1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/delay.h> 36 #include "cxgb4.h" 37 #include "t4_regs.h" 38 #include "t4_values.h" 39 #include "t4fw_api.h" 40 #include "t4fw_version.h" 41 42 /** 43 * t4_wait_op_done_val - wait until an operation is completed 44 * @adapter: the adapter performing the operation 45 * @reg: the register to check for completion 46 * @mask: a single-bit field within @reg that indicates completion 47 * @polarity: the value of the field when the operation is completed 48 * @attempts: number of check iterations 49 * @delay: delay in usecs between iterations 50 * @valp: where to store the value of the register at completion time 51 * 52 * Wait until an operation is completed by checking a bit in a register 53 * up to @attempts times. If @valp is not NULL the value of the register 54 * at the time it indicated completion is stored there. Returns 0 if the 55 * operation completes and -EAGAIN otherwise. 56 */ 57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 58 int polarity, int attempts, int delay, u32 *valp) 59 { 60 while (1) { 61 u32 val = t4_read_reg(adapter, reg); 62 63 if (!!(val & mask) == polarity) { 64 if (valp) 65 *valp = val; 66 return 0; 67 } 68 if (--attempts == 0) 69 return -EAGAIN; 70 if (delay) 71 udelay(delay); 72 } 73 } 74 75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 76 int polarity, int attempts, int delay) 77 { 78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 79 delay, NULL); 80 } 81 82 /** 83 * t4_set_reg_field - set a register field to a value 84 * @adapter: the adapter to program 85 * @addr: the register address 86 * @mask: specifies the portion of the register to modify 87 * @val: the new value for the register field 88 * 89 * Sets a register field specified by the supplied mask to the 90 * given value. 91 */ 92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 93 u32 val) 94 { 95 u32 v = t4_read_reg(adapter, addr) & ~mask; 96 97 t4_write_reg(adapter, addr, v | val); 98 (void) t4_read_reg(adapter, addr); /* flush */ 99 } 100 101 /** 102 * t4_read_indirect - read indirectly addressed registers 103 * @adap: the adapter 104 * @addr_reg: register holding the indirect address 105 * @data_reg: register holding the value of the indirect register 106 * @vals: where the read register values are stored 107 * @nregs: how many indirect registers to read 108 * @start_idx: index of first indirect register to read 109 * 110 * Reads registers that are accessed indirectly through an address/data 111 * register pair. 112 */ 113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 114 unsigned int data_reg, u32 *vals, 115 unsigned int nregs, unsigned int start_idx) 116 { 117 while (nregs--) { 118 t4_write_reg(adap, addr_reg, start_idx); 119 *vals++ = t4_read_reg(adap, data_reg); 120 start_idx++; 121 } 122 } 123 124 /** 125 * t4_write_indirect - write indirectly addressed registers 126 * @adap: the adapter 127 * @addr_reg: register holding the indirect addresses 128 * @data_reg: register holding the value for the indirect registers 129 * @vals: values to write 130 * @nregs: how many indirect registers to write 131 * @start_idx: address of first indirect register to write 132 * 133 * Writes a sequential block of registers that are accessed indirectly 134 * through an address/data register pair. 135 */ 136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 137 unsigned int data_reg, const u32 *vals, 138 unsigned int nregs, unsigned int start_idx) 139 { 140 while (nregs--) { 141 t4_write_reg(adap, addr_reg, start_idx++); 142 t4_write_reg(adap, data_reg, *vals++); 143 } 144 } 145 146 /* 147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor 148 * mechanism. This guarantees that we get the real value even if we're 149 * operating within a Virtual Machine and the Hypervisor is trapping our 150 * Configuration Space accesses. 151 */ 152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val) 153 { 154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg); 155 156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 157 req |= ENABLE_F; 158 else 159 req |= T6_ENABLE_F; 160 161 if (is_t4(adap->params.chip)) 162 req |= LOCALCFG_F; 163 164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req); 165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A); 166 167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a 168 * Configuration Space read. (None of the other fields matter when 169 * ENABLE is 0 so a simple register write is easier than a 170 * read-modify-write via t4_set_reg_field().) 171 */ 172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0); 173 } 174 175 /* 176 * t4_report_fw_error - report firmware error 177 * @adap: the adapter 178 * 179 * The adapter firmware can indicate error conditions to the host. 180 * If the firmware has indicated an error, print out the reason for 181 * the firmware error. 182 */ 183 static void t4_report_fw_error(struct adapter *adap) 184 { 185 static const char *const reason[] = { 186 "Crash", /* PCIE_FW_EVAL_CRASH */ 187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */ 188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */ 189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */ 190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ 191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ 192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ 193 "Reserved", /* reserved */ 194 }; 195 u32 pcie_fw; 196 197 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 198 if (pcie_fw & PCIE_FW_ERR_F) 199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n", 200 reason[PCIE_FW_EVAL_G(pcie_fw)]); 201 } 202 203 /* 204 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 205 */ 206 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 207 u32 mbox_addr) 208 { 209 for ( ; nflit; nflit--, mbox_addr += 8) 210 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 211 } 212 213 /* 214 * Handle a FW assertion reported in a mailbox. 215 */ 216 static void fw_asrt(struct adapter *adap, u32 mbox_addr) 217 { 218 struct fw_debug_cmd asrt; 219 220 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); 221 dev_alert(adap->pdev_dev, 222 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 223 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line), 224 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y)); 225 } 226 227 /** 228 * t4_record_mbox - record a Firmware Mailbox Command/Reply in the log 229 * @adapter: the adapter 230 * @cmd: the Firmware Mailbox Command or Reply 231 * @size: command length in bytes 232 * @access: the time (ms) needed to access the Firmware Mailbox 233 * @execute: the time (ms) the command spent being executed 234 */ 235 static void t4_record_mbox(struct adapter *adapter, 236 const __be64 *cmd, unsigned int size, 237 int access, int execute) 238 { 239 struct mbox_cmd_log *log = adapter->mbox_log; 240 struct mbox_cmd *entry; 241 int i; 242 243 entry = mbox_cmd_log_entry(log, log->cursor++); 244 if (log->cursor == log->size) 245 log->cursor = 0; 246 247 for (i = 0; i < size / 8; i++) 248 entry->cmd[i] = be64_to_cpu(cmd[i]); 249 while (i < MBOX_LEN / 8) 250 entry->cmd[i++] = 0; 251 entry->timestamp = jiffies; 252 entry->seqno = log->seqno++; 253 entry->access = access; 254 entry->execute = execute; 255 } 256 257 /** 258 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox 259 * @adap: the adapter 260 * @mbox: index of the mailbox to use 261 * @cmd: the command to write 262 * @size: command length in bytes 263 * @rpl: where to optionally store the reply 264 * @sleep_ok: if true we may sleep while awaiting command completion 265 * @timeout: time to wait for command to finish before timing out 266 * 267 * Sends the given command to FW through the selected mailbox and waits 268 * for the FW to execute the command. If @rpl is not %NULL it is used to 269 * store the FW's reply to the command. The command and its optional 270 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms 271 * to respond. @sleep_ok determines whether we may sleep while awaiting 272 * the response. If sleeping is allowed we use progressive backoff 273 * otherwise we spin. 274 * 275 * The return value is 0 on success or a negative errno on failure. A 276 * failure can happen either because we are not able to execute the 277 * command or FW executes it but signals an error. In the latter case 278 * the return value is the error code indicated by FW (negated). 279 */ 280 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, 281 int size, void *rpl, bool sleep_ok, int timeout) 282 { 283 static const int delay[] = { 284 1, 1, 3, 5, 10, 10, 20, 50, 100, 200 285 }; 286 287 struct mbox_list entry; 288 u16 access = 0; 289 u16 execute = 0; 290 u32 v; 291 u64 res; 292 int i, ms, delay_idx, ret; 293 const __be64 *p = cmd; 294 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); 295 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A); 296 __be64 cmd_rpl[MBOX_LEN / 8]; 297 u32 pcie_fw; 298 299 if ((size & 15) || size > MBOX_LEN) 300 return -EINVAL; 301 302 /* 303 * If the device is off-line, as in EEH, commands will time out. 304 * Fail them early so we don't waste time waiting. 305 */ 306 if (adap->pdev->error_state != pci_channel_io_normal) 307 return -EIO; 308 309 /* If we have a negative timeout, that implies that we can't sleep. */ 310 if (timeout < 0) { 311 sleep_ok = false; 312 timeout = -timeout; 313 } 314 315 /* Queue ourselves onto the mailbox access list. When our entry is at 316 * the front of the list, we have rights to access the mailbox. So we 317 * wait [for a while] till we're at the front [or bail out with an 318 * EBUSY] ... 319 */ 320 spin_lock(&adap->mbox_lock); 321 list_add_tail(&entry.list, &adap->mlist.list); 322 spin_unlock(&adap->mbox_lock); 323 324 delay_idx = 0; 325 ms = delay[0]; 326 327 for (i = 0; ; i += ms) { 328 /* If we've waited too long, return a busy indication. This 329 * really ought to be based on our initial position in the 330 * mailbox access list but this is a start. We very rearely 331 * contend on access to the mailbox ... 332 */ 333 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 334 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) { 335 spin_lock(&adap->mbox_lock); 336 list_del(&entry.list); 337 spin_unlock(&adap->mbox_lock); 338 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY; 339 t4_record_mbox(adap, cmd, size, access, ret); 340 return ret; 341 } 342 343 /* If we're at the head, break out and start the mailbox 344 * protocol. 345 */ 346 if (list_first_entry(&adap->mlist.list, struct mbox_list, 347 list) == &entry) 348 break; 349 350 /* Delay for a bit before checking again ... */ 351 if (sleep_ok) { 352 ms = delay[delay_idx]; /* last element may repeat */ 353 if (delay_idx < ARRAY_SIZE(delay) - 1) 354 delay_idx++; 355 msleep(ms); 356 } else { 357 mdelay(ms); 358 } 359 } 360 361 /* Loop trying to get ownership of the mailbox. Return an error 362 * if we can't gain ownership. 363 */ 364 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 365 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 366 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 367 if (v != MBOX_OWNER_DRV) { 368 spin_lock(&adap->mbox_lock); 369 list_del(&entry.list); 370 spin_unlock(&adap->mbox_lock); 371 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT; 372 t4_record_mbox(adap, cmd, size, access, ret); 373 return ret; 374 } 375 376 /* Copy in the new mailbox command and send it on its way ... */ 377 t4_record_mbox(adap, cmd, size, access, 0); 378 for (i = 0; i < size; i += 8) 379 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++)); 380 381 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW)); 382 t4_read_reg(adap, ctl_reg); /* flush write */ 383 384 delay_idx = 0; 385 ms = delay[0]; 386 387 for (i = 0; 388 !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) && 389 i < timeout; 390 i += ms) { 391 if (sleep_ok) { 392 ms = delay[delay_idx]; /* last element may repeat */ 393 if (delay_idx < ARRAY_SIZE(delay) - 1) 394 delay_idx++; 395 msleep(ms); 396 } else 397 mdelay(ms); 398 399 v = t4_read_reg(adap, ctl_reg); 400 if (MBOWNER_G(v) == MBOX_OWNER_DRV) { 401 if (!(v & MBMSGVALID_F)) { 402 t4_write_reg(adap, ctl_reg, 0); 403 continue; 404 } 405 406 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg); 407 res = be64_to_cpu(cmd_rpl[0]); 408 409 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) { 410 fw_asrt(adap, data_reg); 411 res = FW_CMD_RETVAL_V(EIO); 412 } else if (rpl) { 413 memcpy(rpl, cmd_rpl, size); 414 } 415 416 t4_write_reg(adap, ctl_reg, 0); 417 418 execute = i + ms; 419 t4_record_mbox(adap, cmd_rpl, 420 MBOX_LEN, access, execute); 421 spin_lock(&adap->mbox_lock); 422 list_del(&entry.list); 423 spin_unlock(&adap->mbox_lock); 424 return -FW_CMD_RETVAL_G((int)res); 425 } 426 } 427 428 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT; 429 t4_record_mbox(adap, cmd, size, access, ret); 430 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n", 431 *(const u8 *)cmd, mbox); 432 t4_report_fw_error(adap); 433 spin_lock(&adap->mbox_lock); 434 list_del(&entry.list); 435 spin_unlock(&adap->mbox_lock); 436 t4_fatal_err(adap); 437 return ret; 438 } 439 440 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 441 void *rpl, bool sleep_ok) 442 { 443 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok, 444 FW_CMD_MAX_TIMEOUT); 445 } 446 447 static int t4_edc_err_read(struct adapter *adap, int idx) 448 { 449 u32 edc_ecc_err_addr_reg; 450 u32 rdata_reg; 451 452 if (is_t4(adap->params.chip)) { 453 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); 454 return 0; 455 } 456 if (idx != 0 && idx != 1) { 457 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); 458 return 0; 459 } 460 461 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx); 462 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx); 463 464 CH_WARN(adap, 465 "edc%d err addr 0x%x: 0x%x.\n", 466 idx, edc_ecc_err_addr_reg, 467 t4_read_reg(adap, edc_ecc_err_addr_reg)); 468 CH_WARN(adap, 469 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", 470 rdata_reg, 471 (unsigned long long)t4_read_reg64(adap, rdata_reg), 472 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8), 473 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16), 474 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24), 475 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32), 476 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40), 477 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48), 478 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56), 479 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64)); 480 481 return 0; 482 } 483 484 /** 485 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window 486 * @adap: the adapter 487 * @win: PCI-E Memory Window to use 488 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 489 * @addr: address within indicated memory type 490 * @len: amount of memory to transfer 491 * @hbuf: host memory buffer 492 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 493 * 494 * Reads/writes an [almost] arbitrary memory region in the firmware: the 495 * firmware memory address and host buffer must be aligned on 32-bit 496 * boudaries; the length may be arbitrary. The memory is transferred as 497 * a raw byte sequence from/to the firmware's memory. If this memory 498 * contains data structures which contain multi-byte integers, it's the 499 * caller's responsibility to perform appropriate byte order conversions. 500 */ 501 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr, 502 u32 len, void *hbuf, int dir) 503 { 504 u32 pos, offset, resid, memoffset; 505 u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base; 506 u32 *buf; 507 508 /* Argument sanity checks ... 509 */ 510 if (addr & 0x3 || (uintptr_t)hbuf & 0x3) 511 return -EINVAL; 512 buf = (u32 *)hbuf; 513 514 /* It's convenient to be able to handle lengths which aren't a 515 * multiple of 32-bits because we often end up transferring files to 516 * the firmware. So we'll handle that by normalizing the length here 517 * and then handling any residual transfer at the end. 518 */ 519 resid = len & 0x3; 520 len -= resid; 521 522 /* Offset into the region of memory which is being accessed 523 * MEM_EDC0 = 0 524 * MEM_EDC1 = 1 525 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller 526 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5) 527 */ 528 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A)); 529 if (mtype != MEM_MC1) 530 memoffset = (mtype * (edc_size * 1024 * 1024)); 531 else { 532 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap, 533 MA_EXT_MEMORY0_BAR_A)); 534 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; 535 } 536 537 /* Determine the PCIE_MEM_ACCESS_OFFSET */ 538 addr = addr + memoffset; 539 540 /* Each PCI-E Memory Window is programmed with a window size -- or 541 * "aperture" -- which controls the granularity of its mapping onto 542 * adapter memory. We need to grab that aperture in order to know 543 * how to use the specified window. The window is also programmed 544 * with the base address of the Memory Window in BAR0's address 545 * space. For T4 this is an absolute PCI-E Bus Address. For T5 546 * the address is relative to BAR0. 547 */ 548 mem_reg = t4_read_reg(adap, 549 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 550 win)); 551 mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X); 552 mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X; 553 if (is_t4(adap->params.chip)) 554 mem_base -= adap->t4_bar0; 555 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf); 556 557 /* Calculate our initial PCI-E Memory Window Position and Offset into 558 * that Window. 559 */ 560 pos = addr & ~(mem_aperture-1); 561 offset = addr - pos; 562 563 /* Set up initial PCI-E Memory Window to cover the start of our 564 * transfer. (Read it back to ensure that changes propagate before we 565 * attempt to use the new value.) 566 */ 567 t4_write_reg(adap, 568 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win), 569 pos | win_pf); 570 t4_read_reg(adap, 571 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); 572 573 /* Transfer data to/from the adapter as long as there's an integral 574 * number of 32-bit transfers to complete. 575 * 576 * A note on Endianness issues: 577 * 578 * The "register" reads and writes below from/to the PCI-E Memory 579 * Window invoke the standard adapter Big-Endian to PCI-E Link 580 * Little-Endian "swizzel." As a result, if we have the following 581 * data in adapter memory: 582 * 583 * Memory: ... | b0 | b1 | b2 | b3 | ... 584 * Address: i+0 i+1 i+2 i+3 585 * 586 * Then a read of the adapter memory via the PCI-E Memory Window 587 * will yield: 588 * 589 * x = readl(i) 590 * 31 0 591 * [ b3 | b2 | b1 | b0 ] 592 * 593 * If this value is stored into local memory on a Little-Endian system 594 * it will show up correctly in local memory as: 595 * 596 * ( ..., b0, b1, b2, b3, ... ) 597 * 598 * But on a Big-Endian system, the store will show up in memory 599 * incorrectly swizzled as: 600 * 601 * ( ..., b3, b2, b1, b0, ... ) 602 * 603 * So we need to account for this in the reads and writes to the 604 * PCI-E Memory Window below by undoing the register read/write 605 * swizzels. 606 */ 607 while (len > 0) { 608 if (dir == T4_MEMORY_READ) 609 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap, 610 mem_base + offset)); 611 else 612 t4_write_reg(adap, mem_base + offset, 613 (__force u32)cpu_to_le32(*buf++)); 614 offset += sizeof(__be32); 615 len -= sizeof(__be32); 616 617 /* If we've reached the end of our current window aperture, 618 * move the PCI-E Memory Window on to the next. Note that 619 * doing this here after "len" may be 0 allows us to set up 620 * the PCI-E Memory Window for a possible final residual 621 * transfer below ... 622 */ 623 if (offset == mem_aperture) { 624 pos += mem_aperture; 625 offset = 0; 626 t4_write_reg(adap, 627 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 628 win), pos | win_pf); 629 t4_read_reg(adap, 630 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 631 win)); 632 } 633 } 634 635 /* If the original transfer had a length which wasn't a multiple of 636 * 32-bits, now's where we need to finish off the transfer of the 637 * residual amount. The PCI-E Memory Window has already been moved 638 * above (if necessary) to cover this final transfer. 639 */ 640 if (resid) { 641 union { 642 u32 word; 643 char byte[4]; 644 } last; 645 unsigned char *bp; 646 int i; 647 648 if (dir == T4_MEMORY_READ) { 649 last.word = le32_to_cpu( 650 (__force __le32)t4_read_reg(adap, 651 mem_base + offset)); 652 for (bp = (unsigned char *)buf, i = resid; i < 4; i++) 653 bp[i] = last.byte[i]; 654 } else { 655 last.word = *buf; 656 for (i = resid; i < 4; i++) 657 last.byte[i] = 0; 658 t4_write_reg(adap, mem_base + offset, 659 (__force u32)cpu_to_le32(last.word)); 660 } 661 } 662 663 return 0; 664 } 665 666 /* Return the specified PCI-E Configuration Space register from our Physical 667 * Function. We try first via a Firmware LDST Command since we prefer to let 668 * the firmware own all of these registers, but if that fails we go for it 669 * directly ourselves. 670 */ 671 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg) 672 { 673 u32 val, ldst_addrspace; 674 675 /* If fw_attach != 0, construct and send the Firmware LDST Command to 676 * retrieve the specified PCI-E Configuration Space register. 677 */ 678 struct fw_ldst_cmd ldst_cmd; 679 int ret; 680 681 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 682 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE); 683 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 684 FW_CMD_REQUEST_F | 685 FW_CMD_READ_F | 686 ldst_addrspace); 687 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 688 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1); 689 ldst_cmd.u.pcie.ctrl_to_fn = 690 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf)); 691 ldst_cmd.u.pcie.r = reg; 692 693 /* If the LDST Command succeeds, return the result, otherwise 694 * fall through to reading it directly ourselves ... 