xref: /linux/drivers/net/ethernet/chelsio/cxgb4/t4_hw.c (revision 71844fac1ed459024dd2a448d63d5b28b8c87daa)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41 
42 /**
43  *	t4_wait_op_done_val - wait until an operation is completed
44  *	@adapter: the adapter performing the operation
45  *	@reg: the register to check for completion
46  *	@mask: a single-bit field within @reg that indicates completion
47  *	@polarity: the value of the field when the operation is completed
48  *	@attempts: number of check iterations
49  *	@delay: delay in usecs between iterations
50  *	@valp: where to store the value of the register at completion time
51  *
52  *	Wait until an operation is completed by checking a bit in a register
53  *	up to @attempts times.  If @valp is not NULL the value of the register
54  *	at the time it indicated completion is stored there.  Returns 0 if the
55  *	operation completes and	-EAGAIN	otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 			       int polarity, int attempts, int delay, u32 *valp)
59 {
60 	while (1) {
61 		u32 val = t4_read_reg(adapter, reg);
62 
63 		if (!!(val & mask) == polarity) {
64 			if (valp)
65 				*valp = val;
66 			return 0;
67 		}
68 		if (--attempts == 0)
69 			return -EAGAIN;
70 		if (delay)
71 			udelay(delay);
72 	}
73 }
74 
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 				  int polarity, int attempts, int delay)
77 {
78 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 				   delay, NULL);
80 }
81 
82 /**
83  *	t4_set_reg_field - set a register field to a value
84  *	@adapter: the adapter to program
85  *	@addr: the register address
86  *	@mask: specifies the portion of the register to modify
87  *	@val: the new value for the register field
88  *
89  *	Sets a register field specified by the supplied mask to the
90  *	given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 		      u32 val)
94 {
95 	u32 v = t4_read_reg(adapter, addr) & ~mask;
96 
97 	t4_write_reg(adapter, addr, v | val);
98 	(void) t4_read_reg(adapter, addr);      /* flush */
99 }
100 
101 /**
102  *	t4_read_indirect - read indirectly addressed registers
103  *	@adap: the adapter
104  *	@addr_reg: register holding the indirect address
105  *	@data_reg: register holding the value of the indirect register
106  *	@vals: where the read register values are stored
107  *	@nregs: how many indirect registers to read
108  *	@start_idx: index of first indirect register to read
109  *
110  *	Reads registers that are accessed indirectly through an address/data
111  *	register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 			     unsigned int data_reg, u32 *vals,
115 			     unsigned int nregs, unsigned int start_idx)
116 {
117 	while (nregs--) {
118 		t4_write_reg(adap, addr_reg, start_idx);
119 		*vals++ = t4_read_reg(adap, data_reg);
120 		start_idx++;
121 	}
122 }
123 
124 /**
125  *	t4_write_indirect - write indirectly addressed registers
126  *	@adap: the adapter
127  *	@addr_reg: register holding the indirect addresses
128  *	@data_reg: register holding the value for the indirect registers
129  *	@vals: values to write
130  *	@nregs: how many indirect registers to write
131  *	@start_idx: address of first indirect register to write
132  *
133  *	Writes a sequential block of registers that are accessed indirectly
134  *	through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 		       unsigned int data_reg, const u32 *vals,
138 		       unsigned int nregs, unsigned int start_idx)
139 {
140 	while (nregs--) {
141 		t4_write_reg(adap, addr_reg, start_idx++);
142 		t4_write_reg(adap, data_reg, *vals++);
143 	}
144 }
145 
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 
156 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 		req |= ENABLE_F;
158 	else
159 		req |= T6_ENABLE_F;
160 
161 	if (is_t4(adap->params.chip))
162 		req |= LOCALCFG_F;
163 
164 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 
167 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 	 * Configuration Space read.  (None of the other fields matter when
169 	 * ENABLE is 0 so a simple register write is easier than a
170 	 * read-modify-write via t4_set_reg_field().)
171 	 */
172 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174 
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 	static const char *const reason[] = {
186 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 		"Reserved",                     /* reserved */
194 	};
195 	u32 pcie_fw;
196 
197 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 	if (pcie_fw & PCIE_FW_ERR_F) {
199 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 		adap->flags &= ~FW_OK;
202 	}
203 }
204 
205 /*
206  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
207  */
208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
209 			 u32 mbox_addr)
210 {
211 	for ( ; nflit; nflit--, mbox_addr += 8)
212 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
213 }
214 
215 /*
216  * Handle a FW assertion reported in a mailbox.
217  */
218 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
219 {
220 	struct fw_debug_cmd asrt;
221 
222 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
223 	dev_alert(adap->pdev_dev,
224 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
225 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
226 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
227 }
228 
229 /**
230  *	t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
231  *	@adapter: the adapter
232  *	@cmd: the Firmware Mailbox Command or Reply
233  *	@size: command length in bytes
234  *	@access: the time (ms) needed to access the Firmware Mailbox
235  *	@execute: the time (ms) the command spent being executed
236  */
237 static void t4_record_mbox(struct adapter *adapter,
238 			   const __be64 *cmd, unsigned int size,
239 			   int access, int execute)
240 {
241 	struct mbox_cmd_log *log = adapter->mbox_log;
242 	struct mbox_cmd *entry;
243 	int i;
244 
245 	entry = mbox_cmd_log_entry(log, log->cursor++);
246 	if (log->cursor == log->size)
247 		log->cursor = 0;
248 
249 	for (i = 0; i < size / 8; i++)
250 		entry->cmd[i] = be64_to_cpu(cmd[i]);
251 	while (i < MBOX_LEN / 8)
252 		entry->cmd[i++] = 0;
253 	entry->timestamp = jiffies;
254 	entry->seqno = log->seqno++;
255 	entry->access = access;
256 	entry->execute = execute;
257 }
258 
259 /**
260  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
261  *	@adap: the adapter
262  *	@mbox: index of the mailbox to use
263  *	@cmd: the command to write
264  *	@size: command length in bytes
265  *	@rpl: where to optionally store the reply
266  *	@sleep_ok: if true we may sleep while awaiting command completion
267  *	@timeout: time to wait for command to finish before timing out
268  *
269  *	Sends the given command to FW through the selected mailbox and waits
270  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
271  *	store the FW's reply to the command.  The command and its optional
272  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
273  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
274  *	the response.  If sleeping is allowed we use progressive backoff
275  *	otherwise we spin.
276  *
277  *	The return value is 0 on success or a negative errno on failure.  A
278  *	failure can happen either because we are not able to execute the
279  *	command or FW executes it but signals an error.  In the latter case
280  *	the return value is the error code indicated by FW (negated).
281  */
282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
283 			    int size, void *rpl, bool sleep_ok, int timeout)
284 {
285 	static const int delay[] = {
286 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
287 	};
288 
289 	struct mbox_list entry;
290 	u16 access = 0;
291 	u16 execute = 0;
292 	u32 v;
293 	u64 res;
294 	int i, ms, delay_idx, ret;
295 	const __be64 *p = cmd;
296 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
297 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
298 	__be64 cmd_rpl[MBOX_LEN / 8];
299 	u32 pcie_fw;
300 
301 	if ((size & 15) || size > MBOX_LEN)
302 		return -EINVAL;
303 
304 	/*
305 	 * If the device is off-line, as in EEH, commands will time out.
306 	 * Fail them early so we don't waste time waiting.
307 	 */
308 	if (adap->pdev->error_state != pci_channel_io_normal)
309 		return -EIO;
310 
311 	/* If we have a negative timeout, that implies that we can't sleep. */
312 	if (timeout < 0) {
313 		sleep_ok = false;
314 		timeout = -timeout;
315 	}
316 
317 	/* Queue ourselves onto the mailbox access list.  When our entry is at
318 	 * the front of the list, we have rights to access the mailbox.  So we
319 	 * wait [for a while] till we're at the front [or bail out with an
320 	 * EBUSY] ...
321 	 */
322 	spin_lock_bh(&adap->mbox_lock);
323 	list_add_tail(&entry.list, &adap->mlist.list);
324 	spin_unlock_bh(&adap->mbox_lock);
325 
326 	delay_idx = 0;
327 	ms = delay[0];
328 
329 	for (i = 0; ; i += ms) {
330 		/* If we've waited too long, return a busy indication.  This
331 		 * really ought to be based on our initial position in the
332 		 * mailbox access list but this is a start.  We very rearely
333 		 * contend on access to the mailbox ...
334 		 */
335 		pcie_fw = t4_read_reg(adap, PCIE_FW_A);
336 		if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
337 			spin_lock_bh(&adap->mbox_lock);
338 			list_del(&entry.list);
339 			spin_unlock_bh(&adap->mbox_lock);
340 			ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
341 			t4_record_mbox(adap, cmd, size, access, ret);
342 			return ret;
343 		}
344 
345 		/* If we're at the head, break out and start the mailbox
346 		 * protocol.
347 		 */
348 		if (list_first_entry(&adap->mlist.list, struct mbox_list,
349 				     list) == &entry)
350 			break;
351 
352 		/* Delay for a bit before checking again ... */
353 		if (sleep_ok) {
354 			ms = delay[delay_idx];  /* last element may repeat */
355 			if (delay_idx < ARRAY_SIZE(delay) - 1)
356 				delay_idx++;
357 			msleep(ms);
358 		} else {
359 			mdelay(ms);
360 		}
361 	}
362 
363 	/* Loop trying to get ownership of the mailbox.  Return an error
364 	 * if we can't gain ownership.
365 	 */
366 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
368 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
369 	if (v != MBOX_OWNER_DRV) {
370 		spin_lock_bh(&adap->mbox_lock);
371 		list_del(&entry.list);
372 		spin_unlock_bh(&adap->mbox_lock);
373 		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
374 		t4_record_mbox(adap, cmd, size, access, ret);
375 		return ret;
376 	}
377 
378 	/* Copy in the new mailbox command and send it on its way ... */
379 	t4_record_mbox(adap, cmd, size, access, 0);
380 	for (i = 0; i < size; i += 8)
381 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
382 
383 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
384 	t4_read_reg(adap, ctl_reg);          /* flush write */
385 
386 	delay_idx = 0;
387 	ms = delay[0];
388 
389 	for (i = 0;
390 	     !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
391 	     i < timeout;
392 	     i += ms) {
393 		if (sleep_ok) {
394 			ms = delay[delay_idx];  /* last element may repeat */
395 			if (delay_idx < ARRAY_SIZE(delay) - 1)
396 				delay_idx++;
397 			msleep(ms);
398 		} else
399 			mdelay(ms);
400 
401 		v = t4_read_reg(adap, ctl_reg);
402 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
403 			if (!(v & MBMSGVALID_F)) {
404 				t4_write_reg(adap, ctl_reg, 0);
405 				continue;
406 			}
407 
408 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
409 			res = be64_to_cpu(cmd_rpl[0]);
410 
411 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
412 				fw_asrt(adap, data_reg);
413 				res = FW_CMD_RETVAL_V(EIO);
414 			} else if (rpl) {
415 				memcpy(rpl, cmd_rpl, size);
416 			}
417 
418 			t4_write_reg(adap, ctl_reg, 0);
419 
420 			execute = i + ms;
421 			t4_record_mbox(adap, cmd_rpl,
422 				       MBOX_LEN, access, execute);
423 			spin_lock_bh(&adap->mbox_lock);
424 			list_del(&entry.list);
425 			spin_unlock_bh(&adap->mbox_lock);
426 			return -FW_CMD_RETVAL_G((int)res);
427 		}
428 	}
429 
430 	ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
431 	t4_record_mbox(adap, cmd, size, access, ret);
432 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
433 		*(const u8 *)cmd, mbox);
434 	t4_report_fw_error(adap);
435 	spin_lock_bh(&adap->mbox_lock);
436 	list_del(&entry.list);
437 	spin_unlock_bh(&adap->mbox_lock);
438 	t4_fatal_err(adap);
439 	return ret;
440 }
441 
442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
443 		    void *rpl, bool sleep_ok)
444 {
445 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
446 				       FW_CMD_MAX_TIMEOUT);
447 }
448 
449 static int t4_edc_err_read(struct adapter *adap, int idx)
450 {
451 	u32 edc_ecc_err_addr_reg;
452 	u32 rdata_reg;
453 
454 	if (is_t4(adap->params.chip)) {
455 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
456 		return 0;
457 	}
458 	if (idx != 0 && idx != 1) {
459 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
460 		return 0;
461 	}
462 
463 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
464 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
465 
466 	CH_WARN(adap,
467 		"edc%d err addr 0x%x: 0x%x.\n",
468 		idx, edc_ecc_err_addr_reg,
469 		t4_read_reg(adap, edc_ecc_err_addr_reg));
470 	CH_WARN(adap,
471 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
472 		rdata_reg,
473 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
474 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
475 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
476 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
477 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
478 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
479 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
480 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
481 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
482 
483 	return 0;
484 }
485 
486 /**
487  * t4_memory_rw_init - Get memory window relative offset, base, and size.
488  * @adap: the adapter
489  * @win: PCI-E Memory Window to use
490  * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
491  * @mem_off: memory relative offset with respect to @mtype.
492  * @mem_base: configured memory base address.
493  * @mem_aperture: configured memory window aperture.
494  *
495  * Get the configured memory window's relative offset, base, and size.
496  */
497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
498 		      u32 *mem_base, u32 *mem_aperture)
499 {
500 	u32 edc_size, mc_size, mem_reg;
501 
502 	/* Offset into the region of memory which is being accessed
503 	 * MEM_EDC0 = 0
504 	 * MEM_EDC1 = 1
505 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
506 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
507 	 * MEM_HMA  = 4
508 	 */
509 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
510 	if (mtype == MEM_HMA) {
511 		*mem_off = 2 * (edc_size * 1024 * 1024);
512 	} else if (mtype != MEM_MC1) {
513 		*mem_off = (mtype * (edc_size * 1024 * 1024));
514 	} else {
515 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
516 						      MA_EXT_MEMORY0_BAR_A));
517 		*mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
518 	}
519 
520 	/* Each PCI-E Memory Window is programmed with a window size -- or
521 	 * "aperture" -- which controls the granularity of its mapping onto
522 	 * adapter memory.  We need to grab that aperture in order to know
523 	 * how to use the specified window.  The window is also programmed
524 	 * with the base address of the Memory Window in BAR0's address
525 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
526 	 * the address is relative to BAR0.
527 	 */
528 	mem_reg = t4_read_reg(adap,
529 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
530 						  win));
531 	/* a dead adapter will return 0xffffffff for PIO reads */
532 	if (mem_reg == 0xffffffff)
533 		return -ENXIO;
534 
535 	*mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
536 	*mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
537 	if (is_t4(adap->params.chip))
538 		*mem_base -= adap->t4_bar0;
539 
540 	return 0;
541 }
542 
543 /**
544  * t4_memory_update_win - Move memory window to specified address.
545  * @adap: the adapter
546  * @win: PCI-E Memory Window to use
547  * @addr: location to move.
548  *
549  * Move memory window to specified address.
550  */
551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
552 {
553 	t4_write_reg(adap,
554 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
555 		     addr);
556 	/* Read it back to ensure that changes propagate before we
557 	 * attempt to use the new value.
558 	 */
559 	t4_read_reg(adap,
560 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
561 }
562 
563 /**
564  * t4_memory_rw_residual - Read/Write residual data.
565  * @adap: the adapter
566  * @off: relative offset within residual to start read/write.
567  * @addr: address within indicated memory type.
568  * @buf: host memory buffer
569  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
570  *
571  * Read/Write residual data less than 32-bits.
572  */
573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
574 			   int dir)
575 {
576 	union {
577 		u32 word;
578 		char byte[4];
579 	} last;
580 	unsigned char *bp;
581 	int i;
582 
583 	if (dir == T4_MEMORY_READ) {
584 		last.word = le32_to_cpu((__force __le32)
585 					t4_read_reg(adap, addr));
586 		for (bp = (unsigned char *)buf, i = off; i < 4; i++)
587 			bp[i] = last.byte[i];
588 	} else {
589 		last.word = *buf;
590 		for (i = off; i < 4; i++)
591 			last.byte[i] = 0;
592 		t4_write_reg(adap, addr,
593 			     (__force u32)cpu_to_le32(last.word));
594 	}
595 }
596 
597 /**
598  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
599  *	@adap: the adapter
600  *	@win: PCI-E Memory Window to use
601  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
602  *	@addr: address within indicated memory type
603  *	@len: amount of memory to transfer
604  *	@hbuf: host memory buffer
605  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
606  *
607  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
608  *	firmware memory address and host buffer must be aligned on 32-bit
609  *	boudaries; the length may be arbitrary.  The memory is transferred as
610  *	a raw byte sequence from/to the firmware's memory.  If this memory
611  *	contains data structures which contain multi-byte integers, it's the
612  *	caller's responsibility to perform appropriate byte order conversions.
613  */
614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
615 		 u32 len, void *hbuf, int dir)
616 {
617 	u32 pos, offset, resid, memoffset;
618 	u32 win_pf, mem_aperture, mem_base;
619 	u32 *buf;
620 	int ret;
621 
622 	/* Argument sanity checks ...
623 	 */
624 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
625 		return -EINVAL;
626 	buf = (u32 *)hbuf;
627 
628 	/* It's convenient to be able to handle lengths which aren't a
629 	 * multiple of 32-bits because we often end up transferring files to
630 	 * the firmware.  So we'll handle that by normalizing the length here
631 	 * and then handling any residual transfer at the end.
632 	 */
633 	resid = len & 0x3;
634 	len -= resid;
635 
636 	ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
637 				&mem_aperture);
638 	if (ret)
639 		return ret;
640 
641 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
642 	addr = addr + memoffset;
643 
644 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
645 
646 	/* Calculate our initial PCI-E Memory Window Position and Offset into
647 	 * that Window.
648 	 */
649 	pos = addr & ~(mem_aperture - 1);
650 	offset = addr - pos;
651 
652 	/* Set up initial PCI-E Memory Window to cover the start of our
653 	 * transfer.
654 	 */
655 	t4_memory_update_win(adap, win, pos | win_pf);
656 
657 	/* Transfer data to/from the adapter as long as there's an integral
658 	 * number of 32-bit transfers to complete.
659 	 *
660 	 * A note on Endianness issues:
661 	 *
662 	 * The "register" reads and writes below from/to the PCI-E Memory
663 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
664 	 * Little-Endian "swizzel."  As a result, if we have the following
665 	 * data in adapter memory:
666 	 *
667 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
668 	 *     Address:      i+0  i+1  i+2  i+3
669 	 *
670 	 * Then a read of the adapter memory via the PCI-E Memory Window
671 	 * will yield:
672 	 *
673 	 *     x = readl(i)
674 	 *         31                  0
675 	 *         [ b3 | b2 | b1 | b0 ]
676 	 *
677 	 * If this value is stored into local memory on a Little-Endian system
678 	 * it will show up correctly in local memory as:
679 	 *
680 	 *     ( ..., b0, b1, b2, b3, ... )
681 	 *
682 	 * But on a Big-Endian system, the store will show up in memory
683 	 * incorrectly swizzled as:
684 	 *
685 	 *     ( ..., b3, b2, b1, b0, ... )
686 	 *
687 	 * So we need to account for this in the reads and writes to the
688 	 * PCI-E Memory Window below by undoing the register read/write
689 	 * swizzels.
690 	 */
691 	while (len > 0) {
692 		if (dir == T4_MEMORY_READ)
693 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
694 						mem_base + offset));
695 		else
696 			t4_write_reg(adap, mem_base + offset,
697 				     (__force u32)cpu_to_le32(*buf++));
698 		offset += sizeof(__be32);
699 		len -= sizeof(__be32);
700 
701 		/* If we've reached the end of our current window aperture,
702 		 * move the PCI-E Memory Window on to the next.  Note that
703 		 * doing this here after "len" may be 0 allows us to set up
704 		 * the PCI-E Memory Window for a possible final residual
705 		 * transfer below ...
706 		 */
707 		if (offset == mem_aperture) {
708 			pos += mem_aperture;
709 			offset = 0;
710 			t4_memory_update_win(adap, win, pos | win_pf);
711 		}
712 	}
713 
714 	/* If the original transfer had a length which wasn't a multiple of
715 	 * 32-bits, now's where we need to finish off the transfer of the
716 	 * residual amount.  The PCI-E Memory Window has already been moved
717 	 * above (if necessary) to cover this final transfer.
718 	 */
719 	if (resid)
720 		t4_memory_rw_residual(adap, resid, mem_base + offset,
721 				      (u8 *)buf, dir);
722 
723 	return 0;
724 }
725 
726 /* Return the specified PCI-E Configuration Space register from our Physical
727  * Function.  We try first via a Firmware LDST Command since we prefer to let
728  * the firmware own all of these registers, but if that fails we go for it
729  * directly ourselves.
730  */
731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
732 {
733 	u32 val, ldst_addrspace;
734 
735 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
736 	 * retrieve the specified PCI-E Configuration Space register.
737 	 */
738 	struct fw_ldst_cmd ldst_cmd;
739 	int ret;
740 
741 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
742 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
743 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
744 					       FW_CMD_REQUEST_F |
745 					       FW_CMD_READ_F |
746 					       ldst_addrspace);
747 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
748 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
749 	ldst_cmd.u.pcie.ctrl_to_fn =
750 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
751 	ldst_cmd.u.pcie.r = reg;
752 
753 	/* If the LDST Command succeeds, return the result, otherwise
754 	 * fall through to reading it directly ourselves ...
755 	 */
756 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
757 			 &ldst_cmd);
758 	if (ret == 0)
759 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
760 	else
761 		/* Read the desired Configuration Space register via the PCI-E
762 		 * Backdoor mechanism.
763 		 */
764 		t4_hw_pci_read_cfg4(adap, reg, &val);
765 	return val;
766 }
767 
768 /* Get the window based on base passed to it.
769  * Window aperture is currently unhandled, but there is no use case for it
770  * right now
771  */
772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
773 			 u32 memwin_base)
774 {
775 	u32 ret;
776 
777 	if (is_t4(adap->params.chip)) {
778 		u32 bar0;
779 
780 		/* Truncation intentional: we only read the bottom 32-bits of
781 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
782 		 * mechanism to read BAR0 instead of using
783 		 * pci_resource_start() because we could be operating from
784 		 * within a Virtual Machine which is trapping our accesses to
785 		 * our Configuration Space and we need to set up the PCI-E
786 		 * Memory Window decoders with the actual addresses which will
787 		 * be coming across the PCI-E link.
788 		 */
789 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
790 		bar0 &= pci_mask;
791 		adap->t4_bar0 = bar0;
792 
793 		ret = bar0 + memwin_base;
794 	} else {
795 		/* For T5, only relative offset inside the PCIe BAR is passed */
796 		ret = memwin_base;
797 	}
798 	return ret;
799 }
800 
801 /* Get the default utility window (win0) used by everyone */
802 u32 t4_get_util_window(struct adapter *adap)
803 {
804 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
805 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
806 }
807 
808 /* Set up memory window for accessing adapter memory ranges.  (Read
809  * back MA register to ensure that changes propagate before we attempt
810  * to use the new values.)
811  */
812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
813 {
814 	t4_write_reg(adap,
815 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
816 		     memwin_base | BIR_V(0) |
817 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
818 	t4_read_reg(adap,
819 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
820 }
821 
822 /**
823  *	t4_get_regs_len - return the size of the chips register set
824  *	@adapter: the adapter
825  *
826  *	Returns the size of the chip's BAR0 register space.
827  */
828 unsigned int t4_get_regs_len(struct adapter *adapter)
829 {
830 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
831 
832 	switch (chip_version) {
833 	case CHELSIO_T4:
834 		return T4_REGMAP_SIZE;
835 
836 	case CHELSIO_T5:
837 	case CHELSIO_T6:
838 		return T5_REGMAP_SIZE;
839 	}
840 
841 	dev_err(adapter->pdev_dev,
842 		"Unsupported chip version %d\n", chip_version);
843 	return 0;
844 }
845 
846 /**
847  *	t4_get_regs - read chip registers into provided buffer
848  *	@adap: the adapter
849  *	@buf: register buffer
850  *	@buf_size: size (in bytes) of register buffer
851  *
852  *	If the provided register buffer isn't large enough for the chip's
853  *	full register range, the register dump will be truncated to the
854  *	register buffer's size.
855  */
856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
857 {
858 	static const unsigned int t4_reg_ranges[] = {
859 		0x1008, 0x1108,
860 		0x1180, 0x1184,
861 		0x1190, 0x1194,
862 		0x11a0, 0x11a4,
863 		0x11b0, 0x11b4,
864 		0x11fc, 0x123c,
865 		0x1300, 0x173c,
866 		0x1800, 0x18fc,
867 		0x3000, 0x30d8,
868 		0x30e0, 0x30e4,
869 		0x30ec, 0x5910,
870 		0x5920, 0x5924,
871 		0x5960, 0x5960,
872 		0x5968, 0x5968,
873 		0x5970, 0x5970,
874 		0x5978, 0x5978,
875 		0x5980, 0x5980,
876 		0x5988, 0x5988,
877 		0x5990, 0x5990,
878 		0x5998, 0x5998,
879 		0x59a0, 0x59d4,
880 		0x5a00, 0x5ae0,
881 		0x5ae8, 0x5ae8,
882 		0x5af0, 0x5af0,
883 		0x5af8, 0x5af8,
884 		0x6000, 0x6098,
885 		0x6100, 0x6150,
886 		0x6200, 0x6208,
887 		0x6240, 0x6248,
888 		0x6280, 0x62b0,
889 		0x62c0, 0x6338,
890 		0x6370, 0x638c,
891 		0x6400, 0x643c,
892 		0x6500, 0x6524,
893 		0x6a00, 0x6a04,
894 		0x6a14, 0x6a38,
895 		0x6a60, 0x6a70,
896 		0x6a78, 0x6a78,
897 		0x6b00, 0x6b0c,
898 		0x6b1c, 0x6b84,
899 		0x6bf0, 0x6bf8,
900 		0x6c00, 0x6c0c,
901 		0x6c1c, 0x6c84,
902 		0x6cf0, 0x6cf8,
903 		0x6d00, 0x6d0c,
904 		0x6d1c, 0x6d84,
905 		0x6df0, 0x6df8,
906 		0x6e00, 0x6e0c,
907 		0x6e1c, 0x6e84,
908 		0x6ef0, 0x6ef8,
909 		0x6f00, 0x6f0c,
910 		0x6f1c, 0x6f84,
911 		0x6ff0, 0x6ff8,
912 		0x7000, 0x700c,
913 		0x701c, 0x7084,
914 		0x70f0, 0x70f8,
915 		0x7100, 0x710c,
916 		0x711c, 0x7184,
917 		0x71f0, 0x71f8,
918 		0x7200, 0x720c,
919 		0x721c, 0x7284,
920 		0x72f0, 0x72f8,
921 		0x7300, 0x730c,
922 		0x731c, 0x7384,
923 		0x73f0, 0x73f8,
924 		0x7400, 0x7450,
925 		0x7500, 0x7530,
926 		0x7600, 0x760c,
927 		0x7614, 0x761c,
928 		0x7680, 0x76cc,
929 		0x7700, 0x7798,
930 		0x77c0, 0x77fc,
931 		0x7900, 0x79fc,
932 		0x7b00, 0x7b58,
933 		0x7b60, 0x7b84,
934 		0x7b8c, 0x7c38,
935 		0x7d00, 0x7d38,
936 		0x7d40, 0x7d80,
937 		0x7d8c, 0x7ddc,
938 		0x7de4, 0x7e04,
939 		0x7e10, 0x7e1c,
940 		0x7e24, 0x7e38,
941 		0x7e40, 0x7e44,
942 		0x7e4c, 0x7e78,
943 		0x7e80, 0x7ea4,
944 		0x7eac, 0x7edc,
945 		0x7ee8, 0x7efc,
946 		0x8dc0, 0x8e04,
947 		0x8e10, 0x8e1c,
948 		0x8e30, 0x8e78,
949 		0x8ea0, 0x8eb8,
950 		0x8ec0, 0x8f6c,
951 		0x8fc0, 0x9008,
952 		0x9010, 0x9058,
953 		0x9060, 0x9060,
954 		0x9068, 0x9074,
955 		0x90fc, 0x90fc,
956 		0x9400, 0x9408,
957 		0x9410, 0x9458,
958 		0x9600, 0x9600,
959 		0x9608, 0x9638,
960 		0x9640, 0x96bc,
961 		0x9800, 0x9808,
962 		0x9820, 0x983c,
963 		0x9850, 0x9864,
964 		0x9c00, 0x9c6c,
965 		0x9c80, 0x9cec,
966 		0x9d00, 0x9d6c,
967 		0x9d80, 0x9dec,
968 		0x9e00, 0x9e6c,
969 		0x9e80, 0x9eec,
970 		0x9f00, 0x9f6c,
971 		0x9f80, 0x9fec,
972 		0xd004, 0xd004,
973 		0xd010, 0xd03c,
974 		0xdfc0, 0xdfe0,
975 		0xe000, 0xea7c,
976 		0xf000, 0x11110,
977 		0x11118, 0x11190,
978 		0x19040, 0x1906c,
979 		0x19078, 0x19080,
980 		0x1908c, 0x190e4,
981 		0x190f0, 0x190f8,
982 		0x19100, 0x19110,
983 		0x19120, 0x19124,
984 		0x19150, 0x19194,
985 		0x1919c, 0x191b0,
986 		0x191d0, 0x191e8,
987 		0x19238, 0x1924c,
988 		0x193f8, 0x1943c,
989 		0x1944c, 0x19474,
990 		0x19490, 0x194e0,
991 		0x194f0, 0x194f8,
992 		0x19800, 0x19c08,
993 		0x19c10, 0x19c90,
994 		0x19ca0, 0x19ce4,
995 		0x19cf0, 0x19d40,
996 		0x19d50, 0x19d94,
997 		0x19da0, 0x19de8,
998 		0x19df0, 0x19e40,
999 		0x19e50, 0x19e90,
1000 		0x19ea0, 0x19f4c,
1001 		0x1a000, 0x1a004,
1002 		0x1a010, 0x1a06c,
1003 		0x1a0b0, 0x1a0e4,
1004 		0x1a0ec, 0x1a0f4,
1005 		0x1a100, 0x1a108,
1006 		0x1a114, 0x1a120,
1007 		0x1a128, 0x1a130,
1008 		0x1a138, 0x1a138,
1009 		0x1a190, 0x1a1c4,
1010 		0x1a1fc, 0x1a1fc,
1011 		0x1e040, 0x1e04c,
1012 		0x1e284, 0x1e28c,
1013 		0x1e2c0, 0x1e2c0,
1014 		0x1e2e0, 0x1e2e0,
1015 		0x1e300, 0x1e384,
1016 		0x1e3c0, 0x1e3c8,
1017 		0x1e440, 0x1e44c,
1018 		0x1e684, 0x1e68c,
1019 		0x1e6c0, 0x1e6c0,
1020 		0x1e6e0, 0x1e6e0,
1021 		0x1e700, 0x1e784,
1022 		0x1e7c0, 0x1e7c8,
1023 		0x1e840, 0x1e84c,
1024 		0x1ea84, 0x1ea8c,
1025 		0x1eac0, 0x1eac0,
1026 		0x1eae0, 0x1eae0,
1027 		0x1eb00, 0x1eb84,
1028 		0x1ebc0, 0x1ebc8,
1029 		0x1ec40, 0x1ec4c,
1030 		0x1ee84, 0x1ee8c,
1031 		0x1eec0, 0x1eec0,
1032 		0x1eee0, 0x1eee0,
1033 		0x1ef00, 0x1ef84,
1034 		0x1efc0, 0x1efc8,
1035 		0x1f040, 0x1f04c,
1036 		0x1f284, 0x1f28c,
1037 		0x1f2c0, 0x1f2c0,
1038 		0x1f2e0, 0x1f2e0,
1039 		0x1f300, 0x1f384,
1040 		0x1f3c0, 0x1f3c8,
1041 		0x1f440, 0x1f44c,
1042 		0x1f684, 0x1f68c,
1043 		0x1f6c0, 0x1f6c0,
1044 		0x1f6e0, 0x1f6e0,
1045 		0x1f700, 0x1f784,
1046 		0x1f7c0, 0x1f7c8,
1047 		0x1f840, 0x1f84c,
1048 		0x1fa84, 0x1fa8c,
1049 		0x1fac0, 0x1fac0,
1050 		0x1fae0, 0x1fae0,
1051 		0x1fb00, 0x1fb84,
1052 		0x1fbc0, 0x1fbc8,
1053 		0x1fc40, 0x1fc4c,
1054 		0x1fe84, 0x1fe8c,
1055 		0x1fec0, 0x1fec0,
1056 		0x1fee0, 0x1fee0,
1057 		0x1ff00, 0x1ff84,
1058 		0x1ffc0, 0x1ffc8,
1059 		0x20000, 0x2002c,
1060 		0x20100, 0x2013c,
1061 		0x20190, 0x201a0,
1062 		0x201a8, 0x201b8,
1063 		0x201c4, 0x201c8,
1064 		0x20200, 0x20318,
1065 		0x20400, 0x204b4,
1066 		0x204c0, 0x20528,
1067 		0x20540, 0x20614,
1068 		0x21000, 0x21040,
1069 		0x2104c, 0x21060,
1070 		0x210c0, 0x210ec,
1071 		0x21200, 0x21268,
1072 		0x21270, 0x21284,
1073 		0x212fc, 0x21388,
1074 		0x21400, 0x21404,
1075 		0x21500, 0x21500,
1076 		0x21510, 0x21518,
1077 		0x2152c, 0x21530,
1078 		0x2153c, 0x2153c,
1079 		0x21550, 0x21554,
1080 		0x21600, 0x21600,
1081 		0x21608, 0x2161c,
1082 		0x21624, 0x21628,
1083 		0x21630, 0x21634,
1084 		0x2163c, 0x2163c,
1085 		0x21700, 0x2171c,
1086 		0x21780, 0x2178c,
1087 		0x21800, 0x21818,
1088 		0x21820, 0x21828,
1089 		0x21830, 0x21848,
1090 		0x21850, 0x21854,
1091 		0x21860, 0x21868,
1092 		0x21870, 0x21870,
1093 		0x21878, 0x21898,
1094 		0x218a0, 0x218a8,
1095 		0x218b0, 0x218c8,
1096 		0x218d0, 0x218d4,
1097 		0x218e0, 0x218e8,
1098 		0x218f0, 0x218f0,
1099 		0x218f8, 0x21a18,
1100 		0x21a20, 0x21a28,
1101 		0x21a30, 0x21a48,
1102 		0x21a50, 0x21a54,
1103 		0x21a60, 0x21a68,
1104 		0x21a70, 0x21a70,
1105 		0x21a78, 0x21a98,
1106 		0x21aa0, 0x21aa8,
1107 		0x21ab0, 0x21ac8,
