRI_MAP_A, sleep_ok);
9464 
9465 		/* With the older-fw and newer-driver combination we might run
9466 		 * into an issue when user wants to use hash filter region but
9467 		 * the filter_mask is zero, in this case filter_mask validation
9468 		 * is tough. To avoid that we set the filter_mask same as filter
9469 		 * mode, which will behave exactly as the older way of ignoring
9470 		 * the filter mask validation.
9471 		 */
9472 		adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map;
9473 	}
9474 
9475 	t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9476 		       TP_INGRESS_CONFIG_A, sleep_ok);
9477 
9478 	/* For T6, cache the adapter's compressed error vector
9479 	 * and passing outer header info for encapsulated packets.
9480 	 */
9481 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9482 		v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9483 		adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9484 	}
9485 
9486 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9487 	 * shift positions of several elements of the Compressed Filter Tuple
9488 	 * for this adapter which we need frequently ...
9489 	 */
9490 	adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9491 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9492 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9493 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9494 	adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9495 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9496 							       PROTOCOL_F);
9497 	adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9498 								ETHERTYPE_F);
9499 	adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9500 							       MACMATCH_F);
9501 	adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9502 								MPSHITTYPE_F);
9503 	adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9504 							   FRAGMENTATION_F);
9505 
9506 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9507 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
9508 	 */
9509 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9510 		adap->params.tp.vnic_shift = -1;
9511 
9512 	v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9513 	adap->params.tp.hash_filter_mask = v;
9514 	v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9515 	adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9516 	return 0;
9517 }
9518 
9519 /**
9520  *      t4_filter_field_shift - calculate filter field shift
9521  *      @adap: the adapter
9522  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9523  *
9524  *      Return the shift position of a filter field within the Compressed
9525  *      Filter Tuple.  The filter field is specified via its selection bit
9526  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9527  */
9528 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9529 {
9530 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9531 	unsigned int sel;
9532 	int field_shift;
9533 
9534 	if ((filter_mode & filter_sel) == 0)
9535 		return -1;
9536 
9537 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9538 		switch (filter_mode & sel) {
9539 		case FCOE_F:
9540 			field_shift += FT_FCOE_W;
9541 			break;
9542 		case PORT_F:
9543 			field_shift += FT_PORT_W;
9544 			break;
9545 		case VNIC_ID_F:
9546 			field_shift += FT_VNIC_ID_W;
9547 			break;
9548 		case VLAN_F:
9549 			field_shift += FT_VLAN_W;
9550 			break;
9551 		case TOS_F:
9552 			field_shift += FT_TOS_W;
9553 			break;
9554 		case PROTOCOL_F:
9555 			field_shift += FT_PROTOCOL_W;
9556 			break;
9557 		case ETHERTYPE_F:
9558 			field_shift += FT_ETHERTYPE_W;
9559 			break;
9560 		case MACMATCH_F:
9561 			field_shift += FT_MACMATCH_W;
9562 			break;
9563 		case MPSHITTYPE_F:
9564 			field_shift += FT_MPSHITTYPE_W;
9565 			break;
9566 		case FRAGMENTATION_F:
9567 			field_shift += FT_FRAGMENTATION_W;
9568 			break;
9569 		}
9570 	}
9571 	return field_shift;
9572 }
9573 
9574 int t4_init_rss_mode(struct adapter *adap, int mbox)
9575 {
9576 	int i, ret;
9577 	struct fw_rss_vi_config_cmd rvc;
9578 
9579 	memset(&rvc, 0, sizeof(rvc));
9580 
9581 	for_each_port(adap, i) {
9582 		struct port_info *p = adap2pinfo(adap, i);
9583 
9584 		rvc.op_to_viid =
9585 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9586 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
9587 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9588 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9589 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9590 		if (ret)
9591 			return ret;
9592 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9593 	}
9594 	return 0;
9595 }
9596 
9597 /**
9598  *	t4_init_portinfo - allocate a virtual interface and initialize port_info
9599  *	@pi: the port_info
9600  *	@mbox: mailbox to use for the FW command
9601  *	@port: physical port associated with the VI
9602  *	@pf: the PF owning the VI
9603  *	@vf: the VF owning the VI
9604  *	@mac: the MAC address of the VI
9605  *
9606  *	Allocates a virtual interface for the given physical port.  If @mac is
9607  *	not %NULL it contains the MAC address of the VI as assigned by FW.
9608  *	@mac should be large enough to hold an Ethernet address.
9609  *	Returns < 0 on error.
9610  */
9611 int t4_init_portinfo(struct port_info *pi, int mbox,
9612 		     int port, int pf, int vf, u8 mac[])
9613 {
9614 	struct adapter *adapter = pi->adapter;
9615 	unsigned int fw_caps = adapter->params.fw_caps_support;
9616 	struct fw_port_cmd cmd;
9617 	unsigned int rss_size;
9618 	enum fw_port_type port_type;
9619 	int mdio_addr;
9620 	fw_port_cap32_t pcaps, acaps;
9621 	u8 vivld = 0, vin = 0;
9622 	int ret;
9623 
9624 	/* If we haven't yet determined whether we're talking to Firmware
9625 	 * which knows the new 32-bit Port Capabilities, it's time to find
9626 	 * out now.  This will also tell new Firmware to send us Port Status
9627 	 * Updates using the new 32-bit Port Capabilities version of the
9628 	 * Port Information message.
