xref: /linux/drivers/net/ethernet/chelsio/cxgb4/t4_hw.c (revision 65c93628599dff4cd7cfb70130d1f6a2203731ea)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41 
42 /**
43  *	t4_wait_op_done_val - wait until an operation is completed
44  *	@adapter: the adapter performing the operation
45  *	@reg: the register to check for completion
46  *	@mask: a single-bit field within @reg that indicates completion
47  *	@polarity: the value of the field when the operation is completed
48  *	@attempts: number of check iterations
49  *	@delay: delay in usecs between iterations
50  *	@valp: where to store the value of the register at completion time
51  *
52  *	Wait until an operation is completed by checking a bit in a register
53  *	up to @attempts times.  If @valp is not NULL the value of the register
54  *	at the time it indicated completion is stored there.  Returns 0 if the
55  *	operation completes and	-EAGAIN	otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 			       int polarity, int attempts, int delay, u32 *valp)
59 {
60 	while (1) {
61 		u32 val = t4_read_reg(adapter, reg);
62 
63 		if (!!(val & mask) == polarity) {
64 			if (valp)
65 				*valp = val;
66 			return 0;
67 		}
68 		if (--attempts == 0)
69 			return -EAGAIN;
70 		if (delay)
71 			udelay(delay);
72 	}
73 }
74 
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 				  int polarity, int attempts, int delay)
77 {
78 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 				   delay, NULL);
80 }
81 
82 /**
83  *	t4_set_reg_field - set a register field to a value
84  *	@adapter: the adapter to program
85  *	@addr: the register address
86  *	@mask: specifies the portion of the register to modify
87  *	@val: the new value for the register field
88  *
89  *	Sets a register field specified by the supplied mask to the
90  *	given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 		      u32 val)
94 {
95 	u32 v = t4_read_reg(adapter, addr) & ~mask;
96 
97 	t4_write_reg(adapter, addr, v | val);
98 	(void) t4_read_reg(adapter, addr);      /* flush */
99 }
100 
101 /**
102  *	t4_read_indirect - read indirectly addressed registers
103  *	@adap: the adapter
104  *	@addr_reg: register holding the indirect address
105  *	@data_reg: register holding the value of the indirect register
106  *	@vals: where the read register values are stored
107  *	@nregs: how many indirect registers to read
108  *	@start_idx: index of first indirect register to read
109  *
110  *	Reads registers that are accessed indirectly through an address/data
111  *	register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 			     unsigned int data_reg, u32 *vals,
115 			     unsigned int nregs, unsigned int start_idx)
116 {
117 	while (nregs--) {
118 		t4_write_reg(adap, addr_reg, start_idx);
119 		*vals++ = t4_read_reg(adap, data_reg);
120 		start_idx++;
121 	}
122 }
123 
124 /**
125  *	t4_write_indirect - write indirectly addressed registers
126  *	@adap: the adapter
127  *	@addr_reg: register holding the indirect addresses
128  *	@data_reg: register holding the value for the indirect registers
129  *	@vals: values to write
130  *	@nregs: how many indirect registers to write
131  *	@start_idx: address of first indirect register to write
132  *
133  *	Writes a sequential block of registers that are accessed indirectly
134  *	through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 		       unsigned int data_reg, const u32 *vals,
138 		       unsigned int nregs, unsigned int start_idx)
139 {
140 	while (nregs--) {
141 		t4_write_reg(adap, addr_reg, start_idx++);
142 		t4_write_reg(adap, data_reg, *vals++);
143 	}
144 }
145 
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 
156 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 		req |= ENABLE_F;
158 	else
159 		req |= T6_ENABLE_F;
160 
161 	if (is_t4(adap->params.chip))
162 		req |= LOCALCFG_F;
163 
164 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 
167 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 	 * Configuration Space read.  (None of the other fields matter when
169 	 * ENABLE is 0 so a simple register write is easier than a
170 	 * read-modify-write via t4_set_reg_field().)
171 	 */
172 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174 
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 	static const char *const reason[] = {
186 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 		"Reserved",                     /* reserved */
194 	};
195 	u32 pcie_fw;
196 
197 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 	if (pcie_fw & PCIE_FW_ERR_F) {
199 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 		adap->flags &= ~CXGB4_FW_OK;
202 	}
203 }
204 
205 /*
206  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
207  */
208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
209 			 u32 mbox_addr)
210 {
211 	for ( ; nflit; nflit--, mbox_addr += 8)
212 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
213 }
214 
215 /*
216  * Handle a FW assertion reported in a mailbox.
217  */
218 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
219 {
220 	struct fw_debug_cmd asrt;
221 
222 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
223 	dev_alert(adap->pdev_dev,
224 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
225 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
226 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
227 }
228 
229 /**
230  *	t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
231  *	@adapter: the adapter
232  *	@cmd: the Firmware Mailbox Command or Reply
233  *	@size: command length in bytes
234  *	@access: the time (ms) needed to access the Firmware Mailbox
235  *	@execute: the time (ms) the command spent being executed
236  */
237 static void t4_record_mbox(struct adapter *adapter,
238 			   const __be64 *cmd, unsigned int size,
239 			   int access, int execute)
240 {
241 	struct mbox_cmd_log *log = adapter->mbox_log;
242 	struct mbox_cmd *entry;
243 	int i;
244 
245 	entry = mbox_cmd_log_entry(log, log->cursor++);
246 	if (log->cursor == log->size)
247 		log->cursor = 0;
248 
249 	for (i = 0; i < size / 8; i++)
250 		entry->cmd[i] = be64_to_cpu(cmd[i]);
251 	while (i < MBOX_LEN / 8)
252 		entry->cmd[i++] = 0;
253 	entry->timestamp = jiffies;
254 	entry->seqno = log->seqno++;
255 	entry->access = access;
256 	entry->execute = execute;
257 }
258 
259 /**
260  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
261  *	@adap: the adapter
262  *	@mbox: index of the mailbox to use
263  *	@cmd: the command to write
264  *	@size: command length in bytes
265  *	@rpl: where to optionally store the reply
266  *	@sleep_ok: if true we may sleep while awaiting command completion
267  *	@timeout: time to wait for command to finish before timing out
268  *
269  *	Sends the given command to FW through the selected mailbox and waits
270  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
271  *	store the FW's reply to the command.  The command and its optional
272  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
273  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
274  *	the response.  If sleeping is allowed we use progressive backoff
275  *	otherwise we spin.
276  *
277  *	The return value is 0 on success or a negative errno on failure.  A
278  *	failure can happen either because we are not able to execute the
279  *	command or FW executes it but signals an error.  In the latter case
280  *	the return value is the error code indicated by FW (negated).
281  */
282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
283 			    int size, void *rpl, bool sleep_ok, int timeout)
284 {
285 	static const int delay[] = {
286 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
287 	};
288 
289 	struct mbox_list entry;
290 	u16 access = 0;
291 	u16 execute = 0;
292 	u32 v;
293 	u64 res;
294 	int i, ms, delay_idx, ret;
295 	const __be64 *p = cmd;
296 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
297 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
298 	__be64 cmd_rpl[MBOX_LEN / 8];
299 	u32 pcie_fw;
300 
301 	if ((size & 15) || size > MBOX_LEN)
302 		return -EINVAL;
303 
304 	/*
305 	 * If the device is off-line, as in EEH, commands will time out.
306 	 * Fail them early so we don't waste time waiting.
307 	 */
308 	if (adap->pdev->error_state != pci_channel_io_normal)
309 		return -EIO;
310 
311 	/* If we have a negative timeout, that implies that we can't sleep. */
312 	if (timeout < 0) {
313 		sleep_ok = false;
314 		timeout = -timeout;
315 	}
316 
317 	/* Queue ourselves onto the mailbox access list.  When our entry is at
318 	 * the front of the list, we have rights to access the mailbox.  So we
319 	 * wait [for a while] till we're at the front [or bail out with an
320 	 * EBUSY] ...
321 	 */
322 	spin_lock_bh(&adap->mbox_lock);
323 	list_add_tail(&entry.list, &adap->mlist.list);
324 	spin_unlock_bh(&adap->mbox_lock);
325 
326 	delay_idx = 0;
327 	ms = delay[0];
328 
329 	for (i = 0; ; i += ms) {
330 		/* If we've waited too long, return a busy indication.  This
331 		 * really ought to be based on our initial position in the
332 		 * mailbox access list but this is a start.  We very rarely
333 		 * contend on access to the mailbox ...
334 		 */
335 		pcie_fw = t4_read_reg(adap, PCIE_FW_A);
336 		if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
337 			spin_lock_bh(&adap->mbox_lock);
338 			list_del(&entry.list);
339 			spin_unlock_bh(&adap->mbox_lock);
340 			ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
341 			t4_record_mbox(adap, cmd, size, access, ret);
342 			return ret;
343 		}
344 
345 		/* If we're at the head, break out and start the mailbox
346 		 * protocol.
347 		 */
348 		if (list_first_entry(&adap->mlist.list, struct mbox_list,
349 				     list) == &entry)
350 			break;
351 
352 		/* Delay for a bit before checking again ... */
353 		if (sleep_ok) {
354 			ms = delay[delay_idx];  /* last element may repeat */
355 			if (delay_idx < ARRAY_SIZE(delay) - 1)
356 				delay_idx++;
357 			msleep(ms);
358 		} else {
359 			mdelay(ms);
360 		}
361 	}
362 
363 	/* Loop trying to get ownership of the mailbox.  Return an error
364 	 * if we can't gain ownership.
365 	 */
366 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
368 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
369 	if (v != MBOX_OWNER_DRV) {
370 		spin_lock_bh(&adap->mbox_lock);
371 		list_del(&entry.list);
372 		spin_unlock_bh(&adap->mbox_lock);
373 		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
374 		t4_record_mbox(adap, cmd, size, access, ret);
375 		return ret;
376 	}
377 
378 	/* Copy in the new mailbox command and send it on its way ... */
379 	t4_record_mbox(adap, cmd, size, access, 0);
380 	for (i = 0; i < size; i += 8)
381 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
382 
383 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
384 	t4_read_reg(adap, ctl_reg);          /* flush write */
385 
386 	delay_idx = 0;
387 	ms = delay[0];
388 
389 	for (i = 0;
390 	     !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
391 	     i < timeout;
392 	     i += ms) {
393 		if (sleep_ok) {
394 			ms = delay[delay_idx];  /* last element may repeat */
395 			if (delay_idx < ARRAY_SIZE(delay) - 1)
396 				delay_idx++;
397 			msleep(ms);
398 		} else
399 			mdelay(ms);
400 
401 		v = t4_read_reg(adap, ctl_reg);
402 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
403 			if (!(v & MBMSGVALID_F)) {
404 				t4_write_reg(adap, ctl_reg, 0);
405 				continue;
406 			}
407 
408 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
409 			res = be64_to_cpu(cmd_rpl[0]);
410 
411 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
412 				fw_asrt(adap, data_reg);
413 				res = FW_CMD_RETVAL_V(EIO);
414 			} else if (rpl) {
415 				memcpy(rpl, cmd_rpl, size);
416 			}
417 
418 			t4_write_reg(adap, ctl_reg, 0);
419 
420 			execute = i + ms;
421 			t4_record_mbox(adap, cmd_rpl,
422 				       MBOX_LEN, access, execute);
423 			spin_lock_bh(&adap->mbox_lock);
424 			list_del(&entry.list);
425 			spin_unlock_bh(&adap->mbox_lock);
426 			return -FW_CMD_RETVAL_G((int)res);
427 		}
428 	}
429 
430 	ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
431 	t4_record_mbox(adap, cmd, size, access, ret);
432 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
433 		*(const u8 *)cmd, mbox);
434 	t4_report_fw_error(adap);
435 	spin_lock_bh(&adap->mbox_lock);
436 	list_del(&entry.list);
437 	spin_unlock_bh(&adap->mbox_lock);
438 	t4_fatal_err(adap);
439 	return ret;
440 }
441 
442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
443 		    void *rpl, bool sleep_ok)
444 {
445 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
446 				       FW_CMD_MAX_TIMEOUT);
447 }
448 
449 static int t4_edc_err_read(struct adapter *adap, int idx)
450 {
451 	u32 edc_ecc_err_addr_reg;
452 	u32 rdata_reg;
453 
454 	if (is_t4(adap->params.chip)) {
455 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
456 		return 0;
457 	}
458 	if (idx != 0 && idx != 1) {
459 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
460 		return 0;
461 	}
462 
463 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
464 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
465 
466 	CH_WARN(adap,
467 		"edc%d err addr 0x%x: 0x%x.\n",
468 		idx, edc_ecc_err_addr_reg,
469 		t4_read_reg(adap, edc_ecc_err_addr_reg));
470 	CH_WARN(adap,
471 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
472 		rdata_reg,
473 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
474 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
475 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
476 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
477 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
478 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
479 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
480 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
481 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
482 
483 	return 0;
484 }
485 
486 /**
487  * t4_memory_rw_init - Get memory window relative offset, base, and size.
488  * @adap: the adapter
489  * @win: PCI-E Memory Window to use
490  * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
491  * @mem_off: memory relative offset with respect to @mtype.
492  * @mem_base: configured memory base address.
493  * @mem_aperture: configured memory window aperture.
494  *
495  * Get the configured memory window's relative offset, base, and size.
496  */
497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
498 		      u32 *mem_base, u32 *mem_aperture)
499 {
500 	u32 edc_size, mc_size, mem_reg;
501 
502 	/* Offset into the region of memory which is being accessed
503 	 * MEM_EDC0 = 0
504 	 * MEM_EDC1 = 1
505 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
506 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
507 	 * MEM_HMA  = 4
508 	 */
509 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
510 	if (mtype == MEM_HMA) {
511 		*mem_off = 2 * (edc_size * 1024 * 1024);
512 	} else if (mtype != MEM_MC1) {
513 		*mem_off = (mtype * (edc_size * 1024 * 1024));
514 	} else {
515 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
516 						      MA_EXT_MEMORY0_BAR_A));
517 		*mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
518 	}
519 
520 	/* Each PCI-E Memory Window is programmed with a window size -- or
521 	 * "aperture" -- which controls the granularity of its mapping onto
522 	 * adapter memory.  We need to grab that aperture in order to know
523 	 * how to use the specified window.  The window is also programmed
524 	 * with the base address of the Memory Window in BAR0's address
525 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
526 	 * the address is relative to BAR0.
527 	 */
528 	mem_reg = t4_read_reg(adap,
529 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
530 						  win));
531 	/* a dead adapter will return 0xffffffff for PIO reads */
532 	if (mem_reg == 0xffffffff)
533 		return -ENXIO;
534 
535 	*mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
536 	*mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
537 	if (is_t4(adap->params.chip))
538 		*mem_base -= adap->t4_bar0;
539 
540 	return 0;
541 }
542 
543 /**
544  * t4_memory_update_win - Move memory window to specified address.
545  * @adap: the adapter
546  * @win: PCI-E Memory Window to use
547  * @addr: location to move.
548  *
549  * Move memory window to specified address.
550  */
551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
552 {
553 	t4_write_reg(adap,
554 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
555 		     addr);
556 	/* Read it back to ensure that changes propagate before we
557 	 * attempt to use the new value.
558 	 */
559 	t4_read_reg(adap,
560 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
561 }
562 
563 /**
564  * t4_memory_rw_residual - Read/Write residual data.
565  * @adap: the adapter
566  * @off: relative offset within residual to start read/write.
567  * @addr: address within indicated memory type.
568  * @buf: host memory buffer
569  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
570  *
571  * Read/Write residual data less than 32-bits.
572  */
573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
574 			   int dir)
575 {
576 	union {
577 		u32 word;
578 		char byte[4];
579 	} last;
580 	unsigned char *bp;
581 	int i;
582 
583 	if (dir == T4_MEMORY_READ) {
584 		last.word = le32_to_cpu((__force __le32)
585 					t4_read_reg(adap, addr));
586 		for (bp = (unsigned char *)buf, i = off; i < 4; i++)
587 			bp[i] = last.byte[i];
588 	} else {
589 		last.word = *buf;
590 		for (i = off; i < 4; i++)
591 			last.byte[i] = 0;
592 		t4_write_reg(adap, addr,
593 			     (__force u32)cpu_to_le32(last.word));
594 	}
595 }
596 
597 /**
598  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
599  *	@adap: the adapter
600  *	@win: PCI-E Memory Window to use
601  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
602  *	@addr: address within indicated memory type
603  *	@len: amount of memory to transfer
604  *	@hbuf: host memory buffer
605  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
606  *
607  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
608  *	firmware memory address and host buffer must be aligned on 32-bit
609  *	boundaries; the length may be arbitrary.  The memory is transferred as
610  *	a raw byte sequence from/to the firmware's memory.  If this memory
611  *	contains data structures which contain multi-byte integers, it's the
612  *	caller's responsibility to perform appropriate byte order conversions.
613  */
614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
615 		 u32 len, void *hbuf, int dir)
616 {
617 	u32 pos, offset, resid, memoffset;
618 	u32 win_pf, mem_aperture, mem_base;
619 	u32 *buf;
620 	int ret;
621 
622 	/* Argument sanity checks ...
623 	 */
624 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
625 		return -EINVAL;
626 	buf = (u32 *)hbuf;
627 
628 	/* It's convenient to be able to handle lengths which aren't a
629 	 * multiple of 32-bits because we often end up transferring files to
630 	 * the firmware.  So we'll handle that by normalizing the length here
631 	 * and then handling any residual transfer at the end.
632 	 */
633 	resid = len & 0x3;
634 	len -= resid;
635 
636 	ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
637 				&mem_aperture);
638 	if (ret)
639 		return ret;
640 
641 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
642 	addr = addr + memoffset;
643 
644 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
645 
646 	/* Calculate our initial PCI-E Memory Window Position and Offset into
647 	 * that Window.
648 	 */
649 	pos = addr & ~(mem_aperture - 1);
650 	offset = addr - pos;
651 
652 	/* Set up initial PCI-E Memory Window to cover the start of our
653 	 * transfer.
654 	 */
655 	t4_memory_update_win(adap, win, pos | win_pf);
656 
657 	/* Transfer data to/from the adapter as long as there's an integral
658 	 * number of 32-bit transfers to complete.
659 	 *
660 	 * A note on Endianness issues:
661 	 *
662 	 * The "register" reads and writes below from/to the PCI-E Memory
663 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
664 	 * Little-Endian "swizzel."  As a result, if we have the following
665 	 * data in adapter memory:
666 	 *
667 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
668 	 *     Address:      i+0  i+1  i+2  i+3
669 	 *
670 	 * Then a read of the adapter memory via the PCI-E Memory Window
671 	 * will yield:
672 	 *
673 	 *     x = readl(i)
674 	 *         31                  0
675 	 *         [ b3 | b2 | b1 | b0 ]
676 	 *
677 	 * If this value is stored into local memory on a Little-Endian system
678 	 * it will show up correctly in local memory as:
679 	 *
680 	 *     ( ..., b0, b1, b2, b3, ... )
681 	 *
682 	 * But on a Big-Endian system, the store will show up in memory
683 	 * incorrectly swizzled as:
684 	 *
685 	 *     ( ..., b3, b2, b1, b0, ... )
686 	 *
687 	 * So we need to account for this in the reads and writes to the
688 	 * PCI-E Memory Window below by undoing the register read/write
689 	 * swizzels.
690 	 */
691 	while (len > 0) {
692 		if (dir == T4_MEMORY_READ)
693 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
694 						mem_base + offset));
695 		else
696 			t4_write_reg(adap, mem_base + offset,
697 				     (__force u32)cpu_to_le32(*buf++));
698 		offset += sizeof(__be32);
699 		len -= sizeof(__be32);
700 
701 		/* If we've reached the end of our current window aperture,
702 		 * move the PCI-E Memory Window on to the next.  Note that
703 		 * doing this here after "len" may be 0 allows us to set up
704 		 * the PCI-E Memory Window for a possible final residual
705 		 * transfer below ...
706 		 */
707 		if (offset == mem_aperture) {
708 			pos += mem_aperture;
709 			offset = 0;
710 			t4_memory_update_win(adap, win, pos | win_pf);
711 		}
712 	}
713 
714 	/* If the original transfer had a length which wasn't a multiple of
715 	 * 32-bits, now's where we need to finish off the transfer of the
716 	 * residual amount.  The PCI-E Memory Window has already been moved
717 	 * above (if necessary) to cover this final transfer.
718 	 */
719 	if (resid)
720 		t4_memory_rw_residual(adap, resid, mem_base + offset,
721 				      (u8 *)buf, dir);
722 
723 	return 0;
724 }
725 
726 /* Return the specified PCI-E Configuration Space register from our Physical
727  * Function.  We try first via a Firmware LDST Command since we prefer to let
728  * the firmware own all of these registers, but if that fails we go for it
729  * directly ourselves.
730  */
731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
732 {
733 	u32 val, ldst_addrspace;
734 
735 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
736 	 * retrieve the specified PCI-E Configuration Space register.
737 	 */
738 	struct fw_ldst_cmd ldst_cmd;
739 	int ret;
740 
741 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
742 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
743 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
744 					       FW_CMD_REQUEST_F |
745 					       FW_CMD_READ_F |
746 					       ldst_addrspace);
747 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
748 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
749 	ldst_cmd.u.pcie.ctrl_to_fn =
750 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
751 	ldst_cmd.u.pcie.r = reg;
752 
753 	/* If the LDST Command succeeds, return the result, otherwise
754 	 * fall through to reading it directly ourselves ...
755 	 */
756 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
757 			 &ldst_cmd);
758 	if (ret == 0)
759 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
760 	else
761 		/* Read the desired Configuration Space register via the PCI-E
762 		 * Backdoor mechanism.
763 		 */
764 		t4_hw_pci_read_cfg4(adap, reg, &val);
765 	return val;
766 }
767 
768 /* Get the window based on base passed to it.
769  * Window aperture is currently unhandled, but there is no use case for it
770  * right now
771  */
772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
773 			 u32 memwin_base)
774 {
775 	u32 ret;
776 
777 	if (is_t4(adap->params.chip)) {
778 		u32 bar0;
779 
780 		/* Truncation intentional: we only read the bottom 32-bits of
781 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
782 		 * mechanism to read BAR0 instead of using
783 		 * pci_resource_start() because we could be operating from
784 		 * within a Virtual Machine which is trapping our accesses to
785 		 * our Configuration Space and we need to set up the PCI-E
786 		 * Memory Window decoders with the actual addresses which will
787 		 * be coming across the PCI-E link.
788 		 */
789 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
790 		bar0 &= pci_mask;
791 		adap->t4_bar0 = bar0;
792 
793 		ret = bar0 + memwin_base;
794 	} else {
795 		/* For T5, only relative offset inside the PCIe BAR is passed */
796 		ret = memwin_base;
797 	}
798 	return ret;
799 }
800 
801 /* Get the default utility window (win0) used by everyone */
802 u32 t4_get_util_window(struct adapter *adap)
803 {
804 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
805 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
806 }
807 
808 /* Set up memory window for accessing adapter memory ranges.  (Read
809  * back MA register to ensure that changes propagate before we attempt
810  * to use the new values.)
811  */
812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
813 {
814 	t4_write_reg(adap,
815 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
816 		     memwin_base | BIR_V(0) |
817 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
818 	t4_read_reg(adap,
819 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
820 }
821 
822 /**
823  *	t4_get_regs_len - return the size of the chips register set
824  *	@adapter: the adapter
825  *
826  *	Returns the size of the chip's BAR0 register space.
827  */
828 unsigned int t4_get_regs_len(struct adapter *adapter)
829 {
830 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
831 
832 	switch (chip_version) {
833 	case CHELSIO_T4:
834 		return T4_REGMAP_SIZE;
835 
836 	case CHELSIO_T5:
837 	case CHELSIO_T6:
838 		return T5_REGMAP_SIZE;
839 	}
840 
841 	dev_err(adapter->pdev_dev,
842 		"Unsupported chip version %d\n", chip_version);
843 	return 0;
844 }
845 
846 /**
847  *	t4_get_regs - read chip registers into provided buffer
848  *	@adap: the adapter
849  *	@buf: register buffer
850  *	@buf_size: size (in bytes) of register buffer
851  *
852  *	If the provided register buffer isn't large enough for the chip's
853  *	full register range, the register dump will be truncated to the
854  *	register buffer's size.
855  */
856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
857 {
858 	static const unsigned int t4_reg_ranges[] = {
859 		0x1008, 0x1108,
860 		0x1180, 0x1184,
861 		0x1190, 0x1194,
862 		0x11a0, 0x11a4,
863 		0x11b0, 0x11b4,
864 		0x11fc, 0x123c,
865 		0x1300, 0x173c,
866 		0x1800, 0x18fc,
867 		0x3000, 0x30d8,
868 		0x30e0, 0x30e4,
869 		0x30ec, 0x5910,
870 		0x5920, 0x5924,
871 		0x5960, 0x5960,
872 		0x5968, 0x5968,
873 		0x5970, 0x5970,
874 		0x5978, 0x5978,
875 		0x5980, 0x5980,
876 		0x5988, 0x5988,
877 		0x5990, 0x5990,
878 		0x5998, 0x5998,
879 		0x59a0, 0x59d4,
880 		0x5a00, 0x5ae0,
881 		0x5ae8, 0x5ae8,
882 		0x5af0, 0x5af0,
883 		0x5af8, 0x5af8,
884 		0x6000, 0x6098,
885 		0x6100, 0x6150,
886 		0x6200, 0x6208,
887 		0x6240, 0x6248,
888 		0x6280, 0x62b0,
889 		0x62c0, 0x6338,
890 		0x6370, 0x638c,
891 		0x6400, 0x643c,
892 		0x6500, 0x6524,
893 		0x6a00, 0x6a04,
894 		0x6a14, 0x6a38,
895 		0x6a60, 0x6a70,
896 		0x6a78, 0x6a78,
897 		0x6b00, 0x6b0c,
898 		0x6b1c, 0x6b84,
899 		0x6bf0, 0x6bf8,
900 		0x6c00, 0x6c0c,
901 		0x6c1c, 0x6c84,
902 		0x6cf0, 0x6cf8,
903 		0x6d00, 0x6d0c,
904 		0x6d1c, 0x6d84,
905 		0x6df0, 0x6df8,
906 		0x6e00, 0x6e0c,
907 		0x6e1c, 0x6e84,
908 		0x6ef0, 0x6ef8,
909 		0x6f00, 0x6f0c,
910 		0x6f1c, 0x6f84,
911 		0x6ff0, 0x6ff8,
912 		0x7000, 0x700c,
913 		0x701c, 0x7084,
914 		0x70f0, 0x70f8,
915 		0x7100, 0x710c,
916 		0x711c, 0x7184,
917 		0x71f0, 0x71f8,
918 		0x7200, 0x720c,
919 		0x721c, 0x7284,
920 		0x72f0, 0x72f8,
921 		0x7300, 0x730c,
922 		0x731c, 0x7384,
923 		0x73f0, 0x73f8,
924 		0x7400, 0x7450,
925 		0x7500, 0x7530,
926 		0x7600, 0x760c,
927 		0x7614, 0x761c,
928 		0x7680, 0x76cc,
929 		0x7700, 0x7798,
930 		0x77c0, 0x77fc,
931 		0x7900, 0x79fc,
932 		0x7b00, 0x7b58,
933 		0x7b60, 0x7b84,
934 		0x7b8c, 0x7c38,
935 		0x7d00, 0x7d38,
936 		0x7d40, 0x7d80,
937 		0x7d8c, 0x7ddc,
938 		0x7de4, 0x7e04,
939 		0x7e10, 0x7e1c,
940 		0x7e24, 0x7e38,
941 		0x7e40, 0x7e44,
942 		0x7e4c, 0x7e78,
943 		0x7e80, 0x7ea4,
944 		0x7eac, 0x7edc,
945 		0x7ee8, 0x7efc,
946 		0x8dc0, 0x8e04,
947 		0x8e10, 0x8e1c,
948 		0x8e30, 0x8e78,
949 		0x8ea0, 0x8eb8,
950 		0x8ec0, 0x8f6c,
951 		0x8fc0, 0x9008,
952 		0x9010, 0x9058,
953 		0x9060, 0x9060,
954 		0x9068, 0x9074,
955 		0x90fc, 0x90fc,
956 		0x9400, 0x9408,
957 		0x9410, 0x9458,
958 		0x9600, 0x9600,
959 		0x9608, 0x9638,
960 		0x9640, 0x96bc,
961 		0x9800, 0x9808,
962 		0x9820, 0x983c,
963 		0x9850, 0x9864,
964 		0x9c00, 0x9c6c,
965 		0x9c80, 0x9cec,
966 		0x9d00, 0x9d6c,
967 		0x9d80, 0x9dec,
968 		0x9e00, 0x9e6c,
969 		0x9e80, 0x9eec,
970 		0x9f00, 0x9f6c,
971 		0x9f80, 0x9fec,
972 		0xd004, 0xd004,
973 		0xd010, 0xd03c,
974 		0xdfc0, 0xdfe0,
975 		0xe000, 0xea7c,
976 		0xf000, 0x11110,
977 		0x11118, 0x11190,
978 		0x19040, 0x1906c,
979 		0x19078, 0x19080,
980 		0x1908c, 0x190e4,
981 		0x190f0, 0x190f8,
982 		0x19100, 0x19110,
983 		0x19120, 0x19124,
984 		0x19150, 0x19194,
985 		0x1919c, 0x191b0,
986 		0x191d0, 0x191e8,
987 		0x19238, 0x1924c,
988 		0x193f8, 0x1943c,
989 		0x1944c, 0x19474,
990 		0x19490, 0x194e0,
991 		0x194f0, 0x194f8,
992 		0x19800, 0x19c08,
993 		0x19c10, 0x19c90,
994 		0x19ca0, 0x19ce4,
995 		0x19cf0, 0x19d40,
996 		0x19d50, 0x19d94,
997 		0x19da0, 0x19de8,
998 		0x19df0, 0x19e40,
999 		0x19e50, 0x19e90,
1000 		0x19ea0, 0x19f4c,
1001 		0x1a000, 0x1a004,
1002 		0x1a010, 0x1a06c,
1003 		0x1a0b0, 0x1a0e4,
1004 		0x1a0ec, 0x1a0f4,
1005 		0x1a100, 0x1a108,
1006 		0x1a114, 0x1a120,
1007 		0x1a128, 0x1a130,
1008 		0x1a138, 0x1a138,
1009 		0x1a190, 0x1a1c4,
1010 		0x1a1fc, 0x1a1fc,
1011 		0x1e040, 0x1e04c,
1012 		0x1e284, 0x1e28c,
1013 		0x1e2c0, 0x1e2c0,
1014 		0x1e2e0, 0x1e2e0,
1015 		0x1e300, 0x1e384,
1016 		0x1e3c0, 0x1e3c8,
1017 		0x1e440, 0x1e44c,
1018 		0x1e684, 0x1e68c,
1019 		0x1e6c0, 0x1e6c0,
1020 		0x1e6e0, 0x1e6e0,
1021 		0x1e700, 0x1e784,
1022 		0x1e7c0, 0x1e7c8,
1023 		0x1e840, 0x1e84c,
1024 		0x1ea84, 0x1ea8c,
1025 		0x1eac0, 0x1eac0,
1026 		0x1eae0, 0x1eae0,
1027 		0x1eb00, 0x1eb84,
1028 		0x1ebc0, 0x1ebc8,
1029 		0x1ec40, 0x1ec4c,
1030 		0x1ee84, 0x1ee8c,
1031 		0x1eec0, 0x1eec0,
1032 		0x1eee0, 0x1eee0,
1033 		0x1ef00, 0x1ef84,
1034 		0x1efc0, 0x1efc8,
1035 		0x1f040, 0x1f04c,
1036 		0x1f284, 0x1f28c,
1037 		0x1f2c0, 0x1f2c0,
1038 		0x1f2e0, 0x1f2e0,
1039 		0x1f300, 0x1f384,
1040 		0x1f3c0, 0x1f3c8,
1041 		0x1f440, 0x1f44c,
1042 		0x1f684, 0x1f68c,
1043 		0x1f6c0, 0x1f6c0,
1044 		0x1f6e0, 0x1f6e0,
1045 		0x1f700, 0x1f784,
1046 		0x1f7c0, 0x1f7c8,
1047 		0x1f840, 0x1f84c,
1048 		0x1fa84, 0x1fa8c,
1049 		0x1fac0, 0x1fac0,
1050 		0x1fae0, 0x1fae0,
1051 		0x1fb00, 0x1fb84,
1052 		0x1fbc0, 0x1fbc8,
1053 		0x1fc40, 0x1fc4c,
1054 		0x1fe84, 0x1fe8c,
1055 		0x1fec0, 0x1fec0,
1056 		0x1fee0, 0x1fee0,
1057 		0x1ff00, 0x1ff84,
1058 		0x1ffc0, 0x1ffc8,
1059 		0x20000, 0x2002c,
1060 		0x20100, 0x2013c,
1061 		0x20190, 0x201a0,
1062 		0x201a8, 0x201b8,
1063 		0x201c4, 0x201c8,
1064 		0x20200, 0x20318,
1065 		0x20400, 0x204b4,
1066 		0x204c0, 0x20528,
1067 		0x20540, 0x20614,
1068 		0x21000, 0x21040,
1069 		0x2104c, 0x21060,
1070 		0x210c0, 0x210ec,
1071 		0x21200, 0x21268,
1072 		0x21270, 0x21284,
1073 		0x212fc, 0x21388,
1074 		0x21400, 0x21404,
1075 		0x21500, 0x21500,
1076 		0x21510, 0x21518,
1077 		0x2152c, 0x21530,
1078 		0x2153c, 0x2153c,
1079 		0x21550, 0x21554,
1080 		0x21600, 0x21600,
1081 		0x21608, 0x2161c,
1082 		0x21624, 0x21628,
1083 		0x21630, 0x21634,
1084 		0x2163c, 0x2163c,
1085 		0x21700, 0x2171c,
1086 		0x21780, 0x2178c,
1087 		0x21800, 0x21818,
1088 		0x21820, 0x21828,
1089 		0x21830, 0x21848,
1090 		0x21850, 0x21854,
1091 		0x21860, 0x21868,
1092 		0x21870, 0x21870,
1093 		0x21878, 0x21898,
1094 		0x218a0, 0x218a8,
1095 		0x218b0, 0x218c8,
1096 		0x218d0, 0x218d4,
1097 		0x218e0, 0x218e8,
1098 		0x218f0, 0x218f0,
1099 		0x218f8, 0x21a18,
1100 		0x21a20, 0x21a28,
1101 		0x21a30, 0x21a48,
1102 		0x21a50, 0x21a54,
1103 		0x21a60, 0x21a68,
1104 		0x21a70, 0x21a70,
1105 		0x21a78, 0x21a98,
1106 		0x21aa0, 0x21aa8,
1107 		0x21ab0, 0x21ac8,
1108 		0x21ad0, 0x21ad4,
1109 		0x21ae0, 0x21ae8,
1110 		0x21af0, 0x21af0,
1111 		0x21af8, 0x21c18,
1112 		0x21c20, 0x21c20,
1113 		0x21c28, 0x21c30,
1114 		0x21c38, 0x21c38,
1115 		0x21c80, 0x21c98,
1116 		0x21ca0, 0x21ca8,
1117 		0x21cb0, 0x21cc8,
1118 		0x21cd0, 0x21cd4,
1119 		0x21ce0, 0x21ce8,
1120 		0x21cf0, 0x21cf0,
1121 		0x21cf8, 0x21d7c,
1122 		0x21e00, 0x21e04,
1123 		0x22000, 0x2202c,
1124 		0x22100, 0x2213c,
1125 		0x22190, 0x221a0,
1126 		0x221a8, 0x221b8,
1127 		0x221c4, 0x221c8,
1128 		0x22200, 0x22318,
1129 		0x22400, 0x224b4,
1130 		0x224c0, 0x22528,
1131 		0x22540, 0x22614,
1132 		0x23000, 0x23040,
1133 		0x2304c, 0x23060,
1134 		0x230c0, 0x230ec,
1135 		0x23200, 0x23268,
1136 		0x23270, 0x23284,
1137 		0x232fc, 0x23388,
1138 		0x23400, 0x23404,
1139 		0x23500, 0x23500,
1140 		0x23510, 0x23518,
1141 		0x2352c, 0x23530,