1108 		0x21ad0, 0x21ad4,
1109 		0x21ae0, 0x21ae8,
1110 		0x21af0, 0x21af0,
1111 		0x21af8, 0x21c18,
1112 		0x21c20, 0x21c20,
1113 		0x21c28, 0x21c30,
1114 		0x21c38, 0x21c38,
1115 		0x21c80, 0x21c98,
1116 		0x21ca0, 0x21ca8,
1117 		0x21cb0, 0x21cc8,
1118 		0x21cd0, 0x21cd4,
1119 		0x21ce0, 0x21ce8,
1120 		0x21cf0, 0x21cf0,
1121 		0x21cf8, 0x21d7c,
1122 		0x21e00, 0x21e04,
1123 		0x22000, 0x2202c,
1124 		0x22100, 0x2213c,
1125 		0x22190, 0x221a0,
1126 		0x221a8, 0x221b8,
1127 		0x221c4, 0x221c8,
1128 		0x22200, 0x22318,
1129 		0x22400, 0x224b4,
1130 		0x224c0, 0x22528,
1131 		0x22540, 0x22614,
1132 		0x23000, 0x23040,
1133 		0x2304c, 0x23060,
1134 		0x230c0, 0x230ec,
1135 		0x23200, 0x23268,
1136 		0x23270, 0x23284,
1137 		0x232fc, 0x23388,
1138 		0x23400, 0x23404,
1139 		0x23500, 0x23500,
1140 		0x23510, 0x23518,
1141 		0x2352c, 0x23530,
1142 		0x2353c, 0x2353c,
1143 		0x23550, 0x23554,
1144 		0x23600, 0x23600,
1145 		0x23608, 0x2361c,
1146 		0x23624, 0x23628,
1147 		0x23630, 0x23634,
1148 		0x2363c, 0x2363c,
1149 		0x23700, 0x2371c,
1150 		0x23780, 0x2378c,
1151 		0x23800, 0x23818,
1152 		0x23820, 0x23828,
1153 		0x23830, 0x23848,
1154 		0x23850, 0x23854,
1155 		0x23860, 0x23868,
1156 		0x23870, 0x23870,
1157 		0x23878, 0x23898,
1158 		0x238a0, 0x238a8,
1159 		0x238b0, 0x238c8,
1160 		0x238d0, 0x238d4,
1161 		0x238e0, 0x238e8,
1162 		0x238f0, 0x238f0,
1163 		0x238f8, 0x23a18,
1164 		0x23a20, 0x23a28,
1165 		0x23a30, 0x23a48,
1166 		0x23a50, 0x23a54,
1167 		0x23a60, 0x23a68,
1168 		0x23a70, 0x23a70,
1169 		0x23a78, 0x23a98,
1170 		0x23aa0, 0x23aa8,
1171 		0x23ab0, 0x23ac8,
1172 		0x23ad0, 0x23ad4,
1173 		0x23ae0, 0x23ae8,
1174 		0x23af0, 0x23af0,
1175 		0x23af8, 0x23c18,
1176 		0x23c20, 0x23c20,
1177 		0x23c28, 0x23c30,
1178 		0x23c38, 0x23c38,
1179 		0x23c80, 0x23c98,
1180 		0x23ca0, 0x23ca8,
1181 		0x23cb0, 0x23cc8,
1182 		0x23cd0, 0x23cd4,
1183 		0x23ce0, 0x23ce8,
1184 		0x23cf0, 0x23cf0,
1185 		0x23cf8, 0x23d7c,
1186 		0x23e00, 0x23e04,
1187 		0x24000, 0x2402c,
1188 		0x24100, 0x2413c,
1189 		0x24190, 0x241a0,
1190 		0x241a8, 0x241b8,
1191 		0x241c4, 0x241c8,
1192 		0x24200, 0x24318,
1193 		0x24400, 0x244b4,
1194 		0x244c0, 0x24528,
1195 		0x24540, 0x24614,
1196 		0x25000, 0x25040,
1197 		0x2504c, 0x25060,
1198 		0x250c0, 0x250ec,
1199 		0x25200, 0x25268,
1200 		0x25270, 0x25284,
1201 		0x252fc, 0x25388,
1202 		0x25400, 0x25404,
1203 		0x25500, 0x25500,
1204 		0x25510, 0x25518,
1205 		0x2552c, 0x25530,
1206 		0x2553c, 0x2553c,
1207 		0x25550, 0x25554,
1208 		0x25600, 0x25600,
1209 		0x25608, 0x2561c,
1210 		0x25624, 0x25628,
1211 		0x25630, 0x25634,
1212 		0x2563c, 0x2563c,
1213 		0x25700, 0x2571c,
1214 		0x25780, 0x2578c,
1215 		0x25800, 0x25818,
1216 		0x25820, 0x25828,
1217 		0x25830, 0x25848,
1218 		0x25850, 0x25854,
1219 		0x25860, 0x25868,
1220 		0x25870, 0x25870,
1221 		0x25878, 0x25898,
1222 		0x258a0, 0x258a8,
1223 		0x258b0, 0x258c8,
1224 		0x258d0, 0x258d4,
1225 		0x258e0, 0x258e8,
1226 		0x258f0, 0x258f0,
1227 		0x258f8, 0x25a18,
1228 		0x25a20, 0x25a28,
1229 		0x25a30, 0x25a48,
1230 		0x25a50, 0x25a54,
1231 		0x25a60, 0x25a68,
1232 		0x25a70, 0x25a70,
1233 		0x25a78, 0x25a98,
1234 		0x25aa0, 0x25aa8,
1235 		0x25ab0, 0x25ac8,
1236 		0x25ad0, 0x25ad4,
1237 		0x25ae0, 0x25ae8,
1238 		0x25af0, 0x25af0,
1239 		0x25af8, 0x25c18,
1240 		0x25c20, 0x25c20,
1241 		0x25c28, 0x25c30,
1242 		0x25c38, 0x25c38,
1243 		0x25c80, 0x25c98,
1244 		0x25ca0, 0x25ca8,
1245 		0x25cb0, 0x25cc8,
1246 		0x25cd0, 0x25cd4,
1247 		0x25ce0, 0x25ce8,
1248 		0x25cf0, 0x25cf0,
1249 		0x25cf8, 0x25d7c,
1250 		0x25e00, 0x25e04,
1251 		0x26000, 0x2602c,
1252 		0x26100, 0x2613c,
1253 		0x26190, 0x261a0,
1254 		0x261a8, 0x261b8,
1255 		0x261c4, 0x261c8,
1256 		0x26200, 0x26318,
1257 		0x26400, 0x264b4,
1258 		0x264c0, 0x26528,
1259 		0x26540, 0x26614,
1260 		0x27000, 0x27040,
1261 		0x2704c, 0x27060,
1262 		0x270c0, 0x270ec,
1263 		0x27200, 0x27268,
1264 		0x27270, 0x27284,
1265 		0x272fc, 0x27388,
1266 		0x27400, 0x27404,
1267 		0x27500, 0x27500,
1268 		0x27510, 0x27518,
1269 		0x2752c, 0x27530,
1270 		0x2753c, 0x2753c,
1271 		0x27550, 0x27554,
1272 		0x27600, 0x27600,
1273 		0x27608, 0x2761c,
1274 		0x27624, 0x27628,
1275 		0x27630, 0x27634,
1276 		0x2763c, 0x2763c,
1277 		0x27700, 0x2771c,
1278 		0x27780, 0x2778c,
1279 		0x27800, 0x27818,
1280 		0x27820, 0x27828,
1281 		0x27830, 0x27848,
1282 		0x27850, 0x27854,
1283 		0x27860, 0x27868,
1284 		0x27870, 0x27870,
1285 		0x27878, 0x27898,
1286 		0x278a0, 0x278a8,
1287 		0x278b0, 0x278c8,
1288 		0x278d0, 0x278d4,
1289 		0x278e0, 0x278e8,
1290 		0x278f0, 0x278f0,
1291 		0x278f8, 0x27a18,
1292 		0x27a20, 0x27a28,
1293 		0x27a30, 0x27a48,
1294 		0x27a50, 0x27a54,
1295 		0x27a60, 0x27a68,
1296 		0x27a70, 0x27a70,
1297 		0x27a78, 0x27a98,
1298 		0x27aa0, 0x27aa8,
1299 		0x27ab0, 0x27ac8,
1300 		0x27ad0, 0x27ad4,
1301 		0x27ae0, 0x27ae8,
1302 		0x27af0, 0x27af0,
1303 		0x27af8, 0x27c18,
1304 		0x27c20, 0x27c20,
1305 		0x27c28, 0x27c30,
1306 		0x27c38, 0x27c38,
1307 		0x27c80, 0x27c98,
1308 		0x27ca0, 0x27ca8,
1309 		0x27cb0, 0x27cc8,
1310 		0x27cd0, 0x27cd4,
1311 		0x27ce0, 0x27ce8,
1312 		0x27cf0, 0x27cf0,
1313 		0x27cf8, 0x27d7c,
1314 		0x27e00, 0x27e04,
1315 	};
1316 
1317 	static const unsigned int t5_reg_ranges[] = {
1318 		0x1008, 0x10c0,
1319 		0x10cc, 0x10f8,
1320 		0x1100, 0x1100,
1321 		0x110c, 0x1148,
1322 		0x1180, 0x1184,
1323 		0x1190, 0x1194,
1324 		0x11a0, 0x11a4,
1325 		0x11b0, 0x11b4,
1326 		0x11fc, 0x123c,
1327 		0x1280, 0x173c,
1328 		0x1800, 0x18fc,
1329 		0x3000, 0x3028,
1330 		0x3060, 0x30b0,
1331 		0x30b8, 0x30d8,
1332 		0x30e0, 0x30fc,
1333 		0x3140, 0x357c,
1334 		0x35a8, 0x35cc,
1335 		0x35ec, 0x35ec,
1336 		0x3600, 0x5624,
1337 		0x56cc, 0x56ec,
1338 		0x56f4, 0x5720,
1339 		0x5728, 0x575c,
1340 		0x580c, 0x5814,
1341 		0x5890, 0x589c,
1342 		0x58a4, 0x58ac,
1343 		0x58b8, 0x58bc,
1344 		0x5940, 0x59c8,
1345 		0x59d0, 0x59dc,
1346 		0x59fc, 0x5a18,
1347 		0x5a60, 0x5a70,
1348 		0x5a80, 0x5a9c,
1349 		0x5b94, 0x5bfc,
1350 		0x6000, 0x6020,
1351 		0x6028, 0x6040,
1352 		0x6058, 0x609c,
1353 		0x60a8, 0x614c,
1354 		0x7700, 0x7798,
1355 		0x77c0, 0x78fc,
1356 		0x7b00, 0x7b58,
1357 		0x7b60, 0x7b84,
1358 		0x7b8c, 0x7c54,
1359 		0x7d00, 0x7d38,
1360 		0x7d40, 0x7d80,
1361 		0x7d8c, 0x7ddc,
1362 		0x7de4, 0x7e04,
1363 		0x7e10, 0x7e1c,
1364 		0x7e24, 0x7e38,
1365 		0x7e40, 0x7e44,
1366 		0x7e4c, 0x7e78,
1367 		0x7e80, 0x7edc,
1368 		0x7ee8, 0x7efc,
1369 		0x8dc0, 0x8de0,
1370 		0x8df8, 0x8e04,
1371 		0x8e10, 0x8e84,
1372 		0x8ea0, 0x8f84,
1373 		0x8fc0, 0x9058,
1374 		0x9060, 0x9060,
1375 		0x9068, 0x90f8,
1376 		0x9400, 0x9408,
1377 		0x9410, 0x9470,
1378 		0x9600, 0x9600,
1379 		0x9608, 0x9638,
1380 		0x9640, 0x96f4,
1381 		0x9800, 0x9808,
1382 		0x9820, 0x983c,
1383 		0x9850, 0x9864,
1384 		0x9c00, 0x9c6c,
1385 		0x9c80, 0x9cec,
1386 		0x9d00, 0x9d6c,
1387 		0x9d80, 0x9dec,
1388 		0x9e00, 0x9e6c,
1389 		0x9e80, 0x9eec,
1390 		0x9f00, 0x9f6c,
1391 		0x9f80, 0xa020,
1392 		0xd004, 0xd004,
1393 		0xd010, 0xd03c,
1394 		0xdfc0, 0xdfe0,
1395 		0xe000, 0x1106c,
1396 		0x11074, 0x11088,
1397 		0x1109c, 0x1117c,
1398 		0x11190, 0x11204,
1399 		0x19040, 0x1906c,
1400 		0x19078, 0x19080,
1401 		0x1908c, 0x190e8,
1402 		0x190f0, 0x190f8,
1403 		0x19100, 0x19110,
1404 		0x19120, 0x19124,
1405 		0x19150, 0x19194,
1406 		0x1919c, 0x191b0,
1407 		0x191d0, 0x191e8,
1408 		0x19238, 0x19290,
1409 		0x193f8, 0x19428,
1410 		0x19430, 0x19444,
1411 		0x1944c, 0x1946c,
1412 		0x19474, 0x19474,
1413 		0x19490, 0x194cc,
1414 		0x194f0, 0x194f8,
1415 		0x19c00, 0x19c08,
1416 		0x19c10, 0x19c60,
1417 		0x19c94, 0x19ce4,
1418 		0x19cf0, 0x19d40,
1419 		0x19d50, 0x19d94,
1420 		0x19da0, 0x19de8,
1421 		0x19df0, 0x19e10,
1422 		0x19e50, 0x19e90,
1423 		0x19ea0, 0x19f24,
1424 		0x19f34, 0x19f34,
1425 		0x19f40, 0x19f50,
1426 		0x19f90, 0x19fb4,
1427 		0x19fc4, 0x19fe4,
1428 		0x1a000, 0x1a004,
1429 		0x1a010, 0x1a06c,
1430 		0x1a0b0, 0x1a0e4,
1431 		0x1a0ec, 0x1a0f8,
1432 		0x1a100, 0x1a108,
1433 		0x1a114, 0x1a120,
1434 		0x1a128, 0x1a130,
1435 		0x1a138, 0x1a138,
1436 		0x1a190, 0x1a1c4,
1437 		0x1a1fc, 0x1a1fc,
1438 		0x1e008, 0x1e00c,
1439 		0x1e040, 0x1e044,
1440 		0x1e04c, 0x1e04c,
1441 		0x1e284, 0x1e290,
1442 		0x1e2c0, 0x1e2c0,
1443 		0x1e2e0, 0x1e2e0,
1444 		0x1e300, 0x1e384,
1445 		0x1e3c0, 0x1e3c8,
1446 		0x1e408, 0x1e40c,
1447 		0x1e440, 0x1e444,
1448 		0x1e44c, 0x1e44c,
1449 		0x1e684, 0x1e690,
1450 		0x1e6c0, 0x1e6c0,
1451 		0x1e6e0, 0x1e6e0,
1452 		0x1e700, 0x1e784,
1453 		0x1e7c0, 0x1e7c8,
1454 		0x1e808, 0x1e80c,
1455 		0x1e840, 0x1e844,
1456 		0x1e84c, 0x1e84c,
1457 		0x1ea84, 0x1ea90,
1458 		0x1eac0, 0x1eac0,
1459 		0x1eae0, 0x1eae0,
1460 		0x1eb00, 0x1eb84,
1461 		0x1ebc0, 0x1ebc8,
1462 		0x1ec08, 0x1ec0c,
1463 		0x1ec40, 0x1ec44,
1464 		0x1ec4c, 0x1ec4c,
1465 		0x1ee84, 0x1ee90,
1466 		0x1eec0, 0x1eec0,
1467 		0x1eee0, 0x1eee0,
1468 		0x1ef00, 0x1ef84,
1469 		0x1efc0, 0x1efc8,
1470 		0x1f008, 0x1f00c,
1471 		0x1f040, 0x1f044,
1472 		0x1f04c, 0x1f04c,
1473 		0x1f284, 0x1f290,
1474 		0x1f2c0, 0x1f2c0,
1475 		0x1f2e0, 0x1f2e0,
1476 		0x1f300, 0x1f384,
1477 		0x1f3c0, 0x1f3c8,
1478 		0x1f408, 0x1f40c,
1479 		0x1f440, 0x1f444,
1480 		0x1f44c, 0x1f44c,
1481 		0x1f684, 0x1f690,
1482 		0x1f6c0, 0x1f6c0,
1483 		0x1f6e0, 0x1f6e0,
1484 		0x1f700, 0x1f784,
1485 		0x1f7c0, 0x1f7c8,
1486 		0x1f808, 0x1f80c,
1487 		0x1f840, 0x1f844,
1488 		0x1f84c, 0x1f84c,
1489 		0x1fa84, 0x1fa90,
1490 		0x1fac0, 0x1fac0,
1491 		0x1fae0, 0x1fae0,
1492 		0x1fb00, 0x1fb84,
1493 		0x1fbc0, 0x1fbc8,
1494 		0x1fc08, 0x1fc0c,
1495 		0x1fc40, 0x1fc44,
1496 		0x1fc4c, 0x1fc4c,
1497 		0x1fe84, 0x1fe90,
1498 		0x1fec0, 0x1fec0,
1499 		0x1fee0, 0x1fee0,
1500 		0x1ff00, 0x1ff84,
1501 		0x1ffc0, 0x1ffc8,
1502 		0x30000, 0x30030,
1503 		0x30100, 0x30144,
1504 		0x30190, 0x301a0,
1505 		0x301a8, 0x301b8,
1506 		0x301c4, 0x301c8,
1507 		0x301d0, 0x301d0,
1508 		0x30200, 0x30318,
1509 		0x30400, 0x304b4,
1510 		0x304c0, 0x3052c,
1511 		0x30540, 0x3061c,
1512 		0x30800, 0x30828,
1513 		0x30834, 0x30834,
1514 		0x308c0, 0x30908,
1515 		0x30910, 0x309ac,
1516 		0x30a00, 0x30a14,
1517 		0x30a1c, 0x30a2c,
1518 		0x30a44, 0x30a50,
1519 		0x30a74, 0x30a74,
1520 		0x30a7c, 0x30afc,
1521 		0x30b08, 0x30c24,
1522 		0x30d00, 0x30d00,
1523 		0x30d08, 0x30d14,
1524 		0x30d1c, 0x30d20,
1525 		0x30d3c, 0x30d3c,
1526 		0x30d48, 0x30d50,
1527 		0x31200, 0x3120c,
1528 		0x31220, 0x31220,
1529 		0x31240, 0x31240,
1530 		0x31600, 0x3160c,
1531 		0x31a00, 0x31a1c,
1532 		0x31e00, 0x31e20,
1533 		0x31e38, 0x31e3c,
1534 		0x31e80, 0x31e80,
1535 		0x31e88, 0x31ea8,
1536 		0x31eb0, 0x31eb4,
1537 		0x31ec8, 0x31ed4,
1538 		0x31fb8, 0x32004,
1539 		0x32200, 0x32200,
1540 		0x32208, 0x32240,
1541 		0x32248, 0x32280,
1542 		0x32288, 0x322c0,
1543 		0x322c8, 0x322fc,
1544 		0x32600, 0x32630,
1545 		0x32a00, 0x32abc,
1546 		0x32b00, 0x32b10,
1547 		0x32b20, 0x32b30,
1548 		0x32b40, 0x32b50,
1549 		0x32b60, 0x32b70,
1550 		0x33000, 0x33028,
1551 		0x33030, 0x33048,
1552 		0x33060, 0x33068,
1553 		0x33070, 0x3309c,
1554 		0x330f0, 0x33128,
1555 		0x33130, 0x33148,
1556 		0x33160, 0x33168,
1557 		0x33170, 0x3319c,
1558 		0x331f0, 0x33238,
1559 		0x33240, 0x33240,
1560 		0x33248, 0x33250,
1561 		0x3325c, 0x33264,
1562 		0x33270, 0x332b8,
1563 		0x332c0, 0x332e4,
1564 		0x332f8, 0x33338,
1565 		0x33340, 0x33340,
1566 		0x33348, 0x33350,
1567 		0x3335c, 0x33364,
1568 		0x33370, 0x333b8,
1569 		0x333c0, 0x333e4,
1570 		0x333f8, 0x33428,
1571 		0x33430, 0x33448,
1572 		0x33460, 0x33468,
1573 		0x33470, 0x3349c,
1574 		0x334f0, 0x33528,
1575 		0x33530, 0x33548,
1576 		0x33560, 0x33568,
1577 		0x33570, 0x3359c,
1578 		0x335f0, 0x33638,
1579 		0x33640, 0x33640,
1580 		0x33648, 0x33650,
1581 		0x3365c, 0x33664,
1582 		0x33670, 0x336b8,
1583 		0x336c0, 0x336e4,
1584 		0x336f8, 0x33738,
1585 		0x33740, 0x33740,
1586 		0x33748, 0x33750,
1587 		0x3375c, 0x33764,
1588 		0x33770, 0x337b8,
1589 		0x337c0, 0x337e4,
1590 		0x337f8, 0x337fc,
1591 		0x33814, 0x33814,
1592 		0x3382c, 0x3382c,
1593 		0x33880, 0x3388c,
1594 		0x338e8, 0x338ec,
1595 		0x33900, 0x33928,
1596 		0x33930, 0x33948,
1597 		0x33960, 0x33968,
1598 		0x33970, 0x3399c,
1599 		0x339f0, 0x33a38,
1600 		0x33a40, 0x33a40,
1601 		0x33a48, 0x33a50,
1602 		0x33a5c, 0x33a64,
1603 		0x33a70, 0x33ab8,
1604 		0x33ac0, 0x33ae4,
1605 		0x33af8, 0x33b10,
1606 		0x33b28, 0x33b28,
1607 		0x33b3c, 0x33b50,
1608 		0x33bf0, 0x33c10,
1609 		0x33c28, 0x33c28,
1610 		0x33c3c, 0x33c50,
1611 		0x33cf0, 0x33cfc,
1612 		0x34000, 0x34030,
1613 		0x34100, 0x34144,
1614 		0x34190, 0x341a0,
1615 		0x341a8, 0x341b8,
1616 		0x341c4, 0x341c8,
1617 		0x341d0, 0x341d0,
1618 		0x34200, 0x34318,
1619 		0x34400, 0x344b4,
1620 		0x344c0, 0x3452c,
1621 		0x34540, 0x3461c,
1622 		0x34800, 0x34828,
1623 		0x34834, 0x34834,
1624 		0x348c0, 0x34908,
1625 		0x34910, 0x349ac,
1626 		0x34a00, 0x34a14,
1627 		0x34a1c, 0x34a2c,
1628 		0x34a44, 0x34a50,
1629 		0x34a74, 0x34a74,
1630 		0x34a7c, 0x34afc,
1631 		0x34b08, 0x34c24,
1632 		0x34d00, 0x34d00,
1633 		0x34d08, 0x34d14,
1634 		0x34d1c, 0x34d20,
1635 		0x34d3c, 0x34d3c,
1636 		0x34d48, 0x34d50,
1637 		0x35200, 0x3520c,
1638 		0x35220, 0x35220,
1639 		0x35240, 0x35240,
1640 		0x35600, 0x3560c,
1641 		0x35a00, 0x35a1c,
1642 		0x35e00, 0x35e20,
1643 		0x35e38, 0x35e3c,
1644 		0x35e80, 0x35e80,
1645 		0x35e88, 0x35ea8,
1646 		0x35eb0, 0x35eb4,
1647 		0x35ec8, 0x35ed4,
1648 		0x35fb8, 0x36004,
1649 		0x36200, 0x36200,
1650 		0x36208, 0x36240,
1651 		0x36248, 0x36280,
1652 		0x36288, 0x362c0,
1653 		0x362c8, 0x362fc,
1654 		0x36600, 0x36630,
1655 		0x36a00, 0x36abc,
1656 		0x36b00, 0x36b10,
1657 		0x36b20, 0x36b30,
1658 		0x36b40, 0x36b50,
1659 		0x36b60, 0x36b70,
1660 		0x37000, 0x37028,
1661 		0x37030, 0x37048,
1662 		0x37060, 0x37068,
1663 		0x37070, 0x3709c,
1664 		0x370f0, 0x37128,
1665 		0x37130, 0x37148,
1666 		0x37160, 0x37168,
1667 		0x37170, 0x3719c,
1668 		0x371f0, 0x37238,
1669 		0x37240, 0x37240,
1670 		0x37248, 0x37250,
1671 		0x3725c, 0x37264,
1672 		0x37270, 0x372b8,
1673 		0x372c0, 0x372e4,
1674 		0x372f8, 0x37338,
1675 		0x37340, 0x37340,
1676 		0x37348, 0x37350,
1677 		0x3735c, 0x37364,
1678 		0x37370, 0x373b8,
1679 		0x373c0, 0x373e4,
1680 		0x373f8, 0x37428,
1681 		0x37430, 0x37448,
1682 		0x37460, 0x37468,
1683 		0x37470, 0x3749c,
1684 		0x374f0, 0x37528,
1685 		0x37530, 0x37548,
1686 		0x37560, 0x37568,
1687 		0x37570, 0x3759c,
1688 		0x375f0, 0x37638,
1689 		0x37640, 0x37640,
1690 		0x37648, 0x37650,
1691 		0x3765c, 0x37664,
1692 		0x37670, 0x376b8,
1693 		0x376c0, 0x376e4,
1694 		0x376f8, 0x37738,
1695 		0x37740, 0x37740,
1696 		0x37748, 0x37750,
1697 		0x3775c, 0x37764,
1698 		0x37770, 0x377b8,
1699 		0x377c0, 0x377e4,
1700 		0x377f8, 0x377fc,
1701 		0x37814, 0x37814,
1702 		0x3782c, 0x3782c,
1703 		0x37880, 0x3788c,
1704 		0x378e8, 0x378ec,
1705 		0x37900, 0x37928,
1706 		0x37930, 0x37948,
1707 		0x37960, 0x37968,
1708 		0x37970, 0x3799c,
1709 		0x379f0, 0x37a38,
1710 		0x37a40, 0x37a40,
1711 		0x37a48, 0x37a50,
1712 		0x37a5c, 0x37a64,
1713 		0x37a70, 0x37ab8,
1714 		0x37ac0, 0x37ae4,
1715 		0x37af8, 0x37b10,
1716 		0x37b28, 0x37b28,
1717 		0x37b3c, 0x37b50,
1718 		0x37bf0, 0x37c10,
1719 		0x37c28, 0x37c28,
1720 		0x37c3c, 0x37c50,
1721 		0x37cf0, 0x37cfc,
1722 		0x38000, 0x38030,
1723 		0x38100, 0x38144,
1724 		0x38190, 0x381a0,
1725 		0x381a8, 0x381b8,
1726 		0x381c4, 0x381c8,
1727 		0x381d0, 0x381d0,
1728 		0x38200, 0x38318,
1729 		0x38400, 0x384b4,
1730 		0x384c0, 0x3852c,
1731 		0x38540, 0x3861c,
1732 		0x38800, 0x38828,
1733 		0x38834, 0x38834,
1734 		0x388c0, 0x38908,
1735 		0x38910, 0x389ac,
1736 		0x38a00, 0x38a14,
1737 		0x38a1c, 0x38a2c,
1738 		0x38a44, 0x38a50,
1739 		0x38a74, 0x38a74,
1740 		0x38a7c, 0x38afc,
1741 		0x38b08, 0x38c24,
1742 		0x38d00, 0x38d00,
1743 		0x38d08, 0x38d14,
1744 		0x38d1c, 0x38d20,
1745 		0x38d3c, 0x38d3c,
1746 		0x38d48, 0x38d50,
1747 		0x39200, 0x3920c,
1748 		0x39220, 0x39220,
1749 		0x39240, 0x39240,
1750 		0x39600, 0x3960c,
1751 		0x39a00, 0x39a1c,
1752 		0x39e00, 0x39e20,
1753 		0x39e38, 0x39e3c,
1754 		0x39e80, 0x39e80,
1755 		0x39e88, 0x39ea8,
1756 		0x39eb0, 0x39eb4,
1757 		0x39ec8, 0x39ed4,
1758 		0x39fb8, 0x3a004,
1759 		0x3a200, 0x3a200,
1760 		0x3a208, 0x3a240,
1761 		0x3a248, 0x3a280,
1762 		0x3a288, 0x3a2c0,
1763 		0x3a2c8, 0x3a2fc,
1764 		0x3a600, 0x3a630,
1765 		0x3aa00, 0x3aabc,
1766 		0x3ab00, 0x3ab10,
1767 		0x3ab20, 0x3ab30,
1768 		0x3ab40, 0x3ab50,
1769 		0x3ab60, 0x3ab70,
1770 		0x3b000, 0x3b028,
1771 		0x3b030, 0x3b048,
1772 		0x3b060, 0x3b068,
1773 		0x3b070, 0x3b09c,
1774 		0x3b0f0, 0x3b128,
1775 		0x3b130, 0x3b148,
1776 		0x3b160, 0x3b168,
1777 		0x3b170, 0x3b19c,
1778 		0x3b1f0, 0x3b238,
1779 		0x3b240, 0x3b240,
1780 		0x3b248, 0x3b250,
1781 		0x3b25c, 0x3b264,
1782 		0x3b270, 0x3b2b8,
1783 		0x3b2c0, 0x3b2e4,
1784 		0x3b2f8, 0x3b338,
1785 		0x3b340, 0x3b340,
1786 		0x3b348, 0x3b350,
1787 		0x3b35c, 0x3b364,
1788 		0x3b370, 0x3b3b8,
1789 		0x3b3c0, 0x3b3e4,
1790 		0x3b3f8, 0x3b428,
1791 		0x3b430, 0x3b448,
1792 		0x3b460, 0x3b468,
1793 		0x3b470, 0x3b49c,
1794 		0x3b4f0, 0x3b528,
1795 		0x3b530, 0x3b548,
1796 		0x3b560, 0x3b568,
1797 		0x3b570, 0x3b59c,
1798 		0x3b5f0, 0x3b638,
1799 		0x3b640, 0x3b640,
1800 		0x3b648, 0x3b650,
1801 		0x3b65c, 0x3b664,
1802 		0x3b670, 0x3b6b8,
1803 		0x3b6c0, 0x3b6e4,
1804 		0x3b6f8, 0x3b738,
1805 		0x3b740, 0x3b740,
1806 		0x3b748, 0x3b750,
1807 		0x3b75c, 0x3b764,
1808 		0x3b770, 0x3b7b8,
1809 		0x3b7c0, 0x3b7e4,
1810 		0x3b7f8, 0x3b7fc,
1811 		0x3b814, 0x3b814,
1812 		0x3b82c, 0x3b82c,
1813 		0x3b880, 0x3b88c,
1814 		0x3b8e8, 0x3b8ec,
1815 		0x3b900, 0x3b928,
1816 		0x3b930, 0x3b948,
1817 		0x3b960, 0x3b968,
1818 		0x3b970, 0x3b99c,
1819 		0x3b9f0, 0x3ba38,
1820 		0x3ba40, 0x3ba40,
1821 		0x3ba48, 0x3ba50,
1822 		0x3ba5c, 0x3ba64,
1823 		0x3ba70, 0x3bab8,
1824 		0x3bac0, 0x3bae4,
1825 		0x3baf8, 0x3bb10,
1826 		0x3bb28, 0x3bb28,
1827 		0x3bb3c, 0x3bb50,
1828 		0x3bbf0, 0x3bc10,
1829 		0x3bc28, 0x3bc28,
1830 		0x3bc3c, 0x3bc50,
1831 		0x3bcf0, 0x3bcfc,
1832 		0x3c000, 0x3c030,
1833 		0x3c100, 0x3c144,
1834 		0x3c190, 0x3c1a0,
1835 		0x3c1a8, 0x3c1b8,
1836 		0x3c1c4, 0x3c1c8,
1837 		0x3c1d0, 0x3c1d0,
1838 		0x3c200, 0x3c318,
1839 		0x3c400, 0x3c4b4,
1840 		0x3c4c0, 0x3c52c,
1841 		0x3c540, 0x3c61c,
1842 		0x3c800, 0x3c828,
1843 		0x3c834, 0x3c834,
1844 		0x3c8c0, 0x3c908,
1845 		0x3c910, 0x3c9ac,
1846 		0x3ca00, 0x3ca14,
1847 		0x3ca1c, 0x3ca2c,
1848 		0x3ca44, 0x3ca50,
1849 		0x3ca74, 0x3ca74,
1850 		0x3ca7c, 0x3cafc,
1851 		0x3cb08, 0x3cc24,
1852 		0x3cd00, 0x3cd00,
1853 		0x3cd08, 0x3cd14,
1854 		0x3cd1c, 0x3cd20,
1855 		0x3cd3c, 0x3cd3c,
1856 		0x3cd48, 0x3cd50,
1857 		0x3d200, 0x3d20c,
1858 		0x3d220, 0x3d220,
1859 		0x3d240, 0x3d240,
1860 		0x3d600, 0x3d60c,
1861 		0x3da00, 0x3da1c,
1862 		0x3de00, 0x3de20,
1863 		0x3de38, 0x3de3c,
1864 		0x3de80, 0x3de80,
1865 		0x3de88, 0x3dea8,
1866 		0x3deb0, 0x3deb4,
1867 		0x3dec8, 0x3ded4,
1868 		0x3dfb8, 0x3e004,
1869 		0x3e200, 0x3e200,
1870 		0x3e208, 0x3e240,
1871 		0x3e248, 0x3e280,
1872 		0x3e288, 0x3e2c0,
1873 		0x3e2c8, 0x3e2fc,
1874 		0x3e600, 0x3e630,
1875 		0x3ea00, 0x3eabc,
1876 		0x3eb00, 0x3eb10,
1877 		0x3eb20, 0x3eb30,
1878 		0x3eb40, 0x3eb50,
1879 		0x3eb60, 0x3eb70,
1880 		0x3f000, 0x3f028,
1881 		0x3f030, 0x3f048,
1882 		0x3f060, 0x3f068,
1883 		0x3f070, 0x3f09c,
1884 		0x3f0f0, 0x3f128,
1885 		0x3f130, 0x3f148,
1886 		0x3f160, 0x3f168,
1887 		0x3f170, 0x3f19c,
1888 		0x3f1f0, 0x3f238,
1889 		0x3f240, 0x3f240,
1890 		0x3f248, 0x3f250,
1891 		0x3f25c, 0x3f264,
1892 		0x3f270, 0x3f2b8,
1893 		0x3f2c0, 0x3f2e4,
1894 		0x3f2f8, 0x3f338,
1895 		0x3f340, 0x3f340,
1896 		0x3f348, 0x3f350,
1897 		0x3f35c, 0x3f364,
1898 		0x3f370, 0x3f3b8,
1899 		0x3f3c0, 0x3f3e4,
1900 		0x3f3f8, 0x3f428,
1901 		0x3f430, 0x3f448,
1902 		0x3f460, 0x3f468,
1903 		0x3f470, 0x3f49c,
1904 		0x3f4f0, 0x3f528,
1905 		0x3f530, 0x3f548,
1906 		0x3f560, 0x3f568,
1907 		0x3f570, 0x3f59c,
1908 		0x3f5f0, 0x3f638,
1909 		0x3f640, 0x3f640,
1910 		0x3f648, 0x3f650,
1911 		0x3f65c, 0x3f664,
1912 		0x3f670, 0x3f6b8,
1913 		0x3f6c0, 0x3f6e4,
1914 		0x3f6f8, 0x3f738,
1915 		0x3f740, 0x3f740,
1916 		0x3f748, 0x3f750,
1917 		0x3f75c, 0x3f764,
1918 		0x3f770, 0x3f7b8,
1919 		0x3f7c0, 0x3f7e4,
1920 		0x3f7f8, 0x3f7fc,
1921 		0x3f814, 0x3f814,
1922 		0x3f82c, 0x3f82c,
1923 		0x3f880, 0x3f88c,
1924 		0x3f8e8, 0x3f8ec,
1925 		0x3f900, 0x3f928,
1926 		0x3f930, 0x3f948,
1927 		0x3f960, 0x3f968,
1928 		0x3f970, 0x3f99c,
1929 		0x3f9f0, 0x3fa38,
1930 		0x3fa40, 0x3fa40,
1931 		0x3fa48, 0x3fa50,
1932 		0x3fa5c, 0x3fa64,
1933 		0x3fa70, 0x3fab8,
1934 		0x3fac0, 0x3fae4,
1935 		0x3faf8, 0x3fb10,
1936 		0x3fb28, 0x3fb28,
1937 		0x3fb3c, 0x3fb50,
1938 		0x3fbf0, 0x3fc10,
1939 		0x3fc28, 0x3fc28,
1940 		0x3fc3c, 0x3fc50,
1941 		0x3fcf0, 0x3fcfc,
1942 		0x40000, 0x4000c,
1943 		0x40040, 0x40050,
1944 		0x40060, 0x40068,
1945 		0x4007c, 0x4008c,
1946 		0x40094, 0x400b0,
1947 		0x400c0, 0x40144,
1948 		0x40180, 0x4018c,
1949 		0x40200, 0x40254,
1950 		0x40260, 0x40264,
1951 		0x40270, 0x40288,
1952 		0x40290, 0x40298,
1953 		0x402ac, 0x402c8,
1954 		0x402d0, 0x402e0,
1955 		0x402f0, 0x402f0,
1956 		0x40300, 0x4033c,
1957 		0x403f8, 0x403fc,
1958 		0x41304, 0x413c4,
1959 		0x41400, 0x4140c,
1960 		0x41414, 0x4141c,
1961 		0x41480, 0x414d0,
1962 		0x44000, 0x44054,
1963 		0x4405c, 0x44078,
1964 		0x440c0, 0x44174,
1965 		0x44180, 0x441ac,
1966 		0x441b4, 0x441b8,
1967 		0x441c0, 0x44254,
1968 		0x4425c, 0x44278,
1969 		0x442c0, 0x44374,
1970 		0x44380, 0x443ac,
1971 		0x443b4, 0x443b8,
1972 		0x443c0, 0x44454,
1973 		0x4445c, 0x44478,
1974 		0x444c0, 0x44574,
1975 		0x44580, 0x445ac,
1976 		0x445b4, 0x445b8,
1977 		0x445c0, 0x44654,
1978 		0x4465c, 0x44678,
1979 		0x446c0, 0x44774,
1980 		0x44780, 0x447ac,
1981 		0x447b4, 0x447b8,
1982 		0x447c0, 0x44854,
1983 		0x4485c, 0x44878,
1984 		0x448c0, 0x44974,
1985 		0x44980, 0x449ac,
1986 		0x449b4, 0x449b8,
1987 		0x449c0, 0x449fc,
1988 		0x45000, 0x45004,
1989 		0x45010, 0x45030,
1990 		0x45040, 0x45060,
1991 		0x45068, 0x45068,
1992 		0x45080, 0x45084,
1993 		0x450a0, 0x450b0,
1994 		0x45200, 0x45204,
1995 		0x45210, 0x45230,
1996 		0x45240, 0x45260,
1997 		0x45268, 0x45268,
1998 		0x45280, 0x45284,
1999 		0x452a0, 0x452b0,
2000 		0x460c0, 0x460e4,
2001 		0x47000, 0x4703c,
2002 		0x47044, 0x4708c,
2003 		0x47200, 0x47250,
2004 		0x47400, 0x47408,
2005 		0x47414, 0x47420,
2006 		0x47600, 0x47618,
2007 		0x47800, 0x47814,
2008 		0x48000, 0x4800c,
2009 		0x48040, 0x48050,
2010 		0x48060, 0x48068,
2011 		0x4807c, 0x4808c,
2012 		0x48094, 0x480b0,
2013 		0x480c0, 0x48144,
2014 		0x48180, 0x4818c,
2015 		0x48200, 0x48254,
2016 		0x48260, 0x48264,
2017 		0x48270, 0x48288,
2018 		0x48290, 0x48298,
2019 		0x482ac, 0x482c8,
2020 		0x482d0, 0x482e0,
2021 		0x482f0, 0x482f0,
2022 		0x48300, 0x4833c,
2023 		0x483f8, 0x483fc,
2024 		0x49304, 0x493c4,
2025 		0x49400, 0x4940c,
2026 		0x49414, 0x4941c,
2027 		0x49480, 0x494d0,
2028 		0x4c000, 0x4c054,
2029 		0x4c05c, 0x4c078,
2030 		0x4c0c0, 0x4c174,
2031 		0x4c180, 0x4c1ac,
2032 		0x4c1b4, 0x4c1b8,
2033 		0x4c1c0, 0x4c254,
2034 		0x4c25c, 0x4c278,
2035 		0x4c2c0, 0x4c374,
2036 		0x4c380, 0x4c3ac,
2037 		0x4c3b4, 0x4c3b8,
2038 		0x4c3c0, 0x4c454,
2039 		0x4c45c, 0x4c478,
2040 		0x4c4c0, 0x4c574,
2041 		0x4c580, 0x4c5ac,
2042 		0x4c5b4, 0x4c5b8,
2043 		0x4c5c0, 0x4c654,
2044 		0x4c65c, 0x4c678,
2045 		0x4c6c0, 0x4c774,
2046 		0x4c780, 0x4c7ac,
2047 		0x4c7b4, 0x4c7b8,
2048 		0x4c7c0, 0x4c854,
2049 		0x4c85c, 0x4c878,
2050 		0x4c8c0, 0x4c974,
2051 		0x4c980, 0x4c9ac,
2052 		0x4c9b4, 0x4c9b8,
2053 		0x4c9c0, 0x4c9fc,
2054 		0x4d000, 0x4d004,
2055 		0x4d010, 0x4d030,
2056 		0x4d040, 0x4d060,
2057 		0x4d068, 0x4d068,
2058 		0x4d080, 0x4d084,
2059 		0x4d0a0, 0x4d0b0,
2060 		0x4d200, 0x4d204,
2061 		0x4d210, 0x4d230,
2062 		0x4d240, 0x4d260,
2063 		0x4d268, 0x4d268,
2064 		0x4d280, 0x4d284,
2065 		0x4d2a0, 0x4d2b0,
2066 		0x4e0c0, 0x4e0e4,
2067 		0x4f000, 0x4f03c,
2068 		0x4f044, 0x4f08c,
2069 		0x4f200, 0x4f250,
2070 		0x4f400, 0x4f408,
2071 		0x4f414, 0x4f420,
2072 		0x4f600, 0x4f618,
2073 		0x4f800, 0x4f814,
2074 		0x50000, 0x50084,
2075 		0x50090, 0x500cc,
2076 		0x50400, 0x50400,
2077 		0x50800, 0x50884,
2078 		0x50890, 0x508cc,
2079 		0x50c00, 0x50c00,
2080 		0x51000, 0x5101c,
2081 		0x51300, 0x51308,
2082 	};
2083 
2084 	static const unsigned int t6_reg_ranges[] = {
2085 		0x1008, 0x101c,
2086 		0x1024, 0x10a8,
2087 		0x10b4, 0x10f8,
2088 		0x1100, 0x1114,
2089 		0x111c, 0x112c,
2090 		0x1138, 0x113c,
2091 		0x1144, 0x114c,
2092 		0x1180, 0x1184,
2093 		0x1190, 0x1194,
2094 		0x11a0, 0x11a4,
2095 		0x11b0, 0x11b4,
2096 		0x11fc, 0x1274,
2097 		0x1280, 0x133c,
2098 		0x1800, 0x18fc,
2099 		0x3000, 0x302c,
2100 		0x3060, 0x30b0,
2101 		0x30b8, 0x30d8,
2102 		0x30e0, 0x30fc,
2103 		0x3140, 0x357c,
2104 		0x35a8, 0x35cc,
2105 		0x35ec, 0x35ec,
2106 		0x3600, 0x5624,
2107 		0x56cc, 0x56ec,
2108 		0x56f4, 0x5720,
2109 		0x5728, 0x575c,
2110 		0x580c, 0x5814,
2111 		0x5890, 0x589c,
2112 		0x58a4, 0x58ac,
2113 		0x58b8, 0x58bc,
2114 		0x5940, 0x595c,
2115 		0x5980, 0x598c,
2116 		0x59b0, 0x59c8,
2117 		0x59d0, 0x59dc,
2118 		0x59fc, 0x5a18,
2119 		0x5a60, 0x5a6c,
2120 		0x5a80, 0x5a8c,
2121 		0x5a94, 0x5a9c,
2122 		0x5b94, 0x5bfc,
2123 		0x5c10, 0x5e48,
2124 		0x5e50, 0x5e94,
2125 		0x5ea0, 0x5eb0,
2126 		0x5ec0, 0x5ec0,
2127 		0x5ec8, 0x5ed0,
2128 		0x5ee0, 0x5ee0,
2129 		0x5ef0, 0x5ef0,
2130 		0x5f00, 0x5f00,
2131 		0x6000, 0x6020,
2132 		0x6028, 0x6040,
2133 		0x6058, 0x609c,
2134 		0x60a8, 0x619c,
2135 		0x7700, 0x7798,
2136 		0x77c0, 0x7880,
2137 		0x78cc, 0x78fc,
2138 		0x7b00, 0x7b58,
2139 		0x7b60, 0x7b84,
2140 		0x7b8c, 0x7c54,
2141 		0x7d00, 0x7d38,
2142 		0x7d40, 0x7d84,
2143 		0x7d8c, 0x7ddc,
2144 		0x7de4, 0x7e04,
2145 		0x7e10, 0x7e1c,
2146 		0x7e24, 0x7e38,
2147 		0x7e40, 0x7e44,
2148 		0x7e4c, 0x7e78,
2149 		0x7e80, 0x7edc,
2150 		0x7ee8, 0x7efc,
2151 		0x8dc0, 0x8de4,
2152 		0x8df8, 0x8e04,
2153 		0x8e10, 0x8e84,
2154 		0x8ea0, 0x8f88,
2155 		0x8fb8, 0x9058,
2156 		0x9060, 0x9060,
2157 		0x9068, 0x90f8,
2158 		0x9100, 0x9124,
2159 		0x9400, 0x9470,
2160 		0x9600, 0x9600,
2161 		0x9608, 0x9638,
2162 		0x9640, 0x9704,
2163 		0x9710, 0x971c,
2164 		0x9800, 0x9808,
2165 		0x9820, 0x983c,
2166 		0x9850, 0x9864,
2167 		0x9c00, 0x9c6c,
2168 		0x9c80, 0x9cec,
2169 		0x9d00, 0x9d6c,
2170 		0x9d80, 0x9dec,
2171 		0x9e00, 0x9e6c,
2172 		0x9e80, 0x9eec,
2173 		0x9f00, 0x9f6c,
2174 		0x9f80, 0xa020,
2175 		0xd004, 0xd03c,
2176 		0xd100, 0xd118,
2177 		0xd200, 0xd214,
2178 		0xd220, 0xd234,
2179 		0xd240, 0xd254,
2180 		0xd260, 0xd274,
2181 		0xd280, 0xd294,
2182 		0xd2a0, 0xd2b4,
2183 		0xd2c0, 0xd2d4,
2184 		0xd2e0, 0xd2f4,
2185 		0xd300, 0xd31c,
2186 		0xdfc0, 0xdfe0,
2187 		0xe000, 0xf008,
2188 		0xf010, 0xf018,
2189 		0xf020, 0xf028,
2190 		0x11000, 0x11014,
2191 		0x11048, 0x1106c,
2192 		0x11074, 0x11088,
2193 		0x11098, 0x11120,
2194 		0x1112c, 0x1117c,
2195 		0x11190, 0x112e0,
2196 		0x11300, 0x1130c,
2197 		0x12000, 0x1206c,
2198 		0x19040, 0x1906c,
2199 		0x19078, 0x19080,
2200 		0x1908c, 0x190e8,
2201 		0x190f0, 0x190f8,
2202 		0x19100, 0x19110,
2203 		0x19120, 0x19124,
2204 		0x19150, 0x19194,
2205 		0x1919c, 0x191b0,
2206 		0x191d0, 0x191e8,
2207 		0x19238, 0x19290,
2208 		0x192a4, 0x192b0,
2209 		0x192bc, 0x192bc,
2210 		0x19348, 0x1934c,
2211 		0x193f8, 0x19418,
2212 		0x19420, 0x19428,
2213 		0x19430, 0x19444,
2214 		0x1944c, 0x1946c,
2215 		0x19474, 0x19474,
2216 		0x19490, 0x194cc,
2217 		0x194f0, 0x194f8,
2218 		0x19c00, 0x19c48,
2219 		0x19c50, 0x19c80,
2220 		0x19c94, 0x19c98,
2221 		0x19ca0, 0x19cbc,
2222 		0x19ce4, 0x19ce4,
2223 		0x19cf0, 0x19cf8,
2224 		0x19d00, 0x19d28,
2225 		0x19d50, 0x19d78,
2226 		0x19d94, 0x19d98,
2227 		0x19da0, 0x19dc8,
2228 		0x19df0, 0x19e10,
2229 		0x19e50, 0x19e6c,
2230 		0x19ea0, 0x19ebc,
2231 		0x19ec4, 0x19ef4,
2232 		0x19f04, 0x19f2c,
2233 		0x19f34, 0x19f34,
2234 		0x19f40, 0x19f50,
2235 		0x19f90, 0x19fac,
2236 		0x19fc4, 0x19fc8,
2237 		0x19fd0, 0x19fe4,
2238 		0x1a000, 0x1a004,
2239 		0x1a010, 0x1a06c,
2240 		0x1a0b0, 0x1a0e4,
2241 		0x1a0ec, 0x1a0f8,
2242 		0x1a100, 0x1a108,
2243 		0x1a114, 0x1a120,
2244 		0x1a128, 0x1a130,
2245 		0x1a138, 0x1a138,
2246 		0x1a190, 0x1a1c4,
2247 		0x1a1fc, 0x1a1fc,
2248 		0x1e008, 0x1e00c,
2249 		0x1e040, 0x1e044,
2250 		0x1e04c, 0x1e04c,
2251 		0x1e284, 0x1e290,
2252 		0x1e2c0, 0x1e2c0,
2253 		0x1e2e0, 0x1e2e0,
2254 		0x1e300, 0x1e384,
2255 		0x1e3c0, 0x1e3c8,
2256 		0x1e408, 0x1e40c,
2257 		0x1e440, 0x1e444,
2258 		0x1e44c, 0x1e44c,
2259 		0x1e684, 0x1e690,
2260 		0x1e6c0, 0x1e6c0,
2261 		0x1e6e0, 0x1e6e0,
2262 		0x1e700, 0x1e784,
2263 		0x1e7c0, 0x1e7c8,
2264 		0x1e808, 0x1e80c,
2265 		0x1e840, 0x1e844,
2266 		0x1e84c, 0x1e84c,
2267 		0x1ea84, 0x1ea90,
2268 		0x1eac0, 0x1eac0,
2269 		0x1eae0, 0x1eae0,
2270 		0x1eb00, 0x1eb84,
2271 		0x1ebc0, 0x1ebc8,
2272 		0x1ec08, 0x1ec0c,
2273 		0x1ec40, 0x1ec44,
2274 		0x1ec4c, 0x1ec4c,
2275 		0x1ee84, 0x1ee90,
2276 		0x1eec0, 0x1eec0,
2277 		0x1eee0, 0x1eee0,
2278 		0x1ef00, 0x1ef84,
2279 		0x1efc0, 0x1efc8,
2280 		0x1f008, 0x1f00c,
2281 		0x1f040, 0x1f044,
2282 		0x1f04c, 0x1f04c,
2283 		0x1f284, 0x1f290,
2284 		0x1f2c0, 0x1f2c0,
2285 		0x1f2e0, 0x1f2e0,
2286 		0x1f300, 0x1f384,
2287 		0x1f3c0, 0x1f3c8,
2288 		0x1f408, 0x1f40c,
2289 		0x1f440, 0x1f444,
2290 		0x1f44c, 0x1f44c,
2291 		0x1f684, 0x1f690,
2292 		0x1f6c0, 0x1f6c0,
2293 		0x1f6e0, 0x1f6e0,
2294 		0x1f700, 0x1f784,
2295 		0x1f7c0, 0x1f7c8,
2296 		0x1f808, 0x1f80c,
2297 		0x1f840, 0x1f844,
2298 		0x1f84c, 0x1f84c,
2299 		0x1fa84, 0x1fa90,
2300 		0x1fac0, 0x1fac0,
2301 		0x1fae0, 0x1fae0,
2302 		0x1fb00, 0x1fb84,
2303 		0x1fbc0, 0x1fbc8,
2304 		0x1fc08, 0x1fc0c,
2305 		0x1fc40, 0x1fc44,
2306 		0x1fc4c, 0x1fc4c,
2307 		0x1fe84, 0x1fe90,
2308 		0x1fec0, 0x1fec0,
2309 		0x1fee0, 0x1fee0,
2310 		0x1ff00, 0x1ff84,
2311 		0x1ffc0, 0x1ffc8,
2312 		0x30000, 0x30030,
2313 		0x30100, 0x30168,
2314 		0x30190, 0x301a0,
2315 		0x301a8, 0x301b8,
2316 		0x301c4, 0x301c8,
2317 		0x301d0, 0x301d0,
2318 		0x30200, 0x30320,
2319 		0x30400, 0x304b4,
2320 		0x304c0, 0x3052c,
2321 		0x30540, 0x3061c,
2322 		0x30800, 0x308a0,
2323 		0x308c0, 0x30908,
2324 		0x30910, 0x309b8,
2325 		0x30a00, 0x30a04,
2326 		0x30a0c, 0x30a14,
2327 		0x30a1c, 0x30a2c,
2328 		0x30a44, 0x30a50,
2329 		0x30a74, 0x30a74,
2330 		0x30a7c, 0x30afc,
2331 		0x30b08, 0x30c24,
2332 		0x30d00, 0x30d14,
2333 		0x30d1c, 0x30d3c,
2334 		0x30d44, 0x30d4c,
2335 		0x30d54, 0x30d74,
2336 		0x30d7c, 0x30d7c,
2337 		0x30de0, 0x30de0,
2338 		0x30e00, 0x30ed4,
2339 		0x30f00, 0x30fa4,
2340 		0x30fc0, 0x30fc4,
2341 		0x31000, 0x31004,
2342 		0x31080, 0x310fc,
2343 		0x31208, 0x31220,
2344 		0x3123c, 0x31254,
2345 		0x31300, 0x31300,
2346 		0x31308, 0x3131c,
2347 		0x31338, 0x3133c,
2348 		0x31380, 0x31380,
2349 		0x31388, 0x313a8,
2350 		0x313b4, 0x313b4,
2351 		0x31400, 0x31420,
2352 		0x31438, 0x3143c,
2353 		0x31480, 0x31480,
2354 		0x314a8, 0x314a8,
2355 		0x314b0, 0x314b4,
2356 		0x314c8, 0x314d4,
2357 		0x31a40, 0x31a4c,
2358 		0x31af0, 0x31b20,
2359 		0x31b38, 0x31b3c,
2360 		0x31b80, 0x31b80,
2361 		0x31ba8, 0x31ba8,
2362 		0x31bb0, 0x31bb4,
2363 		0x31bc8, 0x31bd4,
2364 		0x32140, 0x3218c,
2365 		0x321f0, 0x321f4,
2366 		0x32200, 0x32200,
2367 		0x32218, 0x32218,
2368 		0x32400, 0x32400,
2369 		0x32408, 0x3241c,
2370 		0x32618, 0x32620,
2371 		0x32664, 0x32664,
2372 		0x326a8, 0x326a8,
2373 		0x326ec, 0x326ec,
2374 		0x32a00, 0x32abc,
2375 		0x32b00, 0x32b18,
2376 		0x32b20, 0x32b38,
2377 		0x32b40, 0x32b58,
2378 		0x32b60, 0x32b78,
2379 		0x32c00, 0x32c00,
2380 		0x32c08, 0x32c3c,
2381 		0x33000, 0x3302c,
2382 		0x33034, 0x33050,
2383 		0x33058, 0x33058,
2384 		0x33060, 0x3308c,
2385 		0x3309c, 0x330ac,
2386 		0x330c0, 0x330c0,
2387 		0x330c8, 0x330d0,
2388 		0x330d8, 0x330e0,
2389 		0x330ec, 0x3312c,
2390 		0x33134, 0x33150,
2391 		0x33158, 0x33158,
2392 		0x33160, 0x3318c,
2393 		0x3319c, 0x331ac,
2394 		0x331c0, 0x331c0,
2395 		0x331c8, 0x331d0,
2396 		0x331d8, 0x331e0,
2397 		0x331ec, 0x33290,
2398 		0x33298, 0x332c4,
2399 		0x332e4, 0x33390,
2400 		0x33398, 0x333c4,
2401 		0x333e4, 0x3342c,
2402 		0x33434, 0x33450,
2403 		0x33458, 0x33458,
2404 		0x33460, 0x3348c,
2405 		0x3349c, 0x334ac,
2406 		0x334c0, 0x334c0,
2407 		0x334c8, 0x334d0,
2408 		0x334d8, 0x334e0,
2409 		0x334ec, 0x3352c,
2410 		0x33534, 0x33550,
2411 		0x33558, 0x33558,
2412 		0x33560, 0x3358c,
2413 		0x3359c, 0x335ac,
2414 		0x335c0, 0x335c0,
2415 		0x335c8, 0x335d0,
2416 		0x335d8, 0x335e0,
2417 		0x335ec, 0x33690,
2418 		0x33698, 0x336c4,
2419 		0x336e4, 0x33790,
2420 		0x33798, 0x337c4,
2421 		0x337e4, 0x337fc,
2422 		0x33814, 0x33814,
2423 		0x33854, 0x33868,
2424 		0x33880, 0x3388c,
2425 		0x338c0, 0x338d0,
2426 		0x338e8, 0x338ec,
2427 		0x33900, 0x3392c,