695 */ 696 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 697 &ldst_cmd); 698 if (ret == 0) 699 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]); 700 else 701 /* Read the desired Configuration Space register via the PCI-E 702 * Backdoor mechanism. 703 */ 704 t4_hw_pci_read_cfg4(adap, reg, &val); 705 return val; 706 } 707 708 /* Get the window based on base passed to it. 709 * Window aperture is currently unhandled, but there is no use case for it 710 * right now 711 */ 712 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask, 713 u32 memwin_base) 714 { 715 u32 ret; 716 717 if (is_t4(adap->params.chip)) { 718 u32 bar0; 719 720 /* Truncation intentional: we only read the bottom 32-bits of 721 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor 722 * mechanism to read BAR0 instead of using 723 * pci_resource_start() because we could be operating from 724 * within a Virtual Machine which is trapping our accesses to 725 * our Configuration Space and we need to set up the PCI-E 726 * Memory Window decoders with the actual addresses which will 727 * be coming across the PCI-E link. 728 */ 729 bar0 = t4_read_pcie_cfg4(adap, pci_base); 730 bar0 &= pci_mask; 731 adap->t4_bar0 = bar0; 732 733 ret = bar0 + memwin_base; 734 } else { 735 /* For T5, only relative offset inside the PCIe BAR is passed */ 736 ret = memwin_base; 737 } 738 return ret; 739 } 740 741 /* Get the default utility window (win0) used by everyone */ 742 u32 t4_get_util_window(struct adapter *adap) 743 { 744 return t4_get_window(adap, PCI_BASE_ADDRESS_0, 745 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE); 746 } 747 748 /* Set up memory window for accessing adapter memory ranges. (Read 749 * back MA register to ensure that changes propagate before we attempt 750 * to use the new values.) 751 */ 752 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window) 753 { 754 t4_write_reg(adap, 755 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window), 756 memwin_base | BIR_V(0) | 757 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X)); 758 t4_read_reg(adap, 759 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window)); 760 } 761 762 /** 763 * t4_get_regs_len - return the size of the chips register set 764 * @adapter: the adapter 765 * 766 * Returns the size of the chip's BAR0 register space. 767 */ 768 unsigned int t4_get_regs_len(struct adapter *adapter) 769 { 770 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 771 772 switch (chip_version) { 773 case CHELSIO_T4: 774 return T4_REGMAP_SIZE; 775 776 case CHELSIO_T5: 777 case CHELSIO_T6: 778 return T5_REGMAP_SIZE; 779 } 780 781 dev_err(adapter->pdev_dev, 782 "Unsupported chip version %d\n", chip_version); 783 return 0; 784 } 785 786 /** 787 * t4_get_regs - read chip registers into provided buffer 788 * @adap: the adapter 789 * @buf: register buffer 790 * @buf_size: size (in bytes) of register buffer 791 * 792 * If the provided register buffer isn't large enough for the chip's 793 * full register range, the register dump will be truncated to the 794 * register buffer's size. 795 */ 796 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size) 797 { 798 static const unsigned int t4_reg_ranges[] = { 799 0x1008, 0x1108, 800 0x1180, 0x1184, 801 0x1190, 0x1194, 802 0x11a0, 0x11a4, 803 0x11b0, 0x11b4, 804 0x11fc, 0x123c, 805 0x1300, 0x173c, 806 0x1800, 0x18fc, 807 0x3000, 0x30d8, 808 0x30e0, 0x30e4, 809 0x30ec, 0x5910, 810 0x5920, 0x5924, 811 0x5960, 0x5960, 812 0x5968, 0x5968, 813 0x5970, 0x5970, 814 0x5978, 0x5978, 815 0x5980, 0x5980, 816 0x5988, 0x5988, 817 0x5990, 0x5990, 818 0x5998, 0x5998, 819 0x59a0, 0x59d4, 820 0x5a00, 0x5ae0, 821 0x5ae8, 0x5ae8, 822 0x5af0, 0x5af0, 823 0x5af8, 0x5af8, 824 0x6000, 0x6098, 825 0x6100, 0x6150, 826 0x6200, 0x6208, 827 0x6240, 0x6248, 828 0x6280, 0x62b0, 829 0x62c0, 0x6338, 830 0x6370, 0x638c, 831 0x6400, 0x643c, 832 0x6500, 0x6524, 833 0x6a00, 0x6a04, 834 0x6a14, 0x6a38, 835 0x6a60, 0x6a70, 836 0x6a78, 0x6a78, 837 0x6b00, 0x6b0c, 838 0x6b1c, 0x6b84, 839 0x6bf0, 0x6bf8, 840 0x6c00, 0x6c0c, 841 0x6c1c, 0x6c84, 842 0x6cf0, 0x6cf8, 843 0x6d00, 0x6d0c, 844 0x6d1c, 0x6d84, 845 0x6df0, 0x6df8, 846 0x6e00, 0x6e0c, 847 0x6e1c, 0x6e84, 848 0x6ef0, 0x6ef8, 849 0x6f00, 0x6f0c, 850 0x6f1c, 0x6f84, 851 0x6ff0, 0x6ff8, 852 0x7000, 0x700c, 853 0x701c, 0x7084, 854 0x70f0, 0x70f8, 855 0x7100, 0x710c, 856 0x711c, 0x7184, 857 0x71f0, 0x71f8, 858 0x7200, 0x720c, 859 0x721c, 0x7284, 860 0x72f0, 0x72f8, 861 0x7300, 0x730c, 862 0x731c, 0x7384, 863 0x73f0, 0x73f8, 864 0x7400, 0x7450, 865 0x7500, 0x7530, 866 0x7600, 0x760c, 867 0x7614, 0x761c, 868 0x7680, 0x76cc, 869 0x7700, 0x7798, 870 0x77c0, 0x77fc, 871 0x7900, 0x79fc, 872 0x7b00, 0x7b58, 873 0x7b60, 0x7b84, 874 0x7b8c, 0x7c38, 875 0x7d00, 0x7d38, 876 0x7d40, 0x7d80, 877 0x7d8c, 0x7ddc, 878 0x7de4, 0x7e04, 879 0x7e10, 0x7e1c, 880 0x7e24, 0x7e38, 881 0x7e40, 0x7e44, 882 0x7e4c, 0x7e78, 883 0x7e80, 0x7ea4, 884 0x7eac, 0x7edc, 885 0x7ee8, 0x7efc, 886 0x8dc0, 0x8e04, 887 0x8e10, 0x8e1c, 888 0x8e30, 0x8e78, 889 0x8ea0, 0x8eb8, 890 0x8ec0, 0x8f6c, 891 0x8fc0, 0x9008, 892 0x9010, 0x9058, 893 0x9060, 0x9060, 894 0x9068, 0x9074, 895 0x90fc, 0x90fc, 896 0x9400, 0x9408, 897 0x9410, 0x9458, 898 0x9600, 0x9600, 899 0x9608, 0x9638, 900 0x9640, 0x96bc, 901 0x9800, 0x9808, 902 0x9820, 0x983c, 903 0x9850, 0x9864, 904 0x9c00, 0x9c6c, 905 0x9c80, 0x9cec, 906 0x9d00, 0x9d6c, 907 0x9d80, 0x9dec, 908 0x9e00, 0x9e6c, 909 0x9e80, 0x9eec, 910 0x9f00, 0x9f6c, 911 0x9f80, 0x9fec, 912 0xd004, 0xd004, 913 0xd010, 0xd03c, 914 0xdfc0, 0xdfe0, 915 0xe000, 0xea7c, 916 0xf000, 0x11110, 917 0x11118, 0x11190, 918 0x19040, 0x1906c, 919 0x19078, 0x19080, 920 0x1908c, 0x190e4, 921 0x190f0, 0x190f8, 922 0x19100, 0x19110, 923 0x19120, 0x19124, 924 0x19150, 0x19194, 925 0x1919c, 0x191b0, 926 0x191d0, 0x191e8, 927 0x19238, 0x1924c, 928 0x193f8, 0x1943c, 929 0x1944c, 0x19474, 930 0x19490, 0x194e0, 931 0x194f0, 0x194f8, 932 0x19800, 0x19c08, 933 0x19c10, 0x19c90, 934 0x19ca0, 0x19ce4, 935 0x19cf0, 0x19d40, 936 0x19d50, 0x19d94, 937 0x19da0, 0x19de8, 938 0x19df0, 0x19e40, 939 0x19e50, 0x19e90, 940 0x19ea0, 0x19f4c, 941 0x1a000, 0x1a004, 942 0x1a010, 0x1a06c, 943 0x1a0b0, 0x1a0e4, 944 0x1a0ec, 0x1a0f4, 945 0x1a100, 0x1a108, 946 0x1a114, 0x1a120, 947 0x1a128, 0x1a130, 948 0x1a138, 0x1a138, 949 0x1a190, 0x1a1c4, 950 0x1a1fc, 0x1a1fc, 951 0x1e040, 0x1e04c, 952 0x1e284, 0x1e28c, 953 0x1e2c0, 0x1e2c0, 954 0x1e2e0, 0x1e2e0, 955 0x1e300, 0x1e384, 956 0x1e3c0, 0x1e3c8, 957 0x1e440, 0x1e44c, 958 0x1e684, 0x1e68c, 959 0x1e6c0, 0x1e6c0, 960 0x1e6e0, 0x1e6e0, 961 0x1e700, 0x1e784, 962 0x1e7c0, 0x1e7c8, 963 0x1e840, 0x1e84c, 964 0x1ea84, 0x1ea8c, 965 0x1eac0, 0x1eac0, 966 0x1eae0, 0x1eae0, 967 0x1eb00, 0x1eb84, 968 0x1ebc0, 0x1ebc8, 969 0x1ec40, 0x1ec4c, 970 0x1ee84, 0x1ee8c, 971 0x1eec0, 0x1eec0, 972 0x1eee0, 0x1eee0, 973 0x1ef00, 0x1ef84, 974 0x1efc0, 0x1efc8, 975 0x1f040, 0x1f04c, 976 0x1f284, 0x1f28c, 977 0x1f2c0, 0x1f2c0, 978 0x1f2e0, 0x1f2e0, 979 0x1f300, 0x1f384, 980 0x1f3c0, 0x1f3c8, 981 0x1f440, 0x1f44c, 982 0x1f684, 0x1f68c, 983 0x1f6c0, 0x1f6c0, 984 0x1f6e0, 0x1f6e0, 985 0x1f700, 0x1f784, 986 0x1f7c0, 0x1f7c8, 987 0x1f840, 0x1f84c, 988 0x1fa84, 0x1fa8c, 989 0x1fac0, 0x1fac0, 990 0x1fae0, 0x1fae0, 991 0x1fb00, 0x1fb84, 992 0x1fbc0, 0x1fbc8, 993 0x1fc40, 0x1fc4c, 994 0x1fe84, 0x1fe8c, 995 0x1fec0, 0x1fec0, 996 0x1fee0, 0x1fee0, 997 0x1ff00, 0x1ff84, 998 0x1ffc0, 0x1ffc8, 999 0x20000, 0x2002c, 1000 0x20100, 0x2013c, 1001 0x20190, 0x201a0, 1002 0x201a8, 0x201b8, 1003 0x201c4, 0x201c8, 1004 0x20200, 0x20318, 1005 0x20400, 0x204b4, 1006 0x204c0, 0x20528, 1007 0x20540, 0x20614, 1008 0x21000, 0x21040, 1009 0x2104c, 0x21060, 1010 0x210c0, 0x210ec, 1011 0x21200, 0x21268, 1012 0x21270, 0x21284, 1013 0x212fc, 0x21388, 1014 0x21400, 0x21404, 1015 0x21500, 0x21500, 1016 0x21510, 0x21518, 1017 0x2152c, 0x21530, 1018 0x2153c, 0x2153c, 1019 0x21550, 0x21554, 1020 0x21600, 0x21600, 1021 0x21608, 0x2161c, 1022 0x21624, 0x21628, 1023 0x21630, 0x21634, 1024 0x2163c, 0x2163c, 1025 0x21700, 0x2171c, 1026 0x21780, 0x2178c, 1027 0x21800, 0x21818, 1028 0x21820, 0x21828, 1029 0x21830, 0x21848, 1030 0x21850, 0x21854, 1031 0x21860, 0x21868, 1032 0x21870, 0x21870, 1033 0x21878, 0x21898, 1034 0x218a0, 0x218a8, 1035 0x218b0, 0x218c8, 1036 0x218d0, 0x218d4, 1037 0x218e0, 0x218e8, 1038 0x218f0, 0x218f0, 1039 0x218f8, 0x21a18, 1040 0x21a20, 0x21a28, 1041 0x21a30, 0x21a48, 1042 0x21a50, 0x21a54, 1043 0x21a60, 0x21a68, 1044 0x21a70, 0x21a70, 1045 0x21a78, 0x21a98, 1046 0x21aa0, 0x21aa8, 1047 0x21ab0, 0x21ac8, 1048 0x21ad0, 0x21ad4, 1049 0x21ae0, 0x21ae8, 1050 0x21af0, 0x21af0, 1051 0x21af8, 0x21c18, 1052 0x21c20, 0x21c20, 1053 0x21c28, 0x21c30, 1054 0x21c38, 0x21c38, 1055 0x21c80, 0x21c98, 1056 0x21ca0, 0x21ca8, 1057 0x21cb0, 0x21cc8, 1058 0x21cd0, 0x21cd4, 1059 0x21ce0, 0x21ce8, 1060 0x21cf0, 0x21cf0, 1061 0x21cf8, 0x21d7c, 1062 0x21e00, 0x21e04, 1063 0x22000, 0x2202c, 1064 0x22100, 0x2213c, 1065 0x22190, 0x221a0, 1066 0x221a8, 0x221b8, 1067 0x221c4, 0x221c8, 1068 0x22200, 0x22318, 1069 0x22400, 0x224b4, 1070 0x224c0, 0x22528, 1071 0x22540, 0x22614, 1072 0x23000, 0x23040, 1073 0x2304c, 0x23060, 1074 0x230c0, 0x230ec, 1075 0x23200, 0x23268, 1076 0x23270, 0x23284, 1077 0x232fc, 0x23388, 1078 0x23400, 0x23404, 1079 0x23500, 0x23500, 1080 0x23510, 0x23518, 1081 0x2352c, 0x23530, 1082 0x2353c, 0x2353c, 1083 0x23550, 0x23554, 1084 0x23600, 0x23600, 1085 0x23608, 0x2361c, 1086 0x23624, 0x23628, 1087 0x23630, 0x23634, 1088 0x2363c, 0x2363c, 1089 0x23700, 0x2371c, 1090 0x23780, 0x2378c, 1091 0x23800, 0x23818, 1092 0x23820, 0x23828, 1093 0x23830, 0x23848, 1094 0x23850, 0x23854, 1095 0x23860, 0x23868, 1096 0x23870, 0x23870, 1097 0x23878, 0x23898, 1098 0x238a0, 0x238a8, 1099 0x238b0, 0x238c8, 1100 0x238d0, 0x238d4, 1101 0x238e0, 0x238e8, 1102 0x238f0, 0x238f0, 1103 0x238f8, 0x23a18, 1104 0x23a20, 0x23a28, 1105 0x23a30, 0x23a48, 1106 0x23a50, 0x23a54, 1107 0x23a60, 0x23a68, 1108 0x23a70, 0x23a70, 1109 0x23a78, 0x23a98, 1110 0x23aa0, 0x23aa8, 1111 0x23ab0, 0x23ac8, 1112 0x23ad0, 0x23ad4, 1113 0x23ae0, 0x23ae8, 1114 0x23af0, 0x23af0, 1115 0x23af8, 0x23c18, 1116 0x23c20, 0x23c20, 1117 0x23c28, 0x23c30, 1118 0x23c38, 0x23c38, 1119 0x23c80, 0x23c98, 1120 0x23ca0, 0x23ca8, 1121 0x23cb0, 0x23cc8, 1122 0x23cd0, 0x23cd4, 1123 0x23ce0, 0x23ce8, 1124 0x23cf0, 0x23cf0, 1125 0x23cf8, 0x23d7c, 1126 0x23e00, 0x23e04, 1127 0x24000, 0x2402c, 1128 0x24100, 0x2413c, 1129 0x24190, 0x241a0, 1130 0x241a8, 0x241b8, 1131 0x241c4, 0x241c8, 1132 0x24200, 0x24318, 1133 0x24400, 0x244b4, 1134 0x244c0, 0x24528, 1135 0x24540, 0x24614, 1136 0x25000, 0x25040, 1137 0x2504c, 0x25060, 1138 0x250c0, 0x250ec, 1139 0x25200, 0x25268, 1140 0x25270, 0x25284, 1141 0x252fc, 0x25388, 1142 0x25400, 0x25404, 1143 0x25500, 0x25500, 1144 0x25510, 0x25518, 1145 0x2552c, 0x25530, 1146 0x2553c, 0x2553c, 1147 0x25550, 0x25554, 1148 0x25600, 0x25600, 1149 0x25608, 0x2561c, 1150 0x25624, 0x25628, 1151 0x25630, 0x25634, 1152 0x2563c, 0x2563c, 1153 0x25700, 0x2571c, 1154 0x25780, 0x2578c, 1155 0x25800, 0x25818, 1156 0x25820, 0x25828, 1157 0x25830, 0x25848, 1158 0x25850, 0x25854, 1159 0x25860, 0x25868, 1160 0x25870, 0x25870, 1161 0x25878, 0x25898, 1162 0x258a0, 0x258a8, 1163 0x258b0, 0x258c8, 1164 0x258d0, 0x258d4, 1165 0x258e0, 0x258e8, 1166 0x258f0, 0x258f0, 1167 0x258f8, 0x25a18, 1168 0x25a20, 0x25a28, 1169 0x25a30, 0x25a48, 1170 0x25a50, 0x25a54, 1171 0x25a60, 0x25a68, 1172 0x25a70, 0x25a70, 1173 0x25a78, 0x25a98, 1174 0x25aa0, 0x25aa8, 1175 0x25ab0, 0x25ac8, 1176 0x25ad0, 0x25ad4, 1177 0x25ae0, 0x25ae8, 1178 0x25af0, 0x25af0, 1179 0x25af8, 0x25c18, 1180 0x25c20, 0x25c20, 1181 0x25c28, 0x25c30, 1182 0x25c38, 0x25c38, 1183 0x25c80, 0x25c98, 1184 0x25ca0, 0x25ca8, 1185 0x25cb0, 0x25cc8, 1186 0x25cd0, 0x25cd4, 1187 0x25ce0, 0x25ce8, 1188 0x25cf0, 0x25cf0, 1189 0x25cf8, 0x25d7c, 1190 0x25e00, 0x25e04, 1191 0x26000, 0x2602c, 1192 0x26100, 0x2613c, 1193 0x26190, 0x261a0, 1194 0x261a8, 0x261b8, 1195 0x261c4, 0x261c8, 1196 0x26200, 0x26318, 1197 0x26400, 0x264b4, 1198 0x264c0, 0x26528, 1199 0x26540, 0x26614, 1200 0x27000, 0x27040, 1201 0x2704c, 0x27060, 1202 0x270c0, 0x270ec, 1203 0x27200, 0x27268, 1204 0x27270, 0x27284, 1205 0x272fc, 0x27388, 1206 0x27400, 0x27404, 1207 0x27500, 0x27500, 1208 0x27510, 0x27518, 1209 0x2752c, 0x27530, 1210 0x2753c, 0x2753c, 1211 0x27550, 0x27554, 1212 0x27600, 0x27600, 1213 0x27608, 0x2761c, 1214 0x27624, 0x27628, 1215 0x27630, 0x27634, 1216 0x2763c, 0x2763c, 1217 0x27700, 0x2771c, 1218 0x27780, 0x2778c, 1219 0x27800, 0x27818, 1220 0x27820, 0x27828, 1221 0x27830, 0x27848, 1222 0x27850, 0x27854, 1223 0x27860, 0x27868, 1224 0x27870, 0x27870, 1225 0x27878, 0x27898, 1226 0x278a0, 0x278a8, 1227 0x278b0, 0x278c8, 1228 0x278d0, 0x278d4, 1229 0x278e0, 0x278e8, 1230 0x278f0, 0x278f0, 1231 0x278f8, 0x27a18, 1232 0x27a20, 0x27a28, 1233 0x27a30, 0x27a48, 1234 0x27a50, 0x27a54, 1235 0x27a60, 0x27a68, 1236 0x27a70, 0x27a70, 1237 0x27a78, 0x27a98, 1238 0x27aa0, 0x27aa8, 1239 0x27ab0, 0x27ac8, 1240 0x27ad0, 0x27ad4, 1241 0x27ae0, 0x27ae8, 1242 0x27af0, 0x27af0, 1243 0x27af8, 0x27c18, 1244 0x27c20, 0x27c20, 1245 0x27c28, 0x27c30, 1246 0x27c38, 0x27c38, 1247 0x27c80, 0x27c98, 1248 0x27ca0, 0x27ca8, 1249 0x27cb0, 0x27cc8, 1250 0x27cd0, 0x27cd4, 1251 0x27ce0, 0x27ce8, 1252 0x27cf0, 0x27cf0, 1253 0x27cf8, 0x27d7c, 1254 0x27e00, 0x27e04, 1255 }; 1256 1257 static const unsigned int t5_reg_ranges[] = { 1258 0x1008, 0x10c0, 1259 0x10cc, 0x10f8, 1260 0x1100, 0x1100, 1261 0x110c, 0x1148, 1262 0x1180, 0x1184, 1263 0x1190, 0x1194, 1264 0x11a0, 0x11a4, 1265 0x11b0, 0x11b4, 1266 0x11fc, 0x123c, 1267 0x1280, 0x173c, 1268 0x1800, 0x18fc, 1269 0x3000, 0x3028, 1270 0x3060, 0x30b0, 1271 0x30b8, 0x30d8, 1272 0x30e0, 0x30fc, 1273 0x3140, 0x357c, 1274 0x35a8, 0x35cc, 1275 0x35ec, 0x35ec, 1276 0x3600, 0x5624, 1277 0x56cc, 0x56ec, 1278 0x56f4, 0x5720, 1279 0x5728, 0x575c, 1280 0x580c, 0x5814, 1281 0x5890, 0x589c, 1282 0x58a4, 0x58ac, 1283 0x58b8, 0x58bc, 1284 0x5940, 0x59c8, 1285 0x59d0, 0x59dc, 1286 0x59fc, 0x5a18, 1287 0x5a60, 0x5a70, 1288 0x5a80, 0x5a9c, 1289 0x5b94, 0x5bfc, 1290 0x6000, 0x6020, 1291 0x6028, 0x6040, 1292 0x6058, 0x609c, 1293 0x60a8, 0x614c, 1294 0x7700, 0x7798, 1295 0x77c0, 0x78fc, 1296 0x7b00, 0x7b58, 1297 0x7b60, 0x7b84, 1298 0x7b8c, 0x7c54, 1299 0x7d00, 0x7d38, 1300 0x7d40, 0x7d80, 1301 0x7d8c, 0x7ddc, 1302 0x7de4, 0x7e04, 1303 0x7e10, 0x7e1c, 1304 0x7e24, 0x7e38, 1305 0x7e40, 0x7e44, 1306 0x7e4c, 0x7e78, 1307 0x7e80, 0x7edc, 1308 0x7ee8, 0x7efc, 1309 0x8dc0, 0x8de0, 1310 0x8df8, 0x8e04, 1311 0x8e10, 0x8e84, 1312 0x8ea0, 0x8f84, 1313 0x8fc0, 0x9058, 1314 0x9060, 0x9060, 1315 0x9068, 0x90f8, 1316 0x9400, 0x9408, 1317 0x9410, 0x9470, 1318 0x9600, 0x9600, 1319 0x9608, 0x9638, 1320 0x9640, 0x96f4, 1321 0x9800, 0x9808, 1322 0x9820, 0x983c, 1323 0x9850, 0x9864, 1324 0x9c00, 0x9c6c, 1325 0x9c80, 0x9cec, 1326 0x9d00, 0x9d6c, 1327 0x9d80, 0x9dec, 1328 0x9e00, 0x9e6c, 1329 0x9e80, 0x9eec, 1330 0x9f00, 0x9f6c, 1331 0x9f80, 0xa020, 1332 0xd004, 0xd004, 1333 0xd010, 0xd03c, 1334 0xdfc0, 0xdfe0, 1335 0xe000, 0x1106c, 1336 0x11074, 0x11088, 1337 0x1109c, 0x1117c, 1338 0x11190, 0x11204, 1339 0x19040, 0x1906c, 1340 0x19078, 0x19080, 1341 0x1908c, 0x190e8, 1342 0x190f0, 0x190f8, 1343 0x19100, 0x19110, 1344 0x19120, 0x19124, 1345 0x19150, 0x19194, 1346 0x1919c, 0x191b0, 1347 0x191d0, 0x191e8, 1348 0x19238, 0x19290, 1349 0x193f8, 0x19428, 1350 0x19430, 0x19444, 1351 0x1944c, 0x1946c, 1352 0x19474, 0x19474, 1353 0x19490, 0x194cc, 1354 0x194f0, 0x194f8, 1355 0x19c00, 0x19c08, 1356 0x19c10, 0x19c60, 1357 0x19c94, 0x19ce4, 1358 0x19cf0, 0x19d40, 1359 0x19d50, 0x19d94, 1360 0x19da0, 0x19de8, 1361 0x19df0, 0x19e10, 1362 0x19e50, 0x19e90, 1363 0x19ea0, 0x19f24, 1364 0x19f34, 0x19f34, 1365 0x19f40, 0x19f50, 1366 0x19f90, 0x19fb4, 1367 0x19fc4, 0x19fe4, 1368 0x1a000, 0x1a004, 1369 0x1a010, 0x1a06c, 1370 0x1a0b0, 0x1a0e4, 1371 0x1a0ec, 0x1a0f8, 1372 0x1a100, 0x1a108, 1373 0x1a114, 0x1a120, 1374 0x1a128, 0x1a130, 1375 0x1a138, 0x1a138, 1376 0x1a190, 0x1a1c4, 1377 0x1a1fc, 0x1a1fc, 1378 0x1e008, 0x1e00c, 1379 0x1e040, 0x1e044, 1380 0x1e04c, 0x1e04c, 1381 0x1e284, 0x1e290, 1382 0x1e2c0, 0x1e2c0, 1383 0x1e2e0, 0x1e2e0, 1384 0x1e300, 0x1e384, 1385 0x1e3c0, 0x1e3c8, 1386 0x1e408, 0x1e40c, 1387 0x1e440, 0x1e444, 1388 0x1e44c, 0x1e44c, 1389 0x1e684, 0x1e690, 1390 0x1e6c0, 0x1e6c0, 1391 0x1e6e0, 0x1e6e0, 1392 0x1e700, 0x1e784, 1393 0x1e7c0, 0x1e7c8, 1394 0x1e808, 0x1e80c, 1395 0x1e840, 0x1e844, 1396 0x1e84c, 0x1e84c, 1397 0x1ea84, 0x1ea90, 1398 0x1eac0, 0x1eac0, 1399 0x1eae0, 0x1eae0, 1400 0x1eb00, 0x1eb84, 1401 0x1ebc0, 0x1ebc8, 1402 0x1ec08, 0x1ec0c, 1403 0x1ec40, 0x1ec44, 1404 0x1ec4c, 0x1ec4c, 1405 0x1ee84, 0x1ee90, 1406 0x1eec0, 0x1eec0, 1407 0x1eee0, 0x1eee0, 1408 0x1ef00, 0x1ef84, 1409 0x1efc0, 0x1efc8, 1410 0x1f008, 0x1f00c, 1411 0x1f040, 0x1f044, 1412 0x1f04c, 0x1f04c, 1413 0x1f284, 0x1f290, 1414 0x1f2c0, 0x1f2c0, 1415 0x1f2e0, 0x1f2e0, 1416 0x1f300, 0x1f384, 1417 0x1f3c0, 0x1f3c8, 1418 0x1f408, 0x1f40c, 1419 0x1f440, 0x1f444, 1420 0x1f44c, 0x1f44c, 1421 0x1f684, 0x1f690, 1422 0x1f6c0, 0x1f6c0, 1423 0x1f6e0, 0x1f6e0, 1424 0x1f700, 0x1f784, 1425 0x1f7c0, 0x1f7c8, 1426 0x1f808, 0x1f80c, 1427 0x1f840, 0x1f844, 1428 0x1f84c, 0x1f84c, 1429 0x1fa84, 0x1fa90, 1430 0x1fac0, 0x1fac0, 1431 0x1fae0, 0x1fae0, 1432 0x1fb00, 0x1fb84, 1433 0x1fbc0, 0x1fbc8, 1434 0x1fc08, 0x1fc0c, 1435 0x1fc40, 0x1fc44, 1436 0x1fc4c, 0x1fc4c, 1437 0x1fe84, 0x1fe90, 1438 0x1fec0, 0x1fec0, 1439 0x1fee0, 0x1fee0, 1440 0x1ff00, 0x1ff84, 1441 0x1ffc0, 0x1ffc8, 1442 0x30000, 0x30030, 1443 0x30100, 0x30144, 1444 0x30190, 0x301a0, 1445 0x301a8, 0x301b8, 1446 0x301c4, 0x301c8, 1447 0x301d0, 0x301d0, 1448 0x30200, 0x30318, 1449 0x30400, 0x304b4, 1450 0x304c0, 0x3052c, 1451 0x30540, 0x3061c, 1452 0x30800, 0x30828, 1453 0x30834, 0x30834, 1454 0x308c0, 0x30908, 1455 0x30910, 0x309ac, 1456 0x30a00, 0x30a14, 1457 0x30a1c, 0x30a2c, 1458 0x30a44, 0x30a50, 1459 0x30a74, 0x30a74, 1460 0x30a7c, 0x30afc, 1461 0x30b08, 0x30c24, 1462 0x30d00, 0x30d00, 1463 0x30d08, 0x30d14, 1464 0x30d1c, 0x30d20, 1465 0x30d3c, 0x30d3c, 1466 0x30d48, 0x30d50, 1467 0x31200, 0x3120c, 1468 0x31220, 0x31220, 1469 0x31240, 0x31240, 1470 0x31600, 0x3160c, 1471 0x31a00, 0x31a1c, 1472 0x31e00, 0x31e20, 1473 0x31e38, 0x31e3c, 1474 0x31e80, 0x31e80, 1475 0x31e88, 0x31ea8, 1476 0x31eb0, 0x31eb4, 1477 0x31ec8, 0x31ed4, 1478 0x31fb8, 0x32004, 1479 0x32200, 0x32200, 1480 0x32208, 0x32240, 1481 0x32248, 0x32280, 1482 0x32288, 0x322c0, 1483 0x322c8, 0x322fc, 1484 0x32600, 0x32630, 1485 0x32a00, 0x32abc, 1486 0x32b00, 0x32b10, 1487 0x32b20, 0x32b30, 1488 0x32b40, 0x32b50, 1489 0x32b60, 0x32b70, 1490 0x33000, 0x33028, 1491 0x33030, 0x33048, 1492 0x33060, 0x33068, 1493 0x33070, 0x3309c, 1494 0x330f0, 0x33128, 1495 0x33130, 0x33148, 1496 0x33160, 0x33168, 1497 0x33170, 0x3319c, 1498 0x331f0, 0x33238, 1499 0x33240, 0x33240, 1500 0x33248, 0x33250, 1501 0x3325c, 0x33264, 1502 0x33270, 0x332b8, 1503 0x332c0, 0x332e4, 1504 0x332f8, 0x33338, 1505 0x33340, 0x33340, 1506 0x33348, 0x33350, 1507 0x3335c, 0x33364, 1508 0x33370, 0x333b8, 1509 0x333c0, 0x333e4, 1510 0x333f8, 0x33428, 1511 0x33430, 0x33448, 1512 0x33460, 0x33468, 1513 0x33470, 0x3349c, 1514 0x334f0, 0x33528, 1515 0x33530, 0x33548, 1516 0x33560, 0x33568, 1517 0x33570, 0x3359c, 1518 0x335f0, 0x33638, 1519 0x33640, 0x33640, 1520 0x33648, 0x33650, 1521 0x3365c, 0x33664, 1522 0x33670, 0x336b8, 1523 0x336c0, 0x336e4, 1524 0x336f8, 0x33738, 1525 0x33740, 0x33740, 1526 0x33748, 0x33750, 1527 0x3375c, 0x33764, 1528 0x33770, 0x337b8, 1529 0x337c0, 0x337e4, 1530 0x337f8, 0x337fc, 1531 0x33814, 0x33814, 1532 0x3382c, 0x3382c, 1533 0x33880, 0x3388c, 1534 0x338e8, 0x338ec, 1535 0x33900, 0x33928, 1536 0x33930, 0x33948, 1537 0x33960, 0x33968, 1538 0x33970, 0x3399c, 1539 0x339f0, 0x33a38, 1540 0x33a40, 0x33a40, 1541 0x33a48, 0x33a50, 1542 0x33a5c, 0x33a64, 1543 0x33a70, 0x33ab8, 1544 0x33ac0, 0x33ae4, 1545 0x33af8, 0x33b10, 1546 0x33b28, 0x33b28, 1547 0x33b3c, 0x33b50, 1548 0x33bf0, 0x33c10, 1549 0x33c28, 0x33c28, 1550 0x33c3c, 0x33c50, 1551 0x33cf0, 0x33cfc, 1552 0x34000, 0x34030, 1553 0x34100, 0x34144, 1554 0x34190, 0x341a0, 1555 0x341a8, 0x341b8, 1556 0x341c4, 0x341c8, 1557 0x341d0, 0x341d0, 1558 0x34200, 0x34318, 1559 0x34400, 0x344b4, 1560 0x344c0, 0x3452c, 1561 0x34540, 0x3461c, 1562 0x34800, 0x34828, 1563 0x34834, 0x34834, 1564 0x348c0, 0x34908, 1565 0x34910, 0x349ac, 1566 0x34a00, 0x34a14, 1567 0x34a1c, 0x34a2c, 1568 0x34a44, 0x34a50, 1569 0x34a74, 0x34a74, 1570 0x34a7c, 0x34afc, 1571 0x34b08, 0x34c24, 1572 0x34d00, 0x34d00, 1573 0x34d08, 0x34d14, 1574 0x34d1c, 0x34d20, 1575 0x34d3c, 0x34d3c, 1576 0x34d48, 0x34d50, 1577 0x35200, 0x3520c, 1578 0x35220, 0x35220, 1579 0x35240, 0x35240, 1580 0x35600, 0x3560c, 1581 0x35a00, 0x35a1c, 1582 0x35e00, 0x35e20, 1583 0x35e38, 0x35e3c, 1584 0x35e80, 0x35e80, 1585 0x35e88, 0x35ea8, 1586 0x35eb0, 0x35eb4, 1587 0x35ec8, 0x35ed4, 1588 0x35fb8, 0x36004, 1589 0x36200, 0x36200, 1590 0x36208, 0x36240, 1591 0x36248, 0x36280, 1592 0x36288, 0x362c0, 1593 0x362c8, 0x362fc, 1594 0x36600, 0x36630, 1595 0x36a00, 0x36abc, 1596 0x36b00, 0x36b10, 1597 0x36b20, 0x36b30, 1598 0x36b40, 0x36b50, 1599 0x36b60, 0x36b70, 1600 0x37000, 0x37028, 1601 0x37030, 0x37048, 1602 0x37060, 0x37068, 1603 0x37070, 0x3709c, 1604 0x370f0, 0x37128, 1605 0x37130, 0x37148, 1606 0x37160, 0x37168, 1607 0x37170, 0x3719c, 1608 0x371f0, 0x37238, 1609 0x37240, 0x37240, 1610 0x37248, 0x37250, 1611 0x3725c, 0x37264, 1612 0x37270, 0x372b8, 1613 0x372c0, 0x372e4, 1614 0x372f8, 0x37338, 1615 0x37340, 0x37340, 1616 0x37348, 0x37350, 1617 0x3735c, 0x37364, 1618 0x37370, 0x373b8, 1619 0x373c0, 0x373e4, 1620 0x373f8, 0x37428, 1621 0x37430, 0x37448, 1622 0x37460, 0x37468, 1623 0x37470, 0x3749c, 1624 0x374f0, 0x37528, 1625 0x37530, 0x37548, 1626 0x37560, 0x37568, 1627 0x37570, 0x3759c, 1628 0x375f0, 0x37638, 1629 0x37640, 0x37640, 1630 0x37648, 0x37650, 1631 0x3765c, 0x37664, 1632 0x37670, 0x376b8, 1633 0x376c0, 0x376e4, 1634 0x376f8, 0x37738, 1635 0x37740, 0x37740, 1636 0x37748, 0x37750, 1637 0x3775c, 0x37764, 1638 0x37770, 0x377b8, 1639 0x377c0, 0x377e4, 1640 0x377f8, 