1142 		0x2353c, 0x2353c,
1143 		0x23550, 0x23554,
1144 		0x23600, 0x23600,
1145 		0x23608, 0x2361c,
1146 		0x23624, 0x23628,
1147 		0x23630, 0x23634,
1148 		0x2363c, 0x2363c,
1149 		0x23700, 0x2371c,
1150 		0x23780, 0x2378c,
1151 		0x23800, 0x23818,
1152 		0x23820, 0x23828,
1153 		0x23830, 0x23848,
1154 		0x23850, 0x23854,
1155 		0x23860, 0x23868,
1156 		0x23870, 0x23870,
1157 		0x23878, 0x23898,
1158 		0x238a0, 0x238a8,
1159 		0x238b0, 0x238c8,
1160 		0x238d0, 0x238d4,
1161 		0x238e0, 0x238e8,
1162 		0x238f0, 0x238f0,
1163 		0x238f8, 0x23a18,
1164 		0x23a20, 0x23a28,
1165 		0x23a30, 0x23a48,
1166 		0x23a50, 0x23a54,
1167 		0x23a60, 0x23a68,
1168 		0x23a70, 0x23a70,
1169 		0x23a78, 0x23a98,
1170 		0x23aa0, 0x23aa8,
1171 		0x23ab0, 0x23ac8,
1172 		0x23ad0, 0x23ad4,
1173 		0x23ae0, 0x23ae8,
1174 		0x23af0, 0x23af0,
1175 		0x23af8, 0x23c18,
1176 		0x23c20, 0x23c20,
1177 		0x23c28, 0x23c30,
1178 		0x23c38, 0x23c38,
1179 		0x23c80, 0x23c98,
1180 		0x23ca0, 0x23ca8,
1181 		0x23cb0, 0x23cc8,
1182 		0x23cd0, 0x23cd4,
1183 		0x23ce0, 0x23ce8,
1184 		0x23cf0, 0x23cf0,
1185 		0x23cf8, 0x23d7c,
1186 		0x23e00, 0x23e04,
1187 		0x24000, 0x2402c,
1188 		0x24100, 0x2413c,
1189 		0x24190, 0x241a0,
1190 		0x241a8, 0x241b8,
1191 		0x241c4, 0x241c8,
1192 		0x24200, 0x24318,
1193 		0x24400, 0x244b4,
1194 		0x244c0, 0x24528,
1195 		0x24540, 0x24614,
1196 		0x25000, 0x25040,
1197 		0x2504c, 0x25060,
1198 		0x250c0, 0x250ec,
1199 		0x25200, 0x25268,
1200 		0x25270, 0x25284,
1201 		0x252fc, 0x25388,
1202 		0x25400, 0x25404,
1203 		0x25500, 0x25500,
1204 		0x25510, 0x25518,
1205 		0x2552c, 0x25530,
1206 		0x2553c, 0x2553c,
1207 		0x25550, 0x25554,
1208 		0x25600, 0x25600,
1209 		0x25608, 0x2561c,
1210 		0x25624, 0x25628,
1211 		0x25630, 0x25634,
1212 		0x2563c, 0x2563c,
1213 		0x25700, 0x2571c,
1214 		0x25780, 0x2578c,
1215 		0x25800, 0x25818,
1216 		0x25820, 0x25828,
1217 		0x25830, 0x25848,
1218 		0x25850, 0x25854,
1219 		0x25860, 0x25868,
1220 		0x25870, 0x25870,
1221 		0x25878, 0x25898,
1222 		0x258a0, 0x258a8,
1223 		0x258b0, 0x258c8,
1224 		0x258d0, 0x258d4,
1225 		0x258e0, 0x258e8,
1226 		0x258f0, 0x258f0,
1227 		0x258f8, 0x25a18,
1228 		0x25a20, 0x25a28,
1229 		0x25a30, 0x25a48,
1230 		0x25a50, 0x25a54,
1231 		0x25a60, 0x25a68,
1232 		0x25a70, 0x25a70,
1233 		0x25a78, 0x25a98,
1234 		0x25aa0, 0x25aa8,
1235 		0x25ab0, 0x25ac8,
1236 		0x25ad0, 0x25ad4,
1237 		0x25ae0, 0x25ae8,
1238 		0x25af0, 0x25af0,
1239 		0x25af8, 0x25c18,
1240 		0x25c20, 0x25c20,
1241 		0x25c28, 0x25c30,
1242 		0x25c38, 0x25c38,
1243 		0x25c80, 0x25c98,
1244 		0x25ca0, 0x25ca8,
1245 		0x25cb0, 0x25cc8,
1246 		0x25cd0, 0x25cd4,
1247 		0x25ce0, 0x25ce8,
1248 		0x25cf0, 0x25cf0,
1249 		0x25cf8, 0x25d7c,
1250 		0x25e00, 0x25e04,
1251 		0x26000, 0x2602c,
1252 		0x26100, 0x2613c,
1253 		0x26190, 0x261a0,
1254 		0x261a8, 0x261b8,
1255 		0x261c4, 0x261c8,
1256 		0x26200, 0x26318,
1257 		0x26400, 0x264b4,
1258 		0x264c0, 0x26528,
1259 		0x26540, 0x26614,
1260 		0x27000, 0x27040,
1261 		0x2704c, 0x27060,
1262 		0x270c0, 0x270ec,
1263 		0x27200, 0x27268,
1264 		0x27270, 0x27284,
1265 		0x272fc, 0x27388,
1266 		0x27400, 0x27404,
1267 		0x27500, 0x27500,
1268 		0x27510, 0x27518,
1269 		0x2752c, 0x27530,
1270 		0x2753c, 0x2753c,
1271 		0x27550, 0x27554,
1272 		0x27600, 0x27600,
1273 		0x27608, 0x2761c,
1274 		0x27624, 0x27628,
1275 		0x27630, 0x27634,
1276 		0x2763c, 0x2763c,
1277 		0x27700, 0x2771c,
1278 		0x27780, 0x2778c,
1279 		0x27800, 0x27818,
1280 		0x27820, 0x27828,
1281 		0x27830, 0x27848,
1282 		0x27850, 0x27854,
1283 		0x27860, 0x27868,
1284 		0x27870, 0x27870,
1285 		0x27878, 0x27898,
1286 		0x278a0, 0x278a8,
1287 		0x278b0, 0x278c8,
1288 		0x278d0, 0x278d4,
1289 		0x278e0, 0x278e8,
1290 		0x278f0, 0x278f0,
1291 		0x278f8, 0x27a18,
1292 		0x27a20, 0x27a28,
1293 		0x27a30, 0x27a48,
1294 		0x27a50, 0x27a54,
1295 		0x27a60, 0x27a68,
1296 		0x27a70, 0x27a70,
1297 		0x27a78, 0x27a98,
1298 		0x27aa0, 0x27aa8,
1299 		0x27ab0, 0x27ac8,
1300 		0x27ad0, 0x27ad4,
1301 		0x27ae0, 0x27ae8,
1302 		0x27af0, 0x27af0,
1303 		0x27af8, 0x27c18,
1304 		0x27c20, 0x27c20,
1305 		0x27c28, 0x27c30,
1306 		0x27c38, 0x27c38,
1307 		0x27c80, 0x27c98,
1308 		0x27ca0, 0x27ca8,
1309 		0x27cb0, 0x27cc8,
1310 		0x27cd0, 0x27cd4,
1311 		0x27ce0, 0x27ce8,
1312 		0x27cf0, 0x27cf0,
1313 		0x27cf8, 0x27d7c,
1314 		0x27e00, 0x27e04,
1315 	};
1316 
1317 	static const unsigned int t5_reg_ranges[] = {
1318 		0x1008, 0x10c0,
1319 		0x10cc, 0x10f8,
1320 		0x1100, 0x1100,
1321 		0x110c, 0x1148,
1322 		0x1180, 0x1184,
1323 		0x1190, 0x1194,
1324 		0x11a0, 0x11a4,
1325 		0x11b0, 0x11b4,
1326 		0x11fc, 0x123c,
1327 		0x1280, 0x173c,
1328 		0x1800, 0x18fc,
1329 		0x3000, 0x3028,
1330 		0x3060, 0x30b0,
1331 		0x30b8, 0x30d8,
1332 		0x30e0, 0x30fc,
1333 		0x3140, 0x357c,
1334 		0x35a8, 0x35cc,
1335 		0x35ec, 0x35ec,
1336 		0x3600, 0x5624,
1337 		0x56cc, 0x56ec,
1338 		0x56f4, 0x5720,
1339 		0x5728, 0x575c,
1340 		0x580c, 0x5814,
1341 		0x5890, 0x589c,
1342 		0x58a4, 0x58ac,
1343 		0x58b8, 0x58bc,
1344 		0x5940, 0x59c8,
1345 		0x59d0, 0x59dc,
1346 		0x59fc, 0x5a18,
1347 		0x5a60, 0x5a70,
1348 		0x5a80, 0x5a9c,
1349 		0x5b94, 0x5bfc,
1350 		0x6000, 0x6020,
1351 		0x6028, 0x6040,
1352 		0x6058, 0x609c,
1353 		0x60a8, 0x614c,
1354 		0x7700, 0x7798,
1355 		0x77c0, 0x78fc,
1356 		0x7b00, 0x7b58,
1357 		0x7b60, 0x7b84,
1358 		0x7b8c, 0x7c54,
1359 		0x7d00, 0x7d38,
1360 		0x7d40, 0x7d80,
1361 		0x7d8c, 0x7ddc,
1362 		0x7de4, 0x7e04,
1363 		0x7e10, 0x7e1c,
1364 		0x7e24, 0x7e38,
1365 		0x7e40, 0x7e44,
1366 		0x7e4c, 0x7e78,
1367 		0x7e80, 0x7edc,
1368 		0x7ee8, 0x7efc,
1369 		0x8dc0, 0x8de0,
1370 		0x8df8, 0x8e04,
1371 		0x8e10, 0x8e84,
1372 		0x8ea0, 0x8f84,
1373 		0x8fc0, 0x9058,
1374 		0x9060, 0x9060,
1375 		0x9068, 0x90f8,
1376 		0x9400, 0x9408,
1377 		0x9410, 0x9470,
1378 		0x9600, 0x9600,
1379 		0x9608, 0x9638,
1380 		0x9640, 0x96f4,
1381 		0x9800, 0x9808,
1382 		0x9810, 0x9864,
1383 		0x9c00, 0x9c6c,
1384 		0x9c80, 0x9cec,
1385 		0x9d00, 0x9d6c,
1386 		0x9d80, 0x9dec,
1387 		0x9e00, 0x9e6c,
1388 		0x9e80, 0x9eec,
1389 		0x9f00, 0x9f6c,
1390 		0x9f80, 0xa020,
1391 		0xd000, 0xd004,
1392 		0xd010, 0xd03c,
1393 		0xdfc0, 0xdfe0,
1394 		0xe000, 0x1106c,
1395 		0x11074, 0x11088,
1396 		0x1109c, 0x1117c,
1397 		0x11190, 0x11204,
1398 		0x19040, 0x1906c,
1399 		0x19078, 0x19080,
1400 		0x1908c, 0x190e8,
1401 		0x190f0, 0x190f8,
1402 		0x19100, 0x19110,
1403 		0x19120, 0x19124,
1404 		0x19150, 0x19194,
1405 		0x1919c, 0x191b0,
1406 		0x191d0, 0x191e8,
1407 		0x19238, 0x19290,
1408 		0x193f8, 0x19428,
1409 		0x19430, 0x19444,
1410 		0x1944c, 0x1946c,
1411 		0x19474, 0x19474,
1412 		0x19490, 0x194cc,
1413 		0x194f0, 0x194f8,
1414 		0x19c00, 0x19c08,
1415 		0x19c10, 0x19c60,
1416 		0x19c94, 0x19ce4,
1417 		0x19cf0, 0x19d40,
1418 		0x19d50, 0x19d94,
1419 		0x19da0, 0x19de8,
1420 		0x19df0, 0x19e10,
1421 		0x19e50, 0x19e90,
1422 		0x19ea0, 0x19f24,
1423 		0x19f34, 0x19f34,
1424 		0x19f40, 0x19f50,
1425 		0x19f90, 0x19fb4,
1426 		0x19fc4, 0x19fe4,
1427 		0x1a000, 0x1a004,
1428 		0x1a010, 0x1a06c,
1429 		0x1a0b0, 0x1a0e4,
1430 		0x1a0ec, 0x1a0f8,
1431 		0x1a100, 0x1a108,
1432 		0x1a114, 0x1a130,
1433 		0x1a138, 0x1a1c4,
1434 		0x1a1fc, 0x1a1fc,
1435 		0x1e008, 0x1e00c,
1436 		0x1e040, 0x1e044,
1437 		0x1e04c, 0x1e04c,
1438 		0x1e284, 0x1e290,
1439 		0x1e2c0, 0x1e2c0,
1440 		0x1e2e0, 0x1e2e0,
1441 		0x1e300, 0x1e384,
1442 		0x1e3c0, 0x1e3c8,
1443 		0x1e408, 0x1e40c,
1444 		0x1e440, 0x1e444,
1445 		0x1e44c, 0x1e44c,
1446 		0x1e684, 0x1e690,
1447 		0x1e6c0, 0x1e6c0,
1448 		0x1e6e0, 0x1e6e0,
1449 		0x1e700, 0x1e784,
1450 		0x1e7c0, 0x1e7c8,
1451 		0x1e808, 0x1e80c,
1452 		0x1e840, 0x1e844,
1453 		0x1e84c, 0x1e84c,
1454 		0x1ea84, 0x1ea90,
1455 		0x1eac0, 0x1eac0,
1456 		0x1eae0, 0x1eae0,
1457 		0x1eb00, 0x1eb84,
1458 		0x1ebc0, 0x1ebc8,
1459 		0x1ec08, 0x1ec0c,
1460 		0x1ec40, 0x1ec44,
1461 		0x1ec4c, 0x1ec4c,
1462 		0x1ee84, 0x1ee90,
1463 		0x1eec0, 0x1eec0,
1464 		0x1eee0, 0x1eee0,
1465 		0x1ef00, 0x1ef84,
1466 		0x1efc0, 0x1efc8,
1467 		0x1f008, 0x1f00c,
1468 		0x1f040, 0x1f044,
1469 		0x1f04c, 0x1f04c,
1470 		0x1f284, 0x1f290,
1471 		0x1f2c0, 0x1f2c0,
1472 		0x1f2e0, 0x1f2e0,
1473 		0x1f300, 0x1f384,
1474 		0x1f3c0, 0x1f3c8,
1475 		0x1f408, 0x1f40c,
1476 		0x1f440, 0x1f444,
1477 		0x1f44c, 0x1f44c,
1478 		0x1f684, 0x1f690,
1479 		0x1f6c0, 0x1f6c0,
1480 		0x1f6e0, 0x1f6e0,
1481 		0x1f700, 0x1f784,
1482 		0x1f7c0, 0x1f7c8,
1483 		0x1f808, 0x1f80c,
1484 		0x1f840, 0x1f844,
1485 		0x1f84c, 0x1f84c,
1486 		0x1fa84, 0x1fa90,
1487 		0x1fac0, 0x1fac0,
1488 		0x1fae0, 0x1fae0,
1489 		0x1fb00, 0x1fb84,
1490 		0x1fbc0, 0x1fbc8,
1491 		0x1fc08, 0x1fc0c,
1492 		0x1fc40, 0x1fc44,
1493 		0x1fc4c, 0x1fc4c,
1494 		0x1fe84, 0x1fe90,
1495 		0x1fec0, 0x1fec0,
1496 		0x1fee0, 0x1fee0,
1497 		0x1ff00, 0x1ff84,
1498 		0x1ffc0, 0x1ffc8,
1499 		0x30000, 0x30030,
1500 		0x30100, 0x30144,
1501 		0x30190, 0x301a0,
1502 		0x301a8, 0x301b8,
1503 		0x301c4, 0x301c8,
1504 		0x301d0, 0x301d0,
1505 		0x30200, 0x30318,
1506 		0x30400, 0x304b4,
1507 		0x304c0, 0x3052c,
1508 		0x30540, 0x3061c,
1509 		0x30800, 0x30828,
1510 		0x30834, 0x30834,
1511 		0x308c0, 0x30908,
1512 		0x30910, 0x309ac,
1513 		0x30a00, 0x30a14,
1514 		0x30a1c, 0x30a2c,
1515 		0x30a44, 0x30a50,
1516 		0x30a74, 0x30a74,
1517 		0x30a7c, 0x30afc,
1518 		0x30b08, 0x30c24,
1519 		0x30d00, 0x30d00,
1520 		0x30d08, 0x30d14,
1521 		0x30d1c, 0x30d20,
1522 		0x30d3c, 0x30d3c,
1523 		0x30d48, 0x30d50,
1524 		0x31200, 0x3120c,
1525 		0x31220, 0x31220,
1526 		0x31240, 0x31240,
1527 		0x31600, 0x3160c,
1528 		0x31a00, 0x31a1c,
1529 		0x31e00, 0x31e20,
1530 		0x31e38, 0x31e3c,
1531 		0x31e80, 0x31e80,
1532 		0x31e88, 0x31ea8,
1533 		0x31eb0, 0x31eb4,
1534 		0x31ec8, 0x31ed4,
1535 		0x31fb8, 0x32004,
1536 		0x32200, 0x32200,
1537 		0x32208, 0x32240,
1538 		0x32248, 0x32280,
1539 		0x32288, 0x322c0,
1540 		0x322c8, 0x322fc,
1541 		0x32600, 0x32630,
1542 		0x32a00, 0x32abc,
1543 		0x32b00, 0x32b10,
1544 		0x32b20, 0x32b30,
1545 		0x32b40, 0x32b50,
1546 		0x32b60, 0x32b70,
1547 		0x33000, 0x33028,
1548 		0x33030, 0x33048,
1549 		0x33060, 0x33068,
1550 		0x33070, 0x3309c,
1551 		0x330f0, 0x33128,
1552 		0x33130, 0x33148,
1553 		0x33160, 0x33168,
1554 		0x33170, 0x3319c,
1555 		0x331f0, 0x33238,
1556 		0x33240, 0x33240,
1557 		0x33248, 0x33250,
1558 		0x3325c, 0x33264,
1559 		0x33270, 0x332b8,
1560 		0x332c0, 0x332e4,
1561 		0x332f8, 0x33338,
1562 		0x33340, 0x33340,
1563 		0x33348, 0x33350,
1564 		0x3335c, 0x33364,
1565 		0x33370, 0x333b8,
1566 		0x333c0, 0x333e4,
1567 		0x333f8, 0x33428,
1568 		0x33430, 0x33448,
1569 		0x33460, 0x33468,
1570 		0x33470, 0x3349c,
1571 		0x334f0, 0x33528,
1572 		0x33530, 0x33548,
1573 		0x33560, 0x33568,
1574 		0x33570, 0x3359c,
1575 		0x335f0, 0x33638,
1576 		0x33640, 0x33640,
1577 		0x33648, 0x33650,
1578 		0x3365c, 0x33664,
1579 		0x33670, 0x336b8,
1580 		0x336c0, 0x336e4,
1581 		0x336f8, 0x33738,
1582 		0x33740, 0x33740,
1583 		0x33748, 0x33750,
1584 		0x3375c, 0x33764,
1585 		0x33770, 0x337b8,
1586 		0x337c0, 0x337e4,
1587 		0x337f8, 0x337fc,
1588 		0x33814, 0x33814,
1589 		0x3382c, 0x3382c,
1590 		0x33880, 0x3388c,
1591 		0x338e8, 0x338ec,
1592 		0x33900, 0x33928,
1593 		0x33930, 0x33948,
1594 		0x33960, 0x33968,
1595 		0x33970, 0x3399c,
1596 		0x339f0, 0x33a38,
1597 		0x33a40, 0x33a40,
1598 		0x33a48, 0x33a50,
1599 		0x33a5c, 0x33a64,
1600 		0x33a70, 0x33ab8,
1601 		0x33ac0, 0x33ae4,
1602 		0x33af8, 0x33b10,
1603 		0x33b28, 0x33b28,
1604 		0x33b3c, 0x33b50,
1605 		0x33bf0, 0x33c10,
1606 		0x33c28, 0x33c28,
1607 		0x33c3c, 0x33c50,
1608 		0x33cf0, 0x33cfc,
1609 		0x34000, 0x34030,
1610 		0x34100, 0x34144,
1611 		0x34190, 0x341a0,
1612 		0x341a8, 0x341b8,
1613 		0x341c4, 0x341c8,
1614 		0x341d0, 0x341d0,
1615 		0x34200, 0x34318,
1616 		0x34400, 0x344b4,
1617 		0x344c0, 0x3452c,
1618 		0x34540, 0x3461c,
1619 		0x34800, 0x34828,
1620 		0x34834, 0x34834,
1621 		0x348c0, 0x34908,
1622 		0x34910, 0x349ac,
1623 		0x34a00, 0x34a14,
1624 		0x34a1c, 0x34a2c,
1625 		0x34a44, 0x34a50,
1626 		0x34a74, 0x34a74,
1627 		0x34a7c, 0x34afc,
1628 		0x34b08, 0x34c24,
1629 		0x34d00, 0x34d00,
1630 		0x34d08, 0x34d14,
1631 		0x34d1c, 0x34d20,
1632 		0x34d3c, 0x34d3c,
1633 		0x34d48, 0x34d50,
1634 		0x35200, 0x3520c,
1635 		0x35220, 0x35220,
1636 		0x35240, 0x35240,
1637 		0x35600, 0x3560c,
1638 		0x35a00, 0x35a1c,
1639 		0x35e00, 0x35e20,
1640 		0x35e38, 0x35e3c,
1641 		0x35e80, 0x35e80,
1642 		0x35e88, 0x35ea8,
1643 		0x35eb0, 0x35eb4,
1644 		0x35ec8, 0x35ed4,
1645 		0x35fb8, 0x36004,
1646 		0x36200, 0x36200,
1647 		0x36208, 0x36240,
1648 		0x36248, 0x36280,
1649 		0x36288, 0x362c0,
1650 		0x362c8, 0x362fc,
1651 		0x36600, 0x36630,
1652 		0x36a00, 0x36abc,
1653 		0x36b00, 0x36b10,
1654 		0x36b20, 0x36b30,
1655 		0x36b40, 0x36b50,
1656 		0x36b60, 0x36b70,
1657 		0x37000, 0x37028,
1658 		0x37030, 0x37048,
1659 		0x37060, 0x37068,
1660 		0x37070, 0x3709c,
1661 		0x370f0, 0x37128,
1662 		0x37130, 0x37148,
1663 		0x37160, 0x37168,
1664 		0x37170, 0x3719c,
1665 		0x371f0, 0x37238,
1666 		0x37240, 0x37240,
1667 		0x37248, 0x37250,
1668 		0x3725c, 0x37264,
1669 		0x37270, 0x372b8,
1670 		0x372c0, 0x372e4,
1671 		0x372f8, 0x37338,
1672 		0x37340, 0x37340,
1673 		0x37348, 0x37350,
1674 		0x3735c, 0x37364,
1675 		0x37370, 0x373b8,
1676 		0x373c0, 0x373e4,
1677 		0x373f8, 0x37428,
1678 		0x37430, 0x37448,
1679 		0x37460, 0x37468,
1680 		0x37470, 0x3749c,
1681 		0x374f0, 0x37528,
1682 		0x37530, 0x37548,
1683 		0x37560, 0x37568,
1684 		0x37570, 0x3759c,
1685 		0x375f0, 0x37638,
1686 		0x37640, 0x37640,
1687 		0x37648, 0x37650,
1688 		0x3765c, 0x37664,
1689 		0x37670, 0x376b8,
1690 		0x376c0, 0x376e4,
1691 		0x376f8, 0x37738,
1692 		0x37740, 0x37740,
1693 		0x37748, 0x37750,
1694 		0x3775c, 0x37764,
1695 		0x37770, 0x377b8,
1696 		0x377c0, 0x377e4,
1697 		0x377f8, 0x377fc,
1698 		0x37814, 0x37814,
1699 		0x3782c, 0x3782c,
1700 		0x37880, 0x3788c,
1701 		0x378e8, 0x378ec,
1702 		0x37900, 0x37928,
1703 		0x37930, 0x37948,
1704 		0x37960, 0x37968,
1705 		0x37970, 0x3799c,
1706 		0x379f0, 0x37a38,
1707 		0x37a40, 0x37a40,
1708 		0x37a48, 0x37a50,
1709 		0x37a5c, 0x37a64,
1710 		0x37a70, 0x37ab8,
1711 		0x37ac0, 0x37ae4,
1712 		0x37af8, 0x37b10,
1713 		0x37b28, 0x37b28,
1714 		0x37b3c, 0x37b50,
1715 		0x37bf0, 0x37c10,
1716 		0x37c28, 0x37c28,
1717 		0x37c3c, 0x37c50,
1718 		0x37cf0, 0x37cfc,
1719 		0x38000, 0x38030,
1720 		0x38100, 0x38144,
1721 		0x38190, 0x381a0,
1722 		0x381a8, 0x381b8,
1723 		0x381c4, 0x381c8,
1724 		0x381d0, 0x381d0,
1725 		0x38200, 0x38318,
1726 		0x38400, 0x384b4,
1727 		0x384c0, 0x3852c,
1728 		0x38540, 0x3861c,
1729 		0x38800, 0x38828,
1730 		0x38834, 0x38834,
1731 		0x388c0, 0x38908,
1732 		0x38910, 0x389ac,
1733 		0x38a00, 0x38a14,
1734 		0x38a1c, 0x38a2c,
1735 		0x38a44, 0x38a50,
1736 		0x38a74, 0x38a74,
1737 		0x38a7c, 0x38afc,
1738 		0x38b08, 0x38c24,
1739 		0x38d00, 0x38d00,
1740 		0x38d08, 0x38d14,
1741 		0x38d1c, 0x38d20,
1742 		0x38d3c, 0x38d3c,
1743 		0x38d48, 0x38d50,
1744 		0x39200, 0x3920c,
1745 		0x39220, 0x39220,
1746 		0x39240, 0x39240,
1747 		0x39600, 0x3960c,
1748 		0x39a00, 0x39a1c,
1749 		0x39e00, 0x39e20,
1750 		0x39e38, 0x39e3c,
1751 		0x39e80, 0x39e80,
1752 		0x39e88, 0x39ea8,
1753 		0x39eb0, 0x39eb4,
1754 		0x39ec8, 0x39ed4,
1755 		0x39fb8, 0x3a004,
1756 		0x3a200, 0x3a200,
1757 		0x3a208, 0x3a240,
1758 		0x3a248, 0x3a280,
1759 		0x3a288, 0x3a2c0,
1760 		0x3a2c8, 0x3a2fc,
1761 		0x3a600, 0x3a630,
1762 		0x3aa00, 0x3aabc,
1763 		0x3ab00, 0x3ab10,
1764 		0x3ab20, 0x3ab30,
1765 		0x3ab40, 0x3ab50,
1766 		0x3ab60, 0x3ab70,
1767 		0x3b000, 0x3b028,
1768 		0x3b030, 0x3b048,
1769 		0x3b060, 0x3b068,
1770 		0x3b070, 0x3b09c,
1771 		0x3b0f0, 0x3b128,
1772 		0x3b130, 0x3b148,
1773 		0x3b160, 0x3b168,
1774 		0x3b170, 0x3b19c,
1775 		0x3b1f0, 0x3b238,
1776 		0x3b240, 0x3b240,
1777 		0x3b248, 0x3b250,
1778 		0x3b25c, 0x3b264,
1779 		0x3b270, 0x3b2b8,
1780 		0x3b2c0, 0x3b2e4,
1781 		0x3b2f8, 0x3b338,
1782 		0x3b340, 0x3b340,
1783 		0x3b348, 0x3b350,
1784 		0x3b35c, 0x3b364,
1785 		0x3b370, 0x3b3b8,
1786 		0x3b3c0, 0x3b3e4,
1787 		0x3b3f8, 0x3b428,
1788 		0x3b430, 0x3b448,
1789 		0x3b460, 0x3b468,
1790 		0x3b470, 0x3b49c,
1791 		0x3b4f0, 0x3b528,
1792 		0x3b530, 0x3b548,
1793 		0x3b560, 0x3b568,
1794 		0x3b570, 0x3b59c,
1795 		0x3b5f0, 0x3b638,
1796 		0x3b640, 0x3b640,
1797 		0x3b648, 0x3b650,
1798 		0x3b65c, 0x3b664,
1799 		0x3b670, 0x3b6b8,
1800 		0x3b6c0, 0x3b6e4,
1801 		0x3b6f8, 0x3b738,
1802 		0x3b740, 0x3b740,
1803 		0x3b748, 0x3b750,
1804 		0x3b75c, 0x3b764,
1805 		0x3b770, 0x3b7b8,
1806 		0x3b7c0, 0x3b7e4,
1807 		0x3b7f8, 0x3b7fc,
1808 		0x3b814, 0x3b814,
1809 		0x3b82c, 0x3b82c,
1810 		0x3b880, 0x3b88c,
1811 		0x3b8e8, 0x3b8ec,
1812 		0x3b900, 0x3b928,
1813 		0x3b930, 0x3b948,
1814 		0x3b960, 0x3b968,
1815 		0x3b970, 0x3b99c,
1816 		0x3b9f0, 0x3ba38,
1817 		0x3ba40, 0x3ba40,
1818 		0x3ba48, 0x3ba50,
1819 		0x3ba5c, 0x3ba64,
1820 		0x3ba70, 0x3bab8,
1821 		0x3bac0, 0x3bae4,
1822 		0x3baf8, 0x3bb10,
1823 		0x3bb28, 0x3bb28,
1824 		0x3bb3c, 0x3bb50,
1825 		0x3bbf0, 0x3bc10,
1826 		0x3bc28, 0x3bc28,
1827 		0x3bc3c, 0x3bc50,
1828 		0x3bcf0, 0x3bcfc,
1829 		0x3c000, 0x3c030,
1830 		0x3c100, 0x3c144,
1831 		0x3c190, 0x3c1a0,
1832 		0x3c1a8, 0x3c1b8,
1833 		0x3c1c4, 0x3c1c8,
1834 		0x3c1d0, 0x3c1d0,
1835 		0x3c200, 0x3c318,
1836 		0x3c400, 0x3c4b4,
1837 		0x3c4c0, 0x3c52c,
1838 		0x3c540, 0x3c61c,
1839 		0x3c800, 0x3c828,
1840 		0x3c834, 0x3c834,
1841 		0x3c8c0, 0x3c908,
1842 		0x3c910, 0x3c9ac,
1843 		0x3ca00, 0x3ca14,
1844 		0x3ca1c, 0x3ca2c,
1845 		0x3ca44, 0x3ca50,
1846 		0x3ca74, 0x3ca74,
1847 		0x3ca7c, 0x3cafc,
1848 		0x3cb08, 0x3cc24,
1849 		0x3cd00, 0x3cd00,
1850 		0x3cd08, 0x3cd14,
1851 		0x3cd1c, 0x3cd20,
1852 		0x3cd3c, 0x3cd3c,
1853 		0x3cd48, 0x3cd50,
1854 		0x3d200, 0x3d20c,
1855 		0x3d220, 0x3d220,
1856 		0x3d240, 0x3d240,
1857 		0x3d600, 0x3d60c,
1858 		0x3da00, 0x3da1c,
1859 		0x3de00, 0x3de20,
1860 		0x3de38, 0x3de3c,
1861 		0x3de80, 0x3de80,
1862 		0x3de88, 0x3dea8,
1863 		0x3deb0, 0x3deb4,
1864 		0x3dec8, 0x3ded4,
1865 		0x3dfb8, 0x3e004,
1866 		0x3e200, 0x3e200,
1867 		0x3e208, 0x3e240,
1868 		0x3e248, 0x3e280,
1869 		0x3e288, 0x3e2c0,
1870 		0x3e2c8, 0x3e2fc,
1871 		0x3e600, 0x3e630,
1872 		0x3ea00, 0x3eabc,
1873 		0x3eb00, 0x3eb10,
1874 		0x3eb20, 0x3eb30,
1875 		0x3eb40, 0x3eb50,
1876 		0x3eb60, 0x3eb70,
1877 		0x3f000, 0x3f028,
1878 		0x3f030, 0x3f048,
1879 		0x3f060, 0x3f068,
1880 		0x3f070, 0x3f09c,
1881 		0x3f0f0, 0x3f128,
1882 		0x3f130, 0x3f148,
1883 		0x3f160, 0x3f168,
1884 		0x3f170, 0x3f19c,
1885 		0x3f1f0, 0x3f238,
1886 		0x3f240, 0x3f240,
1887 		0x3f248, 0x3f250,
1888 		0x3f25c, 0x3f264,
1889 		0x3f270, 0x3f2b8,
1890 		0x3f2c0, 0x3f2e4,
1891 		0x3f2f8, 0x3f338,
1892 		0x3f340, 0x3f340,
1893 		0x3f348, 0x3f350,
1894 		0x3f35c, 0x3f364,
1895 		0x3f370, 0x3f3b8,
1896 		0x3f3c0, 0x3f3e4,
1897 		0x3f3f8, 0x3f428,
1898 		0x3f430, 0x3f448,
1899 		0x3f460, 0x3f468,
1900 		0x3f470, 0x3f49c,
1901 		0x3f4f0, 0x3f528,
1902 		0x3f530, 0x3f548,
1903 		0x3f560, 0x3f568,
1904 		0x3f570, 0x3f59c,
1905 		0x3f5f0, 0x3f638,
1906 		0x3f640, 0x3f640,
1907 		0x3f648, 0x3f650,
1908 		0x3f65c, 0x3f664,
1909 		0x3f670, 0x3f6b8,
1910 		0x3f6c0, 0x3f6e4,
1911 		0x3f6f8, 0x3f738,
1912 		0x3f740, 0x3f740,
1913 		0x3f748, 0x3f750,
1914 		0x3f75c, 0x3f764,
1915 		0x3f770, 0x3f7b8,
1916 		0x3f7c0, 0x3f7e4,
1917 		0x3f7f8, 0x3f7fc,
1918 		0x3f814, 0x3f814,
1919 		0x3f82c, 0x3f82c,
1920 		0x3f880, 0x3f88c,
1921 		0x3f8e8, 0x3f8ec,
1922 		0x3f900, 0x3f928,
1923 		0x3f930, 0x3f948,
1924 		0x3f960, 0x3f968,
1925 		0x3f970, 0x3f99c,
1926 		0x3f9f0, 0x3fa38,
1927 		0x3fa40, 0x3fa40,
1928 		0x3fa48, 0x3fa50,
1929 		0x3fa5c, 0x3fa64,
1930 		0x3fa70, 0x3fab8,
1931 		0x3fac0, 0x3fae4,
1932 		0x3faf8, 0x3fb10,
1933 		0x3fb28, 0x3fb28,
1934 		0x3fb3c, 0x3fb50,
1935 		0x3fbf0, 0x3fc10,
1936 		0x3fc28, 0x3fc28,
1937 		0x3fc3c, 0x3fc50,
1938 		0x3fcf0, 0x3fcfc,
1939 		0x40000, 0x4000c,
1940 		0x40040, 0x40050,
1941 		0x40060, 0x40068,
1942 		0x4007c, 0x4008c,
1943 		0x40094, 0x400b0,
1944 		0x400c0, 0x40144,
1945 		0x40180, 0x4018c,
1946 		0x40200, 0x40254,
1947 		0x40260, 0x40264,
1948 		0x40270, 0x40288,
1949 		0x40290, 0x40298,
1950 		0x402ac, 0x402c8,
1951 		0x402d0, 0x402e0,
1952 		0x402f0, 0x402f0,
1953 		0x40300, 0x4033c,
1954 		0x403f8, 0x403fc,
1955 		0x41304, 0x413c4,
1956 		0x41400, 0x4140c,
1957 		0x41414, 0x4141c,
1958 		0x41480, 0x414d0,
1959 		0x44000, 0x44054,
1960 		0x4405c, 0x44078,
1961 		0x440c0, 0x44174,
1962 		0x44180, 0x441ac,
1963 		0x441b4, 0x441b8,
1964 		0x441c0, 0x44254,
1965 		0x4425c, 0x44278,
1966 		0x442c0, 0x44374,
1967 		0x44380, 0x443ac,
1968 		0x443b4, 0x443b8,
1969 		0x443c0, 0x44454,
1970 		0x4445c, 0x44478,
1971 		0x444c0, 0x44574,
1972 		0x44580, 0x445ac,
1973 		0x445b4, 0x445b8,
1974 		0x445c0, 0x44654,
1975 		0x4465c, 0x44678,
1976 		0x446c0, 0x44774,
1977 		0x44780, 0x447ac,
1978 		0x447b4, 0x447b8,
1979 		0x447c0, 0x44854,
1980 		0x4485c, 0x44878,
1981 		0x448c0, 0x44974,
1982 		0x44980, 0x449ac,
1983 		0x449b4, 0x449b8,
1984 		0x449c0, 0x449fc,
1985 		0x45000, 0x45004,
1986 		0x45010, 0x45030,
1987 		0x45040, 0x45060,
1988 		0x45068, 0x45068,
1989 		0x45080, 0x45084,
1990 		0x450a0, 0x450b0,
1991 		0x45200, 0x45204,
1992 		0x45210, 0x45230,
1993 		0x45240, 0x45260,
1994 		0x45268, 0x45268,
1995 		0x45280, 0x45284,
1996 		0x452a0, 0x452b0,
1997 		0x460c0, 0x460e4,
1998 		0x47000, 0x4703c,
1999 		0x47044, 0x4708c,
2000 		0x47200, 0x47250,
2001 		0x47400, 0x47408,
2002 		0x47414, 0x47420,
2003 		0x47600, 0x47618,
2004 		0x47800, 0x47814,
2005 		0x48000, 0x4800c,
2006 		0x48040, 0x48050,
2007 		0x48060, 0x48068,
2008 		0x4807c, 0x4808c,
2009 		0x48094, 0x480b0,
2010 		0x480c0, 0x48144,
2011 		0x48180, 0x4818c,
2012 		0x48200, 0x48254,
2013 		0x48260, 0x48264,
2014 		0x48270, 0x48288,
2015 		0x48290, 0x48298,
2016 		0x482ac, 0x482c8,
2017 		0x482d0, 0x482e0,
2018 		0x482f0, 0x482f0,
2019 		0x48300, 0x4833c,
2020 		0x483f8, 0x483fc,
2021 		0x49304, 0x493c4,
2022 		0x49400, 0x4940c,
2023 		0x49414, 0x4941c,
2024 		0x49480, 0x494d0,
2025 		0x4c000, 0x4c054,
2026 		0x4c05c, 0x4c078,
2027 		0x4c0c0, 0x4c174,
2028 		0x4c180, 0x4c1ac,
2029 		0x4c1b4, 0x4c1b8,
2030 		0x4c1c0, 0x4c254,
2031 		0x4c25c, 0x4c278,
2032 		0x4c2c0, 0x4c374,
2033 		0x4c380, 0x4c3ac,
2034 		0x4c3b4, 0x4c3b8,
2035 		0x4c3c0, 0x4c454,
2036 		0x4c45c, 0x4c478,
2037 		0x4c4c0, 0x4c574,
2038 		0x4c580, 0x4c5ac,
2039 		0x4c5b4, 0x4c5b8,
2040 		0x4c5c0, 0x4c654,
2041 		0x4c65c, 0x4c678,
2042 		0x4c6c0, 0x4c774,
2043 		0x4c780, 0x4c7ac,
2044 		0x4c7b4, 0x4c7b8,
2045 		0x4c7c0, 0x4c854,
2046 		0x4c85c, 0x4c878,
2047 		0x4c8c0, 0x4c974,
2048 		0x4c980, 0x4c9ac,
2049 		0x4c9b4, 0x4c9b8,
2050 		0x4c9c0, 0x4c9fc,
2051 		0x4d000, 0x4d004,
2052 		0x4d010, 0x4d030,
2053 		0x4d040, 0x4d060,
2054 		0x4d068, 0x4d068,
2055 		0x4d080, 0x4d084,
2056 		0x4d0a0, 0x4d0b0,
2057 		0x4d200, 0x4d204,
2058 		0x4d210, 0x4d230,
2059 		0x4d240, 0x4d260,
2060 		0x4d268, 0x4d268,
2061 		0x4d280, 0x4d284,
2062 		0x4d2a0, 0x4d2b0,
2063 		0x4e0c0, 0x4e0e4,
2064 		0x4f000, 0x4f03c,
2065 		0x4f044, 0x4f08c,
2066 		0x4f200, 0x4f250,
2067 		0x4f400, 0x4f408,
2068 		0x4f414, 0x4f420,
2069 		0x4f600, 0x4f618,
2070 		0x4f800, 0x4f814,
2071 		0x50000, 0x50084,
2072 		0x50090, 0x500cc,
2073 		0x50400, 0x50400,
2074 		0x50800, 0x50884,
2075 		0x50890, 0x508cc,
2076 		0x50c00, 0x50c00,
2077 		0x51000, 0x5101c,
2078 		0x51300, 0x51308,
2079 	};
2080 
2081 	static const unsigned int t6_reg_ranges[] = {
2082 		0x1008, 0x101c,
2083 		0x1024, 0x10a8,
2084 		0x10b4, 0x10f8,
2085 		0x1100, 0x1114,
2086 		0x111c, 0x112c,
2087 		0x1138, 0x113c,
2088 		0x1144, 0x114c,
2089 		0x1180, 0x1184,
2090 		0x1190, 0x1194,
2091 		0x11a0, 0x11a4,
2092 		0x11b0, 0x11b4,
2093 		0x11fc, 0x1274,
2094 		0x1280, 0x133c,
2095 		0x1800, 0x18fc,
2096 		0x3000, 0x302c,
2097 		0x3060, 0x30b0,
2098 		0x30b8, 0x30d8,
2099 		0x30e0, 0x30fc,
2100 		0x3140, 0x357c,
2101 		0x35a8, 0x35cc,
2102 		0x35ec, 0x35ec,
2103 		0x3600, 0x5624,
2104 		0x56cc, 0x56ec,
2105 		0x56f4, 0x5720,
2106 		0x5728, 0x575c,
2107 		0x580c, 0x5814,
2108 		0x5890, 0x589c,
2109 		0x58a4, 0x58ac,
2110 		0x58b8, 0x58bc,
2111 		0x5940, 0x595c,
2112 		0x5980, 0x598c,
2113 		0x59b0, 0x59c8,
2114 		0x59d0, 0x59dc,
2115 		0x59fc, 0x5a18,
2116 		0x5a60, 0x5a6c,
2117 		0x5a80, 0x5a8c,
2118 		0x5a94, 0x5a9c,
2119 		0x5b94, 0x5bfc,
2120 		0x5c10, 0x5e48,
2121 		0x5e50, 0x5e94,
2122 		0x5ea0, 0x5eb0,
2123 		0x5ec0, 0x5ec0,
2124 		0x5ec8, 0x5ed0,
2125 		0x5ee0, 0x5ee0,
2126 		0x5ef0, 0x5ef0,
2127 		0x5f00, 0x5f00,
2128 		0x6000, 0x6020,
2129 		0x6028, 0x6040,
2130 		0x6058, 0x609c,
2131 		0x60a8, 0x619c,
2132 		0x7700, 0x7798,
2133 		0x77c0, 0x7880,
2134 		0x78cc, 0x78fc,
2135 		0x7b00, 0x7b58,
2136 		0x7b60, 0x7b84,
2137 		0x7b8c, 0x7c54,
2138 		0x7d00, 0x7d38,
2139 		0x7d40, 0x7d84,
2140 		0x7d8c, 0x7ddc,
2141 		0x7de4, 0x7e04,
2142 		0x7e10, 0x7e1c,
2143 		0x7e24, 0x7e38,
2144 		0x7e40, 0x7e44,
2145 		0x7e4c, 0x7e78,
2146 		0x7e80, 0x7edc,
2147 		0x7ee8, 0x7efc,
2148 		0x8dc0, 0x8de4,
2149 		0x8df8, 0x8e04,
2150 		0x8e10, 0x8e84,
2151 		0x8ea0, 0x8f88,
2152 		0x8fb8, 0x9058,
2153 		0x9060, 0x9060,
2154 		0x9068, 0x90f8,
2155 		0x9100, 0x9124,
2156 		0x9400, 0x9470,
2157 		0x9600, 0x9600,
2158 		0x9608, 0x9638,
2159 		0x9640, 0x9704,
2160 		0x9710, 0x971c,
2161 		0x9800, 0x9808,
2162 		0x9810, 0x9864,
2163 		0x9c00, 0x9c6c,
2164 		0x9c80, 0x9cec,
2165 		0x9d00, 0x9d6c,
2166 		0x9d80, 0x9dec,
2167 		0x9e00, 0x9e6c,
2168 		0x9e80, 0x9eec,
2169 		0x9f00, 0x9f6c,
2170 		0x9f80, 0xa020,
2171 		0xd000, 0xd03c,
2172 		0xd100, 0xd118,
2173 		0xd200, 0xd214,
2174 		0xd220, 0xd234,
2175 		0xd240, 0xd254,
2176 		0xd260, 0xd274,
2177 		0xd280, 0xd294,
2178 		0xd2a0, 0xd2b4,
2179 		0xd2c0, 0xd2d4,
2180 		0xd2e0, 0xd2f4,
2181 		0xd300, 0xd31c,
2182 		0xdfc0, 0xdfe0,
2183 		0xe000, 0xf008,
2184 		0xf010, 0xf018,
2185 		0xf020, 0xf028,
2186 		0x11000, 0x11014,
2187 		0x11048, 0x1106c,
2188 		0x11074, 0x11088,
2189 		0x11098, 0x11120,
2190 		0x1112c, 0x1117c,
2191 		0x11190, 0x112e0,
2192 		0x11300, 0x1130c,
2193 		0x12000, 0x1206c,
2194 		0x19040, 0x1906c,
2195 		0x19078, 0x19080,
2196 		0x1908c, 0x190e8,
2197 		0x190f0, 0x190f8,
2198 		0x19100, 0x19110,
2199 		0x19120, 0x19124,
2200 		0x19150, 0x19194,
2201 		0x1919c, 0x191b0,
2202 		0x191d0, 0x191e8,
2203 		0x19238, 0x19290,
2204 		0x192a4, 0x192b0,
2205 		0x192bc, 0x192bc,
2206 		0x19348, 0x1934c,
2207 		0x193f8, 0x19418,
2208 		0x19420, 0x19428,
2209 		0x19430, 0x19444,
2210 		0x1944c, 0x1946c,
2211 		0x19474, 0x19474,
2212 		0x19490, 0x194cc,
2213 		0x194f0, 0x194f8,
2214 		0x19c00, 0x19c48,
2215 		0x19c50, 0x19c80,
2216 		0x19c94, 0x19c98,
2217 		0x19ca0, 0x19cbc,
2218 		0x19ce4, 0x19ce4,
2219 		0x19cf0, 0x19cf8,
2220 		0x19d00, 0x19d28,
2221 		0x19d50, 0x19d78,
2222 		0x19d94, 0x19d98,
2223 		0x19da0, 0x19dc8,
2224 		0x19df0, 0x19e10,
2225 		0x19e50, 0x19e6c,
2226 		0x19ea0, 0x19ebc,
2227 		0x19ec4, 0x19ef4,
2228 		0x19f04, 0x19f2c,
2229 		0x19f34, 0x19f34,
2230 		0x19f40, 0x19f50,
2231 		0x19f90, 0x19fac,
2232 		0x19fc4, 0x19fc8,
2233 		0x19fd0, 0x19fe4,
2234 		0x1a000, 0x1a004,
2235 		0x1a010, 0x1a06c,
2236 		0x1a0b0, 0x1a0e4,
2237 		0x1a0ec, 0x1a0f8,
2238 		0x1a100, 0x1a108,
2239 		0x1a114, 0x1a130,
2240 		0x1a138, 0x1a1c4,
2241 		0x1a1fc, 0x1a1fc,
2242 		0x1e008, 0x1e00c,
2243 		0x1e040, 0x1e044,
2244 		0x1e04c, 0x1e04c,
2245 		0x1e284, 0x1e290,
2246 		0x1e2c0, 0x1e2c0,
2247 		0x1e2e0, 0x1e2e0,
2248 		0x1e300, 0x1e384,
2249 		0x1e3c0, 0x1e3c8,
2250 		0x1e408, 0x1e40c,
2251 		0x1e440, 0x1e444,
2252 		0x1e44c, 0x1e44c,
2253 		0x1e684, 0x1e690,
2254 		0x1e6c0, 0x1e6c0,
2255 		0x1e6e0, 0x1e6e0,
2256 		0x1e700, 0x1e784,
2257 		0x1e7c0, 0x1e7c8,
2258 		0x1e808, 0x1e80c,
2259 		0x1e840, 0x1e844,
2260 		0x1e84c, 0x1e84c,
2261 		0x1ea84, 0x1ea90,
2262 		0x1eac0, 0x1eac0,
2263 		0x1eae0, 0x1eae0,
2264 		0x1eb00, 0x1eb84,
2265 		0x1ebc0, 0x1ebc8,
2266 		0x1ec08, 0x1ec0c,
2267 		0x1ec40, 0x1ec44,
2268 		0x1ec4c, 0x1ec4c,
2269 		0x1ee84, 0x1ee90,
2270 		0x1eec0, 0x1eec0,
2271 		0x1eee0, 0x1eee0,
2272 		0x1ef00, 0x1ef84,
2273 		0x1efc0, 0x1efc8,
2274 		0x1f008, 0x1f00c,
2275 		0x1f040, 0x1f044,
2276 		0x1f04c, 0x1f04c,
2277 		0x1f284, 0x1f290,
2278 		0x1f2c0, 0x1f2c0,
2279 		0x1f2e0, 0x1f2e0,
2280 		0x1f300, 0x1f384,
2281 		0x1f3c0, 0x1f3c8,
2282 		0x1f408, 0x1f40c,
2283 		0x1f440, 0x1f444,
2284 		0x1f44c, 0x1f44c,
2285 		0x1f684, 0x1f690,
2286 		0x1f6c0, 0x1f6c0,
2287 		0x1f6e0, 0x1f6e0,
2288 		0x1f700, 0x1f784,
2289 		0x1f7c0, 0x1f7c8,
2290 		0x1f808, 0x1f80c,
2291 		0x1f840, 0x1f844,
2292 		0x1f84c, 0x1f84c,
2293 		0x1fa84, 0x1fa90,
2294 		0x1fac0, 0x1fac0,
2295 		0x1fae0, 0x1fae0,
2296 		0x1fb00, 0x1fb84,
2297 		0x1fbc0, 0x1fbc8,
2298 		0x1fc08, 0x1fc0c,
2299 		0x1fc40, 0x1fc44,
2300 		0x1fc4c, 0x1fc4c,
2301 		0x1fe84, 0x1fe90,
2302 		0x1fec0, 0x1fec0,
2303 		0x1fee0, 0x1fee0,
2304 		0x1ff00, 0x1ff84,
2305 		0x1ffc0, 0x1ffc8,
2306 		0x30000, 0x30030,
2307 		0x30100, 0x30168,
2308 		0x30190, 0x301a0,
2309 		0x301a8, 0x301b8,
2310 		0x301c4, 0x301c8,
2311 		0x301d0, 0x301d0,
2312 		0x30200, 0x30320,
2313 		0x30400, 0x304b4,
2314 		0x304c0, 0x3052c,
2315 		0x30540, 0x3061c,
2316 		0x30800, 0x308a0,
2317 		0x308c0, 0x30908,
2318 		0x30910, 0x309b8,
2319 		0x30a00, 0x30a04,
2320 		0x30a0c, 0x30a14,
2321 		0x30a1c, 0x30a2c,
2322 		0x30a44, 0x30a50,
2323 		0x30a74, 0x30a74,
2324 		0x30a7c, 0x30afc,
2325 		0x30b08, 0x30c24,
2326 		0x30d00, 0x30d14,
2327 		0x30d1c, 0x30d3c,
2328 		0x30d44, 0x30d4c,
2329 		0x30d54, 0x30d74,
2330 		0x30d7c, 0x30d7c,
2331 		0x30de0, 0x30de0,
2332 		0x30e00, 0x30ed4,
2333 		0x30f00, 0x30fa4,
2334 		0x30fc0, 0x30fc4,
2335 		0x31000, 0x31004,
2336 		0x31080, 0x310fc,
2337 		0x31208, 0x31220,
2338 		0x3123c, 0x31254,
2339 		0x31300, 0x31300,
2340 		0x31308, 0x3131c,
2341 		0x31338, 0x3133c,
2342 		0x31380, 0x31380,
2343 		0x31388, 0x313a8,
2344 		0x313b4, 0x313b4,
2345 		0x31400, 0x31420,
2346 		0x31438, 0x3143c,
2347 		0x31480, 0x31480,
2348 		0x314a8, 0x314a8,
2349 		0x314b0, 0x314b4,
2350 		0x314c8, 0x314d4,
2351 		0x31a40, 0x31a4c,
2352 		0x31af0, 0x31b20,
2353 		0x31b38, 0x31b3c,
2354 		0x31b80, 0x31b80,
2355 		0x31ba8, 0x31ba8,
2356 		0x31bb0, 0x31bb4,
2357 		0x31bc8, 0x31bd4,
2358 		0x32140, 0x3218c,
2359 		0x321f0, 0x321f4,
2360 		0x32200, 0x32200,
2361 		0x32218, 0x32218,
2362 		0x32400, 0x32400,
2363 		0x32408, 0x3241c,
2364 		0x32618, 0x32620,
2365 		0x32664, 0x32664,
2366 		0x326a8, 0x326a8,
2367 		0x326ec, 0x326ec,
2368 		0x32a00, 0x32abc,
2369 		0x32b00, 0x32b18,
2370 		0x32b20, 0x32b38,
2371 		0x32b40, 0x32b58,
2372 		0x32b60, 0x32b78,
2373 		0x32c00, 0x32c00,
2374 		0x32c08, 0x32c3c,
2375 		0x33000, 0x3302c,
2376 		0x33034, 0x33050,
2377 		0x33058, 0x33058,
2378 		0x33060, 0x3308c,
2379 		0x3309c, 0x330ac,
2380 		0x330c0, 0x330c0,
2381 		0x330c8, 0x330d0,
2382 		0x330d8, 0x330e0,
2383 		0x330ec, 0x3312c,
2384 		0x33134, 0x33150,
2385 		0x33158, 0x33158,
2386 		0x33160, 0x3318c,
2387 		0x3319c, 0x331ac,
2388 		0x331c0, 0x331c0,
2389 		0x331c8, 0x331d0,
2390 		0x331d8, 0x331e0,
2391 		0x331ec, 0x33290,
2392 		0x33298, 0x332c4,
2393 		0x332e4, 0x33390,
2394 		0x33398, 0x333c4,
2395 		0x333e4, 0x3342c,
2396 		0x33434, 0x33450,
2397 		0x33458, 0x33458,
2398 		0x33460, 0x3348c,
2399 		0x3349c, 0x334ac,
2400 		0x334c0, 0x334c0,
2401 		0x334c8, 0x334d0,
2402 		0x334d8, 0x334e0,
2403 		0x334ec, 0x3352c,
2404 		0x33534, 0x33550,
2405 		0x33558, 0x33558,
2406 		0x33560, 0x3358c,
2407 		0x3359c, 0x335ac,
2408 		0x335c0, 0x335c0,
2409 		0x335c8, 0x335d0,
2410 		0x335d8, 0x335e0,
2411 		0x335ec, 0x33690,
2412 		0x33698, 0x336c4,
2413 		0x336e4, 0x33790,
2414 		0x33798, 0x337c4,
2415 		0x337e4, 0x337fc,
2416 		0x33814, 0x33814,
2417 		0x33854, 0x33868,
2418 		0x33880, 0x3388c,
2419 		0x338c0, 0x338d0,
2420 		0x338e8, 0x338ec,
2421 		0x33900, 0x3392c,
2422 		0x33934, 0x33950,
2423 		0x33958, 0x33958,
2424 		0x33960, 0x3398c,
2425 		0x3399c, 0x339ac,
2426 		0x339c0, 0x339c0,
2427 		0x339c8, 0x339d0,
2428 		0x339d8, 0x339e0,
2429 		0x339ec, 0x33a90,
2430 		0x33a98, 0x33ac4,
2431 		0x33ae4, 0x33b10,
2432 		0x33b24, 0x33b28,
2433 		0x33b38, 0x33b50,
2434 		0x33bf0, 0x33c10,
2435 		0x33c24, 0x33c28,
2436 		0x33c38, 0x33c50,
2437 		0x33cf0, 0x33cfc,
2438 		0x34000, 0x34030,
2439 		0x34100, 0x34168,
2440 		0x34190, 0x341a0,
2441 		0x341a8, 0x341b8,
2442 		0x341c4, 0x341c8,
2443 		0x341d0, 0x341d0,
2444 		0x34200, 0x34320,
2445 		0x34400, 0x344b4,
2446 		0x344c0, 0x3452c,
2447 		0x34540, 0x3461c,
2448 		0x34800, 0x348a0,
2449 		0x348c0, 0x34908,
2450 		0x34910, 0x349b8,
2451 		0x34a00, 0x34a04,
2452 		0x34a0c, 0x34a14,
2453 		0x34a1c, 0x34a2c,
2454 		0x34a44, 0x34a50,
2455 		0x34a74, 0x34a74,
2456 		0x34a7c, 0x34afc,
2457 		0x34b08, 0x34c24,
2458 		0x34d00, 0x34d14,
2459 		0x34d1c, 0x34d3c,
2460 		0x34d44, 0x34d4c,
2461 		0x34d54, 0x34d74,
2462 		0x34d7c, 0x34d7c,
2463 		0x34de0, 0x34de0,
2464 		0x34e00, 0x34ed4,
2465 		0x34f00, 0x34fa4,
2466 		0x34fc0, 0x34fc4,
2467 		0x35000, 0x35004,
2468 		0x35080, 0x350fc,
2469 		0x35208, 0x35220,
2470 		0x3523c, 0x35254,
2471 		0x35300, 0x35300,
2472 		0x35308, 0x3531c,
2473 		0x35338, 0x3533c,
2474 		0x35380, 0x35380,
2475 		0x35388, 0x353a8,
2476 		0x353b4, 0x353b4,
2477 		0x35400, 0x35420,
2478 		0x35438, 0x3543c,
2479 		0x35480, 0x35480,
2480 		0x354a8, 0x354a8,
2481 		0x354b0, 0x354b4,
2482 		0x354c8, 0x354d4,
2483 		0x35a40, 0x35a4c,
2484 		0x35af0, 0x35b20,
2485 		0x35b38, 0x35b3c,
2486 		0x35b80, 0x35b80,
2487 		0x35ba8, 0x35ba8,
2488 		0x35bb0, 0x35bb4,
2489 		0x35bc8, 0x35bd4,
2490 		0x36140, 0x3618c,
2491 		0x361f0, 0x361f4,
2492 		0x36200, 0x36200,
2493 		0x36218, 0x36218,
2494 		0x36400, 0x36400,
2495 		0x36408, 0x3641c,
2496 		0x36618, 0x36620,