9629 	 */
9630 	if (fw_caps == FW_CAPS_UNKNOWN) {
9631 		u32 param, val;
9632 
9633 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9634 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9635 		val = 1;
9636 		ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9637 		fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9638 		adapter->params.fw_caps_support = fw_caps;
9639 	}
9640 
9641 	memset(&cmd, 0, sizeof(cmd));
9642 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9643 				       FW_CMD_REQUEST_F | FW_CMD_READ_F |
9644 				       FW_PORT_CMD_PORTID_V(port));
9645 	cmd.action_to_len16 = cpu_to_be32(
9646 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9647 				     ? FW_PORT_ACTION_GET_PORT_INFO
9648 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
9649 		FW_LEN16(cmd));
9650 	ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9651 	if (ret)
9652 		return ret;
9653 
9654 	/* Extract the various fields from the Port Information message.
9655 	 */
9656 	if (fw_caps == FW_CAPS16) {
9657 		u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9658 
9659 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9660 		mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9661 			     ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9662 			     : -1);
9663 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9664 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9665 	} else {
9666 		u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9667 
9668 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9669 		mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9670 			     ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9671 			     : -1);
9672 		pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9673 		acaps = be32_to_cpu(cmd.u.info32.acaps32);
9674 	}
9675 
9676 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size,
9677 			  &vivld, &vin);
9678 	if (ret < 0)
9679 		return ret;
9680 
9681 	pi->viid = ret;
9682 	pi->tx_chan = port;
9683 	pi->lport = port;
9684 	pi->rss_size = rss_size;
9685 	pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port);
9686 
9687 	/* If fw supports returning the VIN as part of FW_VI_CMD,
9688 	 * save the returned values.
9689 	 */
9690 	if (adapter->params.viid_smt_extn_support) {
9691 		pi->vivld = vivld;
9692 		pi->vin = vin;
9693 	} else {
9694 		/* Retrieve the values from VIID */
9695 		pi->vivld = FW_VIID_VIVLD_G(pi->viid);
9696 		pi->vin =  FW_VIID_VIN_G(pi->viid);
9697 	}
9698 
9699 	pi->port_type = port_type;
9700 	pi->mdio_addr = mdio_addr;
9701 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
9702 
9703 	init_link_config(&pi->link_cfg, pcaps, acaps);
9704 	return 0;
9705 }
9706 
9707 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9708 {
9709 	u8 addr[6];
9710 	int ret, i, j = 0;
9711 
9712 	for_each_port(adap, i) {
9713 		struct port_info *pi = adap2pinfo(adap, i);
9714 
9715 		while ((adap->params.portvec & (1 << j)) == 0)
9716 			j++;
9717 
9718 		ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9719 		if (ret)
9720 			return ret;
9721 
9722 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9723 		j++;
9724 	}
9725 	return 0;
9726 }
9727 
9728 int t4_init_port_mirror(struct port_info *pi, u8 mbox, u8 port, u8 pf, u8 vf,
9729 			u16 *mirror_viid)
9730 {
9731 	int ret;
9732 
9733 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, NULL, NULL,
9734 			  NULL, NULL);
9735 	if (ret < 0)
9736 		return ret;
9737 
9738 	if (mirror_viid)
9739 		*mirror_viid = ret;
9740 
9741 	return 0;
9742 }
9743 
9744 /**
9745  *	t4_read_cimq_cfg - read CIM queue configuration
9746  *	@adap: the adapter
9747  *	@base: holds the queue base addresses in bytes
9748  *	@size: holds the queue sizes in bytes
9749  *	@thres: holds the queue full thresholds in bytes
9750  *
9751  *	Returns the current configuration of the CIM queues, starting with
9752  *	the IBQs, then the OBQs.
9753  */
9754 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9755 {
9756 	unsigned int i, v;
9757 	int cim_num_obq = is_t4(adap->params.chip) ?
9758 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9759 
9760 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9761 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9762 			     QUENUMSELECT_V(i));
9763 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9764 		/* value is in 256-byte units */
9765 		*base++ = CIMQBASE_G(v) * 256;
9766 		*size++ = CIMQSIZE_G(v) * 256;
9767 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9768 	}
9769 	for (i = 0; i < cim_num_obq; i++) {
9770 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9771 			     QUENUMSELECT_V(i));
9772 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9773 		/* value is in 256-byte units */
9774 		*base++ = CIMQBASE_G(v) * 256;
9775 		*size++ = CIMQSIZE_G(v) * 256;
9776 	}
9777 }
9778 
9779 /**
9780  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9781  *	@adap: the adapter
9782  *	@qid: the queue index
9783  *	@data: where to store the queue contents
9784  *	@n: capacity of @data in 32-bit words
9785  *
9786  *	Reads the contents of the selected CIM queue starting at address 0 up
9787  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9788  *	error and the number of 32-bit words actually read on success.
9789  */
9790 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9791 {
9792 	int i, err, attempts;
9793 	unsigned int addr;
9794 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9795 
9796 	if (qid > 5 || (n & 3))
9797 		return -EINVAL;
9798 
9799 	addr = qid * nwords;
9800 	if (n > nwords)
9801 		n = nwords;
9802 
9803 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9804 	 * Wait for 1 Sec with a delay of 1 usec.