0x377fc, 1641 0x37814, 0x37814, 1642 0x3782c, 0x3782c, 1643 0x37880, 0x3788c, 1644 0x378e8, 0x378ec, 1645 0x37900, 0x37928, 1646 0x37930, 0x37948, 1647 0x37960, 0x37968, 1648 0x37970, 0x3799c, 1649 0x379f0, 0x37a38, 1650 0x37a40, 0x37a40, 1651 0x37a48, 0x37a50, 1652 0x37a5c, 0x37a64, 1653 0x37a70, 0x37ab8, 1654 0x37ac0, 0x37ae4, 1655 0x37af8, 0x37b10, 1656 0x37b28, 0x37b28, 1657 0x37b3c, 0x37b50, 1658 0x37bf0, 0x37c10, 1659 0x37c28, 0x37c28, 1660 0x37c3c, 0x37c50, 1661 0x37cf0, 0x37cfc, 1662 0x38000, 0x38030, 1663 0x38100, 0x38144, 1664 0x38190, 0x381a0, 1665 0x381a8, 0x381b8, 1666 0x381c4, 0x381c8, 1667 0x381d0, 0x381d0, 1668 0x38200, 0x38318, 1669 0x38400, 0x384b4, 1670 0x384c0, 0x3852c, 1671 0x38540, 0x3861c, 1672 0x38800, 0x38828, 1673 0x38834, 0x38834, 1674 0x388c0, 0x38908, 1675 0x38910, 0x389ac, 1676 0x38a00, 0x38a14, 1677 0x38a1c, 0x38a2c, 1678 0x38a44, 0x38a50, 1679 0x38a74, 0x38a74, 1680 0x38a7c, 0x38afc, 1681 0x38b08, 0x38c24, 1682 0x38d00, 0x38d00, 1683 0x38d08, 0x38d14, 1684 0x38d1c, 0x38d20, 1685 0x38d3c, 0x38d3c, 1686 0x38d48, 0x38d50, 1687 0x39200, 0x3920c, 1688 0x39220, 0x39220, 1689 0x39240, 0x39240, 1690 0x39600, 0x3960c, 1691 0x39a00, 0x39a1c, 1692 0x39e00, 0x39e20, 1693 0x39e38, 0x39e3c, 1694 0x39e80, 0x39e80, 1695 0x39e88, 0x39ea8, 1696 0x39eb0, 0x39eb4, 1697 0x39ec8, 0x39ed4, 1698 0x39fb8, 0x3a004, 1699 0x3a200, 0x3a200, 1700 0x3a208, 0x3a240, 1701 0x3a248, 0x3a280, 1702 0x3a288, 0x3a2c0, 1703 0x3a2c8, 0x3a2fc, 1704 0x3a600, 0x3a630, 1705 0x3aa00, 0x3aabc, 1706 0x3ab00, 0x3ab10, 1707 0x3ab20, 0x3ab30, 1708 0x3ab40, 0x3ab50, 1709 0x3ab60, 0x3ab70, 1710 0x3b000, 0x3b028, 1711 0x3b030, 0x3b048, 1712 0x3b060, 0x3b068, 1713 0x3b070, 0x3b09c, 1714 0x3b0f0, 0x3b128, 1715 0x3b130, 0x3b148, 1716 0x3b160, 0x3b168, 1717 0x3b170, 0x3b19c, 1718 0x3b1f0, 0x3b238, 1719 0x3b240, 0x3b240, 1720 0x3b248, 0x3b250, 1721 0x3b25c, 0x3b264, 1722 0x3b270, 0x3b2b8, 1723 0x3b2c0, 0x3b2e4, 1724 0x3b2f8, 0x3b338, 1725 0x3b340, 0x3b340, 1726 0x3b348, 0x3b350, 1727 0x3b35c, 0x3b364, 1728 0x3b370, 0x3b3b8, 1729 0x3b3c0, 0x3b3e4, 1730 0x3b3f8, 0x3b428, 1731 0x3b430, 0x3b448, 1732 0x3b460, 0x3b468, 1733 0x3b470, 0x3b49c, 1734 0x3b4f0, 0x3b528, 1735 0x3b530, 0x3b548, 1736 0x3b560, 0x3b568, 1737 0x3b570, 0x3b59c, 1738 0x3b5f0, 0x3b638, 1739 0x3b640, 0x3b640, 1740 0x3b648, 0x3b650, 1741 0x3b65c, 0x3b664, 1742 0x3b670, 0x3b6b8, 1743 0x3b6c0, 0x3b6e4, 1744 0x3b6f8, 0x3b738, 1745 0x3b740, 0x3b740, 1746 0x3b748, 0x3b750, 1747 0x3b75c, 0x3b764, 1748 0x3b770, 0x3b7b8, 1749 0x3b7c0, 0x3b7e4, 1750 0x3b7f8, 0x3b7fc, 1751 0x3b814, 0x3b814, 1752 0x3b82c, 0x3b82c, 1753 0x3b880, 0x3b88c, 1754 0x3b8e8, 0x3b8ec, 1755 0x3b900, 0x3b928, 1756 0x3b930, 0x3b948, 1757 0x3b960, 0x3b968, 1758 0x3b970, 0x3b99c, 1759 0x3b9f0, 0x3ba38, 1760 0x3ba40, 0x3ba40, 1761 0x3ba48, 0x3ba50, 1762 0x3ba5c, 0x3ba64, 1763 0x3ba70, 0x3bab8, 1764 0x3bac0, 0x3bae4, 1765 0x3baf8, 0x3bb10, 1766 0x3bb28, 0x3bb28, 1767 0x3bb3c, 0x3bb50, 1768 0x3bbf0, 0x3bc10, 1769 0x3bc28, 0x3bc28, 1770 0x3bc3c, 0x3bc50, 1771 0x3bcf0, 0x3bcfc, 1772 0x3c000, 0x3c030, 1773 0x3c100, 0x3c144, 1774 0x3c190, 0x3c1a0, 1775 0x3c1a8, 0x3c1b8, 1776 0x3c1c4, 0x3c1c8, 1777 0x3c1d0, 0x3c1d0, 1778 0x3c200, 0x3c318, 1779 0x3c400, 0x3c4b4, 1780 0x3c4c0, 0x3c52c, 1781 0x3c540, 0x3c61c, 1782 0x3c800, 0x3c828, 1783 0x3c834, 0x3c834, 1784 0x3c8c0, 0x3c908, 1785 0x3c910, 0x3c9ac, 1786 0x3ca00, 0x3ca14, 1787 0x3ca1c, 0x3ca2c, 1788 0x3ca44, 0x3ca50, 1789 0x3ca74, 0x3ca74, 1790 0x3ca7c, 0x3cafc, 1791 0x3cb08, 0x3cc24, 1792 0x3cd00, 0x3cd00, 1793 0x3cd08, 0x3cd14, 1794 0x3cd1c, 0x3cd20, 1795 0x3cd3c, 0x3cd3c, 1796 0x3cd48, 0x3cd50, 1797 0x3d200, 0x3d20c, 1798 0x3d220, 0x3d220, 1799 0x3d240, 0x3d240, 1800 0x3d600, 0x3d60c, 1801 0x3da00, 0x3da1c, 1802 0x3de00, 0x3de20, 1803 0x3de38, 0x3de3c, 1804 0x3de80, 0x3de80, 1805 0x3de88, 0x3dea8, 1806 0x3deb0, 0x3deb4, 1807 0x3dec8, 0x3ded4, 1808 0x3dfb8, 0x3e004, 1809 0x3e200, 0x3e200, 1810 0x3e208, 0x3e240, 1811 0x3e248, 0x3e280, 1812 0x3e288, 0x3e2c0, 1813 0x3e2c8, 0x3e2fc, 1814 0x3e600, 0x3e630, 1815 0x3ea00, 0x3eabc, 1816 0x3eb00, 0x3eb10, 1817 0x3eb20, 0x3eb30, 1818 0x3eb40, 0x3eb50, 1819 0x3eb60, 0x3eb70, 1820 0x3f000, 0x3f028, 1821 0x3f030, 0x3f048, 1822 0x3f060, 0x3f068, 1823 0x3f070, 0x3f09c, 1824 0x3f0f0, 0x3f128, 1825 0x3f130, 0x3f148, 1826 0x3f160, 0x3f168, 1827 0x3f170, 0x3f19c, 1828 0x3f1f0, 0x3f238, 1829 0x3f240, 0x3f240, 1830 0x3f248, 0x3f250, 1831 0x3f25c, 0x3f264, 1832 0x3f270, 0x3f2b8, 1833 0x3f2c0, 0x3f2e4, 1834 0x3f2f8, 0x3f338, 1835 0x3f340, 0x3f340, 1836 0x3f348, 0x3f350, 1837 0x3f35c, 0x3f364, 1838 0x3f370, 0x3f3b8, 1839 0x3f3c0, 0x3f3e4, 1840 0x3f3f8, 0x3f428, 1841 0x3f430, 0x3f448, 1842 0x3f460, 0x3f468, 1843 0x3f470, 0x3f49c, 1844 0x3f4f0, 0x3f528, 1845 0x3f530, 0x3f548, 1846 0x3f560, 0x3f568, 1847 0x3f570, 0x3f59c, 1848 0x3f5f0, 0x3f638, 1849 0x3f640, 0x3f640, 1850 0x3f648, 0x3f650, 1851 0x3f65c, 0x3f664, 1852 0x3f670, 0x3f6b8, 1853 0x3f6c0, 0x3f6e4, 1854 0x3f6f8, 0x3f738, 1855 0x3f740, 0x3f740, 1856 0x3f748, 0x3f750, 1857 0x3f75c, 0x3f764, 1858 0x3f770, 0x3f7b8, 1859 0x3f7c0, 0x3f7e4, 1860 0x3f7f8, 0x3f7fc, 1861 0x3f814, 0x3f814, 1862 0x3f82c, 0x3f82c, 1863 0x3f880, 0x3f88c, 1864 0x3f8e8, 0x3f8ec, 1865 0x3f900, 0x3f928, 1866 0x3f930, 0x3f948, 1867 0x3f960, 0x3f968, 1868 0x3f970, 0x3f99c, 1869 0x3f9f0, 0x3fa38, 1870 0x3fa40, 0x3fa40, 1871 0x3fa48, 0x3fa50, 1872 0x3fa5c, 0x3fa64, 1873 0x3fa70, 0x3fab8, 1874 0x3fac0, 0x3fae4, 1875 0x3faf8, 0x3fb10, 1876 0x3fb28, 0x3fb28, 1877 0x3fb3c, 0x3fb50, 1878 0x3fbf0, 0x3fc10, 1879 0x3fc28, 0x3fc28, 1880 0x3fc3c, 0x3fc50, 1881 0x3fcf0, 0x3fcfc, 1882 0x40000, 0x4000c, 1883 0x40040, 0x40050, 1884 0x40060, 0x40068, 1885 0x4007c, 0x4008c, 1886 0x40094, 0x400b0, 1887 0x400c0, 0x40144, 1888 0x40180, 0x4018c, 1889 0x40200, 0x40254, 1890 0x40260, 0x40264, 1891 0x40270, 0x40288, 1892 0x40290, 0x40298, 1893 0x402ac, 0x402c8, 1894 0x402d0, 0x402e0, 1895 0x402f0, 0x402f0, 1896 0x40300, 0x4033c, 1897 0x403f8, 0x403fc, 1898 0x41304, 0x413c4, 1899 0x41400, 0x4140c, 1900 0x41414, 0x4141c, 1901 0x41480, 0x414d0, 1902 0x44000, 0x44054, 1903 0x4405c, 0x44078, 1904 0x440c0, 0x44174, 1905 0x44180, 0x441ac, 1906 0x441b4, 0x441b8, 1907 0x441c0, 0x44254, 1908 0x4425c, 0x44278, 1909 0x442c0, 0x44374, 1910 0x44380, 0x443ac, 1911 0x443b4, 0x443b8, 1912 0x443c0, 0x44454, 1913 0x4445c, 0x44478, 1914 0x444c0, 0x44574, 1915 0x44580, 0x445ac, 1916 0x445b4, 0x445b8, 1917 0x445c0, 0x44654, 1918 0x4465c, 0x44678, 1919 0x446c0, 0x44774, 1920 0x44780, 0x447ac, 1921 0x447b4, 0x447b8, 1922 0x447c0, 0x44854, 1923 0x4485c, 0x44878, 1924 0x448c0, 0x44974, 1925 0x44980, 0x449ac, 1926 0x449b4, 0x449b8, 1927 0x449c0, 0x449fc, 1928 0x45000, 0x45004, 1929 0x45010, 0x45030, 1930 0x45040, 0x45060, 1931 0x45068, 0x45068, 1932 0x45080, 0x45084, 1933 0x450a0, 0x450b0, 1934 0x45200, 0x45204, 1935 0x45210, 0x45230, 1936 0x45240, 0x45260, 1937 0x45268, 0x45268, 1938 0x45280, 0x45284, 1939 0x452a0, 0x452b0, 1940 0x460c0, 0x460e4, 1941 0x47000, 0x4703c, 1942 0x47044, 0x4708c, 1943 0x47200, 0x47250, 1944 0x47400, 0x47408, 1945 0x47414, 0x47420, 1946 0x47600, 0x47618, 1947 0x47800, 0x47814, 1948 0x48000, 0x4800c, 1949 0x48040, 0x48050, 1950 0x48060, 0x48068, 1951 0x4807c, 0x4808c, 1952 0x48094, 0x480b0, 1953 0x480c0, 0x48144, 1954 0x48180, 0x4818c, 1955 0x48200, 0x48254, 1956 0x48260, 0x48264, 1957 0x48270, 0x48288, 1958 0x48290, 0x48298, 1959 0x482ac, 0x482c8, 1960 0x482d0, 0x482e0, 1961 0x482f0, 0x482f0, 1962 0x48300, 0x4833c, 1963 0x483f8, 0x483fc, 1964 0x49304, 0x493c4, 1965 0x49400, 0x4940c, 1966 0x49414, 0x4941c, 1967 0x49480, 0x494d0, 1968 0x4c000, 0x4c054, 1969 0x4c05c, 0x4c078, 1970 0x4c0c0, 0x4c174, 1971 0x4c180, 0x4c1ac, 1972 0x4c1b4, 0x4c1b8, 1973 0x4c1c0, 0x4c254, 1974 0x4c25c, 0x4c278, 1975 0x4c2c0, 0x4c374, 1976 0x4c380, 0x4c3ac, 1977 0x4c3b4, 0x4c3b8, 1978 0x4c3c0, 0x4c454, 1979 0x4c45c, 0x4c478, 1980 0x4c4c0, 0x4c574, 1981 0x4c580, 0x4c5ac, 1982 0x4c5b4, 0x4c5b8, 1983 0x4c5c0, 0x4c654, 1984 0x4c65c, 0x4c678, 1985 0x4c6c0, 0x4c774, 1986 0x4c780, 0x4c7ac, 1987 0x4c7b4, 0x4c7b8, 1988 0x4c7c0, 0x4c854, 1989 0x4c85c, 0x4c878, 1990 0x4c8c0, 0x4c974, 1991 0x4c980, 0x4c9ac, 1992 0x4c9b4, 0x4c9b8, 1993 0x4c9c0, 0x4c9fc, 1994 0x4d000, 0x4d004, 1995 0x4d010, 0x4d030, 1996 0x4d040, 0x4d060, 1997 0x4d068, 0x4d068, 1998 0x4d080, 0x4d084, 1999 0x4d0a0, 0x4d0b0, 2000 0x4d200, 0x4d204, 2001 0x4d210, 0x4d230, 2002 0x4d240, 0x4d260, 2003 0x4d268, 0x4d268, 2004 0x4d280, 0x4d284, 2005 0x4d2a0, 0x4d2b0, 2006 0x4e0c0, 0x4e0e4, 2007 0x4f000, 0x4f03c, 2008 0x4f044, 0x4f08c, 2009 0x4f200, 0x4f250, 2010 0x4f400, 0x4f408, 2011 0x4f414, 0x4f420, 2012 0x4f600, 0x4f618, 2013 0x4f800, 0x4f814, 2014 0x50000, 0x50084, 2015 0x50090, 0x500cc, 2016 0x50400, 0x50400, 2017 0x50800, 0x50884, 2018 0x50890, 0x508cc, 2019 0x50c00, 0x50c00, 2020 0x51000, 0x5101c, 2021 0x51300, 0x51308, 2022 }; 2023 2024 static const unsigned int t6_reg_ranges[] = { 2025 0x1008, 0x101c, 2026 0x1024, 0x10a8, 2027 0x10b4, 0x10f8, 2028 0x1100, 0x1114, 2029 0x111c, 0x112c, 2030 0x1138, 0x113c, 2031 0x1144, 0x114c, 2032 0x1180, 0x1184, 2033 0x1190, 0x1194, 2034 0x11a0, 0x11a4, 2035 0x11b0, 0x11b4, 2036 0x11fc, 0x1274, 2037 0x1280, 0x133c, 2038 0x1800, 0x18fc, 2039 0x3000, 0x302c, 2040 0x3060, 0x30b0, 2041 0x30b8, 0x30d8, 2042 0x30e0, 0x30fc, 2043 0x3140, 0x357c, 2044 0x35a8, 0x35cc, 2045 0x35ec, 0x35ec, 2046 0x3600, 0x5624, 2047 0x56cc, 0x56ec, 2048 0x56f4, 0x5720, 2049 0x5728, 0x575c, 2050 0x580c, 0x5814, 2051 0x5890, 0x589c, 2052 0x58a4, 0x58ac, 2053 0x58b8, 0x58bc, 2054 0x5940, 0x595c, 2055 0x5980, 0x598c, 2056 0x59b0, 0x59c8, 2057 0x59d0, 0x59dc, 2058 0x59fc, 0x5a18, 2059 0x5a60, 0x5a6c, 2060 0x5a80, 0x5a8c, 2061 0x5a94, 0x5a9c, 2062 0x5b94, 0x5bfc, 2063 0x5c10, 0x5e48, 2064 0x5e50, 0x5e94, 2065 0x5ea0, 0x5eb0, 2066 0x5ec0, 0x5ec0, 2067 0x5ec8, 0x5ed0, 2068 0x5ee0, 0x5ee0, 2069 0x5ef0, 0x5ef0, 2070 0x5f00, 0x5f00, 2071 0x6000, 0x6020, 2072 0x6028, 0x6040, 2073 0x6058, 0x609c, 2074 0x60a8, 0x619c, 2075 0x7700, 0x7798, 2076 0x77c0, 0x7880, 2077 0x78cc, 0x78fc, 2078 0x7b00, 0x7b58, 2079 0x7b60, 0x7b84, 2080 0x7b8c, 0x7c54, 2081 0x7d00, 0x7d38, 2082 0x7d40, 0x7d84, 2083 0x7d8c, 0x7ddc, 2084 0x7de4, 0x7e04, 2085 0x7e10, 0x7e1c, 2086 0x7e24, 0x7e38, 2087 0x7e40, 0x7e44, 2088 0x7e4c, 0x7e78, 2089 0x7e80, 0x7edc, 2090 0x7ee8, 0x7efc, 2091 0x8dc0, 0x8de4, 2092 0x8df8, 0x8e04, 2093 0x8e10, 0x8e84, 2094 0x8ea0, 0x8f88, 2095 0x8fb8, 0x9058, 2096 0x9060, 0x9060, 2097 0x9068, 0x90f8, 2098 0x9100, 0x9124, 2099 0x9400, 0x9470, 2100 0x9600, 0x9600, 2101 0x9608, 0x9638, 2102 0x9640, 0x9704, 2103 0x9710, 0x971c, 2104 0x9800, 0x9808, 2105 0x9820, 0x983c, 2106 0x9850, 0x9864, 2107 0x9c00, 0x9c6c, 2108 0x9c80, 0x9cec, 2109 0x9d00, 0x9d6c, 2110 0x9d80, 0x9dec, 2111 0x9e00, 0x9e6c, 2112 0x9e80, 0x9eec, 2113 0x9f00, 0x9f6c, 2114 0x9f80, 0xa020, 2115 0xd004, 0xd03c, 2116 0xd100, 0xd118, 2117 0xd200, 0xd214, 2118 0xd220, 0xd234, 2119 0xd240, 0xd254, 2120 0xd260, 0xd274, 2121 0xd280, 0xd294, 2122 0xd2a0, 0xd2b4, 2123 0xd2c0, 0xd2d4, 2124 0xd2e0, 0xd2f4, 2125 0xd300, 0xd31c, 2126 0xdfc0, 0xdfe0, 2127 0xe000, 0xf008, 2128 0xf010, 0xf018, 2129 0xf020, 0xf028, 2130 0x11000, 0x11014, 2131 0x11048, 0x1106c, 2132 0x11074, 0x11088, 2133 0x11098, 0x11120, 2134 0x1112c, 0x1117c, 2135 0x11190, 0x112e0, 2136 0x11300, 0x1130c, 2137 0x12000, 0x1206c, 2138 0x19040, 0x1906c, 2139 0x19078, 0x19080, 2140 0x1908c, 0x190e8, 2141 0x190f0, 0x190f8, 2142 0x19100, 0x19110, 2143 0x19120, 0x19124, 2144 0x19150, 0x19194, 2145 0x1919c, 0x191b0, 2146 0x191d0, 0x191e8, 2147 0x19238, 0x19290, 2148 0x192a4, 0x192b0, 2149 0x192bc, 0x192bc, 2150 0x19348, 0x1934c, 2151 0x193f8, 0x19418, 2152 0x19420, 0x19428, 2153 0x19430, 0x19444, 2154 0x1944c, 0x1946c, 2155 0x19474, 0x19474, 2156 0x19490, 0x194cc, 2157 0x194f0, 0x194f8, 2158 0x19c00, 0x19c48, 2159 0x19c50, 0x19c80, 2160 0x19c94, 0x19c98, 2161 0x19ca0, 0x19cbc, 2162 0x19ce4, 0x19ce4, 2163 0x19cf0, 0x19cf8, 2164 0x19d00, 0x19d28, 2165 0x19d50, 0x19d78, 2166 0x19d94, 0x19d98, 2167 0x19da0, 0x19dc8, 2168 0x19df0, 0x19e10, 2169 0x19e50, 0x19e6c, 2170 0x19ea0, 0x19ebc, 2171 0x19ec4, 0x19ef4, 2172 0x19f04, 0x19f2c, 2173 0x19f34, 0x19f34, 2174 0x19f40, 0x19f50, 2175 0x19f90, 0x19fac, 2176 0x19fc4, 0x19fc8, 2177 0x19fd0, 0x19fe4, 2178 0x1a000, 0x1a004, 2179 0x1a010, 0x1a06c, 2180 0x1a0b0, 0x1a0e4, 2181 0x1a0ec, 0x1a0f8, 2182 0x1a100, 0x1a108, 2183 0x1a114, 0x1a120, 2184 0x1a128, 0x1a130, 2185 0x1a138, 0x1a138, 2186 0x1a190, 0x1a1c4, 2187 0x1a1fc, 0x1a1fc, 2188 0x1e008, 0x1e00c, 2189 0x1e040, 0x1e044, 2190 0x1e04c, 0x1e04c, 2191 0x1e284, 0x1e290, 2192 0x1e2c0, 0x1e2c0, 2193 0x1e2e0, 0x1e2e0, 2194 0x1e300, 0x1e384, 2195 0x1e3c0, 0x1e3c8, 2196 0x1e408, 0x1e40c, 2197 0x1e440, 0x1e444, 2198 0x1e44c, 0x1e44c, 2199 0x1e684, 0x1e690, 2200 0x1e6c0, 0x1e6c0, 2201 0x1e6e0, 0x1e6e0, 2202 0x1e700, 0x1e784, 2203 0x1e7c0, 0x1e7c8, 2204 0x1e808, 0x1e80c, 2205 0x1e840, 0x1e844, 2206 0x1e84c, 0x1e84c, 2207 0x1ea84, 0x1ea90, 2208 0x1eac0, 0x1eac0, 2209 0x1eae0, 0x1eae0, 2210 0x1eb00, 0x1eb84, 2211 0x1ebc0, 0x1ebc8, 2212 0x1ec08, 0x1ec0c, 2213 0x1ec40, 0x1ec44, 2214 0x1ec4c, 0x1ec4c, 2215 0x1ee84, 0x1ee90, 2216 0x1eec0, 0x1eec0, 2217 0x1eee0, 0x1eee0, 2218 0x1ef00, 0x1ef84, 2219 0x1efc0, 0x1efc8, 2220 0x1f008, 0x1f00c, 2221 0x1f040, 0x1f044, 2222 0x1f04c, 0x1f04c, 2223 0x1f284, 0x1f290, 2224 0x1f2c0, 0x1f2c0, 2225 0x1f2e0, 0x1f2e0, 2226 0x1f300, 0x1f384, 2227 0x1f3c0, 0x1f3c8, 2228 0x1f408, 0x1f40c, 2229 0x1f440, 0x1f444, 2230 0x1f44c, 0x1f44c, 2231 0x1f684, 0x1f690, 2232 0x1f6c0, 0x1f6c0, 2233 0x1f6e0, 0x1f6e0, 2234 0x1f700, 0x1f784, 2235 0x1f7c0, 0x1f7c8, 2236 0x1f808, 0x1f80c, 2237 0x1f840, 0x1f844, 2238 0x1f84c, 0x1f84c, 2239 0x1fa84, 0x1fa90, 2240 0x1fac0, 0x1fac0, 2241 0x1fae0, 0x1fae0, 2242 0x1fb00, 0x1fb84, 2243 0x1fbc0, 0x1fbc8, 2244 0x1fc08, 0x1fc0c, 2245 0x1fc40, 0x1fc44, 2246 0x1fc4c, 0x1fc4c, 2247 0x1fe84, 0x1fe90, 2248 0x1fec0, 0x1fec0, 2249 0x1fee0, 0x1fee0, 2250 0x1ff00, 0x1ff84, 2251 0x1ffc0, 0x1ffc8, 2252 0x30000, 0x30030, 2253 0x30100, 0x30168, 2254 0x30190, 0x301a0, 2255 0x301a8, 0x301b8, 2256 0x301c4, 0x301c8, 2257 0x301d0, 0x301d0, 2258 0x30200, 0x30320, 2259 0x30400, 0x304b4, 2260 0x304c0, 0x3052c, 2261 0x30540, 0x3061c, 2262 0x30800, 0x308a0, 2263 0x308c0, 0x30908, 2264 0x30910, 0x309b8, 2265 0x30a00, 0x30a04, 2266 0x30a0c, 0x30a14, 2267 0x30a1c, 0x30a2c, 2268 0x30a44, 0x30a50, 2269 0x30a74, 0x30a74, 2270 0x30a7c, 0x30afc, 2271 0x30b08, 0x30c24, 2272 0x30d00, 0x30d14, 2273 0x30d1c, 0x30d3c, 2274 0x30d44, 0x30d4c, 2275 0x30d54, 0x30d74, 2276 0x30d7c, 0x30d7c, 2277 0x30de0, 0x30de0, 2278 0x30e00, 0x30ed4, 2279 0x30f00, 0x30fa4, 2280 0x30fc0, 0x30fc4, 2281 0x31000, 0x31004, 2282 0x31080, 0x310fc, 2283 0x31208, 0x31220, 2284 0x3123c, 0x31254, 2285 0x31300, 0x31300, 2286 0x31308, 0x3131c, 2287 0x31338, 0x3133c, 2288 0x31380, 0x31380, 2289 0x31388, 0x313a8, 2290 0x313b4, 0x313b4, 2291 0x31400, 0x31420, 2292 0x31438, 0x3143c, 2293 0x31480, 0x31480, 2294 0x314a8, 0x314a8, 2295 0x314b0, 0x314b4, 2296 0x314c8, 0x314d4, 2297 0x31a40, 0x31a4c, 2298 0x31af0, 0x31b20, 2299 0x31b38, 0x31b3c, 2300 0x31b80, 0x31b80, 2301 0x31ba8, 0x31ba8, 2302 0x31bb0, 0x31bb4, 2303 0x31bc8, 0x31bd4, 2304 0x32140, 0x3218c, 2305 0x321f0, 0x321f4, 2306 0x32200, 0x32200, 2307 0x32218, 0x32218, 2308 0x32400, 0x32400, 2309 0x32408, 0x3241c, 2310 0x32618, 0x32620, 2311 0x32664, 0x32664, 2312 0x326a8, 0x326a8, 2313 0x326ec, 0x326ec, 2314 0x32a00, 0x32abc, 2315 0x32b00, 0x32b18, 2316 0x32b20, 0x32b38, 2317 0x32b40, 0x32b58, 2318 0x32b60, 0x32b78, 2319 0x32c00, 0x32c00, 2320 0x32c08, 0x32c3c, 2321 0x33000, 0x3302c, 2322 0x33034, 0x33050, 2323 0x33058, 0x33058, 2324 0x33060, 0x3308c, 2325 0x3309c, 0x330ac, 2326 0x330c0, 0x330c0, 2327 0x330c8, 0x330d0, 2328 0x330d8, 0x330e0, 2329 0x330ec, 0x3312c, 2330 0x33134, 0x33150, 2331 0x33158, 0x33158, 2332 0x33160, 0x3318c, 2333 0x3319c, 0x331ac, 2334 0x331c0, 0x331c0, 2335 0x331c8, 0x331d0, 2336 0x331d8, 0x331e0, 2337 0x331ec, 0x33290, 2338 0x33298, 0x332c4, 2339 0x332e4, 0x33390, 2340 0x33398, 0x333c4, 2341 0x333e4, 0x3342c, 2342 0x33434, 0x33450, 2343 0x33458, 0x33458, 2344 0x33460, 0x3348c, 2345 0x3349c, 0x334ac, 2346 0x334c0, 0x334c0, 2347 0x334c8, 0x334d0, 2348 0x334d8, 0x334e0, 2349 0x334ec, 0x3352c, 2350 0x33534, 0x33550, 2351 0x33558, 0x33558, 2352 0x33560, 0x3358c, 2353 0x3359c, 0x335ac, 2354 0x335c0, 0x335c0, 2355 0x335c8, 0x335d0, 2356 0x335d8, 0x335e0, 2357 0x335ec, 0x33690, 2358 0x33698, 0x336c4, 2359 0x336e4, 0x33790, 2360 0x33798, 0x337c4, 2361 0x337e4, 0x337fc, 2362 0x33814, 0x33814, 2363 0x33854, 0x33868, 2364 0x33880, 0x3388c, 2365 0x338c0, 0x338d0, 2366 0x338e8, 0x338ec, 2367 0x33900, 0x3392c, 2368 0x33934, 0x33950, 2369 0x33958, 0x33958, 2370 0x33960, 0x3398c, 2371 0x3399c, 0x339ac, 2372 0x339c0, 0x339c0, 2373 0x339c8, 0x339d0, 2374 0x339d8, 0x339e0, 2375 0x339ec, 0x33a90, 2376 0x33a98, 0x33ac4, 2377 0x33ae4, 0x33b10, 2378 0x33b24, 0x33b28, 2379 0x33b38, 0x33b50, 2380 0x33bf0, 0x33c10, 2381 0x33c24, 0x33c28, 2382 0x33c38, 0x33c50, 2383 0x33cf0, 0x33cfc, 2384 0x34000, 0x34030, 2385 0x34100, 0x34168, 2386 0x34190, 0x341a0, 2387 0x341a8, 0x341b8, 2388 0x341c4, 0x341c8, 2389 0x341d0, 0x341d0, 2390 0x34200, 0x34320, 2391 0x34400, 0x344b4, 2392 0x344c0, 0x3452c, 2393 0x34540, 0x3461c, 2394 0x34800, 0x348a0, 2395 0x348c0, 0x34908, 2396 0x34910, 0x349b8, 2397 0x34a00, 0x34a04, 2398 0x34a0c, 0x34a14, 2399 0x34a1c, 0x34a2c, 2400 0x34a44, 0x34a50, 2401 0x34a74, 0x34a74, 2402 0x34a7c, 0x34afc, 2403 0x34b08, 0x34c24, 2404 0x34d00, 0x34d14, 2405 0x34d1c, 0x34d3c, 2406 0x34d44, 0x34d4c, 2407 0x34d54, 0x34d74, 2408 0x34d7c, 0x34d7c, 2409 0x34de0, 0x34de0, 2410 0x34e00, 0x34ed4, 2411 0x34f00, 0x34fa4, 2412 0x34fc0, 0x34fc4, 2413 0x35000, 0x35004, 2414 0x35080, 0x350fc, 2415 0x35208, 0x35220, 2416 0x3523c, 0x35254, 2417 0x35300, 0x35300, 2418 0x35308, 0x3531c, 2419 0x35338, 0x3533c, 2420 0x35380, 0x35380, 2421 0x35388, 0x353a8, 2422 0x353b4, 0x353b4, 2423 0x35400, 0x35420, 2424 0x35438, 0x3543c, 2425 0x35480, 0x35480, 2426 0x354a8, 0x354a8, 2427 0x354b0, 0x354b4, 2428 0x354c8, 0x354d4, 2429 0x35a40, 0x35a4c, 2430 0x35af0, 0x35b20, 2431 0x35b38, 0x35b3c, 2432 0x35b80, 0x35b80, 2433 0x35ba8, 0x35ba8, 2434 0x35bb0, 0x35bb4, 2435 0x35bc8, 0x35bd4, 2436 0x36140, 0x3618c, 2437 0x361f0, 0x361f4, 2438 0x36200, 0x36200, 2439 0x36218, 0x36218, 2440 0x36400, 0x36400, 2441 0x36408, 0x3641c, 2442 0x36618, 0x36620, 2443 0x36664, 0x36664, 2444 0x366a8, 0x366a8, 2445 0x366ec, 0x366ec, 2446 0x36a00, 0x36abc, 2447 0x36b00, 0x36b18, 2448 0x36b20, 0x36b38, 2449 0x36b40, 0x36b58, 2450 0x36b60, 0x36b78, 2451 0x36c00, 0x36c00, 2452 0x36c08, 0x36c3c, 2453 0x37000, 0x3702c, 2454 0x37034, 0x37050, 2455 0x37058, 0x37058, 2456 0x37060, 0x3708c, 2457 0x3709c, 0x370ac, 2458 0x370c0, 0x370c0, 2459 0x370c8, 0x370d0, 2460 0x370d8, 0x370e0, 2461 0x370ec, 0x3712c, 2462 0x37134, 0x37150, 2463 0x37158, 0x37158, 2464 0x37160, 0x3718c, 2465 0x3719c, 0x371ac, 2466 0x371c0, 0x371c0, 2467 0x371c8, 0x371d0, 2468 0x371d8, 0x371e0, 2469 0x371ec, 0x37290, 2470 0x37298, 0x372c4, 2471 0x372e4, 0x37390, 2472 0x37398, 0x373c4, 2473 0x373e4, 0x3742c, 2474 0x37434, 0x37450, 2475 0x37458, 0x37458, 2476 0x37460, 0x3748c, 2477 0x3749c, 0x374ac, 2478 0x374c0, 0x374c0, 2479 0x374c8, 0x374d0, 2480 0x374d8, 0x374e0, 2481 0x374ec, 0x3752c, 2482 0x37534, 0x37550, 2483 0x37558, 0x37558, 2484 0x37560, 0x3758c, 2485 0x3759c, 0x375ac, 2486 0x375c0, 0x375c0, 2487 0x375c8, 0x375d0, 2488 0x375d8, 0x375e0, 2489 0x375ec, 0x37690, 2490 0x37698, 0x376c4, 2491 0x376e4, 0x37790, 2492 0x37798, 0x377c4, 2493 0x377e4, 0x377fc, 2494 0x37814, 0x37814, 2495 0x37854, 0x37868, 2496 0x37880, 0x3788c, 2497 0x378c0, 0x378d0, 2498 0x378e8, 0x378ec, 2499 0x37900, 0x3792c, 2500 0x37934, 0x37950, 2501 0x37958, 0x37958, 2502 0x37960, 0x3798c, 2503 0x3799c, 0x379ac, 2504 0x379c0, 0x379c0, 2505 0x379c8, 0x379d0, 2506 0x379d8, 0x379e0, 2507 0x379ec, 0x37a90, 2508 0x37a98, 0x37ac4, 2509 0x37ae4, 0x37b10, 2510 0x37b24, 0x37b28, 2511 0x37b38, 0x37b50, 2512 0x37bf0, 0x37c10, 2513 0x37c24, 0x37c28, 2514 0x37c38, 0x37c50, 2515 0x37cf0, 0x37cfc, 2516 0x40040, 0x40040, 2517 0x40080, 0x40084, 2518 0x40100, 0x40100, 2519 0x40140, 0x401bc, 2520 0x40200, 0x40214, 2521 0x40228, 0x40228, 2522 0x40240, 0x40258, 2523 0x40280, 0x40280, 2524 0x40304, 0x40304, 2525 0x40330, 0x4033c, 2526 0x41304, 0x413c8, 2527 0x413d0, 0x413dc, 2528 0x413f0, 0x413f0, 2529 0x41400, 0x4140c, 2530 0x41414, 0x4141c, 2531 0x41480, 0x414d0, 2532 0x44000, 0x4407c, 2533 0x440c0, 0x441ac, 2534 0x441b4, 0x4427c, 2535 0x442c0, 0x443ac, 2536 0x443b4, 0x4447c, 2537 0x444c0, 0x445ac, 2538 0x445b4, 0x4467c, 2539 0x446c0, 0x447ac, 2540 0x447b4, 0x4487c, 2541 0x448c0, 0x449ac, 2542 0x449b4, 0x44a7c, 2543 0x44ac0, 0x44bac, 2544 0x44bb4, 0x44c7c, 2545 0x44cc0, 0x44dac, 2546 0x44db4, 0x44e7c, 2547 0x44ec0, 0x44fac, 2548 0x44fb4, 0x4507c, 2549 0x450c0, 0x451ac, 2550 0x451b4, 0x451fc, 2551 0x45800, 0x45804, 2552 0x45810, 0x45830, 2553 0x45840, 0x45860, 2554 0x45868, 0x45868, 2555 0x45880, 0x45884, 2556 0x458a0, 0x458b0, 2557 0x45a00, 0x45a04, 2558 0x45a10, 0x45a30, 2559 0x45a40, 0x45a60, 2560 0x45a68, 0x45a68, 2561 0x45a80, 0x45a84, 2562 0x45aa0, 0x45ab0, 2563 0x460c0, 0x460e4, 2564 0x47000, 0x4703c, 2565 0x47044, 0x4708c, 2566 0x47200, 0x47250, 2567 0x47400, 0x47408, 2568 0x47414, 0x47420, 2569 0x47600, 0x47618, 2570 0x47800, 0x47814, 2571 0x47820, 0x4782c, 2572 0x50000, 0x50084, 2573 0x50090, 0x500cc, 2574 0x50300, 0x50384, 2575 0x50400, 0x50400, 2576 0x50800, 0x50884, 2577 0x50890, 0x508cc, 2578 0x50b00, 0x50b84, 2579 0x50c00, 0x50c00, 2580 0x51000, 0x51020, 2581 0x51028, 0x510b0, 2582 0x51300, 0x51324, 2583 }; 2584 2585 u32 *buf_end = (u32 *)((char *)buf + buf_size); 2586 const unsigned int *reg_ranges; 2587 int reg_ranges_size, range; 2588 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 2589 2590 /* Select the right set of register ranges to dump depending on the 2591 * adapter chip type. 2592 */ 2593 switch (chip_version) { 2594 case CHELSIO_T4: 2595 reg_ranges = t4_reg_ranges; 2596 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); 2597 break; 2598 2599 case CHELSIO_T5: 2600 reg_ranges = t5_reg_ranges; 2601 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); 2602 break; 2603 2604 case CHELSIO_T6: 2605 reg_ranges = t6_reg_ranges; 2606 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); 2607 break; 2608 2609 default: 2610 dev_err(adap->pdev_dev, 2611 "Unsupported chip version %d\n", chip_version); 2612 return; 2613 } 2614 2615 /* Clear the register buffer and insert the appropriate register 2616 * values selected by the above register ranges. 