2497 		0x36664, 0x36664,
2498 		0x366a8, 0x366a8,
2499 		0x366ec, 0x366ec,
2500 		0x36a00, 0x36abc,
2501 		0x36b00, 0x36b18,
2502 		0x36b20, 0x36b38,
2503 		0x36b40, 0x36b58,
2504 		0x36b60, 0x36b78,
2505 		0x36c00, 0x36c00,
2506 		0x36c08, 0x36c3c,
2507 		0x37000, 0x3702c,
2508 		0x37034, 0x37050,
2509 		0x37058, 0x37058,
2510 		0x37060, 0x3708c,
2511 		0x3709c, 0x370ac,
2512 		0x370c0, 0x370c0,
2513 		0x370c8, 0x370d0,
2514 		0x370d8, 0x370e0,
2515 		0x370ec, 0x3712c,
2516 		0x37134, 0x37150,
2517 		0x37158, 0x37158,
2518 		0x37160, 0x3718c,
2519 		0x3719c, 0x371ac,
2520 		0x371c0, 0x371c0,
2521 		0x371c8, 0x371d0,
2522 		0x371d8, 0x371e0,
2523 		0x371ec, 0x37290,
2524 		0x37298, 0x372c4,
2525 		0x372e4, 0x37390,
2526 		0x37398, 0x373c4,
2527 		0x373e4, 0x3742c,
2528 		0x37434, 0x37450,
2529 		0x37458, 0x37458,
2530 		0x37460, 0x3748c,
2531 		0x3749c, 0x374ac,
2532 		0x374c0, 0x374c0,
2533 		0x374c8, 0x374d0,
2534 		0x374d8, 0x374e0,
2535 		0x374ec, 0x3752c,
2536 		0x37534, 0x37550,
2537 		0x37558, 0x37558,
2538 		0x37560, 0x3758c,
2539 		0x3759c, 0x375ac,
2540 		0x375c0, 0x375c0,
2541 		0x375c8, 0x375d0,
2542 		0x375d8, 0x375e0,
2543 		0x375ec, 0x37690,
2544 		0x37698, 0x376c4,
2545 		0x376e4, 0x37790,
2546 		0x37798, 0x377c4,
2547 		0x377e4, 0x377fc,
2548 		0x37814, 0x37814,
2549 		0x37854, 0x37868,
2550 		0x37880, 0x3788c,
2551 		0x378c0, 0x378d0,
2552 		0x378e8, 0x378ec,
2553 		0x37900, 0x3792c,
2554 		0x37934, 0x37950,
2555 		0x37958, 0x37958,
2556 		0x37960, 0x3798c,
2557 		0x3799c, 0x379ac,
2558 		0x379c0, 0x379c0,
2559 		0x379c8, 0x379d0,
2560 		0x379d8, 0x379e0,
2561 		0x379ec, 0x37a90,
2562 		0x37a98, 0x37ac4,
2563 		0x37ae4, 0x37b10,
2564 		0x37b24, 0x37b28,
2565 		0x37b38, 0x37b50,
2566 		0x37bf0, 0x37c10,
2567 		0x37c24, 0x37c28,
2568 		0x37c38, 0x37c50,
2569 		0x37cf0, 0x37cfc,
2570 		0x40040, 0x40040,
2571 		0x40080, 0x40084,
2572 		0x40100, 0x40100,
2573 		0x40140, 0x401bc,
2574 		0x40200, 0x40214,
2575 		0x40228, 0x40228,
2576 		0x40240, 0x40258,
2577 		0x40280, 0x40280,
2578 		0x40304, 0x40304,
2579 		0x40330, 0x4033c,
2580 		0x41304, 0x413c8,
2581 		0x413d0, 0x413dc,
2582 		0x413f0, 0x413f0,
2583 		0x41400, 0x4140c,
2584 		0x41414, 0x4141c,
2585 		0x41480, 0x414d0,
2586 		0x44000, 0x4407c,
2587 		0x440c0, 0x441ac,
2588 		0x441b4, 0x4427c,
2589 		0x442c0, 0x443ac,
2590 		0x443b4, 0x4447c,
2591 		0x444c0, 0x445ac,
2592 		0x445b4, 0x4467c,
2593 		0x446c0, 0x447ac,
2594 		0x447b4, 0x4487c,
2595 		0x448c0, 0x449ac,
2596 		0x449b4, 0x44a7c,
2597 		0x44ac0, 0x44bac,
2598 		0x44bb4, 0x44c7c,
2599 		0x44cc0, 0x44dac,
2600 		0x44db4, 0x44e7c,
2601 		0x44ec0, 0x44fac,
2602 		0x44fb4, 0x4507c,
2603 		0x450c0, 0x451ac,
2604 		0x451b4, 0x451fc,
2605 		0x45800, 0x45804,
2606 		0x45810, 0x45830,
2607 		0x45840, 0x45860,
2608 		0x45868, 0x45868,
2609 		0x45880, 0x45884,
2610 		0x458a0, 0x458b0,
2611 		0x45a00, 0x45a04,
2612 		0x45a10, 0x45a30,
2613 		0x45a40, 0x45a60,
2614 		0x45a68, 0x45a68,
2615 		0x45a80, 0x45a84,
2616 		0x45aa0, 0x45ab0,
2617 		0x460c0, 0x460e4,
2618 		0x47000, 0x4703c,
2619 		0x47044, 0x4708c,
2620 		0x47200, 0x47250,
2621 		0x47400, 0x47408,
2622 		0x47414, 0x47420,
2623 		0x47600, 0x47618,
2624 		0x47800, 0x47814,
2625 		0x47820, 0x4782c,
2626 		0x50000, 0x50084,
2627 		0x50090, 0x500cc,
2628 		0x50300, 0x50384,
2629 		0x50400, 0x50400,
2630 		0x50800, 0x50884,
2631 		0x50890, 0x508cc,
2632 		0x50b00, 0x50b84,
2633 		0x50c00, 0x50c00,
2634 		0x51000, 0x51020,
2635 		0x51028, 0x510b0,
2636 		0x51300, 0x51324,
2637 	};
2638 
2639 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2640 	const unsigned int *reg_ranges;
2641 	int reg_ranges_size, range;
2642 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2643 
2644 	/* Select the right set of register ranges to dump depending on the
2645 	 * adapter chip type.
2646 	 */
2647 	switch (chip_version) {
2648 	case CHELSIO_T4:
2649 		reg_ranges = t4_reg_ranges;
2650 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2651 		break;
2652 
2653 	case CHELSIO_T5:
2654 		reg_ranges = t5_reg_ranges;
2655 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2656 		break;
2657 
2658 	case CHELSIO_T6:
2659 		reg_ranges = t6_reg_ranges;
2660 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2661 		break;
2662 
2663 	default:
2664 		dev_err(adap->pdev_dev,
2665 			"Unsupported chip version %d\n", chip_version);
2666 		return;
2667 	}
2668 
2669 	/* Clear the register buffer and insert the appropriate register
2670 	 * values selected by the above register ranges.
2671 	 */
2672 	memset(buf, 0, buf_size);
2673 	for (range = 0; range < reg_ranges_size; range += 2) {
2674 		unsigned int reg = reg_ranges[range];
2675 		unsigned int last_reg = reg_ranges[range + 1];
2676 		u32 *bufp = (u32 *)((char *)buf + reg);
2677 
2678 		/* Iterate across the register range filling in the register
2679 		 * buffer but don't write past the end of the register buffer.
2680 		 */
2681 		while (reg <= last_reg && bufp < buf_end) {
2682 			*bufp++ = t4_read_reg(adap, reg);
2683 			reg += sizeof(u32);
2684 		}
2685 	}
2686 }
2687 
2688 #define EEPROM_STAT_ADDR   0x7bfc
2689 #define VPD_BASE           0x400
2690 #define VPD_BASE_OLD       0
2691 #define VPD_LEN            1024
2692 #define CHELSIO_VPD_UNIQUE_ID 0x82
2693 
2694 /**
2695  * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2696  * @phys_addr: the physical EEPROM address
2697  * @fn: the PCI function number
2698  * @sz: size of function-specific area
2699  *
2700  * Translate a physical EEPROM address to virtual.  The first 1K is
2701  * accessed through virtual addresses starting at 31K, the rest is
2702  * accessed through virtual addresses starting at 0.
2703  *
2704  * The mapping is as follows:
2705  * [0..1K) -> [31K..32K)
2706  * [1K..1K+A) -> [31K-A..31K)
2707  * [1K+A..ES) -> [0..ES-A-1K)
2708  *
2709  * where A = @fn * @sz, and ES = EEPROM size.
2710  */
2711 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2712 {
2713 	fn *= sz;
2714 	if (phys_addr < 1024)
2715 		return phys_addr + (31 << 10);
2716 	if (phys_addr < 1024 + fn)
2717 		return 31744 - fn + phys_addr - 1024;
2718 	if (phys_addr < EEPROMSIZE)
2719 		return phys_addr - 1024 - fn;
2720 	return -EINVAL;
2721 }
2722 
2723 /**
2724  *	t4_seeprom_wp - enable/disable EEPROM write protection
2725  *	@adapter: the adapter
2726  *	@enable: whether to enable or disable write protection
2727  *
2728  *	Enables or disables write protection on the serial EEPROM.
2729  */
2730 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2731 {
2732 	unsigned int v = enable ? 0xc : 0;
2733 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2734 	return ret < 0 ? ret : 0;
2735 }
2736 
2737 /**
2738  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2739  *	@adapter: adapter to read
2740  *	@p: where to store the parameters
2741  *
2742  *	Reads card parameters stored in VPD EEPROM.
2743  */
2744 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2745 {
2746 	int i, ret = 0, addr;
2747 	int ec, sn, pn, na;
2748 	u8 *vpd, csum;
2749 	unsigned int vpdr_len, kw_offset, id_len;
2750 
2751 	vpd = vmalloc(VPD_LEN);
2752 	if (!vpd)
2753 		return -ENOMEM;
2754 
2755 	/* Card information normally starts at VPD_BASE but early cards had
2756 	 * it at 0.
2757 	 */
2758 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2759 	if (ret < 0)
2760 		goto out;
2761 
2762 	/* The VPD shall have a unique identifier specified by the PCI SIG.
2763 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2764 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2765 	 * is expected to automatically put this entry at the
2766 	 * beginning of the VPD.
2767 	 */
2768 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2769 
2770 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2771 	if (ret < 0)
2772 		goto out;
2773 
2774 	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2775 		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2776 		ret = -EINVAL;
2777 		goto out;
2778 	}
2779 
2780 	id_len = pci_vpd_lrdt_size(vpd);
2781 	if (id_len > ID_LEN)
2782 		id_len = ID_LEN;
2783 
2784 	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2785 	if (i < 0) {
2786 		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2787 		ret = -EINVAL;
2788 		goto out;
2789 	}
2790 
2791 	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2792 	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2793 	if (vpdr_len + kw_offset > VPD_LEN) {
2794 		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2795 		ret = -EINVAL;
2796 		goto out;
2797 	}
2798 
2799 #define FIND_VPD_KW(var, name) do { \
2800 	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2801 	if (var < 0) { \
2802 		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2803 		ret = -EINVAL; \
2804 		goto out; \
2805 	} \
2806 	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2807 } while (0)
2808 
2809 	FIND_VPD_KW(i, "RV");
2810 	for (csum = 0; i >= 0; i--)
2811 		csum += vpd[i];
2812 
2813 	if (csum) {
2814 		dev_err(adapter->pdev_dev,
2815 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2816 		ret = -EINVAL;
2817 		goto out;
2818 	}
2819 
2820 	FIND_VPD_KW(ec, "EC");
2821 	FIND_VPD_KW(sn, "SN");
2822 	FIND_VPD_KW(pn, "PN");
2823 	FIND_VPD_KW(na, "NA");
2824 #undef FIND_VPD_KW
2825 
2826 	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2827 	strim(p->id);
2828 	memcpy(p->ec, vpd + ec, EC_LEN);
2829 	strim(p->ec);
2830 	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2831 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2832 	strim(p->sn);
2833 	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2834 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2835 	strim(p->pn);
2836 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2837 	strim((char *)p->na);
2838 
2839 out:
2840 	vfree(vpd);
2841 	return ret < 0 ? ret : 0;
2842 }
2843 
2844 /**
2845  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2846  *	@adapter: adapter to read
2847  *	@p: where to store the parameters
2848  *
2849  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2850  *	Clock.  This can only be called after a connection to the firmware
2851  *	is established.
2852  */
2853 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2854 {
2855 	u32 cclk_param, cclk_val;
2856 	int ret;
2857 
2858 	/* Grab the raw VPD parameters.
2859 	 */
2860 	ret = t4_get_raw_vpd_params(adapter, p);
2861 	if (ret)
2862 		return ret;
2863 
2864 	/* Ask firmware for the Core Clock since it knows how to translate the
2865 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2866 	 */
2867 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2868 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2869 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2870 			      1, &cclk_param, &cclk_val);
2871 
2872 	if (ret)
2873 		return ret;
2874 	p->cclk = cclk_val;
2875 
2876 	return 0;
2877 }
2878 
2879 /**
2880  *	t4_get_pfres - retrieve VF resource limits
2881  *	@adapter: the adapter
2882  *
2883  *	Retrieves configured resource limits and capabilities for a physical
2884  *	function.  The results are stored in @adapter->pfres.
2885  */
2886 int t4_get_pfres(struct adapter *adapter)
2887 {
2888 	struct pf_resources *pfres = &adapter->params.pfres;
2889 	struct fw_pfvf_cmd cmd, rpl;
2890 	int v;
2891 	u32 word;
2892 
2893 	/* Execute PFVF Read command to get VF resource limits; bail out early
2894 	 * with error on command failure.
2895 	 */
2896 	memset(&cmd, 0, sizeof(cmd));
2897 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
2898 				    FW_CMD_REQUEST_F |
2899 				    FW_CMD_READ_F |
2900 				    FW_PFVF_CMD_PFN_V(adapter->pf) |
2901 				    FW_PFVF_CMD_VFN_V(0));
2902 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2903 	v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2904 	if (v != FW_SUCCESS)
2905 		return v;
2906 
2907 	/* Extract PF resource limits and return success.
2908 	 */
2909 	word = be32_to_cpu(rpl.niqflint_niq);
2910 	pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
2911 	pfres->niq = FW_PFVF_CMD_NIQ_G(word);
2912 
2913 	word = be32_to_cpu(rpl.type_to_neq);
2914 	pfres->neq = FW_PFVF_CMD_NEQ_G(word);
2915 	pfres->pmask = FW_PFVF_CMD_PMASK_G(word);
2916 
2917 	word = be32_to_cpu(rpl.tc_to_nexactf);
2918 	pfres->tc = FW_PFVF_CMD_TC_G(word);
2919 	pfres->nvi = FW_PFVF_CMD_NVI_G(word);
2920 	pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
2921 
2922 	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2923 	pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
2924 	pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
2925 	pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
2926 
2927 	return 0;
2928 }
2929 
2930 /* serial flash and firmware constants */
2931 enum {
2932 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2933 
2934 	/* flash command opcodes */
2935 	SF_PROG_PAGE    = 2,          /* program page */
2936 	SF_WR_DISABLE   = 4,          /* disable writes */
2937 	SF_RD_STATUS    = 5,          /* read status register */
2938 	SF_WR_ENABLE    = 6,          /* enable writes */
2939 	SF_RD_DATA_FAST = 0xb,        /* read flash */
2940 	SF_RD_ID        = 0x9f,       /* read ID */
2941 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2942 };
2943 
2944 /**
2945  *	sf1_read - read data from the serial flash
2946  *	@adapter: the adapter
2947  *	@byte_cnt: number of bytes to read
2948  *	@cont: whether another operation will be chained
2949  *	@lock: whether to lock SF for PL access only
2950  *	@valp: where to store the read data
2951  *
2952  *	Reads up to 4 bytes of data from the serial flash.  The location of
2953  *	the read needs to be specified prior to calling this by issuing the
2954  *	appropriate commands to the serial flash.
2955  */
2956 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2957 		    int lock, u32 *valp)
2958 {
2959 	int ret;
2960 
2961 	if (!byte_cnt || byte_cnt > 4)
2962 		return -EINVAL;
2963 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2964 		return -EBUSY;
2965 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2966 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2967 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2968 	if (!ret)
2969 		*valp = t4_read_reg(adapter, SF_DATA_A);
2970 	return ret;
2971 }
2972 
2973 /**
2974  *	sf1_write - write data to the serial flash
2975  *	@adapter: the adapter
2976  *	@byte_cnt: number of bytes to write
2977  *	@cont: whether another operation will be chained
2978  *	@lock: whether to lock SF for PL access only
2979  *	@val: value to write
2980  *
2981  *	Writes up to 4 bytes of data to the serial flash.  The location of
2982  *	the write needs to be specified prior to calling this by issuing the
2983  *	appropriate commands to the serial flash.
2984  */
2985 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2986 		     int lock, u32 val)
2987 {
2988 	if (!byte_cnt || byte_cnt > 4)
2989 		return -EINVAL;
2990 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2991 		return -EBUSY;
2992 	t4_write_reg(adapter, SF_DATA_A, val);
2993 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2994 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2995 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2996 }
2997 
2998 /**
2999  *	flash_wait_op - wait for a flash operation to complete
3000  *	@adapter: the adapter
3001  *	@attempts: max number of polls of the status register
3002  *	@delay: delay between polls in ms
3003  *
3004  *	Wait for a flash operation to complete by polling the status register.
3005  */
3006 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3007 {
3008 	int ret;
3009 	u32 status;
3010 
3011 	while (1) {
3012 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3013 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3014 			return ret;
3015 		if (!(status & 1))
3016 			return 0;
3017 		if (--attempts == 0)
3018 			return -EAGAIN;
3019 		if (delay)
3020 			msleep(delay);
3021 	}
3022 }
3023 
3024 /**
3025  *	t4_read_flash - read words from serial flash
3026  *	@adapter: the adapter
3027  *	@addr: the start address for the read
3028  *	@nwords: how many 32-bit words to read
3029  *	@data: where to store the read data
3030  *	@byte_oriented: whether to store data as bytes or as words
3031  *
3032  *	Read the specified number of 32-bit words from the serial flash.
3033  *	If @byte_oriented is set the read data is stored as a byte array
3034  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3035  *	natural endianness.
3036  */
3037 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3038 		  unsigned int nwords, u32 *data, int byte_oriented)
3039 {
3040 	int ret;
3041 
3042 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3043 		return -EINVAL;
3044 
3045 	addr = swab32(addr) | SF_RD_DATA_FAST;
3046 
3047 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3048 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3049 		return ret;
3050 
3051 	for ( ; nwords; nwords--, data++) {
3052 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3053 		if (nwords == 1)
3054 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3055 		if (ret)
3056 			return ret;
3057 		if (byte_oriented)
3058 			*data = (__force __u32)(cpu_to_be32(*data));
3059 	}
3060 	return 0;
3061 }
3062 
3063 /**
3064  *	t4_write_flash - write up to a page of data to the serial flash
3065  *	@adapter: the adapter
3066  *	@addr: the start address to write
3067  *	@n: length of data to write in bytes
3068  *	@data: the data to write
3069  *
3070  *	Writes up to a page of data (256 bytes) to the serial flash starting
3071  *	at the given address.  All the data must be written to the same page.
3072  */
3073 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3074 			  unsigned int n, const u8 *data)
3075 {
3076 	int ret;
3077 	u32 buf[64];
3078 	unsigned int i, c, left, val, offset = addr & 0xff;
3079 
3080 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3081 		return -EINVAL;
3082 
3083 	val = swab32(addr) | SF_PROG_PAGE;
3084 
3085 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3086 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3087 		goto unlock;
3088 
3089 	for (left = n; left; left -= c) {
3090 		c = min(left, 4U);
3091 		for (val = 0, i = 0; i < c; ++i)
3092 			val = (val << 8) + *data++;
3093 
3094 		ret = sf1_write(adapter, c, c != left, 1, val);
3095 		if (ret)
3096 			goto unlock;
3097 	}
3098 	ret = flash_wait_op(adapter, 8, 1);
3099 	if (ret)
3100 		goto unlock;
3101 
3102 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3103 
3104 	/* Read the page to verify the write succeeded */
3105 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
3106 	if (ret)
3107 		return ret;
3108 
3109 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3110 		dev_err(adapter->pdev_dev,
3111 			"failed to correctly write the flash page at %#x\n",
3112 			addr);
3113 		return -EIO;
3114 	}
3115 	return 0;
3116 
3117 unlock:
3118 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3119 	return ret;
3120 }
3121 
3122 /**
3123  *	t4_get_fw_version - read the firmware version
3124  *	@adapter: the adapter
3125  *	@vers: where to place the version
3126  *
3127  *	Reads the FW version from flash.
3128  */
3129 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3130 {
3131 	return t4_read_flash(adapter, FLASH_FW_START +
3132 			     offsetof(struct fw_hdr, fw_ver), 1,
3133 			     vers, 0);
3134 }
3135 
3136 /**
3137  *	t4_get_bs_version - read the firmware bootstrap version
3138  *	@adapter: the adapter
3139  *	@vers: where to place the version
3140  *
3141  *	Reads the FW Bootstrap version from flash.
3142  */
3143 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3144 {
3145 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3146 			     offsetof(struct fw_hdr, fw_ver), 1,
3147 			     vers, 0);
3148 }
3149 
3150 /**
3151  *	t4_get_tp_version - read the TP microcode version
3152  *	@adapter: the adapter
3153  *	@vers: where to place the version
3154  *
3155  *	Reads the TP microcode version from flash.
3156  */
3157 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3158 {
3159 	return t4_read_flash(adapter, FLASH_FW_START +
3160 			     offsetof(struct fw_hdr, tp_microcode_ver),
3161 			     1, vers, 0);
3162 }
3163 
3164 /**
3165  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3166  *	@adapter: the adapter
3167  *	@vers: where to place the version
3168  *
3169  *	Reads the Expansion ROM header from FLASH and returns the version
3170  *	number (if present) through the @vers return value pointer.  We return
3171  *	this in the Firmware Version Format since it's convenient.  Return
3172  *	0 on success, -ENOENT if no Expansion ROM is present.
3173  */
3174 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3175 {
3176 	struct exprom_header {
3177 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3178 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3179 	} *hdr;
3180 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3181 					   sizeof(u32))];
3182 	int ret;
3183 
3184 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3185 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3186 			    0);
3187 	if (ret)
3188 		return ret;
3189 
3190 	hdr = (struct exprom_header *)exprom_header_buf;
3191 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3192 		return -ENOENT;
3193 
3194 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3195 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3196 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3197 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3198 	return 0;
3199 }
3200 
3201 /**
3202  *      t4_get_vpd_version - return the VPD version
3203  *      @adapter: the adapter
3204  *      @vers: where to place the version
3205  *
3206  *      Reads the VPD via the Firmware interface (thus this can only be called
3207  *      once we're ready to issue Firmware commands).  The format of the
3208  *      VPD version is adapter specific.  Returns 0 on success, an error on
3209  *      failure.
3210  *
3211  *      Note that early versions of the Firmware didn't include the ability
3212  *      to retrieve the VPD version, so we zero-out the return-value parameter
3213  *      in that case to avoid leaving it with garbage in it.
3214  *
3215  *      Also note that the Firmware will return its cached copy of the VPD
3216  *      Revision ID, not the actual Revision ID as written in the Serial
3217  *      EEPROM.  This is only an issue if a new VPD has been written and the
3218  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3219  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3220  *      if the Host Driver will be performing a full adapter initialization.
3221  */
3222 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3223 {
3224 	u32 vpdrev_param;
3225 	int ret;
3226 
3227 	vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3228 			FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3229 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3230 			      1, &vpdrev_param, vers);
3231 	if (ret)
3232 		*vers = 0;
3233 	return ret;
3234 }
3235 
3236 /**
3237  *      t4_get_scfg_version - return the Serial Configuration version
3238  *      @adapter: the adapter
3239  *      @vers: where to place the version
3240  *
3241  *      Reads the Serial Configuration Version via the Firmware interface
3242  *      (thus this can only be called once we're ready to issue Firmware
3243  *      commands).  The format of the Serial Configuration version is
3244  *      adapter specific.  Returns 0 on success, an error on failure.
3245  *
3246  *      Note that early versions of the Firmware didn't include the ability
3247  *      to retrieve the Serial Configuration version, so we zero-out the
3248  *      return-value parameter in that case to avoid leaving it with
3249  *      garbage in it.
3250  *
3251  *      Also note that the Firmware will return its cached copy of the Serial
3252  *      Initialization Revision ID, not the actual Revision ID as written in
3253  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3254  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3255  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3256  *      been issued if the Host Driver will be performing a full adapter
3257  *      initialization.
3258  */
3259 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3260 {
3261 	u32 scfgrev_param;
3262 	int ret;
3263 
3264 	scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3265 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3266 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3267 			      1, &scfgrev_param, vers);
3268 	if (ret)
3269 		*vers = 0;
3270 	return ret;
3271 }
3272 
3273 /**
3274  *      t4_get_version_info - extract various chip/firmware version information
3275  *      @adapter: the adapter
3276  *
3277  *      Reads various chip/firmware version numbers and stores them into the
3278  *      adapter Adapter Parameters structure.  If any of the efforts fails
3279  *      the first failure will be returned, but all of the version numbers
3280  *      will be read.
3281  */
3282 int t4_get_version_info(struct adapter *adapter)
3283 {
3284 	int ret = 0;
3285 
3286 	#define FIRST_RET(__getvinfo) \
3287 	do { \
3288 		int __ret = __getvinfo; \
3289 		if (__ret && !ret) \
3290 			ret = __ret; \
3291 	} while (0)
3292 
3293 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3294 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3295 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3296 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3297 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3298 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3299 
3300 	#undef FIRST_RET
3301 	return ret;
3302 }
3303 
3304 /**
3305  *      t4_dump_version_info - dump all of the adapter configuration IDs
3306  *      @adapter: the adapter
3307  *
3308  *      Dumps all of the various bits of adapter configuration version/revision
3309  *      IDs information.  This is typically called at some point after
3310  *      t4_get_version_info() has been called.
3311  */
3312 void t4_dump_version_info(struct adapter *adapter)
3313 {
3314 	/* Device information */
3315 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3316 		 adapter->params.vpd.id,
3317 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
3318 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3319 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
3320 
3321 	/* Firmware Version */
3322 	if (!adapter->params.fw_vers)
3323 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3324 	else
3325 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3326 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3327 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3328 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3329 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3330 
3331 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3332 	 * Firmware, so dev_info() is more appropriate here.)
3333 	 */
3334 	if (!adapter->params.bs_vers)
3335 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3336 	else
3337 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3338 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3339 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3340 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3341 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3342 
3343 	/* TP Microcode Version */
3344 	if (!adapter->params.tp_vers)
3345 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3346 	else
3347 		dev_info(adapter->pdev_dev,
3348 			 "TP Microcode version: %u.%u.%u.%u\n",
3349 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3350 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3351 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3352 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3353 
3354 	/* Expansion ROM version */
3355 	if (!adapter->params.er_vers)
3356 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3357 	else
3358 		dev_info(adapter->pdev_dev,
3359 			 "Expansion ROM version: %u.%u.%u.%u\n",
3360 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3361 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3362 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3363 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3364 
3365 	/* Serial Configuration version */
3366 	dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3367 		 adapter->params.scfg_vers);
3368 
3369 	/* VPD Version */
3370 	dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3371 		 adapter->params.vpd_vers);
3372 }
3373 
3374 /**
3375  *	t4_check_fw_version - check if the FW is supported with this driver
3376  *	@adap: the adapter
3377  *
3378  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
3379  *	if there's exact match, a negative error if the version could not be
3380  *	read or there's a major version mismatch
3381  */
3382 int t4_check_fw_version(struct adapter *adap)
3383 {
3384 	int i, ret, major, minor, micro;
3385 	int exp_major, exp_minor, exp_micro;
3386 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3387 
3388 	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3389 	/* Try multiple times before returning error */
3390 	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3391 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3392 
3393 	if (ret)
3394 		return ret;
3395 
3396 	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3397 	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3398 	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3399 
3400 	switch (chip_version) {
3401 	case CHELSIO_T4:
3402 		exp_major = T4FW_MIN_VERSION_MAJOR;
3403 		exp_minor = T4FW_MIN_VERSION_MINOR;
3404 		exp_micro = T4FW_MIN_VERSION_MICRO;
3405 		break;
3406 	case CHELSIO_T5:
3407 		exp_major = T5FW_MIN_VERSION_MAJOR;
3408 		exp_minor = T5FW_MIN_VERSION_MINOR;
3409 		exp_micro = T5FW_MIN_VERSION_MICRO;
3410 		break;
3411 	case CHELSIO_T6:
3412 		exp_major = T6FW_MIN_VERSION_MAJOR;
3413 		exp_minor = T6FW_MIN_VERSION_MINOR;
3414 		exp_micro = T6FW_MIN_VERSION_MICRO;
3415 		break;
3416 	default:
3417 		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3418 			adap->chip);
3419 		return -EINVAL;
3420 	}
3421 
3422 	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3423 	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3424 		dev_err(adap->pdev_dev,
3425 			"Card has firmware version %u.%u.%u, minimum "
3426 			"supported firmware is %u.%u.%u.\n", major, minor,
3427 			micro, exp_major, exp_minor, exp_micro);
3428 		return -EFAULT;
3429 	}
3430 	return 0;
3431 }
3432 
3433 /* Is the given firmware API compatible with the one the driver was compiled
3434  * with?
3435  */
3436 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3437 {
3438 
3439 	/* short circuit if it's the exact same firmware version */
3440 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3441 		return 1;
3442 
3443 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3444 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3445 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3446 		return 1;
3447 #undef SAME_INTF
3448 
3449 	return 0;
3450 }
3451 
3452 /* The firmware in the filesystem is usable, but should it be installed?
3453  * This routine explains itself in detail if it indicates the filesystem
3454  * firmware should be installed.
3455  */
3456 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3457 				int k, int c)
3458 {
3459 	const char *reason;
3460 
3461 	if (!card_fw_usable) {
3462 		reason = "incompatible or unusable";
3463 		goto install;
3464 	}
3465 
3466 	if (k > c) {
3467 		reason = "older than the version supported with this driver";
3468 		goto install;
3469 	}
3470 
3471 	return 0;
3472 
3473 install:
3474 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3475 		"installing firmware %u.%u.%u.%u on card.\n",
3476 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3477 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3478 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3479 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3480 
3481 	return 1;
3482 }
3483 
3484 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3485 	       const u8 *fw_data, unsigned int fw_size,
3486 	       struct fw_hdr *card_fw, enum dev_state state,
3487 	       int *reset)
3488 {
3489 	int ret, card_fw_usable, fs_fw_usable;
3490 	const struct fw_hdr *fs_fw;
3491 	const struct fw_hdr *drv_fw;
3492 
3493 	drv_fw = &fw_info->fw_hdr;
3494 
3495 	/* Read the header of the firmware on the card */
3496 	ret = -t4_read_flash(adap, FLASH_FW_START,
3497 			    sizeof(*card_fw) / sizeof(uint32_t),
3498 			    (uint32_t *)card_fw, 1);
3499 	if (ret == 0) {
3500 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3501 	} else {
3502 		dev_err(adap->pdev_dev,
3503 			"Unable to read card's firmware header: %d\n", ret);
3504 		card_fw_usable = 0;
3505 	}
3506 
3507 	if (fw_data != NULL) {
3508 		fs_fw = (const void *)fw_data;
3509 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3510 	} else {
3511 		fs_fw = NULL;
3512 		fs_fw_usable = 0;
3513 	}
3514 
3515 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3516 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3517 		/* Common case: the firmware on the card is an exact match and
3518 		 * the filesystem one is an exact match too, or the filesystem
3519 		 * one is absent/incompatible.