9805 	 */
9806 	attempts = 1000000;
9807 
9808 	for (i = 0; i < n; i++, addr++) {
9809 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9810 			     IBQDBGEN_F);
9811 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9812 				      attempts, 1);
9813 		if (err)
9814 			return err;
9815 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9816 	}
9817 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9818 	return i;
9819 }
9820 
9821 /**
9822  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9823  *	@adap: the adapter
9824  *	@qid: the queue index
9825  *	@data: where to store the queue contents
9826  *	@n: capacity of @data in 32-bit words
9827  *
9828  *	Reads the contents of the selected CIM queue starting at address 0 up
9829  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9830  *	error and the number of 32-bit words actually read on success.
9831  */
9832 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9833 {
9834 	int i, err;
9835 	unsigned int addr, v, nwords;
9836 	int cim_num_obq = is_t4(adap->params.chip) ?
9837 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9838 
9839 	if ((qid > (cim_num_obq - 1)) || (n & 3))
9840 		return -EINVAL;
9841 
9842 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9843 		     QUENUMSELECT_V(qid));
9844 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9845 
9846 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9847 	nwords = CIMQSIZE_G(v) * 64;  /* same */
9848 	if (n > nwords)
9849 		n = nwords;
9850 
9851 	for (i = 0; i < n; i++, addr++) {
9852 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9853 			     OBQDBGEN_F);
9854 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9855 				      2, 1);
9856 		if (err)
9857 			return err;
9858 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9859 	}
9860 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9861 	return i;
9862 }
9863 
9864 /**
9865  *	t4_cim_read - read a block from CIM internal address space
9866  *	@adap: the adapter
9867  *	@addr: the start address within the CIM address space
9868  *	@n: number of words to read
9869  *	@valp: where to store the result
9870  *
9871  *	Reads a block of 4-byte words from the CIM intenal address space.
9872  */
9873 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9874 		unsigned int *valp)
9875 {
9876 	int ret = 0;
9877 
9878 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9879 		return -EBUSY;
9880 
9881 	for ( ; !ret && n--; addr += 4) {
9882 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9883 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9884 				      0, 5, 2);
9885 		if (!ret)
9886 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9887 	}
9888 	return ret;
9889 }
9890 
9891 /**
9892  *	t4_cim_write - write a block into CIM internal address space
9893  *	@adap: the adapter
9894  *	@addr: the start address within the CIM address space
9895  *	@n: number of words to write
9896  *	@valp: set of values to write
9897  *
9898  *	Writes a block of 4-byte words into the CIM intenal address space.
9899  */
9900 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9901 		 const unsigned int *valp)
9902 {
9903 	int ret = 0;
9904 
9905 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9906 		return -EBUSY;
9907 
9908 	for ( ; !ret && n--; addr += 4) {
9909 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9910 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9911 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9912 				      0, 5, 2);
9913 	}
9914 	return ret;
9915 }
9916 
9917 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9918 			 unsigned int val)
9919 {
9920 	return t4_cim_write(adap, addr, 1, &val);
9921 }
9922 
9923 /**
9924  *	t4_cim_read_la - read CIM LA capture buffer
9925  *	@adap: the adapter
9926  *	@la_buf: where to store the LA data
9927  *	@wrptr: the HW write pointer within the capture buffer
9928  *
9929  *	Reads the contents of the CIM LA buffer with the most recent entry at
9930  *	the end	of the returned data and with the entry at @wrptr first.
9931  *	We try to leave the LA in the running state we find it in.
9932  */
9933 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9934 {
9935 	int i, ret;
9936 	unsigned int cfg, val, idx;
9937 
9938 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9939 	if (ret)
9940 		return ret;
9941 
9942 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
9943 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9944 		if (ret)
9945 			return ret;
9946 	}
9947 
9948 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9949 	if (ret)
9950 		goto restart;
9951 
9952 	idx = UPDBGLAWRPTR_G(val);
9953 	if (wrptr)
9954 		*wrptr = idx;
9955 
9956 	for (i = 0; i < adap->params.cim_la_size; i++) {
9957 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9958 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9959 		if (ret)
9960 			break;
9961 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9962 		if (ret)
9963 			break;
9964 		if (val & UPDBGLARDEN_F) {
9965 			ret = -ETIMEDOUT;
9966 			break;
9967 		}
9968 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9969 		if (ret)
9970 			break;
9971 
9972 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9973 		 * identify the 32-bit portion of the full 312-bit data
9974 		 */
9975 		if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9976 			idx = (idx & 0xff0) + 0x10;
9977 		else
9978 			idx++;
9979 		/* address can't exceed 0xfff */
9980 		idx &= UPDBGLARDPTR_M;
9981 	}
9982 restart:
9983 	if (cfg & UPDBGLAEN_F) {
9984 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9985 				      cfg & ~UPDBGLARDEN_F);
9986 		if (!ret)
9987 			ret = r;
9988 	}
9989 	return ret;
9990 }
9991 
9992 /**
9993  *	t4_tp_read_la - read TP LA capture buffer
9994  *	@adap: the adapter
9995  *	@la_buf: where to store the LA data
9996  *	@wrptr: the HW write pointer within the capture buffer
9997  *
9998  *	Reads the contents of the TP LA buffer with the most recent entry at
9999  *	the end	of the returned data and with the entry at @wrptr first.