2617 */ 2618 memset(buf, 0, buf_size); 2619 for (range = 0; range < reg_ranges_size; range += 2) { 2620 unsigned int reg = reg_ranges[range]; 2621 unsigned int last_reg = reg_ranges[range + 1]; 2622 u32 *bufp = (u32 *)((char *)buf + reg); 2623 2624 /* Iterate across the register range filling in the register 2625 * buffer but don't write past the end of the register buffer. 2626 */ 2627 while (reg <= last_reg && bufp < buf_end) { 2628 *bufp++ = t4_read_reg(adap, reg); 2629 reg += sizeof(u32); 2630 } 2631 } 2632 } 2633 2634 #define EEPROM_STAT_ADDR 0x7bfc 2635 #define VPD_SIZE 0x800 2636 #define VPD_BASE 0x400 2637 #define VPD_BASE_OLD 0 2638 #define VPD_LEN 1024 2639 #define CHELSIO_VPD_UNIQUE_ID 0x82 2640 2641 /** 2642 * t4_eeprom_ptov - translate a physical EEPROM address to virtual 2643 * @phys_addr: the physical EEPROM address 2644 * @fn: the PCI function number 2645 * @sz: size of function-specific area 2646 * 2647 * Translate a physical EEPROM address to virtual. The first 1K is 2648 * accessed through virtual addresses starting at 31K, the rest is 2649 * accessed through virtual addresses starting at 0. 2650 * 2651 * The mapping is as follows: 2652 * [0..1K) -> [31K..32K) 2653 * [1K..1K+A) -> [31K-A..31K) 2654 * [1K+A..ES) -> [0..ES-A-1K) 2655 * 2656 * where A = @fn * @sz, and ES = EEPROM size. 2657 */ 2658 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) 2659 { 2660 fn *= sz; 2661 if (phys_addr < 1024) 2662 return phys_addr + (31 << 10); 2663 if (phys_addr < 1024 + fn) 2664 return 31744 - fn + phys_addr - 1024; 2665 if (phys_addr < EEPROMSIZE) 2666 return phys_addr - 1024 - fn; 2667 return -EINVAL; 2668 } 2669 2670 /** 2671 * t4_seeprom_wp - enable/disable EEPROM write protection 2672 * @adapter: the adapter 2673 * @enable: whether to enable or disable write protection 2674 * 2675 * Enables or disables write protection on the serial EEPROM. 2676 */ 2677 int t4_seeprom_wp(struct adapter *adapter, bool enable) 2678 { 2679 unsigned int v = enable ? 0xc : 0; 2680 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v); 2681 return ret < 0 ? ret : 0; 2682 } 2683 2684 /** 2685 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM 2686 * @adapter: adapter to read 2687 * @p: where to store the parameters 2688 * 2689 * Reads card parameters stored in VPD EEPROM. 2690 */ 2691 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p) 2692 { 2693 int i, ret = 0, addr; 2694 int ec, sn, pn, na; 2695 u8 *vpd, csum; 2696 unsigned int vpdr_len, kw_offset, id_len; 2697 2698 vpd = vmalloc(VPD_LEN); 2699 if (!vpd) 2700 return -ENOMEM; 2701 2702 /* We have two VPD data structures stored in the adapter VPD area. 2703 * By default, Linux calculates the size of the VPD area by traversing 2704 * the first VPD area at offset 0x0, so we need to tell the OS what 2705 * our real VPD size is. 2706 */ 2707 ret = pci_set_vpd_size(adapter->pdev, VPD_SIZE); 2708 if (ret < 0) 2709 goto out; 2710 2711 /* Card information normally starts at VPD_BASE but early cards had 2712 * it at 0. 2713 */ 2714 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd); 2715 if (ret < 0) 2716 goto out; 2717 2718 /* The VPD shall have a unique identifier specified by the PCI SIG. 2719 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD 2720 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software 2721 * is expected to automatically put this entry at the 2722 * beginning of the VPD. 2723 */ 2724 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD; 2725 2726 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd); 2727 if (ret < 0) 2728 goto out; 2729 2730 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) { 2731 dev_err(adapter->pdev_dev, "missing VPD ID string\n"); 2732 ret = -EINVAL; 2733 goto out; 2734 } 2735 2736 id_len = pci_vpd_lrdt_size(vpd); 2737 if (id_len > ID_LEN) 2738 id_len = ID_LEN; 2739 2740 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA); 2741 if (i < 0) { 2742 dev_err(adapter->pdev_dev, "missing VPD-R section\n"); 2743 ret = -EINVAL; 2744 goto out; 2745 } 2746 2747 vpdr_len = pci_vpd_lrdt_size(&vpd[i]); 2748 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE; 2749 if (vpdr_len + kw_offset > VPD_LEN) { 2750 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len); 2751 ret = -EINVAL; 2752 goto out; 2753 } 2754 2755 #define FIND_VPD_KW(var, name) do { \ 2756 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \ 2757 if (var < 0) { \ 2758 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \ 2759 ret = -EINVAL; \ 2760 goto out; \ 2761 } \ 2762 var += PCI_VPD_INFO_FLD_HDR_SIZE; \ 2763 } while (0) 2764 2765 FIND_VPD_KW(i, "RV"); 2766 for (csum = 0; i >= 0; i--) 2767 csum += vpd[i]; 2768 2769 if (csum) { 2770 dev_err(adapter->pdev_dev, 2771 "corrupted VPD EEPROM, actual csum %u\n", csum); 2772 ret = -EINVAL; 2773 goto out; 2774 } 2775 2776 FIND_VPD_KW(ec, "EC"); 2777 FIND_VPD_KW(sn, "SN"); 2778 FIND_VPD_KW(pn, "PN"); 2779 FIND_VPD_KW(na, "NA"); 2780 #undef FIND_VPD_KW 2781 2782 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len); 2783 strim(p->id); 2784 memcpy(p->ec, vpd + ec, EC_LEN); 2785 strim(p->ec); 2786 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE); 2787 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); 2788 strim(p->sn); 2789 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE); 2790 memcpy(p->pn, vpd + pn, min(i, PN_LEN)); 2791 strim(p->pn); 2792 memcpy(p->na, vpd + na, min(i, MACADDR_LEN)); 2793 strim((char *)p->na); 2794 2795 out: 2796 vfree(vpd); 2797 return ret < 0 ? ret : 0; 2798 } 2799 2800 /** 2801 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock 2802 * @adapter: adapter to read 2803 * @p: where to store the parameters 2804 * 2805 * Reads card parameters stored in VPD EEPROM and retrieves the Core 2806 * Clock. This can only be called after a connection to the firmware 2807 * is established. 2808 */ 2809 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p) 2810 { 2811 u32 cclk_param, cclk_val; 2812 int ret; 2813 2814 /* Grab the raw VPD parameters. 2815 */ 2816 ret = t4_get_raw_vpd_params(adapter, p); 2817 if (ret) 2818 return ret; 2819 2820 /* Ask firmware for the Core Clock since it knows how to translate the 2821 * Reference Clock ('V2') VPD field into a Core Clock value ... 2822 */ 2823 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 2824 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); 2825 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 2826 1, &cclk_param, &cclk_val); 2827 2828 if (ret) 2829 return ret; 2830 p->cclk = cclk_val; 2831 2832 return 0; 2833 } 2834 2835 /* serial flash and firmware constants */ 2836 enum { 2837 SF_ATTEMPTS = 10, /* max retries for SF operations */ 2838 2839 /* flash command opcodes */ 2840 SF_PROG_PAGE = 2, /* program page */ 2841 SF_WR_DISABLE = 4, /* disable writes */ 2842 SF_RD_STATUS = 5, /* read status register */ 2843 SF_WR_ENABLE = 6, /* enable writes */ 2844 SF_RD_DATA_FAST = 0xb, /* read flash */ 2845 SF_RD_ID = 0x9f, /* read ID */ 2846 SF_ERASE_SECTOR = 0xd8, /* erase sector */ 2847 }; 2848 2849 /** 2850 * sf1_read - read data from the serial flash 2851 * @adapter: the adapter 2852 * @byte_cnt: number of bytes to read 2853 * @cont: whether another operation will be chained 2854 * @lock: whether to lock SF for PL access only 2855 * @valp: where to store the read data 2856 * 2857 * Reads up to 4 bytes of data from the serial flash. The location of 2858 * the read needs to be specified prior to calling this by issuing the 2859 * appropriate commands to the serial flash. 2860 */ 2861 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 2862 int lock, u32 *valp) 2863 { 2864 int ret; 2865 2866 if (!byte_cnt || byte_cnt > 4) 2867 return -EINVAL; 2868 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2869 return -EBUSY; 2870 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2871 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1)); 2872 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2873 if (!ret) 2874 *valp = t4_read_reg(adapter, SF_DATA_A); 2875 return ret; 2876 } 2877 2878 /** 2879 * sf1_write - write data to the serial flash 2880 * @adapter: the adapter 2881 * @byte_cnt: number of bytes to write 2882 * @cont: whether another operation will be chained 2883 * @lock: whether to lock SF for PL access only 2884 * @val: value to write 2885 * 2886 * Writes up to 4 bytes of data to the serial flash. The location of 2887 * the write needs to be specified prior to calling this by issuing the 2888 * appropriate commands to the serial flash. 2889 */ 2890 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 2891 int lock, u32 val) 2892 { 2893 if (!byte_cnt || byte_cnt > 4) 2894 return -EINVAL; 2895 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2896 return -EBUSY; 2897 t4_write_reg(adapter, SF_DATA_A, val); 2898 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2899 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1)); 2900 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2901 } 2902 2903 /** 2904 * flash_wait_op - wait for a flash operation to complete 2905 * @adapter: the adapter 2906 * @attempts: max number of polls of the status register 2907 * @delay: delay between polls in ms 2908 * 2909 * Wait for a flash operation to complete by polling the status register. 2910 */ 2911 static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 2912 { 2913 int ret; 2914 u32 status; 2915 2916 while (1) { 2917 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 2918 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 2919 return ret; 2920 if (!(status & 1)) 2921 return 0; 2922 if (--attempts == 0) 2923 return -EAGAIN; 2924 if (delay) 2925 msleep(delay); 2926 } 2927 } 2928 2929 /** 2930 * t4_read_flash - read words from serial flash 2931 * @adapter: the adapter 2932 * @addr: the start address for the read 2933 * @nwords: how many 32-bit words to read 2934 * @data: where to store the read data 2935 * @byte_oriented: whether to store data as bytes or as words 2936 * 2937 * Read the specified number of 32-bit words from the serial flash. 2938 * If @byte_oriented is set the read data is stored as a byte array 2939 * (i.e., big-endian), otherwise as 32-bit words in the platform's 2940 * natural endianness. 2941 */ 2942 int t4_read_flash(struct adapter *adapter, unsigned int addr, 2943 unsigned int nwords, u32 *data, int byte_oriented) 2944 { 2945 int ret; 2946 2947 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 2948 return -EINVAL; 2949 2950 addr = swab32(addr) | SF_RD_DATA_FAST; 2951 2952 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 2953 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 2954 return ret; 2955 2956 for ( ; nwords; nwords--, data++) { 2957 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 2958 if (nwords == 1) 2959 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 2960 if (ret) 2961 return ret; 2962 if (byte_oriented) 2963 *data = (__force __u32)(cpu_to_be32(*data)); 2964 } 2965 return 0; 2966 } 2967 2968 /** 2969 * t4_write_flash - write up to a page of data to the serial flash 2970 * @adapter: the adapter 2971 * @addr: the start address to write 2972 * @n: length of data to write in bytes 2973 * @data: the data to write 2974 * 2975 * Writes up to a page of data (256 bytes) to the serial flash starting 2976 * at the given address. All the data must be written to the same page. 2977 */ 2978 static int t4_write_flash(struct adapter *adapter, unsigned int addr, 2979 unsigned int n, const u8 *data) 2980 { 2981 int ret; 2982 u32 buf[64]; 2983 unsigned int i, c, left, val, offset = addr & 0xff; 2984 2985 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 2986 return -EINVAL; 2987 2988 val = swab32(addr) | SF_PROG_PAGE; 2989 2990 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 2991 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 2992 goto unlock; 2993 2994 for (left = n; left; left -= c) { 2995 c = min(left, 4U); 2996 for (val = 0, i = 0; i < c; ++i) 2997 val = (val << 8) + *data++; 2998 2999 ret = sf1_write(adapter, c, c != left, 1, val); 3000 if (ret) 3001 goto unlock; 3002 } 3003 ret = flash_wait_op(adapter, 8, 1); 3004 if (ret) 3005 goto unlock; 3006 3007 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3008 3009 /* Read the page to verify the write succeeded */ 3010 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); 3011 if (ret) 3012 return ret; 3013 3014 if (memcmp(data - n, (u8 *)buf + offset, n)) { 3015 dev_err(adapter->pdev_dev, 3016 "failed to correctly write the flash page at %#x\n", 3017 addr); 3018 return -EIO; 3019 } 3020 return 0; 3021 3022 unlock: 3023 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3024 return ret; 3025 } 3026 3027 /** 3028 * t4_get_fw_version - read the firmware version 3029 * @adapter: the adapter 3030 * @vers: where to place the version 3031 * 3032 * Reads the FW version from flash. 3033 */ 3034 int t4_get_fw_version(struct adapter *adapter, u32 *vers) 3035 { 3036 return t4_read_flash(adapter, FLASH_FW_START + 3037 offsetof(struct fw_hdr, fw_ver), 1, 3038 vers, 0); 3039 } 3040 3041 /** 3042 * t4_get_bs_version - read the firmware bootstrap version 3043 * @adapter: the adapter 3044 * @vers: where to place the version 3045 * 3046 * Reads the FW Bootstrap version from flash. 3047 */ 3048 int t4_get_bs_version(struct adapter *adapter, u32 *vers) 3049 { 3050 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START + 3051 offsetof(struct fw_hdr, fw_ver), 1, 3052 vers, 0); 3053 } 3054 3055 /** 3056 * t4_get_tp_version - read the TP microcode version 3057 * @adapter: the adapter 3058 * @vers: where to place the version 3059 * 3060 * Reads the TP microcode version from flash. 3061 */ 3062 int t4_get_tp_version(struct adapter *adapter, u32 *vers) 3063 { 3064 return t4_read_flash(adapter, FLASH_FW_START + 3065 offsetof(struct fw_hdr, tp_microcode_ver), 3066 1, vers, 0); 3067 } 3068 3069 /** 3070 * t4_get_exprom_version - return the Expansion ROM version (if any) 3071 * @adapter: the adapter 3072 * @vers: where to place the version 3073 * 3074 * Reads the Expansion ROM header from FLASH and returns the version 3075 * number (if present) through the @vers return value pointer. We return 3076 * this in the Firmware Version Format since it's convenient. Return 3077 * 0 on success, -ENOENT if no Expansion ROM is present. 3078 */ 3079 int t4_get_exprom_version(struct adapter *adap, u32 *vers) 3080 { 3081 struct exprom_header { 3082 unsigned char hdr_arr[16]; /* must start with 0x55aa */ 3083 unsigned char hdr_ver[4]; /* Expansion ROM version */ 3084 } *hdr; 3085 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), 3086 sizeof(u32))]; 3087 int ret; 3088 3089 ret = t4_read_flash(adap, FLASH_EXP_ROM_START, 3090 ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 3091 0); 3092 if (ret) 3093 return ret; 3094 3095 hdr = (struct exprom_header *)exprom_header_buf; 3096 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) 3097 return -ENOENT; 3098 3099 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) | 3100 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) | 3101 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) | 3102 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3])); 3103 return 0; 3104 } 3105 3106 /** 3107 * t4_get_vpd_version - return the VPD version 3108 * @adapter: the adapter 3109 * @vers: where to place the version 3110 * 3111 * Reads the VPD via the Firmware interface (thus this can only be called 3112 * once we're ready to issue Firmware commands). The format of the 3113 * VPD version is adapter specific. Returns 0 on success, an error on 3114 * failure. 3115 * 3116 * Note that early versions of the Firmware didn't include the ability 3117 * to retrieve the VPD version, so we zero-out the return-value parameter 3118 * in that case to avoid leaving it with garbage in it. 3119 * 3120 * Also note that the Firmware will return its cached copy of the VPD 3121 * Revision ID, not the actual Revision ID as written in the Serial 3122 * EEPROM. This is only an issue if a new VPD has been written and the 3123 * Firmware/Chip haven't yet gone through a RESET sequence. So it's best 3124 * to defer calling this routine till after a FW_RESET_CMD has been issued 3125 * if the Host Driver will be performing a full adapter initialization. 3126 */ 3127 int t4_get_vpd_version(struct adapter *adapter, u32 *vers) 3128 { 3129 u32 vpdrev_param; 3130 int ret; 3131 3132 vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3133 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV)); 3134 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3135 1, &vpdrev_param, vers); 3136 if (ret) 3137 *vers = 0; 3138 return ret; 3139 } 3140 3141 /** 3142 * t4_get_scfg_version - return the Serial Configuration version 3143 * @adapter: the adapter 3144 * @vers: where to place the version 3145 * 3146 * Reads the Serial Configuration Version via the Firmware interface 3147 * (thus this can only be called once we're ready to issue Firmware 3148 * commands). The format of the Serial Configuration version is 3149 * adapter specific. Returns 0 on success, an error on failure. 3150 * 3151 * Note that early versions of the Firmware didn't include the ability 3152 * to retrieve the Serial Configuration version, so we zero-out the 3153 * return-value parameter in that case to avoid leaving it with 3154 * garbage in it. 3155 * 3156 * Also note that the Firmware will return its cached copy of the Serial 3157 * Initialization Revision ID, not the actual Revision ID as written in 3158 * the Serial EEPROM. This is only an issue if a new VPD has been written 3159 * and the Firmware/Chip haven't yet gone through a RESET sequence. So 3160 * it's best to defer calling this routine till after a FW_RESET_CMD has 3161 * been issued if the Host Driver will be performing a full adapter 3162 * initialization. 3163 */ 3164 int t4_get_scfg_version(struct adapter *adapter, u32 *vers) 3165 { 3166 u32 scfgrev_param; 3167 int ret; 3168 3169 scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3170 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV)); 3171 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3172 1, &scfgrev_param, vers); 3173 if (ret) 3174 *vers = 0; 3175 return ret; 3176 } 3177 3178 /** 3179 * t4_get_version_info - extract various chip/firmware version information 3180 * @adapter: the adapter 3181 * 3182 * Reads various chip/firmware version numbers and stores them into the 3183 * adapter Adapter Parameters structure. If any of the efforts fails 3184 * the first failure will be returned, but all of the version numbers 3185 * will be read. 3186 */ 3187 int t4_get_version_info(struct adapter *adapter) 3188 { 3189 int ret = 0; 3190 3191 #define FIRST_RET(__getvinfo) \ 3192 do { \ 3193 int __ret = __getvinfo; \ 3194 if (__ret && !ret) \ 3195 ret = __ret; \ 3196 } while (0) 3197 3198 FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers)); 3199 FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers)); 3200 FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers)); 3201 FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers)); 3202 FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers)); 3203 FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers)); 3204 3205 #undef FIRST_RET 3206 return ret; 3207 } 3208 3209 /** 3210 * t4_dump_version_info - dump all of the adapter configuration IDs 3211 * @adapter: the adapter 3212 * 3213 * Dumps all of the various bits of adapter configuration version/revision 3214 * IDs information. This is typically called at some point after 3215 * t4_get_version_info() has been called. 3216 */ 3217 void t4_dump_version_info(struct adapter *adapter) 3218 { 3219 /* Device information */ 3220 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n", 3221 adapter->params.vpd.id, 3222 CHELSIO_CHIP_RELEASE(adapter->params.chip)); 3223 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n", 3224 adapter->params.vpd.sn, adapter->params.vpd.pn); 3225 3226 /* Firmware Version */ 3227 if (!adapter->params.fw_vers) 3228 dev_warn(adapter->pdev_dev, "No firmware loaded\n"); 3229 else 3230 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n", 3231 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers), 3232 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers), 3233 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers), 3234 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers)); 3235 3236 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap 3237 * Firmware, so dev_info() is more appropriate here.) 3238 */ 3239 if (!adapter->params.bs_vers) 3240 dev_info(adapter->pdev_dev, "No bootstrap loaded\n"); 3241 else 3242 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n", 3243 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers), 3244 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers), 3245 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers), 3246 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers)); 3247 3248 /* TP Microcode Version */ 3249 if (!adapter->params.tp_vers) 3250 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n"); 3251 else 3252 dev_info(adapter->pdev_dev, 3253 "TP Microcode version: %u.%u.%u.%u\n", 3254 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers), 3255 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers), 3256 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers), 3257 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers)); 3258 3259 /* Expansion ROM version */ 3260 if (!adapter->params.er_vers) 3261 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n"); 3262 else 3263 dev_info(adapter->pdev_dev, 3264 "Expansion ROM version: %u.