3520 		 */
3521 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3522 		   should_install_fs_fw(adap, card_fw_usable,
3523 					be32_to_cpu(fs_fw->fw_ver),
3524 					be32_to_cpu(card_fw->fw_ver))) {
3525 		ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3526 				     fw_size, 0);
3527 		if (ret != 0) {
3528 			dev_err(adap->pdev_dev,
3529 				"failed to install firmware: %d\n", ret);
3530 			goto bye;
3531 		}
3532 
3533 		/* Installed successfully, update the cached header too. */
3534 		*card_fw = *fs_fw;
3535 		card_fw_usable = 1;
3536 		*reset = 0;	/* already reset as part of load_fw */
3537 	}
3538 
3539 	if (!card_fw_usable) {
3540 		uint32_t d, c, k;
3541 
3542 		d = be32_to_cpu(drv_fw->fw_ver);
3543 		c = be32_to_cpu(card_fw->fw_ver);
3544 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3545 
3546 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3547 			"chip state %d, "
3548 			"driver compiled with %d.%d.%d.%d, "
3549 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3550 			state,
3551 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3552 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3553 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3554 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3555 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3556 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3557 		ret = EINVAL;
3558 		goto bye;
3559 	}
3560 
3561 	/* We're using whatever's on the card and it's known to be good. */
3562 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3563 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3564 
3565 bye:
3566 	return ret;
3567 }
3568 
3569 /**
3570  *	t4_flash_erase_sectors - erase a range of flash sectors
3571  *	@adapter: the adapter
3572  *	@start: the first sector to erase
3573  *	@end: the last sector to erase
3574  *
3575  *	Erases the sectors in the given inclusive range.
3576  */
3577 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3578 {
3579 	int ret = 0;
3580 
3581 	if (end >= adapter->params.sf_nsec)
3582 		return -EINVAL;
3583 
3584 	while (start <= end) {
3585 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3586 		    (ret = sf1_write(adapter, 4, 0, 1,
3587 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3588 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3589 			dev_err(adapter->pdev_dev,
3590 				"erase of flash sector %d failed, error %d\n",
3591 				start, ret);
3592 			break;
3593 		}
3594 		start++;
3595 	}
3596 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3597 	return ret;
3598 }
3599 
3600 /**
3601  *	t4_flash_cfg_addr - return the address of the flash configuration file
3602  *	@adapter: the adapter
3603  *
3604  *	Return the address within the flash where the Firmware Configuration
3605  *	File is stored.
3606  */
3607 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3608 {
3609 	if (adapter->params.sf_size == 0x100000)
3610 		return FLASH_FPGA_CFG_START;
3611 	else
3612 		return FLASH_CFG_START;
3613 }
3614 
3615 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3616  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3617  * and emit an error message for mismatched firmware to save our caller the
3618  * effort ...
3619  */
3620 static bool t4_fw_matches_chip(const struct adapter *adap,
3621 			       const struct fw_hdr *hdr)
3622 {
3623 	/* The expression below will return FALSE for any unsupported adapter
3624 	 * which will keep us "honest" in the future ...
3625 	 */
3626 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3627 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3628 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3629 		return true;
3630 
3631 	dev_err(adap->pdev_dev,
3632 		"FW image (%d) is not suitable for this adapter (%d)\n",
3633 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3634 	return false;
3635 }
3636 
3637 /**
3638  *	t4_load_fw - download firmware
3639  *	@adap: the adapter
3640  *	@fw_data: the firmware image to write
3641  *	@size: image size
3642  *
3643  *	Write the supplied firmware image to the card's serial flash.
3644  */
3645 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3646 {
3647 	u32 csum;
3648 	int ret, addr;
3649 	unsigned int i;
3650 	u8 first_page[SF_PAGE_SIZE];
3651 	const __be32 *p = (const __be32 *)fw_data;
3652 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3653 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3654 	unsigned int fw_start_sec = FLASH_FW_START_SEC;
3655 	unsigned int fw_size = FLASH_FW_MAX_SIZE;
3656 	unsigned int fw_start = FLASH_FW_START;
3657 
3658 	if (!size) {
3659 		dev_err(adap->pdev_dev, "FW image has no data\n");
3660 		return -EINVAL;
3661 	}
3662 	if (size & 511) {
3663 		dev_err(adap->pdev_dev,
3664 			"FW image size not multiple of 512 bytes\n");
3665 		return -EINVAL;
3666 	}
3667 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3668 		dev_err(adap->pdev_dev,
3669 			"FW image size differs from size in FW header\n");
3670 		return -EINVAL;
3671 	}
3672 	if (size > fw_size) {
3673 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3674 			fw_size);
3675 		return -EFBIG;
3676 	}
3677 	if (!t4_fw_matches_chip(adap, hdr))
3678 		return -EINVAL;
3679 
3680 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3681 		csum += be32_to_cpu(p[i]);
3682 
3683 	if (csum != 0xffffffff) {
3684 		dev_err(adap->pdev_dev,
3685 			"corrupted firmware image, checksum %#x\n", csum);
3686 		return -EINVAL;
3687 	}
3688 
3689 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3690 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3691 	if (ret)
3692 		goto out;
3693 
3694 	/*
3695 	 * We write the correct version at the end so the driver can see a bad
3696 	 * version if the FW write fails.  Start by writing a copy of the
3697 	 * first page with a bad version.
3698 	 */
3699 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3700 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3701 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page);
3702 	if (ret)
3703 		goto out;
3704 
3705 	addr = fw_start;
3706 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3707 		addr += SF_PAGE_SIZE;
3708 		fw_data += SF_PAGE_SIZE;
3709 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3710 		if (ret)
3711 			goto out;
3712 	}
3713 
3714 	ret = t4_write_flash(adap,
3715 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3716 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3717 out:
3718 	if (ret)
3719 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3720 			ret);
3721 	else
3722 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3723 	return ret;
3724 }
3725 
3726 /**
3727  *	t4_phy_fw_ver - return current PHY firmware version
3728  *	@adap: the adapter
3729  *	@phy_fw_ver: return value buffer for PHY firmware version
3730  *
3731  *	Returns the current version of external PHY firmware on the
3732  *	adapter.
3733  */
3734 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3735 {
3736 	u32 param, val;
3737 	int ret;
3738 
3739 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3740 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3741 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3742 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3743 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3744 			      &param, &val);
3745 	if (ret < 0)
3746 		return ret;
3747 	*phy_fw_ver = val;
3748 	return 0;
3749 }
3750 
3751 /**
3752  *	t4_load_phy_fw - download port PHY firmware
3753  *	@adap: the adapter
3754  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3755  *	@win_lock: the lock to use to guard the memory copy
3756  *	@phy_fw_version: function to check PHY firmware versions
3757  *	@phy_fw_data: the PHY firmware image to write
3758  *	@phy_fw_size: image size
3759  *
3760  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3761  *	@phy_fw_version is supplied, then it will be used to determine if
3762  *	it's necessary to perform the transfer by comparing the version
3763  *	of any existing adapter PHY firmware with that of the passed in
3764  *	PHY firmware image.  If @win_lock is non-NULL then it will be used
3765  *	around the call to t4_memory_rw() which transfers the PHY firmware
3766  *	to the adapter.
3767  *
3768  *	A negative error number will be returned if an error occurs.  If
3769  *	version number support is available and there's no need to upgrade
3770  *	the firmware, 0 will be returned.  If firmware is successfully
3771  *	transferred to the adapter, 1 will be returned.
3772  *
3773  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3774  *	a result, a RESET of the adapter would cause that RAM to lose its
3775  *	contents.  Thus, loading PHY firmware on such adapters must happen
3776  *	after any FW_RESET_CMDs ...
3777  */
3778 int t4_load_phy_fw(struct adapter *adap,
3779 		   int win, spinlock_t *win_lock,
3780 		   int (*phy_fw_version)(const u8 *, size_t),
3781 		   const u8 *phy_fw_data, size_t phy_fw_size)
3782 {
3783 	unsigned long mtype = 0, maddr = 0;
3784 	u32 param, val;
3785 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3786 	int ret;
3787 
3788 	/* If we have version number support, then check to see if the adapter
3789 	 * already has up-to-date PHY firmware loaded.
3790 	 */
3791 	if (phy_fw_version) {
3792 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3793 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3794 		if (ret < 0)
3795 			return ret;
3796 
3797 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3798 			CH_WARN(adap, "PHY Firmware already up-to-date, "
3799 				"version %#x\n", cur_phy_fw_ver);
3800 			return 0;
3801 		}
3802 	}
3803 
3804 	/* Ask the firmware where it wants us to copy the PHY firmware image.
3805 	 * The size of the file requires a special version of the READ command
3806 	 * which will pass the file size via the values field in PARAMS_CMD and
3807 	 * retrieve the return value from firmware and place it in the same
3808 	 * buffer values
3809 	 */
3810 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3811 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3812 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3813 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3814 	val = phy_fw_size;
3815 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3816 				 &param, &val, 1, true);
3817 	if (ret < 0)
3818 		return ret;
3819 	mtype = val >> 8;
3820 	maddr = (val & 0xff) << 16;
3821 
3822 	/* Copy the supplied PHY Firmware image to the adapter memory location
3823 	 * allocated by the adapter firmware.
3824 	 */
3825 	if (win_lock)
3826 		spin_lock_bh(win_lock);
3827 	ret = t4_memory_rw(adap, win, mtype, maddr,
3828 			   phy_fw_size, (__be32 *)phy_fw_data,
3829 			   T4_MEMORY_WRITE);
3830 	if (win_lock)
3831 		spin_unlock_bh(win_lock);
3832 	if (ret)
3833 		return ret;
3834 
3835 	/* Tell the firmware that the PHY firmware image has been written to
3836 	 * RAM and it can now start copying it over to the PHYs.  The chip
3837 	 * firmware will RESET the affected PHYs as part of this operation
3838 	 * leaving them running the new PHY firmware image.
3839 	 */
3840 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3841 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3842 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3843 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3844 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3845 				    &param, &val, 30000);
3846 
3847 	/* If we have version number support, then check to see that the new
3848 	 * firmware got loaded properly.
3849 	 */
3850 	if (phy_fw_version) {
3851 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3852 		if (ret < 0)
3853 			return ret;
3854 
3855 		if (cur_phy_fw_ver != new_phy_fw_vers) {
3856 			CH_WARN(adap, "PHY Firmware did not update: "
3857 				"version on adapter %#x, "
3858 				"version flashed %#x\n",
3859 				cur_phy_fw_ver, new_phy_fw_vers);
3860 			return -ENXIO;
3861 		}
3862 	}
3863 
3864 	return 1;
3865 }
3866 
3867 /**
3868  *	t4_fwcache - firmware cache operation
3869  *	@adap: the adapter
3870  *	@op  : the operation (flush or flush and invalidate)
3871  */
3872 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3873 {
3874 	struct fw_params_cmd c;
3875 
3876 	memset(&c, 0, sizeof(c));
3877 	c.op_to_vfn =
3878 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3879 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3880 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3881 			    FW_PARAMS_CMD_VFN_V(0));
3882 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3883 	c.param[0].mnem =
3884 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3885 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3886 	c.param[0].val = cpu_to_be32(op);
3887 
3888 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3889 }
3890 
3891 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3892 			unsigned int *pif_req_wrptr,
3893 			unsigned int *pif_rsp_wrptr)
3894 {
3895 	int i, j;
3896 	u32 cfg, val, req, rsp;
3897 
3898 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3899 	if (cfg & LADBGEN_F)
3900 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3901 
3902 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3903 	req = POLADBGWRPTR_G(val);
3904 	rsp = PILADBGWRPTR_G(val);
3905 	if (pif_req_wrptr)
3906 		*pif_req_wrptr = req;
3907 	if (pif_rsp_wrptr)
3908 		*pif_rsp_wrptr = rsp;
3909 
3910 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3911 		for (j = 0; j < 6; j++) {
3912 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3913 				     PILADBGRDPTR_V(rsp));
3914 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3915 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3916 			req++;
3917 			rsp++;
3918 		}
3919 		req = (req + 2) & POLADBGRDPTR_M;
3920 		rsp = (rsp + 2) & PILADBGRDPTR_M;
3921 	}
3922 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3923 }
3924 
3925 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3926 {
3927 	u32 cfg;
3928 	int i, j, idx;
3929 
3930 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3931 	if (cfg & LADBGEN_F)
3932 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3933 
3934 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3935 		for (j = 0; j < 5; j++) {
3936 			idx = 8 * i + j;
3937 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3938 				     PILADBGRDPTR_V(idx));
3939 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3940 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3941 		}
3942 	}
3943 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3944 }
3945 
3946 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3947 {
3948 	unsigned int i, j;
3949 
3950 	for (i = 0; i < 8; i++) {
3951 		u32 *p = la_buf + i;
3952 
3953 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3954 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3955 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3956 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3957 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3958 	}
3959 }
3960 
3961 /* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port
3962  * Capabilities which we control with separate controls -- see, for instance,
3963  * Pause Frames and Forward Error Correction.  In order to determine what the
3964  * full set of Advertised Port Capabilities are, the base Advertised Port
3965  * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised
3966  * Port Capabilities associated with those other controls.  See
3967  * t4_link_acaps() for how this is done.
3968  */
3969 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3970 		     FW_PORT_CAP32_ANEG)
3971 
3972 /**
3973  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3974  *	@caps16: a 16-bit Port Capabilities value
3975  *
3976  *	Returns the equivalent 32-bit Port Capabilities value.
3977  */
3978 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3979 {
3980 	fw_port_cap32_t caps32 = 0;
3981 
3982 	#define CAP16_TO_CAP32(__cap) \
3983 		do { \
3984 			if (caps16 & FW_PORT_CAP_##__cap) \
3985 				caps32 |= FW_PORT_CAP32_##__cap; \
3986 		} while (0)
3987 
3988 	CAP16_TO_CAP32(SPEED_100M);
3989 	CAP16_TO_CAP32(SPEED_1G);
3990 	CAP16_TO_CAP32(SPEED_25G);
3991 	CAP16_TO_CAP32(SPEED_10G);
3992 	CAP16_TO_CAP32(SPEED_40G);
3993 	CAP16_TO_CAP32(SPEED_100G);
3994 	CAP16_TO_CAP32(FC_RX);
3995 	CAP16_TO_CAP32(FC_TX);
3996 	CAP16_TO_CAP32(ANEG);
3997 	CAP16_TO_CAP32(FORCE_PAUSE);
3998 	CAP16_TO_CAP32(MDIAUTO);
3999 	CAP16_TO_CAP32(MDISTRAIGHT);
4000 	CAP16_TO_CAP32(FEC_RS);
4001 	CAP16_TO_CAP32(FEC_BASER_RS);
4002 	CAP16_TO_CAP32(802_3_PAUSE);
4003 	CAP16_TO_CAP32(802_3_ASM_DIR);
4004 
4005 	#undef CAP16_TO_CAP32
4006 
4007 	return caps32;
4008 }
4009 
4010 /**
4011  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
4012  *	@caps32: a 32-bit Port Capabilities value
4013  *
4014  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
4015  *	not all 32-bit Port Capabilities can be represented in the 16-bit
4016  *	Port Capabilities and some fields/values may not make it.
4017  */
4018 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
4019 {
4020 	fw_port_cap16_t caps16 = 0;
4021 
4022 	#define CAP32_TO_CAP16(__cap) \
4023 		do { \
4024 			if (caps32 & FW_PORT_CAP32_##__cap) \
4025 				caps16 |= FW_PORT_CAP_##__cap; \
4026 		} while (0)
4027 
4028 	CAP32_TO_CAP16(SPEED_100M);
4029 	CAP32_TO_CAP16(SPEED_1G);
4030 	CAP32_TO_CAP16(SPEED_10G);
4031 	CAP32_TO_CAP16(SPEED_25G);
4032 	CAP32_TO_CAP16(SPEED_40G);
4033 	CAP32_TO_CAP16(SPEED_100G);
4034 	CAP32_TO_CAP16(FC_RX);
4035 	CAP32_TO_CAP16(FC_TX);
4036 	CAP32_TO_CAP16(802_3_PAUSE);
4037 	CAP32_TO_CAP16(802_3_ASM_DIR);
4038 	CAP32_TO_CAP16(ANEG);
4039 	CAP32_TO_CAP16(FORCE_PAUSE);
4040 	CAP32_TO_CAP16(MDIAUTO);
4041 	CAP32_TO_CAP16(MDISTRAIGHT);
4042 	CAP32_TO_CAP16(FEC_RS);
4043 	CAP32_TO_CAP16(FEC_BASER_RS);
4044 
4045 	#undef CAP32_TO_CAP16
4046 
4047 	return caps16;
4048 }
4049 
4050 /* Translate Firmware Port Capabilities Pause specification to Common Code */
4051 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
4052 {
4053 	enum cc_pause cc_pause = 0;
4054 
4055 	if (fw_pause & FW_PORT_CAP32_FC_RX)
4056 		cc_pause |= PAUSE_RX;
4057 	if (fw_pause & FW_PORT_CAP32_FC_TX)
4058 		cc_pause |= PAUSE_TX;
4059 
4060 	return cc_pause;
4061 }
4062 
4063 /* Translate Common Code Pause specification into Firmware Port Capabilities */
4064 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4065 {
4066 	/* Translate orthogonal RX/TX Pause Controls for L1 Configure
4067 	 * commands, etc.
4068 	 */
4069 	fw_port_cap32_t fw_pause = 0;
4070 
4071 	if (cc_pause & PAUSE_RX)
4072 		fw_pause |= FW_PORT_CAP32_FC_RX;
4073 	if (cc_pause & PAUSE_TX)
4074 		fw_pause |= FW_PORT_CAP32_FC_TX;
4075 	if (!(cc_pause & PAUSE_AUTONEG))
4076 		fw_pause |= FW_PORT_CAP32_FORCE_PAUSE;
4077 
4078 	/* Translate orthogonal Pause controls into IEEE 802.3 Pause,
4079 	 * Asymmetrical Pause for use in reporting to upper layer OS code, etc.
4080 	 * Note that these bits are ignored in L1 Configure commands.
4081 	 */
4082 	if (cc_pause & PAUSE_RX) {
4083 		if (cc_pause & PAUSE_TX)
4084 			fw_pause |= FW_PORT_CAP32_802_3_PAUSE;
4085 		else
4086 			fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR |
4087 				    FW_PORT_CAP32_802_3_PAUSE;
4088 	} else if (cc_pause & PAUSE_TX) {
4089 		fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR;
4090 	}
4091 
4092 	return fw_pause;
4093 }
4094 
4095 /* Translate Firmware Forward Error Correction specification to Common Code */
4096 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4097 {
4098 	enum cc_fec cc_fec = 0;
4099 
4100 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
4101 		cc_fec |= FEC_RS;
4102 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4103 		cc_fec |= FEC_BASER_RS;
4104 
4105 	return cc_fec;
4106 }
4107 
4108 /* Translate Common Code Forward Error Correction specification to Firmware */
4109 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4110 {
4111 	fw_port_cap32_t fw_fec = 0;
4112 
4113 	if (cc_fec & FEC_RS)
4114 		fw_fec |= FW_PORT_CAP32_FEC_RS;
4115 	if (cc_fec & FEC_BASER_RS)
4116 		fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4117 
4118 	return fw_fec;
4119 }
4120 
4121 /**
4122  *	t4_link_acaps - compute Link Advertised Port Capabilities
4123  *	@adapter: the adapter
4124  *	@port: the Port ID
4125  *	@lc: the Port's Link Configuration
4126  *
4127  *	Synthesize the Advertised Port Capabilities we'll be using based on
4128  *	the base Advertised Port Capabilities (which have been filtered by
4129  *	ADVERT_MASK) plus the individual controls for things like Pause
4130  *	Frames, Forward Error Correction, MDI, etc.
4131  */
4132 fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port,
4133 			      struct link_config *lc)
4134 {
4135 	fw_port_cap32_t fw_fc, fw_fec, acaps;
4136 	unsigned int fw_mdi;
4137 	char cc_fec;
4138 
4139 	fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps);
4140 
4141 	/* Convert driver coding of Pause Frame Flow Control settings into the
4142 	 * Firmware's API.
4143 	 */
4144 	fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4145 
4146 	/* Convert Common Code Forward Error Control settings into the
4147 	 * Firmware's API.  If the current Requested FEC has "Automatic"
4148 	 * (IEEE 802.3) specified, then we use whatever the Firmware
4149 	 * sent us as part of its IEEE 802.3-based interpretation of
4150 	 * the Transceiver Module EPROM FEC parameters.  Otherwise we
4151 	 * use whatever is in the current Requested FEC settings.
4152 	 */
4153 	if (lc->requested_fec & FEC_AUTO)
4154 		cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4155 	else
4156 		cc_fec = lc->requested_fec;
4157 	fw_fec = cc_to_fwcap_fec(cc_fec);
4158 
4159 	/* Figure out what our Requested Port Capabilities are going to be.
4160 	 * Note parallel structure in t4_handle_get_port_info() and
4161 	 * init_link_config().
4162 	 */
4163 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4164 		acaps = lc->acaps | fw_fc | fw_fec;
4165 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4166 		lc->fec = cc_fec;
4167 	} else if (lc->autoneg == AUTONEG_DISABLE) {
4168 		acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4169 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4170 		lc->fec = cc_fec;
4171 	} else {
4172 		acaps = lc->acaps | fw_fc | fw_fec | fw_mdi;
4173 	}
4174 
4175 	/* Some Requested Port Capabilities are trivially wrong if they exceed
4176 	 * the Physical Port Capabilities.  We can check that here and provide
4177 	 * moderately useful feedback in the system log.
4178 	 *
4179 	 * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so
4180 	 * we need to exclude this from this check in order to maintain
4181 	 * compatibility ...
4182 	 */
4183 	if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) {
4184 		dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
4185 			acaps, lc->pcaps);
4186 		return -EINVAL;
4187 	}
4188 
4189 	return acaps;
4190 }
4191 
4192 /**
4193  *	t4_link_l1cfg_core - apply link configuration to MAC/PHY
4194  *	@adapter: the adapter
4195  *	@mbox: the Firmware Mailbox to use
4196  *	@port: the Port ID
4197  *	@lc: the Port's Link Configuration
4198  *	@sleep_ok: if true we may sleep while awaiting command completion
4199  *	@timeout: time to wait for command to finish before timing out
4200  *		(negative implies @sleep_ok=false)
4201  *
4202  *	Set up a port's MAC and PHY according to a desired link configuration.
4203  *	- If the PHY can auto-negotiate first decide what to advertise, then
4204  *	  enable/disable auto-negotiation as desired, and reset.
4205  *	- If the PHY does not auto-negotiate just reset it.
4206  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4207  *	  otherwise do it later based on the outcome of auto-negotiation.
4208  */
4209 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox,
4210 		       unsigned int port, struct link_config *lc,
4211 		       u8 sleep_ok, int timeout)
4212 {
4213 	unsigned int fw_caps = adapter->params.fw_caps_support;
4214 	struct fw_port_cmd cmd;
4215 	fw_port_cap32_t rcap;
4216 	int ret;
4217 
4218 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG) &&
4219 	    lc->autoneg == AUTONEG_ENABLE) {
4220 		return -EINVAL;
4221 	}
4222 
4223 	/* Compute our Requested Port Capabilities and send that on to the
4224 	 * Firmware.
4225 	 */
4226 	rcap = t4_link_acaps(adapter, port, lc);
4227 	memset(&cmd, 0, sizeof(cmd));
4228 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4229 				       FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4230 				       FW_PORT_CMD_PORTID_V(port));
4231 	cmd.action_to_len16 =
4232 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4233 						 ? FW_PORT_ACTION_L1_CFG
4234 						 : FW_PORT_ACTION_L1_CFG32) |
4235 						 FW_LEN16(cmd));
4236 	if (fw_caps == FW_CAPS16)
4237 		cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4238 	else
4239 		cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4240 
4241 	ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL,
4242 				      sleep_ok, timeout);
4243 
4244 	/* Unfortunately, even if the Requested Port Capabilities "fit" within
4245 	 * the Physical Port Capabilities, some combinations of features may
4246 	 * still not be legal.  For example, 40Gb/s and Reed-Solomon Forward
4247 	 * Error Correction.  So if the Firmware rejects the L1 Configure
4248 	 * request, flag that here.
4249 	 */
4250 	if (ret) {
4251 		dev_err(adapter->pdev_dev,
4252 			"Requested Port Capabilities %#x rejected, error %d\n",
4253 			rcap, -ret);
4254 		return ret;
4255 	}
4256 	return 0;
4257 }
4258 
4259 /**
4260  *	t4_restart_aneg - restart autonegotiation
4261  *	@adap: the adapter
4262  *	@mbox: mbox to use for the FW command
4263  *	@port: the port id
4264  *
4265  *	Restarts autonegotiation for the selected port.
4266  */
4267 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4268 {
4269 	unsigned int fw_caps = adap->params.fw_caps_support;
4270 	struct fw_port_cmd c;
4271 
4272 	memset(&c, 0, sizeof(c));
4273 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4274 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4275 				     FW_PORT_CMD_PORTID_V(port));
4276 	c.action_to_len16 =
4277 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4278 						 ? FW_PORT_ACTION_L1_CFG
4279 						 : FW_PORT_ACTION_L1_CFG32) |
4280 			    FW_LEN16(c));
4281 	if (fw_caps == FW_CAPS16)
4282 		c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4283 	else
4284 		c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG);
4285 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4286 }
4287 
4288 typedef void (*int_handler_t)(struct adapter *adap);
4289 
4290 struct intr_info {
4291 	unsigned int mask;       /* bits to check in interrupt status */
4292 	const char *msg;         /* message to print or NULL */
4293 	short stat_idx;          /* stat counter to increment or -1 */
4294 	unsigned short fatal;    /* whether the condition reported is fatal */
4295 	int_handler_t int_handler; /* platform-specific int handler */
4296 };
4297 
4298 /**
4299  *	t4_handle_intr_status - table driven interrupt handler
4300  *	@adapter: the adapter that generated the interrupt
4301  *	@reg: the interrupt status register to process
4302  *	@acts: table of interrupt actions
4303  *
4304  *	A table driven interrupt handler that applies a set of masks to an
4305  *	interrupt status word and performs the corresponding actions if the
4306  *	interrupts described by the mask have occurred.  The actions include
4307  *	optionally emitting a warning or alert message.  The table is terminated
4308  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
4309  *	conditions.
4310  */
4311 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4312 				 const struct intr_info *acts)
4313 {
4314 	int fatal = 0;
4315 	unsigned int mask = 0;
4316 	unsigned int status = t4_read_reg(adapter, reg);
4317 
4318 	for ( ; acts->mask; ++acts) {
4319 		if (!(status & acts->mask))
4320 			continue;
4321 		if (acts->fatal) {
4322 			fatal++;
4323 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4324 				  status & acts->mask);
4325 		} else if (acts->msg && printk_ratelimit())
4326 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4327 				 status & acts->mask);
4328 		if (acts->int_handler)
4329 			acts->int_handler(adapter);
4330 		mask |= acts->mask;
4331 	}
4332 	status &= mask;
4333 	if (status)                           /* clear processed interrupts */
4334 		t4_write_reg(adapter, reg, status);
4335 	return fatal;
4336 }
4337 
4338 /*
4339  * Interrupt handler for the PCIE module.
4340  */
4341 static void pcie_intr_handler(struct adapter *adapter)
4342 {
4343 	static const struct intr_info sysbus_intr_info[] = {
4344 		{ RNPP_F, "RXNP array parity error", -1, 1 },
4345 		{ RPCP_F, "RXPC array parity error", -1, 1 },
4346 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
4347 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
4348 		{ RFTP_F, "RXFT array parity error", -1, 1 },
4349 		{ 0 }
4350 	};
4351 	static const struct intr_info pcie_port_intr_info[] = {
4352 		{ TPCP_F, "TXPC array parity error", -1, 1 },
4353 		{ TNPP_F, "TXNP array parity error", -1, 1 },
4354 		{ TFTP_F, "TXFT array parity error", -1, 1 },
4355 		{ TCAP_F, "TXCA array parity error", -1, 1 },
4356 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
4357 		{ RCAP_F, "RXCA array parity error", -1, 1 },
4358 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
4359 		{ RDPE_F, "Rx data parity error", -1, 1 },
4360 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
4361 		{ 0 }
4362 	};
4363 	static const struct intr_info pcie_intr_info[] = {
4364 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4365 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4366 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4367 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4368 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4369 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4370 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4371 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4372 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4373 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4374 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4375 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4376 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4377 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4378 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4379 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4380 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4381 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4382 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4383 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4384 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4385 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4386 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4387 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4388 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4389 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4390 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4391 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
4392 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
4393 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
4394 		  -1, 0 },
4395 		{ 0 }
4396 	};
4397 
4398 	static struct intr_info t5_pcie_intr_info[] = {
4399 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
4400 		  -1, 1 },
4401 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4402 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4403 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4404 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4405 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4406 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4407 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4408 		  -1, 1 },
4409 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4410 		  -1, 1 },
4411 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4412 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4413 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4414 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4415 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
4416 		  -1, 1 },
4417 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4418 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4419 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4420 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4421 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4422 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4423 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4424 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4425 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4426 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4427 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4428 		  -1, 1 },
4429 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4430 		  -1, 1 },
4431 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4432 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4433 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4434 		{ READRSPERR_F, "Outbound read error", -1, 0 },
4435 		{ 0 }
4436 	};
4437 
4438 	int fat;
4439 
4440 	if (is_t4(adapter->params.chip))
4441 		fat = t4_handle_intr_status(adapter,
4442 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4443 				sysbus_intr_info) +
4444 			t4_handle_intr_status(adapter,
4445 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4446 					pcie_port_intr_info) +
4447 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4448 					      pcie_intr_info);
4449 	else
4450 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4451 					    t5_pcie_intr_info);
4452 
4453 	if (fat)
4454 		t4_fatal_err(adapter);
4455 }
4456 
4457 /*
4458  * TP interrupt handler.
4459  */
4460 static void tp_intr_handler(struct adapter *adapter)
4461 {
4462 	static const struct intr_info tp_intr_info[] = {
4463 		{ 0x3fffffff, "TP parity error", -1, 1 },
4464 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4465 		{ 0 }
4466 	};
4467 
4468 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4469 		t4_fatal_err(adapter);
4470 }
4471 
4472 /*
4473  * SGE interrupt handler.
4474  */
4475 static void sge_intr_handler(struct adapter *adapter)
4476 {
4477 	u64 v;
4478 	u32 err;
4479 
4480 	static const struct intr_info sge_intr_info[] = {
4481 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
4482 		  "SGE received CPL exceeding IQE size", -1, 1 },
4483 		{ ERR_INVALID_CIDX_INC_F,
4484 		  "SGE GTS CIDX increment too large", -1, 0 },
4485 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4486 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4487 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4488 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4489 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4490 		  0 },
4491 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4492 		  0 },
4493 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4494 		  0 },
4495 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4496 		  0 },
4497 		{ ERR_ING_CTXT_PRIO_F,
4498 		  "SGE too many priority ingress contexts", -1, 0 },
4499 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4500 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4501 		{ 0 }
4502 	};
4503 
4504 	static struct intr_info t4t5_sge_intr_info[] = {
4505 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4506 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4507 		{ ERR_EGR_CTXT_PRIO_F,
4508 		  "SGE too many priority egress contexts", -1, 0 },
4509 		{ 0 }
4510 	};
4511 
4512 	v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
4513 		((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
4514 	if (v) {
4515 		dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
4516 				(unsigned long long)v);
4517 		t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
4518 		t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
4519 	}
4520 
4521 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4522 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4523 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4524 					   t4t5_sge_intr_info);
4525 
4526 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4527 	if (err & ERROR_QID_VALID_F) {
4528 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4529 			ERROR_QID_G(err));
4530 		if (err & UNCAPTURED_ERROR_F)
4531 			dev_err(adapter->pdev_dev,
4532 				"SGE UNCAPTURED_ERROR set (clearing)\n");
4533 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4534 			     UNCAPTURED_ERROR_F);
4535 	}
4536 
4537 	if (v != 0)
4538 		t4_fatal_err(adapter);
4539 }
4540 
4541 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4542 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4543 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4544 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4545 
4546 /*
4547  * CIM interrupt handler.
4548  */
4549 static void cim_intr_handler(struct adapter *adapter)
4550 {
4551 	static const struct intr_info cim_intr_info[] = {
4552 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4553 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4554 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4555 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4556 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4557 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4558 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4559 		{ TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4560 		{ 0 }
4561 	};
4562 	static const struct intr_info cim_upintr_info[] = {
4563 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4564 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4565 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
4566 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
4567 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4568 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4569 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4570 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4571 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4572 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4573 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4574 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4575 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4576 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4577 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4578 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4579 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4580 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4581 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4582 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4583 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4584 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4585 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4586 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4587 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4588 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4589 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4590 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4591 		{ 0 }
4592 	};
4593 
4594 	u32 val, fw_err;
4595 	int fat;
4596 
4597 	fw_err = t4_read_reg(adapter, PCIE_FW_A);
4598 	if (fw_err & PCIE_FW_ERR_F)
4599 		t4_report_fw_error(adapter);
4600 
4601 	/* When the Firmware detects an internal error which normally
4602 	 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4603 	 * in order to make sure the Host sees the Firmware Crash.  So
4604 	 * if we have a Timer0 interrupt and don't see a Firmware Crash,
4605 	 * ignore the Timer0 interrupt.
4606 	 */
4607 
4608 	val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4609 	if (val & TIMER0INT_F)
4610 		if (!(fw_err & PCIE_FW_ERR_F) ||
4611 		    (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4612 			t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4613 				     TIMER0INT_F);
4614 
4615 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4616 				    cim_intr_info) +
4617 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4618 				    cim_upintr_info);
4619 	if (fat)
4620 		t4_fatal_err(adapter);
4621 }
4622 
4623 /*
4624  * ULP RX interrupt handler.
4625  */
4626 static void ulprx_intr_handler(struct adapter *adapter)
4627 {
4628 	static const struct intr_info ulprx_intr_info[] = {
4629 		{ 0x1800000, "ULPRX context error", -1, 1 },
4630 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4631 		{ 0 }
4632 	};
4633 
4634 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4635 		t4_fatal_err(adapter);
4636 }
4637 
4638 /*
4639  * ULP TX interrupt handler.
4640  */
4641 static void ulptx_intr_handler(struct adapter *adapter)
4642 {
4643 	static const struct intr_info ulptx_intr_info[] = {
4644 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4645 		  0 },
4646 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4647 		  0 },
4648 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4649 		  0 },
4650 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4651 		  0 },
4652 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4653 		{ 0 }
4654 	};
4655 
4656 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4657 		t4_fatal_err(adapter);
4658 }
4659 
4660 /*
4661  * PM TX interrupt handler.
4662  */
4663 static void pmtx_intr_handler(struct adapter *adapter)
4664 {
4665 	static const struct intr_info pmtx_intr_info[] = {
4666 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4667 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4668 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4669 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4670 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4671 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4672 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4673 		  -1, 1 },
4674 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4675 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4676 		{ 0 }
4677 	};
4678 
4679 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4680 		t4_fatal_err(adapter);
4681 }
4682 
4683 /*
4684  * PM RX interrupt handler.
4685  */
4686 static void pmrx_intr_handler(struct adapter *adapter)
4687 {
4688 	static const struct intr_info pmrx_intr_info[] = {
4689 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4690 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4691 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4692 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4693 		  -1, 1 },
4694 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4695 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4696 		{ 0 }
4697 	};
4698 
4699 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4700 		t4_fatal_err(adapter);
4701 }
4702 
4703 /*
4704  * CPL switch interrupt handler.
4705  */
4706 static void cplsw_intr_handler(struct adapter *adapter)
4707 {
4708 	static const struct intr_info cplsw_intr_info[] = {
4709 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4710 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4711 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4712 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4713 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4714 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4715 		{ 0 }
4716 	};
4717 
4718 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4719 		t4_fatal_err(adapter);
4720 }
4721 
4722 /*
4723  * LE interrupt handler.
4724  */
4725 static void le_intr_handler(struct adapter *adap)
4726 {
4727 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4728 	static const struct intr_info le_intr_info[] = {
4729 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4730 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4731 		{ PARITYERR_F, "LE parity error", -1, 1 },
4732 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4733 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4734 		{ 0 }
4735 	};
4736 
4737 	static struct intr_info t6_le_intr_info[] = {
4738 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4739 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4740 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4741 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4742 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4743 		{ 0 }
4744 	};
4745 
4746 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4747 				  (chip <= CHELSIO_T5) ?
4748 				  le_intr_info : t6_le_intr_info))
4749 		t4_fatal_err(adap);
4750 }
4751 
4752 /*
4753  * MPS interrupt handler.
4754  */
4755 static void mps_intr_handler(struct adapter *adapter)
4756 {
4757 	static const struct intr_info mps_rx_intr_info[] = {
4758 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4759 		{ 0 }
4760 	};
4761 	static const struct intr_info mps_tx_intr_info[] = {
4762 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4763 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4764 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4765 		  -1, 1 },
4766 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4767 		  -1, 1 },
4768 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4769 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4770 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4771 		{ 0 }
4772 	};
4773 	static const struct intr_info t6_mps_tx_intr_info[] = {
4774 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4775 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4776 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4777 		  -1, 1 },
4778 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4779 		  -1, 1 },
4780 		/* MPS Tx Bubble is normal for T6 */
4781 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4782 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4783 		{ 0 }
4784 	};
4785 	static const struct intr_info mps_trc_intr_info[] = {
4786 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4787 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4788 		  -1, 1 },
4789 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4790 		{ 0 }
4791 	};
4792 	static const struct intr_info mps_stat_sram_intr_info[] = {
4793 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4794 		{ 0 }
4795 	};
4796 	static const struct intr_info mps_stat_tx_intr_info[] = {
4797 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4798 		{ 0 }
4799 	};
4800 	static const struct intr_info mps_stat_rx_intr_info[] = {
4801 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4802 		{ 0 }
4803 	};
4804 	static const struct intr_info mps_cls_intr_info[] = {
4805 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4806 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4807 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4808 		{ 0 }
4809 	};
4810 
4811 	int fat;
4812 
4813 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4814 				    mps_rx_intr_info) +
4815 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4816 				    is_t6(adapter->params.chip)
4817 				    ? t6_mps_tx_intr_info
4818 				    : mps_tx_intr_info) +
4819 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4820 				    mps_trc_intr_info) +
4821 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4822 				    mps_stat_sram_intr_info) +
4823 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4824 				    mps_stat_tx_intr_info) +
4825 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4826 				    mps_stat_rx_intr_info) +
4827 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4828 				    mps_cls_intr_info);
4829 
4830 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4831 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4832 	if (fat)
4833 		t4_fatal_err(adapter);
4834 }
4835 
4836 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4837 		      ECC_UE_INT_CAUSE_F)
4838 
4839 /*
4840  * EDC/MC interrupt handler.
4841  */
4842 static void mem_intr_handler(struct adapter *adapter, int idx)
4843 {
4844 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4845 
4846 	unsigned int addr, cnt_addr, v;
4847 
4848 	if (idx <= MEM_EDC1) {
4849 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4850 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4851 	} else if (idx == MEM_MC) {
4852 		if (is_t4(adapter->params.chip)) {
4853 			addr = MC_INT_CAUSE_A;
4854 			cnt_addr = MC_ECC_STATUS_A;
4855 		} else {
4856 			addr = MC_P_INT_CAUSE_A;
4857 			cnt_addr = MC_P_ECC_STATUS_A;
4858 		}
4859 	} else {
4860 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4861 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4862 	}
4863 
4864 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4865 	if (v & PERR_INT_CAUSE_F)
4866 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4867 			  name[idx]);
4868 	if (v & ECC_CE_INT_CAUSE_F) {
4869 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4870 
4871 		t4_edc_err_read(adapter, idx);
4872 
4873 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4874 		if (printk_ratelimit())
4875 			dev_warn(adapter->pdev_dev,
4876 				 "%u %s correctable ECC data error%s\n",
4877 				 cnt, name[idx], cnt > 1 ? "s" : "");
4878 	}
4879 	if (v & ECC_UE_INT_CAUSE_F)
4880 		dev_alert(adapter->pdev_dev,
4881 			  "%s uncorrectable ECC data error\n", name[idx]);
4882 
4883 	t4_write_reg(adapter, addr, v);
4884 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4885 		t4_fatal_err(adapter);
4886 }
4887 
4888 /*
4889  * MA interrupt handler.
4890  */
4891 static void ma_intr_handler(struct adapter *adap)
4892 {
4893 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4894 
4895 	if (status & MEM_PERR_INT_CAUSE_F) {
4896 		dev_alert(adap->pdev_dev,
4897 			  "MA parity error, parity status %#x\n",
4898 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4899 		if (is_t5(adap->params.chip))
4900 			dev_alert(adap->pdev_dev,
4901 				  "MA parity error, parity status %#x\n",
4902 				  t4_read_reg(adap,
4903 					      MA_PARITY_ERROR_STATUS2_A));
4904 	}
4905 	if (status & MEM_WRAP_INT_CAUSE_F) {
4906 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4907 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4908 			  "client %u to address %#x\n",
4909 			  MEM_WRAP_CLIENT_NUM_G(v),
4910 			  MEM_WRAP_ADDRESS_G(v) << 4);
4911 	}
4912 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4913 	t4_fatal_err(adap);
4914 }
4915 
4916 /*
4917  * SMB interrupt handler.
4918  */
4919 static void smb_intr_handler(struct adapter *adap)
4920 {
4921 	static const struct intr_info smb_intr_info[] = {
4922 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4923 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4924 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4925 		{ 0 }
4926 	};
4927 
4928 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4929 		t4_fatal_err(adap);
4930 }
4931 
4932 /*
4933  * NC-SI interrupt handler.
4934  */
4935 static void ncsi_intr_handler(struct adapter *adap)
4936 {
4937 	static const struct intr_info ncsi_intr_info[] = {
4938 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4939 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4940 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4941 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4942 		{ 0 }
4943 	};
4944 
4945 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4946 		t4_fatal_err(adap);
4947 }
4948 
4949 /*
4950  * XGMAC interrupt handler.
4951  */
4952 static void xgmac_intr_handler(struct adapter *adap, int port)
4953 {
4954 	u32 v, int_cause_reg;
4955 
4956 	if (is_t4(adap->params.chip))
4957 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4958 	else
4959 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4960 
4961 	v = t4_read_reg(adap, int_cause_reg);
4962 
4963 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4964 	if (!v)
4965 		return;
4966 
4967 	if (v & TXFIFO_PRTY_ERR_F)
4968 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4969 			  port);
4970 	if (v & RXFIFO_PRTY_ERR_F)
4971 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4972 			  port);
4973 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4974 	t4_fatal_err(adap);
4975 }
4976 
4977 /*
4978  * PL interrupt handler.
4979  */
4980 static void pl_intr_handler(struct adapter *adap)
4981 {
4982 	static const struct intr_info pl_intr_info[] = {
4983 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
4984 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4985 		{ 0 }
4986 	};
4987 
4988 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4989 		t4_fatal_err(adap);
4990 }
4991 
4992 #define PF_INTR_MASK (PFSW_F)
4993 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4994 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4995 		CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
4996 
4997 /**
4998  *	t4_slow_intr_handler - control path interrupt handler
4999  *	@adapter: the adapter
5000  *
5001  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
5002  *	The designation 'slow' is because it involves register reads, while
5003  *	data interrupts typically don't involve any MMIOs.