10000  *	We leave the LA in the running state we find it in.
10001  */
10002 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
10003 {
10004 	bool last_incomplete;
10005 	unsigned int i, cfg, val, idx;
10006 
10007 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
10008 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
10009 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10010 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
10011 
10012 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
10013 	idx = DBGLAWPTR_G(val);
10014 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
10015 	if (last_incomplete)
10016 		idx = (idx + 1) & DBGLARPTR_M;
10017 	if (wrptr)
10018 		*wrptr = idx;
10019 
10020 	val &= 0xffff;
10021 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
10022 	val |= adap->params.tp.la_mask;
10023 
10024 	for (i = 0; i < TPLA_SIZE; i++) {
10025 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
10026 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
10027 		idx = (idx + 1) & DBGLARPTR_M;
10028 	}
10029 
10030 	/* Wipe out last entry if it isn't valid */
10031 	if (last_incomplete)
10032 		la_buf[TPLA_SIZE - 1] = ~0ULL;
10033 
10034 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
10035 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10036 			     cfg | adap->params.tp.la_mask);
10037 }
10038 
10039 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10040  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10041  * state for more than the Warning Threshold then we'll issue a warning about
10042  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10043  * appears to be hung every Warning Repeat second till the situation clears.
10044  * If the situation clears, we'll note that as well.
10045  */
10046 #define SGE_IDMA_WARN_THRESH 1
10047 #define SGE_IDMA_WARN_REPEAT 300
10048 
10049 /**
10050  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10051  *	@adapter: the adapter
10052  *	@idma: the adapter IDMA Monitor state
10053  *
10054  *	Initialize the state of an SGE Ingress DMA Monitor.
10055  */
10056 void t4_idma_monitor_init(struct adapter *adapter,
10057 			  struct sge_idma_monitor_state *idma)
10058 {
10059 	/* Initialize the state variables for detecting an SGE Ingress DMA
10060 	 * hang.  The SGE has internal counters which count up on each clock
10061 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
10062 	 * same state they were on the previous clock tick.  The clock used is
10063 	 * the Core Clock so we have a limit on the maximum "time" they can
10064 	 * record; typically a very small number of seconds.  For instance,
10065 	 * with a 600MHz Core Clock, we can only count up to a bit more than
10066 	 * 7s.  So we'll synthesize a larger counter in order to not run the
10067 	 * risk of having the "timers" overflow and give us the flexibility to
10068 	 * maintain a Hung SGE State Machine of our own which operates across
10069 	 * a longer time frame.
10070 	 */
10071 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10072 	idma->idma_stalled[0] = 0;
10073 	idma->idma_stalled[1] = 0;
10074 }
10075 
10076 /**
10077  *	t4_idma_monitor - monitor SGE Ingress DMA state
10078  *	@adapter: the adapter
10079  *	@idma: the adapter IDMA Monitor state
10080  *	@hz: number of ticks/second
10081  *	@ticks: number of ticks since the last IDMA Monitor call
10082  */
10083 void t4_idma_monitor(struct adapter *adapter,
10084 		     struct sge_idma_monitor_state *idma,
10085 		     int hz, int ticks)
10086 {
10087 	int i, idma_same_state_cnt[2];
10088 
10089 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10090 	  * are counters inside the SGE which count up on each clock when the
10091 	  * SGE finds its Ingress DMA State Engines in the same states they
10092 	  * were in the previous clock.  The counters will peg out at
10093 	  * 0xffffffff without wrapping around so once they pass the 1s
10094 	  * threshold they'll stay above that till the IDMA state changes.
10095 	  */
10096 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
10097 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
10098 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10099 
10100 	for (i = 0; i < 2; i++) {
10101 		u32 debug0, debug11;
10102 
10103 		/* If the Ingress DMA Same State Counter ("timer") is less
10104 		 * than 1s, then we can reset our synthesized Stall Timer and
10105 		 * continue.  If we have previously emitted warnings about a
10106 		 * potential stalled Ingress Queue, issue a note indicating
10107 		 * that the Ingress Queue has resumed forward progress.
10108 		 */
10109 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10110 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
10111 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
10112 					 "resumed after %d seconds\n",
10113 					 i, idma->idma_qid[i],
10114 					 idma->idma_stalled[i] / hz);
10115 			idma->idma_stalled[i] = 0;
10116 			continue;
10117 		}
10118 
10119 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10120 		 * domain.  The first time we get here it'll be because we
10121 		 * passed the 1s Threshold; each additional time it'll be
10122 		 * because the RX Timer Callback is being fired on its regular
10123 		 * schedule.
10124 		 *
10125 		 * If the stall is below our Potential Hung Ingress Queue
10126 		 * Warning Threshold, continue.
10127 		 */
10128 		if (idma->idma_stalled[i] == 0) {
10129 			idma->idma_stalled[i] = hz;
10130 			idma->idma_warn[i] = 0;
10131 		} else {
10132 			idma->idma_stalled[i] += ticks;
10133 			idma->idma_warn[i] -= ticks;
10134 		}
10135 
10136 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
10137 			continue;
10138 
10139 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10140 		 */
10141 		if (idma->idma_warn[i] > 0)
10142 			continue;
10143 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
10144 
10145 		/* Read and save the SGE IDMA State and Queue ID information.