%u.%u.%u\n", 3265 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers), 3266 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers), 3267 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers), 3268 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers)); 3269 3270 /* Serial Configuration version */ 3271 dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n", 3272 adapter->params.scfg_vers); 3273 3274 /* VPD Version */ 3275 dev_info(adapter->pdev_dev, "VPD version: %#x\n", 3276 adapter->params.vpd_vers); 3277 } 3278 3279 /** 3280 * t4_check_fw_version - check if the FW is supported with this driver 3281 * @adap: the adapter 3282 * 3283 * Checks if an adapter's FW is compatible with the driver. Returns 0 3284 * if there's exact match, a negative error if the version could not be 3285 * read or there's a major version mismatch 3286 */ 3287 int t4_check_fw_version(struct adapter *adap) 3288 { 3289 int i, ret, major, minor, micro; 3290 int exp_major, exp_minor, exp_micro; 3291 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 3292 3293 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3294 /* Try multiple times before returning error */ 3295 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++) 3296 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3297 3298 if (ret) 3299 return ret; 3300 3301 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers); 3302 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers); 3303 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers); 3304 3305 switch (chip_version) { 3306 case CHELSIO_T4: 3307 exp_major = T4FW_MIN_VERSION_MAJOR; 3308 exp_minor = T4FW_MIN_VERSION_MINOR; 3309 exp_micro = T4FW_MIN_VERSION_MICRO; 3310 break; 3311 case CHELSIO_T5: 3312 exp_major = T5FW_MIN_VERSION_MAJOR; 3313 exp_minor = T5FW_MIN_VERSION_MINOR; 3314 exp_micro = T5FW_MIN_VERSION_MICRO; 3315 break; 3316 case CHELSIO_T6: 3317 exp_major = T6FW_MIN_VERSION_MAJOR; 3318 exp_minor = T6FW_MIN_VERSION_MINOR; 3319 exp_micro = T6FW_MIN_VERSION_MICRO; 3320 break; 3321 default: 3322 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n", 3323 adap->chip); 3324 return -EINVAL; 3325 } 3326 3327 if (major < exp_major || (major == exp_major && minor < exp_minor) || 3328 (major == exp_major && minor == exp_minor && micro < exp_micro)) { 3329 dev_err(adap->pdev_dev, 3330 "Card has firmware version %u.%u.%u, minimum " 3331 "supported firmware is %u.%u.%u.\n", major, minor, 3332 micro, exp_major, exp_minor, exp_micro); 3333 return -EFAULT; 3334 } 3335 return 0; 3336 } 3337 3338 /* Is the given firmware API compatible with the one the driver was compiled 3339 * with? 3340 */ 3341 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) 3342 { 3343 3344 /* short circuit if it's the exact same firmware version */ 3345 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 3346 return 1; 3347 3348 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 3349 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 3350 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) 3351 return 1; 3352 #undef SAME_INTF 3353 3354 return 0; 3355 } 3356 3357 /* The firmware in the filesystem is usable, but should it be installed? 3358 * This routine explains itself in detail if it indicates the filesystem 3359 * firmware should be installed. 3360 */ 3361 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable, 3362 int k, int c) 3363 { 3364 const char *reason; 3365 3366 if (!card_fw_usable) { 3367 reason = "incompatible or unusable"; 3368 goto install; 3369 } 3370 3371 if (k > c) { 3372 reason = "older than the version supported with this driver"; 3373 goto install; 3374 } 3375 3376 return 0; 3377 3378 install: 3379 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, " 3380 "installing firmware %u.%u.%u.%u on card.\n", 3381 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3382 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason, 3383 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3384 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3385 3386 return 1; 3387 } 3388 3389 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info, 3390 const u8 *fw_data, unsigned int fw_size, 3391 struct fw_hdr *card_fw, enum dev_state state, 3392 int *reset) 3393 { 3394 int ret, card_fw_usable, fs_fw_usable; 3395 const struct fw_hdr *fs_fw; 3396 const struct fw_hdr *drv_fw; 3397 3398 drv_fw = &fw_info->fw_hdr; 3399 3400 /* Read the header of the firmware on the card */ 3401 ret = -t4_read_flash(adap, FLASH_FW_START, 3402 sizeof(*card_fw) / sizeof(uint32_t), 3403 (uint32_t *)card_fw, 1); 3404 if (ret == 0) { 3405 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); 3406 } else { 3407 dev_err(adap->pdev_dev, 3408 "Unable to read card's firmware header: %d\n", ret); 3409 card_fw_usable = 0; 3410 } 3411 3412 if (fw_data != NULL) { 3413 fs_fw = (const void *)fw_data; 3414 fs_fw_usable = fw_compatible(drv_fw, fs_fw); 3415 } else { 3416 fs_fw = NULL; 3417 fs_fw_usable = 0; 3418 } 3419 3420 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && 3421 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { 3422 /* Common case: the firmware on the card is an exact match and 3423 * the filesystem one is an exact match too, or the filesystem 3424 * one is absent/incompatible. 3425 */ 3426 } else if (fs_fw_usable && state == DEV_STATE_UNINIT && 3427 should_install_fs_fw(adap, card_fw_usable, 3428 be32_to_cpu(fs_fw->fw_ver), 3429 be32_to_cpu(card_fw->fw_ver))) { 3430 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data, 3431 fw_size, 0); 3432 if (ret != 0) { 3433 dev_err(adap->pdev_dev, 3434 "failed to install firmware: %d\n", ret); 3435 goto bye; 3436 } 3437 3438 /* Installed successfully, update the cached header too. */ 3439 *card_fw = *fs_fw; 3440 card_fw_usable = 1; 3441 *reset = 0; /* already reset as part of load_fw */ 3442 } 3443 3444 if (!card_fw_usable) { 3445 uint32_t d, c, k; 3446 3447 d = be32_to_cpu(drv_fw->fw_ver); 3448 c = be32_to_cpu(card_fw->fw_ver); 3449 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; 3450 3451 dev_err(adap->pdev_dev, "Cannot find a usable firmware: " 3452 "chip state %d, " 3453 "driver compiled with %d.%d.%d.%d, " 3454 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", 3455 state, 3456 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d), 3457 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d), 3458 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3459 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), 3460 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3461 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3462 ret = EINVAL; 3463 goto bye; 3464 } 3465 3466 /* We're using whatever's on the card and it's known to be good. */ 3467 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver); 3468 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); 3469 3470 bye: 3471 return ret; 3472 } 3473 3474 /** 3475 * t4_flash_erase_sectors - erase a range of flash sectors 3476 * @adapter: the adapter 3477 * @start: the first sector to erase 3478 * @end: the last sector to erase 3479 * 3480 * Erases the sectors in the given inclusive range. 3481 */ 3482 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 3483 { 3484 int ret = 0; 3485 3486 if (end >= adapter->params.sf_nsec) 3487 return -EINVAL; 3488 3489 while (start <= end) { 3490 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3491 (ret = sf1_write(adapter, 4, 0, 1, 3492 SF_ERASE_SECTOR | (start << 8))) != 0 || 3493 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 3494 dev_err(adapter->pdev_dev, 3495 "erase of flash sector %d failed, error %d\n", 3496 start, ret); 3497 break; 3498 } 3499 start++; 3500 } 3501 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3502 return ret; 3503 } 3504 3505 /** 3506 * t4_flash_cfg_addr - return the address of the flash configuration file 3507 * @adapter: the adapter 3508 * 3509 * Return the address within the flash where the Firmware Configuration 3510 * File is stored. 3511 */ 3512 unsigned int t4_flash_cfg_addr(struct adapter *adapter) 3513 { 3514 if (adapter->params.sf_size == 0x100000) 3515 return FLASH_FPGA_CFG_START; 3516 else 3517 return FLASH_CFG_START; 3518 } 3519 3520 /* Return TRUE if the specified firmware matches the adapter. I.e. T4 3521 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead 3522 * and emit an error message for mismatched firmware to save our caller the 3523 * effort ... 3524 */ 3525 static bool t4_fw_matches_chip(const struct adapter *adap, 3526 const struct fw_hdr *hdr) 3527 { 3528 /* The expression below will return FALSE for any unsupported adapter 3529 * which will keep us "honest" in the future ... 3530 */ 3531 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) || 3532 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) || 3533 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6)) 3534 return true; 3535 3536 dev_err(adap->pdev_dev, 3537 "FW image (%d) is not suitable for this adapter (%d)\n", 3538 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip)); 3539 return false; 3540 } 3541 3542 /** 3543 * t4_load_fw - download firmware 3544 * @adap: the adapter 3545 * @fw_data: the firmware image to write 3546 * @size: image size 3547 * 3548 * Write the supplied firmware image to the card's serial flash. 3549 */ 3550 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 3551 { 3552 u32 csum; 3553 int ret, addr; 3554 unsigned int i; 3555 u8 first_page[SF_PAGE_SIZE]; 3556 const __be32 *p = (const __be32 *)fw_data; 3557 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 3558 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 3559 unsigned int fw_start_sec = FLASH_FW_START_SEC; 3560 unsigned int fw_size = FLASH_FW_MAX_SIZE; 3561 unsigned int fw_start = FLASH_FW_START; 3562 3563 if (!size) { 3564 dev_err(adap->pdev_dev, "FW image has no data\n"); 3565 return -EINVAL; 3566 } 3567 if (size & 511) { 3568 dev_err(adap->pdev_dev, 3569 "FW image size not multiple of 512 bytes\n"); 3570 return -EINVAL; 3571 } 3572 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) { 3573 dev_err(adap->pdev_dev, 3574 "FW image size differs from size in FW header\n"); 3575 return -EINVAL; 3576 } 3577 if (size > fw_size) { 3578 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n", 3579 fw_size); 3580 return -EFBIG; 3581 } 3582 if (!t4_fw_matches_chip(adap, hdr)) 3583 return -EINVAL; 3584 3585 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 3586 csum += be32_to_cpu(p[i]); 3587 3588 if (csum != 0xffffffff) { 3589 dev_err(adap->pdev_dev, 3590 "corrupted firmware image, checksum %#x\n", csum); 3591 return -EINVAL; 3592 } 3593 3594 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 3595 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 3596 if (ret) 3597 goto out; 3598 3599 /* 3600 * We write the correct version at the end so the driver can see a bad 3601 * version if the FW write fails. Start by writing a copy of the 3602 * first page with a bad version. 3603 */ 3604 memcpy(first_page, fw_data, SF_PAGE_SIZE); 3605 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); 3606 ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page); 3607 if (ret) 3608 goto out; 3609 3610 addr = fw_start; 3611 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 3612 addr += SF_PAGE_SIZE; 3613 fw_data += SF_PAGE_SIZE; 3614 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data); 3615 if (ret) 3616 goto out; 3617 } 3618 3619 ret = t4_write_flash(adap, 3620 fw_start + offsetof(struct fw_hdr, fw_ver), 3621 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver); 3622 out: 3623 if (ret) 3624 dev_err(adap->pdev_dev, "firmware download failed, error %d\n", 3625 ret); 3626 else 3627 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3628 return ret; 3629 } 3630 3631 /** 3632 * t4_phy_fw_ver - return current PHY firmware version 3633 * @adap: the adapter 3634 * @phy_fw_ver: return value buffer for PHY firmware version 3635 * 3636 * Returns the current version of external PHY firmware on the 3637 * adapter. 3638 */ 3639 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver) 3640 { 3641 u32 param, val; 3642 int ret; 3643 3644 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3645 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3646 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3647 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION)); 3648 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3649 ¶m, &val); 3650 if (ret < 0) 3651 return ret; 3652 *phy_fw_ver = val; 3653 return 0; 3654 } 3655 3656 /** 3657 * t4_load_phy_fw - download port PHY firmware 3658 * @adap: the adapter 3659 * @win: the PCI-E Memory Window index to use for t4_memory_rw() 3660 * @win_lock: the lock to use to guard the memory copy 3661 * @phy_fw_version: function to check PHY firmware versions 3662 * @phy_fw_data: the PHY firmware image to write 3663 * @phy_fw_size: image size 3664 * 3665 * Transfer the specified PHY firmware to the adapter. If a non-NULL 3666 * @phy_fw_version is supplied, then it will be used to determine if 3667 * it's necessary to perform the transfer by comparing the version 3668 * of any existing adapter PHY firmware with that of the passed in 3669 * PHY firmware image. If @win_lock is non-NULL then it will be used 3670 * around the call to t4_memory_rw() which transfers the PHY firmware 3671 * to the adapter. 3672 * 3673 * A negative error number will be returned if an error occurs. If 3674 * version number support is available and there's no need to upgrade 3675 * the firmware, 0 will be returned. If firmware is successfully 3676 * transferred to the adapter, 1 will be retured. 3677 * 3678 * NOTE: some adapters only have local RAM to store the PHY firmware. As 3679 * a result, a RESET of the adapter would cause that RAM to lose its 3680 * contents. Thus, loading PHY firmware on such adapters must happen 3681 * after any FW_RESET_CMDs ... 3682 */ 3683 int t4_load_phy_fw(struct adapter *adap, 3684 int win, spinlock_t *win_lock, 3685 int (*phy_fw_version)(const u8 *, size_t), 3686 const u8 *phy_fw_data, size_t phy_fw_size) 3687 { 3688 unsigned long mtype = 0, maddr = 0; 3689 u32 param, val; 3690 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0; 3691 int ret; 3692 3693 /* If we have version number support, then check to see if the adapter 3694 * already has up-to-date PHY firmware loaded. 3695 */ 3696 if (phy_fw_version) { 3697 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size); 3698 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3699 if (ret < 0) 3700 return ret; 3701 3702 if (cur_phy_fw_ver >= new_phy_fw_vers) { 3703 CH_WARN(adap, "PHY Firmware already up-to-date, " 3704 "version %#x\n", cur_phy_fw_ver); 3705 return 0; 3706 } 3707 } 3708 3709 /* Ask the firmware where it wants us to copy the PHY firmware image. 3710 * The size of the file requires a special version of the READ coommand 3711 * which will pass the file size via the values field in PARAMS_CMD and 3712 * retrieve the return value from firmware and place it in the same 3713 * buffer values 3714 */ 3715 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3716 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3717 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3718 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3719 val = phy_fw_size; 3720 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1, 3721 ¶m, &val, 1, true); 3722 if (ret < 0) 3723 return ret; 3724 mtype = val >> 8; 3725 maddr = (val & 0xff) << 16; 3726 3727 /* Copy the supplied PHY Firmware image to the adapter memory location 3728 * allocated by the adapter firmware. 3729 */ 3730 if (win_lock) 3731 spin_lock_bh(win_lock); 3732 ret = t4_memory_rw(adap, win, mtype, maddr, 3733 phy_fw_size, (__be32 *)phy_fw_data, 3734 T4_MEMORY_WRITE); 3735 if (win_lock) 3736 spin_unlock_bh(win_lock); 3737 if (ret) 3738 return ret; 3739 3740 /* Tell the firmware that the PHY firmware image has been written to 3741 * RAM and it can now start copying it over to the PHYs. The chip 3742 * firmware will RESET the affected PHYs as part of this operation 3743 * leaving them running the new PHY firmware image. 3744 */ 3745 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3746 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3747 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3748 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3749 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 3750 ¶m, &val, 30000); 3751 3752 /* If we have version number support, then check to see that the new 3753 * firmware got loaded properly. 3754 */ 3755 if (phy_fw_version) { 3756 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3757 if (ret < 0) 3758 return ret; 3759 3760 if (cur_phy_fw_ver != new_phy_fw_vers) { 3761 CH_WARN(adap, "PHY Firmware did not update: " 3762 "version on adapter %#x, " 3763 "version flashed %#x\n", 3764 cur_phy_fw_ver, new_phy_fw_vers); 3765 return -ENXIO; 3766 } 3767 } 3768 3769 return 1; 3770 } 3771 3772 /** 3773 * t4_fwcache - firmware cache operation 3774 * @adap: the adapter 3775 * @op : the operation (flush or flush and invalidate) 3776 */ 3777 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) 3778 { 3779 struct fw_params_cmd c; 3780 3781 memset(&c, 0, sizeof(c)); 3782 c.op_to_vfn = 3783 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 3784 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 3785 FW_PARAMS_CMD_PFN_V(adap->pf) | 3786 FW_PARAMS_CMD_VFN_V(0)); 3787 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 3788 c.param[0].mnem = 3789 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3790 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE)); 3791 c.param[0].val = (__force __be32)op; 3792 3793 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); 3794 } 3795 3796 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, 3797 unsigned int *pif_req_wrptr, 3798 unsigned int *pif_rsp_wrptr) 3799 { 3800 int i, j; 3801 u32 cfg, val, req, rsp; 3802 3803 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3804 if (cfg & LADBGEN_F) 3805 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3806 3807 val = t4_read_reg(adap, CIM_DEBUGSTS_A); 3808 req = POLADBGWRPTR_G(val); 3809 rsp = PILADBGWRPTR_G(val); 3810 if (pif_req_wrptr) 3811 *pif_req_wrptr = req; 3812 if (pif_rsp_wrptr) 3813 *pif_rsp_wrptr = rsp; 3814 3815 for (i = 0; i < CIM_PIFLA_SIZE; i++) { 3816 for (j = 0; j < 6; j++) { 3817 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) | 3818 PILADBGRDPTR_V(rsp)); 3819 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A); 3820 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A); 3821 req++; 3822 rsp++; 3823 } 3824 req = (req + 2) & POLADBGRDPTR_M; 3825 rsp = (rsp + 2) & PILADBGRDPTR_M; 3826 } 3827 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3828 } 3829 3830 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) 3831 { 3832 u32 cfg; 3833 int i, j, idx; 3834 3835 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3836 if (cfg & LADBGEN_F) 3837 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3838 3839 for (i = 0; i < CIM_MALA_SIZE; i++) { 3840 for (j = 0; j < 5; j++) { 3841 idx = 8 * i + j; 3842 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) | 3843 PILADBGRDPTR_V(idx)); 3844 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A); 3845 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A); 3846 } 3847 } 3848 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3849 } 3850 3851 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) 3852 { 3853 unsigned int i, j; 3854 3855 for (i = 0; i < 8; i++) { 3856 u32 *p = la_buf + i; 3857 3858 t4_write_reg(adap, ULP_RX_LA_CTL_A, i); 3859 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A); 3860 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j); 3861 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) 3862 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A); 3863 } 3864 } 3865 3866 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \ 3867 FW_PORT_CAP32_ANEG) 3868 3869 /** 3870 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits 3871 * @caps16: a 16-bit Port Capabilities value 3872 * 3873 * Returns the equivalent 32-bit Port Capabilities value. 