2428 		0x33934, 0x33950,
2429 		0x33958, 0x33958,
2430 		0x33960, 0x3398c,
2431 		0x3399c, 0x339ac,
2432 		0x339c0, 0x339c0,
2433 		0x339c8, 0x339d0,
2434 		0x339d8, 0x339e0,
2435 		0x339ec, 0x33a90,
2436 		0x33a98, 0x33ac4,
2437 		0x33ae4, 0x33b10,
2438 		0x33b24, 0x33b28,
2439 		0x33b38, 0x33b50,
2440 		0x33bf0, 0x33c10,
2441 		0x33c24, 0x33c28,
2442 		0x33c38, 0x33c50,
2443 		0x33cf0, 0x33cfc,
2444 		0x34000, 0x34030,
2445 		0x34100, 0x34168,
2446 		0x34190, 0x341a0,
2447 		0x341a8, 0x341b8,
2448 		0x341c4, 0x341c8,
2449 		0x341d0, 0x341d0,
2450 		0x34200, 0x34320,
2451 		0x34400, 0x344b4,
2452 		0x344c0, 0x3452c,
2453 		0x34540, 0x3461c,
2454 		0x34800, 0x348a0,
2455 		0x348c0, 0x34908,
2456 		0x34910, 0x349b8,
2457 		0x34a00, 0x34a04,
2458 		0x34a0c, 0x34a14,
2459 		0x34a1c, 0x34a2c,
2460 		0x34a44, 0x34a50,
2461 		0x34a74, 0x34a74,
2462 		0x34a7c, 0x34afc,
2463 		0x34b08, 0x34c24,
2464 		0x34d00, 0x34d14,
2465 		0x34d1c, 0x34d3c,
2466 		0x34d44, 0x34d4c,
2467 		0x34d54, 0x34d74,
2468 		0x34d7c, 0x34d7c,
2469 		0x34de0, 0x34de0,
2470 		0x34e00, 0x34ed4,
2471 		0x34f00, 0x34fa4,
2472 		0x34fc0, 0x34fc4,
2473 		0x35000, 0x35004,
2474 		0x35080, 0x350fc,
2475 		0x35208, 0x35220,
2476 		0x3523c, 0x35254,
2477 		0x35300, 0x35300,
2478 		0x35308, 0x3531c,
2479 		0x35338, 0x3533c,
2480 		0x35380, 0x35380,
2481 		0x35388, 0x353a8,
2482 		0x353b4, 0x353b4,
2483 		0x35400, 0x35420,
2484 		0x35438, 0x3543c,
2485 		0x35480, 0x35480,
2486 		0x354a8, 0x354a8,
2487 		0x354b0, 0x354b4,
2488 		0x354c8, 0x354d4,
2489 		0x35a40, 0x35a4c,
2490 		0x35af0, 0x35b20,
2491 		0x35b38, 0x35b3c,
2492 		0x35b80, 0x35b80,
2493 		0x35ba8, 0x35ba8,
2494 		0x35bb0, 0x35bb4,
2495 		0x35bc8, 0x35bd4,
2496 		0x36140, 0x3618c,
2497 		0x361f0, 0x361f4,
2498 		0x36200, 0x36200,
2499 		0x36218, 0x36218,
2500 		0x36400, 0x36400,
2501 		0x36408, 0x3641c,
2502 		0x36618, 0x36620,
2503 		0x36664, 0x36664,
2504 		0x366a8, 0x366a8,
2505 		0x366ec, 0x366ec,
2506 		0x36a00, 0x36abc,
2507 		0x36b00, 0x36b18,
2508 		0x36b20, 0x36b38,
2509 		0x36b40, 0x36b58,
2510 		0x36b60, 0x36b78,
2511 		0x36c00, 0x36c00,
2512 		0x36c08, 0x36c3c,
2513 		0x37000, 0x3702c,
2514 		0x37034, 0x37050,
2515 		0x37058, 0x37058,
2516 		0x37060, 0x3708c,
2517 		0x3709c, 0x370ac,
2518 		0x370c0, 0x370c0,
2519 		0x370c8, 0x370d0,
2520 		0x370d8, 0x370e0,
2521 		0x370ec, 0x3712c,
2522 		0x37134, 0x37150,
2523 		0x37158, 0x37158,
2524 		0x37160, 0x3718c,
2525 		0x3719c, 0x371ac,
2526 		0x371c0, 0x371c0,
2527 		0x371c8, 0x371d0,
2528 		0x371d8, 0x371e0,
2529 		0x371ec, 0x37290,
2530 		0x37298, 0x372c4,
2531 		0x372e4, 0x37390,
2532 		0x37398, 0x373c4,
2533 		0x373e4, 0x3742c,
2534 		0x37434, 0x37450,
2535 		0x37458, 0x37458,
2536 		0x37460, 0x3748c,
2537 		0x3749c, 0x374ac,
2538 		0x374c0, 0x374c0,
2539 		0x374c8, 0x374d0,
2540 		0x374d8, 0x374e0,
2541 		0x374ec, 0x3752c,
2542 		0x37534, 0x37550,
2543 		0x37558, 0x37558,
2544 		0x37560, 0x3758c,
2545 		0x3759c, 0x375ac,
2546 		0x375c0, 0x375c0,
2547 		0x375c8, 0x375d0,
2548 		0x375d8, 0x375e0,
2549 		0x375ec, 0x37690,
2550 		0x37698, 0x376c4,
2551 		0x376e4, 0x37790,
2552 		0x37798, 0x377c4,
2553 		0x377e4, 0x377fc,
2554 		0x37814, 0x37814,
2555 		0x37854, 0x37868,
2556 		0x37880, 0x3788c,
2557 		0x378c0, 0x378d0,
2558 		0x378e8, 0x378ec,
2559 		0x37900, 0x3792c,
2560 		0x37934, 0x37950,
2561 		0x37958, 0x37958,
2562 		0x37960, 0x3798c,
2563 		0x3799c, 0x379ac,
2564 		0x379c0, 0x379c0,
2565 		0x379c8, 0x379d0,
2566 		0x379d8, 0x379e0,
2567 		0x379ec, 0x37a90,
2568 		0x37a98, 0x37ac4,
2569 		0x37ae4, 0x37b10,
2570 		0x37b24, 0x37b28,
2571 		0x37b38, 0x37b50,
2572 		0x37bf0, 0x37c10,
2573 		0x37c24, 0x37c28,
2574 		0x37c38, 0x37c50,
2575 		0x37cf0, 0x37cfc,
2576 		0x40040, 0x40040,
2577 		0x40080, 0x40084,
2578 		0x40100, 0x40100,
2579 		0x40140, 0x401bc,
2580 		0x40200, 0x40214,
2581 		0x40228, 0x40228,
2582 		0x40240, 0x40258,
2583 		0x40280, 0x40280,
2584 		0x40304, 0x40304,
2585 		0x40330, 0x4033c,
2586 		0x41304, 0x413c8,
2587 		0x413d0, 0x413dc,
2588 		0x413f0, 0x413f0,
2589 		0x41400, 0x4140c,
2590 		0x41414, 0x4141c,
2591 		0x41480, 0x414d0,
2592 		0x44000, 0x4407c,
2593 		0x440c0, 0x441ac,
2594 		0x441b4, 0x4427c,
2595 		0x442c0, 0x443ac,
2596 		0x443b4, 0x4447c,
2597 		0x444c0, 0x445ac,
2598 		0x445b4, 0x4467c,
2599 		0x446c0, 0x447ac,
2600 		0x447b4, 0x4487c,
2601 		0x448c0, 0x449ac,
2602 		0x449b4, 0x44a7c,
2603 		0x44ac0, 0x44bac,
2604 		0x44bb4, 0x44c7c,
2605 		0x44cc0, 0x44dac,
2606 		0x44db4, 0x44e7c,
2607 		0x44ec0, 0x44fac,
2608 		0x44fb4, 0x4507c,
2609 		0x450c0, 0x451ac,
2610 		0x451b4, 0x451fc,
2611 		0x45800, 0x45804,
2612 		0x45810, 0x45830,
2613 		0x45840, 0x45860,
2614 		0x45868, 0x45868,
2615 		0x45880, 0x45884,
2616 		0x458a0, 0x458b0,
2617 		0x45a00, 0x45a04,
2618 		0x45a10, 0x45a30,
2619 		0x45a40, 0x45a60,
2620 		0x45a68, 0x45a68,
2621 		0x45a80, 0x45a84,
2622 		0x45aa0, 0x45ab0,
2623 		0x460c0, 0x460e4,
2624 		0x47000, 0x4703c,
2625 		0x47044, 0x4708c,
2626 		0x47200, 0x47250,
2627 		0x47400, 0x47408,
2628 		0x47414, 0x47420,
2629 		0x47600, 0x47618,
2630 		0x47800, 0x47814,
2631 		0x47820, 0x4782c,
2632 		0x50000, 0x50084,
2633 		0x50090, 0x500cc,
2634 		0x50300, 0x50384,
2635 		0x50400, 0x50400,
2636 		0x50800, 0x50884,
2637 		0x50890, 0x508cc,
2638 		0x50b00, 0x50b84,
2639 		0x50c00, 0x50c00,
2640 		0x51000, 0x51020,
2641 		0x51028, 0x510b0,
2642 		0x51300, 0x51324,
2643 	};
2644 
2645 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2646 	const unsigned int *reg_ranges;
2647 	int reg_ranges_size, range;
2648 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2649 
2650 	/* Select the right set of register ranges to dump depending on the
2651 	 * adapter chip type.
2652 	 */
2653 	switch (chip_version) {
2654 	case CHELSIO_T4:
2655 		reg_ranges = t4_reg_ranges;
2656 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2657 		break;
2658 
2659 	case CHELSIO_T5:
2660 		reg_ranges = t5_reg_ranges;
2661 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2662 		break;
2663 
2664 	case CHELSIO_T6:
2665 		reg_ranges = t6_reg_ranges;
2666 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2667 		break;
2668 
2669 	default:
2670 		dev_err(adap->pdev_dev,
2671 			"Unsupported chip version %d\n", chip_version);
2672 		return;
2673 	}
2674 
2675 	/* Clear the register buffer and insert the appropriate register
2676 	 * values selected by the above register ranges.
2677 	 */
2678 	memset(buf, 0, buf_size);
2679 	for (range = 0; range < reg_ranges_size; range += 2) {
2680 		unsigned int reg = reg_ranges[range];
2681 		unsigned int last_reg = reg_ranges[range + 1];
2682 		u32 *bufp = (u32 *)((char *)buf + reg);
2683 
2684 		/* Iterate across the register range filling in the register
2685 		 * buffer but don't write past the end of the register buffer.
2686 		 */
2687 		while (reg <= last_reg && bufp < buf_end) {
2688 			*bufp++ = t4_read_reg(adap, reg);
2689 			reg += sizeof(u32);
2690 		}
2691 	}
2692 }
2693 
2694 #define EEPROM_STAT_ADDR   0x7bfc
2695 #define VPD_BASE           0x400
2696 #define VPD_BASE_OLD       0
2697 #define VPD_LEN            1024
2698 #define CHELSIO_VPD_UNIQUE_ID 0x82
2699 
2700 /**
2701  * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2702  * @phys_addr: the physical EEPROM address
2703  * @fn: the PCI function number
2704  * @sz: size of function-specific area
2705  *
2706  * Translate a physical EEPROM address to virtual.  The first 1K is
2707  * accessed through virtual addresses starting at 31K, the rest is
2708  * accessed through virtual addresses starting at 0.
2709  *
2710  * The mapping is as follows:
2711  * [0..1K) -> [31K..32K)
2712  * [1K..1K+A) -> [31K-A..31K)
2713  * [1K+A..ES) -> [0..ES-A-1K)
2714  *
2715  * where A = @fn * @sz, and ES = EEPROM size.
2716  */
2717 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2718 {
2719 	fn *= sz;
2720 	if (phys_addr < 1024)
2721 		return phys_addr + (31 << 10);
2722 	if (phys_addr < 1024 + fn)
2723 		return 31744 - fn + phys_addr - 1024;
2724 	if (phys_addr < EEPROMSIZE)
2725 		return phys_addr - 1024 - fn;
2726 	return -EINVAL;
2727 }
2728 
2729 /**
2730  *	t4_seeprom_wp - enable/disable EEPROM write protection
2731  *	@adapter: the adapter
2732  *	@enable: whether to enable or disable write protection
2733  *
2734  *	Enables or disables write protection on the serial EEPROM.
2735  */
2736 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2737 {
2738 	unsigned int v = enable ? 0xc : 0;
2739 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2740 	return ret < 0 ? ret : 0;
2741 }
2742 
2743 /**
2744  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2745  *	@adapter: adapter to read
2746  *	@p: where to store the parameters
2747  *
2748  *	Reads card parameters stored in VPD EEPROM.
2749  */
2750 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2751 {
2752 	int i, ret = 0, addr;
2753 	int ec, sn, pn, na;
2754 	u8 *vpd, csum;
2755 	unsigned int vpdr_len, kw_offset, id_len;
2756 
2757 	vpd = vmalloc(VPD_LEN);
2758 	if (!vpd)
2759 		return -ENOMEM;
2760 
2761 	/* Card information normally starts at VPD_BASE but early cards had
2762 	 * it at 0.
2763 	 */
2764 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2765 	if (ret < 0)
2766 		goto out;
2767 
2768 	/* The VPD shall have a unique identifier specified by the PCI SIG.
2769 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2770 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2771 	 * is expected to automatically put this entry at the
2772 	 * beginning of the VPD.
2773 	 */
2774 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2775 
2776 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2777 	if (ret < 0)
2778 		goto out;
2779 
2780 	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2781 		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2782 		ret = -EINVAL;
2783 		goto out;
2784 	}
2785 
2786 	id_len = pci_vpd_lrdt_size(vpd);
2787 	if (id_len > ID_LEN)
2788 		id_len = ID_LEN;
2789 
2790 	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2791 	if (i < 0) {
2792 		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2793 		ret = -EINVAL;
2794 		goto out;
2795 	}
2796 
2797 	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2798 	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2799 	if (vpdr_len + kw_offset > VPD_LEN) {
2800 		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2801 		ret = -EINVAL;
2802 		goto out;
2803 	}
2804 
2805 #define FIND_VPD_KW(var, name) do { \
2806 	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2807 	if (var < 0) { \
2808 		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2809 		ret = -EINVAL; \
2810 		goto out; \
2811 	} \
2812 	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2813 } while (0)
2814 
2815 	FIND_VPD_KW(i, "RV");
2816 	for (csum = 0; i >= 0; i--)
2817 		csum += vpd[i];
2818 
2819 	if (csum) {
2820 		dev_err(adapter->pdev_dev,
2821 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2822 		ret = -EINVAL;
2823 		goto out;
2824 	}
2825 
2826 	FIND_VPD_KW(ec, "EC");
2827 	FIND_VPD_KW(sn, "SN");
2828 	FIND_VPD_KW(pn, "PN");
2829 	FIND_VPD_KW(na, "NA");
2830 #undef FIND_VPD_KW
2831 
2832 	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2833 	strim(p->id);
2834 	memcpy(p->ec, vpd + ec, EC_LEN);
2835 	strim(p->ec);
2836 	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2837 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2838 	strim(p->sn);
2839 	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2840 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2841 	strim(p->pn);
2842 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2843 	strim((char *)p->na);
2844 
2845 out:
2846 	vfree(vpd);
2847 	return ret < 0 ? ret : 0;
2848 }
2849 
2850 /**
2851  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2852  *	@adapter: adapter to read
2853  *	@p: where to store the parameters
2854  *
2855  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2856  *	Clock.  This can only be called after a connection to the firmware
2857  *	is established.
2858  */
2859 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2860 {
2861 	u32 cclk_param, cclk_val;
2862 	int ret;
2863 
2864 	/* Grab the raw VPD parameters.
2865 	 */
2866 	ret = t4_get_raw_vpd_params(adapter, p);
2867 	if (ret)
2868 		return ret;
2869 
2870 	/* Ask firmware for the Core Clock since it knows how to translate the
2871 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2872 	 */
2873 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2874 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2875 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2876 			      1, &cclk_param, &cclk_val);
2877 
2878 	if (ret)
2879 		return ret;
2880 	p->cclk = cclk_val;
2881 
2882 	return 0;
2883 }
2884 
2885 /**
2886  *	t4_get_pfres - retrieve VF resource limits
2887  *	@adapter: the adapter
2888  *
2889  *	Retrieves configured resource limits and capabilities for a physical
2890  *	function.  The results are stored in @adapter->pfres.
2891  */
2892 int t4_get_pfres(struct adapter *adapter)
2893 {
2894 	struct pf_resources *pfres = &adapter->params.pfres;
2895 	struct fw_pfvf_cmd cmd, rpl;
2896 	int v;
2897 	u32 word;
2898 
2899 	/* Execute PFVF Read command to get VF resource limits; bail out early
2900 	 * with error on command failure.
2901 	 */
2902 	memset(&cmd, 0, sizeof(cmd));
2903 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
2904 				    FW_CMD_REQUEST_F |
2905 				    FW_CMD_READ_F |
2906 				    FW_PFVF_CMD_PFN_V(adapter->pf) |
2907 				    FW_PFVF_CMD_VFN_V(0));
2908 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2909 	v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2910 	if (v != FW_SUCCESS)
2911 		return v;
2912 
2913 	/* Extract PF resource limits and return success.
2914 	 */
2915 	word = be32_to_cpu(rpl.niqflint_niq);
2916 	pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
2917 	pfres->niq = FW_PFVF_CMD_NIQ_G(word);
2918 
2919 	word = be32_to_cpu(rpl.type_to_neq);
2920 	pfres->neq = FW_PFVF_CMD_NEQ_G(word);
2921 	pfres->pmask = FW_PFVF_CMD_PMASK_G(word);
2922 
2923 	word = be32_to_cpu(rpl.tc_to_nexactf);
2924 	pfres->tc = FW_PFVF_CMD_TC_G(word);
2925 	pfres->nvi = FW_PFVF_CMD_NVI_G(word);
2926 	pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
2927 
2928 	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2929 	pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
2930 	pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
2931 	pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
2932 
2933 	return 0;
2934 }
2935 
2936 /* serial flash and firmware constants */
2937 enum {
2938 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2939 
2940 	/* flash command opcodes */
2941 	SF_PROG_PAGE    = 2,          /* program page */
2942 	SF_WR_DISABLE   = 4,          /* disable writes */
2943 	SF_RD_STATUS    = 5,          /* read status register */
2944 	SF_WR_ENABLE    = 6,          /* enable writes */
2945 	SF_RD_DATA_FAST = 0xb,        /* read flash */
2946 	SF_RD_ID        = 0x9f,       /* read ID */
2947 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2948 };
2949 
2950 /**
2951  *	sf1_read - read data from the serial flash
2952  *	@adapter: the adapter
2953  *	@byte_cnt: number of bytes to read
2954  *	@cont: whether another operation will be chained
2955  *	@lock: whether to lock SF for PL access only
2956  *	@valp: where to store the read data
2957  *
2958  *	Reads up to 4 bytes of data from the serial flash.  The location of
2959  *	the read needs to be specified prior to calling this by issuing the
2960  *	appropriate commands to the serial flash.
2961  */
2962 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2963 		    int lock, u32 *valp)
2964 {
2965 	int ret;
2966 
2967 	if (!byte_cnt || byte_cnt > 4)
2968 		return -EINVAL;
2969 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2970 		return -EBUSY;
2971 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2972 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2973 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2974 	if (!ret)
2975 		*valp = t4_read_reg(adapter, SF_DATA_A);
2976 	return ret;
2977 }
2978 
2979 /**
2980  *	sf1_write - write data to the serial flash
2981  *	@adapter: the adapter
2982  *	@byte_cnt: number of bytes to write
2983  *	@cont: whether another operation will be chained
2984  *	@lock: whether to lock SF for PL access only
2985  *	@val: value to write
2986  *
2987  *	Writes up to 4 bytes of data to the serial flash.  The location of
2988  *	the write needs to be specified prior to calling this by issuing the
2989  *	appropriate commands to the serial flash.
2990  */
2991 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2992 		     int lock, u32 val)
2993 {
2994 	if (!byte_cnt || byte_cnt > 4)
2995 		return -EINVAL;
2996 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2997 		return -EBUSY;
2998 	t4_write_reg(adapter, SF_DATA_A, val);
2999 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
3000 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
3001 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
3002 }
3003 
3004 /**
3005  *	flash_wait_op - wait for a flash operation to complete
3006  *	@adapter: the adapter
3007  *	@attempts: max number of polls of the status register
3008  *	@delay: delay between polls in ms
3009  *
3010  *	Wait for a flash operation to complete by polling the status register.
3011  */
3012 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3013 {
3014 	int ret;
3015 	u32 status;
3016 
3017 	while (1) {
3018 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3019 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3020 			return ret;
3021 		if (!(status & 1))
3022 			return 0;
3023 		if (--attempts == 0)
3024 			return -EAGAIN;
3025 		if (delay)
3026 			msleep(delay);
3027 	}
3028 }
3029 
3030 /**
3031  *	t4_read_flash - read words from serial flash
3032  *	@adapter: the adapter
3033  *	@addr: the start address for the read
3034  *	@nwords: how many 32-bit words to read
3035  *	@data: where to store the read data
3036  *	@byte_oriented: whether to store data as bytes or as words
3037  *
3038  *	Read the specified number of 32-bit words from the serial flash.
3039  *	If @byte_oriented is set the read data is stored as a byte array
3040  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3041  *	natural endianness.
3042  */
3043 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3044 		  unsigned int nwords, u32 *data, int byte_oriented)
3045 {
3046 	int ret;
3047 
3048 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3049 		return -EINVAL;
3050 
3051 	addr = swab32(addr) | SF_RD_DATA_FAST;
3052 
3053 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3054 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3055 		return ret;
3056 
3057 	for ( ; nwords; nwords--, data++) {
3058 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3059 		if (nwords == 1)
3060 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3061 		if (ret)
3062 			return ret;
3063 		if (byte_oriented)
3064 			*data = (__force __u32)(cpu_to_be32(*data));
3065 	}
3066 	return 0;
3067 }
3068 
3069 /**
3070  *	t4_write_flash - write up to a page of data to the serial flash
3071  *	@adapter: the adapter
3072  *	@addr: the start address to write
3073  *	@n: length of data to write in bytes
3074  *	@data: the data to write
3075  *
3076  *	Writes up to a page of data (256 bytes) to the serial flash starting
3077  *	at the given address.  All the data must be written to the same page.
3078  */
3079 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3080 			  unsigned int n, const u8 *data)
3081 {
3082 	int ret;
3083 	u32 buf[64];
3084 	unsigned int i, c, left, val, offset = addr & 0xff;
3085 
3086 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3087 		return -EINVAL;
3088 
3089 	val = swab32(addr) | SF_PROG_PAGE;
3090 
3091 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3092 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3093 		goto unlock;
3094 
3095 	for (left = n; left; left -= c) {
3096 		c = min(left, 4U);
3097 		for (val = 0, i = 0; i < c; ++i)
3098 			val = (val << 8) + *data++;
3099 
3100 		ret = sf1_write(adapter, c, c != left, 1, val);
3101 		if (ret)
3102 			goto unlock;
3103 	}
3104 	ret = flash_wait_op(adapter, 8, 1);
3105 	if (ret)
3106 		goto unlock;
3107 
3108 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3109 
3110 	/* Read the page to verify the write succeeded */
3111 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
3112 	if (ret)
3113 		return ret;
3114 
3115 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3116 		dev_err(adapter->pdev_dev,
3117 			"failed to correctly write the flash page at %#x\n",
3118 			addr);
3119 		return -EIO;
3120 	}
3121 	return 0;
3122 
3123 unlock:
3124 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3125 	return ret;
3126 }
3127 
3128 /**
3129  *	t4_get_fw_version - read the firmware version
3130  *	@adapter: the adapter
3131  *	@vers: where to place the version
3132  *
3133  *	Reads the FW version from flash.
3134  */
3135 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3136 {
3137 	return t4_read_flash(adapter, FLASH_FW_START +
3138 			     offsetof(struct fw_hdr, fw_ver), 1,
3139 			     vers, 0);
3140 }
3141 
3142 /**
3143  *	t4_get_bs_version - read the firmware bootstrap version
3144  *	@adapter: the adapter
3145  *	@vers: where to place the version
3146  *
3147  *	Reads the FW Bootstrap version from flash.
3148  */
3149 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3150 {
3151 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3152 			     offsetof(struct fw_hdr, fw_ver), 1,
3153 			     vers, 0);
3154 }
3155 
3156 /**
3157  *	t4_get_tp_version - read the TP microcode version
3158  *	@adapter: the adapter
3159  *	@vers: where to place the version
3160  *
3161  *	Reads the TP microcode version from flash.
3162  */
3163 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3164 {
3165 	return t4_read_flash(adapter, FLASH_FW_START +
3166 			     offsetof(struct fw_hdr, tp_microcode_ver),
3167 			     1, vers, 0);
3168 }
3169 
3170 /**
3171  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3172  *	@adapter: the adapter
3173  *	@vers: where to place the version
3174  *
3175  *	Reads the Expansion ROM header from FLASH and returns the version
3176  *	number (if present) through the @vers return value pointer.  We return
3177  *	this in the Firmware Version Format since it's convenient.  Return
3178  *	0 on success, -ENOENT if no Expansion ROM is present.
3179  */
3180 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3181 {
3182 	struct exprom_header {
3183 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3184 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3185 	} *hdr;
3186 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3187 					   sizeof(u32))];
3188 	int ret;
3189 
3190 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3191 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3192 			    0);
3193 	if (ret)
3194 		return ret;
3195 
3196 	hdr = (struct exprom_header *)exprom_header_buf;
3197 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3198 		return -ENOENT;
3199 
3200 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3201 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3202 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3203 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3204 	return 0;
3205 }
3206 
3207 /**
3208  *      t4_get_vpd_version - return the VPD version
3209  *      @adapter: the adapter
3210  *      @vers: where to place the version
3211  *
3212  *      Reads the VPD via the Firmware interface (thus this can only be called
3213  *      once we're ready to issue Firmware commands).  The format of the
3214  *      VPD version is adapter specific.  Returns 0 on success, an error on
3215  *      failure.
3216  *
3217  *      Note that early versions of the Firmware didn't include the ability
3218  *      to retrieve the VPD version, so we zero-out the return-value parameter
3219  *      in that case to avoid leaving it with garbage in it.
3220  *
3221  *      Also note that the Firmware will return its cached copy of the VPD
3222  *      Revision ID, not the actual Revision ID as written in the Serial
3223  *      EEPROM.  This is only an issue if a new VPD has been written and the
3224  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3225  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3226  *      if the Host Driver will be performing a full adapter initialization.
3227  */
3228 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3229 {
3230 	u32 vpdrev_param;
3231 	int ret;
3232 
3233 	vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3234 			FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3235 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3236 			      1, &vpdrev_param, vers);
3237 	if (ret)
3238 		*vers = 0;
3239 	return ret;
3240 }
3241 
3242 /**
3243  *      t4_get_scfg_version - return the Serial Configuration version
3244  *      @adapter: the adapter
3245  *      @vers: where to place the version
3246  *
3247  *      Reads the Serial Configuration Version via the Firmware interface
3248  *      (thus this can only be called once we're ready to issue Firmware
3249  *      commands).  The format of the Serial Configuration version is
3250  *      adapter specific.  Returns 0 on success, an error on failure.
3251  *
3252  *      Note that early versions of the Firmware didn't include the ability
3253  *      to retrieve the Serial Configuration version, so we zero-out the
3254  *      return-value parameter in that case to avoid leaving it with
3255  *      garbage in it.
3256  *
3257  *      Also note that the Firmware will return its cached copy of the Serial
3258  *      Initialization Revision ID, not the actual Revision ID as written in
3259  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3260  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3261  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3262  *      been issued if the Host Driver will be performing a full adapter
3263  *      initialization.
3264  */
3265 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3266 {
3267 	u32 scfgrev_param;
3268 	int ret;
3269 
3270 	scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3271 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3272 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3273 			      1, &scfgrev_param, vers);
3274 	if (ret)
3275 		*vers = 0;
3276 	return ret;
3277 }
3278 
3279 /**
3280  *      t4_get_version_info - extract various chip/firmware version information
3281  *      @adapter: the adapter
3282  *
3283  *      Reads various chip/firmware version numbers and stores them into the
3284  *      adapter Adapter Parameters structure.  If any of the efforts fails
3285  *      the first failure will be returned, but all of the version numbers
3286  *      will be read.
3287  */
3288 int t4_get_version_info(struct adapter *adapter)
3289 {
3290 	int ret = 0;
3291 
3292 	#define FIRST_RET(__getvinfo) \
3293 	do { \
3294 		int __ret = __getvinfo; \
3295 		if (__ret && !ret) \
3296 			ret = __ret; \
3297 	} while (0)
3298 
3299 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3300 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3301 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3302 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3303 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3304 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3305 
3306 	#undef FIRST_RET
3307 	return ret;
3308 }
3309 
3310 /**
3311  *      t4_dump_version_info - dump all of the adapter configuration IDs
3312  *      @adapter: the adapter
3313  *
3314  *      Dumps all of the various bits of adapter configuration version/revision
3315  *      IDs information.  This is typically called at some point after
3316  *      t4_get_version_info() has been called.
3317  */
3318 void t4_dump_version_info(struct adapter *adapter)
3319 {
3320 	/* Device information */
3321 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3322 		 adapter->params.vpd.id,
3323 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
3324 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3325 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
3326 
3327 	/* Firmware Version */
3328 	if (!adapter->params.fw_vers)
3329 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3330 	else
3331 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3332 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3333 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3334 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3335 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3336 
3337 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3338 	 * Firmware, so dev_info() is more appropriate here.)
3339 	 */
3340 	if (!adapter->params.bs_vers)
3341 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3342 	else
3343 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3344 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3345 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3346 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3347 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3348 
3349 	/* TP Microcode Version */
3350 	if (!adapter->params.tp_vers)
3351 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3352 	else
3353 		dev_info(adapter->pdev_dev,
3354 			 "TP Microcode version: %u.%u.%u.%u\n",
3355 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3356 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3357 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3358 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3359 
3360 	/* Expansion ROM version */
3361 	if (!adapter->params.er_vers)
3362 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3363 	else
3364 		dev_info(adapter->pdev_dev,
3365 			 "Expansion ROM version: %u.%u.%u.%u\n",
3366 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3367 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3368 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3369 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3370 
3371 	/* Serial Configuration version */
3372 	dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3373 		 adapter->params.scfg_vers);
3374 
3375 	/* VPD Version */
3376 	dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3377 		 adapter->params.vpd_vers);
3378 }
3379 
3380 /**
3381  *	t4_check_fw_version - check if the FW is supported with this driver
3382  *	@adap: the adapter
3383  *
3384  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
3385  *	if there's exact match, a negative error if the version could not be
3386  *	read or there's a major version mismatch
3387  */
3388 int t4_check_fw_version(struct adapter *adap)
3389 {
3390 	int i, ret, major, minor, micro;
3391 	int exp_major, exp_minor, exp_micro;
3392 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3393 
3394 	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3395 	/* Try multiple times before returning error */
3396 	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3397 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3398 
3399 	if (ret)
3400 		return ret;
3401 
3402 	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3403 	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3404 	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3405 
3406 	switch (chip_version) {
3407 	case CHELSIO_T4:
3408 		exp_major = T4FW_MIN_VERSION_MAJOR;
3409 		exp_minor = T4FW_MIN_VERSION_MINOR;
3410 		exp_micro = T4FW_MIN_VERSION_MICRO;
3411 		break;
3412 	case CHELSIO_T5:
3413 		exp_major = T5FW_MIN_VERSION_MAJOR;
3414 		exp_minor = T5FW_MIN_VERSION_MINOR;
3415 		exp_micro = T5FW_MIN_VERSION_MICRO;
3416 		break;
3417 	case CHELSIO_T6:
3418 		exp_major = T6FW_MIN_VERSION_MAJOR;
3419 		exp_minor = T6FW_MIN_VERSION_MINOR;
3420 		exp_micro = T6FW_MIN_VERSION_MICRO;
3421 		break;
3422 	default:
3423 		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3424 			adap->chip);
3425 		return -EINVAL;
3426 	}
3427 
3428 	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3429 	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3430 		dev_err(adap->pdev_dev,
3431 			"Card has firmware version %u.%u.%u, minimum "
3432 			"supported firmware is %u.%u.%u.\n", major, minor,
3433 			micro, exp_major, exp_minor, exp_micro);
3434 		return -EFAULT;
3435 	}
3436 	return 0;
3437 }
3438 
3439 /* Is the given firmware API compatible with the one the driver was compiled
3440  * with?