10146 		 * We do this every time in case it changes across time ...
10147 		 * can't be too careful ...
10148 		 */
10149 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
10150 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10151 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10152 
10153 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
10154 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10155 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10156 
10157 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
10158 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10159 			 i, idma->idma_qid[i], idma->idma_state[i],
10160 			 idma->idma_stalled[i] / hz,
10161 			 debug0, debug11);
10162 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10163 	}
10164 }
10165 
10166 /**
10167  *	t4_load_cfg - download config file
10168  *	@adap: the adapter
10169  *	@cfg_data: the cfg text file to write
10170  *	@size: text file size
10171  *
10172  *	Write the supplied config text file to the card's serial flash.
10173  */
10174 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10175 {
10176 	int ret, i, n, cfg_addr;
10177 	unsigned int addr;
10178 	unsigned int flash_cfg_start_sec;
10179 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10180 
10181 	cfg_addr = t4_flash_cfg_addr(adap);
10182 	if (cfg_addr < 0)
10183 		return cfg_addr;
10184 
10185 	addr = cfg_addr;
10186 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10187 
10188 	if (size > FLASH_CFG_MAX_SIZE) {
10189 		dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
10190 			FLASH_CFG_MAX_SIZE);
10191 		return -EFBIG;
10192 	}
10193 
10194 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
10195 			 sf_sec_size);
10196 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10197 				     flash_cfg_start_sec + i - 1);
10198 	/* If size == 0 then we're simply erasing the FLASH sectors associated
10199 	 * with the on-adapter Firmware Configuration File.
10200 	 */
10201 	if (ret || size == 0)
10202 		goto out;
10203 
10204 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10205 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
10206 		if ((size - i) <  SF_PAGE_SIZE)
10207 			n = size - i;
10208 		else
10209 			n = SF_PAGE_SIZE;
10210 		ret = t4_write_flash(adap, addr, n, cfg_data);
10211 		if (ret)
10212 			goto out;
10213 
10214 		addr += SF_PAGE_SIZE;
10215 		cfg_data += SF_PAGE_SIZE;
10216 	}
10217 
10218 out:
10219 	if (ret)
10220 		dev_err(adap->pdev_dev, "config file %s failed %d\n",
10221 			(size == 0 ? "clear" : "download"), ret);
10222 	return ret;
10223 }
10224 
10225 /**
10226  *	t4_set_vf_mac - Set MAC address for the specified VF
10227  *	@adapter: The adapter
10228  *	@vf: one of the VFs instantiated by the specified PF
10229  *	@naddr: the number of MAC addresses
10230  *	@addr: the MAC address(es) to be set to the specified VF
10231  */
10232 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
10233 		      unsigned int naddr, u8 *addr)
10234 {
10235 	struct fw_acl_mac_cmd cmd;
10236 
10237 	memset(&cmd, 0, sizeof(cmd));
10238 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
10239 				    FW_CMD_REQUEST_F |
10240 				    FW_CMD_WRITE_F |
10241 				    FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
10242 				    FW_ACL_MAC_CMD_VFN_V(vf));
10243 
10244 	/* Note: Do not enable the ACL */
10245 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10246 	cmd.nmac = naddr;
10247 
10248 	switch (adapter->pf) {
10249 	case 3:
10250 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10251 		break;
10252 	case 2:
10253 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10254 		break;
10255 	case 1:
10256 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10257 		break;
10258 	case 0:
10259 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10260 		break;
10261 	}
10262 
10263 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10264 }
10265 
10266 /**
10267  * t4_read_pace_tbl - read the pace table
10268  * @adap: the adapter
10269  * @pace_vals: holds the returned values
10270  *
10271  * Returns the values of TP's pace table in microseconds.
10272  */
10273 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10274 {
10275 	unsigned int i, v;
10276 
10277 	for (i = 0; i < NTX_SCHED; i++) {
10278 		t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
10279 		v = t4_read_reg(adap, TP_PACE_TABLE_A);
10280 		pace_vals[i] = dack_ticks_to_usec(adap, v);
10281 	}
10282 }
10283 
10284 /**
10285  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10286  * @adap: the adapter
10287  * @sched: the scheduler index
10288  * @kbps: the byte rate in Kbps
10289  * @ipg: the interpacket delay in tenths of nanoseconds
10290  * @sleep_ok: if true we may sleep while awaiting command completion
10291  *
10292  * Return the current configuration of a HW Tx scheduler.
10293  */
10294 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
10295 		     unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
10296 {
10297 	unsigned int v, addr, bpt, cpt;
10298 
10299 	if (kbps) {
10300 		addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
10301 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10302 		if (sched & 1)
10303 			v >>= 16;
10304 		bpt = (v >> 8) & 0xff;
10305 		cpt = v & 0xff;
10306 		if (!cpt) {
10307 			*kbps = 0;	/* scheduler disabled */
10308 		} else {
10309 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10310 			*kbps = (v * bpt) / 125;
10311 		}
10312 	}
10313 	if (ipg) {
10314 		addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
10315 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10316 		if (sched & 1)
10317 			v >>= 16;
10318 		v &= 0xffff;
10319 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
10320 	}
10321 }
10322 
10323 /* t4_sge_ctxt_rd - read an SGE context through FW
10324  * @adap: the adapter
10325  * @mbox: mailbox to use for the FW command
10326  * @cid: the context id
10327  * @ctype: the context type
10328  * @data: where to store the context data
10329  *
10330  * Issues a FW command through the given mailbox to read an SGE context.