5004  */
5005 int t4_slow_intr_handler(struct adapter *adapter)
5006 {
5007 	/* There are rare cases where a PL_INT_CAUSE bit may end up getting
5008 	 * set when the corresponding PL_INT_ENABLE bit isn't set.  It's
5009 	 * easiest just to mask that case here.
5010 	 */
5011 	u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
5012 	u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A);
5013 	u32 cause = raw_cause & enable;
5014 
5015 	if (!(cause & GLBL_INTR_MASK))
5016 		return 0;
5017 	if (cause & CIM_F)
5018 		cim_intr_handler(adapter);
5019 	if (cause & MPS_F)
5020 		mps_intr_handler(adapter);
5021 	if (cause & NCSI_F)
5022 		ncsi_intr_handler(adapter);
5023 	if (cause & PL_F)
5024 		pl_intr_handler(adapter);
5025 	if (cause & SMB_F)
5026 		smb_intr_handler(adapter);
5027 	if (cause & XGMAC0_F)
5028 		xgmac_intr_handler(adapter, 0);
5029 	if (cause & XGMAC1_F)
5030 		xgmac_intr_handler(adapter, 1);
5031 	if (cause & XGMAC_KR0_F)
5032 		xgmac_intr_handler(adapter, 2);
5033 	if (cause & XGMAC_KR1_F)
5034 		xgmac_intr_handler(adapter, 3);
5035 	if (cause & PCIE_F)
5036 		pcie_intr_handler(adapter);
5037 	if (cause & MC_F)
5038 		mem_intr_handler(adapter, MEM_MC);
5039 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
5040 		mem_intr_handler(adapter, MEM_MC1);
5041 	if (cause & EDC0_F)
5042 		mem_intr_handler(adapter, MEM_EDC0);
5043 	if (cause & EDC1_F)
5044 		mem_intr_handler(adapter, MEM_EDC1);
5045 	if (cause & LE_F)
5046 		le_intr_handler(adapter);
5047 	if (cause & TP_F)
5048 		tp_intr_handler(adapter);
5049 	if (cause & MA_F)
5050 		ma_intr_handler(adapter);
5051 	if (cause & PM_TX_F)
5052 		pmtx_intr_handler(adapter);
5053 	if (cause & PM_RX_F)
5054 		pmrx_intr_handler(adapter);
5055 	if (cause & ULP_RX_F)
5056 		ulprx_intr_handler(adapter);
5057 	if (cause & CPL_SWITCH_F)
5058 		cplsw_intr_handler(adapter);
5059 	if (cause & SGE_F)
5060 		sge_intr_handler(adapter);
5061 	if (cause & ULP_TX_F)
5062 		ulptx_intr_handler(adapter);
5063 
5064 	/* Clear the interrupts just processed for which we are the master. */
5065 	t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK);
5066 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
5067 	return 1;
5068 }
5069 
5070 /**
5071  *	t4_intr_enable - enable interrupts
5072  *	@adapter: the adapter whose interrupts should be enabled
5073  *
5074  *	Enable PF-specific interrupts for the calling function and the top-level
5075  *	interrupt concentrator for global interrupts.  Interrupts are already
5076  *	enabled at each module,	here we just enable the roots of the interrupt
5077  *	hierarchies.
5078  *
5079  *	Note: this function should be called only when the driver manages
5080  *	non PF-specific interrupts from the various HW modules.  Only one PCI
5081  *	function at a time should be doing this.
5082  */
5083 void t4_intr_enable(struct adapter *adapter)
5084 {
5085 	u32 val = 0;
5086 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5087 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5088 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5089 
5090 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
5091 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
5092 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
5093 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
5094 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
5095 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
5096 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
5097 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
5098 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
5099 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
5100 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
5101 }
5102 
5103 /**
5104  *	t4_intr_disable - disable interrupts
5105  *	@adapter: the adapter whose interrupts should be disabled
5106  *
5107  *	Disable interrupts.  We only disable the top-level interrupt
5108  *	concentrators.  The caller must be a PCI function managing global
5109  *	interrupts.
5110  */
5111 void t4_intr_disable(struct adapter *adapter)
5112 {
5113 	u32 whoami, pf;
5114 
5115 	if (pci_channel_offline(adapter->pdev))
5116 		return;
5117 
5118 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5119 	pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5120 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5121 
5122 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
5123 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
5124 }
5125 
5126 unsigned int t4_chip_rss_size(struct adapter *adap)
5127 {
5128 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
5129 		return RSS_NENTRIES;
5130 	else
5131 		return T6_RSS_NENTRIES;
5132 }
5133 
5134 /**
5135  *	t4_config_rss_range - configure a portion of the RSS mapping table
5136  *	@adapter: the adapter
5137  *	@mbox: mbox to use for the FW command
5138  *	@viid: virtual interface whose RSS subtable is to be written
5139  *	@start: start entry in the table to write
5140  *	@n: how many table entries to write
5141  *	@rspq: values for the response queue lookup table
5142  *	@nrspq: number of values in @rspq
5143  *
5144  *	Programs the selected part of the VI's RSS mapping table with the
5145  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5146  *	until the full table range is populated.
5147  *
5148  *	The caller must ensure the values in @rspq are in the range allowed for
5149  *	@viid.
5150  */
5151 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5152 			int start, int n, const u16 *rspq, unsigned int nrspq)
5153 {
5154 	int ret;
5155 	const u16 *rsp = rspq;
5156 	const u16 *rsp_end = rspq + nrspq;
5157 	struct fw_rss_ind_tbl_cmd cmd;
5158 
5159 	memset(&cmd, 0, sizeof(cmd));
5160 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5161 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5162 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
5163 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5164 
5165 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5166 	while (n > 0) {
5167 		int nq = min(n, 32);
5168 		__be32 *qp = &cmd.iq0_to_iq2;
5169 
5170 		cmd.niqid = cpu_to_be16(nq);
5171 		cmd.startidx = cpu_to_be16(start);
5172 
5173 		start += nq;
5174 		n -= nq;
5175 
5176 		while (nq > 0) {
5177 			unsigned int v;
5178 
5179 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5180 			if (++rsp >= rsp_end)
5181 				rsp = rspq;
5182 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5183 			if (++rsp >= rsp_end)
5184 				rsp = rspq;
5185 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5186 			if (++rsp >= rsp_end)
5187 				rsp = rspq;
5188 
5189 			*qp++ = cpu_to_be32(v);
5190 			nq -= 3;
5191 		}
5192 
5193 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5194 		if (ret)
5195 			return ret;
5196 	}
5197 	return 0;
5198 }
5199 
5200 /**
5201  *	t4_config_glbl_rss - configure the global RSS mode
5202  *	@adapter: the adapter
5203  *	@mbox: mbox to use for the FW command
5204  *	@mode: global RSS mode
5205  *	@flags: mode-specific flags
5206  *
5207  *	Sets the global RSS mode.
5208  */
5209 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5210 		       unsigned int flags)
5211 {
5212 	struct fw_rss_glb_config_cmd c;
5213 
5214 	memset(&c, 0, sizeof(c));
5215 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5216 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5217 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5218 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5219 		c.u.manual.mode_pkd =
5220 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5221 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5222 		c.u.basicvirtual.mode_pkd =
5223 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5224 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5225 	} else
5226 		return -EINVAL;
5227 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5228 }
5229 
5230 /**
5231  *	t4_config_vi_rss - configure per VI RSS settings
5232  *	@adapter: the adapter
5233  *	@mbox: mbox to use for the FW command
5234  *	@viid: the VI id
5235  *	@flags: RSS flags
5236  *	@defq: id of the default RSS queue for the VI.
5237  *
5238  *	Configures VI-specific RSS properties.
5239  */
5240 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5241 		     unsigned int flags, unsigned int defq)
5242 {
5243 	struct fw_rss_vi_config_cmd c;
5244 
5245 	memset(&c, 0, sizeof(c));
5246 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5247 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5248 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5249 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5250 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5251 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5252 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5253 }
5254 
5255 /* Read an RSS table row */
5256 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5257 {
5258 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5259 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5260 				   5, 0, val);
5261 }
5262 
5263 /**
5264  *	t4_read_rss - read the contents of the RSS mapping table
5265  *	@adapter: the adapter
5266  *	@map: holds the contents of the RSS mapping table
5267  *
5268  *	Reads the contents of the RSS hash->queue mapping table.
5269  */
5270 int t4_read_rss(struct adapter *adapter, u16 *map)
5271 {
5272 	int i, ret, nentries;
5273 	u32 val;
5274 
5275 	nentries = t4_chip_rss_size(adapter);
5276 	for (i = 0; i < nentries / 2; ++i) {
5277 		ret = rd_rss_row(adapter, i, &val);
5278 		if (ret)
5279 			return ret;
5280 		*map++ = LKPTBLQUEUE0_G(val);
5281 		*map++ = LKPTBLQUEUE1_G(val);
5282 	}
5283 	return 0;
5284 }
5285 
5286 static unsigned int t4_use_ldst(struct adapter *adap)
5287 {
5288 	return (adap->flags & CXGB4_FW_OK) && !adap->use_bd;
5289 }
5290 
5291 /**
5292  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5293  * @adap: the adapter
5294  * @cmd: TP fw ldst address space type
5295  * @vals: where the indirect register values are stored/written
5296  * @nregs: how many indirect registers to read/write
5297  * @start_idx: index of first indirect register to read/write
5298  * @rw: Read (1) or Write (0)
5299  * @sleep_ok: if true we may sleep while awaiting command completion
5300  *
5301  * Access TP indirect registers through LDST
5302  */
5303 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5304 			    unsigned int nregs, unsigned int start_index,
5305 			    unsigned int rw, bool sleep_ok)
5306 {
5307 	int ret = 0;
5308 	unsigned int i;
5309 	struct fw_ldst_cmd c;
5310 
5311 	for (i = 0; i < nregs; i++) {
5312 		memset(&c, 0, sizeof(c));
5313 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5314 						FW_CMD_REQUEST_F |
5315 						(rw ? FW_CMD_READ_F :
5316 						      FW_CMD_WRITE_F) |
5317 						FW_LDST_CMD_ADDRSPACE_V(cmd));
5318 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5319 
5320 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5321 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5322 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5323 				      sleep_ok);
5324 		if (ret)
5325 			return ret;
5326 
5327 		if (rw)
5328 			vals[i] = be32_to_cpu(c.u.addrval.val);
5329 	}
5330 	return 0;
5331 }
5332 
5333 /**
5334  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5335  * @adap: the adapter
5336  * @reg_addr: Address Register
5337  * @reg_data: Data register
5338  * @buff: where the indirect register values are stored/written
5339  * @nregs: how many indirect registers to read/write
5340  * @start_index: index of first indirect register to read/write
5341  * @rw: READ(1) or WRITE(0)
5342  * @sleep_ok: if true we may sleep while awaiting command completion
5343  *
5344  * Read/Write TP indirect registers through LDST if possible.
5345  * Else, use backdoor access
5346  **/
5347 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5348 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5349 			      bool sleep_ok)
5350 {
5351 	int rc = -EINVAL;
5352 	int cmd;
5353 
5354 	switch (reg_addr) {
5355 	case TP_PIO_ADDR_A:
5356 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5357 		break;
5358 	case TP_TM_PIO_ADDR_A:
5359 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5360 		break;
5361 	case TP_MIB_INDEX_A:
5362 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5363 		break;
5364 	default:
5365 		goto indirect_access;
5366 	}
5367 
5368 	if (t4_use_ldst(adap))
5369 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5370 				      sleep_ok);
5371 
5372 indirect_access:
5373 
5374 	if (rc) {
5375 		if (rw)
5376 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5377 					 start_index);
5378 		else
5379 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5380 					  start_index);
5381 	}
5382 }
5383 
5384 /**
5385  * t4_tp_pio_read - Read TP PIO registers
5386  * @adap: the adapter
5387  * @buff: where the indirect register values are written
5388  * @nregs: how many indirect registers to read
5389  * @start_index: index of first indirect register to read
5390  * @sleep_ok: if true we may sleep while awaiting command completion
5391  *
5392  * Read TP PIO Registers
5393  **/
5394 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5395 		    u32 start_index, bool sleep_ok)
5396 {
5397 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5398 			  start_index, 1, sleep_ok);
5399 }
5400 
5401 /**
5402  * t4_tp_pio_write - Write TP PIO registers
5403  * @adap: the adapter
5404  * @buff: where the indirect register values are stored
5405  * @nregs: how many indirect registers to write
5406  * @start_index: index of first indirect register to write
5407  * @sleep_ok: if true we may sleep while awaiting command completion
5408  *
5409  * Write TP PIO Registers
5410  **/
5411 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5412 			    u32 start_index, bool sleep_ok)
5413 {
5414 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5415 			  start_index, 0, sleep_ok);
5416 }
5417 
5418 /**
5419  * t4_tp_tm_pio_read - Read TP TM PIO registers
5420  * @adap: the adapter
5421  * @buff: where the indirect register values are written
5422  * @nregs: how many indirect registers to read
5423  * @start_index: index of first indirect register to read
5424  * @sleep_ok: if true we may sleep while awaiting command completion
5425  *
5426  * Read TP TM PIO Registers
5427  **/
5428 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5429 		       u32 start_index, bool sleep_ok)
5430 {
5431 	t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5432 			  nregs, start_index, 1, sleep_ok);
5433 }
5434 
5435 /**
5436  * t4_tp_mib_read - Read TP MIB registers
5437  * @adap: the adapter
5438  * @buff: where the indirect register values are written
5439  * @nregs: how many indirect registers to read
5440  * @start_index: index of first indirect register to read
5441  * @sleep_ok: if true we may sleep while awaiting command completion
5442  *
5443  * Read TP MIB Registers
5444  **/
5445 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5446 		    bool sleep_ok)
5447 {
5448 	t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5449 			  start_index, 1, sleep_ok);
5450 }
5451 
5452 /**
5453  *	t4_read_rss_key - read the global RSS key
5454  *	@adap: the adapter
5455  *	@key: 10-entry array holding the 320-bit RSS key
5456  *      @sleep_ok: if true we may sleep while awaiting command completion
5457  *
5458  *	Reads the global 320-bit RSS key.
5459  */
5460 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5461 {
5462 	t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5463 }
5464 
5465 /**
5466  *	t4_write_rss_key - program one of the RSS keys
5467  *	@adap: the adapter
5468  *	@key: 10-entry array holding the 320-bit RSS key
5469  *	@idx: which RSS key to write
5470  *      @sleep_ok: if true we may sleep while awaiting command completion
5471  *
5472  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5473  *	0..15 the corresponding entry in the RSS key table is written,
5474  *	otherwise the global RSS key is written.
5475  */
5476 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5477 		      bool sleep_ok)
5478 {
5479 	u8 rss_key_addr_cnt = 16;
5480 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5481 
5482 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5483 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5484 	 * as index[5:4](upper 2) into key table
5485 	 */
5486 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5487 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5488 		rss_key_addr_cnt = 32;
5489 
5490 	t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5491 
5492 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5493 		if (rss_key_addr_cnt > 16)
5494 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5495 				     KEYWRADDRX_V(idx >> 4) |
5496 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
5497 		else
5498 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5499 				     KEYWRADDR_V(idx) | KEYWREN_F);
5500 	}
5501 }
5502 
5503 /**
5504  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5505  *	@adapter: the adapter
5506  *	@index: the entry in the PF RSS table to read
5507  *	@valp: where to store the returned value
5508  *      @sleep_ok: if true we may sleep while awaiting command completion
5509  *
5510  *	Reads the PF RSS Configuration Table at the specified index and returns
5511  *	the value found there.
5512  */
5513 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5514 			   u32 *valp, bool sleep_ok)
5515 {
5516 	t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5517 }
5518 
5519 /**
5520  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5521  *	@adapter: the adapter
5522  *	@index: the entry in the VF RSS table to read
5523  *	@vfl: where to store the returned VFL
5524  *	@vfh: where to store the returned VFH
5525  *      @sleep_ok: if true we may sleep while awaiting command completion
5526  *
5527  *	Reads the VF RSS Configuration Table at the specified index and returns
5528  *	the (VFL, VFH) values found there.
5529  */
5530 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5531 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5532 {
5533 	u32 vrt, mask, data;
5534 
5535 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5536 		mask = VFWRADDR_V(VFWRADDR_M);
5537 		data = VFWRADDR_V(index);
5538 	} else {
5539 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5540 		 data = T6_VFWRADDR_V(index);
5541 	}
5542 
5543 	/* Request that the index'th VF Table values be read into VFL/VFH.
5544 	 */
5545 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5546 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5547 	vrt |= data | VFRDEN_F;
5548 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5549 
5550 	/* Grab the VFL/VFH values ...
5551 	 */
5552 	t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5553 	t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5554 }
5555 
5556 /**
5557  *	t4_read_rss_pf_map - read PF RSS Map
5558  *	@adapter: the adapter
5559  *      @sleep_ok: if true we may sleep while awaiting command completion
5560  *
5561  *	Reads the PF RSS Map register and returns its value.
5562  */
5563 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5564 {
5565 	u32 pfmap;
5566 
5567 	t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5568 	return pfmap;
5569 }
5570 
5571 /**
5572  *	t4_read_rss_pf_mask - read PF RSS Mask
5573  *	@adapter: the adapter
5574  *      @sleep_ok: if true we may sleep while awaiting command completion
5575  *
5576  *	Reads the PF RSS Mask register and returns its value.
5577  */
5578 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5579 {
5580 	u32 pfmask;
5581 
5582 	t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5583 	return pfmask;
5584 }
5585 
5586 /**
5587  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5588  *	@adap: the adapter
5589  *	@v4: holds the TCP/IP counter values
5590  *	@v6: holds the TCP/IPv6 counter values
5591  *      @sleep_ok: if true we may sleep while awaiting command completion
5592  *
5593  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5594  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5595  */
5596 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5597 			 struct tp_tcp_stats *v6, bool sleep_ok)
5598 {
5599 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5600 
5601 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5602 #define STAT(x)     val[STAT_IDX(x)]
5603 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5604 
5605 	if (v4) {
5606 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5607 			       TP_MIB_TCP_OUT_RST_A, sleep_ok);
5608 		v4->tcp_out_rsts = STAT(OUT_RST);
5609 		v4->tcp_in_segs  = STAT64(IN_SEG);
5610 		v4->tcp_out_segs = STAT64(OUT_SEG);
5611 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5612 	}
5613 	if (v6) {
5614 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5615 			       TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5616 		v6->tcp_out_rsts = STAT(OUT_RST);
5617 		v6->tcp_in_segs  = STAT64(IN_SEG);
5618 		v6->tcp_out_segs = STAT64(OUT_SEG);
5619 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5620 	}
5621 #undef STAT64
5622 #undef STAT
5623 #undef STAT_IDX
5624 }
5625 
5626 /**
5627  *	t4_tp_get_err_stats - read TP's error MIB counters
5628  *	@adap: the adapter
5629  *	@st: holds the counter values
5630  *      @sleep_ok: if true we may sleep while awaiting command completion
5631  *
5632  *	Returns the values of TP's error counters.
5633  */
5634 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5635 			 bool sleep_ok)
5636 {
5637 	int nchan = adap->params.arch.nchan;
5638 
5639 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5640 		       sleep_ok);
5641 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5642 		       sleep_ok);
5643 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5644 		       sleep_ok);
5645 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5646 		       TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5647 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5648 		       TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5649 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5650 		       sleep_ok);
5651 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5652 		       TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5653 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5654 		       TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5655 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5656 		       sleep_ok);
5657 }
5658 
5659 /**
5660  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5661  *	@adap: the adapter
5662  *	@st: holds the counter values
5663  *      @sleep_ok: if true we may sleep while awaiting command completion
5664  *
5665  *	Returns the values of TP's CPL counters.
5666  */
5667 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5668 			 bool sleep_ok)
5669 {
5670 	int nchan = adap->params.arch.nchan;
5671 
5672 	t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5673 
5674 	t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5675 }
5676 
5677 /**
5678  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5679  *	@adap: the adapter
5680  *	@st: holds the counter values
5681  *      @sleep_ok: if true we may sleep while awaiting command completion
5682  *
5683  *	Returns the values of TP's RDMA counters.
5684  */
5685 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5686 			  bool sleep_ok)
5687 {
5688 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5689 		       sleep_ok);
5690 }
5691 
5692 /**
5693  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5694  *	@adap: the adapter
5695  *	@idx: the port index
5696  *	@st: holds the counter values
5697  *      @sleep_ok: if true we may sleep while awaiting command completion
5698  *
5699  *	Returns the values of TP's FCoE counters for the selected port.
5700  */
5701 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5702 		       struct tp_fcoe_stats *st, bool sleep_ok)
5703 {
5704 	u32 val[2];
5705 
5706 	t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5707 		       sleep_ok);
5708 
5709 	t4_tp_mib_read(adap, &st->frames_drop, 1,
5710 		       TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5711 
5712 	t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5713 		       sleep_ok);
5714 
5715 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5716 }
5717 
5718 /**
5719  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5720  *	@adap: the adapter
5721  *	@st: holds the counter values
5722  *      @sleep_ok: if true we may sleep while awaiting command completion
5723  *
5724  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5725  */
5726 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5727 		      bool sleep_ok)
5728 {
5729 	u32 val[4];
5730 
5731 	t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5732 	st->frames = val[0];
5733 	st->drops = val[1];
5734 	st->octets = ((u64)val[2] << 32) | val[3];
5735 }
5736 
5737 /**
5738  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5739  *	@adap: the adapter
5740  *	@mtus: where to store the MTU values
5741  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5742  *
5743  *	Reads the HW path MTU table.
5744  */
5745 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5746 {
5747 	u32 v;
5748 	int i;
5749 
5750 	for (i = 0; i < NMTUS; ++i) {
5751 		t4_write_reg(adap, TP_MTU_TABLE_A,
5752 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
5753 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
5754 		mtus[i] = MTUVALUE_G(v);
5755 		if (mtu_log)
5756 			mtu_log[i] = MTUWIDTH_G(v);
5757 	}
5758 }
5759 
5760 /**
5761  *	t4_read_cong_tbl - reads the congestion control table
5762  *	@adap: the adapter
5763  *	@incr: where to store the alpha values
5764  *
5765  *	Reads the additive increments programmed into the HW congestion
5766  *	control table.
5767  */
5768 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5769 {
5770 	unsigned int mtu, w;
5771 
5772 	for (mtu = 0; mtu < NMTUS; ++mtu)
5773 		for (w = 0; w < NCCTRL_WIN; ++w) {
5774 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
5775 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5776 			incr[mtu][w] = (u16)t4_read_reg(adap,
5777 						TP_CCTRL_TABLE_A) & 0x1fff;
5778 		}
5779 }
5780 
5781 /**
5782  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5783  *	@adap: the adapter
5784  *	@addr: the indirect TP register address
5785  *	@mask: specifies the field within the register to modify
5786  *	@val: new value for the field
5787  *
5788  *	Sets a field of an indirect TP register to the given value.
5789  */
5790 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5791 			    unsigned int mask, unsigned int val)
5792 {
5793 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5794 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5795 	t4_write_reg(adap, TP_PIO_DATA_A, val);
5796 }
5797 
5798 /**
5799  *	init_cong_ctrl - initialize congestion control parameters
5800  *	@a: the alpha values for congestion control
5801  *	@b: the beta values for congestion control
5802  *
5803  *	Initialize the congestion control parameters.
5804  */
5805 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5806 {
5807 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5808 	a[9] = 2;
5809 	a[10] = 3;
5810 	a[11] = 4;
5811 	a[12] = 5;
5812 	a[13] = 6;
5813 	a[14] = 7;
5814 	a[15] = 8;
5815 	a[16] = 9;
5816 	a[17] = 10;
5817 	a[18] = 14;
5818 	a[19] = 17;
5819 	a[20] = 21;
5820 	a[21] = 25;
5821 	a[22] = 30;
5822 	a[23] = 35;
5823 	a[24] = 45;
5824 	a[25] = 60;
5825 	a[26] = 80;
5826 	a[27] = 100;
5827 	a[28] = 200;
5828 	a[29] = 300;
5829 	a[30] = 400;
5830 	a[31] = 500;
5831 
5832 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5833 	b[9] = b[10] = 1;
5834 	b[11] = b[12] = 2;
5835 	b[13] = b[14] = b[15] = b[16] = 3;
5836 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5837 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5838 	b[28] = b[29] = 6;
5839 	b[30] = b[31] = 7;
5840 }
5841 
5842 /* The minimum additive increment value for the congestion control table */
5843 #define CC_MIN_INCR 2U
5844 
5845 /**
5846  *	t4_load_mtus - write the MTU and congestion control HW tables
5847  *	@adap: the adapter
5848  *	@mtus: the values for the MTU table
5849  *	@alpha: the values for the congestion control alpha parameter
5850  *	@beta: the values for the congestion control beta parameter
5851  *
5852  *	Write the HW MTU table with the supplied MTUs and the high-speed
5853  *	congestion control table with the supplied alpha, beta, and MTUs.
5854  *	We write the two tables together because the additive increments
5855  *	depend on the MTUs.
5856  */
5857 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5858 		  const unsigned short *alpha, const unsigned short *beta)
5859 {
5860 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5861 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5862 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5863 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5864 	};
5865 
5866 	unsigned int i, w;
5867 
5868 	for (i = 0; i < NMTUS; ++i) {
5869 		unsigned int mtu = mtus[i];
5870 		unsigned int log2 = fls(mtu);
5871 
5872 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5873 			log2--;
5874 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5875 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5876 
5877 		for (w = 0; w < NCCTRL_WIN; ++w) {
5878 			unsigned int inc;
5879 
5880 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5881 				  CC_MIN_INCR);
5882 
5883 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5884 				     (w << 16) | (beta[w] << 13) | inc);
5885 		}
5886 	}
5887 }
5888 
5889 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5890  * clocks.  The formula is
5891  *
5892  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5893  *
5894  * which is equivalent to
5895  *
5896  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5897  */
5898 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5899 {
5900 	u64 v = bytes256 * adap->params.vpd.cclk;
5901 
5902 	return v * 62 + v / 2;
5903 }
5904 
5905 /**
5906  *	t4_get_chan_txrate - get the current per channel Tx rates
5907  *	@adap: the adapter
5908  *	@nic_rate: rates for NIC traffic
5909  *	@ofld_rate: rates for offloaded traffic
5910  *
5911  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5912  *	for each channel.
5913  */
5914 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5915 {
5916 	u32 v;
5917 
5918 	v = t4_read_reg(adap, TP_TX_TRATE_A);
5919 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5920 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5921 	if (adap->params.arch.nchan == NCHAN) {
5922 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5923 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5924 	}
5925 
5926 	v = t4_read_reg(adap, TP_TX_ORATE_A);
5927 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5928 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5929 	if (adap->params.arch.nchan == NCHAN) {
5930 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5931 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5932 	}
5933 }
5934 
5935 /**
5936  *	t4_set_trace_filter - configure one of the tracing filters
5937  *	@adap: the adapter
5938  *	@tp: the desired trace filter parameters
5939  *	@idx: which filter to configure
5940  *	@enable: whether to enable or disable the filter
5941  *
5942  *	Configures one of the tracing filters available in HW.  If @enable is
5943  *	%0 @tp is not examined and may be %NULL. The user is responsible to
5944  *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5945  */
5946 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5947 			int idx, int enable)
5948 {
5949 	int i, ofst = idx * 4;
5950 	u32 data_reg, mask_reg, cfg;
5951 
5952 	if (!enable) {
5953 		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5954 		return 0;
5955 	}
5956 
5957 	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5958 	if (cfg & TRCMULTIFILTER_F) {
5959 		/* If multiple tracers are enabled, then maximum
5960 		 * capture size is 2.5KB (FIFO size of a single channel)
5961 		 * minus 2 flits for CPL_TRACE_PKT header.
5962 		 */
5963 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5964 			return -EINVAL;
5965 	} else {
5966 		/* If multiple tracers are disabled, to avoid deadlocks
5967 		 * maximum packet capture size of 9600 bytes is recommended.
5968 		 * Also in this mode, only trace0 can be enabled and running.
5969 		 */
5970 		if (tp->snap_len > 9600 || idx)
5971 			return -EINVAL;
5972 	}
5973 
5974 	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5975 	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5976 	    tp->min_len > TFMINPKTSIZE_M)
5977 		return -EINVAL;
5978 
5979 	/* stop the tracer we'll be changing */
5980 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5981 
5982 	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5983 	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5984 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5985 
5986 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5987 		t4_write_reg(adap, data_reg, tp->data[i]);
5988 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5989 	}
5990 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5991 		     TFCAPTUREMAX_V(tp->snap_len) |
5992 		     TFMINPKTSIZE_V(tp->min_len));
5993 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5994 		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5995 		     (is_t4(adap->params.chip) ?
5996 		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5997 		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
5998 		     T5_TFINVERTMATCH_V(tp->invert)));
5999 
6000 	return 0;
6001 }
6002 
6003 /**
6004  *	t4_get_trace_filter - query one of the tracing filters
6005  *	@adap: the adapter
6006  *	@tp: the current trace filter parameters
6007  *	@idx: which trace filter to query
6008  *	@enabled: non-zero if the filter is enabled
6009  *
6010  *	Returns the current settings of one of the HW tracing filters.
6011  */
6012 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6013 			 int *enabled)
6014 {
6015 	u32 ctla, ctlb;
6016 	int i, ofst = idx * 4;
6017 	u32 data_reg, mask_reg;
6018 
6019 	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
6020 	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
6021 
6022 	if (is_t4(adap->params.chip)) {
6023 		*enabled = !!(ctla & TFEN_F);
6024 		tp->port =  TFPORT_G(ctla);
6025 		tp->invert = !!(ctla & TFINVERTMATCH_F);
6026 	} else {
6027 		*enabled = !!(ctla & T5_TFEN_F);
6028 		tp->port = T5_TFPORT_G(ctla);
6029 		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
6030 	}
6031 	tp->snap_len = TFCAPTUREMAX_G(ctlb);
6032 	tp->min_len = TFMINPKTSIZE_G(ctlb);
6033 	tp->skip_ofst = TFOFFSET_G(ctla);
6034 	tp->skip_len = TFLENGTH_G(ctla);
6035 
6036 	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
6037 	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
6038 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
6039 
6040 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6041 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6042 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6043 	}
6044 }
6045 
6046 /**
6047  *	t4_pmtx_get_stats - returns the HW stats from PMTX
6048  *	@adap: the adapter
6049  *	@cnt: where to store the count statistics
6050  *	@cycles: where to store the cycle statistics
6051  *
6052  *	Returns performance statistics from PMTX.
6053  */
6054 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6055 {
6056 	int i;
6057 	u32 data[2];
6058 
6059 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6060 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
6061 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
6062 		if (is_t4(adap->params.chip)) {
6063 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
6064 		} else {
6065 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
6066 					 PM_TX_DBG_DATA_A, data, 2,
6067 					 PM_TX_DBG_STAT_MSB_A);
6068 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6069 		}
6070 	}
6071 }
6072 
6073 /**
6074  *	t4_pmrx_get_stats - returns the HW stats from PMRX
6075  *	@adap: the adapter
6076  *	@cnt: where to store the count statistics
6077  *	@cycles: where to store the cycle statistics
6078  *
6079  *	Returns performance statistics from PMRX.
6080  */
6081 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6082 {
6083 	int i;
6084 	u32 data[2];
6085 
6086 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6087 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
6088 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
6089 		if (is_t4(adap->params.chip)) {
6090 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
6091 		} else {
6092 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
6093 					 PM_RX_DBG_DATA_A, data, 2,
6094 					 PM_RX_DBG_STAT_MSB_A);
6095 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6096 		}
6097 	}
6098 }
6099 
6100 /**
6101  *	compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
6102  *	@adap: the adapter
6103  *	@pidx: the port index
6104  *
6105  *	Computes and returns a bitmap indicating which MPS buffer groups are
6106  *	associated with the given Port.  Bit i is set if buffer group i is
6107  *	used by the Port.
6108  */
6109 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
6110 					      int pidx)
6111 {
6112 	unsigned int chip_version, nports;
6113 
6114 	chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6115 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6116 
6117 	switch (chip_version) {
6118 	case CHELSIO_T4:
6119 	case CHELSIO_T5:
6120 		switch (nports) {
6121 		case 1: return 0xf;
6122 		case 2: return 3 << (2 * pidx);
6123 		case 4: return 1 << pidx;
6124 		}
6125 		break;
6126 
6127 	case CHELSIO_T6:
6128 		switch (nports) {
6129 		case 2: return 1 << (2 * pidx);
6130 		}
6131 		break;
6132 	}
6133 
6134 	dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
6135 		chip_version, nports);
6136 
6137 	return 0;
6138 }
6139 
6140 /**
6141  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6142  *	@adapter: the adapter
6143  *	@pidx: the port index
6144  *
6145  *	Returns a bitmap indicating which MPS buffer groups are associated
6146  *	with the given Port.  Bit i is set if buffer group i is used by the
6147  *	Port.
6148  */
6149 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6150 {
6151 	u8 *mps_bg_map;
6152 	unsigned int nports;
6153 
6154 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6155 	if (pidx >= nports) {
6156 		CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6157 			pidx, nports);
6158 		return 0;
6159 	}
6160 
6161 	/* If we've already retrieved/computed this, just return the result.
6162 	 */
6163 	mps_bg_map = adapter->params.mps_bg_map;
6164 	if (mps_bg_map[pidx])
6165 		return mps_bg_map[pidx];
6166 
6167 	/* Newer Firmware can tell us what the MPS Buffer Group Map is.
6168 	 * If we're talking to such Firmware, let it tell us.  If the new
6169 	 * API isn't supported, revert back to old hardcoded way.  The value
6170 	 * obtained from Firmware is encoded in below format:
6171 	 *
6172 	 * val = (( MPSBGMAP[Port 3] << 24 ) |
6173 	 *        ( MPSBGMAP[Port 2] << 16 ) |
6174 	 *        ( MPSBGMAP[Port 1] <<  8 ) |
6175 	 *        ( MPSBGMAP[Port 0] <<  0 ))
6176 	 */
6177 	if (adapter->flags & CXGB4_FW_OK) {
6178 		u32 param, val;
6179 		int ret;
6180 
6181 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6182 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6183 		ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6184 					 0, 1, &param, &val);
6185 		if (!ret) {
6186 			int p;
6187 
6188 			/* Store the BG Map for all of the Ports in order to
6189 			 * avoid more calls to the Firmware in the future.
6190 			 */
6191 			for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6192 				mps_bg_map[p] = val & 0xff;
6193 
6194 			return mps_bg_map[pidx];
6195 		}
6196 	}
6197 
6198 	/* Either we're not talking to the Firmware or we're dealing with
6199 	 * older Firmware which doesn't support the new API to get the MPS
6200 	 * Buffer Group Map.  Fall back to computing it ourselves.
6201 	 */
6202 	mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6203 	return mps_bg_map[pidx];
6204 }
6205 
6206 /**
6207  *      t4_get_tp_e2c_map - return the E2C channel map associated with a port
6208  *      @adapter: the adapter
6209  *      @pidx: the port index
6210  */
6211 static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx)
6212 {
6213 	unsigned int nports;
6214 	u32 param, val = 0;
6215 	int ret;
6216 
6217 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6218 	if (pidx >= nports) {
6219 		CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n",
6220 			pidx, nports);
6221 		return 0;
6222 	}
6223 
6224 	/* FW version >= 1.16.44.0 can determine E2C channel map using
6225 	 * FW_PARAMS_PARAM_DEV_TPCHMAP API.
6226 	 */
6227 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6228 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP));
6229 	ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6230 				 0, 1, &param, &val);
6231 	if (!ret)
6232 		return (val >> (8 * pidx)) & 0xff;
6233 
6234 	return 0;
6235 }
6236 
6237 /**
6238  *	t4_get_tp_ch_map - return TP ingress channels associated with a port
6239  *	@adapter: the adapter
6240  *	@pidx: the port index
6241  *
6242  *	Returns a bitmap indicating which TP Ingress Channels are associated
6243  *	with a given Port.  Bit i is set if TP Ingress Channel i is used by
6244  *	the Port.
6245  */
6246 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6247 {
6248 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6249 	unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6250 
6251 	if (pidx >= nports) {
6252 		dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6253 			 pidx, nports);
6254 		return 0;
6255 	}
6256 
6257 	switch (chip_version) {
6258 	case CHELSIO_T4:
6259 	case CHELSIO_T5:
6260 		/* Note that this happens to be the same values as the MPS
6261 		 * Buffer Group Map for these Chips.  But we replicate the code
6262 		 * here because they're really separate concepts.
6263 		 */
6264 		switch (nports) {
6265 		case 1: return 0xf;
6266 		case 2: return 3 << (2 * pidx);
6267 		case 4: return 1 << pidx;
6268 		}
6269 		break;
6270 
6271 	case CHELSIO_T6:
6272 		switch (nports) {
6273 		case 1:
6274 		case 2: return 1 << pidx;
6275 		}
6276 		break;
6277 	}
6278 
6279 	dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6280 		chip_version, nports);
6281 	return 0;
6282 }
6283 
6284 /**
6285  *      t4_get_port_type_description - return Port Type string description
6286  *      @port_type: firmware Port Type enumeration
6287  */
6288 const char *t4_get_port_type_description(enum fw_port_type port_type)
6289 {
6290 	static const char *const port_type_description[] = {
6291 		"Fiber_XFI",
6292 		"Fiber_XAUI",
6293 		"BT_SGMII",
6294 		"BT_XFI",
6295 		"BT_XAUI",
6296 		"KX4",
6297 		"CX4",
6298 		"KX",
6299 		"KR",
6300 		"SFP",
6301 		"BP_AP",
6302 		"BP4_AP",
6303 		"QSFP_10G",
6304 		"QSA",
6305 		"QSFP",
6306 		"BP40_BA",
6307 		"KR4_100G",
6308 		"CR4_QSFP",
6309 		"CR_QSFP",
6310 		"CR2_QSFP",
6311 		"SFP28",
6312 		"KR_SFP28",
6313 		"KR_XLAUI"
6314 	};
6315 
6316 	if (port_type < ARRAY_SIZE(port_type_description))
6317 		return port_type_description[port_type];
6318 	return "UNKNOWN";
6319 }
6320 
6321 /**
6322  *      t4_get_port_stats_offset - collect port stats relative to a previous
6323  *                                 snapshot
6324  *      @adap: The adapter
6325  *      @idx: The port
6326  *      @stats: Current stats to fill
6327  *      @offset: Previous stats snapshot
6328  */
6329 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6330 			      struct port_stats *stats,
6331 			      struct port_stats *offset)
6332 {
6333 	u64 *s, *o;
6334 	int i;
6335 
6336 	t4_get_port_stats(adap, idx, stats);
6337 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6338 			i < (sizeof(struct port_stats) / sizeof(u64));
6339 			i++, s++, o++)
6340 		*s -= *o;
6341 }
6342 
6343 /**
6344  *	t4_get_port_stats - collect port statistics
6345  *	@adap: the adapter
6346  *	@idx: the port index
6347  *	@p: the stats structure to fill
6348  *
6349  *	Collect statistics related to the given port from HW.
6350  */
6351 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6352 {
6353 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6354 	u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6355 
6356 #define GET_STAT(name) \
6357 	t4_read_reg64(adap, \
6358 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6359 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6360 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6361 
6362 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6363 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6364 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6365 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6366 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6367 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6368 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6369 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6370 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6371 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6372 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6373 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6374 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6375 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
6376 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6377 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6378 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6379 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6380 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6381 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6382 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6383 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6384 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6385 
6386 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6387 		if (stat_ctl & COUNTPAUSESTATTX_F)
6388 			p->tx_frames_64 -= p->tx_pause;
6389 		if (stat_ctl & COUNTPAUSEMCTX_F)
6390 			p->tx_mcast_frames -= p->tx_pause;
6391 	}
6392 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6393 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6394 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6395 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6396 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6397 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6398 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6399 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6400 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6401 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6402 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6403 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6404 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6405 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6406 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6407 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6408 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6409 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6410 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6411 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6412 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6413 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6414 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6415 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6416 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6417 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6418 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6419 
6420 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6421 		if (stat_ctl & COUNTPAUSESTATRX_F)
6422 			p->rx_frames_64 -= p->rx_pause;
6423 		if (stat_ctl & COUNTPAUSEMCRX_F)
6424 			p->rx_mcast_frames -= p->rx_pause;
6425 	}
6426 
6427 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6428 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6429 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6430 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6431 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6432 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6433 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6434 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6435 
6436 #undef GET_STAT
6437 #undef GET_STAT_COM
6438 }
6439 
6440 /**
6441  *	t4_get_lb_stats - collect loopback port statistics
6442  *	@adap: the adapter
6443  *	@idx: the loopback port index
6444  *	@p: the stats structure to fill
6445  *
6446  *	Return HW statistics for the given loopback port.
6447  */
6448 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6449 {
6450 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6451 
6452 #define GET_STAT(name) \
6453 	t4_read_reg64(adap, \
6454 	(is_t4(adap->params.chip) ? \
6455 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6456 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6457 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6458 
6459 	p->octets           = GET_STAT(BYTES);
6460 	p->frames           = GET_STAT(FRAMES);
6461 	p->bcast_frames     = GET_STAT(BCAST);
6462 	p->mcast_frames     = GET_STAT(MCAST);
6463 	p->ucast_frames     = GET_STAT(UCAST);
6464 	p->error_frames     = GET_STAT(ERROR);
6465 
6466 	p->frames_64        = GET_STAT(64B);
6467 	p->frames_65_127    = GET_STAT(65B_127B);
6468 	p->frames_128_255   = GET_STAT(128B_255B);
6469 	p->frames_256_511   = GET_STAT(256B_511B);
6470 	p->frames_512_1023  = GET_STAT(512B_1023B);
6471 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
6472 	p->frames_1519_max  = GET_STAT(1519B_MAX);
6473 	p->drop             = GET_STAT(DROP_FRAMES);
6474 
6475 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6476 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6477 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6478 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6479 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6480 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6481 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6482 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6483 
6484 #undef GET_STAT
6485 #undef GET_STAT_COM
6486 }
6487 
6488 /*     t4_mk_filtdelwr - create a delete filter WR
6489  *     @ftid: the filter ID
6490  *     @wr: the filter work request to populate
6491  *     @qid: ingress queue to receive the delete notification
6492  *
6493  *     Creates a filter work request to delete the supplied filter.  If @qid is
6494  *     negative the delete notification is suppressed.