3874 */ 3875 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16) 3876 { 3877 fw_port_cap32_t caps32 = 0; 3878 3879 #define CAP16_TO_CAP32(__cap) \ 3880 do { \ 3881 if (caps16 & FW_PORT_CAP_##__cap) \ 3882 caps32 |= FW_PORT_CAP32_##__cap; \ 3883 } while (0) 3884 3885 CAP16_TO_CAP32(SPEED_100M); 3886 CAP16_TO_CAP32(SPEED_1G); 3887 CAP16_TO_CAP32(SPEED_25G); 3888 CAP16_TO_CAP32(SPEED_10G); 3889 CAP16_TO_CAP32(SPEED_40G); 3890 CAP16_TO_CAP32(SPEED_100G); 3891 CAP16_TO_CAP32(FC_RX); 3892 CAP16_TO_CAP32(FC_TX); 3893 CAP16_TO_CAP32(ANEG); 3894 CAP16_TO_CAP32(MDIX); 3895 CAP16_TO_CAP32(MDIAUTO); 3896 CAP16_TO_CAP32(FEC_RS); 3897 CAP16_TO_CAP32(FEC_BASER_RS); 3898 CAP16_TO_CAP32(802_3_PAUSE); 3899 CAP16_TO_CAP32(802_3_ASM_DIR); 3900 3901 #undef CAP16_TO_CAP32 3902 3903 return caps32; 3904 } 3905 3906 /** 3907 * fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits 3908 * @caps32: a 32-bit Port Capabilities value 3909 * 3910 * Returns the equivalent 16-bit Port Capabilities value. Note that 3911 * not all 32-bit Port Capabilities can be represented in the 16-bit 3912 * Port Capabilities and some fields/values may not make it. 3913 */ 3914 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32) 3915 { 3916 fw_port_cap16_t caps16 = 0; 3917 3918 #define CAP32_TO_CAP16(__cap) \ 3919 do { \ 3920 if (caps32 & FW_PORT_CAP32_##__cap) \ 3921 caps16 |= FW_PORT_CAP_##__cap; \ 3922 } while (0) 3923 3924 CAP32_TO_CAP16(SPEED_100M); 3925 CAP32_TO_CAP16(SPEED_1G); 3926 CAP32_TO_CAP16(SPEED_10G); 3927 CAP32_TO_CAP16(SPEED_25G); 3928 CAP32_TO_CAP16(SPEED_40G); 3929 CAP32_TO_CAP16(SPEED_100G); 3930 CAP32_TO_CAP16(FC_RX); 3931 CAP32_TO_CAP16(FC_TX); 3932 CAP32_TO_CAP16(802_3_PAUSE); 3933 CAP32_TO_CAP16(802_3_ASM_DIR); 3934 CAP32_TO_CAP16(ANEG); 3935 CAP32_TO_CAP16(MDIX); 3936 CAP32_TO_CAP16(MDIAUTO); 3937 CAP32_TO_CAP16(FEC_RS); 3938 CAP32_TO_CAP16(FEC_BASER_RS); 3939 3940 #undef CAP32_TO_CAP16 3941 3942 return caps16; 3943 } 3944 3945 /* Translate Firmware Port Capabilities Pause specification to Common Code */ 3946 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause) 3947 { 3948 enum cc_pause cc_pause = 0; 3949 3950 if (fw_pause & FW_PORT_CAP32_FC_RX) 3951 cc_pause |= PAUSE_RX; 3952 if (fw_pause & FW_PORT_CAP32_FC_TX) 3953 cc_pause |= PAUSE_TX; 3954 3955 return cc_pause; 3956 } 3957 3958 /* Translate Common Code Pause specification into Firmware Port Capabilities */ 3959 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause) 3960 { 3961 fw_port_cap32_t fw_pause = 0; 3962 3963 if (cc_pause & PAUSE_RX) 3964 fw_pause |= FW_PORT_CAP32_FC_RX; 3965 if (cc_pause & PAUSE_TX) 3966 fw_pause |= FW_PORT_CAP32_FC_TX; 3967 3968 return fw_pause; 3969 } 3970 3971 /* Translate Firmware Forward Error Correction specification to Common Code */ 3972 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec) 3973 { 3974 enum cc_fec cc_fec = 0; 3975 3976 if (fw_fec & FW_PORT_CAP32_FEC_RS) 3977 cc_fec |= FEC_RS; 3978 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) 3979 cc_fec |= FEC_BASER_RS; 3980 3981 return cc_fec; 3982 } 3983 3984 /* Translate Common Code Forward Error Correction specification to Firmware */ 3985 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec) 3986 { 3987 fw_port_cap32_t fw_fec = 0; 3988 3989 if (cc_fec & FEC_RS) 3990 fw_fec |= FW_PORT_CAP32_FEC_RS; 3991 if (cc_fec & FEC_BASER_RS) 3992 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS; 3993 3994 return fw_fec; 3995 } 3996 3997 /** 3998 * t4_link_l1cfg - apply link configuration to MAC/PHY 3999 * @adapter: the adapter 4000 * @mbox: the Firmware Mailbox to use 4001 * @port: the Port ID 4002 * @lc: the Port's Link Configuration 4003 * 4004 * Set up a port's MAC and PHY according to a desired link configuration. 4005 * - If the PHY can auto-negotiate first decide what to advertise, then 4006 * enable/disable auto-negotiation as desired, and reset. 4007 * - If the PHY does not auto-negotiate just reset it. 4008 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 4009 * otherwise do it later based on the outcome of auto-negotiation. 4010 */ 4011 int t4_link_l1cfg(struct adapter *adapter, unsigned int mbox, 4012 unsigned int port, struct link_config *lc) 4013 { 4014 unsigned int fw_caps = adapter->params.fw_caps_support; 4015 struct fw_port_cmd cmd; 4016 unsigned int fw_mdi = FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO); 4017 fw_port_cap32_t fw_fc, cc_fec, fw_fec, rcap; 4018 4019 lc->link_ok = 0; 4020 4021 /* Convert driver coding of Pause Frame Flow Control settings into the 4022 * Firmware's API. 4023 */ 4024 fw_fc = cc_to_fwcap_pause(lc->requested_fc); 4025 4026 /* Convert Common Code Forward Error Control settings into the 4027 * Firmware's API. If the current Requested FEC has "Automatic" 4028 * (IEEE 802.3) specified, then we use whatever the Firmware 4029 * sent us as part of it's IEEE 802.3-based interpratation of 4030 * the Transceiver Module EPROM FEC parameters. Otherwise we 4031 * use whatever is in the current Requested FEC settings. 4032 */ 4033 if (lc->requested_fec & FEC_AUTO) 4034 cc_fec = fwcap_to_cc_fec(lc->def_acaps); 4035 else 4036 cc_fec = lc->requested_fec; 4037 fw_fec = cc_to_fwcap_fec(cc_fec); 4038 4039 /* Figure out what our Requested Port Capabilities are going to be. 4040 */ 4041 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 4042 rcap = (lc->pcaps & ADVERT_MASK) | fw_fc | fw_fec; 4043 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4044 lc->fec = cc_fec; 4045 } else if (lc->autoneg == AUTONEG_DISABLE) { 4046 rcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi; 4047 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4048 lc->fec = cc_fec; 4049 } else { 4050 rcap = lc->acaps | fw_fc | fw_fec | fw_mdi; 4051 } 4052 4053 /* And send that on to the Firmware ... 4054 */ 4055 memset(&cmd, 0, sizeof(cmd)); 4056 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4057 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4058 FW_PORT_CMD_PORTID_V(port)); 4059 cmd.action_to_len16 = 4060 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4061 ? FW_PORT_ACTION_L1_CFG 4062 : FW_PORT_ACTION_L1_CFG32) | 4063 FW_LEN16(cmd)); 4064 if (fw_caps == FW_CAPS16) 4065 cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap)); 4066 else 4067 cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap); 4068 return t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 4069 } 4070 4071 /** 4072 * t4_restart_aneg - restart autonegotiation 4073 * @adap: the adapter 4074 * @mbox: mbox to use for the FW command 4075 * @port: the port id 4076 * 4077 * Restarts autonegotiation for the selected port. 4078 */ 4079 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 4080 { 4081 struct fw_port_cmd c; 4082 4083 memset(&c, 0, sizeof(c)); 4084 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4085 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4086 FW_PORT_CMD_PORTID_V(port)); 4087 c.action_to_len16 = 4088 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) | 4089 FW_LEN16(c)); 4090 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP32_ANEG); 4091 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4092 } 4093 4094 typedef void (*int_handler_t)(struct adapter *adap); 4095 4096 struct intr_info { 4097 unsigned int mask; /* bits to check in interrupt status */ 4098 const char *msg; /* message to print or NULL */ 4099 short stat_idx; /* stat counter to increment or -1 */ 4100 unsigned short fatal; /* whether the condition reported is fatal */ 4101 int_handler_t int_handler; /* platform-specific int handler */ 4102 }; 4103 4104 /** 4105 * t4_handle_intr_status - table driven interrupt handler 4106 * @adapter: the adapter that generated the interrupt 4107 * @reg: the interrupt status register to process 4108 * @acts: table of interrupt actions 4109 * 4110 * A table driven interrupt handler that applies a set of masks to an 4111 * interrupt status word and performs the corresponding actions if the 4112 * interrupts described by the mask have occurred. The actions include 4113 * optionally emitting a warning or alert message. The table is terminated 4114 * by an entry specifying mask 0. Returns the number of fatal interrupt 4115 * conditions. 4116 */ 4117 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, 4118 const struct intr_info *acts) 4119 { 4120 int fatal = 0; 4121 unsigned int mask = 0; 4122 unsigned int status = t4_read_reg(adapter, reg); 4123 4124 for ( ; acts->mask; ++acts) { 4125 if (!(status & acts->mask)) 4126 continue; 4127 if (acts->fatal) { 4128 fatal++; 4129 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4130 status & acts->mask); 4131 } else if (acts->msg && printk_ratelimit()) 4132 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4133 status & acts->mask); 4134 if (acts->int_handler) 4135 acts->int_handler(adapter); 4136 mask |= acts->mask; 4137 } 4138 status &= mask; 4139 if (status) /* clear processed interrupts */ 4140 t4_write_reg(adapter, reg, status); 4141 return fatal; 4142 } 4143 4144 /* 4145 * Interrupt handler for the PCIE module. 4146 */ 4147 static void pcie_intr_handler(struct adapter *adapter) 4148 { 4149 static const struct intr_info sysbus_intr_info[] = { 4150 { RNPP_F, "RXNP array parity error", -1, 1 }, 4151 { RPCP_F, "RXPC array parity error", -1, 1 }, 4152 { RCIP_F, "RXCIF array parity error", -1, 1 }, 4153 { RCCP_F, "Rx completions control array parity error", -1, 1 }, 4154 { RFTP_F, "RXFT array parity error", -1, 1 }, 4155 { 0 } 4156 }; 4157 static const struct intr_info pcie_port_intr_info[] = { 4158 { TPCP_F, "TXPC array parity error", -1, 1 }, 4159 { TNPP_F, "TXNP array parity error", -1, 1 }, 4160 { TFTP_F, "TXFT array parity error", -1, 1 }, 4161 { TCAP_F, "TXCA array parity error", -1, 1 }, 4162 { TCIP_F, "TXCIF array parity error", -1, 1 }, 4163 { RCAP_F, "RXCA array parity error", -1, 1 }, 4164 { OTDD_F, "outbound request TLP discarded", -1, 1 }, 4165 { RDPE_F, "Rx data parity error", -1, 1 }, 4166 { TDUE_F, "Tx uncorrectable data error", -1, 1 }, 4167 { 0 } 4168 }; 4169 static const struct intr_info pcie_intr_info[] = { 4170 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 }, 4171 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 }, 4172 { MSIDATAPERR_F, "MSI data parity error", -1, 1 }, 4173 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4174 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4175 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4176 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4177 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 }, 4178 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 }, 4179 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4180 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 }, 4181 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4182 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4183 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 }, 4184 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4185 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4186 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4187 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4188 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4189 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4190 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4191 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 }, 4192 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 }, 4193 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4194 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 }, 4195 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 }, 4196 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 }, 4197 { PCIESINT_F, "PCI core secondary fault", -1, 1 }, 4198 { PCIEPINT_F, "PCI core primary fault", -1, 1 }, 4199 { UNXSPLCPLERR_F, "PCI unexpected split completion error", 4200 -1, 0 }, 4201 { 0 } 4202 }; 4203 4204 static struct intr_info t5_pcie_intr_info[] = { 4205 { MSTGRPPERR_F, "Master Response Read Queue parity error", 4206 -1, 1 }, 4207 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 }, 4208 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 }, 4209 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4210 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4211 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4212 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4213 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error", 4214 -1, 1 }, 4215 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error", 4216 -1, 1 }, 4217 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4218 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 }, 4219 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4220 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4221 { DREQWRPERR_F, "PCI DMA channel write request parity error", 4222 -1, 1 }, 4223 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4224 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4225 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4226 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4227 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4228 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4229 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4230 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 }, 4231 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 }, 4232 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4233 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error", 4234 -1, 1 }, 4235 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error", 4236 -1, 1 }, 4237 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 }, 4238 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 }, 4239 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 }, 4240 { READRSPERR_F, "Outbound read error", -1, 0 }, 4241 { 0 } 4242 }; 4243 4244 int fat; 4245 4246 if (is_t4(adapter->params.chip)) 4247 fat = t4_handle_intr_status(adapter, 4248 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A, 4249 sysbus_intr_info) + 4250 t4_handle_intr_status(adapter, 4251 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A, 4252 pcie_port_intr_info) + 4253 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4254 pcie_intr_info); 4255 else 4256 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4257 t5_pcie_intr_info); 4258 4259 if (fat) 4260 t4_fatal_err(adapter); 4261 } 4262 4263 /* 4264 * TP interrupt handler. 4265 */ 4266 static void tp_intr_handler(struct adapter *adapter) 4267 { 4268 static const struct intr_info tp_intr_info[] = { 4269 { 0x3fffffff, "TP parity error", -1, 1 }, 4270 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 }, 4271 { 0 } 4272 }; 4273 4274 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info)) 4275 t4_fatal_err(adapter); 4276 } 4277 4278 /* 4279 * SGE interrupt handler. 4280 */ 4281 static void sge_intr_handler(struct adapter *adapter) 4282 { 4283 u64 v; 4284 u32 err; 4285 4286 static const struct intr_info sge_intr_info[] = { 4287 { ERR_CPL_EXCEED_IQE_SIZE_F, 4288 "SGE received CPL exceeding IQE size", -1, 1 }, 4289 { ERR_INVALID_CIDX_INC_F, 4290 "SGE GTS CIDX increment too large", -1, 0 }, 4291 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 }, 4292 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full }, 4293 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F, 4294 "SGE IQID > 1023 received CPL for FL", -1, 0 }, 4295 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1, 4296 0 }, 4297 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1, 4298 0 }, 4299 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1, 4300 0 }, 4301 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1, 4302 0 }, 4303 { ERR_ING_CTXT_PRIO_F, 4304 "SGE too many priority ingress contexts", -1, 0 }, 4305 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 }, 4306 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 }, 4307 { 0 } 4308 }; 4309 4310 static struct intr_info t4t5_sge_intr_info[] = { 4311 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped }, 4312 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full }, 4313 { ERR_EGR_CTXT_PRIO_F, 4314 "SGE too many priority egress contexts", -1, 0 }, 4315 { 0 } 4316 }; 4317 4318 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) | 4319 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32); 4320 if (v) { 4321 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n", 4322 (unsigned long long)v); 4323 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v); 4324 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32); 4325 } 4326 4327 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info); 4328 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4329 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, 4330 t4t5_sge_intr_info); 4331 4332 err = t4_read_reg(adapter, SGE_ERROR_STATS_A); 4333 if (err & ERROR_QID_VALID_F) { 4334 dev_err(adapter->pdev_dev, "SGE error for queue %u\n", 4335 ERROR_QID_G(err)); 4336 if (err & UNCAPTURED_ERROR_F) 4337 dev_err(adapter->pdev_dev, 4338 "SGE UNCAPTURED_ERROR set (clearing)\n"); 4339 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F | 4340 UNCAPTURED_ERROR_F); 4341 } 4342 4343 if (v != 0) 4344 t4_fatal_err(adapter); 4345 } 4346 4347 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\ 4348 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F) 4349 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\ 4350 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F) 4351 4352 /* 4353 * CIM interrupt handler. 4354 */ 4355 static void cim_intr_handler(struct adapter *adapter) 4356 { 4357 static const struct intr_info cim_intr_info[] = { 4358 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 }, 4359 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, 4360 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, 4361 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 }, 4362 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 }, 4363 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 }, 4364 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 }, 4365 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 }, 4366 { 0 } 4367 }; 4368 static const struct intr_info cim_upintr_info[] = { 4369 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 }, 4370 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 }, 4371 { ILLWRINT_F, "CIM illegal write", -1, 1 }, 4372 { ILLRDINT_F, "CIM illegal read", -1, 1 }, 4373 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 }, 4374 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 }, 4375 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 }, 4376 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 }, 4377 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 }, 4378 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 }, 4379 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 }, 4380 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 }, 4381 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 }, 4382 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 }, 4383 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 }, 4384 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 }, 4385 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 }, 4386 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 }, 4387 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 }, 4388 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 }, 4389 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 }, 4390 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 }, 4391 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 }, 4392 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 }, 4393 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 }, 4394 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 }, 4395 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 }, 4396 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 }, 4397 { 0 } 4398 }; 4399 4400 u32 val, fw_err; 4401 int fat; 4402 4403 fw_err = t4_read_reg(adapter, PCIE_FW_A); 4404 if (fw_err & PCIE_FW_ERR_F) 4405 t4_report_fw_error(adapter); 4406 4407 /* When the Firmware detects an internal error which normally 4408 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt 4409 * in order to make sure the Host sees the Firmware Crash. So 4410 * if we have a Timer0 interrupt and don't see a Firmware Crash, 4411 * ignore the Timer0 interrupt. 4412 */ 4413 4414 val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A); 4415 if (val & TIMER0INT_F) 4416 if (!(fw_err & PCIE_FW_ERR_F) || 4417 (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH)) 4418 t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A, 4419 TIMER0INT_F); 4420 4421 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A, 4422 cim_intr_info) + 4423 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A, 4424 cim_upintr_info); 4425 if (fat) 4426 t4_fatal_err(adapter); 4427 } 4428 4429 /* 4430 * ULP RX interrupt handler. 4431 */ 4432 static void ulprx_intr_handler(struct adapter *adapter) 4433 { 4434 static const struct intr_info ulprx_intr_info[] = { 4435 { 0x1800000, "ULPRX context error", -1, 1 }, 4436 { 0x7fffff, "ULPRX parity error", -1, 1 }, 4437 { 0 } 4438 }; 4439 4440 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info)) 4441 t4_fatal_err(adapter); 4442 } 4443 4444 /* 4445 * ULP TX interrupt handler. 4446 */ 4447 static void ulptx_intr_handler(struct adapter *adapter) 4448 { 4449 static const struct intr_info ulptx_intr_info[] = { 4450 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1, 4451 0 }, 4452 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1, 4453 0 }, 4454 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1, 4455 0 }, 4456 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1, 4457 0 }, 4458 { 0xfffffff, "ULPTX parity error", -1, 1 }, 4459 { 0 } 4460 }; 4461 4462 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info)) 4463 t4_fatal_err(adapter); 4464 } 4465 4466 /* 4467 * PM TX interrupt handler. 4468 */ 4469 static void pmtx_intr_handler(struct adapter *adapter) 4470 { 4471 static const struct intr_info pmtx_intr_info[] = { 4472 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 }, 4473 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 }, 4474 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 }, 4475 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 }, 4476 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 }, 4477 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 }, 4478 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", 4479 -1, 1 }, 4480 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 }, 4481 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1}, 4482 { 0 } 4483 }; 4484 4485 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info)) 4486 t4_fatal_err(adapter); 4487 } 4488 4489 /* 4490 * PM RX interrupt handler. 4491 */ 4492 static void pmrx_intr_handler(struct adapter *adapter) 4493 { 4494 static const struct intr_info pmrx_intr_info[] = { 4495 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 }, 4496 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 }, 4497 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 }, 4498 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", 4499 -1, 1 }, 4500 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 }, 4501 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1}, 4502 { 0 } 4503 }; 4504 4505 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info)) 4506 t4_fatal_err(adapter); 4507 } 4508 4509 /* 4510 * CPL switch interrupt handler. 