10331  */
10332 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10333 		   enum ctxt_type ctype, u32 *data)
10334 {
10335 	struct fw_ldst_cmd c;
10336 	int ret;
10337 
10338 	if (ctype == CTXT_FLM)
10339 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
10340 	else
10341 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
10342 
10343 	memset(&c, 0, sizeof(c));
10344 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10345 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
10346 					FW_LDST_CMD_ADDRSPACE_V(ret));
10347 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10348 	c.u.idctxt.physid = cpu_to_be32(cid);
10349 
10350 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10351 	if (ret == 0) {
10352 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10353 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10354 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10355 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10356 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10357 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10358 	}
10359 	return ret;
10360 }
10361 
10362 /**
10363  * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10364  * @adap: the adapter
10365  * @cid: the context id
10366  * @ctype: the context type
10367  * @data: where to store the context data
10368  *
10369  * Reads an SGE context directly, bypassing FW.  This is only for
10370  * debugging when FW is unavailable.
10371  */
10372 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
10373 		      enum ctxt_type ctype, u32 *data)
10374 {
10375 	int i, ret;
10376 
10377 	t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
10378 	ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
10379 	if (!ret)
10380 		for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
10381 			*data++ = t4_read_reg(adap, i);
10382 	return ret;
10383 }
10384 
10385 int t4_sched_params(struct adapter *adapter, u8 type, u8 level, u8 mode,
10386 		    u8 rateunit, u8 ratemode, u8 channel, u8 class,
10387 		    u32 minrate, u32 maxrate, u16 weight, u16 pktsize,
10388 		    u16 burstsize)
10389 {
10390 	struct fw_sched_cmd cmd;
10391 
10392 	memset(&cmd, 0, sizeof(cmd));
10393 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
10394 				      FW_CMD_REQUEST_F |
10395 				      FW_CMD_WRITE_F);
10396 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10397 
10398 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10399 	cmd.u.params.type = type;
10400 	cmd.u.params.level = level;
10401 	cmd.u.params.mode = mode;
10402 	cmd.u.params.ch = channel;
10403 	cmd.u.params.cl = class;
10404 	cmd.u.params.unit = rateunit;
10405 	cmd.u.params.rate = ratemode;
10406 	cmd.u.params.min = cpu_to_be32(minrate);
10407 	cmd.u.params.max = cpu_to_be32(maxrate);
10408 	cmd.u.params.weight = cpu_to_be16(weight);
10409 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
10410 	cmd.u.params.burstsize = cpu_to_be16(burstsize);
10411 
10412 	return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
10413 			       NULL, 1);
10414 }
10415 
10416 /**
10417  *	t4_i2c_rd - read I2C data from adapter
10418  *	@adap: the adapter
10419  *	@mbox: mailbox to use for the FW command
10420  *	@port: Port number if per-port device; <0 if not
10421  *	@devid: per-port device ID or absolute device ID
10422  *	@offset: byte offset into device I2C space
10423  *	@len: byte length of I2C space data
10424  *	@buf: buffer in which to return I2C data
10425  *
10426  *	Reads the I2C data from the indicated device and location.
10427  */
10428 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
10429 	      unsigned int devid, unsigned int offset,
10430 	      unsigned int len, u8 *buf)
10431 {
10432 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10433 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10434 	int ret = 0;
10435 
10436 	if (len > I2C_PAGE_SIZE)
10437 		return -EINVAL;
10438 
10439 	/* Dont allow reads that spans multiple pages */
10440 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10441 		return -EINVAL;
10442 
10443 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10444 	ldst_cmd.op_to_addrspace =
10445 		cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10446 			    FW_CMD_REQUEST_F |
10447 			    FW_CMD_READ_F |
10448 			    FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
10449 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10450 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10451 	ldst_cmd.u.i2c.did = devid;
10452 
10453 	while (len > 0) {
10454 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10455 
10456 		ldst_cmd.u.i2c.boffset = offset;
10457 		ldst_cmd.u.i2c.blen = i2c_len;
10458 
10459 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10460 				 &ldst_rpl);
10461 		if (ret)
10462 			break;
10463 
10464 		memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10465 		offset += i2c_len;
10466 		buf += i2c_len;
10467 		len -= i2c_len;
10468 	}
10469 
10470 	return ret;
10471 }
10472 
10473 /**
10474  *      t4_set_vlan_acl - Set a VLAN id for the specified VF
10475  *      @adap: the adapter
10476  *      @mbox: mailbox to use for the FW command
10477  *      @vf: one of the VFs instantiated by the specified PF
10478  *      @vlan: The vlanid to be set
10479  */
10480 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
10481 		    u16 vlan)
10482 {
10483 	struct fw_acl_vlan_cmd vlan_cmd;
10484 	unsigned int enable;
10485 
10486 	enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
10487 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
10488 	vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
10489 					 FW_CMD_REQUEST_F |
10490 					 FW_CMD_WRITE_F |
10491 					 FW_CMD_EXEC_F |
10492 					 FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
10493 					 FW_ACL_VLAN_CMD_VFN_V(vf));
10494 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
10495 	/* Drop all packets that donot match vlan id */
10496 	vlan_cmd.dropnovlan_fm = (enable
10497 				  ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F |
10498 				     FW_ACL_VLAN_CMD_FM_F) : 0);
10499 	if (enable != 0) {
10500 		vlan_cmd.nvlan = 1;
10501 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
10502 	}
10503 
10504 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
10505 }
10506 
10507 /**
10508  *	modify_device_id - Modifies the device ID of the Boot BIOS image
10509  *	@device_id: the device ID to write.