3441  */
3442 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3443 {
3444 
3445 	/* short circuit if it's the exact same firmware version */
3446 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3447 		return 1;
3448 
3449 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3450 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3451 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3452 		return 1;
3453 #undef SAME_INTF
3454 
3455 	return 0;
3456 }
3457 
3458 /* The firmware in the filesystem is usable, but should it be installed?
3459  * This routine explains itself in detail if it indicates the filesystem
3460  * firmware should be installed.
3461  */
3462 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3463 				int k, int c)
3464 {
3465 	const char *reason;
3466 
3467 	if (!card_fw_usable) {
3468 		reason = "incompatible or unusable";
3469 		goto install;
3470 	}
3471 
3472 	if (k > c) {
3473 		reason = "older than the version supported with this driver";
3474 		goto install;
3475 	}
3476 
3477 	return 0;
3478 
3479 install:
3480 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3481 		"installing firmware %u.%u.%u.%u on card.\n",
3482 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3483 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3484 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3485 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3486 
3487 	return 1;
3488 }
3489 
3490 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3491 	       const u8 *fw_data, unsigned int fw_size,
3492 	       struct fw_hdr *card_fw, enum dev_state state,
3493 	       int *reset)
3494 {
3495 	int ret, card_fw_usable, fs_fw_usable;
3496 	const struct fw_hdr *fs_fw;
3497 	const struct fw_hdr *drv_fw;
3498 
3499 	drv_fw = &fw_info->fw_hdr;
3500 
3501 	/* Read the header of the firmware on the card */
3502 	ret = -t4_read_flash(adap, FLASH_FW_START,
3503 			    sizeof(*card_fw) / sizeof(uint32_t),
3504 			    (uint32_t *)card_fw, 1);
3505 	if (ret == 0) {
3506 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3507 	} else {
3508 		dev_err(adap->pdev_dev,
3509 			"Unable to read card's firmware header: %d\n", ret);
3510 		card_fw_usable = 0;
3511 	}
3512 
3513 	if (fw_data != NULL) {
3514 		fs_fw = (const void *)fw_data;
3515 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3516 	} else {
3517 		fs_fw = NULL;
3518 		fs_fw_usable = 0;
3519 	}
3520 
3521 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3522 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3523 		/* Common case: the firmware on the card is an exact match and
3524 		 * the filesystem one is an exact match too, or the filesystem
3525 		 * one is absent/incompatible.
3526 		 */
3527 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3528 		   should_install_fs_fw(adap, card_fw_usable,
3529 					be32_to_cpu(fs_fw->fw_ver),
3530 					be32_to_cpu(card_fw->fw_ver))) {
3531 		ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3532 				     fw_size, 0);
3533 		if (ret != 0) {
3534 			dev_err(adap->pdev_dev,
3535 				"failed to install firmware: %d\n", ret);
3536 			goto bye;
3537 		}
3538 
3539 		/* Installed successfully, update the cached header too. */
3540 		*card_fw = *fs_fw;
3541 		card_fw_usable = 1;
3542 		*reset = 0;	/* already reset as part of load_fw */
3543 	}
3544 
3545 	if (!card_fw_usable) {
3546 		uint32_t d, c, k;
3547 
3548 		d = be32_to_cpu(drv_fw->fw_ver);
3549 		c = be32_to_cpu(card_fw->fw_ver);
3550 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3551 
3552 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3553 			"chip state %d, "
3554 			"driver compiled with %d.%d.%d.%d, "
3555 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3556 			state,
3557 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3558 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3559 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3560 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3561 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3562 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3563 		ret = EINVAL;
3564 		goto bye;
3565 	}
3566 
3567 	/* We're using whatever's on the card and it's known to be good. */
3568 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3569 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3570 
3571 bye:
3572 	return ret;
3573 }
3574 
3575 /**
3576  *	t4_flash_erase_sectors - erase a range of flash sectors
3577  *	@adapter: the adapter
3578  *	@start: the first sector to erase
3579  *	@end: the last sector to erase
3580  *
3581  *	Erases the sectors in the given inclusive range.
3582  */
3583 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3584 {
3585 	int ret = 0;
3586 
3587 	if (end >= adapter->params.sf_nsec)
3588 		return -EINVAL;
3589 
3590 	while (start <= end) {
3591 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3592 		    (ret = sf1_write(adapter, 4, 0, 1,
3593 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3594 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3595 			dev_err(adapter->pdev_dev,
3596 				"erase of flash sector %d failed, error %d\n",
3597 				start, ret);
3598 			break;
3599 		}
3600 		start++;
3601 	}
3602 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3603 	return ret;
3604 }
3605 
3606 /**
3607  *	t4_flash_cfg_addr - return the address of the flash configuration file
3608  *	@adapter: the adapter
3609  *
3610  *	Return the address within the flash where the Firmware Configuration
3611  *	File is stored.
3612  */
3613 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3614 {
3615 	if (adapter->params.sf_size == 0x100000)
3616 		return FLASH_FPGA_CFG_START;
3617 	else
3618 		return FLASH_CFG_START;
3619 }
3620 
3621 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3622  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3623  * and emit an error message for mismatched firmware to save our caller the
3624  * effort ...
3625  */
3626 static bool t4_fw_matches_chip(const struct adapter *adap,
3627 			       const struct fw_hdr *hdr)
3628 {
3629 	/* The expression below will return FALSE for any unsupported adapter
3630 	 * which will keep us "honest" in the future ...
3631 	 */
3632 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3633 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3634 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3635 		return true;
3636 
3637 	dev_err(adap->pdev_dev,
3638 		"FW image (%d) is not suitable for this adapter (%d)\n",
3639 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3640 	return false;
3641 }
3642 
3643 /**
3644  *	t4_load_fw - download firmware
3645  *	@adap: the adapter
3646  *	@fw_data: the firmware image to write
3647  *	@size: image size
3648  *
3649  *	Write the supplied firmware image to the card's serial flash.
3650  */
3651 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3652 {
3653 	u32 csum;
3654 	int ret, addr;
3655 	unsigned int i;
3656 	u8 first_page[SF_PAGE_SIZE];
3657 	const __be32 *p = (const __be32 *)fw_data;
3658 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3659 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3660 	unsigned int fw_start_sec = FLASH_FW_START_SEC;
3661 	unsigned int fw_size = FLASH_FW_MAX_SIZE;
3662 	unsigned int fw_start = FLASH_FW_START;
3663 
3664 	if (!size) {
3665 		dev_err(adap->pdev_dev, "FW image has no data\n");
3666 		return -EINVAL;
3667 	}
3668 	if (size & 511) {
3669 		dev_err(adap->pdev_dev,
3670 			"FW image size not multiple of 512 bytes\n");
3671 		return -EINVAL;
3672 	}
3673 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3674 		dev_err(adap->pdev_dev,
3675 			"FW image size differs from size in FW header\n");
3676 		return -EINVAL;
3677 	}
3678 	if (size > fw_size) {
3679 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3680 			fw_size);
3681 		return -EFBIG;
3682 	}
3683 	if (!t4_fw_matches_chip(adap, hdr))
3684 		return -EINVAL;
3685 
3686 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3687 		csum += be32_to_cpu(p[i]);
3688 
3689 	if (csum != 0xffffffff) {
3690 		dev_err(adap->pdev_dev,
3691 			"corrupted firmware image, checksum %#x\n", csum);
3692 		return -EINVAL;
3693 	}
3694 
3695 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3696 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3697 	if (ret)
3698 		goto out;
3699 
3700 	/*
3701 	 * We write the correct version at the end so the driver can see a bad
3702 	 * version if the FW write fails.  Start by writing a copy of the
3703 	 * first page with a bad version.
3704 	 */
3705 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3706 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3707 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page);
3708 	if (ret)
3709 		goto out;
3710 
3711 	addr = fw_start;
3712 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3713 		addr += SF_PAGE_SIZE;
3714 		fw_data += SF_PAGE_SIZE;
3715 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3716 		if (ret)
3717 			goto out;
3718 	}
3719 
3720 	ret = t4_write_flash(adap,
3721 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3722 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3723 out:
3724 	if (ret)
3725 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3726 			ret);
3727 	else
3728 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3729 	return ret;
3730 }
3731 
3732 /**
3733  *	t4_phy_fw_ver - return current PHY firmware version
3734  *	@adap: the adapter
3735  *	@phy_fw_ver: return value buffer for PHY firmware version
3736  *
3737  *	Returns the current version of external PHY firmware on the
3738  *	adapter.
3739  */
3740 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3741 {
3742 	u32 param, val;
3743 	int ret;
3744 
3745 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3746 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3747 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3748 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3749 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3750 			      &param, &val);
3751 	if (ret < 0)
3752 		return ret;
3753 	*phy_fw_ver = val;
3754 	return 0;
3755 }
3756 
3757 /**
3758  *	t4_load_phy_fw - download port PHY firmware
3759  *	@adap: the adapter
3760  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3761  *	@win_lock: the lock to use to guard the memory copy
3762  *	@phy_fw_version: function to check PHY firmware versions
3763  *	@phy_fw_data: the PHY firmware image to write
3764  *	@phy_fw_size: image size
3765  *
3766  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3767  *	@phy_fw_version is supplied, then it will be used to determine if
3768  *	it's necessary to perform the transfer by comparing the version
3769  *	of any existing adapter PHY firmware with that of the passed in
3770  *	PHY firmware image.  If @win_lock is non-NULL then it will be used
3771  *	around the call to t4_memory_rw() which transfers the PHY firmware
3772  *	to the adapter.
3773  *
3774  *	A negative error number will be returned if an error occurs.  If
3775  *	version number support is available and there's no need to upgrade
3776  *	the firmware, 0 will be returned.  If firmware is successfully
3777  *	transferred to the adapter, 1 will be retured.
3778  *
3779  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3780  *	a result, a RESET of the adapter would cause that RAM to lose its
3781  *	contents.  Thus, loading PHY firmware on such adapters must happen
3782  *	after any FW_RESET_CMDs ...
3783  */
3784 int t4_load_phy_fw(struct adapter *adap,
3785 		   int win, spinlock_t *win_lock,
3786 		   int (*phy_fw_version)(const u8 *, size_t),
3787 		   const u8 *phy_fw_data, size_t phy_fw_size)
3788 {
3789 	unsigned long mtype = 0, maddr = 0;
3790 	u32 param, val;
3791 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3792 	int ret;
3793 
3794 	/* If we have version number support, then check to see if the adapter
3795 	 * already has up-to-date PHY firmware loaded.
3796 	 */
3797 	 if (phy_fw_version) {
3798 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3799 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3800 		if (ret < 0)
3801 			return ret;
3802 
3803 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3804 			CH_WARN(adap, "PHY Firmware already up-to-date, "
3805 				"version %#x\n", cur_phy_fw_ver);
3806 			return 0;
3807 		}
3808 	}
3809 
3810 	/* Ask the firmware where it wants us to copy the PHY firmware image.
3811 	 * The size of the file requires a special version of the READ coommand
3812 	 * which will pass the file size via the values field in PARAMS_CMD and
3813 	 * retrieve the return value from firmware and place it in the same
3814 	 * buffer values
3815 	 */
3816 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3817 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3818 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3819 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3820 	val = phy_fw_size;
3821 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3822 				 &param, &val, 1, true);
3823 	if (ret < 0)
3824 		return ret;
3825 	mtype = val >> 8;
3826 	maddr = (val & 0xff) << 16;
3827 
3828 	/* Copy the supplied PHY Firmware image to the adapter memory location
3829 	 * allocated by the adapter firmware.
3830 	 */
3831 	if (win_lock)
3832 		spin_lock_bh(win_lock);
3833 	ret = t4_memory_rw(adap, win, mtype, maddr,
3834 			   phy_fw_size, (__be32 *)phy_fw_data,
3835 			   T4_MEMORY_WRITE);
3836 	if (win_lock)
3837 		spin_unlock_bh(win_lock);
3838 	if (ret)
3839 		return ret;
3840 
3841 	/* Tell the firmware that the PHY firmware image has been written to
3842 	 * RAM and it can now start copying it over to the PHYs.  The chip
3843 	 * firmware will RESET the affected PHYs as part of this operation
3844 	 * leaving them running the new PHY firmware image.
3845 	 */
3846 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3847 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3848 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3849 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3850 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3851 				    &param, &val, 30000);
3852 
3853 	/* If we have version number support, then check to see that the new
3854 	 * firmware got loaded properly.
3855 	 */
3856 	if (phy_fw_version) {
3857 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3858 		if (ret < 0)
3859 			return ret;
3860 
3861 		if (cur_phy_fw_ver != new_phy_fw_vers) {
3862 			CH_WARN(adap, "PHY Firmware did not update: "
3863 				"version on adapter %#x, "
3864 				"version flashed %#x\n",
3865 				cur_phy_fw_ver, new_phy_fw_vers);
3866 			return -ENXIO;
3867 		}
3868 	}
3869 
3870 	return 1;
3871 }
3872 
3873 /**
3874  *	t4_fwcache - firmware cache operation
3875  *	@adap: the adapter
3876  *	@op  : the operation (flush or flush and invalidate)
3877  */
3878 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3879 {
3880 	struct fw_params_cmd c;
3881 
3882 	memset(&c, 0, sizeof(c));
3883 	c.op_to_vfn =
3884 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3885 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3886 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3887 			    FW_PARAMS_CMD_VFN_V(0));
3888 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3889 	c.param[0].mnem =
3890 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3891 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3892 	c.param[0].val = cpu_to_be32(op);
3893 
3894 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3895 }
3896 
3897 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3898 			unsigned int *pif_req_wrptr,
3899 			unsigned int *pif_rsp_wrptr)
3900 {
3901 	int i, j;
3902 	u32 cfg, val, req, rsp;
3903 
3904 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3905 	if (cfg & LADBGEN_F)
3906 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3907 
3908 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3909 	req = POLADBGWRPTR_G(val);
3910 	rsp = PILADBGWRPTR_G(val);
3911 	if (pif_req_wrptr)
3912 		*pif_req_wrptr = req;
3913 	if (pif_rsp_wrptr)
3914 		*pif_rsp_wrptr = rsp;
3915 
3916 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3917 		for (j = 0; j < 6; j++) {
3918 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3919 				     PILADBGRDPTR_V(rsp));
3920 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3921 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3922 			req++;
3923 			rsp++;
3924 		}
3925 		req = (req + 2) & POLADBGRDPTR_M;
3926 		rsp = (rsp + 2) & PILADBGRDPTR_M;
3927 	}
3928 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3929 }
3930 
3931 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3932 {
3933 	u32 cfg;
3934 	int i, j, idx;
3935 
3936 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3937 	if (cfg & LADBGEN_F)
3938 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3939 
3940 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3941 		for (j = 0; j < 5; j++) {
3942 			idx = 8 * i + j;
3943 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3944 				     PILADBGRDPTR_V(idx));
3945 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3946 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3947 		}
3948 	}
3949 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3950 }
3951 
3952 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3953 {
3954 	unsigned int i, j;
3955 
3956 	for (i = 0; i < 8; i++) {
3957 		u32 *p = la_buf + i;
3958 
3959 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3960 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3961 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3962 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3963 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3964 	}
3965 }
3966 
3967 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3968 		     FW_PORT_CAP32_ANEG)
3969 
3970 /**
3971  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3972  *	@caps16: a 16-bit Port Capabilities value
3973  *
3974  *	Returns the equivalent 32-bit Port Capabilities value.
3975  */
3976 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3977 {
3978 	fw_port_cap32_t caps32 = 0;
3979 
3980 	#define CAP16_TO_CAP32(__cap) \
3981 		do { \
3982 			if (caps16 & FW_PORT_CAP_##__cap) \
3983 				caps32 |= FW_PORT_CAP32_##__cap; \
3984 		} while (0)
3985 
3986 	CAP16_TO_CAP32(SPEED_100M);
3987 	CAP16_TO_CAP32(SPEED_1G);
3988 	CAP16_TO_CAP32(SPEED_25G);
3989 	CAP16_TO_CAP32(SPEED_10G);
3990 	CAP16_TO_CAP32(SPEED_40G);
3991 	CAP16_TO_CAP32(SPEED_100G);
3992 	CAP16_TO_CAP32(FC_RX);
3993 	CAP16_TO_CAP32(FC_TX);
3994 	CAP16_TO_CAP32(ANEG);
3995 	CAP16_TO_CAP32(FORCE_PAUSE);
3996 	CAP16_TO_CAP32(MDIAUTO);
3997 	CAP16_TO_CAP32(MDISTRAIGHT);
3998 	CAP16_TO_CAP32(FEC_RS);
3999 	CAP16_TO_CAP32(FEC_BASER_RS);
4000 	CAP16_TO_CAP32(802_3_PAUSE);
4001 	CAP16_TO_CAP32(802_3_ASM_DIR);
4002 
4003 	#undef CAP16_TO_CAP32
4004 
4005 	return caps32;
4006 }
4007 
4008 /**
4009  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
4010  *	@caps32: a 32-bit Port Capabilities value
4011  *
4012  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
4013  *	not all 32-bit Port Capabilities can be represented in the 16-bit
4014  *	Port Capabilities and some fields/values may not make it.
4015  */
4016 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
4017 {
4018 	fw_port_cap16_t caps16 = 0;
4019 
4020 	#define CAP32_TO_CAP16(__cap) \
4021 		do { \
4022 			if (caps32 & FW_PORT_CAP32_##__cap) \
4023 				caps16 |= FW_PORT_CAP_##__cap; \
4024 		} while (0)
4025 
4026 	CAP32_TO_CAP16(SPEED_100M);
4027 	CAP32_TO_CAP16(SPEED_1G);
4028 	CAP32_TO_CAP16(SPEED_10G);
4029 	CAP32_TO_CAP16(SPEED_25G);
4030 	CAP32_TO_CAP16(SPEED_40G);
4031 	CAP32_TO_CAP16(SPEED_100G);
4032 	CAP32_TO_CAP16(FC_RX);
4033 	CAP32_TO_CAP16(FC_TX);
4034 	CAP32_TO_CAP16(802_3_PAUSE);
4035 	CAP32_TO_CAP16(802_3_ASM_DIR);
4036 	CAP32_TO_CAP16(ANEG);
4037 	CAP32_TO_CAP16(FORCE_PAUSE);
4038 	CAP32_TO_CAP16(MDIAUTO);
4039 	CAP32_TO_CAP16(MDISTRAIGHT);
4040 	CAP32_TO_CAP16(FEC_RS);
4041 	CAP32_TO_CAP16(FEC_BASER_RS);
4042 
4043 	#undef CAP32_TO_CAP16
4044 
4045 	return caps16;
4046 }
4047 
4048 /* Translate Firmware Port Capabilities Pause specification to Common Code */
4049 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
4050 {
4051 	enum cc_pause cc_pause = 0;
4052 
4053 	if (fw_pause & FW_PORT_CAP32_FC_RX)
4054 		cc_pause |= PAUSE_RX;
4055 	if (fw_pause & FW_PORT_CAP32_FC_TX)
4056 		cc_pause |= PAUSE_TX;
4057 
4058 	return cc_pause;
4059 }
4060 
4061 /* Translate Common Code Pause specification into Firmware Port Capabilities */
4062 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4063 {
4064 	fw_port_cap32_t fw_pause = 0;
4065 
4066 	if (cc_pause & PAUSE_RX)
4067 		fw_pause |= FW_PORT_CAP32_FC_RX;
4068 	if (cc_pause & PAUSE_TX)
4069 		fw_pause |= FW_PORT_CAP32_FC_TX;
4070 	if (!(cc_pause & PAUSE_AUTONEG))
4071 		fw_pause |= FW_PORT_CAP32_FORCE_PAUSE;
4072 
4073 	return fw_pause;
4074 }
4075 
4076 /* Translate Firmware Forward Error Correction specification to Common Code */
4077 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4078 {
4079 	enum cc_fec cc_fec = 0;
4080 
4081 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
4082 		cc_fec |= FEC_RS;
4083 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4084 		cc_fec |= FEC_BASER_RS;
4085 
4086 	return cc_fec;
4087 }
4088 
4089 /* Translate Common Code Forward Error Correction specification to Firmware */
4090 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4091 {
4092 	fw_port_cap32_t fw_fec = 0;
4093 
4094 	if (cc_fec & FEC_RS)
4095 		fw_fec |= FW_PORT_CAP32_FEC_RS;
4096 	if (cc_fec & FEC_BASER_RS)
4097 		fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4098 
4099 	return fw_fec;
4100 }
4101 
4102 /**
4103  *	t4_link_l1cfg - apply link configuration to MAC/PHY
4104  *	@adapter: the adapter
4105  *	@mbox: the Firmware Mailbox to use
4106  *	@port: the Port ID
4107  *	@lc: the Port's Link Configuration
4108  *
4109  *	Set up a port's MAC and PHY according to a desired link configuration.
4110  *	- If the PHY can auto-negotiate first decide what to advertise, then
4111  *	  enable/disable auto-negotiation as desired, and reset.
4112  *	- If the PHY does not auto-negotiate just reset it.
4113  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4114  *	  otherwise do it later based on the outcome of auto-negotiation.
4115  */
4116 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox,
4117 		       unsigned int port, struct link_config *lc,
4118 		       bool sleep_ok, int timeout)
4119 {
4120 	unsigned int fw_caps = adapter->params.fw_caps_support;
4121 	fw_port_cap32_t fw_fc, cc_fec, fw_fec, rcap;
4122 	struct fw_port_cmd cmd;
4123 	unsigned int fw_mdi;
4124 	int ret;
4125 
4126 	fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps);
4127 	/* Convert driver coding of Pause Frame Flow Control settings into the
4128 	 * Firmware's API.
4129 	 */
4130 	fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4131 
4132 	/* Convert Common Code Forward Error Control settings into the
4133 	 * Firmware's API.  If the current Requested FEC has "Automatic"
4134 	 * (IEEE 802.3) specified, then we use whatever the Firmware
4135 	 * sent us as part of it's IEEE 802.3-based interpratation of
4136 	 * the Transceiver Module EPROM FEC parameters.  Otherwise we
4137 	 * use whatever is in the current Requested FEC settings.
4138 	 */
4139 	if (lc->requested_fec & FEC_AUTO)
4140 		cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4141 	else
4142 		cc_fec = lc->requested_fec;
4143 	fw_fec = cc_to_fwcap_fec(cc_fec);
4144 
4145 	/* Figure out what our Requested Port Capabilities are going to be.
4146 	 */
4147 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4148 		rcap = lc->acaps | fw_fc | fw_fec;
4149 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4150 		lc->fec = cc_fec;
4151 	} else if (lc->autoneg == AUTONEG_DISABLE) {
4152 		rcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4153 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4154 		lc->fec = cc_fec;
4155 	} else {
4156 		rcap = lc->acaps | fw_fc | fw_fec | fw_mdi;
4157 	}
4158 
4159 	/* Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so
4160 	 * we need to exclude this from this check in order to maintain
4161 	 * compatibility ...
4162 	 */
4163 	if ((rcap & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) {
4164 		dev_err(adapter->pdev_dev,
4165 			"Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
4166 			rcap, lc->pcaps);
4167 		return -EINVAL;
4168 	}
4169 
4170 	/* And send that on to the Firmware ...
4171 	 */
4172 	memset(&cmd, 0, sizeof(cmd));
4173 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4174 				       FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4175 				       FW_PORT_CMD_PORTID_V(port));
4176 	cmd.action_to_len16 =
4177 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4178 						 ? FW_PORT_ACTION_L1_CFG
4179 						 : FW_PORT_ACTION_L1_CFG32) |
4180 						 FW_LEN16(cmd));
4181 	if (fw_caps == FW_CAPS16)
4182 		cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4183 	else
4184 		cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4185 
4186 	ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL,
4187 				      sleep_ok, timeout);
4188 	if (ret) {
4189 		dev_err(adapter->pdev_dev,
4190 			"Requested Port Capabilities %#x rejected, error %d\n",
4191 			rcap, -ret);
4192 		return ret;
4193 	}
4194 	return ret;
4195 }
4196 
4197 /**
4198  *	t4_restart_aneg - restart autonegotiation
4199  *	@adap: the adapter
4200  *	@mbox: mbox to use for the FW command
4201  *	@port: the port id
4202  *
4203  *	Restarts autonegotiation for the selected port.
4204  */
4205 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4206 {
4207 	unsigned int fw_caps = adap->params.fw_caps_support;
4208 	struct fw_port_cmd c;
4209 
4210 	memset(&c, 0, sizeof(c));
4211 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4212 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4213 				     FW_PORT_CMD_PORTID_V(port));
4214 	c.action_to_len16 =
4215 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4216 						 ? FW_PORT_ACTION_L1_CFG
4217 						 : FW_PORT_ACTION_L1_CFG32) |
4218 			    FW_LEN16(c));
4219 	if (fw_caps == FW_CAPS16)
4220 		c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4221 	else
4222 		c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG);
4223 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4224 }
4225 
4226 typedef void (*int_handler_t)(struct adapter *adap);
4227 
4228 struct intr_info {
4229 	unsigned int mask;       /* bits to check in interrupt status */
4230 	const char *msg;         /* message to print or NULL */
4231 	short stat_idx;          /* stat counter to increment or -1 */
4232 	unsigned short fatal;    /* whether the condition reported is fatal */
4233 	int_handler_t int_handler; /* platform-specific int handler */
4234 };
4235 
4236 /**
4237  *	t4_handle_intr_status - table driven interrupt handler
4238  *	@adapter: the adapter that generated the interrupt
4239  *	@reg: the interrupt status register to process
4240  *	@acts: table of interrupt actions
4241  *
4242  *	A table driven interrupt handler that applies a set of masks to an
4243  *	interrupt status word and performs the corresponding actions if the
4244  *	interrupts described by the mask have occurred.  The actions include
4245  *	optionally emitting a warning or alert message.  The table is terminated
4246  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
4247  *	conditions.
4248  */
4249 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4250 				 const struct intr_info *acts)
4251 {
4252 	int fatal = 0;
4253 	unsigned int mask = 0;
4254 	unsigned int status = t4_read_reg(adapter, reg);
4255 
4256 	for ( ; acts->mask; ++acts) {
4257 		if (!(status & acts->mask))
4258 			continue;
4259 		if (acts->fatal) {
4260 			fatal++;
4261 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4262 				  status & acts->mask);
4263 		} else if (acts->msg && printk_ratelimit())
4264 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4265 				 status & acts->mask);
4266 		if (acts->int_handler)
4267 			acts->int_handler(adapter);
4268 		mask |= acts->mask;
4269 	}
4270 	status &= mask;
4271 	if (status)                           /* clear processed interrupts */
4272 		t4_write_reg(adapter, reg, status);
4273 	return fatal;
4274 }
4275 
4276 /*
4277  * Interrupt handler for the PCIE module.
4278  */
4279 static void pcie_intr_handler(struct adapter *adapter)
4280 {
4281 	static const struct intr_info sysbus_intr_info[] = {
4282 		{ RNPP_F, "RXNP array parity error", -1, 1 },
4283 		{ RPCP_F, "RXPC array parity error", -1, 1 },
4284 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
4285 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
4286 		{ RFTP_F, "RXFT array parity error", -1, 1 },
4287 		{ 0 }
4288 	};
4289 	static const struct intr_info pcie_port_intr_info[] = {
4290 		{ TPCP_F, "TXPC array parity error", -1, 1 },
4291 		{ TNPP_F, "TXNP array parity error", -1, 1 },
4292 		{ TFTP_F, "TXFT array parity error", -1, 1 },
4293 		{ TCAP_F, "TXCA array parity error", -1, 1 },
4294 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
4295 		{ RCAP_F, "RXCA array parity error", -1, 1 },
4296 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
4297 		{ RDPE_F, "Rx data parity error", -1, 1 },
4298 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
4299 		{ 0 }
4300 	};
4301 	static const struct intr_info pcie_intr_info[] = {
4302 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4303 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4304 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4305 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4306 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4307 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4308 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4309 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4310 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4311 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4312 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4313 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4314 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4315 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4316 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4317 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4318 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4319 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4320 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4321 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4322 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4323 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4324 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4325 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4326 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4327 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4328 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4329 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
4330 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
4331 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
4332 		  -1, 0 },
4333 		{ 0 }
4334 	};
4335 
4336 	static struct intr_info t5_pcie_intr_info[] = {
4337 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
4338 		  -1, 1 },
4339 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4340 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4341 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4342 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4343 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4344 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4345 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4346 		  -1, 1 },
4347 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4348 		  -1, 1 },
4349 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4350 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4351 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4352 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4353 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
4354 		  -1, 1 },
4355 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4356 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4357 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4358 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4359 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4360 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4361 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4362 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4363 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4364 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4365 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4366 		  -1, 1 },
4367 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4368 		  -1, 1 },
4369 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4370 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4371 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4372 		{ READRSPERR_F, "Outbound read error", -1, 0 },
4373 		{ 0 }
4374 	};
4375 
4376 	int fat;
4377 
4378 	if (is_t4(adapter->params.chip))
4379 		fat = t4_handle_intr_status(adapter,
4380 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4381 				sysbus_intr_info) +
4382 			t4_handle_intr_status(adapter,
4383 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4384 					pcie_port_intr_info) +
4385 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4386 					      pcie_intr_info);
4387 	else
4388 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4389 					    t5_pcie_intr_info);
4390 
4391 	if (fat)
4392 		t4_fatal_err(adapter);
4393 }
4394 
4395 /*
4396  * TP interrupt handler.
4397  */
4398 static void tp_intr_handler(struct adapter *adapter)
4399 {
4400 	static const struct intr_info tp_intr_info[] = {
4401 		{ 0x3fffffff, "TP parity error", -1, 1 },
4402 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4403 		{ 0 }
4404 	};
4405 
4406 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4407 		t4_fatal_err(adapter);
4408 }
4409 
4410 /*
4411  * SGE interrupt handler.
4412  */
4413 static void sge_intr_handler(struct adapter *adapter)
4414 {
4415 	u64 v;
4416 	u32 err;
4417 
4418 	static const struct intr_info sge_intr_info[] = {
4419 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
4420 		  "SGE received CPL exceeding IQE size", -1, 1 },
4421 		{ ERR_INVALID_CIDX_INC_F,
4422 		  "SGE GTS CIDX increment too large", -1, 0 },
4423 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4424 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4425 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4426 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4427 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4428 		  0 },
4429 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4430 		  0 },
4431 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4432 		  0 },
4433 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4434 		  0 },
4435 		{ ERR_ING_CTXT_PRIO_F,
4436 		  "SGE too many priority ingress contexts", -1, 0 },
4437 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4438 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4439 		{ 0 }
4440 	};
4441 
4442 	static struct intr_info t4t5_sge_intr_info[] = {
4443 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4444 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4445 		{ ERR_EGR_CTXT_PRIO_F,
4446 		  "SGE too many priority egress contexts", -1, 0 },
4447 		{ 0 }
4448 	};
4449 
4450 	v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
4451 		((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
4452 	if (v) {
4453 		dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
4454 				(unsigned long long)v);
4455 		t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
4456 		t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
4457 	}
4458 
4459 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4460 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4461 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4462 					   t4t5_sge_intr_info);
4463 
4464 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4465 	if (err & ERROR_QID_VALID_F) {
4466 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4467 			ERROR_QID_G(err));
4468 		if (err & UNCAPTURED_ERROR_F)
4469 			dev_err(adapter->pdev_dev,
4470 				"SGE UNCAPTURED_ERROR set (clearing)\n");
4471 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4472 			     UNCAPTURED_ERROR_F);
4473 	}
4474 
4475 	if (v != 0)
4476 		t4_fatal_err(adapter);
4477 }
4478 
4479 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4480 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4481 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4482 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4483 
4484 /*
4485  * CIM interrupt handler.
4486  */
4487 static void cim_intr_handler(struct adapter *adapter)
4488 {
4489 	static const struct intr_info cim_intr_info[] = {
4490 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4491 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4492 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4493 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4494 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4495 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4496 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4497 		{ TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4498 		{ 0 }
4499 	};
4500 	static const struct intr_info cim_upintr_info[] = {
4501 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4502 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4503 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
4504 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
4505 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4506 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4507 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4508 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4509 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4510 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4511 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4512 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4513 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4514 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4515 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4516 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4517 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4518 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4519 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4520 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4521 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4522 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4523 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4524 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4525 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4526 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4527 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4528 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4529 		{ 0 }
4530 	};
4531 
4532 	u32 val, fw_err;
4533 	int fat;
4534 
4535 	fw_err = t4_read_reg(adapter, PCIE_FW_A);
4536 	if (fw_err & PCIE_FW_ERR_F)
4537 		t4_report_fw_error(adapter);
4538 
4539 	/* When the Firmware detects an internal error which normally
4540 	 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4541 	 * in order to make sure the Host sees the Firmware Crash.  So
4542 	 * if we have a Timer0 interrupt and don't see a Firmware Crash,
4543 	 * ignore the Timer0 interrupt.
4544 	 */
4545 
4546 	val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4547 	if (val & TIMER0INT_F)
4548 		if (!(fw_err & PCIE_FW_ERR_F) ||
4549 		    (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4550 			t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4551 				     TIMER0INT_F);
4552 
4553 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4554 				    cim_intr_info) +
4555 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4556 				    cim_upintr_info);
4557 	if (fat)
4558 		t4_fatal_err(adapter);
4559 }
4560 
4561 /*
4562  * ULP RX interrupt handler.
4563  */
4564 static void ulprx_intr_handler(struct adapter *adapter)
4565 {
4566 	static const struct intr_info ulprx_intr_info[] = {
4567 		{ 0x1800000, "ULPRX context error", -1, 1 },
4568 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4569 		{ 0 }
4570 	};
4571 
4572 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4573 		t4_fatal_err(adapter);
4574 }
4575 
4576 /*
4577  * ULP TX interrupt handler.
4578  */
4579 static void ulptx_intr_handler(struct adapter *adapter)
4580 {
4581 	static const struct intr_info ulptx_intr_info[] = {
4582 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4583 		  0 },
4584 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4585 		  0 },
4586 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4587 		  0 },
4588 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4589 		  0 },
4590 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4591 		{ 0 }
4592 	};
4593 
4594 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4595 		t4_fatal_err(adapter);
4596 }
4597 
4598 /*
4599  * PM TX interrupt handler.
4600  */
4601 static void pmtx_intr_handler(struct adapter *adapter)
4602 {
4603 	static const struct intr_info pmtx_intr_info[] = {
4604 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4605 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4606 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4607 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4608 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4609 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4610 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4611 		  -1, 1 },
4612 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4613 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4614 		{ 0 }
4615 	};
4616 
4617 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4618 		t4_fatal_err(adapter);
4619 }
4620 
4621 /*
4622  * PM RX interrupt handler.
4623  */
4624 static void pmrx_intr_handler(struct adapter *adapter)
4625 {
4626 	static const struct intr_info pmrx_intr_info[] = {
4627 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4628 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4629 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4630 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4631 		  -1, 1 },
4632 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4633 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4634 		{ 0 }
4635 	};
4636 
4637 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4638 		t4_fatal_err(adapter);
4639 }
4640 
4641 /*
4642  * CPL switch interrupt handler.
4643  */
4644 static void cplsw_intr_handler(struct adapter *adapter)
4645 {
4646 	static const struct intr_info cplsw_intr_info[] = {
4647 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4648 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4649 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4650 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4651 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4652 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4653 		{ 0 }
4654 	};
4655 
4656 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4657 		t4_fatal_err(adapter);
4658 }
4659 
4660 /*
4661  * LE interrupt handler.
4662  */
4663 static void le_intr_handler(struct adapter *adap)
4664 {
4665 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4666 	static const struct intr_info le_intr_info[] = {
4667 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4668 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4669 		{ PARITYERR_F, "LE parity error", -1, 1 },
4670 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4671 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4672 		{ 0 }
4673 	};
4674 
4675 	static struct intr_info t6_le_intr_info[] = {
4676 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4677 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4678 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4679 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4680 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4681 		{ 0 }
4682 	};
4683 
4684 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4685 				  (chip <= CHELSIO_T5) ?
4686 				  le_intr_info : t6_le_intr_info))
4687 		t4_fatal_err(adap);
4688 }
4689 
4690 /*
4691  * MPS interrupt handler.
4692  */
4693 static void mps_intr_handler(struct adapter *adapter)
4694 {
4695 	static const struct intr_info mps_rx_intr_info[] = {
4696 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4697 		{ 0 }
4698 	};
4699 	static const struct intr_info mps_tx_intr_info[] = {
4700 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4701 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4702 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4703 		  -1, 1 },
4704 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4705 		  -1, 1 },
4706 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4707 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4708 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4709 		{ 0 }
4710 	};
4711 	static const struct intr_info t6_mps_tx_intr_info[] = {
4712 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4713 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4714 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4715 		  -1, 1 },
4716 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4717 		  -1, 1 },
4718 		/* MPS Tx Bubble is normal for T6 */
4719 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4720 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4721 		{ 0 }
4722 	};
4723 	static const struct intr_info mps_trc_intr_info[] = {
4724 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4725 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4726 		  -1, 1 },
4727 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4728 		{ 0 }
4729 	};
4730 	static const struct intr_info mps_stat_sram_intr_info[] = {
4731 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4732 		{ 0 }
4733 	};
4734 	static const struct intr_info mps_stat_tx_intr_info[] = {
4735 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4736 		{ 0 }
4737 	};
4738 	static const struct intr_info mps_stat_rx_intr_info[] = {
4739 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4740 		{ 0 }
4741 	};
4742 	static const struct intr_info mps_cls_intr_info[] = {
4743 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4744 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4745 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4746 		{ 0 }
4747 	};
4748 
4749 	int fat;
4750 
4751 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4752 				    mps_rx_intr_info) +
4753 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4754 				    is_t6(adapter->params.chip)
4755 				    ? t6_mps_tx_intr_info
4756 				    : mps_tx_intr_info) +
4757 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4758 				    mps_trc_intr_info) +
4759 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4760 				    mps_stat_sram_intr_info) +
4761 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4762 				    mps_stat_tx_intr_info) +
4763 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4764 				    mps_stat_rx_intr_info) +
4765 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4766 				    mps_cls_intr_info);
4767 
4768 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4769 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4770 	if (fat)
4771 		t4_fatal_err(adapter);
4772 }
4773 
4774 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4775 		      ECC_UE_INT_CAUSE_F)
4776 
4777 /*
4778  * EDC/MC interrupt handler.
4779  */
4780 static void mem_intr_handler(struct adapter *adapter, int idx)
4781 {
4782 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4783 
4784 	unsigned int addr, cnt_addr, v;
4785 
4786 	if (idx <= MEM_EDC1) {
4787 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4788 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4789 	} else if (idx == MEM_MC) {
4790 		if (is_t4(adapter->params.chip)) {
4791 			addr = MC_INT_CAUSE_A;
4792 			cnt_addr = MC_ECC_STATUS_A;
4793 		} else {
4794 			addr = MC_P_INT_CAUSE_A;
4795 			cnt_addr = MC_P_ECC_STATUS_A;
4796 		}
4797 	} else {
4798 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4799 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4800 	}
4801 
4802 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4803 	if (v & PERR_INT_CAUSE_F)
4804 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4805 			  name[idx]);
4806 	if (v & ECC_CE_INT_CAUSE_F) {
4807 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4808 
4809 		t4_edc_err_read(adapter, idx);
4810 
4811 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4812 		if (printk_ratelimit())
4813 			dev_warn(adapter->pdev_dev,
4814 				 "%u %s correctable ECC data error%s\n",
4815 				 cnt, name[idx], cnt > 1 ? "s" : "");
4816 	}
4817 	if (v & ECC_UE_INT_CAUSE_F)
4818 		dev_alert(adapter->pdev_dev,
4819 			  "%s uncorrectable ECC data error\n", name[idx]);
4820 
4821 	t4_write_reg(adapter, addr, v);
4822 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4823 		t4_fatal_err(adapter);
4824 }
4825 
4826 /*
4827  * MA interrupt handler.
4828  */
4829 static void ma_intr_handler(struct adapter *adap)
4830 {
4831 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4832 
4833 	if (status & MEM_PERR_INT_CAUSE_F) {
4834 		dev_alert(adap->pdev_dev,
4835 			  "MA parity error, parity status %#x\n",
4836 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4837 		if (is_t5(adap->params.chip))
4838 			dev_alert(adap->pdev_dev,
4839 				  "MA parity error, parity status %#x\n",
4840 				  t4_read_reg(adap,
4841 					      MA_PARITY_ERROR_STATUS2_A));
4842 	}
4843 	if (status & MEM_WRAP_INT_CAUSE_F) {
4844 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4845 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4846 			  "client %u to address %#x\n",
4847 			  MEM_WRAP_CLIENT_NUM_G(v),
4848 			  MEM_WRAP_ADDRESS_G(v) << 4);
4849 	}
4850 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4851 	t4_fatal_err(adap);
4852 }
4853 
4854 /*
4855  * SMB interrupt handler.