6495  */
6496 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6497 {
6498 	memset(wr, 0, sizeof(*wr));
6499 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6500 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6501 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6502 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
6503 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6504 	if (qid >= 0)
6505 		wr->rx_chan_rx_rpl_iq =
6506 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6507 }
6508 
6509 #define INIT_CMD(var, cmd, rd_wr) do { \
6510 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6511 					FW_CMD_REQUEST_F | \
6512 					FW_CMD_##rd_wr##_F); \
6513 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6514 } while (0)
6515 
6516 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6517 			  u32 addr, u32 val)
6518 {
6519 	u32 ldst_addrspace;
6520 	struct fw_ldst_cmd c;
6521 
6522 	memset(&c, 0, sizeof(c));
6523 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6524 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6525 					FW_CMD_REQUEST_F |
6526 					FW_CMD_WRITE_F |
6527 					ldst_addrspace);
6528 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6529 	c.u.addrval.addr = cpu_to_be32(addr);
6530 	c.u.addrval.val = cpu_to_be32(val);
6531 
6532 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6533 }
6534 
6535 /**
6536  *	t4_mdio_rd - read a PHY register through MDIO
6537  *	@adap: the adapter
6538  *	@mbox: mailbox to use for the FW command
6539  *	@phy_addr: the PHY address
6540  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6541  *	@reg: the register to read
6542  *	@valp: where to store the value
6543  *
6544  *	Issues a FW command through the given mailbox to read a PHY register.
6545  */
6546 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6547 	       unsigned int mmd, unsigned int reg, u16 *valp)
6548 {
6549 	int ret;
6550 	u32 ldst_addrspace;
6551 	struct fw_ldst_cmd c;
6552 
6553 	memset(&c, 0, sizeof(c));
6554 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6555 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6556 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6557 					ldst_addrspace);
6558 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6559 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6560 					 FW_LDST_CMD_MMD_V(mmd));
6561 	c.u.mdio.raddr = cpu_to_be16(reg);
6562 
6563 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6564 	if (ret == 0)
6565 		*valp = be16_to_cpu(c.u.mdio.rval);
6566 	return ret;
6567 }
6568 
6569 /**
6570  *	t4_mdio_wr - write a PHY register through MDIO
6571  *	@adap: the adapter
6572  *	@mbox: mailbox to use for the FW command
6573  *	@phy_addr: the PHY address
6574  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6575  *	@reg: the register to write
6576  *	@valp: value to write
6577  *
6578  *	Issues a FW command through the given mailbox to write a PHY register.
6579  */
6580 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6581 	       unsigned int mmd, unsigned int reg, u16 val)
6582 {
6583 	u32 ldst_addrspace;
6584 	struct fw_ldst_cmd c;
6585 
6586 	memset(&c, 0, sizeof(c));
6587 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6588 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6589 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6590 					ldst_addrspace);
6591 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6592 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6593 					 FW_LDST_CMD_MMD_V(mmd));
6594 	c.u.mdio.raddr = cpu_to_be16(reg);
6595 	c.u.mdio.rval = cpu_to_be16(val);
6596 
6597 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6598 }
6599 
6600 /**
6601  *	t4_sge_decode_idma_state - decode the idma state
6602  *	@adap: the adapter
6603  *	@state: the state idma is stuck in
6604  */
6605 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6606 {
6607 	static const char * const t4_decode[] = {
6608 		"IDMA_IDLE",
6609 		"IDMA_PUSH_MORE_CPL_FIFO",
6610 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6611 		"Not used",
6612 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6613 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6614 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6615 		"IDMA_SEND_FIFO_TO_IMSG",
6616 		"IDMA_FL_REQ_DATA_FL_PREP",
6617 		"IDMA_FL_REQ_DATA_FL",
6618 		"IDMA_FL_DROP",
6619 		"IDMA_FL_H_REQ_HEADER_FL",
6620 		"IDMA_FL_H_SEND_PCIEHDR",
6621 		"IDMA_FL_H_PUSH_CPL_FIFO",
6622 		"IDMA_FL_H_SEND_CPL",
6623 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6624 		"IDMA_FL_H_SEND_IP_HDR",
6625 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6626 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6627 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6628 		"IDMA_FL_D_SEND_PCIEHDR",
6629 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6630 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6631 		"IDMA_FL_SEND_PCIEHDR",
6632 		"IDMA_FL_PUSH_CPL_FIFO",
6633 		"IDMA_FL_SEND_CPL",
6634 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6635 		"IDMA_FL_SEND_PAYLOAD",
6636 		"IDMA_FL_REQ_NEXT_DATA_FL",
6637 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6638 		"IDMA_FL_SEND_PADDING",
6639 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6640 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6641 		"IDMA_FL_REQ_DATAFL_DONE",
6642 		"IDMA_FL_REQ_HEADERFL_DONE",
6643 	};
6644 	static const char * const t5_decode[] = {
6645 		"IDMA_IDLE",
6646 		"IDMA_ALMOST_IDLE",
6647 		"IDMA_PUSH_MORE_CPL_FIFO",
6648 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6649 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6650 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6651 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6652 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6653 		"IDMA_SEND_FIFO_TO_IMSG",
6654 		"IDMA_FL_REQ_DATA_FL",
6655 		"IDMA_FL_DROP",
6656 		"IDMA_FL_DROP_SEND_INC",
6657 		"IDMA_FL_H_REQ_HEADER_FL",
6658 		"IDMA_FL_H_SEND_PCIEHDR",
6659 		"IDMA_FL_H_PUSH_CPL_FIFO",
6660 		"IDMA_FL_H_SEND_CPL",
6661 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6662 		"IDMA_FL_H_SEND_IP_HDR",
6663 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6664 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6665 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6666 		"IDMA_FL_D_SEND_PCIEHDR",
6667 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6668 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6669 		"IDMA_FL_SEND_PCIEHDR",
6670 		"IDMA_FL_PUSH_CPL_FIFO",
6671 		"IDMA_FL_SEND_CPL",
6672 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6673 		"IDMA_FL_SEND_PAYLOAD",
6674 		"IDMA_FL_REQ_NEXT_DATA_FL",
6675 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6676 		"IDMA_FL_SEND_PADDING",
6677 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6678 	};
6679 	static const char * const t6_decode[] = {
6680 		"IDMA_IDLE",
6681 		"IDMA_PUSH_MORE_CPL_FIFO",
6682 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6683 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6684 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6685 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6686 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6687 		"IDMA_FL_REQ_DATA_FL",
6688 		"IDMA_FL_DROP",
6689 		"IDMA_FL_DROP_SEND_INC",
6690 		"IDMA_FL_H_REQ_HEADER_FL",
6691 		"IDMA_FL_H_SEND_PCIEHDR",
6692 		"IDMA_FL_H_PUSH_CPL_FIFO",
6693 		"IDMA_FL_H_SEND_CPL",
6694 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6695 		"IDMA_FL_H_SEND_IP_HDR",
6696 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6697 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6698 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6699 		"IDMA_FL_D_SEND_PCIEHDR",
6700 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6701 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6702 		"IDMA_FL_SEND_PCIEHDR",
6703 		"IDMA_FL_PUSH_CPL_FIFO",
6704 		"IDMA_FL_SEND_CPL",
6705 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6706 		"IDMA_FL_SEND_PAYLOAD",
6707 		"IDMA_FL_REQ_NEXT_DATA_FL",
6708 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6709 		"IDMA_FL_SEND_PADDING",
6710 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6711 	};
6712 	static const u32 sge_regs[] = {
6713 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
6714 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
6715 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6716 	};
6717 	const char **sge_idma_decode;
6718 	int sge_idma_decode_nstates;
6719 	int i;
6720 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6721 
6722 	/* Select the right set of decode strings to dump depending on the
6723 	 * adapter chip type.
6724 	 */
6725 	switch (chip_version) {
6726 	case CHELSIO_T4:
6727 		sge_idma_decode = (const char **)t4_decode;
6728 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6729 		break;
6730 
6731 	case CHELSIO_T5:
6732 		sge_idma_decode = (const char **)t5_decode;
6733 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6734 		break;
6735 
6736 	case CHELSIO_T6:
6737 		sge_idma_decode = (const char **)t6_decode;
6738 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6739 		break;
6740 
6741 	default:
6742 		dev_err(adapter->pdev_dev,
6743 			"Unsupported chip version %d\n", chip_version);
6744 		return;
6745 	}
6746 
6747 	if (is_t4(adapter->params.chip)) {
6748 		sge_idma_decode = (const char **)t4_decode;
6749 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6750 	} else {
6751 		sge_idma_decode = (const char **)t5_decode;
6752 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6753 	}
6754 
6755 	if (state < sge_idma_decode_nstates)
6756 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6757 	else
6758 		CH_WARN(adapter, "idma state %d unknown\n", state);
6759 
6760 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6761 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6762 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6763 }
6764 
6765 /**
6766  *      t4_sge_ctxt_flush - flush the SGE context cache
6767  *      @adap: the adapter
6768  *      @mbox: mailbox to use for the FW command
6769  *      @ctx_type: Egress or Ingress
6770  *
6771  *      Issues a FW command through the given mailbox to flush the
6772  *      SGE context cache.
6773  */
6774 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6775 {
6776 	int ret;
6777 	u32 ldst_addrspace;
6778 	struct fw_ldst_cmd c;
6779 
6780 	memset(&c, 0, sizeof(c));
6781 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6782 						 FW_LDST_ADDRSPC_SGE_EGRC :
6783 						 FW_LDST_ADDRSPC_SGE_INGC);
6784 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6785 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6786 					ldst_addrspace);
6787 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6788 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6789 
6790 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6791 	return ret;
6792 }
6793 
6794 /**
6795  *	t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values
6796  *	@adap - the adapter
6797  *	@ndbqtimers: size of the provided SGE Doorbell Queue Timer table
6798  *	@dbqtimers: SGE Doorbell Queue Timer table
6799  *
6800  *	Reads the SGE Doorbell Queue Timer values into the provided table.
6801  *	Returns 0 on success (Firmware and Hardware support this feature),
6802  *	an error on failure.
6803  */
6804 int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers,
6805 			  u16 *dbqtimers)
6806 {
6807 	int ret, dbqtimerix;
6808 
6809 	ret = 0;
6810 	dbqtimerix = 0;
6811 	while (dbqtimerix < ndbqtimers) {
6812 		int nparams, param;
6813 		u32 params[7], vals[7];
6814 
6815 		nparams = ndbqtimers - dbqtimerix;
6816 		if (nparams > ARRAY_SIZE(params))
6817 			nparams = ARRAY_SIZE(params);
6818 
6819 		for (param = 0; param < nparams; param++)
6820 			params[param] =
6821 			  (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6822 			   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) |
6823 			   FW_PARAMS_PARAM_Y_V(dbqtimerix + param));
6824 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
6825 				      nparams, params, vals);
6826 		if (ret)
6827 			break;
6828 
6829 		for (param = 0; param < nparams; param++)
6830 			dbqtimers[dbqtimerix++] = vals[param];
6831 	}
6832 	return ret;
6833 }
6834 
6835 /**
6836  *      t4_fw_hello - establish communication with FW
6837  *      @adap: the adapter
6838  *      @mbox: mailbox to use for the FW command
6839  *      @evt_mbox: mailbox to receive async FW events
6840  *      @master: specifies the caller's willingness to be the device master
6841  *	@state: returns the current device state (if non-NULL)
6842  *
6843  *	Issues a command to establish communication with FW.  Returns either
6844  *	an error (negative integer) or the mailbox of the Master PF.
6845  */
6846 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6847 		enum dev_master master, enum dev_state *state)
6848 {
6849 	int ret;
6850 	struct fw_hello_cmd c;
6851 	u32 v;
6852 	unsigned int master_mbox;
6853 	int retries = FW_CMD_HELLO_RETRIES;
6854 
6855 retry:
6856 	memset(&c, 0, sizeof(c));
6857 	INIT_CMD(c, HELLO, WRITE);
6858 	c.err_to_clearinit = cpu_to_be32(
6859 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6860 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6861 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6862 					mbox : FW_HELLO_CMD_MBMASTER_M) |
6863 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6864 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6865 		FW_HELLO_CMD_CLEARINIT_F);
6866 
6867 	/*
6868 	 * Issue the HELLO command to the firmware.  If it's not successful
6869 	 * but indicates that we got a "busy" or "timeout" condition, retry
6870 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6871 	 * retry limit, check to see if the firmware left us any error
6872 	 * information and report that if so.
6873 	 */
6874 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6875 	if (ret < 0) {
6876 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6877 			goto retry;
6878 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6879 			t4_report_fw_error(adap);
6880 		return ret;
6881 	}
6882 
6883 	v = be32_to_cpu(c.err_to_clearinit);
6884 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6885 	if (state) {
6886 		if (v & FW_HELLO_CMD_ERR_F)
6887 			*state = DEV_STATE_ERR;
6888 		else if (v & FW_HELLO_CMD_INIT_F)
6889 			*state = DEV_STATE_INIT;
6890 		else
6891 			*state = DEV_STATE_UNINIT;
6892 	}
6893 
6894 	/*
6895 	 * If we're not the Master PF then we need to wait around for the
6896 	 * Master PF Driver to finish setting up the adapter.
6897 	 *
6898 	 * Note that we also do this wait if we're a non-Master-capable PF and
6899 	 * there is no current Master PF; a Master PF may show up momentarily
6900 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6901 	 * OS loads lots of different drivers rapidly at the same time).  In
6902 	 * this case, the Master PF returned by the firmware will be
6903 	 * PCIE_FW_MASTER_M so the test below will work ...
6904 	 */
6905 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6906 	    master_mbox != mbox) {
6907 		int waiting = FW_CMD_HELLO_TIMEOUT;
6908 
6909 		/*
6910 		 * Wait for the firmware to either indicate an error or
6911 		 * initialized state.  If we see either of these we bail out
6912 		 * and report the issue to the caller.  If we exhaust the
6913 		 * "hello timeout" and we haven't exhausted our retries, try
6914 		 * again.  Otherwise bail with a timeout error.
6915 		 */
6916 		for (;;) {
6917 			u32 pcie_fw;
6918 
6919 			msleep(50);
6920 			waiting -= 50;
6921 
6922 			/*
6923 			 * If neither Error nor Initialized are indicated
6924 			 * by the firmware keep waiting till we exhaust our
6925 			 * timeout ... and then retry if we haven't exhausted
6926 			 * our retries ...
6927 			 */
6928 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6929 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6930 				if (waiting <= 0) {
6931 					if (retries-- > 0)
6932 						goto retry;
6933 
6934 					return -ETIMEDOUT;
6935 				}
6936 				continue;
6937 			}
6938 
6939 			/*
6940 			 * We either have an Error or Initialized condition
6941 			 * report errors preferentially.
6942 			 */
6943 			if (state) {
6944 				if (pcie_fw & PCIE_FW_ERR_F)
6945 					*state = DEV_STATE_ERR;
6946 				else if (pcie_fw & PCIE_FW_INIT_F)
6947 					*state = DEV_STATE_INIT;
6948 			}
6949 
6950 			/*
6951 			 * If we arrived before a Master PF was selected and
6952 			 * there's not a valid Master PF, grab its identity
6953 			 * for our caller.
6954 			 */
6955 			if (master_mbox == PCIE_FW_MASTER_M &&
6956 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
6957 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6958 			break;
6959 		}
6960 	}
6961 
6962 	return master_mbox;
6963 }
6964 
6965 /**
6966  *	t4_fw_bye - end communication with FW
6967  *	@adap: the adapter
6968  *	@mbox: mailbox to use for the FW command
6969  *
6970  *	Issues a command to terminate communication with FW.
6971  */
6972 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6973 {
6974 	struct fw_bye_cmd c;
6975 
6976 	memset(&c, 0, sizeof(c));
6977 	INIT_CMD(c, BYE, WRITE);
6978 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6979 }
6980 
6981 /**
6982  *	t4_init_cmd - ask FW to initialize the device
6983  *	@adap: the adapter
6984  *	@mbox: mailbox to use for the FW command
6985  *
6986  *	Issues a command to FW to partially initialize the device.  This
6987  *	performs initialization that generally doesn't depend on user input.
6988  */
6989 int t4_early_init(struct adapter *adap, unsigned int mbox)
6990 {
6991 	struct fw_initialize_cmd c;
6992 
6993 	memset(&c, 0, sizeof(c));
6994 	INIT_CMD(c, INITIALIZE, WRITE);
6995 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6996 }
6997 
6998 /**
6999  *	t4_fw_reset - issue a reset to FW
7000  *	@adap: the adapter
7001  *	@mbox: mailbox to use for the FW command
7002  *	@reset: specifies the type of reset to perform
7003  *
7004  *	Issues a reset command of the specified type to FW.
7005  */
7006 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7007 {
7008 	struct fw_reset_cmd c;
7009 
7010 	memset(&c, 0, sizeof(c));
7011 	INIT_CMD(c, RESET, WRITE);
7012 	c.val = cpu_to_be32(reset);
7013 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7014 }
7015 
7016 /**
7017  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7018  *	@adap: the adapter
7019  *	@mbox: mailbox to use for the FW RESET command (if desired)
7020  *	@force: force uP into RESET even if FW RESET command fails
7021  *
7022  *	Issues a RESET command to firmware (if desired) with a HALT indication
7023  *	and then puts the microprocessor into RESET state.  The RESET command
7024  *	will only be issued if a legitimate mailbox is provided (mbox <=
7025  *	PCIE_FW_MASTER_M).
7026  *
7027  *	This is generally used in order for the host to safely manipulate the
7028  *	adapter without fear of conflicting with whatever the firmware might
7029  *	be doing.  The only way out of this state is to RESTART the firmware
7030  *	...
7031  */
7032 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7033 {
7034 	int ret = 0;
7035 
7036 	/*
7037 	 * If a legitimate mailbox is provided, issue a RESET command
7038 	 * with a HALT indication.
7039 	 */
7040 	if (mbox <= PCIE_FW_MASTER_M) {
7041 		struct fw_reset_cmd c;
7042 
7043 		memset(&c, 0, sizeof(c));
7044 		INIT_CMD(c, RESET, WRITE);
7045 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
7046 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
7047 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7048 	}
7049 
7050 	/*
7051 	 * Normally we won't complete the operation if the firmware RESET
7052 	 * command fails but if our caller insists we'll go ahead and put the
7053 	 * uP into RESET.  This can be useful if the firmware is hung or even
7054 	 * missing ...  We'll have to take the risk of putting the uP into
7055 	 * RESET without the cooperation of firmware in that case.
7056 	 *
7057 	 * We also force the firmware's HALT flag to be on in case we bypassed
7058 	 * the firmware RESET command above or we're dealing with old firmware
7059 	 * which doesn't have the HALT capability.  This will serve as a flag
7060 	 * for the incoming firmware to know that it's coming out of a HALT
7061 	 * rather than a RESET ... if it's new enough to understand that ...
7062 	 */
7063 	if (ret == 0 || force) {
7064 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
7065 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
7066 				 PCIE_FW_HALT_F);
7067 	}
7068 
7069 	/*
7070 	 * And we always return the result of the firmware RESET command
7071 	 * even when we force the uP into RESET ...
7072 	 */
7073 	return ret;
7074 }
7075 
7076 /**
7077  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
7078  *	@adap: the adapter
7079  *	@reset: if we want to do a RESET to restart things
7080  *
7081  *	Restart firmware previously halted by t4_fw_halt().  On successful
7082  *	return the previous PF Master remains as the new PF Master and there
7083  *	is no need to issue a new HELLO command, etc.
7084  *
7085  *	We do this in two ways:
7086  *
7087  *	 1. If we're dealing with newer firmware we'll simply want to take
7088  *	    the chip's microprocessor out of RESET.  This will cause the
7089  *	    firmware to start up from its start vector.  And then we'll loop
7090  *	    until the firmware indicates it's started again (PCIE_FW.HALT
7091  *	    reset to 0) or we timeout.
7092  *
7093  *	 2. If we're dealing with older firmware then we'll need to RESET
7094  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
7095  *	    flag and automatically RESET itself on startup.
7096  */
7097 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
7098 {
7099 	if (reset) {
7100 		/*
7101 		 * Since we're directing the RESET instead of the firmware
7102 		 * doing it automatically, we need to clear the PCIE_FW.HALT
7103 		 * bit.
7104 		 */
7105 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
7106 
7107 		/*
7108 		 * If we've been given a valid mailbox, first try to get the
7109 		 * firmware to do the RESET.  If that works, great and we can
7110 		 * return success.  Otherwise, if we haven't been given a
7111 		 * valid mailbox or the RESET command failed, fall back to
7112 		 * hitting the chip with a hammer.
7113 		 */
7114 		if (mbox <= PCIE_FW_MASTER_M) {
7115 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7116 			msleep(100);
7117 			if (t4_fw_reset(adap, mbox,
7118 					PIORST_F | PIORSTMODE_F) == 0)
7119 				return 0;
7120 		}
7121 
7122 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
7123 		msleep(2000);
7124 	} else {
7125 		int ms;
7126 
7127 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7128 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7129 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
7130 				return 0;
7131 			msleep(100);
7132 			ms += 100;
7133 		}
7134 		return -ETIMEDOUT;
7135 	}
7136 	return 0;
7137 }
7138 
7139 /**
7140  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7141  *	@adap: the adapter
7142  *	@mbox: mailbox to use for the FW RESET command (if desired)
7143  *	@fw_data: the firmware image to write
7144  *	@size: image size
7145  *	@force: force upgrade even if firmware doesn't cooperate
7146  *
7147  *	Perform all of the steps necessary for upgrading an adapter's
7148  *	firmware image.  Normally this requires the cooperation of the
7149  *	existing firmware in order to halt all existing activities
7150  *	but if an invalid mailbox token is passed in we skip that step
7151  *	(though we'll still put the adapter microprocessor into RESET in
7152  *	that case).
7153  *
7154  *	On successful return the new firmware will have been loaded and
7155  *	the adapter will have been fully RESET losing all previous setup
7156  *	state.  On unsuccessful return the adapter may be completely hosed ...
7157  *	positive errno indicates that the adapter is ~probably~ intact, a
7158  *	negative errno indicates that things are looking bad ...
7159  */
7160 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7161 		  const u8 *fw_data, unsigned int size, int force)
7162 {
7163 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7164 	int reset, ret;
7165 
7166 	if (!t4_fw_matches_chip(adap, fw_hdr))
7167 		return -EINVAL;
7168 
7169 	/* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag
7170 	 * set wont be sent when we are flashing FW.
7171 	 */
7172 	adap->flags &= ~CXGB4_FW_OK;
7173 
7174 	ret = t4_fw_halt(adap, mbox, force);
7175 	if (ret < 0 && !force)
7176 		goto out;
7177 
7178 	ret = t4_load_fw(adap, fw_data, size);
7179 	if (ret < 0)
7180 		goto out;
7181 
7182 	/*
7183 	 * If there was a Firmware Configuration File stored in FLASH,
7184 	 * there's a good chance that it won't be compatible with the new
7185 	 * Firmware.  In order to prevent difficult to diagnose adapter
7186 	 * initialization issues, we clear out the Firmware Configuration File
7187 	 * portion of the FLASH .  The user will need to re-FLASH a new
7188 	 * Firmware Configuration File which is compatible with the new
7189 	 * Firmware if that's desired.
7190 	 */
7191 	(void)t4_load_cfg(adap, NULL, 0);
7192 
7193 	/*
7194 	 * Older versions of the firmware don't understand the new
7195 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7196 	 * restart.  So for newly loaded older firmware we'll have to do the
7197 	 * RESET for it so it starts up on a clean slate.  We can tell if
7198 	 * the newly loaded firmware will handle this right by checking
7199 	 * its header flags to see if it advertises the capability.
7200 	 */
7201 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
7202 	ret = t4_fw_restart(adap, mbox, reset);
7203 
7204 	/* Grab potentially new Firmware Device Log parameters so we can see
7205 	 * how healthy the new Firmware is.  It's okay to contact the new
7206 	 * Firmware for these parameters even though, as far as it's
7207 	 * concerned, we've never said "HELLO" to it ...
7208 	 */
7209 	(void)t4_init_devlog_params(adap);
7210 out:
7211 	adap->flags |= CXGB4_FW_OK;
7212 	return ret;
7213 }
7214 
7215 /**
7216  *	t4_fl_pkt_align - return the fl packet alignment
7217  *	@adap: the adapter
7218  *
7219  *	T4 has a single field to specify the packing and padding boundary.
7220  *	T5 onwards has separate fields for this and hence the alignment for
7221  *	next packet offset is maximum of these two.
7222  *
7223  */
7224 int t4_fl_pkt_align(struct adapter *adap)
7225 {
7226 	u32 sge_control, sge_control2;
7227 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7228 
7229 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7230 
7231 	/* T4 uses a single control field to specify both the PCIe Padding and
7232 	 * Packing Boundary.  T5 introduced the ability to specify these
7233 	 * separately.  The actual Ingress Packet Data alignment boundary
7234 	 * within Packed Buffer Mode is the maximum of these two
7235 	 * specifications.  (Note that it makes no real practical sense to
7236 	 * have the Padding Boundary be larger than the Packing Boundary but you
7237 	 * could set the chip up that way and, in fact, legacy T4 code would
7238 	 * end doing this because it would initialize the Padding Boundary and
7239 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
7240 	 * Padding Boundary values in T6 starts from 8B,
7241 	 * where as it is 32B for T4 and T5.
7242 	 */
7243 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7244 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7245 	else
7246 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7247 
7248 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7249 
7250 	fl_align = ingpadboundary;
7251 	if (!is_t4(adap->params.chip)) {
7252 		/* T5 has a weird interpretation of one of the PCIe Packing
7253 		 * Boundary values.  No idea why ...
7254 		 */
7255 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7256 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7257 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7258 			ingpackboundary = 16;
7259 		else
7260 			ingpackboundary = 1 << (ingpackboundary +
7261 						INGPACKBOUNDARY_SHIFT_X);
7262 
7263 		fl_align = max(ingpadboundary, ingpackboundary);
7264 	}
7265 	return fl_align;
7266 }
7267 
7268 /**
7269  *	t4_fixup_host_params - fix up host-dependent parameters
7270  *	@adap: the adapter
7271  *	@page_size: the host's Base Page Size
7272  *	@cache_line_size: the host's Cache Line Size
7273  *
7274  *	Various registers in T4 contain values which are dependent on the
7275  *	host's Base Page and Cache Line Sizes.  This function will fix all of
7276  *	those registers with the appropriate values as passed in ...
7277  */
7278 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7279 			 unsigned int cache_line_size)
7280 {
7281 	unsigned int page_shift = fls(page_size) - 1;
7282 	unsigned int sge_hps = page_shift - 10;
7283 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7284 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7285 	unsigned int fl_align_log = fls(fl_align) - 1;
7286 
7287 	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7288 		     HOSTPAGESIZEPF0_V(sge_hps) |
7289 		     HOSTPAGESIZEPF1_V(sge_hps) |
7290 		     HOSTPAGESIZEPF2_V(sge_hps) |
7291 		     HOSTPAGESIZEPF3_V(sge_hps) |
7292 		     HOSTPAGESIZEPF4_V(sge_hps) |
7293 		     HOSTPAGESIZEPF5_V(sge_hps) |
7294 		     HOSTPAGESIZEPF6_V(sge_hps) |
7295 		     HOSTPAGESIZEPF7_V(sge_hps));
7296 
7297 	if (is_t4(adap->params.chip)) {
7298 		t4_set_reg_field(adap, SGE_CONTROL_A,
7299 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7300 				 EGRSTATUSPAGESIZE_F,
7301 				 INGPADBOUNDARY_V(fl_align_log -
7302 						  INGPADBOUNDARY_SHIFT_X) |
7303 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7304 	} else {
7305 		unsigned int pack_align;
7306 		unsigned int ingpad, ingpack;
7307 
7308 		/* T5 introduced the separation of the Free List Padding and
7309 		 * Packing Boundaries.  Thus, we can select a smaller Padding
7310 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
7311 		 * Bandwidth, and use a Packing Boundary which is large enough
7312 		 * to avoid false sharing between CPUs, etc.
7313 		 *
7314 		 * For the PCI Link, the smaller the Padding Boundary the
7315 		 * better.  For the Memory Controller, a smaller Padding
7316 		 * Boundary is better until we cross under the Memory Line
7317 		 * Size (the minimum unit of transfer to/from Memory).  If we
7318 		 * have a Padding Boundary which is smaller than the Memory
7319 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
7320 		 * Memory Controller which is never good.
7321 		 */
7322 
7323 		/* We want the Packing Boundary to be based on the Cache Line
7324 		 * Size in order to help avoid False Sharing performance
7325 		 * issues between CPUs, etc.  We also want the Packing
7326 		 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7327 		 * get best performance when the Packing Boundary is a
7328 		 * multiple of the Maximum Payload Size.
7329 		 */
7330 		pack_align = fl_align;
7331 		if (pci_is_pcie(adap->pdev)) {
7332 			unsigned int mps, mps_log;
7333 			u16 devctl;
7334 
7335 			/* The PCIe Device Control Maximum Payload Size field
7336 			 * [bits 7:5] encodes sizes as powers of 2 starting at
7337 			 * 128 bytes.
7338 			 */
7339 			pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL,
7340 						  &devctl);
7341 			mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7342 			mps = 1 << mps_log;
7343 			if (mps > pack_align)
7344 				pack_align = mps;
7345 		}
7346 
7347 		/* N.B. T5/T6 have a crazy special interpretation of the "0"
7348 		 * value for the Packing Boundary.  This corresponds to 16
7349 		 * bytes instead of the expected 32 bytes.  So if we want 32
7350 		 * bytes, the best we can really do is 64 bytes ...
7351 		 */
7352 		if (pack_align <= 16) {
7353 			ingpack = INGPACKBOUNDARY_16B_X;
7354 			fl_align = 16;
7355 		} else if (pack_align == 32) {
7356 			ingpack = INGPACKBOUNDARY_64B_X;
7357 			fl_align = 64;
7358 		} else {
7359 			unsigned int pack_align_log = fls(pack_align) - 1;
7360 
7361 			ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7362 			fl_align = pack_align;
7363 		}
7364 
7365 		/* Use the smallest Ingress Padding which isn't smaller than
7366 		 * the Memory Controller Read/Write Size.  We'll take that as
7367 		 * being 8 bytes since we don't know of any system with a
7368 		 * wider Memory Controller Bus Width.
7369 		 */
7370 		if (is_t5(adap->params.chip))
7371 			ingpad = INGPADBOUNDARY_32B_X;
7372 		else
7373 			ingpad = T6_INGPADBOUNDARY_8B_X;
7374 
7375 		t4_set_reg_field(adap, SGE_CONTROL_A,
7376 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7377 				 EGRSTATUSPAGESIZE_F,
7378 				 INGPADBOUNDARY_V(ingpad) |
7379 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7380 		t4_set_reg_field(adap, SGE_CONTROL2_A,
7381 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7382 				 INGPACKBOUNDARY_V(ingpack));
7383 	}
7384 	/*
7385 	 * Adjust various SGE Free List Host Buffer Sizes.
7386 	 *
7387 	 * This is something of a crock since we're using fixed indices into
7388 	 * the array which are also known by the sge.c code and the T4
7389 	 * Firmware Configuration File.  We need to come up with a much better
7390 	 * approach to managing this array.  For now, the first four entries
7391 	 * are:
7392 	 *
7393 	 *   0: Host Page Size
7394 	 *   1: 64KB
7395 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7396 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7397 	 *
7398 	 * For the single-MTU buffers in unpacked mode we need to include
7399 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7400 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7401 	 * Padding boundary.  All of these are accommodated in the Factory
7402 	 * Default Firmware Configuration File but we need to adjust it for
7403 	 * this host's cache line size.
7404 	 */
7405 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7406 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7407 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7408 		     & ~(fl_align-1));
7409 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7410 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7411 		     & ~(fl_align-1));
7412 
7413 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7414 
7415 	return 0;
7416 }
7417 
7418 /**
7419  *	t4_fw_initialize - ask FW to initialize the device
7420  *	@adap: the adapter
7421  *	@mbox: mailbox to use for the FW command
7422  *
7423  *	Issues a command to FW to partially initialize the device.  This
7424  *	performs initialization that generally doesn't depend on user input.
7425  */
7426 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7427 {
7428 	struct fw_initialize_cmd c;
7429 
7430 	memset(&c, 0, sizeof(c));
7431 	INIT_CMD(c, INITIALIZE, WRITE);
7432 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7433 }
7434 
7435 /**
7436  *	t4_query_params_rw - query FW or device parameters
7437  *	@adap: the adapter
7438  *	@mbox: mailbox to use for the FW command
7439  *	@pf: the PF
7440  *	@vf: the VF
7441  *	@nparams: the number of parameters
7442  *	@params: the parameter names
7443  *	@val: the parameter values
7444  *	@rw: Write and read flag
7445  *	@sleep_ok: if true, we may sleep awaiting mbox cmd completion
7446  *
7447  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7448  *	queried at once.
7449  */
7450 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7451 		       unsigned int vf, unsigned int nparams, const u32 *params,
7452 		       u32 *val, int rw, bool sleep_ok)
7453 {
7454 	int i, ret;
7455 	struct fw_params_cmd c;
7456 	__be32 *p = &c.param[0].mnem;
7457 
7458 	if (nparams > 7)
7459 		return -EINVAL;
7460 
7461 	memset(&c, 0, sizeof(c));
7462 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7463 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
7464 				  FW_PARAMS_CMD_PFN_V(pf) |
7465 				  FW_PARAMS_CMD_VFN_V(vf));
7466 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7467 
7468 	for (i = 0; i < nparams; i++) {
7469 		*p++ = cpu_to_be32(*params++);
7470 		if (rw)
7471 			*p = cpu_to_be32(*(val + i));
7472 		p++;
7473 	}
7474 
7475 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7476 	if (ret == 0)
7477 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7478 			*val++ = be32_to_cpu(*p);
7479 	return ret;
7480 }
7481 
7482 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7483 		    unsigned int vf, unsigned int nparams, const u32 *params,
7484 		    u32 *val)
7485 {
7486 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7487 				  true);
7488 }
7489 
7490 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7491 		       unsigned int vf, unsigned int nparams, const u32 *params,
7492 		       u32 *val)
7493 {
7494 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7495 				  false);
7496 }
7497 
7498 /**
7499  *      t4_set_params_timeout - sets FW or device parameters
7500  *      @adap: the adapter
7501  *      @mbox: mailbox to use for the FW command
7502  *      @pf: the PF
7503  *      @vf: the VF
7504  *      @nparams: the number of parameters
7505  *      @params: the parameter names
7506  *      @val: the parameter values
7507  *      @timeout: the timeout time
7508  *
7509  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7510  *      specified at once.
7511  */
7512 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7513 			  unsigned int pf, unsigned int vf,
7514 			  unsigned int nparams, const u32 *params,
7515 			  const u32 *val, int timeout)
7516 {
7517 	struct fw_params_cmd c;
7518 	__be32 *p = &c.param[0].mnem;
7519 
7520 	if (nparams > 7)
7521 		return -EINVAL;
7522 
7523 	memset(&c, 0, sizeof(c));
7524 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7525 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7526 				  FW_PARAMS_CMD_PFN_V(pf) |
7527 				  FW_PARAMS_CMD_VFN_V(vf));
7528 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7529 
7530 	while (nparams--) {
7531 		*p++ = cpu_to_be32(*params++);
7532 		*p++ = cpu_to_be32(*val++);
7533 	}
7534 
7535 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7536 }
7537 
7538 /**
7539  *	t4_set_params - sets FW or device parameters
7540  *	@adap: the adapter
7541  *	@mbox: mailbox to use for the FW command
7542  *	@pf: the PF
7543  *	@vf: the VF
7544  *	@nparams: the number of parameters
7545  *	@params: the parameter names
7546  *	@val: the parameter values
7547  *
7548  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7549  *	specified at once.
7550  */
7551 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7552 		  unsigned int vf, unsigned int nparams, const u32 *params,
7553 		  const u32 *val)
7554 {
7555 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7556 				     FW_CMD_MAX_TIMEOUT);
7557 }
7558 
7559 /**
7560  *	t4_cfg_pfvf - configure PF/VF resource limits
7561  *	@adap: the adapter
7562  *	@mbox: mailbox to use for the FW command
7563  *	@pf: the PF being configured
7564  *	@vf: the VF being configured
7565  *	@txq: the max number of egress queues
7566  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7567  *	@rxqi: the max number of interrupt-capable ingress queues
7568  *	@rxq: the max number of interruptless ingress queues
7569  *	@tc: the PCI traffic class
7570  *	@vi: the max number of virtual interfaces
7571  *	@cmask: the channel access rights mask for the PF/VF
7572  *	@pmask: the port access rights mask for the PF/VF
7573  *	@nexact: the maximum number of exact MPS filters
7574  *	@rcaps: read capabilities
7575  *	@wxcaps: write/execute capabilities
7576  *
7577  *	Configures resource limits and capabilities for a physical or virtual
7578  *	function.
7579  */
7580 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7581 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7582 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7583 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7584 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7585 {
7586 	struct fw_pfvf_cmd c;
7587 
7588 	memset(&c, 0, sizeof(c));
7589 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7590 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7591 				  FW_PFVF_CMD_VFN_V(vf));
7592 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7593 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7594 				     FW_PFVF_CMD_NIQ_V(rxq));
7595 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7596 				    FW_PFVF_CMD_PMASK_V(pmask) |
7597 				    FW_PFVF_CMD_NEQ_V(txq));
7598 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7599 				      FW_PFVF_CMD_NVI_V(vi) |
7600 				      FW_PFVF_CMD_NEXACTF_V(nexact));
7601 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7602 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7603 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7604 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7605 }
7606 
7607 /**
7608  *	t4_alloc_vi - allocate a virtual interface
7609  *	@adap: the adapter
7610  *	@mbox: mailbox to use for the FW command
7611  *	@port: physical port associated with the VI
7612  *	@pf: the PF owning the VI
7613  *	@vf: the VF owning the VI
7614  *	@nmac: number of MAC addresses needed (1 to 5)
7615  *	@mac: the MAC addresses of the VI
7616  *	@rss_size: size of RSS table slice associated with this VI
7617  *
7618  *	Allocates a virtual interface for the given physical port.  If @mac is
7619  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7620  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7621  *	stored consecutively so the space needed is @nmac * 6 bytes.
7622  *	Returns a negative error number or the non-negative VI id.
7623  */
7624 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7625 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7626 		unsigned int *rss_size, u8 *vivld, u8 *vin)
7627 {
7628 	int ret;
7629 	struct fw_vi_cmd c;
7630 
7631 	memset(&c, 0, sizeof(c));
7632 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7633 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7634 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7635 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7636 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7637 	c.nmac = nmac - 1;
7638 
7639 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7640 	if (ret)
7641 		return ret;
7642 
7643 	if (mac) {
7644 		memcpy(mac, c.mac, sizeof(c.mac));
7645 		switch (nmac) {
7646 		case 5:
7647 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7648 			/* Fall through */
7649 		case 4:
7650 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7651 			/* Fall through */
7652 		case 3:
7653 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7654 			/* Fall through */
7655 		case 2:
7656 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7657 		}
7658 	}
7659 	if (rss_size)
7660 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7661 
7662 	if (vivld)
7663 		*vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16));
7664 
7665 	if (vin)
7666 		*vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16));
7667 
7668 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7669 }
7670 
7671 /**
7672  *	t4_free_vi - free a virtual interface
7673  *	@adap: the adapter
7674  *	@mbox: mailbox to use for the FW command
7675  *	@pf: the PF owning the VI
7676  *	@vf: the VF owning the VI
7677  *	@viid: virtual interface identifiler
7678  *
7679  *	Free a previously allocated virtual interface.
7680  */
7681 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7682 	       unsigned int vf, unsigned int viid)
7683 {
7684 	struct fw_vi_cmd c;
7685 
7686 	memset(&c, 0, sizeof(c));
7687 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7688 				  FW_CMD_REQUEST_F |
7689 				  FW_CMD_EXEC_F |
7690 				  FW_VI_CMD_PFN_V(pf) |
7691 				  FW_VI_CMD_VFN_V(vf));
7692 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7693 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7694 
7695 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7696 }
7697 
7698 /**
7699  *	t4_set_rxmode - set Rx properties of a virtual interface
7700  *	@adap: the adapter
7701  *	@mbox: mailbox to use for the FW command
7702  *	@viid: the VI id
7703  *	@mtu: the new MTU or -1
7704  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7705  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7706  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7707  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7708  *	@sleep_ok: if true we may sleep while awaiting command completion
7709  *
7710  *	Sets Rx properties of a virtual interface.
7711  */
7712 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7713 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7714 		  bool sleep_ok)
7715 {
7716 	struct fw_vi_rxmode_cmd c;
7717 
7718 	/* convert to FW values */
7719 	if (mtu < 0)
7720 		mtu = FW_RXMODE_MTU_NO_CHG;
7721 	if (promisc < 0)
7722 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7723 	if (all_multi < 0)
7724 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7725 	if (bcast < 0)
7726 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7727 	if (vlanex < 0)
7728 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7729 
7730 	memset(&c, 0, sizeof(c));
7731 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7732 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7733 				   FW_VI_RXMODE_CMD_VIID_V(viid));
7734 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7735 	c.mtu_to_vlanexen =
7736 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7737 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7738 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7739 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7740 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7741 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7742 }
7743 
7744 /**
7745  *      t4_free_encap_mac_filt - frees MPS entry at given index
7746  *      @adap: the adapter
7747  *      @viid: the VI id
7748  *      @idx: index of MPS entry to be freed
7749  *      @sleep_ok: call is allowed to sleep
7750  *
7751  *      Frees the MPS entry at supplied index
7752  *
7753  *      Returns a negative error number or zero on success
7754  */
7755 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
7756 			   int idx, bool sleep_ok)
7757 {
7758 	struct fw_vi_mac_exact *p;
7759 	u8 addr[] = {0, 0, 0, 0, 0, 0};
7760 	struct fw_vi_mac_cmd c;
7761 	int ret = 0;
7762 	u32 exact;
7763 
7764 	memset(&c, 0, sizeof(c));
7765 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7766 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7767 				   FW_CMD_EXEC_V(0) |
7768 				   FW_VI_MAC_CMD_VIID_V(viid));
7769 	exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC);
7770 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7771 					  exact |
7772 					  FW_CMD_LEN16_V(1));
7773 	p = c.u.exact;
7774 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7775 				      FW_VI_MAC_CMD_IDX_V(idx));
7776 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7777 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7778 	return ret;
7779 }
7780 
7781 /**
7782  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7783  *	@adap: the adapter
7784  *	@viid: the VI id
7785  *	@addr: the MAC address
7786  *	@mask: the mask
7787  *	@idx: index of the entry in mps tcam
7788  *	@lookup_type: MAC address for inner (1) or outer (0) header
7789  *	@port_id: the port index
7790  *	@sleep_ok: call is allowed to sleep
7791  *
7792  *	Removes the mac entry at the specified index using raw mac interface.