10510  *	@boot_data: the boot image to modify.
10511  *
10512  *	Write the supplied device ID to the boot BIOS image.
10513  */
10514 static void modify_device_id(int device_id, u8 *boot_data)
10515 {
10516 	struct cxgb4_pcir_data *pcir_header;
10517 	struct legacy_pci_rom_hdr *header;
10518 	u8 *cur_header = boot_data;
10519 	u16 pcir_offset;
10520 
10521 	 /* Loop through all chained images and change the device ID's */
10522 	do {
10523 		header = (struct legacy_pci_rom_hdr *)cur_header;
10524 		pcir_offset = le16_to_cpu(header->pcir_offset);
10525 		pcir_header = (struct cxgb4_pcir_data *)(cur_header +
10526 			      pcir_offset);
10527 
10528 		/**
10529 		 * Only modify the Device ID if code type is Legacy or HP.
10530 		 * 0x00: Okay to modify
10531 		 * 0x01: FCODE. Do not modify
10532 		 * 0x03: Okay to modify
10533 		 * 0x04-0xFF: Do not modify
10534 		 */
10535 		if (pcir_header->code_type == CXGB4_HDR_CODE1) {
10536 			u8 csum = 0;
10537 			int i;
10538 
10539 			/**
10540 			 * Modify Device ID to match current adatper
10541 			 */
10542 			pcir_header->device_id = cpu_to_le16(device_id);
10543 
10544 			/**
10545 			 * Set checksum temporarily to 0.
10546 			 * We will recalculate it later.
10547 			 */
10548 			header->cksum = 0x0;
10549 
10550 			/**
10551 			 * Calculate and update checksum
10552 			 */
10553 			for (i = 0; i < (header->size512 * 512); i++)
10554 				csum += cur_header[i];
10555 
10556 			/**
10557 			 * Invert summed value to create the checksum
10558 			 * Writing new checksum value directly to the boot data
10559 			 */
10560 			cur_header[7] = -csum;
10561 
10562 		} else if (pcir_header->code_type == CXGB4_HDR_CODE2) {
10563 			/**
10564 			 * Modify Device ID to match current adatper
10565 			 */
10566 			pcir_header->device_id = cpu_to_le16(device_id);
10567 		}
10568 
10569 		/**
10570 		 * Move header pointer up to the next image in the ROM.
10571 		 */
10572 		cur_header += header->size512 * 512;
10573 	} while (!(pcir_header->indicator & CXGB4_HDR_INDI));
10574 }
10575 
10576 /**
10577  *	t4_load_boot - download boot flash
10578  *	@adap: the adapter
10579  *	@boot_data: the boot image to write
10580  *	@boot_addr: offset in flash to write boot_data
10581  *	@size: image size
10582  *
10583  *	Write the supplied boot image to the card's serial flash.
10584  *	The boot image has the following sections: a 28-byte header and the
10585  *	boot image.
10586  */
10587 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10588 		 unsigned int boot_addr, unsigned int size)
10589 {
10590 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10591 	unsigned int boot_sector = (boot_addr * 1024);
10592 	struct cxgb4_pci_exp_rom_header *header;
10593 	struct cxgb4_pcir_data *pcir_header;
10594 	int pcir_offset;
10595 	unsigned int i;
10596 	u16 device_id;
10597 	int ret, addr;
10598 
10599 	/**
10600 	 * Make sure the boot image does not encroach on the firmware region
10601 	 */
10602 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10603 		dev_err(adap->pdev_dev, "boot image encroaching on firmware region\n");
10604 		return -EFBIG;
10605 	}
10606 
10607 	/* Get boot header */
10608 	header = (struct cxgb4_pci_exp_rom_header *)boot_data;
10609 	pcir_offset = le16_to_cpu(header->pcir_offset);
10610 	/* PCIR Data Structure */
10611 	pcir_header = (struct cxgb4_pcir_data *)&boot_data[pcir_offset];
10612 
10613 	/**
10614 	 * Perform some primitive sanity testing to avoid accidentally
10615 	 * writing garbage over the boot sectors.  We ought to check for
10616 	 * more but it's not worth it for now ...