4856  */
4857 static void smb_intr_handler(struct adapter *adap)
4858 {
4859 	static const struct intr_info smb_intr_info[] = {
4860 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4861 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4862 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4863 		{ 0 }
4864 	};
4865 
4866 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4867 		t4_fatal_err(adap);
4868 }
4869 
4870 /*
4871  * NC-SI interrupt handler.
4872  */
4873 static void ncsi_intr_handler(struct adapter *adap)
4874 {
4875 	static const struct intr_info ncsi_intr_info[] = {
4876 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4877 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4878 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4879 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4880 		{ 0 }
4881 	};
4882 
4883 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4884 		t4_fatal_err(adap);
4885 }
4886 
4887 /*
4888  * XGMAC interrupt handler.
4889  */
4890 static void xgmac_intr_handler(struct adapter *adap, int port)
4891 {
4892 	u32 v, int_cause_reg;
4893 
4894 	if (is_t4(adap->params.chip))
4895 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4896 	else
4897 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4898 
4899 	v = t4_read_reg(adap, int_cause_reg);
4900 
4901 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4902 	if (!v)
4903 		return;
4904 
4905 	if (v & TXFIFO_PRTY_ERR_F)
4906 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4907 			  port);
4908 	if (v & RXFIFO_PRTY_ERR_F)
4909 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4910 			  port);
4911 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4912 	t4_fatal_err(adap);
4913 }
4914 
4915 /*
4916  * PL interrupt handler.
4917  */
4918 static void pl_intr_handler(struct adapter *adap)
4919 {
4920 	static const struct intr_info pl_intr_info[] = {
4921 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
4922 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4923 		{ 0 }
4924 	};
4925 
4926 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4927 		t4_fatal_err(adap);
4928 }
4929 
4930 #define PF_INTR_MASK (PFSW_F)
4931 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4932 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4933 		CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
4934 
4935 /**
4936  *	t4_slow_intr_handler - control path interrupt handler
4937  *	@adapter: the adapter
4938  *
4939  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4940  *	The designation 'slow' is because it involves register reads, while
4941  *	data interrupts typically don't involve any MMIOs.
4942  */
4943 int t4_slow_intr_handler(struct adapter *adapter)
4944 {
4945 	u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4946 
4947 	if (!(cause & GLBL_INTR_MASK))
4948 		return 0;
4949 	if (cause & CIM_F)
4950 		cim_intr_handler(adapter);
4951 	if (cause & MPS_F)
4952 		mps_intr_handler(adapter);
4953 	if (cause & NCSI_F)
4954 		ncsi_intr_handler(adapter);
4955 	if (cause & PL_F)
4956 		pl_intr_handler(adapter);
4957 	if (cause & SMB_F)
4958 		smb_intr_handler(adapter);
4959 	if (cause & XGMAC0_F)
4960 		xgmac_intr_handler(adapter, 0);
4961 	if (cause & XGMAC1_F)
4962 		xgmac_intr_handler(adapter, 1);
4963 	if (cause & XGMAC_KR0_F)
4964 		xgmac_intr_handler(adapter, 2);
4965 	if (cause & XGMAC_KR1_F)
4966 		xgmac_intr_handler(adapter, 3);
4967 	if (cause & PCIE_F)
4968 		pcie_intr_handler(adapter);
4969 	if (cause & MC_F)
4970 		mem_intr_handler(adapter, MEM_MC);
4971 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
4972 		mem_intr_handler(adapter, MEM_MC1);
4973 	if (cause & EDC0_F)
4974 		mem_intr_handler(adapter, MEM_EDC0);
4975 	if (cause & EDC1_F)
4976 		mem_intr_handler(adapter, MEM_EDC1);
4977 	if (cause & LE_F)
4978 		le_intr_handler(adapter);
4979 	if (cause & TP_F)
4980 		tp_intr_handler(adapter);
4981 	if (cause & MA_F)
4982 		ma_intr_handler(adapter);
4983 	if (cause & PM_TX_F)
4984 		pmtx_intr_handler(adapter);
4985 	if (cause & PM_RX_F)
4986 		pmrx_intr_handler(adapter);
4987 	if (cause & ULP_RX_F)
4988 		ulprx_intr_handler(adapter);
4989 	if (cause & CPL_SWITCH_F)
4990 		cplsw_intr_handler(adapter);
4991 	if (cause & SGE_F)
4992 		sge_intr_handler(adapter);
4993 	if (cause & ULP_TX_F)
4994 		ulptx_intr_handler(adapter);
4995 
4996 	/* Clear the interrupts just processed for which we are the master. */
4997 	t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4998 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4999 	return 1;
5000 }
5001 
5002 /**
5003  *	t4_intr_enable - enable interrupts
5004  *	@adapter: the adapter whose interrupts should be enabled
5005  *
5006  *	Enable PF-specific interrupts for the calling function and the top-level
5007  *	interrupt concentrator for global interrupts.  Interrupts are already
5008  *	enabled at each module,	here we just enable the roots of the interrupt
5009  *	hierarchies.
5010  *
5011  *	Note: this function should be called only when the driver manages
5012  *	non PF-specific interrupts from the various HW modules.  Only one PCI
5013  *	function at a time should be doing this.
5014  */
5015 void t4_intr_enable(struct adapter *adapter)
5016 {
5017 	u32 val = 0;
5018 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5019 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5020 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5021 
5022 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
5023 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
5024 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
5025 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
5026 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
5027 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
5028 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
5029 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
5030 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
5031 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
5032 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
5033 }
5034 
5035 /**
5036  *	t4_intr_disable - disable interrupts
5037  *	@adapter: the adapter whose interrupts should be disabled
5038  *
5039  *	Disable interrupts.  We only disable the top-level interrupt
5040  *	concentrators.  The caller must be a PCI function managing global
5041  *	interrupts.
5042  */
5043 void t4_intr_disable(struct adapter *adapter)
5044 {
5045 	u32 whoami, pf;
5046 
5047 	if (pci_channel_offline(adapter->pdev))
5048 		return;
5049 
5050 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5051 	pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5052 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5053 
5054 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
5055 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
5056 }
5057 
5058 unsigned int t4_chip_rss_size(struct adapter *adap)
5059 {
5060 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
5061 		return RSS_NENTRIES;
5062 	else
5063 		return T6_RSS_NENTRIES;
5064 }
5065 
5066 /**
5067  *	t4_config_rss_range - configure a portion of the RSS mapping table
5068  *	@adapter: the adapter
5069  *	@mbox: mbox to use for the FW command
5070  *	@viid: virtual interface whose RSS subtable is to be written
5071  *	@start: start entry in the table to write
5072  *	@n: how many table entries to write
5073  *	@rspq: values for the response queue lookup table
5074  *	@nrspq: number of values in @rspq
5075  *
5076  *	Programs the selected part of the VI's RSS mapping table with the
5077  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5078  *	until the full table range is populated.
5079  *
5080  *	The caller must ensure the values in @rspq are in the range allowed for
5081  *	@viid.
5082  */
5083 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5084 			int start, int n, const u16 *rspq, unsigned int nrspq)
5085 {
5086 	int ret;
5087 	const u16 *rsp = rspq;
5088 	const u16 *rsp_end = rspq + nrspq;
5089 	struct fw_rss_ind_tbl_cmd cmd;
5090 
5091 	memset(&cmd, 0, sizeof(cmd));
5092 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5093 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5094 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
5095 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5096 
5097 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5098 	while (n > 0) {
5099 		int nq = min(n, 32);
5100 		__be32 *qp = &cmd.iq0_to_iq2;
5101 
5102 		cmd.niqid = cpu_to_be16(nq);
5103 		cmd.startidx = cpu_to_be16(start);
5104 
5105 		start += nq;
5106 		n -= nq;
5107 
5108 		while (nq > 0) {
5109 			unsigned int v;
5110 
5111 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5112 			if (++rsp >= rsp_end)
5113 				rsp = rspq;
5114 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5115 			if (++rsp >= rsp_end)
5116 				rsp = rspq;
5117 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5118 			if (++rsp >= rsp_end)
5119 				rsp = rspq;
5120 
5121 			*qp++ = cpu_to_be32(v);
5122 			nq -= 3;
5123 		}
5124 
5125 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5126 		if (ret)
5127 			return ret;
5128 	}
5129 	return 0;
5130 }
5131 
5132 /**
5133  *	t4_config_glbl_rss - configure the global RSS mode
5134  *	@adapter: the adapter
5135  *	@mbox: mbox to use for the FW command
5136  *	@mode: global RSS mode
5137  *	@flags: mode-specific flags
5138  *
5139  *	Sets the global RSS mode.
5140  */
5141 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5142 		       unsigned int flags)
5143 {
5144 	struct fw_rss_glb_config_cmd c;
5145 
5146 	memset(&c, 0, sizeof(c));
5147 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5148 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5149 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5150 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5151 		c.u.manual.mode_pkd =
5152 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5153 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5154 		c.u.basicvirtual.mode_pkd =
5155 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5156 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5157 	} else
5158 		return -EINVAL;
5159 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5160 }
5161 
5162 /**
5163  *	t4_config_vi_rss - configure per VI RSS settings
5164  *	@adapter: the adapter
5165  *	@mbox: mbox to use for the FW command
5166  *	@viid: the VI id
5167  *	@flags: RSS flags
5168  *	@defq: id of the default RSS queue for the VI.
5169  *
5170  *	Configures VI-specific RSS properties.
5171  */
5172 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5173 		     unsigned int flags, unsigned int defq)
5174 {
5175 	struct fw_rss_vi_config_cmd c;
5176 
5177 	memset(&c, 0, sizeof(c));
5178 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5179 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5180 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5181 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5182 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5183 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5184 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5185 }
5186 
5187 /* Read an RSS table row */
5188 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5189 {
5190 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5191 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5192 				   5, 0, val);
5193 }
5194 
5195 /**
5196  *	t4_read_rss - read the contents of the RSS mapping table
5197  *	@adapter: the adapter
5198  *	@map: holds the contents of the RSS mapping table
5199  *
5200  *	Reads the contents of the RSS hash->queue mapping table.
5201  */
5202 int t4_read_rss(struct adapter *adapter, u16 *map)
5203 {
5204 	int i, ret, nentries;
5205 	u32 val;
5206 
5207 	nentries = t4_chip_rss_size(adapter);
5208 	for (i = 0; i < nentries / 2; ++i) {
5209 		ret = rd_rss_row(adapter, i, &val);
5210 		if (ret)
5211 			return ret;
5212 		*map++ = LKPTBLQUEUE0_G(val);
5213 		*map++ = LKPTBLQUEUE1_G(val);
5214 	}
5215 	return 0;
5216 }
5217 
5218 static unsigned int t4_use_ldst(struct adapter *adap)
5219 {
5220 	return (adap->flags & FW_OK) && !adap->use_bd;
5221 }
5222 
5223 /**
5224  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5225  * @adap: the adapter
5226  * @cmd: TP fw ldst address space type
5227  * @vals: where the indirect register values are stored/written
5228  * @nregs: how many indirect registers to read/write
5229  * @start_idx: index of first indirect register to read/write
5230  * @rw: Read (1) or Write (0)
5231  * @sleep_ok: if true we may sleep while awaiting command completion
5232  *
5233  * Access TP indirect registers through LDST
5234  */
5235 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5236 			    unsigned int nregs, unsigned int start_index,
5237 			    unsigned int rw, bool sleep_ok)
5238 {
5239 	int ret = 0;
5240 	unsigned int i;
5241 	struct fw_ldst_cmd c;
5242 
5243 	for (i = 0; i < nregs; i++) {
5244 		memset(&c, 0, sizeof(c));
5245 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5246 						FW_CMD_REQUEST_F |
5247 						(rw ? FW_CMD_READ_F :
5248 						      FW_CMD_WRITE_F) |
5249 						FW_LDST_CMD_ADDRSPACE_V(cmd));
5250 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5251 
5252 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5253 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5254 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5255 				      sleep_ok);
5256 		if (ret)
5257 			return ret;
5258 
5259 		if (rw)
5260 			vals[i] = be32_to_cpu(c.u.addrval.val);
5261 	}
5262 	return 0;
5263 }
5264 
5265 /**
5266  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5267  * @adap: the adapter
5268  * @reg_addr: Address Register
5269  * @reg_data: Data register
5270  * @buff: where the indirect register values are stored/written
5271  * @nregs: how many indirect registers to read/write
5272  * @start_index: index of first indirect register to read/write
5273  * @rw: READ(1) or WRITE(0)
5274  * @sleep_ok: if true we may sleep while awaiting command completion
5275  *
5276  * Read/Write TP indirect registers through LDST if possible.
5277  * Else, use backdoor access
5278  **/
5279 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5280 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5281 			      bool sleep_ok)
5282 {
5283 	int rc = -EINVAL;
5284 	int cmd;
5285 
5286 	switch (reg_addr) {
5287 	case TP_PIO_ADDR_A:
5288 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5289 		break;
5290 	case TP_TM_PIO_ADDR_A:
5291 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5292 		break;
5293 	case TP_MIB_INDEX_A:
5294 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5295 		break;
5296 	default:
5297 		goto indirect_access;
5298 	}
5299 
5300 	if (t4_use_ldst(adap))
5301 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5302 				      sleep_ok);
5303 
5304 indirect_access:
5305 
5306 	if (rc) {
5307 		if (rw)
5308 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5309 					 start_index);
5310 		else
5311 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5312 					  start_index);
5313 	}
5314 }
5315 
5316 /**
5317  * t4_tp_pio_read - Read TP PIO registers
5318  * @adap: the adapter
5319  * @buff: where the indirect register values are written
5320  * @nregs: how many indirect registers to read
5321  * @start_index: index of first indirect register to read
5322  * @sleep_ok: if true we may sleep while awaiting command completion
5323  *
5324  * Read TP PIO Registers
5325  **/
5326 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5327 		    u32 start_index, bool sleep_ok)
5328 {
5329 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5330 			  start_index, 1, sleep_ok);
5331 }
5332 
5333 /**
5334  * t4_tp_pio_write - Write TP PIO registers
5335  * @adap: the adapter
5336  * @buff: where the indirect register values are stored
5337  * @nregs: how many indirect registers to write
5338  * @start_index: index of first indirect register to write
5339  * @sleep_ok: if true we may sleep while awaiting command completion
5340  *
5341  * Write TP PIO Registers
5342  **/
5343 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5344 			    u32 start_index, bool sleep_ok)
5345 {
5346 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5347 			  start_index, 0, sleep_ok);
5348 }
5349 
5350 /**
5351  * t4_tp_tm_pio_read - Read TP TM PIO registers
5352  * @adap: the adapter
5353  * @buff: where the indirect register values are written
5354  * @nregs: how many indirect registers to read
5355  * @start_index: index of first indirect register to read
5356  * @sleep_ok: if true we may sleep while awaiting command completion
5357  *
5358  * Read TP TM PIO Registers
5359  **/
5360 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5361 		       u32 start_index, bool sleep_ok)
5362 {
5363 	t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5364 			  nregs, start_index, 1, sleep_ok);
5365 }
5366 
5367 /**
5368  * t4_tp_mib_read - Read TP MIB registers
5369  * @adap: the adapter
5370  * @buff: where the indirect register values are written
5371  * @nregs: how many indirect registers to read
5372  * @start_index: index of first indirect register to read
5373  * @sleep_ok: if true we may sleep while awaiting command completion
5374  *
5375  * Read TP MIB Registers
5376  **/
5377 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5378 		    bool sleep_ok)
5379 {
5380 	t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5381 			  start_index, 1, sleep_ok);
5382 }
5383 
5384 /**
5385  *	t4_read_rss_key - read the global RSS key
5386  *	@adap: the adapter
5387  *	@key: 10-entry array holding the 320-bit RSS key
5388  *      @sleep_ok: if true we may sleep while awaiting command completion
5389  *
5390  *	Reads the global 320-bit RSS key.
5391  */
5392 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5393 {
5394 	t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5395 }
5396 
5397 /**
5398  *	t4_write_rss_key - program one of the RSS keys
5399  *	@adap: the adapter
5400  *	@key: 10-entry array holding the 320-bit RSS key
5401  *	@idx: which RSS key to write
5402  *      @sleep_ok: if true we may sleep while awaiting command completion
5403  *
5404  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5405  *	0..15 the corresponding entry in the RSS key table is written,
5406  *	otherwise the global RSS key is written.
5407  */
5408 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5409 		      bool sleep_ok)
5410 {
5411 	u8 rss_key_addr_cnt = 16;
5412 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5413 
5414 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5415 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5416 	 * as index[5:4](upper 2) into key table
5417 	 */
5418 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5419 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5420 		rss_key_addr_cnt = 32;
5421 
5422 	t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5423 
5424 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5425 		if (rss_key_addr_cnt > 16)
5426 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5427 				     KEYWRADDRX_V(idx >> 4) |
5428 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
5429 		else
5430 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5431 				     KEYWRADDR_V(idx) | KEYWREN_F);
5432 	}
5433 }
5434 
5435 /**
5436  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5437  *	@adapter: the adapter
5438  *	@index: the entry in the PF RSS table to read
5439  *	@valp: where to store the returned value
5440  *      @sleep_ok: if true we may sleep while awaiting command completion
5441  *
5442  *	Reads the PF RSS Configuration Table at the specified index and returns
5443  *	the value found there.
5444  */
5445 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5446 			   u32 *valp, bool sleep_ok)
5447 {
5448 	t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5449 }
5450 
5451 /**
5452  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5453  *	@adapter: the adapter
5454  *	@index: the entry in the VF RSS table to read
5455  *	@vfl: where to store the returned VFL
5456  *	@vfh: where to store the returned VFH
5457  *      @sleep_ok: if true we may sleep while awaiting command completion
5458  *
5459  *	Reads the VF RSS Configuration Table at the specified index and returns
5460  *	the (VFL, VFH) values found there.
5461  */
5462 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5463 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5464 {
5465 	u32 vrt, mask, data;
5466 
5467 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5468 		mask = VFWRADDR_V(VFWRADDR_M);
5469 		data = VFWRADDR_V(index);
5470 	} else {
5471 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5472 		 data = T6_VFWRADDR_V(index);
5473 	}
5474 
5475 	/* Request that the index'th VF Table values be read into VFL/VFH.
5476 	 */
5477 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5478 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5479 	vrt |= data | VFRDEN_F;
5480 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5481 
5482 	/* Grab the VFL/VFH values ...
5483 	 */
5484 	t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5485 	t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5486 }
5487 
5488 /**
5489  *	t4_read_rss_pf_map - read PF RSS Map
5490  *	@adapter: the adapter
5491  *      @sleep_ok: if true we may sleep while awaiting command completion
5492  *
5493  *	Reads the PF RSS Map register and returns its value.
5494  */
5495 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5496 {
5497 	u32 pfmap;
5498 
5499 	t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5500 	return pfmap;
5501 }
5502 
5503 /**
5504  *	t4_read_rss_pf_mask - read PF RSS Mask
5505  *	@adapter: the adapter
5506  *      @sleep_ok: if true we may sleep while awaiting command completion
5507  *
5508  *	Reads the PF RSS Mask register and returns its value.
5509  */
5510 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5511 {
5512 	u32 pfmask;
5513 
5514 	t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5515 	return pfmask;
5516 }
5517 
5518 /**
5519  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5520  *	@adap: the adapter
5521  *	@v4: holds the TCP/IP counter values
5522  *	@v6: holds the TCP/IPv6 counter values
5523  *      @sleep_ok: if true we may sleep while awaiting command completion
5524  *
5525  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5526  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5527  */
5528 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5529 			 struct tp_tcp_stats *v6, bool sleep_ok)
5530 {
5531 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5532 
5533 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5534 #define STAT(x)     val[STAT_IDX(x)]
5535 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5536 
5537 	if (v4) {
5538 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5539 			       TP_MIB_TCP_OUT_RST_A, sleep_ok);
5540 		v4->tcp_out_rsts = STAT(OUT_RST);
5541 		v4->tcp_in_segs  = STAT64(IN_SEG);
5542 		v4->tcp_out_segs = STAT64(OUT_SEG);
5543 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5544 	}
5545 	if (v6) {
5546 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5547 			       TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5548 		v6->tcp_out_rsts = STAT(OUT_RST);
5549 		v6->tcp_in_segs  = STAT64(IN_SEG);
5550 		v6->tcp_out_segs = STAT64(OUT_SEG);
5551 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5552 	}
5553 #undef STAT64
5554 #undef STAT
5555 #undef STAT_IDX
5556 }
5557 
5558 /**
5559  *	t4_tp_get_err_stats - read TP's error MIB counters
5560  *	@adap: the adapter
5561  *	@st: holds the counter values
5562  *      @sleep_ok: if true we may sleep while awaiting command completion
5563  *
5564  *	Returns the values of TP's error counters.
5565  */
5566 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5567 			 bool sleep_ok)
5568 {
5569 	int nchan = adap->params.arch.nchan;
5570 
5571 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5572 		       sleep_ok);
5573 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5574 		       sleep_ok);
5575 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5576 		       sleep_ok);
5577 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5578 		       TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5579 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5580 		       TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5581 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5582 		       sleep_ok);
5583 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5584 		       TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5585 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5586 		       TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5587 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5588 		       sleep_ok);
5589 }
5590 
5591 /**
5592  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5593  *	@adap: the adapter
5594  *	@st: holds the counter values
5595  *      @sleep_ok: if true we may sleep while awaiting command completion
5596  *
5597  *	Returns the values of TP's CPL counters.
5598  */
5599 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5600 			 bool sleep_ok)
5601 {
5602 	int nchan = adap->params.arch.nchan;
5603 
5604 	t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5605 
5606 	t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5607 }
5608 
5609 /**
5610  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5611  *	@adap: the adapter
5612  *	@st: holds the counter values
5613  *      @sleep_ok: if true we may sleep while awaiting command completion
5614  *
5615  *	Returns the values of TP's RDMA counters.
5616  */
5617 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5618 			  bool sleep_ok)
5619 {
5620 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5621 		       sleep_ok);
5622 }
5623 
5624 /**
5625  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5626  *	@adap: the adapter
5627  *	@idx: the port index
5628  *	@st: holds the counter values
5629  *      @sleep_ok: if true we may sleep while awaiting command completion
5630  *
5631  *	Returns the values of TP's FCoE counters for the selected port.
5632  */
5633 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5634 		       struct tp_fcoe_stats *st, bool sleep_ok)
5635 {
5636 	u32 val[2];
5637 
5638 	t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5639 		       sleep_ok);
5640 
5641 	t4_tp_mib_read(adap, &st->frames_drop, 1,
5642 		       TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5643 
5644 	t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5645 		       sleep_ok);
5646 
5647 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5648 }
5649 
5650 /**
5651  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5652  *	@adap: the adapter
5653  *	@st: holds the counter values
5654  *      @sleep_ok: if true we may sleep while awaiting command completion
5655  *
5656  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5657  */
5658 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5659 		      bool sleep_ok)
5660 {
5661 	u32 val[4];
5662 
5663 	t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5664 	st->frames = val[0];
5665 	st->drops = val[1];
5666 	st->octets = ((u64)val[2] << 32) | val[3];
5667 }
5668 
5669 /**
5670  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5671  *	@adap: the adapter
5672  *	@mtus: where to store the MTU values
5673  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5674  *
5675  *	Reads the HW path MTU table.
5676  */
5677 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5678 {
5679 	u32 v;
5680 	int i;
5681 
5682 	for (i = 0; i < NMTUS; ++i) {
5683 		t4_write_reg(adap, TP_MTU_TABLE_A,
5684 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
5685 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
5686 		mtus[i] = MTUVALUE_G(v);
5687 		if (mtu_log)
5688 			mtu_log[i] = MTUWIDTH_G(v);
5689 	}
5690 }
5691 
5692 /**
5693  *	t4_read_cong_tbl - reads the congestion control table
5694  *	@adap: the adapter
5695  *	@incr: where to store the alpha values
5696  *
5697  *	Reads the additive increments programmed into the HW congestion
5698  *	control table.
5699  */
5700 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5701 {
5702 	unsigned int mtu, w;
5703 
5704 	for (mtu = 0; mtu < NMTUS; ++mtu)
5705 		for (w = 0; w < NCCTRL_WIN; ++w) {
5706 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
5707 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5708 			incr[mtu][w] = (u16)t4_read_reg(adap,
5709 						TP_CCTRL_TABLE_A) & 0x1fff;
5710 		}
5711 }
5712 
5713 /**
5714  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5715  *	@adap: the adapter
5716  *	@addr: the indirect TP register address
5717  *	@mask: specifies the field within the register to modify
5718  *	@val: new value for the field
5719  *
5720  *	Sets a field of an indirect TP register to the given value.
5721  */
5722 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5723 			    unsigned int mask, unsigned int val)
5724 {
5725 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5726 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5727 	t4_write_reg(adap, TP_PIO_DATA_A, val);
5728 }
5729 
5730 /**
5731  *	init_cong_ctrl - initialize congestion control parameters
5732  *	@a: the alpha values for congestion control
5733  *	@b: the beta values for congestion control
5734  *
5735  *	Initialize the congestion control parameters.
5736  */
5737 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5738 {
5739 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5740 	a[9] = 2;
5741 	a[10] = 3;
5742 	a[11] = 4;
5743 	a[12] = 5;
5744 	a[13] = 6;
5745 	a[14] = 7;
5746 	a[15] = 8;
5747 	a[16] = 9;
5748 	a[17] = 10;
5749 	a[18] = 14;
5750 	a[19] = 17;
5751 	a[20] = 21;
5752 	a[21] = 25;
5753 	a[22] = 30;
5754 	a[23] = 35;
5755 	a[24] = 45;
5756 	a[25] = 60;
5757 	a[26] = 80;
5758 	a[27] = 100;
5759 	a[28] = 200;
5760 	a[29] = 300;
5761 	a[30] = 400;
5762 	a[31] = 500;
5763 
5764 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5765 	b[9] = b[10] = 1;
5766 	b[11] = b[12] = 2;
5767 	b[13] = b[14] = b[15] = b[16] = 3;
5768 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5769 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5770 	b[28] = b[29] = 6;
5771 	b[30] = b[31] = 7;
5772 }
5773 
5774 /* The minimum additive increment value for the congestion control table */
5775 #define CC_MIN_INCR 2U
5776 
5777 /**
5778  *	t4_load_mtus - write the MTU and congestion control HW tables
5779  *	@adap: the adapter
5780  *	@mtus: the values for the MTU table
5781  *	@alpha: the values for the congestion control alpha parameter
5782  *	@beta: the values for the congestion control beta parameter
5783  *
5784  *	Write the HW MTU table with the supplied MTUs and the high-speed
5785  *	congestion control table with the supplied alpha, beta, and MTUs.
5786  *	We write the two tables together because the additive increments
5787  *	depend on the MTUs.
5788  */
5789 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5790 		  const unsigned short *alpha, const unsigned short *beta)
5791 {
5792 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5793 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5794 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5795 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5796 	};
5797 
5798 	unsigned int i, w;
5799 
5800 	for (i = 0; i < NMTUS; ++i) {
5801 		unsigned int mtu = mtus[i];
5802 		unsigned int log2 = fls(mtu);
5803 
5804 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5805 			log2--;
5806 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5807 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5808 
5809 		for (w = 0; w < NCCTRL_WIN; ++w) {
5810 			unsigned int inc;
5811 
5812 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5813 				  CC_MIN_INCR);
5814 
5815 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5816 				     (w << 16) | (beta[w] << 13) | inc);
5817 		}
5818 	}
5819 }
5820 
5821 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5822  * clocks.  The formula is
5823  *
5824  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5825  *
5826  * which is equivalent to
5827  *
5828  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5829  */
5830 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5831 {
5832 	u64 v = bytes256 * adap->params.vpd.cclk;
5833 
5834 	return v * 62 + v / 2;
5835 }
5836 
5837 /**
5838  *	t4_get_chan_txrate - get the current per channel Tx rates
5839  *	@adap: the adapter
5840  *	@nic_rate: rates for NIC traffic
5841  *	@ofld_rate: rates for offloaded traffic
5842  *
5843  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5844  *	for each channel.
5845  */
5846 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5847 {
5848 	u32 v;
5849 
5850 	v = t4_read_reg(adap, TP_TX_TRATE_A);
5851 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5852 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5853 	if (adap->params.arch.nchan == NCHAN) {
5854 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5855 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5856 	}
5857 
5858 	v = t4_read_reg(adap, TP_TX_ORATE_A);
5859 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5860 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5861 	if (adap->params.arch.nchan == NCHAN) {
5862 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5863 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5864 	}
5865 }
5866 
5867 /**
5868  *	t4_set_trace_filter - configure one of the tracing filters
5869  *	@adap: the adapter
5870  *	@tp: the desired trace filter parameters
5871  *	@idx: which filter to configure
5872  *	@enable: whether to enable or disable the filter
5873  *
5874  *	Configures one of the tracing filters available in HW.  If @enable is
5875  *	%0 @tp is not examined and may be %NULL. The user is responsible to
5876  *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5877  */
5878 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5879 			int idx, int enable)
5880 {
5881 	int i, ofst = idx * 4;
5882 	u32 data_reg, mask_reg, cfg;
5883 
5884 	if (!enable) {
5885 		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5886 		return 0;
5887 	}
5888 
5889 	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5890 	if (cfg & TRCMULTIFILTER_F) {
5891 		/* If multiple tracers are enabled, then maximum
5892 		 * capture size is 2.5KB (FIFO size of a single channel)
5893 		 * minus 2 flits for CPL_TRACE_PKT header.
5894 		 */
5895 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5896 			return -EINVAL;
5897 	} else {
5898 		/* If multiple tracers are disabled, to avoid deadlocks
5899 		 * maximum packet capture size of 9600 bytes is recommended.
5900 		 * Also in this mode, only trace0 can be enabled and running.
5901 		 */
5902 		if (tp->snap_len > 9600 || idx)
5903 			return -EINVAL;
5904 	}
5905 
5906 	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5907 	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5908 	    tp->min_len > TFMINPKTSIZE_M)
5909 		return -EINVAL;
5910 
5911 	/* stop the tracer we'll be changing */
5912 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5913 
5914 	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5915 	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5916 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5917 
5918 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5919 		t4_write_reg(adap, data_reg, tp->data[i]);
5920 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5921 	}
5922 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5923 		     TFCAPTUREMAX_V(tp->snap_len) |
5924 		     TFMINPKTSIZE_V(tp->min_len));
5925 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5926 		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5927 		     (is_t4(adap->params.chip) ?
5928 		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5929 		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
5930 		     T5_TFINVERTMATCH_V(tp->invert)));
5931 
5932 	return 0;
5933 }
5934 
5935 /**
5936  *	t4_get_trace_filter - query one of the tracing filters
5937  *	@adap: the adapter
5938  *	@tp: the current trace filter parameters
5939  *	@idx: which trace filter to query
5940  *	@enabled: non-zero if the filter is enabled
5941  *
5942  *	Returns the current settings of one of the HW tracing filters.
5943  */
5944 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5945 			 int *enabled)
5946 {
5947 	u32 ctla, ctlb;
5948 	int i, ofst = idx * 4;
5949 	u32 data_reg, mask_reg;
5950 
5951 	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5952 	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5953 
5954 	if (is_t4(adap->params.chip)) {
5955 		*enabled = !!(ctla & TFEN_F);
5956 		tp->port =  TFPORT_G(ctla);
5957 		tp->invert = !!(ctla & TFINVERTMATCH_F);
5958 	} else {
5959 		*enabled = !!(ctla & T5_TFEN_F);
5960 		tp->port = T5_TFPORT_G(ctla);
5961 		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5962 	}
5963 	tp->snap_len = TFCAPTUREMAX_G(ctlb);
5964 	tp->min_len = TFMINPKTSIZE_G(ctlb);
5965 	tp->skip_ofst = TFOFFSET_G(ctla);
5966 	tp->skip_len = TFLENGTH_G(ctla);
5967 
5968 	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5969 	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5970 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5971 
5972 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5973 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5974 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5975 	}
5976 }
5977 
5978 /**
5979  *	t4_pmtx_get_stats - returns the HW stats from PMTX
5980  *	@adap: the adapter
5981  *	@cnt: where to store the count statistics
5982  *	@cycles: where to store the cycle statistics
5983  *
5984  *	Returns performance statistics from PMTX.
5985  */
5986 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5987 {
5988 	int i;
5989 	u32 data[2];
5990 
5991 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5992 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5993 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5994 		if (is_t4(adap->params.chip)) {
5995 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5996 		} else {
5997 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5998 					 PM_TX_DBG_DATA_A, data, 2,
5999 					 PM_TX_DBG_STAT_MSB_A);
6000 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6001 		}
6002 	}
6003 }
6004 
6005 /**
6006  *	t4_pmrx_get_stats - returns the HW stats from PMRX
6007  *	@adap: the adapter
6008  *	@cnt: where to store the count statistics
6009  *	@cycles: where to store the cycle statistics
6010  *
6011  *	Returns performance statistics from PMRX.
6012  */
6013 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6014 {
6015 	int i;
6016 	u32 data[2];
6017 
6018 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6019 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
6020 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
6021 		if (is_t4(adap->params.chip)) {
6022 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
6023 		} else {
6024 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
6025 					 PM_RX_DBG_DATA_A, data, 2,
6026 					 PM_RX_DBG_STAT_MSB_A);
6027 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6028 		}
6029 	}
6030 }
6031 
6032 /**
6033  *	compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
6034  *	@adap: the adapter
6035  *	@pidx: the port index
6036  *
6037  *	Computes and returns a bitmap indicating which MPS buffer groups are
6038  *	associated with the given Port.  Bit i is set if buffer group i is
6039  *	used by the Port.
6040  */
6041 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
6042 					      int pidx)
6043 {
6044 	unsigned int chip_version, nports;
6045 
6046 	chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6047 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6048 
6049 	switch (chip_version) {
6050 	case CHELSIO_T4:
6051 	case CHELSIO_T5:
6052 		switch (nports) {
6053 		case 1: return 0xf;
6054 		case 2: return 3 << (2 * pidx);
6055 		case 4: return 1 << pidx;
6056 		}
6057 		break;
6058 
6059 	case CHELSIO_T6:
6060 		switch (nports) {
6061 		case 2: return 1 << (2 * pidx);
6062 		}
6063 		break;
6064 	}
6065 
6066 	dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
6067 		chip_version, nports);
6068 
6069 	return 0;
6070 }
6071 
6072 /**
6073  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6074  *	@adapter: the adapter
6075  *	@pidx: the port index
6076  *
6077  *	Returns a bitmap indicating which MPS buffer groups are associated
6078  *	with the given Port.  Bit i is set if buffer group i is used by the
6079  *	Port.
6080  */
6081 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6082 {
6083 	u8 *mps_bg_map;
6084 	unsigned int nports;
6085 
6086 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6087 	if (pidx >= nports) {
6088 		CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6089 			pidx, nports);
6090 		return 0;
6091 	}
6092 
6093 	/* If we've already retrieved/computed this, just return the result.
6094 	 */
6095 	mps_bg_map = adapter->params.mps_bg_map;
6096 	if (mps_bg_map[pidx])
6097 		return mps_bg_map[pidx];
6098 
6099 	/* Newer Firmware can tell us what the MPS Buffer Group Map is.
6100 	 * If we're talking to such Firmware, let it tell us.  If the new
6101 	 * API isn't supported, revert back to old hardcoded way.  The value
6102 	 * obtained from Firmware is encoded in below format:
6103 	 *
6104 	 * val = (( MPSBGMAP[Port 3] << 24 ) |
6105 	 *        ( MPSBGMAP[Port 2] << 16 ) |
6106 	 *        ( MPSBGMAP[Port 1] <<  8 ) |
6107 	 *        ( MPSBGMAP[Port 0] <<  0 ))
6108 	 */
6109 	if (adapter->flags & FW_OK) {
6110 		u32 param, val;
6111 		int ret;
6112 
6113 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6114 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6115 		ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6116 					 0, 1, &param, &val);
6117 		if (!ret) {
6118 			int p;
6119 
6120 			/* Store the BG Map for all of the Ports in order to
6121 			 * avoid more calls to the Firmware in the future.
6122 			 */
6123 			for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6124 				mps_bg_map[p] = val & 0xff;
6125 
6126 			return mps_bg_map[pidx];
6127 		}
6128 	}
6129 
6130 	/* Either we're not talking to the Firmware or we're dealing with
6131 	 * older Firmware which doesn't support the new API to get the MPS
6132 	 * Buffer Group Map.  Fall back to computing it ourselves.
6133 	 */
6134 	mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6135 	return mps_bg_map[pidx];
6136 }
6137 
6138 /**
6139  *	t4_get_tp_ch_map - return TP ingress channels associated with a port
6140  *	@adapter: the adapter
6141  *	@pidx: the port index
6142  *
6143  *	Returns a bitmap indicating which TP Ingress Channels are associated
6144  *	with a given Port.  Bit i is set if TP Ingress Channel i is used by
6145  *	the Port.
6146  */
6147 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6148 {
6149 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6150 	unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6151 
6152 	if (pidx >= nports) {
6153 		dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6154 			 pidx, nports);
6155 		return 0;
6156 	}
6157 
6158 	switch (chip_version) {
6159 	case CHELSIO_T4:
6160 	case CHELSIO_T5:
6161 		/* Note that this happens to be the same values as the MPS
6162 		 * Buffer Group Map for these Chips.  But we replicate the code
6163 		 * here because they're really separate concepts.
6164 		 */
6165 		switch (nports) {
6166 		case 1: return 0xf;
6167 		case 2: return 3 << (2 * pidx);
6168 		case 4: return 1 << pidx;
6169 		}
6170 		break;
6171 
6172 	case CHELSIO_T6:
6173 		switch (nports) {
6174 		case 1:
6175 		case 2: return 1 << pidx;
6176 		}
6177 		break;
6178 	}
6179 
6180 	dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6181 		chip_version, nports);
6182 	return 0;
6183 }
6184 
6185 /**
6186  *      t4_get_port_type_description - return Port Type string description
6187  *      @port_type: firmware Port Type enumeration
6188  */
6189 const char *t4_get_port_type_description(enum fw_port_type port_type)
6190 {
6191 	static const char *const port_type_description[] = {
6192 		"Fiber_XFI",
6193 		"Fiber_XAUI",
6194 		"BT_SGMII",
6195 		"BT_XFI",
6196 		"BT_XAUI",
6197 		"KX4",
6198 		"CX4",
6199 		"KX",
6200 		"KR",
6201 		"SFP",
6202 		"BP_AP",
6203 		"BP4_AP",
6204 		"QSFP_10G",
6205 		"QSA",
6206 		"QSFP",
6207 		"BP40_BA",
6208 		"KR4_100G",
6209 		"CR4_QSFP",
6210 		"CR_QSFP",
6211 		"CR2_QSFP",
6212 		"SFP28",
6213 		"KR_SFP28",
6214 		"KR_XLAUI"
6215 	};
6216 
6217 	if (port_type < ARRAY_SIZE(port_type_description))
6218 		return port_type_description[port_type];
6219 	return "UNKNOWN";
6220 }
6221 
6222 /**
6223  *      t4_get_port_stats_offset - collect port stats relative to a previous
6224  *                                 snapshot
6225  *      @adap: The adapter
6226  *      @idx: The port
6227  *      @stats: Current stats to fill
6228  *      @offset: Previous stats snapshot
6229  */
6230 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6231 			      struct port_stats *stats,
6232 			      struct port_stats *offset)
6233 {
6234 	u64 *s, *o;
6235 	int i;
6236 
6237 	t4_get_port_stats(adap, idx, stats);
6238 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6239 			i < (sizeof(struct port_stats) / sizeof(u64));
6240 			i++, s++, o++)
6241 		*s -= *o;
6242 }
6243 
6244 /**
6245  *	t4_get_port_stats - collect port statistics
6246  *	@adap: the adapter
6247  *	@idx: the port index
6248  *	@p: the stats structure to fill
6249  *
6250  *	Collect statistics related to the given port from HW.
6251  */
6252 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6253 {
6254 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6255 	u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6256 
6257 #define GET_STAT(name) \
6258 	t4_read_reg64(adap, \
6259 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6260 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6261 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6262 
6263 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6264 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6265 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6266 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6267 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6268 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6269 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6270 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6271 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6272 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6273 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6274 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6275 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6276 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
6277 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6278 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6279 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6280 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6281 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6282 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6283 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6284 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6285 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6286 
6287 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6288 		if (stat_ctl & COUNTPAUSESTATTX_F)
6289 			p->tx_frames_64 -= p->tx_pause;
6290 		if (stat_ctl & COUNTPAUSEMCTX_F)
6291 			p->tx_mcast_frames -= p->tx_pause;
6292 	}
6293 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6294 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6295 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6296 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6297 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6298 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6299 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6300 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6301 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6302 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6303 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6304 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6305 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6306 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6307 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6308 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6309 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6310 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6311 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6312 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6313 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6314 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6315 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6316 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6317 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6318 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6319 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6320 
6321 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6322 		if (stat_ctl & COUNTPAUSESTATRX_F)
6323 			p->rx_frames_64 -= p->rx_pause;
6324 		if (stat_ctl & COUNTPAUSEMCRX_F)
6325 			p->rx_mcast_frames -= p->rx_pause;
6326 	}
6327 
6328 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6329 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6330 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6331 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6332 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6333 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6334 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6335 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6336 
6337 #undef GET_STAT
6338 #undef GET_STAT_COM
6339 }
6340 
6341 /**
6342  *	t4_get_lb_stats - collect loopback port statistics
6343  *	@adap: the adapter
6344  *	@idx: the loopback port index
6345  *	@p: the stats structure to fill
6346  *
6347  *	Return HW statistics for the given loopback port.