7793  *
7794  *	Returns a negative error number on failure.
7795  */
7796 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7797 			 const u8 *addr, const u8 *mask, unsigned int idx,
7798 			 u8 lookup_type, u8 port_id, bool sleep_ok)
7799 {
7800 	struct fw_vi_mac_cmd c;
7801 	struct fw_vi_mac_raw *p = &c.u.raw;
7802 	u32 val;
7803 
7804 	memset(&c, 0, sizeof(c));
7805 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7806 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7807 				   FW_CMD_EXEC_V(0) |
7808 				   FW_VI_MAC_CMD_VIID_V(viid));
7809 	val = FW_CMD_LEN16_V(1) |
7810 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7811 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7812 					  FW_CMD_LEN16_V(val));
7813 
7814 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7815 				     FW_VI_MAC_ID_BASED_FREE);
7816 
7817 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7818 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7819 				   DATAPORTNUM_V(port_id));
7820 	/* Lookup mask and port mask */
7821 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7822 				    DATAPORTNUM_V(DATAPORTNUM_M));
7823 
7824 	/* Copy the address and the mask */
7825 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7826 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7827 
7828 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7829 }
7830 
7831 /**
7832  *      t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
7833  *      @adap: the adapter
7834  *      @viid: the VI id
7835  *      @mac: the MAC address
7836  *      @mask: the mask
7837  *      @vni: the VNI id for the tunnel protocol
7838  *      @vni_mask: mask for the VNI id
7839  *      @dip_hit: to enable DIP match for the MPS entry
7840  *      @lookup_type: MAC address for inner (1) or outer (0) header
7841  *      @sleep_ok: call is allowed to sleep
7842  *
7843  *      Allocates an MPS entry with specified MAC address and VNI value.
7844  *
7845  *      Returns a negative error number or the allocated index for this mac.
7846  */
7847 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
7848 			    const u8 *addr, const u8 *mask, unsigned int vni,
7849 			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
7850 			    bool sleep_ok)
7851 {
7852 	struct fw_vi_mac_cmd c;
7853 	struct fw_vi_mac_vni *p = c.u.exact_vni;
7854 	int ret = 0;
7855 	u32 val;
7856 
7857 	memset(&c, 0, sizeof(c));
7858 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7859 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7860 				   FW_VI_MAC_CMD_VIID_V(viid));
7861 	val = FW_CMD_LEN16_V(1) |
7862 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI);
7863 	c.freemacs_to_len16 = cpu_to_be32(val);
7864 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7865 				      FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
7866 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7867 	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
7868 
7869 	p->lookup_type_to_vni =
7870 		cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) |
7871 			    FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) |
7872 			    FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type));
7873 	p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask));
7874 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7875 	if (ret == 0)
7876 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7877 	return ret;
7878 }
7879 
7880 /**
7881  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7882  *	@adap: the adapter
7883  *	@viid: the VI id
7884  *	@mac: the MAC address
7885  *	@mask: the mask
7886  *	@idx: index at which to add this entry
7887  *	@port_id: the port index
7888  *	@lookup_type: MAC address for inner (1) or outer (0) header
7889  *	@sleep_ok: call is allowed to sleep
7890  *
7891  *	Adds the mac entry at the specified index using raw mac interface.
7892  *
7893  *	Returns a negative error number or the allocated index for this mac.
7894  */
7895 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7896 			  const u8 *addr, const u8 *mask, unsigned int idx,
7897 			  u8 lookup_type, u8 port_id, bool sleep_ok)
7898 {
7899 	int ret = 0;
7900 	struct fw_vi_mac_cmd c;
7901 	struct fw_vi_mac_raw *p = &c.u.raw;
7902 	u32 val;
7903 
7904 	memset(&c, 0, sizeof(c));
7905 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7906 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7907 				   FW_VI_MAC_CMD_VIID_V(viid));
7908 	val = FW_CMD_LEN16_V(1) |
7909 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7910 	c.freemacs_to_len16 = cpu_to_be32(val);
7911 
7912 	/* Specify that this is an inner mac address */
7913 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7914 
7915 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7916 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7917 				   DATAPORTNUM_V(port_id));
7918 	/* Lookup mask and port mask */
7919 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7920 				    DATAPORTNUM_V(DATAPORTNUM_M));
7921 
7922 	/* Copy the address and the mask */
7923 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7924 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7925 
7926 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7927 	if (ret == 0) {
7928 		ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7929 		if (ret != idx)
7930 			ret = -ENOMEM;
7931 	}
7932 
7933 	return ret;
7934 }
7935 
7936 /**
7937  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7938  *	@adap: the adapter
7939  *	@mbox: mailbox to use for the FW command
7940  *	@viid: the VI id
7941  *	@free: if true any existing filters for this VI id are first removed
7942  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7943  *	@addr: the MAC address(es)
7944  *	@idx: where to store the index of each allocated filter
7945  *	@hash: pointer to hash address filter bitmap
7946  *	@sleep_ok: call is allowed to sleep
7947  *
7948  *	Allocates an exact-match filter for each of the supplied addresses and
7949  *	sets it to the corresponding address.  If @idx is not %NULL it should
7950  *	have at least @naddr entries, each of which will be set to the index of
7951  *	the filter allocated for the corresponding MAC address.  If a filter
7952  *	could not be allocated for an address its index is set to 0xffff.
7953  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7954  *	are hashed and update the hash filter bitmap pointed at by @hash.
7955  *
7956  *	Returns a negative error number or the number of filters allocated.
7957  */
7958 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7959 		      unsigned int viid, bool free, unsigned int naddr,
7960 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7961 {
7962 	int offset, ret = 0;
7963 	struct fw_vi_mac_cmd c;
7964 	unsigned int nfilters = 0;
7965 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7966 	unsigned int rem = naddr;
7967 
7968 	if (naddr > max_naddr)
7969 		return -EINVAL;
7970 
7971 	for (offset = 0; offset < naddr ; /**/) {
7972 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7973 					 rem : ARRAY_SIZE(c.u.exact));
7974 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7975 						     u.exact[fw_naddr]), 16);
7976 		struct fw_vi_mac_exact *p;
7977 		int i;
7978 
7979 		memset(&c, 0, sizeof(c));
7980 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7981 					   FW_CMD_REQUEST_F |
7982 					   FW_CMD_WRITE_F |
7983 					   FW_CMD_EXEC_V(free) |
7984 					   FW_VI_MAC_CMD_VIID_V(viid));
7985 		c.freemacs_to_len16 =
7986 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
7987 				    FW_CMD_LEN16_V(len16));
7988 
7989 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7990 			p->valid_to_idx =
7991 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7992 					    FW_VI_MAC_CMD_IDX_V(
7993 						    FW_VI_MAC_ADD_MAC));
7994 			memcpy(p->macaddr, addr[offset + i],
7995 			       sizeof(p->macaddr));
7996 		}
7997 
7998 		/* It's okay if we run out of space in our MAC address arena.
7999 		 * Some of the addresses we submit may get stored so we need
8000 		 * to run through the reply to see what the results were ...
8001 		 */
8002 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8003 		if (ret && ret != -FW_ENOMEM)
8004 			break;
8005 
8006 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8007 			u16 index = FW_VI_MAC_CMD_IDX_G(
8008 					be16_to_cpu(p->valid_to_idx));
8009 
8010 			if (idx)
8011 				idx[offset + i] = (index >= max_naddr ?
8012 						   0xffff : index);
8013 			if (index < max_naddr)
8014 				nfilters++;
8015 			else if (hash)
8016 				*hash |= (1ULL <<
8017 					  hash_mac_addr(addr[offset + i]));
8018 		}
8019 
8020 		free = false;
8021 		offset += fw_naddr;
8022 		rem -= fw_naddr;
8023 	}
8024 
8025 	if (ret == 0 || ret == -FW_ENOMEM)
8026 		ret = nfilters;
8027 	return ret;
8028 }
8029 
8030 /**
8031  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
8032  *	@adap: the adapter
8033  *	@mbox: mailbox to use for the FW command
8034  *	@viid: the VI id
8035  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8036  *	@addr: the MAC address(es)
8037  *	@sleep_ok: call is allowed to sleep
8038  *
8039  *	Frees the exact-match filter for each of the supplied addresses
8040  *
8041  *	Returns a negative error number or the number of filters freed.
8042  */
8043 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8044 		     unsigned int viid, unsigned int naddr,
8045 		     const u8 **addr, bool sleep_ok)
8046 {
8047 	int offset, ret = 0;
8048 	struct fw_vi_mac_cmd c;
8049 	unsigned int nfilters = 0;
8050 	unsigned int max_naddr = is_t4(adap->params.chip) ?
8051 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
8052 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8053 	unsigned int rem = naddr;
8054 
8055 	if (naddr > max_naddr)
8056 		return -EINVAL;
8057 
8058 	for (offset = 0; offset < (int)naddr ; /**/) {
8059 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8060 					 ? rem
8061 					 : ARRAY_SIZE(c.u.exact));
8062 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8063 						     u.exact[fw_naddr]), 16);
8064 		struct fw_vi_mac_exact *p;
8065 		int i;
8066 
8067 		memset(&c, 0, sizeof(c));
8068 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8069 				     FW_CMD_REQUEST_F |
8070 				     FW_CMD_WRITE_F |
8071 				     FW_CMD_EXEC_V(0) |
8072 				     FW_VI_MAC_CMD_VIID_V(viid));
8073 		c.freemacs_to_len16 =
8074 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
8075 					    FW_CMD_LEN16_V(len16));
8076 
8077 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8078 			p->valid_to_idx = cpu_to_be16(
8079 				FW_VI_MAC_CMD_VALID_F |
8080 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
8081 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8082 		}
8083 
8084 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8085 		if (ret)
8086 			break;
8087 
8088 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8089 			u16 index = FW_VI_MAC_CMD_IDX_G(
8090 						be16_to_cpu(p->valid_to_idx));
8091 
8092 			if (index < max_naddr)
8093 				nfilters++;
8094 		}
8095 
8096 		offset += fw_naddr;
8097 		rem -= fw_naddr;
8098 	}
8099 
8100 	if (ret == 0)
8101 		ret = nfilters;
8102 	return ret;
8103 }
8104 
8105 /**
8106  *	t4_change_mac - modifies the exact-match filter for a MAC address
8107  *	@adap: the adapter
8108  *	@mbox: mailbox to use for the FW command
8109  *	@viid: the VI id
8110  *	@idx: index of existing filter for old value of MAC address, or -1
8111  *	@addr: the new MAC address value
8112  *	@persist: whether a new MAC allocation should be persistent
8113  *	@add_smt: if true also add the address to the HW SMT
8114  *
8115  *	Modifies an exact-match filter and sets it to the new MAC address.
8116  *	Note that in general it is not possible to modify the value of a given
8117  *	filter so the generic way to modify an address filter is to free the one
8118  *	being used by the old address value and allocate a new filter for the
8119  *	new address value.  @idx can be -1 if the address is a new addition.
8120  *
8121  *	Returns a negative error number or the index of the filter with the new
8122  *	MAC value.
8123  */
8124 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8125 		  int idx, const u8 *addr, bool persist, u8 *smt_idx)
8126 {
8127 	int ret, mode;
8128 	struct fw_vi_mac_cmd c;
8129 	struct fw_vi_mac_exact *p = c.u.exact;
8130 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
8131 
8132 	if (idx < 0)                             /* new allocation */
8133 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8134 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8135 
8136 	memset(&c, 0, sizeof(c));
8137 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8138 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8139 				   FW_VI_MAC_CMD_VIID_V(viid));
8140 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
8141 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8142 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
8143 				      FW_VI_MAC_CMD_IDX_V(idx));
8144 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8145 
8146 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8147 	if (ret == 0) {
8148 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
8149 		if (ret >= max_mac_addr)
8150 			ret = -ENOMEM;
8151 		if (smt_idx) {
8152 			if (adap->params.viid_smt_extn_support) {
8153 				*smt_idx = FW_VI_MAC_CMD_SMTID_G
8154 						    (be32_to_cpu(c.op_to_viid));
8155 			} else {
8156 				/* In T4/T5, SMT contains 256 SMAC entries
8157 				 * organized in 128 rows of 2 entries each.
8158 				 * In T6, SMT contains 256 SMAC entries in
8159 				 * 256 rows.
8160 				 */
8161 				if (CHELSIO_CHIP_VERSION(adap->params.chip) <=
8162 								     CHELSIO_T5)
8163 					*smt_idx = (viid & FW_VIID_VIN_M) << 1;
8164 				else
8165 					*smt_idx = (viid & FW_VIID_VIN_M);
8166 			}
8167 		}
8168 	}
8169 	return ret;
8170 }
8171 
8172 /**
8173  *	t4_set_addr_hash - program the MAC inexact-match hash filter
8174  *	@adap: the adapter
8175  *	@mbox: mailbox to use for the FW command
8176  *	@viid: the VI id
8177  *	@ucast: whether the hash filter should also match unicast addresses
8178  *	@vec: the value to be written to the hash filter
8179  *	@sleep_ok: call is allowed to sleep
8180  *
8181  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8182  */
8183 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8184 		     bool ucast, u64 vec, bool sleep_ok)
8185 {
8186 	struct fw_vi_mac_cmd c;
8187 
8188 	memset(&c, 0, sizeof(c));
8189 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8190 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8191 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8192 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
8193 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
8194 					  FW_CMD_LEN16_V(1));
8195 	c.u.hash.hashvec = cpu_to_be64(vec);
8196 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8197 }
8198 
8199 /**
8200  *      t4_enable_vi_params - enable/disable a virtual interface
8201  *      @adap: the adapter
8202  *      @mbox: mailbox to use for the FW command
8203  *      @viid: the VI id
8204  *      @rx_en: 1=enable Rx, 0=disable Rx
8205  *      @tx_en: 1=enable Tx, 0=disable Tx
8206  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8207  *
8208  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8209  *      only makes sense when enabling a Virtual Interface ...
8210  */
8211 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8212 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8213 {
8214 	struct fw_vi_enable_cmd c;
8215 
8216 	memset(&c, 0, sizeof(c));
8217 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8218 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8219 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8220 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
8221 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
8222 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
8223 				     FW_LEN16(c));
8224 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8225 }
8226 
8227 /**
8228  *	t4_enable_vi - enable/disable a virtual interface
8229  *	@adap: the adapter
8230  *	@mbox: mailbox to use for the FW command
8231  *	@viid: the VI id
8232  *	@rx_en: 1=enable Rx, 0=disable Rx
8233  *	@tx_en: 1=enable Tx, 0=disable Tx
8234  *
8235  *	Enables/disables a virtual interface.
8236  */
8237 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8238 		 bool rx_en, bool tx_en)
8239 {
8240 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8241 }
8242 
8243 /**
8244  *	t4_enable_pi_params - enable/disable a Port's Virtual Interface
8245  *      @adap: the adapter
8246  *      @mbox: mailbox to use for the FW command
8247  *      @pi: the Port Information structure
8248  *      @rx_en: 1=enable Rx, 0=disable Rx
8249  *      @tx_en: 1=enable Tx, 0=disable Tx
8250  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8251  *
8252  *      Enables/disables a Port's Virtual Interface.  Note that setting DCB
8253  *	Enable only makes sense when enabling a Virtual Interface ...
8254  *	If the Virtual Interface enable/disable operation is successful,
8255  *	we notify the OS-specific code of a potential Link Status change
8256  *	via the OS Contract API t4_os_link_changed().
8257  */
8258 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox,
8259 			struct port_info *pi,
8260 			bool rx_en, bool tx_en, bool dcb_en)
8261 {
8262 	int ret = t4_enable_vi_params(adap, mbox, pi->viid,
8263 				      rx_en, tx_en, dcb_en);
8264 	if (ret)
8265 		return ret;
8266 	t4_os_link_changed(adap, pi->port_id,
8267 			   rx_en && tx_en && pi->link_cfg.link_ok);
8268 	return 0;
8269 }
8270 
8271 /**
8272  *	t4_identify_port - identify a VI's port by blinking its LED
8273  *	@adap: the adapter
8274  *	@mbox: mailbox to use for the FW command
8275  *	@viid: the VI id
8276  *	@nblinks: how many times to blink LED at 2.5 Hz
8277  *
8278  *	Identifies a VI's port by blinking its LED.
8279  */
8280 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8281 		     unsigned int nblinks)
8282 {
8283 	struct fw_vi_enable_cmd c;
8284 
8285 	memset(&c, 0, sizeof(c));
8286 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8287 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8288 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8289 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
8290 	c.blinkdur = cpu_to_be16(nblinks);
8291 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8292 }
8293 
8294 /**
8295  *	t4_iq_stop - stop an ingress queue and its FLs
8296  *	@adap: the adapter
8297  *	@mbox: mailbox to use for the FW command
8298  *	@pf: the PF owning the queues
8299  *	@vf: the VF owning the queues
8300  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8301  *	@iqid: ingress queue id
8302  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8303  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8304  *
8305  *	Stops an ingress queue and its associated FLs, if any.  This causes
8306  *	any current or future data/messages destined for these queues to be
8307  *	tossed.
8308  */
8309 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8310 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8311 	       unsigned int fl0id, unsigned int fl1id)
8312 {
8313 	struct fw_iq_cmd c;
8314 
8315 	memset(&c, 0, sizeof(c));
8316 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8317 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8318 				  FW_IQ_CMD_VFN_V(vf));
8319 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
8320 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8321 	c.iqid = cpu_to_be16(iqid);
8322 	c.fl0id = cpu_to_be16(fl0id);
8323 	c.fl1id = cpu_to_be16(fl1id);
8324 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8325 }
8326 
8327 /**
8328  *	t4_iq_free - free an ingress queue and its FLs
8329  *	@adap: the adapter
8330  *	@mbox: mailbox to use for the FW command
8331  *	@pf: the PF owning the queues
8332  *	@vf: the VF owning the queues
8333  *	@iqtype: the ingress queue type
8334  *	@iqid: ingress queue id
8335  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8336  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8337  *
8338  *	Frees an ingress queue and its associated FLs, if any.
8339  */
8340 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8341 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8342 	       unsigned int fl0id, unsigned int fl1id)
8343 {
8344 	struct fw_iq_cmd c;
8345 
8346 	memset(&c, 0, sizeof(c));
8347 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8348 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8349 				  FW_IQ_CMD_VFN_V(vf));
8350 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
8351 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8352 	c.iqid = cpu_to_be16(iqid);
8353 	c.fl0id = cpu_to_be16(fl0id);
8354 	c.fl1id = cpu_to_be16(fl1id);
8355 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8356 }
8357 
8358 /**
8359  *	t4_eth_eq_free - free an Ethernet egress queue
8360  *	@adap: the adapter
8361  *	@mbox: mailbox to use for the FW command
8362  *	@pf: the PF owning the queue
8363  *	@vf: the VF owning the queue
8364  *	@eqid: egress queue id
8365  *
8366  *	Frees an Ethernet egress queue.
8367  */
8368 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8369 		   unsigned int vf, unsigned int eqid)
8370 {
8371 	struct fw_eq_eth_cmd c;
8372 
8373 	memset(&c, 0, sizeof(c));
8374 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8375 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8376 				  FW_EQ_ETH_CMD_PFN_V(pf) |
8377 				  FW_EQ_ETH_CMD_VFN_V(vf));
8378 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8379 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8380 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8381 }
8382 
8383 /**
8384  *	t4_ctrl_eq_free - free a control egress queue
8385  *	@adap: the adapter
8386  *	@mbox: mailbox to use for the FW command
8387  *	@pf: the PF owning the queue
8388  *	@vf: the VF owning the queue
8389  *	@eqid: egress queue id
8390  *
8391  *	Frees a control egress queue.
8392  */
8393 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8394 		    unsigned int vf, unsigned int eqid)
8395 {
8396 	struct fw_eq_ctrl_cmd c;
8397 
8398 	memset(&c, 0, sizeof(c));
8399 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8400 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8401 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
8402 				  FW_EQ_CTRL_CMD_VFN_V(vf));
8403 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8404 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8405 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8406 }
8407 
8408 /**
8409  *	t4_ofld_eq_free - free an offload egress queue
8410  *	@adap: the adapter
8411  *	@mbox: mailbox to use for the FW command
8412  *	@pf: the PF owning the queue
8413  *	@vf: the VF owning the queue
8414  *	@eqid: egress queue id
8415  *
8416  *	Frees a control egress queue.
8417  */
8418 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8419 		    unsigned int vf, unsigned int eqid)
8420 {
8421 	struct fw_eq_ofld_cmd c;
8422 
8423 	memset(&c, 0, sizeof(c));
8424 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8425 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8426 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
8427 				  FW_EQ_OFLD_CMD_VFN_V(vf));
8428 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8429 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8430 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8431 }
8432 
8433 /**
8434  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8435  *	@adap: the adapter
8436  *	@link_down_rc: Link Down Reason Code
8437  *
8438  *	Returns a string representation of the Link Down Reason Code.
8439  */
8440 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8441 {
8442 	static const char * const reason[] = {
8443 		"Link Down",
8444 		"Remote Fault",
8445 		"Auto-negotiation Failure",
8446 		"Reserved",
8447 		"Insufficient Airflow",
8448 		"Unable To Determine Reason",
8449 		"No RX Signal Detected",
8450 		"Reserved",
8451 	};
8452 
8453 	if (link_down_rc >= ARRAY_SIZE(reason))
8454 		return "Bad Reason Code";
8455 
8456 	return reason[link_down_rc];
8457 }
8458 
8459 /**
8460  * Return the highest speed set in the port capabilities, in Mb/s.
8461  */
8462 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8463 {
8464 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8465 		do { \
8466 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8467 				return __speed; \
8468 		} while (0)
8469 
8470 	TEST_SPEED_RETURN(400G, 400000);
8471 	TEST_SPEED_RETURN(200G, 200000);
8472 	TEST_SPEED_RETURN(100G, 100000);
8473 	TEST_SPEED_RETURN(50G,   50000);
8474 	TEST_SPEED_RETURN(40G,   40000);
8475 	TEST_SPEED_RETURN(25G,   25000);
8476 	TEST_SPEED_RETURN(10G,   10000);
8477 	TEST_SPEED_RETURN(1G,     1000);
8478 	TEST_SPEED_RETURN(100M,    100);
8479 
8480 	#undef TEST_SPEED_RETURN
8481 
8482 	return 0;
8483 }
8484 
8485 /**
8486  *	fwcap_to_fwspeed - return highest speed in Port Capabilities
8487  *	@acaps: advertised Port Capabilities
8488  *
8489  *	Get the highest speed for the port from the advertised Port
8490  *	Capabilities.  It will be either the highest speed from the list of
8491  *	speeds or whatever user has set using ethtool.
8492  */
8493 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8494 {
8495 	#define TEST_SPEED_RETURN(__caps_speed) \
8496 		do { \
8497 			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8498 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8499 		} while (0)
8500 
8501 	TEST_SPEED_RETURN(400G);
8502 	TEST_SPEED_RETURN(200G);
8503 	TEST_SPEED_RETURN(100G);
8504 	TEST_SPEED_RETURN(50G);
8505 	TEST_SPEED_RETURN(40G);
8506 	TEST_SPEED_RETURN(25G);
8507 	TEST_SPEED_RETURN(10G);
8508 	TEST_SPEED_RETURN(1G);
8509 	TEST_SPEED_RETURN(100M);
8510 
8511 	#undef TEST_SPEED_RETURN
8512 
8513 	return 0;
8514 }
8515 
8516 /**
8517  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8518  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8519  *
8520  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8521  *	32-bit Port Capabilities value.
8522  */
8523 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8524 {
8525 	fw_port_cap32_t linkattr = 0;
8526 
8527 	/* Unfortunately the format of the Link Status in the old
8528 	 * 16-bit Port Information message isn't the same as the
8529 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8530 	 */
8531 	if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8532 		linkattr |= FW_PORT_CAP32_FC_RX;
8533 	if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8534 		linkattr |= FW_PORT_CAP32_FC_TX;
8535 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8536 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8537 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8538 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8539 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8540 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8541 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8542 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8543 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8544 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8545 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8546 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8547 
8548 	return linkattr;
8549 }
8550 
8551 /**
8552  *	t4_handle_get_port_info - process a FW reply message
8553  *	@pi: the port info
8554  *	@rpl: start of the FW message
8555  *
8556  *	Processes a GET_PORT_INFO FW reply message.
8557  */
8558 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8559 {
8560 	const struct fw_port_cmd *cmd = (const void *)rpl;
8561 	fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8562 	struct link_config *lc = &pi->link_cfg;
8563 	struct adapter *adapter = pi->adapter;
8564 	unsigned int speed, fc, fec, adv_fc;
8565 	enum fw_port_module_type mod_type;
8566 	int action, link_ok, linkdnrc;
8567 	enum fw_port_type port_type;
8568 
8569 	/* Extract the various fields from the Port Information message.
8570 	 */
8571 	action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8572 	switch (action) {
8573 	case FW_PORT_ACTION_GET_PORT_INFO: {
8574 		u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8575 
8576 		link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8577 		linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8578 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8579 		mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8580 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8581 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8582 		lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8583 		linkattr = lstatus_to_fwcap(lstatus);
8584 		break;
8585 	}
8586 
8587 	case FW_PORT_ACTION_GET_PORT_INFO32: {
8588 		u32 lstatus32;
8589 
8590 		lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8591 		link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8592 		linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8593 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8594 		mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8595 		pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8596 		acaps = be32_to_cpu(cmd->u.info32.acaps32);
8597 		lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8598 		linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8599 		break;
8600 	}
8601 
8602 	default:
8603 		dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8604 			be32_to_cpu(cmd->action_to_len16));
8605 		return;
8606 	}
8607 
8608 	fec = fwcap_to_cc_fec(acaps);
8609 	adv_fc = fwcap_to_cc_pause(acaps);
8610 	fc = fwcap_to_cc_pause(linkattr);
8611 	speed = fwcap_to_speed(linkattr);
8612 
8613 	/* Reset state for communicating new Transceiver Module status and
8614 	 * whether the OS-dependent layer wants us to redo the current
8615 	 * "sticky" L1 Configure Link Parameters.
8616 	 */
8617 	lc->new_module = false;
8618 	lc->redo_l1cfg = false;
8619 
8620 	if (mod_type != pi->mod_type) {
8621 		/* With the newer SFP28 and QSFP28 Transceiver Module Types,
8622 		 * various fundamental Port Capabilities which used to be
8623 		 * immutable can now change radically.  We can now have
8624 		 * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8625 		 * all change based on what Transceiver Module is inserted.
8626 		 * So we need to record the Physical "Port" Capabilities on
8627 		 * every Transceiver Module change.
8628 		 */
8629 		lc->pcaps = pcaps;
8630 
8631 		/* When a new Transceiver Module is inserted, the Firmware
8632 		 * will examine its i2c EPROM to determine its type and
8633 		 * general operating parameters including things like Forward
8634 		 * Error Control, etc.  Various IEEE 802.3 standards dictate
8635 		 * how to interpret these i2c values to determine default
8636 		 * "sutomatic" settings.  We record these for future use when
8637 		 * the user explicitly requests these standards-based values.
8638 		 */
8639 		lc->def_acaps = acaps;
8640 
8641 		/* Some versions of the early T6 Firmware "cheated" when
8642 		 * handling different Transceiver Modules by changing the
8643 		 * underlaying Port Type reported to the Host Drivers.  As
8644 		 * such we need to capture whatever Port Type the Firmware
8645 		 * sends us and record it in case it's different from what we
8646 		 * were told earlier.  Unfortunately, since Firmware is
8647 		 * forever, we'll need to keep this code here forever, but in
8648 		 * later T6 Firmware it should just be an assignment of the
8649 		 * same value already recorded.
8650 		 */
8651 		pi->port_type = port_type;
8652 
8653 		/* Record new Module Type information.
8654 		 */
8655 		pi->mod_type = mod_type;
8656 
8657 		/* Let the OS-dependent layer know if we have a new
8658 		 * Transceiver Module inserted.
8659 		 */
8660 		lc->new_module = t4_is_inserted_mod_type(mod_type);
8661 
8662 		t4_os_portmod_changed(adapter, pi->port_id);
8663 	}
8664 
8665 	if (link_ok != lc->link_ok || speed != lc->speed ||
8666 	    fc != lc->fc || adv_fc != lc->advertised_fc ||
8667 	    fec != lc->fec) {
8668 		/* something changed */
8669 		if (!link_ok && lc->link_ok) {
8670 			lc->link_down_rc = linkdnrc;
8671 			dev_warn_ratelimited(adapter->pdev_dev,
8672 					     "Port %d link down, reason: %s\n",
8673 					     pi->tx_chan,
8674 					     t4_link_down_rc_str(linkdnrc));
8675 		}
8676 		lc->link_ok = link_ok;
8677 		lc->speed = speed;
8678 		lc->advertised_fc = adv_fc;
8679 		lc->fc = fc;
8680 		lc->fec = fec;
8681 
8682 		lc->lpacaps = lpacaps;
8683 		lc->acaps = acaps & ADVERT_MASK;
8684 
8685 		/* If we're not physically capable of Auto-Negotiation, note
8686 		 * this as Auto-Negotiation disabled.  Otherwise, we track
8687 		 * what Auto-Negotiation settings we have.  Note parallel
8688 		 * structure in t4_link_l1cfg_core() and init_link_config().
8689 		 */
8690 		if (!(lc->acaps & FW_PORT_CAP32_ANEG)) {
8691 			lc->autoneg = AUTONEG_DISABLE;
8692 		} else if (lc->acaps & FW_PORT_CAP32_ANEG) {
8693 			lc->autoneg = AUTONEG_ENABLE;
8694 		} else {
8695 			/* When Autoneg is disabled, user needs to set
8696 			 * single speed.
8697 			 * Similar to cxgb4_ethtool.c: set_link_ksettings
8698 			 */
8699 			lc->acaps = 0;
8700 			lc->speed_caps = fwcap_to_fwspeed(acaps);
8701 			lc->autoneg = AUTONEG_DISABLE;
8702 		}
8703 
8704 		t4_os_link_changed(adapter, pi->port_id, link_ok);
8705 	}
8706 
8707 	/* If we have a new Transceiver Module and the OS-dependent code has
8708 	 * told us that it wants us to redo whatever "sticky" L1 Configuration
8709 	 * Link Parameters are set, do that now.
8710 	 */
8711 	if (lc->new_module && lc->redo_l1cfg) {
8712 		struct link_config old_lc;
8713 		int ret;
8714 
8715 		/* Save the current L1 Configuration and restore it if an
8716 		 * error occurs.  We probably should fix the l1_cfg*()
8717 		 * routines not to change the link_config when an error
8718 		 * occurs ...
8719 		 */
8720 		old_lc = *lc;
8721 		ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc);
8722 		if (ret) {
8723 			*lc = old_lc;
8724 			dev_warn(adapter->pdev_dev,
8725 				 "Attempt to update new Transceiver Module settings failed\n");
8726 		}
8727 	}
8728 	lc->new_module = false;
8729 	lc->redo_l1cfg = false;
8730 }
8731 
8732 /**
8733  *	t4_update_port_info - retrieve and update port information if changed
8734  *	@pi: the port_info
8735  *
8736  *	We issue a Get Port Information Command to the Firmware and, if
8737  *	successful, we check to see if anything is different from what we
8738  *	last recorded and update things accordingly.
8739  */
8740 int t4_update_port_info(struct port_info *pi)
8741 {
8742 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8743 	struct fw_port_cmd port_cmd;
8744 	int ret;
8745 
8746 	memset(&port_cmd, 0, sizeof(port_cmd));
8747 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8748 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8749 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8750 	port_cmd.action_to_len16 = cpu_to_be32(
8751 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8752 				     ? FW_PORT_ACTION_GET_PORT_INFO
8753 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
8754 		FW_LEN16(port_cmd));
8755 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8756 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8757 	if (ret)
8758 		return ret;
8759 
8760 	t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8761 	return 0;
8762 }
8763 
8764 /**
8765  *	t4_get_link_params - retrieve basic link parameters for given port
8766  *	@pi: the port
8767  *	@link_okp: value return pointer for link up/down
8768  *	@speedp: value return pointer for speed (Mb/s)
8769  *	@mtup: value return pointer for mtu
8770  *
8771  *	Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8772  *	and MTU for a specified port.  A negative error is returned on
8773  *	failure; 0 on success.
8774  */
8775 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8776 		       unsigned int *speedp, unsigned int *mtup)
8777 {
8778 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8779 	unsigned int action, link_ok, mtu;
8780 	struct fw_port_cmd port_cmd;
8781 	fw_port_cap32_t linkattr;
8782 	int ret;
8783 
8784 	memset(&port_cmd, 0, sizeof(port_cmd));
8785 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8786 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8787 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8788 	action = (fw_caps == FW_CAPS16
8789 		  ? FW_PORT_ACTION_GET_PORT_INFO
8790 		  : FW_PORT_ACTION_GET_PORT_INFO32);
8791 	port_cmd.action_to_len16 = cpu_to_be32(
8792 		FW_PORT_CMD_ACTION_V(action) |
8793 		FW_LEN16(port_cmd));
8794 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8795 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8796 	if (ret)
8797 		return ret;
8798 
8799 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8800 		u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8801 
8802 		link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8803 		linkattr = lstatus_to_fwcap(lstatus);
8804 		mtu = be16_to_cpu(port_cmd.u.info.mtu);
8805 	} else {
8806 		u32 lstatus32 =
8807 			   be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8808 
8809 		link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8810 		linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8811 		mtu = FW_PORT_CMD_MTU32_G(
8812 			be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8813 	}
8814 
8815 	if (link_okp)
8816 		*link_okp = link_ok;
8817 	if (speedp)
8818 		*speedp = fwcap_to_speed(linkattr);
8819 	if (mtup)
8820 		*mtup = mtu;
8821 
8822 	return 0;
8823 }
8824 
8825 /**
8826  *      t4_handle_fw_rpl - process a FW reply message
8827  *      @adap: the adapter
8828  *      @rpl: start of the FW message
8829  *
8830  *      Processes a FW message, such as link state change messages.
8831  */
8832 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8833 {
8834 	u8 opcode = *(const u8 *)rpl;
8835 
8836 	/* This might be a port command ... this simplifies the following
8837 	 * conditionals ...  We can get away with pre-dereferencing
8838 	 * action_to_len16 because it's in the first 16 bytes and all messages
8839 	 * will be at least that long.
8840 	 */
8841 	const struct fw_port_cmd *p = (const void *)rpl;
8842 	unsigned int action =
8843 		FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8844 
8845 	if (opcode == FW_PORT_CMD &&
8846 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8847 	     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8848 		int i;
8849 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8850 		struct port_info *pi = NULL;
8851 
8852 		for_each_port(adap, i) {
8853 			pi = adap2pinfo(adap, i);
8854 			if (pi->tx_chan == chan)
8855 				break;
8856 		}
8857 
8858 		t4_handle_get_port_info(pi, rpl);
8859 	} else {
8860 		dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8861 			 opcode);
8862 		return -EINVAL;
8863 	}
8864 	return 0;
8865 }
8866 
8867 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8868 {
8869 	u16 val;
8870 
8871 	if (pci_is_pcie(adapter->pdev)) {
8872 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8873 		p->speed = val & PCI_EXP_LNKSTA_CLS;
8874 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8875 	}
8876 }
8877 
8878 /**
8879  *	init_link_config - initialize a link's SW state
8880  *	@lc: pointer to structure holding the link state
8881  *	@pcaps: link Port Capabilities
8882  *	@acaps: link current Advertised Port Capabilities
8883  *
8884  *	Initializes the SW state maintained for each link, including the link's
8885  *	capabilities and default speed/flow-control/autonegotiation settings.
8886  */
8887 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8888 			     fw_port_cap32_t acaps)
8889 {
8890 	lc->pcaps = pcaps;
8891 	lc->def_acaps = acaps;
8892 	lc->lpacaps = 0;
8893 	lc->speed_caps = 0;
8894 	lc->speed = 0;
8895 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8896 
8897 	/* For Forward Error Control, we default to whatever the Firmware
8898 	 * tells us the Link is currently advertising.
8899 	 */
8900 	lc->requested_fec = FEC_AUTO;
8901 	lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8902 
8903 	/* If the Port is capable of Auto-Negtotiation, initialize it as
8904 	 * "enabled" and copy over all of the Physical Port Capabilities
8905 	 * to the Advertised Port Capabilities.  Otherwise mark it as
8906 	 * Auto-Negotiate disabled and select the highest supported speed
8907 	 * for the link.  Note parallel structure in t4_link_l1cfg_core()
8908 	 * and t4_handle_get_port_info().
8909 	 */
8910 	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8911 		lc->acaps = lc->pcaps & ADVERT_MASK;
8912 		lc->autoneg = AUTONEG_ENABLE;
8913 		lc->requested_fc |= PAUSE_AUTONEG;
8914 	} else {
8915 		lc->acaps = 0;
8916 		lc->autoneg = AUTONEG_DISABLE;
8917 		lc->speed_caps = fwcap_to_fwspeed(acaps);
8918 	}
8919 }
8920 
8921 #define CIM_PF_NOACCESS 0xeeeeeeee
8922 
8923 int t4_wait_dev_ready(void __iomem *regs)
8924 {
8925 	u32 whoami;
8926 
8927 	whoami = readl(regs + PL_WHOAMI_A);
8928 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8929 		return 0;
8930 
8931 	msleep(500);
8932 	whoami = readl(regs + PL_WHOAMI_A);
8933 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8934 }
8935 
8936 struct flash_desc {
8937 	u32 vendor_and_model_id;
8938 	u32 size_mb;
8939 };
8940 
8941 static int t4_get_flash_params(struct adapter *adap)
8942 {
8943 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
8944 	 * to the preexisting code.  All flash parts have 64KB sectors.
8945 	 */
8946 	static struct flash_desc supported_flash[] = {
8947 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8948 	};
8949 
8950 	unsigned int part, manufacturer;
8951 	unsigned int density, size = 0;
8952 	u32 flashid = 0;
8953 	int ret;
8954 
8955 	/* Issue a Read ID Command to the Flash part.  We decode supported
8956 	 * Flash parts and their sizes from this.  There's a newer Query
8957 	 * Command which can retrieve detailed geometry information but many
8958 	 * Flash parts don't support it.
8959 	 */
8960 
8961 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8962 	if (!ret)
8963 		ret = sf1_read(adap, 3, 0, 1, &flashid);
8964 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8965 	if (ret)
8966 		return ret;
8967 
8968 	/* Check to see if it's one of our non-standard supported Flash parts.
8969 	 */
8970 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8971 		if (supported_flash[part].vendor_and_model_id == flashid) {
8972 			adap->params.sf_size = supported_flash[part].size_mb;
8973 			adap->params.sf_nsec =
8974 				adap->params.sf_size / SF_SEC_SIZE;
8975 			goto found;
8976 		}
8977 
8978 	/* Decode Flash part size.  The code below looks repetitive with
8979 	 * common encodings, but that's not guaranteed in the JEDEC
8980 	 * specification for the Read JEDEC ID command.  The only thing that
8981 	 * we're guaranteed by the JEDEC specification is where the
8982 	 * Manufacturer ID is in the returned result.  After that each
8983 	 * Manufacturer ~could~ encode things completely differently.
8984 	 * Note, all Flash parts must have 64KB sectors.
8985 	 */
8986 	manufacturer = flashid & 0xff;
8987 	switch (manufacturer) {
8988 	case 0x20: { /* Micron/Numonix */
8989 		/* This Density -> Size decoding table is taken from Micron
8990 		 * Data Sheets.
8991 		 */
8992 		density = (flashid >> 16) & 0xff;
8993 		switch (density) {
8994 		case 0x14: /* 1MB */
8995 			size = 1 << 20;
8996 			break;
8997 		case 0x15: /* 2MB */
8998 			size = 1 << 21;
8999 			break;
9000 		case 0x16: /* 4MB */
9001 			size = 1 << 22;
9002 			break;
9003 		case 0x17: /* 8MB */
9004 			size = 1 << 23;
9005 			break;
9006 		case 0x18: /* 16MB */
9007 			size = 1 << 24;
9008 			break;
9009 		case 0x19: /* 32MB */
9010 			size = 1 << 25;
9011 			break;
9012 		case 0x20: /* 64MB */
9013 			size = 1 << 26;
9014 			break;
9015 		case 0x21: /* 128MB */
9016 			size = 1 << 27;
9017 			break;
9018 		case 0x22: /* 256MB */
9019 			size = 1 << 28;
9020 			break;
9021 		}
9022 		break;
9023 	}
9024 	case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
9025 		/* This Density -> Size decoding table is taken from ISSI
9026 		 * Data Sheets.
9027 		 */
9028 		density = (flashid >> 16) & 0xff;
9029 		switch (density) {
9030 		case 0x16: /* 32 MB */
9031 			size = 1 << 25;
9032 			break;
9033 		case 0x17: /* 64MB */
9034 			size = 1 << 26;
9035 			break;
9036 		}
9037 		break;
9038 	}
9039 	case 0xc2: { /* Macronix */
9040 		/* This Density -> Size decoding table is taken from Macronix
9041 		 * Data Sheets.
9042 		 */
9043 		density = (flashid >> 16) & 0xff;
9044 		switch (density) {
9045 		case 0x17: /* 8MB */
9046 			size = 1 << 23;
9047 			break;
9048 		case 0x18: /* 16MB */
9049 			size = 1 << 24;
9050 			break;
9051 		}
9052 		break;
9053 	}
9054 	case 0xef: { /* Winbond */
9055 		/* This Density -> Size decoding table is taken from Winbond
9056 		 * Data Sheets.
9057 		 */
9058 		density = (flashid >> 16) & 0xff;
9059 		switch (density) {
9060 		case 0x17: /* 8MB */
9061 			size = 1 << 23;
9062 			break;
9063 		case 0x18: /* 16MB */
9064 			size = 1 << 24;
9065 			break;
9066 		}
9067 		break;
9068 	}
9069 	}
9070 
9071 	/* If we didn't recognize the FLASH part, that's no real issue: the
9072 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
9073 	 * use a FLASH part which is at least 4MB in size and has 64KB
9074 	 * sectors.  The unrecognized FLASH part is likely to be much larger
9075 	 * than 4MB, but that's all we really need.