4511 */ 4512 static void cplsw_intr_handler(struct adapter *adapter) 4513 { 4514 static const struct intr_info cplsw_intr_info[] = { 4515 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 }, 4516 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 }, 4517 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 }, 4518 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 }, 4519 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 }, 4520 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 }, 4521 { 0 } 4522 }; 4523 4524 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info)) 4525 t4_fatal_err(adapter); 4526 } 4527 4528 /* 4529 * LE interrupt handler. 4530 */ 4531 static void le_intr_handler(struct adapter *adap) 4532 { 4533 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); 4534 static const struct intr_info le_intr_info[] = { 4535 { LIPMISS_F, "LE LIP miss", -1, 0 }, 4536 { LIP0_F, "LE 0 LIP error", -1, 0 }, 4537 { PARITYERR_F, "LE parity error", -1, 1 }, 4538 { UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4539 { REQQPARERR_F, "LE request queue parity error", -1, 1 }, 4540 { 0 } 4541 }; 4542 4543 static struct intr_info t6_le_intr_info[] = { 4544 { T6_LIPMISS_F, "LE LIP miss", -1, 0 }, 4545 { T6_LIP0_F, "LE 0 LIP error", -1, 0 }, 4546 { TCAMINTPERR_F, "LE parity error", -1, 1 }, 4547 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4548 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 }, 4549 { 0 } 4550 }; 4551 4552 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A, 4553 (chip <= CHELSIO_T5) ? 4554 le_intr_info : t6_le_intr_info)) 4555 t4_fatal_err(adap); 4556 } 4557 4558 /* 4559 * MPS interrupt handler. 4560 */ 4561 static void mps_intr_handler(struct adapter *adapter) 4562 { 4563 static const struct intr_info mps_rx_intr_info[] = { 4564 { 0xffffff, "MPS Rx parity error", -1, 1 }, 4565 { 0 } 4566 }; 4567 static const struct intr_info mps_tx_intr_info[] = { 4568 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4569 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4570 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4571 -1, 1 }, 4572 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4573 -1, 1 }, 4574 { BUBBLE_F, "MPS Tx underflow", -1, 1 }, 4575 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4576 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4577 { 0 } 4578 }; 4579 static const struct intr_info t6_mps_tx_intr_info[] = { 4580 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4581 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4582 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4583 -1, 1 }, 4584 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4585 -1, 1 }, 4586 /* MPS Tx Bubble is normal for T6 */ 4587 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4588 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4589 { 0 } 4590 }; 4591 static const struct intr_info mps_trc_intr_info[] = { 4592 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 }, 4593 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error", 4594 -1, 1 }, 4595 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 }, 4596 { 0 } 4597 }; 4598 static const struct intr_info mps_stat_sram_intr_info[] = { 4599 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, 4600 { 0 } 4601 }; 4602 static const struct intr_info mps_stat_tx_intr_info[] = { 4603 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, 4604 { 0 } 4605 }; 4606 static const struct intr_info mps_stat_rx_intr_info[] = { 4607 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, 4608 { 0 } 4609 }; 4610 static const struct intr_info mps_cls_intr_info[] = { 4611 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 }, 4612 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 }, 4613 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 }, 4614 { 0 } 4615 }; 4616 4617 int fat; 4618 4619 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A, 4620 mps_rx_intr_info) + 4621 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A, 4622 is_t6(adapter->params.chip) 4623 ? t6_mps_tx_intr_info 4624 : mps_tx_intr_info) + 4625 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A, 4626 mps_trc_intr_info) + 4627 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A, 4628 mps_stat_sram_intr_info) + 4629 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A, 4630 mps_stat_tx_intr_info) + 4631 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A, 4632 mps_stat_rx_intr_info) + 4633 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A, 4634 mps_cls_intr_info); 4635 4636 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0); 4637 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */ 4638 if (fat) 4639 t4_fatal_err(adapter); 4640 } 4641 4642 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \ 4643 ECC_UE_INT_CAUSE_F) 4644 4645 /* 4646 * EDC/MC interrupt handler. 4647 */ 4648 static void mem_intr_handler(struct adapter *adapter, int idx) 4649 { 4650 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" }; 4651 4652 unsigned int addr, cnt_addr, v; 4653 4654 if (idx <= MEM_EDC1) { 4655 addr = EDC_REG(EDC_INT_CAUSE_A, idx); 4656 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx); 4657 } else if (idx == MEM_MC) { 4658 if (is_t4(adapter->params.chip)) { 4659 addr = MC_INT_CAUSE_A; 4660 cnt_addr = MC_ECC_STATUS_A; 4661 } else { 4662 addr = MC_P_INT_CAUSE_A; 4663 cnt_addr = MC_P_ECC_STATUS_A; 4664 } 4665 } else { 4666 addr = MC_REG(MC_P_INT_CAUSE_A, 1); 4667 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1); 4668 } 4669 4670 v = t4_read_reg(adapter, addr) & MEM_INT_MASK; 4671 if (v & PERR_INT_CAUSE_F) 4672 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n", 4673 name[idx]); 4674 if (v & ECC_CE_INT_CAUSE_F) { 4675 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr)); 4676 4677 t4_edc_err_read(adapter, idx); 4678 4679 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M)); 4680 if (printk_ratelimit()) 4681 dev_warn(adapter->pdev_dev, 4682 "%u %s correctable ECC data error%s\n", 4683 cnt, name[idx], cnt > 1 ? "s" : ""); 4684 } 4685 if (v & ECC_UE_INT_CAUSE_F) 4686 dev_alert(adapter->pdev_dev, 4687 "%s uncorrectable ECC data error\n", name[idx]); 4688 4689 t4_write_reg(adapter, addr, v); 4690 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F)) 4691 t4_fatal_err(adapter); 4692 } 4693 4694 /* 4695 * MA interrupt handler. 4696 */ 4697 static void ma_intr_handler(struct adapter *adap) 4698 { 4699 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A); 4700 4701 if (status & MEM_PERR_INT_CAUSE_F) { 4702 dev_alert(adap->pdev_dev, 4703 "MA parity error, parity status %#x\n", 4704 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A)); 4705 if (is_t5(adap->params.chip)) 4706 dev_alert(adap->pdev_dev, 4707 "MA parity error, parity status %#x\n", 4708 t4_read_reg(adap, 4709 MA_PARITY_ERROR_STATUS2_A)); 4710 } 4711 if (status & MEM_WRAP_INT_CAUSE_F) { 4712 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A); 4713 dev_alert(adap->pdev_dev, "MA address wrap-around error by " 4714 "client %u to address %#x\n", 4715 MEM_WRAP_CLIENT_NUM_G(v), 4716 MEM_WRAP_ADDRESS_G(v) << 4); 4717 } 4718 t4_write_reg(adap, MA_INT_CAUSE_A, status); 4719 t4_fatal_err(adap); 4720 } 4721 4722 /* 4723 * SMB interrupt handler. 4724 */ 4725 static void smb_intr_handler(struct adapter *adap) 4726 { 4727 static const struct intr_info smb_intr_info[] = { 4728 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 }, 4729 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 }, 4730 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 }, 4731 { 0 } 4732 }; 4733 4734 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info)) 4735 t4_fatal_err(adap); 4736 } 4737 4738 /* 4739 * NC-SI interrupt handler. 4740 */ 4741 static void ncsi_intr_handler(struct adapter *adap) 4742 { 4743 static const struct intr_info ncsi_intr_info[] = { 4744 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 }, 4745 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 }, 4746 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 }, 4747 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 }, 4748 { 0 } 4749 }; 4750 4751 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info)) 4752 t4_fatal_err(adap); 4753 } 4754 4755 /* 4756 * XGMAC interrupt handler. 4757 */ 4758 static void xgmac_intr_handler(struct adapter *adap, int port) 4759 { 4760 u32 v, int_cause_reg; 4761 4762 if (is_t4(adap->params.chip)) 4763 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A); 4764 else 4765 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A); 4766 4767 v = t4_read_reg(adap, int_cause_reg); 4768 4769 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F; 4770 if (!v) 4771 return; 4772 4773 if (v & TXFIFO_PRTY_ERR_F) 4774 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n", 4775 port); 4776 if (v & RXFIFO_PRTY_ERR_F) 4777 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n", 4778 port); 4779 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v); 4780 t4_fatal_err(adap); 4781 } 4782 4783 /* 4784 * PL interrupt handler. 4785 */ 4786 static void pl_intr_handler(struct adapter *adap) 4787 { 4788 static const struct intr_info pl_intr_info[] = { 4789 { FATALPERR_F, "T4 fatal parity error", -1, 1 }, 4790 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 }, 4791 { 0 } 4792 }; 4793 4794 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info)) 4795 t4_fatal_err(adap); 4796 } 4797 4798 #define PF_INTR_MASK (PFSW_F) 4799 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \ 4800 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \ 4801 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F) 4802 4803 /** 4804 * t4_slow_intr_handler - control path interrupt handler 4805 * @adapter: the adapter 4806 * 4807 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 4808 * The designation 'slow' is because it involves register reads, while 4809 * data interrupts typically don't involve any MMIOs. 4810 */ 4811 int t4_slow_intr_handler(struct adapter *adapter) 4812 { 4813 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A); 4814 4815 if (!(cause & GLBL_INTR_MASK)) 4816 return 0; 4817 if (cause & CIM_F) 4818 cim_intr_handler(adapter); 4819 if (cause & MPS_F) 4820 mps_intr_handler(adapter); 4821 if (cause & NCSI_F) 4822 ncsi_intr_handler(adapter); 4823 if (cause & PL_F) 4824 pl_intr_handler(adapter); 4825 if (cause & SMB_F) 4826 smb_intr_handler(adapter); 4827 if (cause & XGMAC0_F) 4828 xgmac_intr_handler(adapter, 0); 4829 if (cause & XGMAC1_F) 4830 xgmac_intr_handler(adapter, 1); 4831 if (cause & XGMAC_KR0_F) 4832 xgmac_intr_handler(adapter, 2); 4833 if (cause & XGMAC_KR1_F) 4834 xgmac_intr_handler(adapter, 3); 4835 if (cause & PCIE_F) 4836 pcie_intr_handler(adapter); 4837 if (cause & MC_F) 4838 mem_intr_handler(adapter, MEM_MC); 4839 if (is_t5(adapter->params.chip) && (cause & MC1_F)) 4840 mem_intr_handler(adapter, MEM_MC1); 4841 if (cause & EDC0_F) 4842 mem_intr_handler(adapter, MEM_EDC0); 4843 if (cause & EDC1_F) 4844 mem_intr_handler(adapter, MEM_EDC1); 4845 if (cause & LE_F) 4846 le_intr_handler(adapter); 4847 if (cause & TP_F) 4848 tp_intr_handler(adapter); 4849 if (cause & MA_F) 4850 ma_intr_handler(adapter); 4851 if (cause & PM_TX_F) 4852 pmtx_intr_handler(adapter); 4853 if (cause & PM_RX_F) 4854 pmrx_intr_handler(adapter); 4855 if (cause & ULP_RX_F) 4856 ulprx_intr_handler(adapter); 4857 if (cause & CPL_SWITCH_F) 4858 cplsw_intr_handler(adapter); 4859 if (cause & SGE_F) 4860 sge_intr_handler(adapter); 4861 if (cause & ULP_TX_F) 4862 ulptx_intr_handler(adapter); 4863 4864 /* Clear the interrupts just processed for which we are the master. */ 4865 t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK); 4866 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */ 4867 return 1; 4868 } 4869 4870 /** 4871 * t4_intr_enable - enable interrupts 4872 * @adapter: the adapter whose interrupts should be enabled 4873 * 4874 * Enable PF-specific interrupts for the calling function and the top-level 4875 * interrupt concentrator for global interrupts. Interrupts are already 4876 * enabled at each module, here we just enable the roots of the interrupt 4877 * hierarchies. 4878 * 4879 * Note: this function should be called only when the driver manages 4880 * non PF-specific interrupts from the various HW modules. Only one PCI 4881 * function at a time should be doing this. 4882 */ 4883 void t4_intr_enable(struct adapter *adapter) 4884 { 4885 u32 val = 0; 4886 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 4887 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 4888 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4889 4890 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4891 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F; 4892 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F | 4893 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F | 4894 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F | 4895 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F | 4896 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F | 4897 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F | 4898 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val); 4899 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK); 4900 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf); 4901 } 4902 4903 /** 4904 * t4_intr_disable - disable interrupts 4905 * @adapter: the adapter whose interrupts should be disabled 4906 * 4907 * Disable interrupts. We only disable the top-level interrupt 4908 * concentrators. The caller must be a PCI function managing global 4909 * interrupts. 4910 */ 4911 void t4_intr_disable(struct adapter *adapter) 4912 { 4913 u32 whoami, pf; 4914 4915 if (pci_channel_offline(adapter->pdev)) 4916 return; 4917 4918 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 4919 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 4920 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4921 4922 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0); 4923 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0); 4924 } 4925 4926 /** 4927 * t4_config_rss_range - configure a portion of the RSS mapping table 4928 * @adapter: the adapter 4929 * @mbox: mbox to use for the FW command 4930 * @viid: virtual interface whose RSS subtable is to be written 4931 * @start: start entry in the table to write 4932 * @n: how many table entries to write 4933 * @rspq: values for the response queue lookup table 4934 * @nrspq: number of values in @rspq 4935 * 4936 * Programs the selected part of the VI's RSS mapping table with the 4937 * provided values. If @nrspq < @n the supplied values are used repeatedly 4938 * until the full table range is populated. 4939 * 4940 * The caller must ensure the values in @rspq are in the range allowed for 4941 * @viid. 4942 */ 4943 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 4944 int start, int n, const u16 *rspq, unsigned int nrspq) 4945 { 4946 int ret; 4947 const u16 *rsp = rspq; 4948 const u16 *rsp_end = rspq + nrspq; 4949 struct fw_rss_ind_tbl_cmd cmd; 4950 4951 memset(&cmd, 0, sizeof(cmd)); 4952 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | 4953 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 4954 FW_RSS_IND_TBL_CMD_VIID_V(viid)); 4955 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 4956 4957 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */ 4958 while (n > 0) { 4959 int nq = min(n, 32); 4960 __be32 *qp = &cmd.iq0_to_iq2; 4961 4962 cmd.niqid = cpu_to_be16(nq); 4963 cmd.startidx = cpu_to_be16(start); 4964 4965 start += nq; 4966 n -= nq; 4967 4968 while (nq > 0) { 4969 unsigned int v; 4970 4971 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp); 4972 if (++rsp >= rsp_end) 4973 rsp = rspq; 4974 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp); 4975 if (++rsp >= rsp_end) 4976 rsp = rspq; 4977 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp); 4978 if (++rsp >= rsp_end) 4979 rsp = rspq; 4980 4981 *qp++ = cpu_to_be32(v); 4982 nq -= 3; 4983 } 4984 4985 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 4986 if (ret) 4987 return ret; 4988 } 4989 return 0; 4990 } 4991 4992 /** 4993 * t4_config_glbl_rss - configure the global RSS mode 4994 * @adapter: the adapter 4995 * @mbox: mbox to use for the FW command 4996 * @mode: global RSS mode 4997 * @flags: mode-specific flags 4998 * 4999 * Sets the global RSS mode. 5000 */ 5001 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 5002 unsigned int flags) 5003 { 5004 struct fw_rss_glb_config_cmd c; 5005 5006 memset(&c, 0, sizeof(c)); 5007 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | 5008 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 5009 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5010 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 5011 c.u.manual.mode_pkd = 5012 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5013 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 5014 c.u.basicvirtual.mode_pkd = 5015 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5016 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); 5017 } else 5018 return -EINVAL; 5019 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5020 } 5021 5022 /** 5023 * t4_config_vi_rss - configure per VI RSS settings 5024 * @adapter: the adapter 5025 * @mbox: mbox to use for the FW command 5026 * @viid: the VI id 5027 * @flags: RSS flags 5028 * @defq: id of the default RSS queue for the VI. 5029 * 5030 * Configures VI-specific RSS properties. 5031 */ 5032 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, 5033 unsigned int flags, unsigned int defq) 5034 { 5035 struct fw_rss_vi_config_cmd c; 5036 5037 memset(&c, 0, sizeof(c)); 5038 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 5039 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5040 FW_RSS_VI_CONFIG_CMD_VIID_V(viid)); 5041 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5042 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | 5043 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq)); 5044 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5045 } 5046 5047 /* Read an RSS table row */ 5048 static int rd_rss_row(struct adapter *adap, int row, u32 *val) 5049 { 5050 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row); 5051 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1, 5052 5, 0, val); 5053 } 5054 5055 /** 5056 * t4_read_rss - read the contents of the RSS mapping table 5057 * @adapter: the adapter 5058 * @map: holds the contents of the RSS mapping table 5059 * 5060 * Reads the contents of the RSS hash->queue mapping table. 5061 */ 5062 int t4_read_rss(struct adapter *adapter, u16 *map) 5063 { 5064 u32 val; 5065 int i, ret; 5066 5067 for (i = 0; i < RSS_NENTRIES / 2; ++i) { 5068 ret = rd_rss_row(adapter, i, &val); 5069 if (ret) 5070 return ret; 5071 *map++ = LKPTBLQUEUE0_G(val); 5072 *map++ = LKPTBLQUEUE1_G(val); 5073 } 5074 return 0; 5075 } 5076 5077 static unsigned int t4_use_ldst(struct adapter *adap) 5078 { 5079 return (adap->flags & FW_OK) || !adap->use_bd; 5080 } 5081 5082 /** 5083 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST 5084 * @adap: the adapter 5085 * @cmd: TP fw ldst address space type 5086 * @vals: where the indirect register values are stored/written 5087 * @nregs: how many indirect registers to read/write 5088 * @start_idx: index of first indirect register to read/write 5089 * @rw: Read (1) or Write (0) 5090 * @sleep_ok: if true we may sleep while awaiting command completion 5091 * 5092 * Access TP indirect registers through LDST 5093 */ 5094 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals, 5095 unsigned int nregs, unsigned int start_index, 5096 unsigned int rw, bool sleep_ok) 5097 { 5098 int ret = 0; 5099 unsigned int i; 5100 struct fw_ldst_cmd c; 5101 5102 for (i = 0; i < nregs; i++) { 5103 memset(&c, 0, sizeof(c)); 5104 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5105 FW_CMD_REQUEST_F | 5106 (rw ? FW_CMD_READ_F : 5107 FW_CMD_WRITE_F) | 5108 FW_LDST_CMD_ADDRSPACE_V(cmd)); 5109 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5110 5111 c.u.addrval.addr = cpu_to_be32(start_index + i); 5112 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); 5113 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, 5114 sleep_ok); 5115 if (ret) 5116 return ret; 5117 5118 if (rw) 5119 vals[i] = be32_to_cpu(c.u.addrval.val); 5120 } 5121 return 0; 5122 } 5123 5124 /** 5125 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor 5126 * @adap: the adapter 5127 * @reg_addr: Address Register 5128 * @reg_data: Data register 5129 * @buff: where the indirect register values are stored/written 5130 * @nregs: how many indirect registers to read/write 5131 * @start_index: index of first indirect register to read/write 5132 * @rw: READ(1) or WRITE(0) 5133 * @sleep_ok: if true we may sleep while awaiting command completion 5134 * 5135 * Read/Write TP indirect registers through LDST if possible. 