6348  */
6349 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6350 {
6351 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6352 
6353 #define GET_STAT(name) \
6354 	t4_read_reg64(adap, \
6355 	(is_t4(adap->params.chip) ? \
6356 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6357 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6358 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6359 
6360 	p->octets           = GET_STAT(BYTES);
6361 	p->frames           = GET_STAT(FRAMES);
6362 	p->bcast_frames     = GET_STAT(BCAST);
6363 	p->mcast_frames     = GET_STAT(MCAST);
6364 	p->ucast_frames     = GET_STAT(UCAST);
6365 	p->error_frames     = GET_STAT(ERROR);
6366 
6367 	p->frames_64        = GET_STAT(64B);
6368 	p->frames_65_127    = GET_STAT(65B_127B);
6369 	p->frames_128_255   = GET_STAT(128B_255B);
6370 	p->frames_256_511   = GET_STAT(256B_511B);
6371 	p->frames_512_1023  = GET_STAT(512B_1023B);
6372 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
6373 	p->frames_1519_max  = GET_STAT(1519B_MAX);
6374 	p->drop             = GET_STAT(DROP_FRAMES);
6375 
6376 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6377 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6378 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6379 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6380 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6381 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6382 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6383 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6384 
6385 #undef GET_STAT
6386 #undef GET_STAT_COM
6387 }
6388 
6389 /*     t4_mk_filtdelwr - create a delete filter WR
6390  *     @ftid: the filter ID
6391  *     @wr: the filter work request to populate
6392  *     @qid: ingress queue to receive the delete notification
6393  *
6394  *     Creates a filter work request to delete the supplied filter.  If @qid is
6395  *     negative the delete notification is suppressed.
6396  */
6397 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6398 {
6399 	memset(wr, 0, sizeof(*wr));
6400 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6401 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6402 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6403 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
6404 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6405 	if (qid >= 0)
6406 		wr->rx_chan_rx_rpl_iq =
6407 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6408 }
6409 
6410 #define INIT_CMD(var, cmd, rd_wr) do { \
6411 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6412 					FW_CMD_REQUEST_F | \
6413 					FW_CMD_##rd_wr##_F); \
6414 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6415 } while (0)
6416 
6417 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6418 			  u32 addr, u32 val)
6419 {
6420 	u32 ldst_addrspace;
6421 	struct fw_ldst_cmd c;
6422 
6423 	memset(&c, 0, sizeof(c));
6424 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6425 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6426 					FW_CMD_REQUEST_F |
6427 					FW_CMD_WRITE_F |
6428 					ldst_addrspace);
6429 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6430 	c.u.addrval.addr = cpu_to_be32(addr);
6431 	c.u.addrval.val = cpu_to_be32(val);
6432 
6433 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6434 }
6435 
6436 /**
6437  *	t4_mdio_rd - read a PHY register through MDIO
6438  *	@adap: the adapter
6439  *	@mbox: mailbox to use for the FW command
6440  *	@phy_addr: the PHY address
6441  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6442  *	@reg: the register to read
6443  *	@valp: where to store the value
6444  *
6445  *	Issues a FW command through the given mailbox to read a PHY register.
6446  */
6447 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6448 	       unsigned int mmd, unsigned int reg, u16 *valp)
6449 {
6450 	int ret;
6451 	u32 ldst_addrspace;
6452 	struct fw_ldst_cmd c;
6453 
6454 	memset(&c, 0, sizeof(c));
6455 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6456 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6457 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6458 					ldst_addrspace);
6459 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6460 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6461 					 FW_LDST_CMD_MMD_V(mmd));
6462 	c.u.mdio.raddr = cpu_to_be16(reg);
6463 
6464 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6465 	if (ret == 0)
6466 		*valp = be16_to_cpu(c.u.mdio.rval);
6467 	return ret;
6468 }
6469 
6470 /**
6471  *	t4_mdio_wr - write a PHY register through MDIO
6472  *	@adap: the adapter
6473  *	@mbox: mailbox to use for the FW command
6474  *	@phy_addr: the PHY address
6475  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6476  *	@reg: the register to write
6477  *	@valp: value to write
6478  *
6479  *	Issues a FW command through the given mailbox to write a PHY register.
6480  */
6481 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6482 	       unsigned int mmd, unsigned int reg, u16 val)
6483 {
6484 	u32 ldst_addrspace;
6485 	struct fw_ldst_cmd c;
6486 
6487 	memset(&c, 0, sizeof(c));
6488 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6489 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6490 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6491 					ldst_addrspace);
6492 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6493 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6494 					 FW_LDST_CMD_MMD_V(mmd));
6495 	c.u.mdio.raddr = cpu_to_be16(reg);
6496 	c.u.mdio.rval = cpu_to_be16(val);
6497 
6498 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6499 }
6500 
6501 /**
6502  *	t4_sge_decode_idma_state - decode the idma state
6503  *	@adap: the adapter
6504  *	@state: the state idma is stuck in
6505  */
6506 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6507 {
6508 	static const char * const t4_decode[] = {
6509 		"IDMA_IDLE",
6510 		"IDMA_PUSH_MORE_CPL_FIFO",
6511 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6512 		"Not used",
6513 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6514 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6515 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6516 		"IDMA_SEND_FIFO_TO_IMSG",
6517 		"IDMA_FL_REQ_DATA_FL_PREP",
6518 		"IDMA_FL_REQ_DATA_FL",
6519 		"IDMA_FL_DROP",
6520 		"IDMA_FL_H_REQ_HEADER_FL",
6521 		"IDMA_FL_H_SEND_PCIEHDR",
6522 		"IDMA_FL_H_PUSH_CPL_FIFO",
6523 		"IDMA_FL_H_SEND_CPL",
6524 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6525 		"IDMA_FL_H_SEND_IP_HDR",
6526 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6527 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6528 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6529 		"IDMA_FL_D_SEND_PCIEHDR",
6530 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6531 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6532 		"IDMA_FL_SEND_PCIEHDR",
6533 		"IDMA_FL_PUSH_CPL_FIFO",
6534 		"IDMA_FL_SEND_CPL",
6535 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6536 		"IDMA_FL_SEND_PAYLOAD",
6537 		"IDMA_FL_REQ_NEXT_DATA_FL",
6538 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6539 		"IDMA_FL_SEND_PADDING",
6540 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6541 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6542 		"IDMA_FL_REQ_DATAFL_DONE",
6543 		"IDMA_FL_REQ_HEADERFL_DONE",
6544 	};
6545 	static const char * const t5_decode[] = {
6546 		"IDMA_IDLE",
6547 		"IDMA_ALMOST_IDLE",
6548 		"IDMA_PUSH_MORE_CPL_FIFO",
6549 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6550 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6551 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6552 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6553 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6554 		"IDMA_SEND_FIFO_TO_IMSG",
6555 		"IDMA_FL_REQ_DATA_FL",
6556 		"IDMA_FL_DROP",
6557 		"IDMA_FL_DROP_SEND_INC",
6558 		"IDMA_FL_H_REQ_HEADER_FL",
6559 		"IDMA_FL_H_SEND_PCIEHDR",
6560 		"IDMA_FL_H_PUSH_CPL_FIFO",
6561 		"IDMA_FL_H_SEND_CPL",
6562 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6563 		"IDMA_FL_H_SEND_IP_HDR",
6564 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6565 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6566 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6567 		"IDMA_FL_D_SEND_PCIEHDR",
6568 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6569 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6570 		"IDMA_FL_SEND_PCIEHDR",
6571 		"IDMA_FL_PUSH_CPL_FIFO",
6572 		"IDMA_FL_SEND_CPL",
6573 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6574 		"IDMA_FL_SEND_PAYLOAD",
6575 		"IDMA_FL_REQ_NEXT_DATA_FL",
6576 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6577 		"IDMA_FL_SEND_PADDING",
6578 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6579 	};
6580 	static const char * const t6_decode[] = {
6581 		"IDMA_IDLE",
6582 		"IDMA_PUSH_MORE_CPL_FIFO",
6583 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6584 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6585 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6586 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6587 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6588 		"IDMA_FL_REQ_DATA_FL",
6589 		"IDMA_FL_DROP",
6590 		"IDMA_FL_DROP_SEND_INC",
6591 		"IDMA_FL_H_REQ_HEADER_FL",
6592 		"IDMA_FL_H_SEND_PCIEHDR",
6593 		"IDMA_FL_H_PUSH_CPL_FIFO",
6594 		"IDMA_FL_H_SEND_CPL",
6595 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6596 		"IDMA_FL_H_SEND_IP_HDR",
6597 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6598 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6599 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6600 		"IDMA_FL_D_SEND_PCIEHDR",
6601 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6602 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6603 		"IDMA_FL_SEND_PCIEHDR",
6604 		"IDMA_FL_PUSH_CPL_FIFO",
6605 		"IDMA_FL_SEND_CPL",
6606 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6607 		"IDMA_FL_SEND_PAYLOAD",
6608 		"IDMA_FL_REQ_NEXT_DATA_FL",
6609 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6610 		"IDMA_FL_SEND_PADDING",
6611 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6612 	};
6613 	static const u32 sge_regs[] = {
6614 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
6615 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
6616 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6617 	};
6618 	const char **sge_idma_decode;
6619 	int sge_idma_decode_nstates;
6620 	int i;
6621 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6622 
6623 	/* Select the right set of decode strings to dump depending on the
6624 	 * adapter chip type.
6625 	 */
6626 	switch (chip_version) {
6627 	case CHELSIO_T4:
6628 		sge_idma_decode = (const char **)t4_decode;
6629 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6630 		break;
6631 
6632 	case CHELSIO_T5:
6633 		sge_idma_decode = (const char **)t5_decode;
6634 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6635 		break;
6636 
6637 	case CHELSIO_T6:
6638 		sge_idma_decode = (const char **)t6_decode;
6639 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6640 		break;
6641 
6642 	default:
6643 		dev_err(adapter->pdev_dev,
6644 			"Unsupported chip version %d\n", chip_version);
6645 		return;
6646 	}
6647 
6648 	if (is_t4(adapter->params.chip)) {
6649 		sge_idma_decode = (const char **)t4_decode;
6650 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6651 	} else {
6652 		sge_idma_decode = (const char **)t5_decode;
6653 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6654 	}
6655 
6656 	if (state < sge_idma_decode_nstates)
6657 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6658 	else
6659 		CH_WARN(adapter, "idma state %d unknown\n", state);
6660 
6661 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6662 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6663 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6664 }
6665 
6666 /**
6667  *      t4_sge_ctxt_flush - flush the SGE context cache
6668  *      @adap: the adapter
6669  *      @mbox: mailbox to use for the FW command
6670  *      @ctx_type: Egress or Ingress
6671  *
6672  *      Issues a FW command through the given mailbox to flush the
6673  *      SGE context cache.
6674  */
6675 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6676 {
6677 	int ret;
6678 	u32 ldst_addrspace;
6679 	struct fw_ldst_cmd c;
6680 
6681 	memset(&c, 0, sizeof(c));
6682 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6683 						 FW_LDST_ADDRSPC_SGE_EGRC :
6684 						 FW_LDST_ADDRSPC_SGE_INGC);
6685 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6686 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6687 					ldst_addrspace);
6688 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6689 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6690 
6691 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6692 	return ret;
6693 }
6694 
6695 /**
6696  *      t4_fw_hello - establish communication with FW
6697  *      @adap: the adapter
6698  *      @mbox: mailbox to use for the FW command
6699  *      @evt_mbox: mailbox to receive async FW events
6700  *      @master: specifies the caller's willingness to be the device master
6701  *	@state: returns the current device state (if non-NULL)
6702  *
6703  *	Issues a command to establish communication with FW.  Returns either
6704  *	an error (negative integer) or the mailbox of the Master PF.
6705  */
6706 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6707 		enum dev_master master, enum dev_state *state)
6708 {
6709 	int ret;
6710 	struct fw_hello_cmd c;
6711 	u32 v;
6712 	unsigned int master_mbox;
6713 	int retries = FW_CMD_HELLO_RETRIES;
6714 
6715 retry:
6716 	memset(&c, 0, sizeof(c));
6717 	INIT_CMD(c, HELLO, WRITE);
6718 	c.err_to_clearinit = cpu_to_be32(
6719 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6720 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6721 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6722 					mbox : FW_HELLO_CMD_MBMASTER_M) |
6723 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6724 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6725 		FW_HELLO_CMD_CLEARINIT_F);
6726 
6727 	/*
6728 	 * Issue the HELLO command to the firmware.  If it's not successful
6729 	 * but indicates that we got a "busy" or "timeout" condition, retry
6730 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6731 	 * retry limit, check to see if the firmware left us any error
6732 	 * information and report that if so.
6733 	 */
6734 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6735 	if (ret < 0) {
6736 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6737 			goto retry;
6738 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6739 			t4_report_fw_error(adap);
6740 		return ret;
6741 	}
6742 
6743 	v = be32_to_cpu(c.err_to_clearinit);
6744 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6745 	if (state) {
6746 		if (v & FW_HELLO_CMD_ERR_F)
6747 			*state = DEV_STATE_ERR;
6748 		else if (v & FW_HELLO_CMD_INIT_F)
6749 			*state = DEV_STATE_INIT;
6750 		else
6751 			*state = DEV_STATE_UNINIT;
6752 	}
6753 
6754 	/*
6755 	 * If we're not the Master PF then we need to wait around for the
6756 	 * Master PF Driver to finish setting up the adapter.
6757 	 *
6758 	 * Note that we also do this wait if we're a non-Master-capable PF and
6759 	 * there is no current Master PF; a Master PF may show up momentarily
6760 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6761 	 * OS loads lots of different drivers rapidly at the same time).  In
6762 	 * this case, the Master PF returned by the firmware will be
6763 	 * PCIE_FW_MASTER_M so the test below will work ...
6764 	 */
6765 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6766 	    master_mbox != mbox) {
6767 		int waiting = FW_CMD_HELLO_TIMEOUT;
6768 
6769 		/*
6770 		 * Wait for the firmware to either indicate an error or
6771 		 * initialized state.  If we see either of these we bail out
6772 		 * and report the issue to the caller.  If we exhaust the
6773 		 * "hello timeout" and we haven't exhausted our retries, try
6774 		 * again.  Otherwise bail with a timeout error.
6775 		 */
6776 		for (;;) {
6777 			u32 pcie_fw;
6778 
6779 			msleep(50);
6780 			waiting -= 50;
6781 
6782 			/*
6783 			 * If neither Error nor Initialialized are indicated
6784 			 * by the firmware keep waiting till we exaust our
6785 			 * timeout ... and then retry if we haven't exhausted
6786 			 * our retries ...
6787 			 */
6788 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6789 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6790 				if (waiting <= 0) {
6791 					if (retries-- > 0)
6792 						goto retry;
6793 
6794 					return -ETIMEDOUT;
6795 				}
6796 				continue;
6797 			}
6798 
6799 			/*
6800 			 * We either have an Error or Initialized condition
6801 			 * report errors preferentially.
6802 			 */
6803 			if (state) {
6804 				if (pcie_fw & PCIE_FW_ERR_F)
6805 					*state = DEV_STATE_ERR;
6806 				else if (pcie_fw & PCIE_FW_INIT_F)
6807 					*state = DEV_STATE_INIT;
6808 			}
6809 
6810 			/*
6811 			 * If we arrived before a Master PF was selected and
6812 			 * there's not a valid Master PF, grab its identity
6813 			 * for our caller.
6814 			 */
6815 			if (master_mbox == PCIE_FW_MASTER_M &&
6816 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
6817 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6818 			break;
6819 		}
6820 	}
6821 
6822 	return master_mbox;
6823 }
6824 
6825 /**
6826  *	t4_fw_bye - end communication with FW
6827  *	@adap: the adapter
6828  *	@mbox: mailbox to use for the FW command
6829  *
6830  *	Issues a command to terminate communication with FW.
6831  */
6832 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6833 {
6834 	struct fw_bye_cmd c;
6835 
6836 	memset(&c, 0, sizeof(c));
6837 	INIT_CMD(c, BYE, WRITE);
6838 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6839 }
6840 
6841 /**
6842  *	t4_init_cmd - ask FW to initialize the device
6843  *	@adap: the adapter
6844  *	@mbox: mailbox to use for the FW command
6845  *
6846  *	Issues a command to FW to partially initialize the device.  This
6847  *	performs initialization that generally doesn't depend on user input.
6848  */
6849 int t4_early_init(struct adapter *adap, unsigned int mbox)
6850 {
6851 	struct fw_initialize_cmd c;
6852 
6853 	memset(&c, 0, sizeof(c));
6854 	INIT_CMD(c, INITIALIZE, WRITE);
6855 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6856 }
6857 
6858 /**
6859  *	t4_fw_reset - issue a reset to FW
6860  *	@adap: the adapter
6861  *	@mbox: mailbox to use for the FW command
6862  *	@reset: specifies the type of reset to perform
6863  *
6864  *	Issues a reset command of the specified type to FW.
6865  */
6866 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6867 {
6868 	struct fw_reset_cmd c;
6869 
6870 	memset(&c, 0, sizeof(c));
6871 	INIT_CMD(c, RESET, WRITE);
6872 	c.val = cpu_to_be32(reset);
6873 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6874 }
6875 
6876 /**
6877  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6878  *	@adap: the adapter
6879  *	@mbox: mailbox to use for the FW RESET command (if desired)
6880  *	@force: force uP into RESET even if FW RESET command fails
6881  *
6882  *	Issues a RESET command to firmware (if desired) with a HALT indication
6883  *	and then puts the microprocessor into RESET state.  The RESET command
6884  *	will only be issued if a legitimate mailbox is provided (mbox <=
6885  *	PCIE_FW_MASTER_M).
6886  *
6887  *	This is generally used in order for the host to safely manipulate the
6888  *	adapter without fear of conflicting with whatever the firmware might
6889  *	be doing.  The only way out of this state is to RESTART the firmware
6890  *	...
6891  */
6892 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6893 {
6894 	int ret = 0;
6895 
6896 	/*
6897 	 * If a legitimate mailbox is provided, issue a RESET command
6898 	 * with a HALT indication.
6899 	 */
6900 	if (mbox <= PCIE_FW_MASTER_M) {
6901 		struct fw_reset_cmd c;
6902 
6903 		memset(&c, 0, sizeof(c));
6904 		INIT_CMD(c, RESET, WRITE);
6905 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
6906 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
6907 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6908 	}
6909 
6910 	/*
6911 	 * Normally we won't complete the operation if the firmware RESET
6912 	 * command fails but if our caller insists we'll go ahead and put the
6913 	 * uP into RESET.  This can be useful if the firmware is hung or even
6914 	 * missing ...  We'll have to take the risk of putting the uP into
6915 	 * RESET without the cooperation of firmware in that case.
6916 	 *
6917 	 * We also force the firmware's HALT flag to be on in case we bypassed
6918 	 * the firmware RESET command above or we're dealing with old firmware
6919 	 * which doesn't have the HALT capability.  This will serve as a flag
6920 	 * for the incoming firmware to know that it's coming out of a HALT
6921 	 * rather than a RESET ... if it's new enough to understand that ...
6922 	 */
6923 	if (ret == 0 || force) {
6924 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
6925 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
6926 				 PCIE_FW_HALT_F);
6927 	}
6928 
6929 	/*
6930 	 * And we always return the result of the firmware RESET command
6931 	 * even when we force the uP into RESET ...
6932 	 */
6933 	return ret;
6934 }
6935 
6936 /**
6937  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6938  *	@adap: the adapter
6939  *	@reset: if we want to do a RESET to restart things
6940  *
6941  *	Restart firmware previously halted by t4_fw_halt().  On successful
6942  *	return the previous PF Master remains as the new PF Master and there
6943  *	is no need to issue a new HELLO command, etc.
6944  *
6945  *	We do this in two ways:
6946  *
6947  *	 1. If we're dealing with newer firmware we'll simply want to take
6948  *	    the chip's microprocessor out of RESET.  This will cause the
6949  *	    firmware to start up from its start vector.  And then we'll loop
6950  *	    until the firmware indicates it's started again (PCIE_FW.HALT
6951  *	    reset to 0) or we timeout.
6952  *
6953  *	 2. If we're dealing with older firmware then we'll need to RESET
6954  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6955  *	    flag and automatically RESET itself on startup.
6956  */
6957 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6958 {
6959 	if (reset) {
6960 		/*
6961 		 * Since we're directing the RESET instead of the firmware
6962 		 * doing it automatically, we need to clear the PCIE_FW.HALT
6963 		 * bit.
6964 		 */
6965 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6966 
6967 		/*
6968 		 * If we've been given a valid mailbox, first try to get the
6969 		 * firmware to do the RESET.  If that works, great and we can
6970 		 * return success.  Otherwise, if we haven't been given a
6971 		 * valid mailbox or the RESET command failed, fall back to
6972 		 * hitting the chip with a hammer.
6973 		 */
6974 		if (mbox <= PCIE_FW_MASTER_M) {
6975 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6976 			msleep(100);
6977 			if (t4_fw_reset(adap, mbox,
6978 					PIORST_F | PIORSTMODE_F) == 0)
6979 				return 0;
6980 		}
6981 
6982 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6983 		msleep(2000);
6984 	} else {
6985 		int ms;
6986 
6987 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6988 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6989 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6990 				return 0;
6991 			msleep(100);
6992 			ms += 100;
6993 		}
6994 		return -ETIMEDOUT;
6995 	}
6996 	return 0;
6997 }
6998 
6999 /**
7000  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7001  *	@adap: the adapter
7002  *	@mbox: mailbox to use for the FW RESET command (if desired)
7003  *	@fw_data: the firmware image to write
7004  *	@size: image size
7005  *	@force: force upgrade even if firmware doesn't cooperate
7006  *
7007  *	Perform all of the steps necessary for upgrading an adapter's
7008  *	firmware image.  Normally this requires the cooperation of the
7009  *	existing firmware in order to halt all existing activities
7010  *	but if an invalid mailbox token is passed in we skip that step
7011  *	(though we'll still put the adapter microprocessor into RESET in
7012  *	that case).
7013  *
7014  *	On successful return the new firmware will have been loaded and
7015  *	the adapter will have been fully RESET losing all previous setup
7016  *	state.  On unsuccessful return the adapter may be completely hosed ...
7017  *	positive errno indicates that the adapter is ~probably~ intact, a
7018  *	negative errno indicates that things are looking bad ...
7019  */
7020 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7021 		  const u8 *fw_data, unsigned int size, int force)
7022 {
7023 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7024 	int reset, ret;
7025 
7026 	if (!t4_fw_matches_chip(adap, fw_hdr))
7027 		return -EINVAL;
7028 
7029 	/* Disable FW_OK flag so that mbox commands with FW_OK flag set
7030 	 * wont be sent when we are flashing FW.
7031 	 */
7032 	adap->flags &= ~FW_OK;
7033 
7034 	ret = t4_fw_halt(adap, mbox, force);
7035 	if (ret < 0 && !force)
7036 		goto out;
7037 
7038 	ret = t4_load_fw(adap, fw_data, size);
7039 	if (ret < 0)
7040 		goto out;
7041 
7042 	/*
7043 	 * If there was a Firmware Configuration File stored in FLASH,
7044 	 * there's a good chance that it won't be compatible with the new
7045 	 * Firmware.  In order to prevent difficult to diagnose adapter
7046 	 * initialization issues, we clear out the Firmware Configuration File
7047 	 * portion of the FLASH .  The user will need to re-FLASH a new
7048 	 * Firmware Configuration File which is compatible with the new
7049 	 * Firmware if that's desired.
7050 	 */
7051 	(void)t4_load_cfg(adap, NULL, 0);
7052 
7053 	/*
7054 	 * Older versions of the firmware don't understand the new
7055 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7056 	 * restart.  So for newly loaded older firmware we'll have to do the
7057 	 * RESET for it so it starts up on a clean slate.  We can tell if
7058 	 * the newly loaded firmware will handle this right by checking
7059 	 * its header flags to see if it advertises the capability.
7060 	 */
7061 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
7062 	ret = t4_fw_restart(adap, mbox, reset);
7063 
7064 	/* Grab potentially new Firmware Device Log parameters so we can see
7065 	 * how healthy the new Firmware is.  It's okay to contact the new
7066 	 * Firmware for these parameters even though, as far as it's
7067 	 * concerned, we've never said "HELLO" to it ...
7068 	 */
7069 	(void)t4_init_devlog_params(adap);
7070 out:
7071 	adap->flags |= FW_OK;
7072 	return ret;
7073 }
7074 
7075 /**
7076  *	t4_fl_pkt_align - return the fl packet alignment
7077  *	@adap: the adapter
7078  *
7079  *	T4 has a single field to specify the packing and padding boundary.
7080  *	T5 onwards has separate fields for this and hence the alignment for
7081  *	next packet offset is maximum of these two.
7082  *
7083  */
7084 int t4_fl_pkt_align(struct adapter *adap)
7085 {
7086 	u32 sge_control, sge_control2;
7087 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7088 
7089 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7090 
7091 	/* T4 uses a single control field to specify both the PCIe Padding and
7092 	 * Packing Boundary.  T5 introduced the ability to specify these
7093 	 * separately.  The actual Ingress Packet Data alignment boundary
7094 	 * within Packed Buffer Mode is the maximum of these two
7095 	 * specifications.  (Note that it makes no real practical sense to
7096 	 * have the Pading Boudary be larger than the Packing Boundary but you
7097 	 * could set the chip up that way and, in fact, legacy T4 code would
7098 	 * end doing this because it would initialize the Padding Boundary and
7099 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
7100 	 * Padding Boundary values in T6 starts from 8B,
7101 	 * where as it is 32B for T4 and T5.
7102 	 */
7103 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7104 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7105 	else
7106 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7107 
7108 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7109 
7110 	fl_align = ingpadboundary;
7111 	if (!is_t4(adap->params.chip)) {
7112 		/* T5 has a weird interpretation of one of the PCIe Packing
7113 		 * Boundary values.  No idea why ...
7114 		 */
7115 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7116 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7117 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7118 			ingpackboundary = 16;
7119 		else
7120 			ingpackboundary = 1 << (ingpackboundary +
7121 						INGPACKBOUNDARY_SHIFT_X);
7122 
7123 		fl_align = max(ingpadboundary, ingpackboundary);
7124 	}
7125 	return fl_align;
7126 }
7127 
7128 /**
7129  *	t4_fixup_host_params - fix up host-dependent parameters
7130  *	@adap: the adapter
7131  *	@page_size: the host's Base Page Size
7132  *	@cache_line_size: the host's Cache Line Size
7133  *
7134  *	Various registers in T4 contain values which are dependent on the
7135  *	host's Base Page and Cache Line Sizes.  This function will fix all of
7136  *	those registers with the appropriate values as passed in ...
7137  */
7138 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7139 			 unsigned int cache_line_size)
7140 {
7141 	unsigned int page_shift = fls(page_size) - 1;
7142 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7143 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7144 	unsigned int fl_align_log = fls(fl_align) - 1;
7145 
7146 	if (is_t4(adap->params.chip)) {
7147 		t4_set_reg_field(adap, SGE_CONTROL_A,
7148 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7149 				 EGRSTATUSPAGESIZE_F,
7150 				 INGPADBOUNDARY_V(fl_align_log -
7151 						  INGPADBOUNDARY_SHIFT_X) |
7152 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7153 	} else {
7154 		unsigned int pack_align;
7155 		unsigned int ingpad, ingpack;
7156 		unsigned int pcie_cap;
7157 
7158 		/* T5 introduced the separation of the Free List Padding and
7159 		 * Packing Boundaries.  Thus, we can select a smaller Padding
7160 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
7161 		 * Bandwidth, and use a Packing Boundary which is large enough
7162 		 * to avoid false sharing between CPUs, etc.
7163 		 *
7164 		 * For the PCI Link, the smaller the Padding Boundary the
7165 		 * better.  For the Memory Controller, a smaller Padding
7166 		 * Boundary is better until we cross under the Memory Line
7167 		 * Size (the minimum unit of transfer to/from Memory).  If we
7168 		 * have a Padding Boundary which is smaller than the Memory
7169 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
7170 		 * Memory Controller which is never good.
7171 		 */
7172 
7173 		/* We want the Packing Boundary to be based on the Cache Line
7174 		 * Size in order to help avoid False Sharing performance
7175 		 * issues between CPUs, etc.  We also want the Packing
7176 		 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7177 		 * get best performance when the Packing Boundary is a
7178 		 * multiple of the Maximum Payload Size.
7179 		 */
7180 		pack_align = fl_align;
7181 		pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP);
7182 		if (pcie_cap) {
7183 			unsigned int mps, mps_log;
7184 			u16 devctl;
7185 
7186 			/* The PCIe Device Control Maximum Payload Size field
7187 			 * [bits 7:5] encodes sizes as powers of 2 starting at
7188 			 * 128 bytes.
7189 			 */
7190 			pci_read_config_word(adap->pdev,
7191 					     pcie_cap + PCI_EXP_DEVCTL,
7192 					     &devctl);
7193 			mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7194 			mps = 1 << mps_log;
7195 			if (mps > pack_align)
7196 				pack_align = mps;
7197 		}
7198 
7199 		/* N.B. T5/T6 have a crazy special interpretation of the "0"
7200 		 * value for the Packing Boundary.  This corresponds to 16
7201 		 * bytes instead of the expected 32 bytes.  So if we want 32
7202 		 * bytes, the best we can really do is 64 bytes ...
7203 		 */
7204 		if (pack_align <= 16) {
7205 			ingpack = INGPACKBOUNDARY_16B_X;
7206 			fl_align = 16;
7207 		} else if (pack_align == 32) {
7208 			ingpack = INGPACKBOUNDARY_64B_X;
7209 			fl_align = 64;
7210 		} else {
7211 			unsigned int pack_align_log = fls(pack_align) - 1;
7212 
7213 			ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7214 			fl_align = pack_align;
7215 		}
7216 
7217 		/* Use the smallest Ingress Padding which isn't smaller than
7218 		 * the Memory Controller Read/Write Size.  We'll take that as
7219 		 * being 8 bytes since we don't know of any system with a
7220 		 * wider Memory Controller Bus Width.
7221 		 */
7222 		if (is_t5(adap->params.chip))
7223 			ingpad = INGPADBOUNDARY_32B_X;
7224 		else
7225 			ingpad = T6_INGPADBOUNDARY_8B_X;
7226 
7227 		t4_set_reg_field(adap, SGE_CONTROL_A,
7228 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7229 				 EGRSTATUSPAGESIZE_F,
7230 				 INGPADBOUNDARY_V(ingpad) |
7231 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7232 		t4_set_reg_field(adap, SGE_CONTROL2_A,
7233 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7234 				 INGPACKBOUNDARY_V(ingpack));
7235 	}
7236 	/*
7237 	 * Adjust various SGE Free List Host Buffer Sizes.
7238 	 *
7239 	 * This is something of a crock since we're using fixed indices into
7240 	 * the array which are also known by the sge.c code and the T4
7241 	 * Firmware Configuration File.  We need to come up with a much better
7242 	 * approach to managing this array.  For now, the first four entries
7243 	 * are:
7244 	 *
7245 	 *   0: Host Page Size
7246 	 *   1: 64KB
7247 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7248 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7249 	 *
7250 	 * For the single-MTU buffers in unpacked mode we need to include
7251 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7252 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7253 	 * Padding boundary.  All of these are accommodated in the Factory
7254 	 * Default Firmware Configuration File but we need to adjust it for
7255 	 * this host's cache line size.
7256 	 */
7257 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7258 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7259 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7260 		     & ~(fl_align-1));
7261 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7262 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7263 		     & ~(fl_align-1));
7264 
7265 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7266 
7267 	return 0;
7268 }
7269 
7270 /**
7271  *	t4_fw_initialize - ask FW to initialize the device
7272  *	@adap: the adapter
7273  *	@mbox: mailbox to use for the FW command
7274  *
7275  *	Issues a command to FW to partially initialize the device.  This
7276  *	performs initialization that generally doesn't depend on user input.
7277  */
7278 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7279 {
7280 	struct fw_initialize_cmd c;
7281 
7282 	memset(&c, 0, sizeof(c));
7283 	INIT_CMD(c, INITIALIZE, WRITE);
7284 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7285 }
7286 
7287 /**
7288  *	t4_query_params_rw - query FW or device parameters
7289  *	@adap: the adapter
7290  *	@mbox: mailbox to use for the FW command
7291  *	@pf: the PF
7292  *	@vf: the VF
7293  *	@nparams: the number of parameters
7294  *	@params: the parameter names
7295  *	@val: the parameter values
7296  *	@rw: Write and read flag
7297  *	@sleep_ok: if true, we may sleep awaiting mbox cmd completion
7298  *
7299  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7300  *	queried at once.
7301  */
7302 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7303 		       unsigned int vf, unsigned int nparams, const u32 *params,
7304 		       u32 *val, int rw, bool sleep_ok)
7305 {
7306 	int i, ret;
7307 	struct fw_params_cmd c;
7308 	__be32 *p = &c.param[0].mnem;
7309 
7310 	if (nparams > 7)
7311 		return -EINVAL;
7312 
7313 	memset(&c, 0, sizeof(c));
7314 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7315 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
7316 				  FW_PARAMS_CMD_PFN_V(pf) |
7317 				  FW_PARAMS_CMD_VFN_V(vf));
7318 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7319 
7320 	for (i = 0; i < nparams; i++) {
7321 		*p++ = cpu_to_be32(*params++);
7322 		if (rw)
7323 			*p = cpu_to_be32(*(val + i));
7324 		p++;
7325 	}
7326 
7327 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7328 	if (ret == 0)
7329 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7330 			*val++ = be32_to_cpu(*p);
7331 	return ret;
7332 }
7333 
7334 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7335 		    unsigned int vf, unsigned int nparams, const u32 *params,
7336 		    u32 *val)
7337 {
7338 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7339 				  true);
7340 }
7341 
7342 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7343 		       unsigned int vf, unsigned int nparams, const u32 *params,
7344 		       u32 *val)
7345 {
7346 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7347 				  false);
7348 }
7349 
7350 /**
7351  *      t4_set_params_timeout - sets FW or device parameters
7352  *      @adap: the adapter
7353  *      @mbox: mailbox to use for the FW command
7354  *      @pf: the PF
7355  *      @vf: the VF
7356  *      @nparams: the number of parameters
7357  *      @params: the parameter names
7358  *      @val: the parameter values
7359  *      @timeout: the timeout time
7360  *
7361  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7362  *      specified at once.
7363  */
7364 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7365 			  unsigned int pf, unsigned int vf,
7366 			  unsigned int nparams, const u32 *params,
7367 			  const u32 *val, int timeout)
7368 {
7369 	struct fw_params_cmd c;
7370 	__be32 *p = &c.param[0].mnem;
7371 
7372 	if (nparams > 7)
7373 		return -EINVAL;
7374 
7375 	memset(&c, 0, sizeof(c));
7376 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7377 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7378 				  FW_PARAMS_CMD_PFN_V(pf) |
7379 				  FW_PARAMS_CMD_VFN_V(vf));
7380 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7381 
7382 	while (nparams--) {
7383 		*p++ = cpu_to_be32(*params++);
7384 		*p++ = cpu_to_be32(*val++);
7385 	}
7386 
7387 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7388 }
7389 
7390 /**
7391  *	t4_set_params - sets FW or device parameters
7392  *	@adap: the adapter
7393  *	@mbox: mailbox to use for the FW command
7394  *	@pf: the PF
7395  *	@vf: the VF
7396  *	@nparams: the number of parameters
7397  *	@params: the parameter names
7398  *	@val: the parameter values
7399  *
7400  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7401  *	specified at once.
7402  */
7403 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7404 		  unsigned int vf, unsigned int nparams, const u32 *params,
7405 		  const u32 *val)
7406 {
7407 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7408 				     FW_CMD_MAX_TIMEOUT);
7409 }
7410 
7411 /**
7412  *	t4_cfg_pfvf - configure PF/VF resource limits
7413  *	@adap: the adapter
7414  *	@mbox: mailbox to use for the FW command
7415  *	@pf: the PF being configured
7416  *	@vf: the VF being configured
7417  *	@txq: the max number of egress queues
7418  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7419  *	@rxqi: the max number of interrupt-capable ingress queues
7420  *	@rxq: the max number of interruptless ingress queues
7421  *	@tc: the PCI traffic class
7422  *	@vi: the max number of virtual interfaces
7423  *	@cmask: the channel access rights mask for the PF/VF
7424  *	@pmask: the port access rights mask for the PF/VF
7425  *	@nexact: the maximum number of exact MPS filters
7426  *	@rcaps: read capabilities
7427  *	@wxcaps: write/execute capabilities
7428  *
7429  *	Configures resource limits and capabilities for a physical or virtual
7430  *	function.
7431  */
7432 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7433 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7434 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7435 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7436 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7437 {
7438 	struct fw_pfvf_cmd c;
7439 
7440 	memset(&c, 0, sizeof(c));
7441 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7442 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7443 				  FW_PFVF_CMD_VFN_V(vf));
7444 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7445 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7446 				     FW_PFVF_CMD_NIQ_V(rxq));
7447 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7448 				    FW_PFVF_CMD_PMASK_V(pmask) |
7449 				    FW_PFVF_CMD_NEQ_V(txq));
7450 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7451 				      FW_PFVF_CMD_NVI_V(vi) |
7452 				      FW_PFVF_CMD_NEXACTF_V(nexact));
7453 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7454 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7455 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7456 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7457 }
7458 
7459 /**
7460  *	t4_alloc_vi - allocate a virtual interface
7461  *	@adap: the adapter
7462  *	@mbox: mailbox to use for the FW command
7463  *	@port: physical port associated with the VI
7464  *	@pf: the PF owning the VI
7465  *	@vf: the VF owning the VI
7466  *	@nmac: number of MAC addresses needed (1 to 5)
7467  *	@mac: the MAC addresses of the VI
7468  *	@rss_size: size of RSS table slice associated with this VI
7469  *
7470  *	Allocates a virtual interface for the given physical port.  If @mac is
7471  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7472  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7473  *	stored consecutively so the space needed is @nmac * 6 bytes.
7474  *	Returns a negative error number or the non-negative VI id.
7475  */
7476 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7477 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7478 		unsigned int *rss_size, u8 *vivld, u8 *vin)
7479 {
7480 	int ret;
7481 	struct fw_vi_cmd c;
7482 
7483 	memset(&c, 0, sizeof(c));
7484 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7485 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7486 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7487 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7488 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7489 	c.nmac = nmac - 1;
7490 
7491 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7492 	if (ret)
7493 		return ret;
7494 
7495 	if (mac) {
7496 		memcpy(mac, c.mac, sizeof(c.mac));
7497 		switch (nmac) {
7498 		case 5:
7499 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7500 			/* Fall through */
7501 		case 4:
7502 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7503 			/* Fall through */
7504 		case 3:
7505 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7506 			/* Fall through */
7507 		case 2:
7508 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7509 		}
7510 	}
7511 	if (rss_size)
7512 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7513 
7514 	if (vivld)
7515 		*vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16));
7516 
7517 	if (vin)
7518 		*vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16));
7519 
7520 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7521 }
7522 
7523 /**
7524  *	t4_free_vi - free a virtual interface
7525  *	@adap: the adapter
7526  *	@mbox: mailbox to use for the FW command
7527  *	@pf: the PF owning the VI
7528  *	@vf: the VF owning the VI
7529  *	@viid: virtual interface identifiler
7530  *
7531  *	Free a previously allocated virtual interface.
7532  */
7533 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7534 	       unsigned int vf, unsigned int viid)
7535 {
7536 	struct fw_vi_cmd c;
7537 
7538 	memset(&c, 0, sizeof(c));
7539 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7540 				  FW_CMD_REQUEST_F |
7541 				  FW_CMD_EXEC_F |
7542 				  FW_VI_CMD_PFN_V(pf) |
7543 				  FW_VI_CMD_VFN_V(vf));
7544 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7545 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7546 
7547 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7548 }
7549 
7550 /**
7551  *	t4_set_rxmode - set Rx properties of a virtual interface
7552  *	@adap: the adapter
7553  *	@mbox: mailbox to use for the FW command
7554  *	@viid: the VI id
7555  *	@mtu: the new MTU or -1
7556  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7557  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7558  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7559  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7560  *	@sleep_ok: if true we may sleep while awaiting command completion
7561  *
7562  *	Sets Rx properties of a virtual interface.
7563  */
7564 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7565 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7566 		  bool sleep_ok)
7567 {
7568 	struct fw_vi_rxmode_cmd c;
7569 
7570 	/* convert to FW values */
7571 	if (mtu < 0)
7572 		mtu = FW_RXMODE_MTU_NO_CHG;
7573 	if (promisc < 0)
7574 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7575 	if (all_multi < 0)
7576 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7577 	if (bcast < 0)
7578 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7579 	if (vlanex < 0)
7580 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7581 
7582 	memset(&c, 0, sizeof(c));
7583 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7584 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7585 				   FW_VI_RXMODE_CMD_VIID_V(viid));
7586 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7587 	c.mtu_to_vlanexen =
7588 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7589 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7590 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7591 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7592 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7593 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7594 }
7595 
7596 /**
7597  *      t4_free_encap_mac_filt - frees MPS entry at given index
7598  *      @adap: the adapter
7599  *      @viid: the VI id
7600  *      @idx: index of MPS entry to be freed
7601  *      @sleep_ok: call is allowed to sleep
7602  *
7603  *      Frees the MPS entry at supplied index
7604  *
7605  *      Returns a negative error number or zero on success
7606  */
7607 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
7608 			   int idx, bool sleep_ok)
7609 {
7610 	struct fw_vi_mac_exact *p;
7611 	u8 addr[] = {0, 0, 0, 0, 0, 0};
7612 	struct fw_vi_mac_cmd c;
7613 	int ret = 0;
7614 	u32 exact;
7615 
7616 	memset(&c, 0, sizeof(c));
7617 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7618 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7619 				   FW_CMD_EXEC_V(0) |
7620 				   FW_VI_MAC_CMD_VIID_V(viid));
7621 	exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC);
7622 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7623 					  exact |
7624 					  FW_CMD_LEN16_V(1));
7625 	p = c.u.exact;
7626 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7627 				      FW_VI_MAC_CMD_IDX_V(idx));
7628 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7629 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7630 	return ret;
7631 }
7632 
7633 /**
7634  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7635  *	@adap: the adapter
7636  *	@viid: the VI id
7637  *	@addr: the MAC address
7638  *	@mask: the mask
7639  *	@idx: index of the entry in mps tcam
7640  *	@lookup_type: MAC address for inner (1) or outer (0) header
7641  *	@port_id: the port index
7642  *	@sleep_ok: call is allowed to sleep
7643  *
7644  *	Removes the mac entry at the specified index using raw mac interface.