9076 	 */
9077 	if (size == 0) {
9078 		dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
9079 			 flashid);
9080 		size = 1 << 22;
9081 	}
9082 
9083 	/* Store decoded Flash size and fall through into vetting code. */
9084 	adap->params.sf_size = size;
9085 	adap->params.sf_nsec = size / SF_SEC_SIZE;
9086 
9087 found:
9088 	if (adap->params.sf_size < FLASH_MIN_SIZE)
9089 		dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9090 			 flashid, adap->params.sf_size, FLASH_MIN_SIZE);
9091 	return 0;
9092 }
9093 
9094 /**
9095  *	t4_prep_adapter - prepare SW and HW for operation
9096  *	@adapter: the adapter
9097  *	@reset: if true perform a HW reset
9098  *
9099  *	Initialize adapter SW state for the various HW modules, set initial
9100  *	values for some adapter tunables, take PHYs out of reset, and
9101  *	initialize the MDIO interface.
9102  */
9103 int t4_prep_adapter(struct adapter *adapter)
9104 {
9105 	int ret, ver;
9106 	uint16_t device_id;
9107 	u32 pl_rev;
9108 
9109 	get_pci_mode(adapter, &adapter->params.pci);
9110 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
9111 
9112 	ret = t4_get_flash_params(adapter);
9113 	if (ret < 0) {
9114 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
9115 		return ret;
9116 	}
9117 
9118 	/* Retrieve adapter's device ID
9119 	 */
9120 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
9121 	ver = device_id >> 12;
9122 	adapter->params.chip = 0;
9123 	switch (ver) {
9124 	case CHELSIO_T4:
9125 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
9126 		adapter->params.arch.sge_fl_db = DBPRIO_F;
9127 		adapter->params.arch.mps_tcam_size =
9128 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
9129 		adapter->params.arch.mps_rplc_size = 128;
9130 		adapter->params.arch.nchan = NCHAN;
9131 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9132 		adapter->params.arch.vfcount = 128;
9133 		/* Congestion map is for 4 channels so that
9134 		 * MPS can have 4 priority per port.
9135 		 */
9136 		adapter->params.arch.cng_ch_bits_log = 2;
9137 		break;
9138 	case CHELSIO_T5:
9139 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
9140 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
9141 		adapter->params.arch.mps_tcam_size =
9142 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9143 		adapter->params.arch.mps_rplc_size = 128;
9144 		adapter->params.arch.nchan = NCHAN;
9145 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9146 		adapter->params.arch.vfcount = 128;
9147 		adapter->params.arch.cng_ch_bits_log = 2;
9148 		break;
9149 	case CHELSIO_T6:
9150 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
9151 		adapter->params.arch.sge_fl_db = 0;
9152 		adapter->params.arch.mps_tcam_size =
9153 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9154 		adapter->params.arch.mps_rplc_size = 256;
9155 		adapter->params.arch.nchan = 2;
9156 		adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
9157 		adapter->params.arch.vfcount = 256;
9158 		/* Congestion map will be for 2 channels so that
9159 		 * MPS can have 8 priority per port.
9160 		 */
9161 		adapter->params.arch.cng_ch_bits_log = 3;
9162 		break;
9163 	default:
9164 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
9165 			device_id);
9166 		return -EINVAL;
9167 	}
9168 
9169 	adapter->params.cim_la_size = CIMLA_SIZE;
9170 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9171 
9172 	/*
9173 	 * Default port for debugging in case we can't reach FW.
9174 	 */
9175 	adapter->params.nports = 1;
9176 	adapter->params.portvec = 1;
9177 	adapter->params.vpd.cclk = 50000;
9178 
9179 	/* Set PCIe completion timeout to 4 seconds. */
9180 	pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
9181 					   PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
9182 	return 0;
9183 }
9184 
9185 /**
9186  *	t4_shutdown_adapter - shut down adapter, host & wire
9187  *	@adapter: the adapter
9188  *
9189  *	Perform an emergency shutdown of the adapter and stop it from
9190  *	continuing any further communication on the ports or DMA to the
9191  *	host.  This is typically used when the adapter and/or firmware
9192  *	have crashed and we want to prevent any further accidental
9193  *	communication with the rest of the world.  This will also force
9194  *	the port Link Status to go down -- if register writes work --
9195  *	which should help our peers figure out that we're down.
9196  */
9197 int t4_shutdown_adapter(struct adapter *adapter)
9198 {
9199 	int port;
9200 
9201 	t4_intr_disable(adapter);
9202 	t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
9203 	for_each_port(adapter, port) {
9204 		u32 a_port_cfg = is_t4(adapter->params.chip) ?
9205 				       PORT_REG(port, XGMAC_PORT_CFG_A) :
9206 				       T5_PORT_REG(port, MAC_PORT_CFG_A);
9207 
9208 		t4_write_reg(adapter, a_port_cfg,
9209 			     t4_read_reg(adapter, a_port_cfg)
9210 			     & ~SIGNAL_DET_V(1));
9211 	}
9212 	t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
9213 
9214 	return 0;
9215 }
9216 
9217 /**
9218  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9219  *	@adapter: the adapter
9220  *	@qid: the Queue ID
9221  *	@qtype: the Ingress or Egress type for @qid
9222  *	@user: true if this request is for a user mode queue
9223  *	@pbar2_qoffset: BAR2 Queue Offset
9224  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9225  *
9226  *	Returns the BAR2 SGE Queue Registers information associated with the
9227  *	indicated Absolute Queue ID.  These are passed back in return value
9228  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9229  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9230  *
9231  *	This may return an error which indicates that BAR2 SGE Queue
9232  *	registers aren't available.  If an error is not returned, then the
9233  *	following values are returned:
9234  *
9235  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9236  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9237  *
9238  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9239  *	require the "Inferred Queue ID" ability may be used.  E.g. the
9240  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9241  *	then these "Inferred Queue ID" register may not be used.
9242  */
9243 int t4_bar2_sge_qregs(struct adapter *adapter,
9244 		      unsigned int qid,
9245 		      enum t4_bar2_qtype qtype,
9246 		      int user,
9247 		      u64 *pbar2_qoffset,
9248 		      unsigned int *pbar2_qid)
9249 {
9250 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9251 	u64 bar2_page_offset, bar2_qoffset;
9252 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9253 
9254 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
9255 	if (!user && is_t4(adapter->params.chip))
9256 		return -EINVAL;
9257 
9258 	/* Get our SGE Page Size parameters.
9259 	 */
9260 	page_shift = adapter->params.sge.hps + 10;
9261 	page_size = 1 << page_shift;
9262 
9263 	/* Get the right Queues per Page parameters for our Queue.
9264 	 */
9265 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9266 		     ? adapter->params.sge.eq_qpp
9267 		     : adapter->params.sge.iq_qpp);
9268 	qpp_mask = (1 << qpp_shift) - 1;
9269 
9270 	/*  Calculate the basics of the BAR2 SGE Queue register area:
9271 	 *  o The BAR2 page the Queue registers will be in.
9272 	 *  o The BAR2 Queue ID.
9273 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9274 	 */
9275 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9276 	bar2_qid = qid & qpp_mask;
9277 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9278 
9279 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9280 	 * hardware will infer the Absolute Queue ID simply from the writes to
9281 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9282 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9283 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9284 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9285 	 * from the BAR2 Page and BAR2 Queue ID.
9286 	 *
9287 	 * One important censequence of this is that some BAR2 SGE registers
9288 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9289 	 * there.  But other registers synthesize the SGE Queue ID purely
9290 	 * from the writes to the registers -- the Write Combined Doorbell
9291 	 * Buffer is a good example.  These BAR2 SGE Registers are only
9292 	 * available for those BAR2 SGE Register areas where the SGE Absolute
9293 	 * Queue ID can be inferred from simple writes.
9294 	 */
9295 	bar2_qoffset = bar2_page_offset;
9296 	bar2_qinferred = (bar2_qid_offset < page_size);
9297 	if (bar2_qinferred) {
9298 		bar2_qoffset += bar2_qid_offset;
9299 		bar2_qid = 0;
9300 	}
9301 
9302 	*pbar2_qoffset = bar2_qoffset;
9303 	*pbar2_qid = bar2_qid;
9304 	return 0;
9305 }
9306 
9307 /**
9308  *	t4_init_devlog_params - initialize adapter->params.devlog
9309  *	@adap: the adapter
9310  *
9311  *	Initialize various fields of the adapter's Firmware Device Log
9312  *	Parameters structure.
9313  */
9314 int t4_init_devlog_params(struct adapter *adap)
9315 {
9316 	struct devlog_params *dparams = &adap->params.devlog;
9317 	u32 pf_dparams;
9318 	unsigned int devlog_meminfo;
9319 	struct fw_devlog_cmd devlog_cmd;
9320 	int ret;
9321 
9322 	/* If we're dealing with newer firmware, the Device Log Parameters
9323 	 * are stored in a designated register which allows us to access the
9324 	 * Device Log even if we can't talk to the firmware.
9325 	 */
9326 	pf_dparams =
9327 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
9328 	if (pf_dparams) {
9329 		unsigned int nentries, nentries128;
9330 
9331 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
9332 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
9333 
9334 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
9335 		nentries = (nentries128 + 1) * 128;
9336 		dparams->size = nentries * sizeof(struct fw_devlog_e);
9337 
9338 		return 0;
9339 	}
9340 
9341 	/* Otherwise, ask the firmware for it's Device Log Parameters.
9342 	 */
9343 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9344 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
9345 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
9346 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9347 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9348 			 &devlog_cmd);
9349 	if (ret)
9350 		return ret;
9351 
9352 	devlog_meminfo =
9353 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9354 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
9355 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
9356 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9357 
9358 	return 0;
9359 }
9360 
9361 /**
9362  *	t4_init_sge_params - initialize adap->params.sge
9363  *	@adapter: the adapter
9364  *
9365  *	Initialize various fields of the adapter's SGE Parameters structure.
9366  */
9367 int t4_init_sge_params(struct adapter *adapter)
9368 {
9369 	struct sge_params *sge_params = &adapter->params.sge;
9370 	u32 hps, qpp;
9371 	unsigned int s_hps, s_qpp;
9372 
9373 	/* Extract the SGE Page Size for our PF.
9374 	 */
9375 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
9376 	s_hps = (HOSTPAGESIZEPF0_S +
9377 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
9378 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
9379 
9380 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
9381 	 */
9382 	s_qpp = (QUEUESPERPAGEPF0_S +
9383 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
9384 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
9385 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9386 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
9387 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9388 
9389 	return 0;
9390 }
9391 
9392 /**
9393  *      t4_init_tp_params - initialize adap->params.tp
9394  *      @adap: the adapter
9395  *      @sleep_ok: if true we may sleep while awaiting command completion
9396  *
9397  *      Initialize various fields of the adapter's TP Parameters structure.
9398  */
9399 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9400 {
9401 	u32 param, val, v;
9402 	int chan, ret;
9403 
9404 
9405 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
9406 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
9407 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
9408 
9409 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9410 	for (chan = 0; chan < NCHAN; chan++)
9411 		adap->params.tp.tx_modq[chan] = chan;
9412 
9413 	/* Cache the adapter's Compressed Filter Mode/Mask and global Ingress
9414 	 * Configuration.
9415 	 */
9416 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
9417 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) |
9418 		 FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK));
9419 
9420 	/* Read current value */
9421 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
9422 			      &param, &val);
9423 	if (ret == 0) {
9424 		dev_info(adap->pdev_dev,
9425 			 "Current filter mode/mask 0x%x:0x%x\n",
9426 			 FW_PARAMS_PARAM_FILTER_MODE_G(val),
9427 			 FW_PARAMS_PARAM_FILTER_MASK_G(val));
9428 		adap->params.tp.vlan_pri_map =
9429 			FW_PARAMS_PARAM_FILTER_MODE_G(val);
9430 		adap->params.tp.filter_mask =
9431 			FW_PARAMS_PARAM_FILTER_MASK_G(val);
9432 	} else {
9433 		dev_info(adap->pdev_dev,
9434 			 "Failed to read filter mode/mask via fw api, using indirect-reg-read\n");
9435 
9436 		/* Incase of older-fw (which doesn't expose the api
9437 		 * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses
9438 		 * the fw api) combination, fall-back to older method of reading
9439 		 * the filter mode from indirect-register
9440 		 */
9441 		t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9442 			       TP_VLAN_PRI_MAP_A, sleep_ok);
9443 
9444 		/* With the older-fw and newer-driver combination we might run
9445 		 * into an issue when user wants to use hash filter region but
9446 		 * the filter_mask is zero, in this case filter_mask validation
9447 		 * is tough. To avoid that we set the filter_mask same as filter
9448 		 * mode, which will behave exactly as the older way of ignoring
9449 		 * the filter mask validation.
9450 		 */
9451 		adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map;
9452 	}
9453 
9454 	t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9455 		       TP_INGRESS_CONFIG_A, sleep_ok);
9456 
9457 	/* For T6, cache the adapter's compressed error vector
9458 	 * and passing outer header info for encapsulated packets.
9459 	 */
9460 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9461 		v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9462 		adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9463 	}
9464 
9465 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9466 	 * shift positions of several elements of the Compressed Filter Tuple
9467 	 * for this adapter which we need frequently ...
9468 	 */
9469 	adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9470 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9471 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9472 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9473 	adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9474 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9475 							       PROTOCOL_F);
9476 	adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9477 								ETHERTYPE_F);
9478 	adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9479 							       MACMATCH_F);
9480 	adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9481 								MPSHITTYPE_F);
9482 	adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9483 							   FRAGMENTATION_F);
9484 
9485 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9486 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
9487 	 */
9488 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9489 		adap->params.tp.vnic_shift = -1;
9490 
9491 	v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9492 	adap->params.tp.hash_filter_mask = v;
9493 	v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9494 	adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9495 	return 0;
9496 }
9497 
9498 /**
9499  *      t4_filter_field_shift - calculate filter field shift
9500  *      @adap: the adapter
9501  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9502  *
9503  *      Return the shift position of a filter field within the Compressed
9504  *      Filter Tuple.  The filter field is specified via its selection bit
9505  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9506  */
9507 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9508 {
9509 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9510 	unsigned int sel;
9511 	int field_shift;
9512 
9513 	if ((filter_mode & filter_sel) == 0)
9514 		return -1;
9515 
9516 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9517 		switch (filter_mode & sel) {
9518 		case FCOE_F:
9519 			field_shift += FT_FCOE_W;
9520 			break;
9521 		case PORT_F:
9522 			field_shift += FT_PORT_W;
9523 			break;
9524 		case VNIC_ID_F:
9525 			field_shift += FT_VNIC_ID_W;
9526 			break;
9527 		case VLAN_F:
9528 			field_shift += FT_VLAN_W;
9529 			break;
9530 		case TOS_F:
9531 			field_shift += FT_TOS_W;
9532 			break;
9533 		case PROTOCOL_F:
9534 			field_shift += FT_PROTOCOL_W;
9535 			break;
9536 		case ETHERTYPE_F:
9537 			field_shift += FT_ETHERTYPE_W;
9538 			break;
9539 		case MACMATCH_F:
9540 			field_shift += FT_MACMATCH_W;
9541 			break;
9542 		case MPSHITTYPE_F:
9543 			field_shift += FT_MPSHITTYPE_W;
9544 			break;
9545 		case FRAGMENTATION_F:
9546 			field_shift += FT_FRAGMENTATION_W;
9547 			break;
9548 		}
9549 	}
9550 	return field_shift;
9551 }
9552 
9553 int t4_init_rss_mode(struct adapter *adap, int mbox)
9554 {
9555 	int i, ret;
9556 	struct fw_rss_vi_config_cmd rvc;
9557 
9558 	memset(&rvc, 0, sizeof(rvc));
9559 
9560 	for_each_port(adap, i) {
9561 		struct port_info *p = adap2pinfo(adap, i);
9562 
9563 		rvc.op_to_viid =
9564 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9565 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
9566 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9567 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9568 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9569 		if (ret)
9570 			return ret;
9571 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9572 	}
9573 	return 0;
9574 }
9575 
9576 /**
9577  *	t4_init_portinfo - allocate a virtual interface and initialize port_info
9578  *	@pi: the port_info
9579  *	@mbox: mailbox to use for the FW command
9580  *	@port: physical port associated with the VI
9581  *	@pf: the PF owning the VI
9582  *	@vf: the VF owning the VI
9583  *	@mac: the MAC address of the VI
9584  *
9585  *	Allocates a virtual interface for the given physical port.  If @mac is
9586  *	not %NULL it contains the MAC address of the VI as assigned by FW.
9587  *	@mac should be large enough to hold an Ethernet address.
9588  *	Returns < 0 on error.
9589  */
9590 int t4_init_portinfo(struct port_info *pi, int mbox,
9591 		     int port, int pf, int vf, u8 mac[])
9592 {
9593 	struct adapter *adapter = pi->adapter;
9594 	unsigned int fw_caps = adapter->params.fw_caps_support;
9595 	struct fw_port_cmd cmd;
9596 	unsigned int rss_size;
9597 	enum fw_port_type port_type;
9598 	int mdio_addr;
9599 	fw_port_cap32_t pcaps, acaps;
9600 	u8 vivld = 0, vin = 0;
9601 	int ret;
9602 
9603 	/* If we haven't yet determined whether we're talking to Firmware
9604 	 * which knows the new 32-bit Port Capabilities, it's time to find
9605 	 * out now.  This will also tell new Firmware to send us Port Status
9606 	 * Updates using the new 32-bit Port Capabilities version of the
9607 	 * Port Information message.
9608 	 */
9609 	if (fw_caps == FW_CAPS_UNKNOWN) {
9610 		u32 param, val;
9611 
9612 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9613 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9614 		val = 1;
9615 		ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9616 		fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9617 		adapter->params.fw_caps_support = fw_caps;
9618 	}
9619 
9620 	memset(&cmd, 0, sizeof(cmd));
9621 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9622 				       FW_CMD_REQUEST_F | FW_CMD_READ_F |
9623 				       FW_PORT_CMD_PORTID_V(port));
9624 	cmd.action_to_len16 = cpu_to_be32(
9625 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9626 				     ? FW_PORT_ACTION_GET_PORT_INFO
9627 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
9628 		FW_LEN16(cmd));
9629 	ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9630 	if (ret)
9631 		return ret;
9632 
9633 	/* Extract the various fields from the Port Information message.
9634 	 */
9635 	if (fw_caps == FW_CAPS16) {
9636 		u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9637 
9638 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9639 		mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9640 			     ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9641 			     : -1);
9642 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9643 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9644 	} else {
9645 		u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9646 
9647 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9648 		mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9649 			     ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9650 			     : -1);
9651 		pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9652 		acaps = be32_to_cpu(cmd.u.info32.acaps32);
9653 	}
9654 
9655 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size,
9656 			  &vivld, &vin);
9657 	if (ret < 0)
9658 		return ret;
9659 
9660 	pi->viid = ret;
9661 	pi->tx_chan = port;
9662 	pi->lport = port;
9663 	pi->rss_size = rss_size;
9664 	pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port);
9665 
9666 	/* If fw supports returning the VIN as part of FW_VI_CMD,
9667 	 * save the returned values.
9668 	 */
9669 	if (adapter->params.viid_smt_extn_support) {
9670 		pi->vivld = vivld;
9671 		pi->vin = vin;
9672 	} else {
9673 		/* Retrieve the values from VIID */
9674 		pi->vivld = FW_VIID_VIVLD_G(pi->viid);
9675 		pi->vin =  FW_VIID_VIN_G(pi->viid);
9676 	}
9677 
9678 	pi->port_type = port_type;
9679 	pi->mdio_addr = mdio_addr;
9680 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
9681 
9682 	init_link_config(&pi->link_cfg, pcaps, acaps);
9683 	return 0;
9684 }
9685 
9686 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9687 {
9688 	u8 addr[6];
9689 	int ret, i, j = 0;
9690 
9691 	for_each_port(adap, i) {
9692 		struct port_info *pi = adap2pinfo(adap, i);
9693 
9694 		while ((adap->params.portvec & (1 << j)) == 0)
9695 			j++;
9696 
9697 		ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9698 		if (ret)
9699 			return ret;
9700 
9701 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9702 		j++;
9703 	}
9704 	return 0;
9705 }
9706 
9707 /**
9708  *	t4_read_cimq_cfg - read CIM queue configuration
9709  *	@adap: the adapter
9710  *	@base: holds the queue base addresses in bytes
9711  *	@size: holds the queue sizes in bytes
9712  *	@thres: holds the queue full thresholds in bytes
9713  *
9714  *	Returns the current configuration of the CIM queues, starting with
9715  *	the IBQs, then the OBQs.
9716  */
9717 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9718 {
9719 	unsigned int i, v;
9720 	int cim_num_obq = is_t4(adap->params.chip) ?
9721 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9722 
9723 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9724 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9725 			     QUENUMSELECT_V(i));
9726 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9727 		/* value is in 256-byte units */
9728 		*base++ = CIMQBASE_G(v) * 256;
9729 		*size++ = CIMQSIZE_G(v) * 256;
9730 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9731 	}
9732 	for (i = 0; i < cim_num_obq; i++) {
9733 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9734 			     QUENUMSELECT_V(i));
9735 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9736 		/* value is in 256-byte units */
9737 		*base++ = CIMQBASE_G(v) * 256;
9738 		*size++ = CIMQSIZE_G(v) * 256;
9739 	}
9740 }
9741 
9742 /**
9743  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9744  *	@adap: the adapter
9745  *	@qid: the queue index
9746  *	@data: where to store the queue contents
9747  *	@n: capacity of @data in 32-bit words
9748  *
9749  *	Reads the contents of the selected CIM queue starting at address 0 up
9750  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9751  *	error and the number of 32-bit words actually read on success.
9752  */
9753 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9754 {
9755 	int i, err, attempts;
9756 	unsigned int addr;
9757 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9758 
9759 	if (qid > 5 || (n & 3))
9760 		return -EINVAL;
9761 
9762 	addr = qid * nwords;
9763 	if (n > nwords)
9764 		n = nwords;
9765 
9766 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9767 	 * Wait for 1 Sec with a delay of 1 usec.
9768 	 */
9769 	attempts = 1000000;
9770 
9771 	for (i = 0; i < n; i++, addr++) {
9772 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9773 			     IBQDBGEN_F);
9774 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9775 				      attempts, 1);
9776 		if (err)
9777 			return err;
9778 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9779 	}
9780 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9781 	return i;
9782 }
9783 
9784 /**
9785  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9786  *	@adap: the adapter
9787  *	@qid: the queue index
9788  *	@data: where to store the queue contents
9789  *	@n: capacity of @data in 32-bit words
9790  *
9791  *	Reads the contents of the selected CIM queue starting at address 0 up
9792  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9793  *	error and the number of 32-bit words actually read on success.
9794  */
9795 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9796 {
9797 	int i, err;
9798 	unsigned int addr, v, nwords;
9799 	int cim_num_obq = is_t4(adap->params.chip) ?
9800 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9801 
9802 	if ((qid > (cim_num_obq - 1)) || (n & 3))
9803 		return -EINVAL;
9804 
9805 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9806 		     QUENUMSELECT_V(qid));
9807 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9808 
9809 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9810 	nwords = CIMQSIZE_G(v) * 64;  /* same */
9811 	if (n > nwords)
9812 		n = nwords;
9813 
9814 	for (i = 0; i < n; i++, addr++) {
9815 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9816 			     OBQDBGEN_F);
9817 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9818 				      2, 1);
9819 		if (err)
9820 			return err;
9821 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9822 	}
9823 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9824 	return i;
9825 }
9826 
9827 /**
9828  *	t4_cim_read - read a block from CIM internal address space
9829  *	@adap: the adapter
9830  *	@addr: the start address within the CIM address space
9831  *	@n: number of words to read
9832  *	@valp: where to store the result
9833  *
9834  *	Reads a block of 4-byte words from the CIM intenal address space.
9835  */
9836 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9837 		unsigned int *valp)
9838 {
9839 	int ret = 0;
9840 
9841 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9842 		return -EBUSY;
9843 
9844 	for ( ; !ret && n--; addr += 4) {
9845 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9846 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9847 				      0, 5, 2);
9848 		if (!ret)
9849 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9850 	}
9851 	return ret;
9852 }
9853 
9854 /**
9855  *	t4_cim_write - write a block into CIM internal address space
9856  *	@adap: the adapter
9857  *	@addr: the start address within the CIM address space
9858  *	@n: number of words to write
9859  *	@valp: set of values to write
9860  *
9861  *	Writes a block of 4-byte words into the CIM intenal address space.
9862  */
9863 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9864 		 const unsigned int *valp)
9865 {
9866 	int ret = 0;
9867 
9868 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9869 		return -EBUSY;
9870 
9871 	for ( ; !ret && n--; addr += 4) {
9872 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9873 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9874 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9875 				      0, 5, 2);
9876 	}
9877 	return ret;
9878 }
9879 
9880 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9881 			 unsigned int val)
9882 {
9883 	return t4_cim_write(adap, addr, 1, &val);
9884 }
9885 
9886 /**
9887  *	t4_cim_read_la - read CIM LA capture buffer
9888  *	@adap: the adapter
9889  *	@la_buf: where to store the LA data
9890  *	@wrptr: the HW write pointer within the capture buffer
9891  *
9892  *	Reads the contents of the CIM LA buffer with the most recent entry at
9893  *	the end	of the returned data and with the entry at @wrptr first.
9894  *	We try to leave the LA in the running state we find it in.
9895  */
9896 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9897 {
9898 	int i, ret;
9899 	unsigned int cfg, val, idx;
9900 
9901 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9902 	if (ret)
9903 		return ret;
9904 
9905 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
9906 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9907 		if (ret)
9908 			return ret;
9909 	}
9910 
9911 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9912 	if (ret)
9913 		goto restart;
9914 
9915 	idx = UPDBGLAWRPTR_G(val);
9916 	if (wrptr)
9917 		*wrptr = idx;
9918 
9919 	for (i = 0; i < adap->params.cim_la_size; i++) {
9920 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9921 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9922 		if (ret)
9923 			break;
9924 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9925 		if (ret)
9926 			break;
9927 		if (val & UPDBGLARDEN_F) {
9928 			ret = -ETIMEDOUT;
9929 			break;
9930 		}
9931 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9932 		if (ret)
9933 			break;
9934 
9935 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9936 		 * identify the 32-bit portion of the full 312-bit data
9937 		 */
9938 		if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9939 			idx = (idx & 0xff0) + 0x10;
9940 		else
9941 			idx++;
9942 		/* address can't exceed 0xfff */
9943 		idx &= UPDBGLARDPTR_M;
9944 	}
9945 restart:
9946 	if (cfg & UPDBGLAEN_F) {
9947 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9948 				      cfg & ~UPDBGLARDEN_F);
9949 		if (!ret)
9950 			ret = r;
9951 	}
9952 	return ret;
9953 }
9954 
9955 /**
9956  *	t4_tp_read_la - read TP LA capture buffer
9957  *	@adap: the adapter
9958  *	@la_buf: where to store the LA data
9959  *	@wrptr: the HW write pointer within the capture buffer
9960  *
9961  *	Reads the contents of the TP LA buffer with the most recent entry at
9962  *	the end	of the returned data and with the entry at @wrptr first.
9963  *	We leave the LA in the running state we find it in.
9964  */
9965 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9966 {
9967 	bool last_incomplete;
9968 	unsigned int i, cfg, val, idx;
9969 
9970 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
9971 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
9972 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9973 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
9974 
9975 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
9976 	idx = DBGLAWPTR_G(val);
9977 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
9978 	if (last_incomplete)
9979 		idx = (idx + 1) & DBGLARPTR_M;
9980 	if (wrptr)
9981 		*wrptr = idx;
9982 
9983 	val &= 0xffff;
9984 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
9985 	val |= adap->params.tp.la_mask;
9986 
9987 	for (i = 0; i < TPLA_SIZE; i++) {
9988 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
9989 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
9990 		idx = (idx + 1) & DBGLARPTR_M;
9991 	}
9992 
9993 	/* Wipe out last entry if it isn't valid */
9994 	if (last_incomplete)
9995 		la_buf[TPLA_SIZE - 1] = ~0ULL;
9996 
9997 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
9998 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9999 			     cfg | adap->params.tp.la_mask);
10000 }
10001 
10002 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10003  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10004  * state for more than the Warning Threshold then we'll issue a warning about
10005  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10006  * appears to be hung every Warning Repeat second till the situation clears.
10007  * If the situation clears, we'll note that as well.
10008  */
10009 #define SGE_IDMA_WARN_THRESH 1
10010 #define SGE_IDMA_WARN_REPEAT 300
10011 
10012 /**
10013  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10014  *	@adapter: the adapter
10015  *	@idma: the adapter IDMA Monitor state
10016  *
10017  *	Initialize the state of an SGE Ingress DMA Monitor.
10018  */
10019 void t4_idma_monitor_init(struct adapter *adapter,
10020 			  struct sge_idma_monitor_state *idma)
10021 {
10022 	/* Initialize the state variables for detecting an SGE Ingress DMA
10023 	 * hang.  The SGE has internal counters which count up on each clock
10024 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
10025 	 * same state they were on the previous clock tick.  The clock used is
10026 	 * the Core Clock so we have a limit on the maximum "time" they can
10027 	 * record; typically a very small number of seconds.  For instance,
10028 	 * with a 600MHz Core Clock, we can only count up to a bit more than
10029 	 * 7s.  So we'll synthesize a larger counter in order to not run the
10030 	 * risk of having the "timers" overflow and give us the flexibility to
10031 	 * maintain a Hung SGE State Machine of our own which operates across
10032 	 * a longer time frame.
10033 	 */
10034 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10035 	idma->idma_stalled[0] = 0;
10036 	idma->idma_stalled[1] = 0;
10037 }
10038 
10039 /**
10040  *	t4_idma_monitor - monitor SGE Ingress DMA state
10041  *	@adapter: the adapter
10042  *	@idma: the adapter IDMA Monitor state
10043  *	@hz: number of ticks/second
10044  *	@ticks: number of ticks since the last IDMA Monitor call
10045  */
10046 void t4_idma_monitor(struct adapter *adapter,
10047 		     struct sge_idma_monitor_state *idma,
10048 		     int hz, int ticks)
10049 {
10050 	int i, idma_same_state_cnt[2];
10051 
10052 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10053 	  * are counters inside the SGE which count up on each clock when the
10054 	  * SGE finds its Ingress DMA State Engines in the same states they
10055 	  * were in the previous clock.  The counters will peg out at
10056 	  * 0xffffffff without wrapping around so once they pass the 1s
10057 	  * threshold they'll stay above that till the IDMA state changes.
10058 	  */
10059 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
10060 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
10061 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10062 
10063 	for (i = 0; i < 2; i++) {
10064 		u32 debug0, debug11;
10065 
10066 		/* If the Ingress DMA Same State Counter ("timer") is less
10067 		 * than 1s, then we can reset our synthesized Stall Timer and
10068 		 * continue.  If we have previously emitted warnings about a
10069 		 * potential stalled Ingress Queue, issue a note indicating
10070 		 * that the Ingress Queue has resumed forward progress.
10071 		 */
10072 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10073 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
10074 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
10075 					 "resumed after %d seconds\n",
10076 					 i, idma->idma_qid[i],
10077 					 idma->idma_stalled[i] / hz);
10078 			idma->idma_stalled[i] = 0;
10079 			continue;
10080 		}
10081 
10082 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10083 		 * domain.  The first time we get here it'll be because we
10084 		 * passed the 1s Threshold; each additional time it'll be
10085 		 * because the RX Timer Callback is being fired on its regular
10086 		 * schedule.
10087 		 *
10088 		 * If the stall is below our Potential Hung Ingress Queue
10089 		 * Warning Threshold, continue.
10090 		 */
10091 		if (idma->idma_stalled[i] == 0) {
10092 			idma->idma_stalled[i] = hz;
10093 			idma->idma_warn[i] = 0;
10094 		} else {
10095 			idma->idma_stalled[i] += ticks;
10096 			idma->idma_warn[i] -= ticks;
10097 		}
10098 
10099 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
10100 			continue;
10101 
10102 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10103 		 */
10104 		if (idma->idma_warn[i] > 0)
10105 			continue;
10106 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
10107 
10108 		/* Read and save the SGE IDMA State and Queue ID information.
10109 		 * We do this every time in case it changes across time ...
10110 		 * can't be too careful ...
10111 		 */
10112 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
10113 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10114 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10115 
10116 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
10117 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10118 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10119 
10120 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
10121 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10122 			 i, idma->idma_qid[i], idma->idma_state[i],
10123 			 idma->idma_stalled[i] / hz,
10124 			 debug0, debug11);
10125 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10126 	}
10127 }
10128 
10129 /**
10130  *	t4_load_cfg - download config file
10131  *	@adap: the adapter
10132  *	@cfg_data: the cfg text file to write
10133  *	@size: text file size
10134  *
10135  *	Write the supplied config text file to the card's serial flash.
10136  */
10137 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10138 {
10139 	int ret, i, n, cfg_addr;
10140 	unsigned int addr;
10141 	unsigned int flash_cfg_start_sec;
10142 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10143 
10144 	cfg_addr = t4_flash_cfg_addr(adap);
10145 	if (cfg_addr < 0)
10146 		return cfg_addr;
10147 
10148 	addr = cfg_addr;
10149 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10150 
10151 	if (size > FLASH_CFG_MAX_SIZE) {
10152 		dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
10153 			FLASH_CFG_MAX_SIZE);
10154 		return -EFBIG;
10155 	}
10156 
10157 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
10158 			 sf_sec_size);
10159 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10160 				     flash_cfg_start_sec + i - 1);
10161 	/* If size == 0 then we're simply erasing the FLASH sectors associated
10162 	 * with the on-adapter Firmware Configuration File.
10163 	 */
10164 	if (ret || size == 0)
10165 		goto out;
10166 
10167 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10168 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
10169 		if ((size - i) <  SF_PAGE_SIZE)
10170 			n = size - i;
10171 		else
10172 			n = SF_PAGE_SIZE;
10173 		ret = t4_write_flash(adap, addr, n, cfg_data);
10174 		if (ret)
10175 			goto out;
10176 
10177 		addr += SF_PAGE_SIZE;
10178 		cfg_data += SF_PAGE_SIZE;
10179 	}
10180 
10181 out:
10182 	if (ret)
10183 		dev_err(adap->pdev_dev, "config file %s failed %d\n",
10184 			(size == 0 ? "clear" : "download"), ret);
10185 	return ret;
10186 }
10187 
10188 /**
10189  *	t4_set_vf_mac - Set MAC address for the specified VF
10190  *	@adapter: The adapter
10191  *	@vf: one of the VFs instantiated by the specified PF
10192  *	@naddr: the number of MAC addresses
10193  *	@addr: the MAC address(es) to be set to the specified VF
10194  */
10195 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
10196 		      unsigned int naddr, u8 *addr)
10197 {
10198 	struct fw_acl_mac_cmd cmd;
10199 
10200 	memset(&cmd, 0, sizeof(cmd));
10201 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
10202 				    FW_CMD_REQUEST_F |
10203 				    FW_CMD_WRITE_F |
10204 				    FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
10205 				    FW_ACL_MAC_CMD_VFN_V(vf));
10206 
10207 	/* Note: Do not enable the ACL */
10208 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10209 	cmd.nmac = naddr;
10210 
10211 	switch (adapter->pf) {
10212 	case 3:
10213 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10214 		break;
10215 	case 2:
10216 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10217 		break;
10218 	case 1:
10219 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10220 		break;
10221 	case 0:
10222 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10223 		break;
10224 	}
10225 
10226 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10227 }
10228 
10229 /**
10230  * t4_read_pace_tbl - read the pace table
10231  * @adap: the adapter
10232  * @pace_vals: holds the returned values
10233  *
10234  * Returns the values of TP's pace table in microseconds.
10235  */
10236 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10237 {
10238 	unsigned int i, v;
10239 
10240 	for (i = 0; i < NTX_SCHED; i++) {
10241 		t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
10242 		v = t4_read_reg(adap, TP_PACE_TABLE_A);
10243 		pace_vals[i] = dack_ticks_to_usec(adap, v);
10244 	}
10245 }
10246 
10247 /**
10248  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10249  * @adap: the adapter
10250  * @sched: the scheduler index
10251  * @kbps: the byte rate in Kbps
10252  * @ipg: the interpacket delay in tenths of nanoseconds
10253  * @sleep_ok: if true we may sleep while awaiting command completion
10254  *
10255  * Return the current configuration of a HW Tx scheduler.
10256  */
10257 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
10258 		     unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
10259 {
10260 	unsigned int v, addr, bpt, cpt;
10261 
10262 	if (kbps) {
10263 		addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
10264 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10265 		if (sched & 1)
10266 			v >>= 16;
10267 		bpt = (v >> 8) & 0xff;
10268 		cpt = v & 0xff;
10269 		if (!cpt) {
10270 			*kbps = 0;	/* scheduler disabled */
10271 		} else {
10272 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10273 			*kbps = (v * bpt) / 125;
10274 		}
10275 	}
10276 	if (ipg) {
10277 		addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
10278 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10279 		if (sched & 1)
10280 			v >>= 16;
10281 		v &= 0xffff;
10282 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
10283 	}
10284 }
10285 
10286 /* t4_sge_ctxt_rd - read an SGE context through FW
10287  * @adap: the adapter
10288  * @mbox: mailbox to use for the FW command
10289  * @cid: the context id
10290  * @ctype: the context type
10291  * @data: where to store the context data
10292  *
10293  * Issues a FW command through the given mailbox to read an SGE context.
10294  */
10295 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10296 		   enum ctxt_type ctype, u32 *data)
10297 {
10298 	struct fw_ldst_cmd c;
10299 	int ret;
10300 
10301 	if (ctype == CTXT_FLM)
10302 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
10303 	else
10304 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
10305 
10306 	memset(&c, 0, sizeof(c));
10307 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10308 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
10309 					FW_LDST_CMD_ADDRSPACE_V(ret));
10310 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10311 	c.u.idctxt.physid = cpu_to_be32(cid);
10312 
10313 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10314 	if (ret == 0) {
10315 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10316 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10317 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10318 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10319 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10320 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10321 	}
10322 	return ret;
10323 }
10324 
10325 /**
10326  * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10327  * @adap: the adapter
10328  * @cid: the context id
10329  * @ctype: the context type
10330  * @data: where to store the context data
10331  *
10332  * Reads an SGE context directly, bypassing FW.  This is only for
10333  * debugging when FW is unavailable.
10334  */
10335 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
10336 		      enum ctxt_type ctype, u32 *data)
10337 {
10338 	int i, ret;
10339 
10340 	t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
10341 	ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
10342 	if (!ret)
10343 		for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
10344 			*data++ = t4_read_reg(adap, i);
10345 	return ret;
10346 }
10347 
10348 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
10349 		    int rateunit, int ratemode, int channel, int class,
10350 		    int minrate, int maxrate, int weight, int pktsize)
10351 {
10352 	struct fw_sched_cmd cmd;
10353 
10354 	memset(&cmd, 0, sizeof(cmd));
10355 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
10356 				      FW_CMD_REQUEST_F |
10357 				      FW_CMD_WRITE_F);
10358 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10359 
10360 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10361 	cmd.u.params.type = type;
10362 	cmd.u.params.level = level;
10363 	cmd.u.params.mode = mode;
10364 	cmd.u.params.ch = channel;
10365 	cmd.u.params.cl = class;
10366 	cmd.u.params.unit = rateunit;
10367 	cmd.u.params.rate = ratemode;
10368 	cmd.u.params.min = cpu_to_be32(minrate);
10369 	cmd.u.params.max = cpu_to_be32(maxrate);
10370 	cmd.u.params.weight = cpu_to_be16(weight);
10371 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
10372 
10373 	return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
10374 			       NULL, 1);
10375 }
10376 
10377 /**
10378  *	t4_i2c_rd - read I2C data from adapter
10379  *	@adap: the adapter
10380  *	@port: Port number if per-port device; <0 if not
10381  *	@devid: per-port device ID or absolute device ID
10382  *	@offset: byte offset into device I2C space
10383  *	@len: byte length of I2C space data
10384  *	@buf: buffer in which to return I2C data
10385  *
10386  *	Reads the I2C data from the indicated device and location.
10387  */
10388 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
10389 	      unsigned int devid, unsigned int offset,
10390 	      unsigned int len, u8 *buf)
10391 {
10392 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10393 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10394 	int ret = 0;
10395 
10396 	if (len > I2C_PAGE_SIZE)
10397 		return -EINVAL;
10398 
10399 	/* Dont allow reads that spans multiple pages */
10400 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10401 		return -EINVAL;
10402 
10403 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10404 	ldst_cmd.op_to_addrspace =
10405 		cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10406 			    FW_CMD_REQUEST_F |
10407 			    FW_CMD_READ_F |
10408 			    FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
10409 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10410 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10411 	ldst_cmd.u.i2c.did = devid;
10412 
10413 	while (len > 0) {
10414 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10415 
10416 		ldst_cmd.u.i2c.boffset = offset;
10417 		ldst_cmd.u.i2c.blen = i2c_len;
10418 
10419 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10420 				 &ldst_rpl);
10421 		if (ret)
10422 			break;
10423 
10424 		memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10425 		offset += i2c_len;
10426 		buf += i2c_len;
10427 		len -= i2c_len;
10428 	}
10429 
10430 	return ret;
10431 }
10432 
10433 /**
10434  *      t4_set_vlan_acl - Set a VLAN id for the specified VF
10435  *      @adapter: the adapter
10436  *      @mbox: mailbox to use for the FW command
10437  *      @vf: one of the VFs instantiated by the specified PF
10438  *      @vlan: The vlanid to be set
10439  */
10440 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
10441 		    u16 vlan)
10442 {
10443 	struct fw_acl_vlan_cmd vlan_cmd;
10444 	unsigned int enable;
10445 
10446 	enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
10447 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
10448 	vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
10449 					 FW_CMD_REQUEST_F |
10450 					 FW_CMD_WRITE_F |
10451 					 FW_CMD_EXEC_F |
10452 					 FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
10453 					 FW_ACL_VLAN_CMD_VFN_V(vf));
10454 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
10455 	/* Drop all packets that donot match vlan id */
10456 	vlan_cmd.dropnovlan_fm = (enable
10457 				  ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F |
10458 				     FW_ACL_VLAN_CMD_FM_F) : 0);
10459 	if (enable != 0) {
10460 		vlan_cmd.nvlan = 1;
10461 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
10462 	}
10463 
10464 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
10465 }
10466