10617 	 */
10618 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10619 		dev_err(adap->pdev_dev, "boot image too small/large\n");
10620 		return -EFBIG;
10621 	}
10622 
10623 	if (le16_to_cpu(header->signature) != BOOT_SIGNATURE) {
10624 		dev_err(adap->pdev_dev, "Boot image missing signature\n");
10625 		return -EINVAL;
10626 	}
10627 
10628 	/* Check PCI header signature */
10629 	if (le32_to_cpu(pcir_header->signature) != PCIR_SIGNATURE) {
10630 		dev_err(adap->pdev_dev, "PCI header missing signature\n");
10631 		return -EINVAL;
10632 	}
10633 
10634 	/* Check Vendor ID matches Chelsio ID*/
10635 	if (le16_to_cpu(pcir_header->vendor_id) != PCI_VENDOR_ID_CHELSIO) {
10636 		dev_err(adap->pdev_dev, "Vendor ID missing signature\n");
10637 		return -EINVAL;
10638 	}
10639 
10640 	/**
10641 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10642 	 * and Boot configuration data sections. These 3 boot sections span
10643 	 * sectors 0 to 7 in flash and live right before the FW image location.
10644 	 */
10645 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,  sf_sec_size);
10646 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10647 				     (boot_sector >> 16) + i - 1);
10648 
10649 	/**
10650 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10651 	 * with the on-adapter option ROM file
10652 	 */
10653 	if (ret || size == 0)
10654 		goto out;
10655 	/* Retrieve adapter's device ID */
10656 	pci_read_config_word(adap->pdev, PCI_DEVICE_ID, &device_id);
10657        /* Want to deal with PF 0 so I strip off PF 4 indicator */
10658 	device_id = device_id & 0xf0ff;
10659 
10660 	 /* Check PCIE Device ID */
10661 	if (le16_to_cpu(pcir_header->device_id) != device_id) {
10662 		/**
10663 		 * Change the device ID in the Boot BIOS image to match
10664 		 * the Device ID of the current adapter.
10665 		 */
10666 		modify_device_id(device_id, boot_data);
10667 	}
10668 
10669 	/**
10670 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
10671 	 * we finish copying the rest of the boot image. This will ensure
10672 	 * that the BIOS boot header will only be written if the boot image
10673 	 * was written in full.
10674 	 */
10675 	addr = boot_sector;
10676 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10677 		addr += SF_PAGE_SIZE;
10678 		boot_data += SF_PAGE_SIZE;
10679 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data);
10680 		if (ret)
10681 			goto out;
10682 	}
10683 
10684 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10685 			     (const u8 *)header);
10686 
10687 out:
10688 	if (ret)
10689 		dev_err(adap->pdev_dev, "boot image load failed, error %d\n",
10690 			ret);
10691 	return ret;
10692 }
10693 
10694 /**
10695  *	t4_flash_bootcfg_addr - return the address of the flash
10696  *	optionrom configuration
10697  *	@adapter: the adapter
10698  *
10699  *	Return the address within the flash where the OptionROM Configuration
10700  *	is stored, or an error if the device FLASH is too small to contain
10701  *	a OptionROM Configuration.
10702  */
10703 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10704 {
10705 	/**
10706 	 * If the device FLASH isn't large enough to hold a Firmware
10707 	 * Configuration File, return an error.
10708 	 */
10709 	if (adapter->params.sf_size <
10710 	    FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10711 		return -ENOSPC;
10712 
10713 	return FLASH_BOOTCFG_START;
10714 }
10715 
10716 int t4_load_bootcfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10717 {
10718 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10719 	struct cxgb4_bootcfg_data *header;
10720 	unsigned int flash_cfg_start_sec;
10721 	unsigned int addr, npad;
10722 	int ret, i, n, cfg_addr;
10723 
10724 	cfg_addr = t4_flash_bootcfg_addr(adap);
10725 	if (cfg_addr < 0)
10726 		return cfg_addr;
10727 
10728 	addr = cfg_addr;
10729 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10730 
10731 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
10732 		dev_err(adap->pdev_dev, "bootcfg file too large, max is %u bytes\n",
10733 			FLASH_BOOTCFG_MAX_SIZE);
10734 		return -EFBIG;
10735 	}
10736 
10737 	header = (struct cxgb4_bootcfg_data *)cfg_data;
10738 	if (le16_to_cpu(header->signature) != BOOT_CFG_SIG) {
10739 		dev_err(adap->pdev_dev, "Wrong bootcfg signature\n");
10740 		ret = -EINVAL;
10741 		goto out;
10742 	}
10743 
10744 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,
10745 			 sf_sec_size);
10746 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10747 				     flash_cfg_start_sec + i - 1);
10748 
10749 	/**
10750 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10751 	 * with the on-adapter OptionROM Configuration File.
10752 	 */
10753 	if (ret || size == 0)
10754 		goto out;
10755 
10756 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10757 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
10758 		n = min_t(u32, size - i, SF_PAGE_SIZE);
10759 
10760 		ret = t4_write_flash(adap, addr, n, cfg_data);
10761 		if (ret)
10762 			goto out;
10763 
10764 		addr += SF_PAGE_SIZE;
10765 		cfg_data += SF_PAGE_SIZE;
10766 	}
10767 
10768 	npad = ((size + 4 - 1) & ~3) - size;
10769 	for (i = 0; i < npad; i++) {
10770 		u8 data = 0;
10771 
10772 		ret = t4_write_flash(adap, cfg_addr + size + i, 1, &data);
10773 		if (ret)
10774 			goto out;
10775 	}
10776 
10777 out:
10778 	if (ret)
10779 		dev_err(adap->pdev_dev, "boot config data %s failed %d\n",
10780 			(size == 0 ? "clear" : "download"), ret);
10781 	return ret;
10782 }
10783