7645  *
7646  *	Returns a negative error number on failure.
7647  */
7648 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7649 			 const u8 *addr, const u8 *mask, unsigned int idx,
7650 			 u8 lookup_type, u8 port_id, bool sleep_ok)
7651 {
7652 	struct fw_vi_mac_cmd c;
7653 	struct fw_vi_mac_raw *p = &c.u.raw;
7654 	u32 val;
7655 
7656 	memset(&c, 0, sizeof(c));
7657 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7658 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7659 				   FW_CMD_EXEC_V(0) |
7660 				   FW_VI_MAC_CMD_VIID_V(viid));
7661 	val = FW_CMD_LEN16_V(1) |
7662 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7663 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7664 					  FW_CMD_LEN16_V(val));
7665 
7666 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7667 				     FW_VI_MAC_ID_BASED_FREE);
7668 
7669 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7670 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7671 				   DATAPORTNUM_V(port_id));
7672 	/* Lookup mask and port mask */
7673 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7674 				    DATAPORTNUM_V(DATAPORTNUM_M));
7675 
7676 	/* Copy the address and the mask */
7677 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7678 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7679 
7680 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7681 }
7682 
7683 /**
7684  *      t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
7685  *      @adap: the adapter
7686  *      @viid: the VI id
7687  *      @mac: the MAC address
7688  *      @mask: the mask
7689  *      @vni: the VNI id for the tunnel protocol
7690  *      @vni_mask: mask for the VNI id
7691  *      @dip_hit: to enable DIP match for the MPS entry
7692  *      @lookup_type: MAC address for inner (1) or outer (0) header
7693  *      @sleep_ok: call is allowed to sleep
7694  *
7695  *      Allocates an MPS entry with specified MAC address and VNI value.
7696  *
7697  *      Returns a negative error number or the allocated index for this mac.
7698  */
7699 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
7700 			    const u8 *addr, const u8 *mask, unsigned int vni,
7701 			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
7702 			    bool sleep_ok)
7703 {
7704 	struct fw_vi_mac_cmd c;
7705 	struct fw_vi_mac_vni *p = c.u.exact_vni;
7706 	int ret = 0;
7707 	u32 val;
7708 
7709 	memset(&c, 0, sizeof(c));
7710 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7711 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7712 				   FW_VI_MAC_CMD_VIID_V(viid));
7713 	val = FW_CMD_LEN16_V(1) |
7714 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI);
7715 	c.freemacs_to_len16 = cpu_to_be32(val);
7716 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7717 				      FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
7718 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7719 	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
7720 
7721 	p->lookup_type_to_vni =
7722 		cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) |
7723 			    FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) |
7724 			    FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type));
7725 	p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask));
7726 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7727 	if (ret == 0)
7728 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7729 	return ret;
7730 }
7731 
7732 /**
7733  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7734  *	@adap: the adapter
7735  *	@viid: the VI id
7736  *	@mac: the MAC address
7737  *	@mask: the mask
7738  *	@idx: index at which to add this entry
7739  *	@port_id: the port index
7740  *	@lookup_type: MAC address for inner (1) or outer (0) header
7741  *	@sleep_ok: call is allowed to sleep
7742  *
7743  *	Adds the mac entry at the specified index using raw mac interface.
7744  *
7745  *	Returns a negative error number or the allocated index for this mac.
7746  */
7747 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7748 			  const u8 *addr, const u8 *mask, unsigned int idx,
7749 			  u8 lookup_type, u8 port_id, bool sleep_ok)
7750 {
7751 	int ret = 0;
7752 	struct fw_vi_mac_cmd c;
7753 	struct fw_vi_mac_raw *p = &c.u.raw;
7754 	u32 val;
7755 
7756 	memset(&c, 0, sizeof(c));
7757 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7758 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7759 				   FW_VI_MAC_CMD_VIID_V(viid));
7760 	val = FW_CMD_LEN16_V(1) |
7761 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7762 	c.freemacs_to_len16 = cpu_to_be32(val);
7763 
7764 	/* Specify that this is an inner mac address */
7765 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7766 
7767 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7768 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7769 				   DATAPORTNUM_V(port_id));
7770 	/* Lookup mask and port mask */
7771 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7772 				    DATAPORTNUM_V(DATAPORTNUM_M));
7773 
7774 	/* Copy the address and the mask */
7775 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7776 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7777 
7778 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7779 	if (ret == 0) {
7780 		ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7781 		if (ret != idx)
7782 			ret = -ENOMEM;
7783 	}
7784 
7785 	return ret;
7786 }
7787 
7788 /**
7789  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7790  *	@adap: the adapter
7791  *	@mbox: mailbox to use for the FW command
7792  *	@viid: the VI id
7793  *	@free: if true any existing filters for this VI id are first removed
7794  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7795  *	@addr: the MAC address(es)
7796  *	@idx: where to store the index of each allocated filter
7797  *	@hash: pointer to hash address filter bitmap
7798  *	@sleep_ok: call is allowed to sleep
7799  *
7800  *	Allocates an exact-match filter for each of the supplied addresses and
7801  *	sets it to the corresponding address.  If @idx is not %NULL it should
7802  *	have at least @naddr entries, each of which will be set to the index of
7803  *	the filter allocated for the corresponding MAC address.  If a filter
7804  *	could not be allocated for an address its index is set to 0xffff.
7805  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7806  *	are hashed and update the hash filter bitmap pointed at by @hash.
7807  *
7808  *	Returns a negative error number or the number of filters allocated.
7809  */
7810 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7811 		      unsigned int viid, bool free, unsigned int naddr,
7812 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7813 {
7814 	int offset, ret = 0;
7815 	struct fw_vi_mac_cmd c;
7816 	unsigned int nfilters = 0;
7817 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7818 	unsigned int rem = naddr;
7819 
7820 	if (naddr > max_naddr)
7821 		return -EINVAL;
7822 
7823 	for (offset = 0; offset < naddr ; /**/) {
7824 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7825 					 rem : ARRAY_SIZE(c.u.exact));
7826 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7827 						     u.exact[fw_naddr]), 16);
7828 		struct fw_vi_mac_exact *p;
7829 		int i;
7830 
7831 		memset(&c, 0, sizeof(c));
7832 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7833 					   FW_CMD_REQUEST_F |
7834 					   FW_CMD_WRITE_F |
7835 					   FW_CMD_EXEC_V(free) |
7836 					   FW_VI_MAC_CMD_VIID_V(viid));
7837 		c.freemacs_to_len16 =
7838 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
7839 				    FW_CMD_LEN16_V(len16));
7840 
7841 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7842 			p->valid_to_idx =
7843 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7844 					    FW_VI_MAC_CMD_IDX_V(
7845 						    FW_VI_MAC_ADD_MAC));
7846 			memcpy(p->macaddr, addr[offset + i],
7847 			       sizeof(p->macaddr));
7848 		}
7849 
7850 		/* It's okay if we run out of space in our MAC address arena.
7851 		 * Some of the addresses we submit may get stored so we need
7852 		 * to run through the reply to see what the results were ...
7853 		 */
7854 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7855 		if (ret && ret != -FW_ENOMEM)
7856 			break;
7857 
7858 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7859 			u16 index = FW_VI_MAC_CMD_IDX_G(
7860 					be16_to_cpu(p->valid_to_idx));
7861 
7862 			if (idx)
7863 				idx[offset + i] = (index >= max_naddr ?
7864 						   0xffff : index);
7865 			if (index < max_naddr)
7866 				nfilters++;
7867 			else if (hash)
7868 				*hash |= (1ULL <<
7869 					  hash_mac_addr(addr[offset + i]));
7870 		}
7871 
7872 		free = false;
7873 		offset += fw_naddr;
7874 		rem -= fw_naddr;
7875 	}
7876 
7877 	if (ret == 0 || ret == -FW_ENOMEM)
7878 		ret = nfilters;
7879 	return ret;
7880 }
7881 
7882 /**
7883  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
7884  *	@adap: the adapter
7885  *	@mbox: mailbox to use for the FW command
7886  *	@viid: the VI id
7887  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7888  *	@addr: the MAC address(es)
7889  *	@sleep_ok: call is allowed to sleep
7890  *
7891  *	Frees the exact-match filter for each of the supplied addresses
7892  *
7893  *	Returns a negative error number or the number of filters freed.
7894  */
7895 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
7896 		     unsigned int viid, unsigned int naddr,
7897 		     const u8 **addr, bool sleep_ok)
7898 {
7899 	int offset, ret = 0;
7900 	struct fw_vi_mac_cmd c;
7901 	unsigned int nfilters = 0;
7902 	unsigned int max_naddr = is_t4(adap->params.chip) ?
7903 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
7904 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7905 	unsigned int rem = naddr;
7906 
7907 	if (naddr > max_naddr)
7908 		return -EINVAL;
7909 
7910 	for (offset = 0; offset < (int)naddr ; /**/) {
7911 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7912 					 ? rem
7913 					 : ARRAY_SIZE(c.u.exact));
7914 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7915 						     u.exact[fw_naddr]), 16);
7916 		struct fw_vi_mac_exact *p;
7917 		int i;
7918 
7919 		memset(&c, 0, sizeof(c));
7920 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7921 				     FW_CMD_REQUEST_F |
7922 				     FW_CMD_WRITE_F |
7923 				     FW_CMD_EXEC_V(0) |
7924 				     FW_VI_MAC_CMD_VIID_V(viid));
7925 		c.freemacs_to_len16 =
7926 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7927 					    FW_CMD_LEN16_V(len16));
7928 
7929 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
7930 			p->valid_to_idx = cpu_to_be16(
7931 				FW_VI_MAC_CMD_VALID_F |
7932 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
7933 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7934 		}
7935 
7936 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7937 		if (ret)
7938 			break;
7939 
7940 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7941 			u16 index = FW_VI_MAC_CMD_IDX_G(
7942 						be16_to_cpu(p->valid_to_idx));
7943 
7944 			if (index < max_naddr)
7945 				nfilters++;
7946 		}
7947 
7948 		offset += fw_naddr;
7949 		rem -= fw_naddr;
7950 	}
7951 
7952 	if (ret == 0)
7953 		ret = nfilters;
7954 	return ret;
7955 }
7956 
7957 /**
7958  *	t4_change_mac - modifies the exact-match filter for a MAC address
7959  *	@adap: the adapter
7960  *	@mbox: mailbox to use for the FW command
7961  *	@viid: the VI id
7962  *	@idx: index of existing filter for old value of MAC address, or -1
7963  *	@addr: the new MAC address value
7964  *	@persist: whether a new MAC allocation should be persistent
7965  *	@add_smt: if true also add the address to the HW SMT
7966  *
7967  *	Modifies an exact-match filter and sets it to the new MAC address.
7968  *	Note that in general it is not possible to modify the value of a given
7969  *	filter so the generic way to modify an address filter is to free the one
7970  *	being used by the old address value and allocate a new filter for the
7971  *	new address value.  @idx can be -1 if the address is a new addition.
7972  *
7973  *	Returns a negative error number or the index of the filter with the new
7974  *	MAC value.
7975  */
7976 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7977 		  int idx, const u8 *addr, bool persist, u8 *smt_idx)
7978 {
7979 	int ret, mode;
7980 	struct fw_vi_mac_cmd c;
7981 	struct fw_vi_mac_exact *p = c.u.exact;
7982 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
7983 
7984 	if (idx < 0)                             /* new allocation */
7985 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7986 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7987 
7988 	memset(&c, 0, sizeof(c));
7989 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7990 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7991 				   FW_VI_MAC_CMD_VIID_V(viid));
7992 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
7993 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7994 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
7995 				      FW_VI_MAC_CMD_IDX_V(idx));
7996 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7997 
7998 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7999 	if (ret == 0) {
8000 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
8001 		if (ret >= max_mac_addr)
8002 			ret = -ENOMEM;
8003 		if (smt_idx) {
8004 			if (adap->params.viid_smt_extn_support) {
8005 				*smt_idx = FW_VI_MAC_CMD_SMTID_G
8006 						    (be32_to_cpu(c.op_to_viid));
8007 			} else {
8008 				/* In T4/T5, SMT contains 256 SMAC entries
8009 				 * organized in 128 rows of 2 entries each.
8010 				 * In T6, SMT contains 256 SMAC entries in
8011 				 * 256 rows.
8012 				 */
8013 				if (CHELSIO_CHIP_VERSION(adap->params.chip) <=
8014 								     CHELSIO_T5)
8015 					*smt_idx = (viid & FW_VIID_VIN_M) << 1;
8016 				else
8017 					*smt_idx = (viid & FW_VIID_VIN_M);
8018 			}
8019 		}
8020 	}
8021 	return ret;
8022 }
8023 
8024 /**
8025  *	t4_set_addr_hash - program the MAC inexact-match hash filter
8026  *	@adap: the adapter
8027  *	@mbox: mailbox to use for the FW command
8028  *	@viid: the VI id
8029  *	@ucast: whether the hash filter should also match unicast addresses
8030  *	@vec: the value to be written to the hash filter
8031  *	@sleep_ok: call is allowed to sleep
8032  *
8033  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8034  */
8035 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8036 		     bool ucast, u64 vec, bool sleep_ok)
8037 {
8038 	struct fw_vi_mac_cmd c;
8039 
8040 	memset(&c, 0, sizeof(c));
8041 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8042 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8043 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8044 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
8045 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
8046 					  FW_CMD_LEN16_V(1));
8047 	c.u.hash.hashvec = cpu_to_be64(vec);
8048 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8049 }
8050 
8051 /**
8052  *      t4_enable_vi_params - enable/disable a virtual interface
8053  *      @adap: the adapter
8054  *      @mbox: mailbox to use for the FW command
8055  *      @viid: the VI id
8056  *      @rx_en: 1=enable Rx, 0=disable Rx
8057  *      @tx_en: 1=enable Tx, 0=disable Tx
8058  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8059  *
8060  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8061  *      only makes sense when enabling a Virtual Interface ...
8062  */
8063 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8064 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8065 {
8066 	struct fw_vi_enable_cmd c;
8067 
8068 	memset(&c, 0, sizeof(c));
8069 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8070 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8071 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8072 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
8073 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
8074 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
8075 				     FW_LEN16(c));
8076 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8077 }
8078 
8079 /**
8080  *	t4_enable_vi - enable/disable a virtual interface
8081  *	@adap: the adapter
8082  *	@mbox: mailbox to use for the FW command
8083  *	@viid: the VI id
8084  *	@rx_en: 1=enable Rx, 0=disable Rx
8085  *	@tx_en: 1=enable Tx, 0=disable Tx
8086  *
8087  *	Enables/disables a virtual interface.
8088  */
8089 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8090 		 bool rx_en, bool tx_en)
8091 {
8092 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8093 }
8094 
8095 /**
8096  *	t4_enable_pi_params - enable/disable a Port's Virtual Interface
8097  *      @adap: the adapter
8098  *      @mbox: mailbox to use for the FW command
8099  *      @pi: the Port Information structure
8100  *      @rx_en: 1=enable Rx, 0=disable Rx
8101  *      @tx_en: 1=enable Tx, 0=disable Tx
8102  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8103  *
8104  *      Enables/disables a Port's Virtual Interface.  Note that setting DCB
8105  *	Enable only makes sense when enabling a Virtual Interface ...
8106  *	If the Virtual Interface enable/disable operation is successful,
8107  *	we notify the OS-specific code of a potential Link Status change
8108  *	via the OS Contract API t4_os_link_changed().
8109  */
8110 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox,
8111 			struct port_info *pi,
8112 			bool rx_en, bool tx_en, bool dcb_en)
8113 {
8114 	int ret = t4_enable_vi_params(adap, mbox, pi->viid,
8115 				      rx_en, tx_en, dcb_en);
8116 	if (ret)
8117 		return ret;
8118 	t4_os_link_changed(adap, pi->port_id,
8119 			   rx_en && tx_en && pi->link_cfg.link_ok);
8120 	return 0;
8121 }
8122 
8123 /**
8124  *	t4_identify_port - identify a VI's port by blinking its LED
8125  *	@adap: the adapter
8126  *	@mbox: mailbox to use for the FW command
8127  *	@viid: the VI id
8128  *	@nblinks: how many times to blink LED at 2.5 Hz
8129  *
8130  *	Identifies a VI's port by blinking its LED.
8131  */
8132 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8133 		     unsigned int nblinks)
8134 {
8135 	struct fw_vi_enable_cmd c;
8136 
8137 	memset(&c, 0, sizeof(c));
8138 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8139 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8140 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8141 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
8142 	c.blinkdur = cpu_to_be16(nblinks);
8143 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8144 }
8145 
8146 /**
8147  *	t4_iq_stop - stop an ingress queue and its FLs
8148  *	@adap: the adapter
8149  *	@mbox: mailbox to use for the FW command
8150  *	@pf: the PF owning the queues
8151  *	@vf: the VF owning the queues
8152  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8153  *	@iqid: ingress queue id
8154  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8155  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8156  *
8157  *	Stops an ingress queue and its associated FLs, if any.  This causes
8158  *	any current or future data/messages destined for these queues to be
8159  *	tossed.
8160  */
8161 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8162 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8163 	       unsigned int fl0id, unsigned int fl1id)
8164 {
8165 	struct fw_iq_cmd c;
8166 
8167 	memset(&c, 0, sizeof(c));
8168 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8169 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8170 				  FW_IQ_CMD_VFN_V(vf));
8171 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
8172 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8173 	c.iqid = cpu_to_be16(iqid);
8174 	c.fl0id = cpu_to_be16(fl0id);
8175 	c.fl1id = cpu_to_be16(fl1id);
8176 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8177 }
8178 
8179 /**
8180  *	t4_iq_free - free an ingress queue and its FLs
8181  *	@adap: the adapter
8182  *	@mbox: mailbox to use for the FW command
8183  *	@pf: the PF owning the queues
8184  *	@vf: the VF owning the queues
8185  *	@iqtype: the ingress queue type
8186  *	@iqid: ingress queue id
8187  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8188  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8189  *
8190  *	Frees an ingress queue and its associated FLs, if any.
8191  */
8192 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8193 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8194 	       unsigned int fl0id, unsigned int fl1id)
8195 {
8196 	struct fw_iq_cmd c;
8197 
8198 	memset(&c, 0, sizeof(c));
8199 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8200 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8201 				  FW_IQ_CMD_VFN_V(vf));
8202 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
8203 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8204 	c.iqid = cpu_to_be16(iqid);
8205 	c.fl0id = cpu_to_be16(fl0id);
8206 	c.fl1id = cpu_to_be16(fl1id);
8207 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8208 }
8209 
8210 /**
8211  *	t4_eth_eq_free - free an Ethernet egress queue
8212  *	@adap: the adapter
8213  *	@mbox: mailbox to use for the FW command
8214  *	@pf: the PF owning the queue
8215  *	@vf: the VF owning the queue
8216  *	@eqid: egress queue id
8217  *
8218  *	Frees an Ethernet egress queue.
8219  */
8220 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8221 		   unsigned int vf, unsigned int eqid)
8222 {
8223 	struct fw_eq_eth_cmd c;
8224 
8225 	memset(&c, 0, sizeof(c));
8226 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8227 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8228 				  FW_EQ_ETH_CMD_PFN_V(pf) |
8229 				  FW_EQ_ETH_CMD_VFN_V(vf));
8230 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8231 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8232 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8233 }
8234 
8235 /**
8236  *	t4_ctrl_eq_free - free a control egress queue
8237  *	@adap: the adapter
8238  *	@mbox: mailbox to use for the FW command
8239  *	@pf: the PF owning the queue
8240  *	@vf: the VF owning the queue
8241  *	@eqid: egress queue id
8242  *
8243  *	Frees a control egress queue.
8244  */
8245 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8246 		    unsigned int vf, unsigned int eqid)
8247 {
8248 	struct fw_eq_ctrl_cmd c;
8249 
8250 	memset(&c, 0, sizeof(c));
8251 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8252 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8253 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
8254 				  FW_EQ_CTRL_CMD_VFN_V(vf));
8255 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8256 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8257 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8258 }
8259 
8260 /**
8261  *	t4_ofld_eq_free - free an offload egress queue
8262  *	@adap: the adapter
8263  *	@mbox: mailbox to use for the FW command
8264  *	@pf: the PF owning the queue
8265  *	@vf: the VF owning the queue
8266  *	@eqid: egress queue id
8267  *
8268  *	Frees a control egress queue.
8269  */
8270 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8271 		    unsigned int vf, unsigned int eqid)
8272 {
8273 	struct fw_eq_ofld_cmd c;
8274 
8275 	memset(&c, 0, sizeof(c));
8276 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8277 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8278 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
8279 				  FW_EQ_OFLD_CMD_VFN_V(vf));
8280 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8281 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8282 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8283 }
8284 
8285 /**
8286  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8287  *	@adap: the adapter
8288  *	@link_down_rc: Link Down Reason Code
8289  *
8290  *	Returns a string representation of the Link Down Reason Code.
8291  */
8292 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8293 {
8294 	static const char * const reason[] = {
8295 		"Link Down",
8296 		"Remote Fault",
8297 		"Auto-negotiation Failure",
8298 		"Reserved",
8299 		"Insufficient Airflow",
8300 		"Unable To Determine Reason",
8301 		"No RX Signal Detected",
8302 		"Reserved",
8303 	};
8304 
8305 	if (link_down_rc >= ARRAY_SIZE(reason))
8306 		return "Bad Reason Code";
8307 
8308 	return reason[link_down_rc];
8309 }
8310 
8311 /**
8312  * Return the highest speed set in the port capabilities, in Mb/s.
8313  */
8314 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8315 {
8316 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8317 		do { \
8318 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8319 				return __speed; \
8320 		} while (0)
8321 
8322 	TEST_SPEED_RETURN(400G, 400000);
8323 	TEST_SPEED_RETURN(200G, 200000);
8324 	TEST_SPEED_RETURN(100G, 100000);
8325 	TEST_SPEED_RETURN(50G,   50000);
8326 	TEST_SPEED_RETURN(40G,   40000);
8327 	TEST_SPEED_RETURN(25G,   25000);
8328 	TEST_SPEED_RETURN(10G,   10000);
8329 	TEST_SPEED_RETURN(1G,     1000);
8330 	TEST_SPEED_RETURN(100M,    100);
8331 
8332 	#undef TEST_SPEED_RETURN
8333 
8334 	return 0;
8335 }
8336 
8337 /**
8338  *	fwcap_to_fwspeed - return highest speed in Port Capabilities
8339  *	@acaps: advertised Port Capabilities
8340  *
8341  *	Get the highest speed for the port from the advertised Port
8342  *	Capabilities.  It will be either the highest speed from the list of
8343  *	speeds or whatever user has set using ethtool.
8344  */
8345 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8346 {
8347 	#define TEST_SPEED_RETURN(__caps_speed) \
8348 		do { \
8349 			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8350 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8351 		} while (0)
8352 
8353 	TEST_SPEED_RETURN(400G);
8354 	TEST_SPEED_RETURN(200G);
8355 	TEST_SPEED_RETURN(100G);
8356 	TEST_SPEED_RETURN(50G);
8357 	TEST_SPEED_RETURN(40G);
8358 	TEST_SPEED_RETURN(25G);
8359 	TEST_SPEED_RETURN(10G);
8360 	TEST_SPEED_RETURN(1G);
8361 	TEST_SPEED_RETURN(100M);
8362 
8363 	#undef TEST_SPEED_RETURN
8364 
8365 	return 0;
8366 }
8367 
8368 /**
8369  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8370  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8371  *
8372  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8373  *	32-bit Port Capabilities value.
8374  */
8375 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8376 {
8377 	fw_port_cap32_t linkattr = 0;
8378 
8379 	/* Unfortunately the format of the Link Status in the old
8380 	 * 16-bit Port Information message isn't the same as the
8381 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8382 	 */
8383 	if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8384 		linkattr |= FW_PORT_CAP32_FC_RX;
8385 	if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8386 		linkattr |= FW_PORT_CAP32_FC_TX;
8387 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8388 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8389 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8390 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8391 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8392 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8393 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8394 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8395 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8396 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8397 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8398 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8399 
8400 	return linkattr;
8401 }
8402 
8403 /**
8404  *	t4_handle_get_port_info - process a FW reply message
8405  *	@pi: the port info
8406  *	@rpl: start of the FW message
8407  *
8408  *	Processes a GET_PORT_INFO FW reply message.
8409  */
8410 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8411 {
8412 	const struct fw_port_cmd *cmd = (const void *)rpl;
8413 	int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8414 	struct adapter *adapter = pi->adapter;
8415 	struct link_config *lc = &pi->link_cfg;
8416 	int link_ok, linkdnrc;
8417 	enum fw_port_type port_type;
8418 	enum fw_port_module_type mod_type;
8419 	unsigned int speed, fc, fec;
8420 	fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8421 
8422 	/* Extract the various fields from the Port Information message.
8423 	 */
8424 	switch (action) {
8425 	case FW_PORT_ACTION_GET_PORT_INFO: {
8426 		u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8427 
8428 		link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8429 		linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8430 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8431 		mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8432 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8433 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8434 		lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8435 		linkattr = lstatus_to_fwcap(lstatus);
8436 		break;
8437 	}
8438 
8439 	case FW_PORT_ACTION_GET_PORT_INFO32: {
8440 		u32 lstatus32;
8441 
8442 		lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8443 		link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8444 		linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8445 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8446 		mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8447 		pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8448 		acaps = be32_to_cpu(cmd->u.info32.acaps32);
8449 		lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8450 		linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8451 		break;
8452 	}
8453 
8454 	default:
8455 		dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8456 			be32_to_cpu(cmd->action_to_len16));
8457 		return;
8458 	}
8459 
8460 	fec = fwcap_to_cc_fec(acaps);
8461 	fc = fwcap_to_cc_pause(linkattr);
8462 	speed = fwcap_to_speed(linkattr);
8463 
8464 	lc->new_module = false;
8465 	lc->redo_l1cfg = false;
8466 
8467 	if (mod_type != pi->mod_type) {
8468 		/* With the newer SFP28 and QSFP28 Transceiver Module Types,
8469 		 * various fundamental Port Capabilities which used to be
8470 		 * immutable can now change radically.  We can now have
8471 		 * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8472 		 * all change based on what Transceiver Module is inserted.
8473 		 * So we need to record the Physical "Port" Capabilities on
8474 		 * every Transceiver Module change.
8475 		 */
8476 		lc->pcaps = pcaps;
8477 
8478 		/* When a new Transceiver Module is inserted, the Firmware
8479 		 * will examine its i2c EPROM to determine its type and
8480 		 * general operating parameters including things like Forward
8481 		 * Error Control, etc.  Various IEEE 802.3 standards dictate
8482 		 * how to interpret these i2c values to determine default
8483 		 * "sutomatic" settings.  We record these for future use when
8484 		 * the user explicitly requests these standards-based values.
8485 		 */
8486 		lc->def_acaps = acaps;
8487 
8488 		/* Some versions of the early T6 Firmware "cheated" when
8489 		 * handling different Transceiver Modules by changing the
8490 		 * underlaying Port Type reported to the Host Drivers.  As
8491 		 * such we need to capture whatever Port Type the Firmware
8492 		 * sends us and record it in case it's different from what we
8493 		 * were told earlier.  Unfortunately, since Firmware is
8494 		 * forever, we'll need to keep this code here forever, but in
8495 		 * later T6 Firmware it should just be an assignment of the
8496 		 * same value already recorded.
8497 		 */
8498 		pi->port_type = port_type;
8499 
8500 		pi->mod_type = mod_type;
8501 
8502 		lc->new_module = t4_is_inserted_mod_type(mod_type);
8503 		t4_os_portmod_changed(adapter, pi->port_id);
8504 	}
8505 
8506 	if (link_ok != lc->link_ok || speed != lc->speed ||
8507 	    fc != lc->fc || fec != lc->fec) {	/* something changed */
8508 		if (!link_ok && lc->link_ok) {
8509 			lc->link_down_rc = linkdnrc;
8510 			dev_warn(adapter->pdev_dev, "Port %d link down, reason: %s\n",
8511 				 pi->tx_chan, t4_link_down_rc_str(linkdnrc));
8512 		}
8513 		lc->link_ok = link_ok;
8514 		lc->speed = speed;
8515 		lc->fc = fc;
8516 		lc->fec = fec;
8517 
8518 		lc->lpacaps = lpacaps;
8519 		lc->acaps = acaps & ADVERT_MASK;
8520 
8521 		if (!(lc->acaps & FW_PORT_CAP32_ANEG)) {
8522 			lc->autoneg = AUTONEG_DISABLE;
8523 		} else if (lc->acaps & FW_PORT_CAP32_ANEG) {
8524 			lc->autoneg = AUTONEG_ENABLE;
8525 		} else {
8526 			/* When Autoneg is disabled, user needs to set
8527 			 * single speed.
8528 			 * Similar to cxgb4_ethtool.c: set_link_ksettings
8529 			 */
8530 			lc->acaps = 0;
8531 			lc->speed_caps = fwcap_to_fwspeed(acaps);
8532 			lc->autoneg = AUTONEG_DISABLE;
8533 		}
8534 
8535 		t4_os_link_changed(adapter, pi->port_id, link_ok);
8536 	}
8537 
8538 	if (lc->new_module && lc->redo_l1cfg) {
8539 		struct link_config old_lc;
8540 		int ret;
8541 
8542 		/* Save the current L1 Configuration and restore it if an
8543 		 * error occurs.  We probably should fix the l1_cfg*()
8544 		 * routines not to change the link_config when an error
8545 		 * occurs ...
8546 		 */
8547 		old_lc = *lc;
8548 		ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc);
8549 		if (ret) {
8550 			*lc = old_lc;
8551 			dev_warn(adapter->pdev_dev,
8552 				 "Attempt to update new Transceiver Module settings failed\n");
8553 		}
8554 	}
8555 	lc->new_module = false;
8556 	lc->redo_l1cfg = false;
8557 }
8558 
8559 /**
8560  *	t4_update_port_info - retrieve and update port information if changed
8561  *	@pi: the port_info
8562  *
8563  *	We issue a Get Port Information Command to the Firmware and, if
8564  *	successful, we check to see if anything is different from what we
8565  *	last recorded and update things accordingly.
8566  */
8567 int t4_update_port_info(struct port_info *pi)
8568 {
8569 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8570 	struct fw_port_cmd port_cmd;
8571 	int ret;
8572 
8573 	memset(&port_cmd, 0, sizeof(port_cmd));
8574 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8575 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8576 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8577 	port_cmd.action_to_len16 = cpu_to_be32(
8578 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8579 				     ? FW_PORT_ACTION_GET_PORT_INFO
8580 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
8581 		FW_LEN16(port_cmd));
8582 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8583 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8584 	if (ret)
8585 		return ret;
8586 
8587 	t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8588 	return 0;
8589 }
8590 
8591 /**
8592  *	t4_get_link_params - retrieve basic link parameters for given port
8593  *	@pi: the port
8594  *	@link_okp: value return pointer for link up/down
8595  *	@speedp: value return pointer for speed (Mb/s)
8596  *	@mtup: value return pointer for mtu
8597  *
8598  *	Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8599  *	and MTU for a specified port.  A negative error is returned on
8600  *	failure; 0 on success.
8601  */
8602 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8603 		       unsigned int *speedp, unsigned int *mtup)
8604 {
8605 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8606 	struct fw_port_cmd port_cmd;
8607 	unsigned int action, link_ok, mtu;
8608 	fw_port_cap32_t linkattr;
8609 	int ret;
8610 
8611 	memset(&port_cmd, 0, sizeof(port_cmd));
8612 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8613 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8614 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8615 	action = (fw_caps == FW_CAPS16
8616 		  ? FW_PORT_ACTION_GET_PORT_INFO
8617 		  : FW_PORT_ACTION_GET_PORT_INFO32);
8618 	port_cmd.action_to_len16 = cpu_to_be32(
8619 		FW_PORT_CMD_ACTION_V(action) |
8620 		FW_LEN16(port_cmd));
8621 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8622 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8623 	if (ret)
8624 		return ret;
8625 
8626 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8627 		u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8628 
8629 		link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8630 		linkattr = lstatus_to_fwcap(lstatus);
8631 		mtu = be16_to_cpu(port_cmd.u.info.mtu);
8632 	} else {
8633 		u32 lstatus32 =
8634 			   be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8635 
8636 		link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8637 		linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8638 		mtu = FW_PORT_CMD_MTU32_G(
8639 			be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8640 	}
8641 
8642 	*link_okp = link_ok;
8643 	*speedp = fwcap_to_speed(linkattr);
8644 	*mtup = mtu;
8645 
8646 	return 0;
8647 }
8648 
8649 /**
8650  *      t4_handle_fw_rpl - process a FW reply message
8651  *      @adap: the adapter
8652  *      @rpl: start of the FW message
8653  *
8654  *      Processes a FW message, such as link state change messages.
8655  */
8656 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8657 {
8658 	u8 opcode = *(const u8 *)rpl;
8659 
8660 	/* This might be a port command ... this simplifies the following
8661 	 * conditionals ...  We can get away with pre-dereferencing
8662 	 * action_to_len16 because it's in the first 16 bytes and all messages
8663 	 * will be at least that long.
8664 	 */
8665 	const struct fw_port_cmd *p = (const void *)rpl;
8666 	unsigned int action =
8667 		FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8668 
8669 	if (opcode == FW_PORT_CMD &&
8670 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8671 	     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8672 		int i;
8673 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8674 		struct port_info *pi = NULL;
8675 
8676 		for_each_port(adap, i) {
8677 			pi = adap2pinfo(adap, i);
8678 			if (pi->tx_chan == chan)
8679 				break;
8680 		}
8681 
8682 		t4_handle_get_port_info(pi, rpl);
8683 	} else {
8684 		dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8685 			 opcode);
8686 		return -EINVAL;
8687 	}
8688 	return 0;
8689 }
8690 
8691 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8692 {
8693 	u16 val;
8694 
8695 	if (pci_is_pcie(adapter->pdev)) {
8696 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8697 		p->speed = val & PCI_EXP_LNKSTA_CLS;
8698 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8699 	}
8700 }
8701 
8702 /**
8703  *	init_link_config - initialize a link's SW state
8704  *	@lc: pointer to structure holding the link state
8705  *	@pcaps: link Port Capabilities
8706  *	@acaps: link current Advertised Port Capabilities
8707  *
8708  *	Initializes the SW state maintained for each link, including the link's
8709  *	capabilities and default speed/flow-control/autonegotiation settings.
8710  */
8711 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8712 			     fw_port_cap32_t acaps)
8713 {
8714 	lc->pcaps = pcaps;
8715 	lc->def_acaps = acaps;
8716 	lc->lpacaps = 0;
8717 	lc->speed_caps = 0;
8718 	lc->speed = 0;
8719 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8720 
8721 	/* For Forward Error Control, we default to whatever the Firmware
8722 	 * tells us the Link is currently advertising.
8723 	 */
8724 	lc->requested_fec = FEC_AUTO;
8725 	lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8726 
8727 	/* If the Port is capable of Auto-Negtotiation, initialize it as
8728 	 * "enabled" and copy over all of the Physical Port Capabilities
8729 	 * to the Advertised Port Capabilities.  Otherwise mark it as
8730 	 * Auto-Negotiate disabled and select the highest supported speed
8731 	 * for the link.  Note parallel structure in t4_link_l1cfg_core()
8732 	 * and t4_handle_get_port_info().
8733 	 */
8734 	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8735 		lc->acaps = lc->pcaps & ADVERT_MASK;
8736 		lc->autoneg = AUTONEG_ENABLE;
8737 		lc->requested_fc |= PAUSE_AUTONEG;
8738 	} else {
8739 		lc->acaps = 0;
8740 		lc->autoneg = AUTONEG_DISABLE;
8741 		lc->speed_caps = fwcap_to_fwspeed(acaps);
8742 	}
8743 }
8744 
8745 #define CIM_PF_NOACCESS 0xeeeeeeee
8746 
8747 int t4_wait_dev_ready(void __iomem *regs)
8748 {
8749 	u32 whoami;
8750 
8751 	whoami = readl(regs + PL_WHOAMI_A);
8752 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8753 		return 0;
8754 
8755 	msleep(500);
8756 	whoami = readl(regs + PL_WHOAMI_A);
8757 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8758 }
8759 
8760 struct flash_desc {
8761 	u32 vendor_and_model_id;
8762 	u32 size_mb;
8763 };
8764 
8765 static int t4_get_flash_params(struct adapter *adap)
8766 {
8767 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
8768 	 * to the preexisting code.  All flash parts have 64KB sectors.
8769 	 */
8770 	static struct flash_desc supported_flash[] = {
8771 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8772 	};
8773 
8774 	unsigned int part, manufacturer;
8775 	unsigned int density, size = 0;
8776 	u32 flashid = 0;
8777 	int ret;
8778 
8779 	/* Issue a Read ID Command to the Flash part.  We decode supported
8780 	 * Flash parts and their sizes from this.  There's a newer Query
8781 	 * Command which can retrieve detailed geometry information but many
8782 	 * Flash parts don't support it.
8783 	 */
8784 
8785 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8786 	if (!ret)
8787 		ret = sf1_read(adap, 3, 0, 1, &flashid);
8788 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8789 	if (ret)
8790 		return ret;
8791 
8792 	/* Check to see if it's one of our non-standard supported Flash parts.
8793 	 */
8794 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8795 		if (supported_flash[part].vendor_and_model_id == flashid) {
8796 			adap->params.sf_size = supported_flash[part].size_mb;
8797 			adap->params.sf_nsec =
8798 				adap->params.sf_size / SF_SEC_SIZE;
8799 			goto found;
8800 		}
8801 
8802 	/* Decode Flash part size.  The code below looks repetative with
8803 	 * common encodings, but that's not guaranteed in the JEDEC
8804 	 * specification for the Read JADEC ID command.  The only thing that
8805 	 * we're guaranteed by the JADEC specification is where the
8806 	 * Manufacturer ID is in the returned result.  After that each
8807 	 * Manufacturer ~could~ encode things completely differently.
8808 	 * Note, all Flash parts must have 64KB sectors.
8809 	 */
8810 	manufacturer = flashid & 0xff;
8811 	switch (manufacturer) {
8812 	case 0x20: { /* Micron/Numonix */
8813 		/* This Density -> Size decoding table is taken from Micron
8814 		 * Data Sheets.
8815 		 */
8816 		density = (flashid >> 16) & 0xff;
8817 		switch (density) {
8818 		case 0x14: /* 1MB */
8819 			size = 1 << 20;
8820 			break;
8821 		case 0x15: /* 2MB */
8822 			size = 1 << 21;
8823 			break;
8824 		case 0x16: /* 4MB */
8825 			size = 1 << 22;
8826 			break;
8827 		case 0x17: /* 8MB */
8828 			size = 1 << 23;
8829 			break;
8830 		case 0x18: /* 16MB */
8831 			size = 1 << 24;
8832 			break;
8833 		case 0x19: /* 32MB */
8834 			size = 1 << 25;
8835 			break;
8836 		case 0x20: /* 64MB */
8837 			size = 1 << 26;
8838 			break;
8839 		case 0x21: /* 128MB */
8840 			size = 1 << 27;
8841 			break;
8842 		case 0x22: /* 256MB */
8843 			size = 1 << 28;
8844 			break;
8845 		}
8846 		break;
8847 	}
8848 	case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
8849 		/* This Density -> Size decoding table is taken from ISSI
8850 		 * Data Sheets.
8851 		 */
8852 		density = (flashid >> 16) & 0xff;
8853 		switch (density) {
8854 		case 0x16: /* 32 MB */
8855 			size = 1 << 25;
8856 			break;
8857 		case 0x17: /* 64MB */
8858 			size = 1 << 26;
8859 			break;
8860 		}
8861 		break;
8862 	}
8863 	case 0xc2: { /* Macronix */
8864 		/* This Density -> Size decoding table is taken from Macronix
8865 		 * Data Sheets.
8866 		 */
8867 		density = (flashid >> 16) & 0xff;
8868 		switch (density) {
8869 		case 0x17: /* 8MB */
8870 			size = 1 << 23;
8871 			break;
8872 		case 0x18: /* 16MB */
8873 			size = 1 << 24;
8874 			break;
8875 		}
8876 		break;
8877 	}
8878 	case 0xef: { /* Winbond */
8879 		/* This Density -> Size decoding table is taken from Winbond
8880 		 * Data Sheets.
8881 		 */
8882 		density = (flashid >> 16) & 0xff;
8883 		switch (density) {
8884 		case 0x17: /* 8MB */
8885 			size = 1 << 23;
8886 			break;
8887 		case 0x18: /* 16MB */
8888 			size = 1 << 24;
8889 			break;
8890 		}
8891 		break;
8892 	}
8893 	}
8894 
8895 	/* If we didn't recognize the FLASH part, that's no real issue: the
8896 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
8897 	 * use a FLASH part which is at least 4MB in size and has 64KB
8898 	 * sectors.  The unrecognized FLASH part is likely to be much larger
8899 	 * than 4MB, but that's all we really need.
8900 	 */
8901 	if (size == 0) {
8902 		dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
8903 			 flashid);
8904 		size = 1 << 22;
8905 	}
8906 
8907 	/* Store decoded Flash size and fall through into vetting code. */
8908 	adap->params.sf_size = size;
8909 	adap->params.sf_nsec = size / SF_SEC_SIZE;
8910 
8911 found:
8912 	if (adap->params.sf_size < FLASH_MIN_SIZE)
8913 		dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
8914 			 flashid, adap->params.sf_size, FLASH_MIN_SIZE);
8915 	return 0;
8916 }
8917 
8918 /**
8919  *	t4_prep_adapter - prepare SW and HW for operation
8920  *	@adapter: the adapter
8921  *	@reset: if true perform a HW reset
8922  *
8923  *	Initialize adapter SW state for the various HW modules, set initial
8924  *	values for some adapter tunables, take PHYs out of reset, and
8925  *	initialize the MDIO interface.
8926  */
8927 int t4_prep_adapter(struct adapter *adapter)
8928 {
8929 	int ret, ver;
8930 	uint16_t device_id;
8931 	u32 pl_rev;
8932 
8933 	get_pci_mode(adapter, &adapter->params.pci);
8934 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
8935 
8936 	ret = t4_get_flash_params(adapter);
8937 	if (ret < 0) {
8938 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
8939 		return ret;
8940 	}
8941 
8942 	/* Retrieve adapter's device ID
8943 	 */
8944 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
8945 	ver = device_id >> 12;
8946 	adapter->params.chip = 0;
8947 	switch (ver) {
8948 	case CHELSIO_T4:
8949 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
8950 		adapter->params.arch.sge_fl_db = DBPRIO_F;
8951 		adapter->params.arch.mps_tcam_size =
8952 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
8953 		adapter->params.arch.mps_rplc_size = 128;
8954 		adapter->params.arch.nchan = NCHAN;
8955 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
8956 		adapter->params.arch.vfcount = 128;
8957 		/* Congestion map is for 4 channels so that
8958 		 * MPS can have 4 priority per port.
8959 		 */
8960 		adapter->params.arch.cng_ch_bits_log = 2;
8961 		break;
8962 	case CHELSIO_T5:
8963 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
8964 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
8965 		adapter->params.arch.mps_tcam_size =
8966 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8967 		adapter->params.arch.mps_rplc_size = 128;
8968 		adapter->params.arch.nchan = NCHAN;
8969 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
8970 		adapter->params.arch.vfcount = 128;
8971 		adapter->params.arch.cng_ch_bits_log = 2;
8972 		break;
8973 	case CHELSIO_T6:
8974 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
8975 		adapter->params.arch.sge_fl_db = 0;
8976 		adapter->params.arch.mps_tcam_size =
8977 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8978 		adapter->params.arch.mps_rplc_size = 256;
8979 		adapter->params.arch.nchan = 2;
8980 		adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
8981 		adapter->params.arch.vfcount = 256;
8982 		/* Congestion map will be for 2 channels so that
8983 		 * MPS can have 8 priority per port.
8984 		 */
8985 		adapter->params.arch.cng_ch_bits_log = 3;
8986 		break;
8987 	default:
8988 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
8989 			device_id);
8990 		return -EINVAL;
8991 	}
8992 
8993 	adapter->params.cim_la_size = CIMLA_SIZE;
8994 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8995 
8996 	/*
8997 	 * Default port for debugging in case we can't reach FW.
8998 	 */
8999 	adapter->params.nports = 1;
9000 	adapter->params.portvec = 1;
9001 	adapter->params.vpd.cclk = 50000;
9002 
9003 	/* Set PCIe completion timeout to 4 seconds. */
9004 	pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
9005 					   PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
9006 	return 0;
9007 }
9008 
9009 /**
9010  *	t4_shutdown_adapter - shut down adapter, host & wire
9011  *	@adapter: the adapter
9012  *
9013  *	Perform an emergency shutdown of the adapter and stop it from
9014  *	continuing any further communication on the ports or DMA to the
9015  *	host.  This is typically used when the adapter and/or firmware
9016  *	have crashed and we want to prevent any further accidental
9017  *	communication with the rest of the world.  This will also force
9018  *	the port Link Status to go down -- if register writes work --
9019  *	which should help our peers figure out that we're down.
9020  */
9021 int t4_shutdown_adapter(struct adapter *adapter)
9022 {
9023 	int port;
9024 
9025 	t4_intr_disable(adapter);
9026 	t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
9027 	for_each_port(adapter, port) {
9028 		u32 a_port_cfg = is_t4(adapter->params.chip) ?
9029 				       PORT_REG(port, XGMAC_PORT_CFG_A) :
9030 				       T5_PORT_REG(port, MAC_PORT_CFG_A);
9031 
9032 		t4_write_reg(adapter, a_port_cfg,
9033 			     t4_read_reg(adapter, a_port_cfg)
9034 			     & ~SIGNAL_DET_V(1));
9035 	}
9036 	t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
9037 
9038 	return 0;
9039 }
9040 
9041 /**
9042  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9043  *	@adapter: the adapter
9044  *	@qid: the Queue ID
9045  *	@qtype: the Ingress or Egress type for @qid
9046  *	@user: true if this request is for a user mode queue
9047  *	@pbar2_qoffset: BAR2 Queue Offset
9048  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9049  *
9050  *	Returns the BAR2 SGE Queue Registers information associated with the
9051  *	indicated Absolute Queue ID.  These are passed back in return value
9052  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9053  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9054  *
9055  *	This may return an error which indicates that BAR2 SGE Queue
9056  *	registers aren't available.  If an error is not returned, then the
9057  *	following values are returned:
9058  *
9059  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9060  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9061  *
9062  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9063  *	require the "Inferred Queue ID" ability may be used.  E.g. the
9064  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9065  *	then these "Inferred Queue ID" register may not be used.
9066  */
9067 int t4_bar2_sge_qregs(struct adapter *adapter,
9068 		      unsigned int qid,
9069 		      enum t4_bar2_qtype qtype,
9070 		      int user,
9071 		      u64 *pbar2_qoffset,
9072 		      unsigned int *pbar2_qid)
9073 {
9074 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9075 	u64 bar2_page_offset, bar2_qoffset;
9076 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9077 
9078 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
9079 	if (!user && is_t4(adapter->params.chip))
9080 		return -EINVAL;
9081 
9082 	/* Get our SGE Page Size parameters.
9083 	 */
9084 	page_shift = adapter->params.sge.hps + 10;
9085 	page_size = 1 << page_shift;
9086 
9087 	/* Get the right Queues per Page parameters for our Queue.
9088 	 */
9089 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9090 		     ? adapter->params.sge.eq_qpp
9091 		     : adapter->params.sge.iq_qpp);
9092 	qpp_mask = (1 << qpp_shift) - 1;
9093 
9094 	/*  Calculate the basics of the BAR2 SGE Queue register area:
9095 	 *  o The BAR2 page the Queue registers will be in.
9096 	 *  o The BAR2 Queue ID.
9097 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9098 	 */
9099 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9100 	bar2_qid = qid & qpp_mask;
9101 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9102 
9103 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9104 	 * hardware will infer the Absolute Queue ID simply from the writes to
9105 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9106 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9107 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9108 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9109 	 * from the BAR2 Page and BAR2 Queue ID.
9110 	 *
9111 	 * One important censequence of this is that some BAR2 SGE registers
9112 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9113 	 * there.  But other registers synthesize the SGE Queue ID purely
9114 	 * from the writes to the registers -- the Write Combined Doorbell
9115 	 * Buffer is a good example.  These BAR2 SGE Registers are only
9116 	 * available for those BAR2 SGE Register areas where the SGE Absolute
9117 	 * Queue ID can be inferred from simple writes.
9118 	 */
9119 	bar2_qoffset = bar2_page_offset;
9120 	bar2_qinferred = (bar2_qid_offset < page_size);
9121 	if (bar2_qinferred) {
9122 		bar2_qoffset += bar2_qid_offset;
9123 		bar2_qid = 0;
9124 	}
9125 
9126 	*pbar2_qoffset = bar2_qoffset;
9127 	*pbar2_qid = bar2_qid;
9128 	return 0;
9129 }
9130 
9131 /**
9132  *	t4_init_devlog_params - initialize adapter->params.devlog
9133  *	@adap: the adapter
9134  *
9135  *	Initialize various fields of the adapter's Firmware Device Log
9136  *	Parameters structure.
9137  */
9138 int t4_init_devlog_params(struct adapter *adap)
9139 {
9140 	struct devlog_params *dparams = &adap->params.devlog;
9141 	u32 pf_dparams;
9142 	unsigned int devlog_meminfo;
9143 	struct fw_devlog_cmd devlog_cmd;
9144 	int ret;
9145 
9146 	/* If we're dealing with newer firmware, the Device Log Paramerters
9147 	 * are stored in a designated register which allows us to access the
9148 	 * Device Log even if we can't talk to the firmware.
9149 	 */
9150 	pf_dparams =
9151 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
9152 	if (pf_dparams) {
9153 		unsigned int nentries, nentries128;
9154 
9155 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
9156 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
9157 
9158 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
9159 		nentries = (nentries128 + 1) * 128;
9160 		dparams->size = nentries * sizeof(struct fw_devlog_e);
9161 
9162 		return 0;
9163 	}
9164 
9165 	/* Otherwise, ask the firmware for it's Device Log Parameters.
9166 	 */
9167 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9168 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
9169 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
9170 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9171 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9172 			 &devlog_cmd);
9173 	if (ret)
9174 		return ret;
9175 
9176 	devlog_meminfo =
9177 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9178 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
9179 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
9180 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9181 
9182 	return 0;
9183 }
9184 
9185 /**
9186  *	t4_init_sge_params - initialize adap->params.sge
9187  *	@adapter: the adapter
9188  *
9189  *	Initialize various fields of the adapter's SGE Parameters structure.
9190  */
9191 int t4_init_sge_params(struct adapter *adapter)
9192 {
9193 	struct sge_params *sge_params = &adapter->params.sge;
9194 	u32 hps, qpp;
9195 	unsigned int s_hps, s_qpp;
9196 
9197 	/* Extract the SGE Page Size for our PF.
9198 	 */
9199 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
9200 	s_hps = (HOSTPAGESIZEPF0_S +
9201 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
9202 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
9203 
9204 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
9205 	 */
9206 	s_qpp = (QUEUESPERPAGEPF0_S +
9207 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
9208 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
9209 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9210 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
9211 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9212 
9213 	return 0;
9214 }
9215 
9216 /**
9217  *      t4_init_tp_params - initialize adap->params.tp
9218  *      @adap: the adapter
9219  *      @sleep_ok: if true we may sleep while awaiting command completion
9220  *
9221  *      Initialize various fields of the adapter's TP Parameters structure.
9222  */
9223 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9224 {
9225 	int chan;
9226 	u32 v;
9227 
9228 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
9229 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
9230 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
9231 
9232 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9233 	for (chan = 0; chan < NCHAN; chan++)
9234 		adap->params.tp.tx_modq[chan] = chan;
9235 
9236 	/* Cache the adapter's Compressed Filter Mode and global Incress
9237 	 * Configuration.
9238 	 */
9239 	t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9240 		       TP_VLAN_PRI_MAP_A, sleep_ok);
9241 	t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9242 		       TP_INGRESS_CONFIG_A, sleep_ok);
9243 
9244 	/* For T6, cache the adapter's compressed error vector
9245 	 * and passing outer header info for encapsulated packets.
9246 	 */
9247 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9248 		v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9249 		adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9250 	}
9251 
9252 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9253 	 * shift positions of several elements of the Compressed Filter Tuple
9254 	 * for this adapter which we need frequently ...
9255 	 */
9256 	adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9257 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9258 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9259 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9260 	adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9261 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9262 							       PROTOCOL_F);
9263 	adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9264 								ETHERTYPE_F);
9265 	adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9266 							       MACMATCH_F);
9267 	adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9268 								MPSHITTYPE_F);
9269 	adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9270 							   FRAGMENTATION_F);
9271 
9272 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9273 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
9274 	 */
9275 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9276 		adap->params.tp.vnic_shift = -1;
9277 
9278 	v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9279 	adap->params.tp.hash_filter_mask = v;
9280 	v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9281 	adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9282 	return 0;
9283 }
9284 
9285 /**
9286  *      t4_filter_field_shift - calculate filter field shift
9287  *      @adap: the adapter
9288  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9289  *
9290  *      Return the shift position of a filter field within the Compressed
9291  *      Filter Tuple.  The filter field is specified via its selection bit
9292  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9293  */
9294 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9295 {
9296 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9297 	unsigned int sel;
9298 	int field_shift;
9299 
9300 	if ((filter_mode & filter_sel) == 0)
9301 		return -1;
9302 
9303 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9304 		switch (filter_mode & sel) {
9305 		case FCOE_F:
9306 			field_shift += FT_FCOE_W;
9307 			break;
9308 		case PORT_F:
9309 			field_shift += FT_PORT_W;
9310 			break;
9311 		case VNIC_ID_F:
9312 			field_shift += FT_VNIC_ID_W;
9313 			break;
9314 		case VLAN_F:
9315 			field_shift += FT_VLAN_W;
9316 			break;
9317 		case TOS_F:
9318 			field_shift += FT_TOS_W;
9319 			break;
9320 		case PROTOCOL_F:
9321 			field_shift += FT_PROTOCOL_W;
9322 			break;
9323 		case ETHERTYPE_F:
9324 			field_shift += FT_ETHERTYPE_W;
9325 			break;
9326 		case MACMATCH_F:
9327 			field_shift += FT_MACMATCH_W;
9328 			break;
9329 		case MPSHITTYPE_F:
9330 			field_shift += FT_MPSHITTYPE_W;
9331 			break;
9332 		case FRAGMENTATION_F:
9333 			field_shift += FT_FRAGMENTATION_W;
9334 			break;
9335 		}
9336 	}
9337 	return field_shift;
9338 }
9339 
9340 int t4_init_rss_mode(struct adapter *adap, int mbox)
9341 {
9342 	int i, ret;
9343 	struct fw_rss_vi_config_cmd rvc;
9344 
9345 	memset(&rvc, 0, sizeof(rvc));
9346 
9347 	for_each_port(adap, i) {
9348 		struct port_info *p = adap2pinfo(adap, i);
9349 
9350 		rvc.op_to_viid =
9351 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9352 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
9353 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9354 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9355 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9356 		if (ret)
9357 			return ret;
9358 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9359 	}
9360 	return 0;
9361 }
9362 
9363 /**
9364  *	t4_init_portinfo - allocate a virtual interface and initialize port_info
9365  *	@pi: the port_info
9366  *	@mbox: mailbox to use for the FW command
9367  *	@port: physical port associated with the VI
9368  *	@pf: the PF owning the VI
9369  *	@vf: the VF owning the VI
9370  *	@mac: the MAC address of the VI
9371  *
9372  *	Allocates a virtual interface for the given physical port.  If @mac is
9373  *	not %NULL it contains the MAC address of the VI as assigned by FW.
9374  *	@mac should be large enough to hold an Ethernet address.
9375  *	Returns < 0 on error.
9376  */
9377 int t4_init_portinfo(struct port_info *pi, int mbox,
9378 		     int port, int pf, int vf, u8 mac[])
9379 {
9380 	struct adapter *adapter = pi->adapter;
9381 	unsigned int fw_caps = adapter->params.fw_caps_support;
9382 	struct fw_port_cmd cmd;
9383 	unsigned int rss_size;
9384 	enum fw_port_type port_type;
9385 	int mdio_addr;
9386 	fw_port_cap32_t pcaps, acaps;
9387 	u8 vivld = 0, vin = 0;
9388 	int ret;
9389 
9390 	/* If we haven't yet determined whether we're talking to Firmware
9391 	 * which knows the new 32-bit Port Capabilities, it's time to find
9392 	 * out now.  This will also tell new Firmware to send us Port Status
9393 	 * Updates using the new 32-bit Port Capabilities version of the
9394 	 * Port Information message.
9395 	 */
9396 	if (fw_caps == FW_CAPS_UNKNOWN) {
9397 		u32 param, val;
9398 
9399 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9400 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9401 		val = 1;
9402 		ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9403 		fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9404 		adapter->params.fw_caps_support = fw_caps;
9405 	}
9406 
9407 	memset(&cmd, 0, sizeof(cmd));
9408 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9409 				       FW_CMD_REQUEST_F | FW_CMD_READ_F |
9410 				       FW_PORT_CMD_PORTID_V(port));
9411 	cmd.action_to_len16 = cpu_to_be32(
9412 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9413 				     ? FW_PORT_ACTION_GET_PORT_INFO
9414 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
9415 		FW_LEN16(cmd));
9416 	ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9417 	if (ret)
9418 		return ret;
9419 
9420 	/* Extract the various fields from the Port Information message.
9421 	 */
9422 	if (fw_caps == FW_CAPS16) {
9423 		u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9424 
9425 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9426 		mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9427 			     ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9428 			     : -1);
9429 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9430 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9431 	} else {
9432 		u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9433 
9434 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9435 		mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9436 			     ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9437 			     : -1);
9438 		pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9439 		acaps = be32_to_cpu(cmd.u.info32.acaps32);
9440 	}
9441 
9442 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size,
9443 			  &vivld, &vin);
9444 	if (ret < 0)
9445 		return ret;
9446 
9447 	pi->viid = ret;
9448 	pi->tx_chan = port;
9449 	pi->lport = port;
9450 	pi->rss_size = rss_size;
9451 
9452 	/* If fw supports returning the VIN as part of FW_VI_CMD,
9453 	 * save the returned values.
9454 	 */
9455 	if (adapter->params.viid_smt_extn_support) {
9456 		pi->vivld = vivld;
9457 		pi->vin = vin;
9458 	} else {
9459 		/* Retrieve the values from VIID */
9460 		pi->vivld = FW_VIID_VIVLD_G(pi->viid);
9461 		pi->vin =  FW_VIID_VIN_G(pi->viid);
9462 	}
9463 
9464 	pi->port_type = port_type;
9465 	pi->mdio_addr = mdio_addr;
9466 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
9467 
9468 	init_link_config(&pi->link_cfg, pcaps, acaps);
9469 	return 0;
9470 }
9471 
9472 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9473 {
9474 	u8 addr[6];
9475 	int ret, i, j = 0;
9476 
9477 	for_each_port(adap, i) {
9478 		struct port_info *pi = adap2pinfo(adap, i);
9479 
9480 		while ((adap->params.portvec & (1 << j)) == 0)
9481 			j++;
9482 
9483 		ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9484 		if (ret)
9485 			return ret;
9486 
9487 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9488 		j++;
9489 	}
9490 	return 0;
9491 }
9492 
9493 /**
9494  *	t4_read_cimq_cfg - read CIM queue configuration
9495  *	@adap: the adapter
9496  *	@base: holds the queue base addresses in bytes
9497  *	@size: holds the queue sizes in bytes
9498  *	@thres: holds the queue full thresholds in bytes
9499  *
9500  *	Returns the current configuration of the CIM queues, starting with
9501  *	the IBQs, then the OBQs.
9502  */
9503 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9504 {
9505 	unsigned int i, v;
9506 	int cim_num_obq = is_t4(adap->params.chip) ?
9507 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9508 
9509 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9510 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9511 			     QUENUMSELECT_V(i));
9512 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9513 		/* value is in 256-byte units */
9514 		*base++ = CIMQBASE_G(v) * 256;
9515 		*size++ = CIMQSIZE_G(v) * 256;
9516 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9517 	}
9518 	for (i = 0; i < cim_num_obq; i++) {
9519 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9520 			     QUENUMSELECT_V(i));
9521 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9522 		/* value is in 256-byte units */
9523 		*base++ = CIMQBASE_G(v) * 256;
9524 		*size++ = CIMQSIZE_G(v) * 256;
9525 	}
9526 }
9527 
9528 /**
9529  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9530  *	@adap: the adapter
9531  *	@qid: the queue index
9532  *	@data: where to store the queue contents
9533  *	@n: capacity of @data in 32-bit words
9534  *
9535  *	Reads the contents of the selected CIM queue starting at address 0 up
9536  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9537  *	error and the number of 32-bit words actually read on success.
9538  */
9539 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9540 {
9541 	int i, err, attempts;
9542 	unsigned int addr;
9543 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9544 
9545 	if (qid > 5 || (n & 3))
9546 		return -EINVAL;
9547 
9548 	addr = qid * nwords;
9549 	if (n > nwords)
9550 		n = nwords;
9551 
9552 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9553 	 * Wait for 1 Sec with a delay of 1 usec.
9554 	 */
9555 	attempts = 1000000;
9556 
9557 	for (i = 0; i < n; i++, addr++) {
9558 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9559 			     IBQDBGEN_F);
9560 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9561 				      attempts, 1);
9562 		if (err)
9563 			return err;
9564 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9565 	}
9566 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9567 	return i;
9568 }
9569 
9570 /**
9571  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9572  *	@adap: the adapter
9573  *	@qid: the queue index
9574  *	@data: where to store the queue contents
9575  *	@n: capacity of @data in 32-bit words
9576  *
9577  *	Reads the contents of the selected CIM queue starting at address 0 up
9578  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9579  *	error and the number of 32-bit words actually read on success.
9580  */
9581 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9582 {
9583 	int i, err;
9584 	unsigned int addr, v, nwords;
9585 	int cim_num_obq = is_t4(adap->params.chip) ?
9586 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9587 
9588 	if ((qid > (cim_num_obq - 1)) || (n & 3))
9589 		return -EINVAL;
9590 
9591 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9592 		     QUENUMSELECT_V(qid));
9593 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9594 
9595 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9596 	nwords = CIMQSIZE_G(v) * 64;  /* same */
9597 	if (n > nwords)
9598 		n = nwords;
9599 
9600 	for (i = 0; i < n; i++, addr++) {
9601 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9602 			     OBQDBGEN_F);
9603 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9604 				      2, 1);
9605 		if (err)
9606 			return err;
9607 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9608 	}
9609 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9610 	return i;
9611 }
9612 
9613 /**
9614  *	t4_cim_read - read a block from CIM internal address space
9615  *	@adap: the adapter
9616  *	@addr: the start address within the CIM address space
9617  *	@n: number of words to read
9618  *	@valp: where to store the result
9619  *
9620  *	Reads a block of 4-byte words from the CIM intenal address space.
9621  */
9622 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9623 		unsigned int *valp)
9624 {
9625 	int ret = 0;
9626 
9627 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9628 		return -EBUSY;
9629 
9630 	for ( ; !ret && n--; addr += 4) {
9631 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9632 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9633 				      0, 5, 2);
9634 		if (!ret)
9635 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9636 	}
9637 	return ret;
9638 }
9639 
9640 /**
9641  *	t4_cim_write - write a block into CIM internal address space
9642  *	@adap: the adapter
9643  *	@addr: the start address within the CIM address space
9644  *	@n: number of words to write
9645  *	@valp: set of values to write
9646  *
9647  *	Writes a block of 4-byte words into the CIM intenal address space.
9648  */
9649 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9650 		 const unsigned int *valp)
9651 {
9652 	int ret = 0;
9653 
9654 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9655 		return -EBUSY;
9656 
9657 	for ( ; !ret && n--; addr += 4) {
9658 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9659 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9660 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9661 				      0, 5, 2);
9662 	}
9663 	return ret;
9664 }
9665 
9666 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9667 			 unsigned int val)
9668 {
9669 	return t4_cim_write(adap, addr, 1, &val);
9670 }
9671 
9672 /**
9673  *	t4_cim_read_la - read CIM LA capture buffer
9674  *	@adap: the adapter
9675  *	@la_buf: where to store the LA data
9676  *	@wrptr: the HW write pointer within the capture buffer
9677  *
9678  *	Reads the contents of the CIM LA buffer with the most recent entry at
9679  *	the end	of the returned data and with the entry at @wrptr first.
9680  *	We try to leave the LA in the running state we find it in.
9681  */
9682 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9683 {
9684 	int i, ret;
9685 	unsigned int cfg, val, idx;
9686 
9687 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9688 	if (ret)
9689 		return ret;
9690 
9691 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
9692 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9693 		if (ret)
9694 			return ret;
9695 	}
9696 
9697 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9698 	if (ret)
9699 		goto restart;
9700 
9701 	idx = UPDBGLAWRPTR_G(val);
9702 	if (wrptr)
9703 		*wrptr = idx;
9704 
9705 	for (i = 0; i < adap->params.cim_la_size; i++) {
9706 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9707 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9708 		if (ret)
9709 			break;
9710 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9711 		if (ret)
9712 			break;
9713 		if (val & UPDBGLARDEN_F) {
9714 			ret = -ETIMEDOUT;
9715 			break;
9716 		}
9717 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9718 		if (ret)
9719 			break;
9720 
9721 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9722 		 * identify the 32-bit portion of the full 312-bit data
9723 		 */
9724 		if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9725 			idx = (idx & 0xff0) + 0x10;
9726 		else
9727 			idx++;
9728 		/* address can't exceed 0xfff */
9729 		idx &= UPDBGLARDPTR_M;
9730 	}
9731 restart:
9732 	if (cfg & UPDBGLAEN_F) {
9733 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9734 				      cfg & ~UPDBGLARDEN_F);
9735 		if (!ret)
9736 			ret = r;
9737 	}
9738 	return ret;
9739 }
9740 
9741 /**
9742  *	t4_tp_read_la - read TP LA capture buffer
9743  *	@adap: the adapter
9744  *	@la_buf: where to store the LA data
9745  *	@wrptr: the HW write pointer within the capture buffer
9746  *
9747  *	Reads the contents of the TP LA buffer with the most recent entry at
9748  *	the end	of the returned data and with the entry at @wrptr first.
9749  *	We leave the LA in the running state we find it in.
9750  */
9751 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9752 {
9753 	bool last_incomplete;
9754 	unsigned int i, cfg, val, idx;
9755 
9756 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
9757 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
9758 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9759 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
9760 
9761 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
9762 	idx = DBGLAWPTR_G(val);
9763 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
9764 	if (last_incomplete)
9765 		idx = (idx + 1) & DBGLARPTR_M;
9766 	if (wrptr)
9767 		*wrptr = idx;
9768 
9769 	val &= 0xffff;
9770 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
9771 	val |= adap->params.tp.la_mask;
9772 
9773 	for (i = 0; i < TPLA_SIZE; i++) {
9774 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
9775 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
9776 		idx = (idx + 1) & DBGLARPTR_M;
9777 	}
9778 
9779 	/* Wipe out last entry if it isn't valid */
9780 	if (last_incomplete)
9781 		la_buf[TPLA_SIZE - 1] = ~0ULL;
9782 
9783 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
9784 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9785 			     cfg | adap->params.tp.la_mask);
9786 }
9787 
9788 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
9789  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
9790  * state for more than the Warning Threshold then we'll issue a warning about
9791  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
9792  * appears to be hung every Warning Repeat second till the situation clears.
9793  * If the situation clears, we'll note that as well.
9794  */
9795 #define SGE_IDMA_WARN_THRESH 1
9796 #define SGE_IDMA_WARN_REPEAT 300
9797 
9798 /**
9799  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
9800  *	@adapter: the adapter
9801  *	@idma: the adapter IDMA Monitor state
9802  *
9803  *	Initialize the state of an SGE Ingress DMA Monitor.
9804  */
9805 void t4_idma_monitor_init(struct adapter *adapter,
9806 			  struct sge_idma_monitor_state *idma)
9807 {
9808 	/* Initialize the state variables for detecting an SGE Ingress DMA
9809 	 * hang.  The SGE has internal counters which count up on each clock
9810 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
9811 	 * same state they were on the previous clock tick.  The clock used is
9812 	 * the Core Clock so we have a limit on the maximum "time" they can
9813 	 * record; typically a very small number of seconds.  For instance,
9814 	 * with a 600MHz Core Clock, we can only count up to a bit more than
9815 	 * 7s.  So we'll synthesize a larger counter in order to not run the
9816 	 * risk of having the "timers" overflow and give us the flexibility to
9817 	 * maintain a Hung SGE State Machine of our own which operates across
9818 	 * a longer time frame.
9819 	 */
9820 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
9821 	idma->idma_stalled[0] = 0;
9822 	idma->idma_stalled[1] = 0;
9823 }
9824 
9825 /**
9826  *	t4_idma_monitor - monitor SGE Ingress DMA state
9827  *	@adapter: the adapter
9828  *	@idma: the adapter IDMA Monitor state
9829  *	@hz: number of ticks/second
9830  *	@ticks: number of ticks since the last IDMA Monitor call
9831  */
9832 void t4_idma_monitor(struct adapter *adapter,
9833 		     struct sge_idma_monitor_state *idma,
9834 		     int hz, int ticks)
9835 {
9836 	int i, idma_same_state_cnt[2];
9837 
9838 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
9839 	  * are counters inside the SGE which count up on each clock when the
9840 	  * SGE finds its Ingress DMA State Engines in the same states they
9841 	  * were in the previous clock.  The counters will peg out at
9842 	  * 0xffffffff without wrapping around so once they pass the 1s
9843 	  * threshold they'll stay above that till the IDMA state changes.
9844 	  */
9845 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
9846 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
9847 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9848 
9849 	for (i = 0; i < 2; i++) {
9850 		u32 debug0, debug11;
9851 
9852 		/* If the Ingress DMA Same State Counter ("timer") is less
9853 		 * than 1s, then we can reset our synthesized Stall Timer and
9854 		 * continue.  If we have previously emitted warnings about a
9855 		 * potential stalled Ingress Queue, issue a note indicating
9856 		 * that the Ingress Queue has resumed forward progress.
9857 		 */
9858 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
9859 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
9860 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
9861 					 "resumed after %d seconds\n",
9862 					 i, idma->idma_qid[i],
9863 					 idma->idma_stalled[i] / hz);
9864 			idma->idma_stalled[i] = 0;
9865 			continue;
9866 		}
9867 
9868 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
9869 		 * domain.  The first time we get here it'll be because we
9870 		 * passed the 1s Threshold; each additional time it'll be
9871 		 * because the RX Timer Callback is being fired on its regular
9872 		 * schedule.
9873 		 *
9874 		 * If the stall is below our Potential Hung Ingress Queue
9875 		 * Warning Threshold, continue.
9876 		 */
9877 		if (idma->idma_stalled[i] == 0) {
9878 			idma->idma_stalled[i] = hz;
9879 			idma->idma_warn[i] = 0;
9880 		} else {
9881 			idma->idma_stalled[i] += ticks;
9882 			idma->idma_warn[i] -= ticks;
9883 		}
9884 
9885 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
9886 			continue;
9887 
9888 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
9889 		 */
9890 		if (idma->idma_warn[i] > 0)
9891 			continue;
9892 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
9893 
9894 		/* Read and save the SGE IDMA State and Queue ID information.
9895 		 * We do this every time in case it changes across time ...
9896 		 * can't be too careful ...
9897 		 */
9898 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
9899 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9900 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
9901 
9902 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
9903 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9904 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
9905 
9906 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
9907 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
9908 			 i, idma->idma_qid[i], idma->idma_state[i],
9909 			 idma->idma_stalled[i] / hz,
9910 			 debug0, debug11);
9911 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
9912 	}
9913 }
9914 
9915 /**
9916  *	t4_load_cfg - download config file
9917  *	@adap: the adapter
9918  *	@cfg_data: the cfg text file to write
9919  *	@size: text file size
9920  *
9921  *	Write the supplied config text file to the card's serial flash.
9922  */
9923 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9924 {
9925 	int ret, i, n, cfg_addr;
9926 	unsigned int addr;
9927 	unsigned int flash_cfg_start_sec;
9928 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9929 
9930 	cfg_addr = t4_flash_cfg_addr(adap);
9931 	if (cfg_addr < 0)
9932 		return cfg_addr;
9933 
9934 	addr = cfg_addr;
9935 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9936 
9937 	if (size > FLASH_CFG_MAX_SIZE) {
9938 		dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
9939 			FLASH_CFG_MAX_SIZE);
9940 		return -EFBIG;
9941 	}
9942 
9943 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
9944 			 sf_sec_size);
9945 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9946 				     flash_cfg_start_sec + i - 1);
9947 	/* If size == 0 then we're simply erasing the FLASH sectors associated
9948 	 * with the on-adapter Firmware Configuration File.
9949 	 */
9950 	if (ret || size == 0)
9951 		goto out;
9952 
9953 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9954 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
9955 		if ((size - i) <  SF_PAGE_SIZE)
9956 			n = size - i;
9957 		else
9958 			n = SF_PAGE_SIZE;
9959 		ret = t4_write_flash(adap, addr, n, cfg_data);
9960 		if (ret)
9961 			goto out;
9962 
9963 		addr += SF_PAGE_SIZE;
9964 		cfg_data += SF_PAGE_SIZE;
9965 	}
9966 
9967 out:
9968 	if (ret)
9969 		dev_err(adap->pdev_dev, "config file %s failed %d\n",
9970 			(size == 0 ? "clear" : "download"), ret);
9971 	return ret;
9972 }
9973 
9974 /**
9975  *	t4_set_vf_mac - Set MAC address for the specified VF
9976  *	@adapter: The adapter
9977  *	@vf: one of the VFs instantiated by the specified PF
9978  *	@naddr: the number of MAC addresses
9979  *	@addr: the MAC address(es) to be set to the specified VF
9980  */
9981 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
9982 		      unsigned int naddr, u8 *addr)
9983 {
9984 	struct fw_acl_mac_cmd cmd;
9985 
9986 	memset(&cmd, 0, sizeof(cmd));
9987 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
9988 				    FW_CMD_REQUEST_F |
9989 				    FW_CMD_WRITE_F |
9990 				    FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
9991 				    FW_ACL_MAC_CMD_VFN_V(vf));
9992 
9993 	/* Note: Do not enable the ACL */
9994 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
9995 	cmd.nmac = naddr;
9996 
9997 	switch (adapter->pf) {
9998 	case 3:
9999 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10000 		break;
10001 	case 2:
10002 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10003 		break;
10004 	case 1:
10005 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10006 		break;
10007 	case 0:
10008 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10009 		break;
10010 	}
10011 
10012 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10013 }
10014 
10015 /**
10016  * t4_read_pace_tbl - read the pace table
10017  * @adap: the adapter
10018  * @pace_vals: holds the returned values
10019  *
10020  * Returns the values of TP's pace table in microseconds.
10021  */
10022 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10023 {
10024 	unsigned int i, v;
10025 
10026 	for (i = 0; i < NTX_SCHED; i++) {
10027 		t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
10028 		v = t4_read_reg(adap, TP_PACE_TABLE_A);
10029 		pace_vals[i] = dack_ticks_to_usec(adap, v);
10030 	}
10031 }
10032 
10033 /**
10034  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10035  * @adap: the adapter
10036  * @sched: the scheduler index
10037  * @kbps: the byte rate in Kbps
10038  * @ipg: the interpacket delay in tenths of nanoseconds
10039  * @sleep_ok: if true we may sleep while awaiting command completion
10040  *
10041  * Return the current configuration of a HW Tx scheduler.
10042  */
10043 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
10044 		     unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
10045 {
10046 	unsigned int v, addr, bpt, cpt;
10047 
10048 	if (kbps) {
10049 		addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
10050 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10051 		if (sched & 1)
10052 			v >>= 16;
10053 		bpt = (v >> 8) & 0xff;
10054 		cpt = v & 0xff;
10055 		if (!cpt) {
10056 			*kbps = 0;	/* scheduler disabled */
10057 		} else {
10058 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10059 			*kbps = (v * bpt) / 125;
10060 		}
10061 	}
10062 	if (ipg) {
10063 		addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
10064 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10065 		if (sched & 1)
10066 			v >>= 16;
10067 		v &= 0xffff;
10068 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
10069 	}
10070 }
10071 
10072 /* t4_sge_ctxt_rd - read an SGE context through FW
10073  * @adap: the adapter
10074  * @mbox: mailbox to use for the FW command
10075  * @cid: the context id
10076  * @ctype: the context type
10077  * @data: where to store the context data
10078  *
10079  * Issues a FW command through the given mailbox to read an SGE context.
10080  */
10081 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10082 		   enum ctxt_type ctype, u32 *data)
10083 {
10084 	struct fw_ldst_cmd c;
10085 	int ret;
10086 
10087 	if (ctype == CTXT_FLM)
10088 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
10089 	else
10090 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
10091 
10092 	memset(&c, 0, sizeof(c));
10093 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10094 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
10095 					FW_LDST_CMD_ADDRSPACE_V(ret));
10096 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10097 	c.u.idctxt.physid = cpu_to_be32(cid);
10098 
10099 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10100 	if (ret == 0) {
10101 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10102 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10103 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10104 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10105 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10106 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10107 	}
10108 	return ret;
10109 }
10110 
10111 /**
10112  * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10113  * @adap: the adapter
10114  * @cid: the context id
10115  * @ctype: the context type
10116  * @data: where to store the context data
10117  *
10118  * Reads an SGE context directly, bypassing FW.  This is only for
10119  * debugging when FW is unavailable.
10120  */
10121 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
10122 		      enum ctxt_type ctype, u32 *data)
10123 {
10124 	int i, ret;
10125 
10126 	t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
10127 	ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
10128 	if (!ret)
10129 		for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
10130 			*data++ = t4_read_reg(adap, i);
10131 	return ret;
10132 }
10133 
10134 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
10135 		    int rateunit, int ratemode, int channel, int class,
10136 		    int minrate, int maxrate, int weight, int pktsize)
10137 {
10138 	struct fw_sched_cmd cmd;
10139 
10140 	memset(&cmd, 0, sizeof(cmd));
10141 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
10142 				      FW_CMD_REQUEST_F |
10143 				      FW_CMD_WRITE_F);
10144 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10145 
10146 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10147 	cmd.u.params.type = type;
10148 	cmd.u.params.level = level;
10149 	cmd.u.params.mode = mode;
10150 	cmd.u.params.ch = channel;
10151 	cmd.u.params.cl = class;
10152 	cmd.u.params.unit = rateunit;
10153 	cmd.u.params.rate = ratemode;
10154 	cmd.u.params.min = cpu_to_be32(minrate);
10155 	cmd.u.params.max = cpu_to_be32(maxrate);
10156 	cmd.u.params.weight = cpu_to_be16(weight);
10157 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
10158 
10159 	return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
10160 			       NULL, 1);
10161 }
10162 
10163 /**
10164  *	t4_i2c_rd - read I2C data from adapter
10165  *	@adap: the adapter
10166  *	@port: Port number if per-port device; <0 if not
10167  *	@devid: per-port device ID or absolute device ID
10168  *	@offset: byte offset into device I2C space
10169  *	@len: byte length of I2C space data
10170  *	@buf: buffer in which to return I2C data
10171  *
10172  *	Reads the I2C data from the indicated device and location.
10173  */
10174 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
10175 	      unsigned int devid, unsigned int offset,
10176 	      unsigned int len, u8 *buf)
10177 {
10178 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10179 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10180 	int ret = 0;
10181 
10182 	if (len > I2C_PAGE_SIZE)
10183 		return -EINVAL;
10184 
10185 	/* Dont allow reads that spans multiple pages */
10186 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10187 		return -EINVAL;
10188 
10189 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10190 	ldst_cmd.op_to_addrspace =
10191 		cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10192 			    FW_CMD_REQUEST_F |
10193 			    FW_CMD_READ_F |
10194 			    FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
10195 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10196 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10197 	ldst_cmd.u.i2c.did = devid;
10198 
10199 	while (len > 0) {
10200 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10201 
10202 		ldst_cmd.u.i2c.boffset = offset;
10203 		ldst_cmd.u.i2c.blen = i2c_len;
10204 
10205 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10206 				 &ldst_rpl);
10207 		if (ret)
10208 			break;
10209 
10210 		memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10211 		offset += i2c_len;
10212 		buf += i2c_len;
10213 		len -= i2c_len;
10214 	}
10215 
10216 	return ret;
10217 }
10218 
10219 /**
10220  *      t4_set_vlan_acl - Set a VLAN id for the specified VF
10221  *      @adapter: the adapter
10222  *      @mbox: mailbox to use for the FW command
10223  *      @vf: one of the VFs instantiated by the specified PF
10224  *      @vlan: The vlanid to be set
10225  */
10226 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
10227 		    u16 vlan)
10228 {
10229 	struct fw_acl_vlan_cmd vlan_cmd;
10230 	unsigned int enable;
10231 
10232 	enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
10233 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
10234 	vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
10235 					 FW_CMD_REQUEST_F |
10236 					 FW_CMD_WRITE_F |
10237 					 FW_CMD_EXEC_F |
10238 					 FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
10239 					 FW_ACL_VLAN_CMD_VFN_V(vf));
10240 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
10241 	/* Drop all packets that donot match vlan id */
10242 	vlan_cmd.dropnovlan_fm = (enable
10243 				  ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F |
10244 				     FW_ACL_VLAN_CMD_FM_F) : 0);
10245 	if (enable != 0) {
10246 		vlan_cmd.nvlan = 1;
10247 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
10248 	}
10249 
10250 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
10251 }
10252