5136 * Else, use backdoor access 5137 **/ 5138 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data, 5139 u32 *buff, u32 nregs, u32 start_index, int rw, 5140 bool sleep_ok) 5141 { 5142 int rc = -EINVAL; 5143 int cmd; 5144 5145 switch (reg_addr) { 5146 case TP_PIO_ADDR_A: 5147 cmd = FW_LDST_ADDRSPC_TP_PIO; 5148 break; 5149 case TP_TM_PIO_ADDR_A: 5150 cmd = FW_LDST_ADDRSPC_TP_TM_PIO; 5151 break; 5152 case TP_MIB_INDEX_A: 5153 cmd = FW_LDST_ADDRSPC_TP_MIB; 5154 break; 5155 default: 5156 goto indirect_access; 5157 } 5158 5159 if (t4_use_ldst(adap)) 5160 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw, 5161 sleep_ok); 5162 5163 indirect_access: 5164 5165 if (rc) { 5166 if (rw) 5167 t4_read_indirect(adap, reg_addr, reg_data, buff, nregs, 5168 start_index); 5169 else 5170 t4_write_indirect(adap, reg_addr, reg_data, buff, nregs, 5171 start_index); 5172 } 5173 } 5174 5175 /** 5176 * t4_tp_pio_read - Read TP PIO registers 5177 * @adap: the adapter 5178 * @buff: where the indirect register values are written 5179 * @nregs: how many indirect registers to read 5180 * @start_index: index of first indirect register to read 5181 * @sleep_ok: if true we may sleep while awaiting command completion 5182 * 5183 * Read TP PIO Registers 5184 **/ 5185 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5186 u32 start_index, bool sleep_ok) 5187 { 5188 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5189 start_index, 1, sleep_ok); 5190 } 5191 5192 /** 5193 * t4_tp_pio_write - Write TP PIO registers 5194 * @adap: the adapter 5195 * @buff: where the indirect register values are stored 5196 * @nregs: how many indirect registers to write 5197 * @start_index: index of first indirect register to write 5198 * @sleep_ok: if true we may sleep while awaiting command completion 5199 * 5200 * Write TP PIO Registers 5201 **/ 5202 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs, 5203 u32 start_index, bool sleep_ok) 5204 { 5205 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5206 start_index, 0, sleep_ok); 5207 } 5208 5209 /** 5210 * t4_tp_tm_pio_read - Read TP TM PIO registers 5211 * @adap: the adapter 5212 * @buff: where the indirect register values are written 5213 * @nregs: how many indirect registers to read 5214 * @start_index: index of first indirect register to read 5215 * @sleep_ok: if true we may sleep while awaiting command completion 5216 * 5217 * Read TP TM PIO Registers 5218 **/ 5219 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5220 u32 start_index, bool sleep_ok) 5221 { 5222 t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff, 5223 nregs, start_index, 1, sleep_ok); 5224 } 5225 5226 /** 5227 * t4_tp_mib_read - Read TP MIB registers 5228 * @adap: the adapter 5229 * @buff: where the indirect register values are written 5230 * @nregs: how many indirect registers to read 5231 * @start_index: index of first indirect register to read 5232 * @sleep_ok: if true we may sleep while awaiting command completion 5233 * 5234 * Read TP MIB Registers 5235 **/ 5236 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index, 5237 bool sleep_ok) 5238 { 5239 t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs, 5240 start_index, 1, sleep_ok); 5241 } 5242 5243 /** 5244 * t4_read_rss_key - read the global RSS key 5245 * @adap: the adapter 5246 * @key: 10-entry array holding the 320-bit RSS key 5247 * @sleep_ok: if true we may sleep while awaiting command completion 5248 * 5249 * Reads the global 320-bit RSS key. 5250 */ 5251 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok) 5252 { 5253 t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5254 } 5255 5256 /** 5257 * t4_write_rss_key - program one of the RSS keys 5258 * @adap: the adapter 5259 * @key: 10-entry array holding the 320-bit RSS key 5260 * @idx: which RSS key to write 5261 * @sleep_ok: if true we may sleep while awaiting command completion 5262 * 5263 * Writes one of the RSS keys with the given 320-bit value. If @idx is 5264 * 0..15 the corresponding entry in the RSS key table is written, 5265 * otherwise the global RSS key is written. 5266 */ 5267 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx, 5268 bool sleep_ok) 5269 { 5270 u8 rss_key_addr_cnt = 16; 5271 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A); 5272 5273 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble), 5274 * allows access to key addresses 16-63 by using KeyWrAddrX 5275 * as index[5:4](upper 2) into key table 5276 */ 5277 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) && 5278 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3)) 5279 rss_key_addr_cnt = 32; 5280 5281 t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5282 5283 if (idx >= 0 && idx < rss_key_addr_cnt) { 5284 if (rss_key_addr_cnt > 16) 5285 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5286 KEYWRADDRX_V(idx >> 4) | 5287 T6_VFWRADDR_V(idx) | KEYWREN_F); 5288 else 5289 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5290 KEYWRADDR_V(idx) | KEYWREN_F); 5291 } 5292 } 5293 5294 /** 5295 * t4_read_rss_pf_config - read PF RSS Configuration Table 5296 * @adapter: the adapter 5297 * @index: the entry in the PF RSS table to read 5298 * @valp: where to store the returned value 5299 * @sleep_ok: if true we may sleep while awaiting command completion 5300 * 5301 * Reads the PF RSS Configuration Table at the specified index and returns 5302 * the value found there. 5303 */ 5304 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, 5305 u32 *valp, bool sleep_ok) 5306 { 5307 t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok); 5308 } 5309 5310 /** 5311 * t4_read_rss_vf_config - read VF RSS Configuration Table 5312 * @adapter: the adapter 5313 * @index: the entry in the VF RSS table to read 5314 * @vfl: where to store the returned VFL 5315 * @vfh: where to store the returned VFH 5316 * @sleep_ok: if true we may sleep while awaiting command completion 5317 * 5318 * Reads the VF RSS Configuration Table at the specified index and returns 5319 * the (VFL, VFH) values found there. 5320 */ 5321 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, 5322 u32 *vfl, u32 *vfh, bool sleep_ok) 5323 { 5324 u32 vrt, mask, data; 5325 5326 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) { 5327 mask = VFWRADDR_V(VFWRADDR_M); 5328 data = VFWRADDR_V(index); 5329 } else { 5330 mask = T6_VFWRADDR_V(T6_VFWRADDR_M); 5331 data = T6_VFWRADDR_V(index); 5332 } 5333 5334 /* Request that the index'th VF Table values be read into VFL/VFH. 5335 */ 5336 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A); 5337 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask); 5338 vrt |= data | VFRDEN_F; 5339 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt); 5340 5341 /* Grab the VFL/VFH values ... 5342 */ 5343 t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok); 5344 t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok); 5345 } 5346 5347 /** 5348 * t4_read_rss_pf_map - read PF RSS Map 5349 * @adapter: the adapter 5350 * @sleep_ok: if true we may sleep while awaiting command completion 5351 * 5352 * Reads the PF RSS Map register and returns its value. 5353 */ 5354 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok) 5355 { 5356 u32 pfmap; 5357 5358 t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok); 5359 return pfmap; 5360 } 5361 5362 /** 5363 * t4_read_rss_pf_mask - read PF RSS Mask 5364 * @adapter: the adapter 5365 * @sleep_ok: if true we may sleep while awaiting command completion 5366 * 5367 * Reads the PF RSS Mask register and returns its value. 5368 */ 5369 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok) 5370 { 5371 u32 pfmask; 5372 5373 t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok); 5374 return pfmask; 5375 } 5376 5377 /** 5378 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 5379 * @adap: the adapter 5380 * @v4: holds the TCP/IP counter values 5381 * @v6: holds the TCP/IPv6 counter values 5382 * @sleep_ok: if true we may sleep while awaiting command completion 5383 * 5384 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 5385 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 5386 */ 5387 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 5388 struct tp_tcp_stats *v6, bool sleep_ok) 5389 { 5390 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1]; 5391 5392 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A) 5393 #define STAT(x) val[STAT_IDX(x)] 5394 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 5395 5396 if (v4) { 5397 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5398 TP_MIB_TCP_OUT_RST_A, sleep_ok); 5399 v4->tcp_out_rsts = STAT(OUT_RST); 5400 v4->tcp_in_segs = STAT64(IN_SEG); 5401 v4->tcp_out_segs = STAT64(OUT_SEG); 5402 v4->tcp_retrans_segs = STAT64(RXT_SEG); 5403 } 5404 if (v6) { 5405 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5406 TP_MIB_TCP_V6OUT_RST_A, sleep_ok); 5407 v6->tcp_out_rsts = STAT(OUT_RST); 5408 v6->tcp_in_segs = STAT64(IN_SEG); 5409 v6->tcp_out_segs = STAT64(OUT_SEG); 5410 v6->tcp_retrans_segs = STAT64(RXT_SEG); 5411 } 5412 #undef STAT64 5413 #undef STAT 5414 #undef STAT_IDX 5415 } 5416 5417 /** 5418 * t4_tp_get_err_stats - read TP's error MIB counters 5419 * @adap: the adapter 5420 * @st: holds the counter values 5421 * @sleep_ok: if true we may sleep while awaiting command completion 5422 * 5423 * Returns the values of TP's error counters. 5424 */ 5425 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st, 5426 bool sleep_ok) 5427 { 5428 int nchan = adap->params.arch.nchan; 5429 5430 t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A, 5431 sleep_ok); 5432 t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A, 5433 sleep_ok); 5434 t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A, 5435 sleep_ok); 5436 t4_tp_mib_read(adap, st->tnl_cong_drops, nchan, 5437 TP_MIB_TNL_CNG_DROP_0_A, sleep_ok); 5438 t4_tp_mib_read(adap, st->ofld_chan_drops, nchan, 5439 TP_MIB_OFD_CHN_DROP_0_A, sleep_ok); 5440 t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A, 5441 sleep_ok); 5442 t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan, 5443 TP_MIB_OFD_VLN_DROP_0_A, sleep_ok); 5444 t4_tp_mib_read(adap, st->tcp6_in_errs, nchan, 5445 TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok); 5446 t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A, 5447 sleep_ok); 5448 } 5449 5450 /** 5451 * t4_tp_get_cpl_stats - read TP's CPL MIB counters 5452 * @adap: the adapter 5453 * @st: holds the counter values 5454 * @sleep_ok: if true we may sleep while awaiting command completion 5455 * 5456 * Returns the values of TP's CPL counters. 5457 */ 5458 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st, 5459 bool sleep_ok) 5460 { 5461 int nchan = adap->params.arch.nchan; 5462 5463 t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok); 5464 5465 t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok); 5466 } 5467 5468 /** 5469 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters 5470 * @adap: the adapter 5471 * @st: holds the counter values 5472 * @sleep_ok: if true we may sleep while awaiting command completion 5473 * 5474 * Returns the values of TP's RDMA counters. 5475 */ 5476 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st, 5477 bool sleep_ok) 5478 { 5479 t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A, 5480 sleep_ok); 5481 } 5482 5483 /** 5484 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port 5485 * @adap: the adapter 5486 * @idx: the port index 5487 * @st: holds the counter values 5488 * @sleep_ok: if true we may sleep while awaiting command completion 5489 * 5490 * Returns the values of TP's FCoE counters for the selected port. 5491 */ 5492 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, 5493 struct tp_fcoe_stats *st, bool sleep_ok) 5494 { 5495 u32 val[2]; 5496 5497 t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx, 5498 sleep_ok); 5499 5500 t4_tp_mib_read(adap, &st->frames_drop, 1, 5501 TP_MIB_FCOE_DROP_0_A + idx, sleep_ok); 5502 5503 t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx, 5504 sleep_ok); 5505 5506 st->octets_ddp = ((u64)val[0] << 32) | val[1]; 5507 } 5508 5509 /** 5510 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters 5511 * @adap: the adapter 5512 * @st: holds the counter values 5513 * @sleep_ok: if true we may sleep while awaiting command completion 5514 * 5515 * Returns the values of TP's counters for non-TCP directly-placed packets. 5516 */ 5517 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st, 5518 bool sleep_ok) 5519 { 5520 u32 val[4]; 5521 5522 t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok); 5523 st->frames = val[0]; 5524 st->drops = val[1]; 5525 st->octets = ((u64)val[2] << 32) | val[3]; 5526 } 5527 5528 /** 5529 * t4_read_mtu_tbl - returns the values in the HW path MTU table 5530 * @adap: the adapter 5531 * @mtus: where to store the MTU values 5532 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 5533 * 5534 * Reads the HW path MTU table. 5535 */ 5536 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 5537 { 5538 u32 v; 5539 int i; 5540 5541 for (i = 0; i < NMTUS; ++i) { 5542 t4_write_reg(adap, TP_MTU_TABLE_A, 5543 MTUINDEX_V(0xff) | MTUVALUE_V(i)); 5544 v = t4_read_reg(adap, TP_MTU_TABLE_A); 5545 mtus[i] = MTUVALUE_G(v); 5546 if (mtu_log) 5547 mtu_log[i] = MTUWIDTH_G(v); 5548 } 5549 } 5550 5551 /** 5552 * t4_read_cong_tbl - reads the congestion control table 5553 * @adap: the adapter 5554 * @incr: where to store the alpha values 5555 * 5556 * Reads the additive increments programmed into the HW congestion 5557 * control table. 5558 */ 5559 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) 5560 { 5561 unsigned int mtu, w; 5562 5563 for (mtu = 0; mtu < NMTUS; ++mtu) 5564 for (w = 0; w < NCCTRL_WIN; ++w) { 5565 t4_write_reg(adap, TP_CCTRL_TABLE_A, 5566 ROWINDEX_V(0xffff) | (mtu << 5) | w); 5567 incr[mtu][w] = (u16)t4_read_reg(adap, 5568 TP_CCTRL_TABLE_A) & 0x1fff; 5569 } 5570 } 5571 5572 /** 5573 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 5574 * @adap: the adapter 5575 * @addr: the indirect TP register address 5576 * @mask: specifies the field within the register to modify 5577 * @val: new value for the field 5578 * 5579 * Sets a field of an indirect TP register to the given value. 5580 */ 5581 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 5582 unsigned int mask, unsigned int val) 5583 { 5584 t4_write_reg(adap, TP_PIO_ADDR_A, addr); 5585 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask; 5586 t4_write_reg(adap, TP_PIO_DATA_A, val); 5587 } 5588 5589 /** 5590 * init_cong_ctrl - initialize congestion control parameters 5591 * @a: the alpha values for congestion control 5592 * @b: the beta values for congestion control 5593 * 5594 * Initialize the congestion control parameters. 5595 */ 5596 static void init_cong_ctrl(unsigned short *a, unsigned short *b) 5597 { 5598 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 5599 a[9] = 2; 5600 a[10] = 3; 5601 a[11] = 4; 5602 a[12] = 5; 5603 a[13] = 6; 5604 a[14] = 7; 5605 a[15] = 8; 5606 a[16] = 9; 5607 a[17] = 10; 5608 a[18] = 14; 5609 a[19] = 17; 5610 a[20] = 21; 5611 a[21] = 25; 5612 a[22] = 30; 5613 a[23] = 35; 5614 a[24] = 45; 5615 a[25] = 60; 5616 a[26] = 80; 5617 a[27] = 100; 5618 a[28] = 200; 5619 a[29] = 300; 5620 a[30] = 400; 5621 a[31] = 500; 5622 5623 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 5624 b[9] = b[10] = 1; 5625 b[11] = b[12] = 2; 5626 b[13] = b[14] = b[15] = b[16] = 3; 5627 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 5628 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 5629 b[28] = b[29] = 6; 5630 b[30] = b[31] = 7; 5631 } 5632 5633 /* The minimum additive increment value for the congestion control table */ 5634 #define CC_MIN_INCR 2U 5635 5636 /** 5637 * t4_load_mtus - write the MTU and congestion control HW tables 5638 * @adap: the adapter 5639 * @mtus: the values for the MTU table 5640 * @alpha: the values for the congestion control alpha parameter 5641 * @beta: the values for the congestion control beta parameter 5642 * 5643 * Write the HW MTU table with the supplied MTUs and the high-speed 5644 * congestion control table with the supplied alpha, beta, and MTUs. 5645 * We write the two tables together because the additive increments 5646 * depend on the MTUs. 5647 */ 5648 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 5649 const unsigned short *alpha, const unsigned short *beta) 5650 { 5651 static const unsigned int avg_pkts[NCCTRL_WIN] = { 5652 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 5653 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 5654 28672, 40960, 57344, 81920, 114688, 163840, 229376 5655 }; 5656 5657 unsigned int i, w; 5658 5659 for (i = 0; i < NMTUS; ++i) { 5660 unsigned int mtu = mtus[i]; 5661 unsigned int log2 = fls(mtu); 5662 5663 if (!(mtu & ((1 << log2) >> 2))) /* round */ 5664 log2--; 5665 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) | 5666 MTUWIDTH_V(log2) | MTUVALUE_V(mtu)); 5667 5668 for (w = 0; w < NCCTRL_WIN; ++w) { 5669 unsigned int inc; 5670 5671 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 5672 CC_MIN_INCR); 5673 5674 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) | 5675 (w << 16) | (beta[w] << 13) | inc); 5676 } 5677 } 5678 } 5679 5680 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core 5681 * clocks. The formula is 5682 * 5683 * bytes/s = bytes256 * 256 * ClkFreq / 4096 5684 * 5685 * which is equivalent to 5686 * 5687 * bytes/s = 62.5 * bytes256 * ClkFreq_ms 5688 */ 5689 static u64 chan_rate(struct adapter *adap, unsigned int bytes256) 5690 { 5691 u64 v = bytes256 * adap->params.vpd.cclk; 5692 5693 return v * 62 + v / 2; 5694 } 5695 5696 /** 5697 * t4_get_chan_txrate - get the current per channel Tx rates 5698 * @adap: the adapter 5699 * @nic_rate: rates for NIC traffic 5700 * @ofld_rate: rates for offloaded traffic 5701 * 5702 * Return the current Tx rates in bytes/s for NIC and offloaded traffic 5703 * for each channel. 5704 */ 5705 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) 5706 { 5707 u32 v; 5708 5709 v = t4_read_reg(adap, TP_TX_TRATE_A); 5710 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v)); 5711 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v)); 5712 if (adap->params.arch.nchan == NCHAN) { 5713 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v)); 5714 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v)); 5715 } 5716 5717 v = t4_read_reg(adap, TP_TX_ORATE_A); 5718 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v)); 5719 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v)); 5720 if (adap->params.arch.nchan == NCHAN) { 5721 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v)); 5722 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v)); 5723 } 5724 } 5725 5726 /** 5727 * t4_set_trace_filter - configure one of the tracing filters 5728 * @adap: the adapter 5729 * @tp: the desired trace filter parameters 5730 * @idx: which filter to configure 5731 * @enable: whether to enable or disable the filter 5732 * 5733 * Configures one of the tracing filters available in HW. If @enable is 5734 * %0 @tp is not examined and may be %NULL. The user is responsible to 5735 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register 5736 */ 5737 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, 5738 int idx, int enable) 5739 { 5740 int i, ofst = idx * 4; 5741 u32 data_reg, mask_reg, cfg; 5742 u32 multitrc = TRCMULTIFILTER_F; 5743 5744 if (!enable) { 5745 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5746 return 0; 5747 } 5748 5749 cfg = t4_read_reg(adap, MPS_TRC_CFG_A); 5750 if (cfg & TRCMULTIFILTER_F) { 5751 /* If multiple tracers are enabled, then maximum 5752 * capture size is 2.5KB (FIFO size of a single channel) 5753 * minus 2 flits for CPL_TRACE_PKT header. 5754 */ 5755 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) 5756 return -EINVAL; 5757 } else { 5758 /* If multiple tracers are disabled, to avoid deadlocks 5759 * maximum packet capture size of 9600 bytes is recommended. 5760 * Also in this mode, only trace0 can be enabled and running. 5761 */ 5762 multitrc = 0; 5763 if (tp->snap_len > 9600 || idx) 5764 return -EINVAL; 5765 } 5766 5767 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 || 5768 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M || 5769 tp->min_len > TFMINPKTSIZE_M) 5770 return -EINVAL; 5771 5772 /* stop the tracer we'll be changing */ 5773 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5774 5775 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A); 5776 data_reg = MPS_TRC_FILTER0_MATCH_A + idx; 5777 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx; 5778 5779 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5780 t4_write_reg(adap, data_reg, tp->data[i]); 5781 t4_write_reg(adap, mask_reg, ~tp->mask[i]); 5782 } 5783 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst, 5784 TFCAPTUREMAX_V(tp->snap_len) | 5785 TFMINPKTSIZE_V(tp->min_len)); 5786 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 5787 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) | 5788 (is_t4(adap->params.chip) ? 5789 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) : 5790 T5_TFPORT_V(tp->port) | T5_TFEN_F | 5791 T5_TFINVERTMATCH_V(tp->invert))); 5792 5793 return 0; 5794 } 5795 5796 /** 5797 * t4_get_trace_filter - query one of the tracing filters 5798 * @adap: the adapter 5799 * @tp: the current trace filter parameters 5800 * @idx: which trace filter to query 5801 * @enabled: non-zero if the filter is enabled 5802 * 5803 * Returns the current settings of one of the HW tracing filters. 5804 */ 5805 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, 5806 int *enabled) 5807 { 5808 u32 ctla, ctlb; 5809 int i, ofst = idx * 4; 5810 u32 data_reg, mask_reg; 5811 5812 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst); 5813 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst); 5814 5815 if (is_t4(adap->params.chip)) { 5816 *enabled = !!(ctla & TFEN_F); 5817 tp->port = TFPORT_G(ctla); 5818 tp->invert = !!(ctla & TFINVERTMATCH_F); 5819 } else { 5820 *enabled = !!(ctla & T5_TFEN_F); 5821 tp->port = T5_TFPORT_G(ctla); 5822 tp->invert = !!(ctla & T5_TFINVERTMATCH_F); 5823 } 5824 tp->snap_len = TFCAPTUREMAX_G(ctlb); 5825 tp->min_len = TFMINPKTSIZE_G(ctlb); 5826 tp->skip_ofst = TFOFFSET_G(ctla); 5827 tp->skip_len = TFLENGTH_G(ctla); 5828 5829 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx; 5830 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst; 5831 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst; 5832 5833 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5834 tp->mask[i] = ~t4_read_reg(adap, mask_reg); 5835 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; 5836 } 5837 } 5838 5839 /** 5840 * t4_pmtx_get_stats - returns the HW stats from PMTX 5841 * @adap: the adapter 5842 * @cnt: where to store the count statistics 5843 * @cycles: where to store the cycle statistics 5844 * 5845 * Returns performance statistics from PMTX. 5846 */ 5847 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 5848 { 5849 int i; 5850 u32 data[2]; 5851 5852 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 5853 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1); 5854 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A); 5855 if (is_t4(adap->params.chip)) { 5856 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A); 5857 } else { 5858 t4_read_indirect(adap, PM_TX_DBG_CTRL_A, 5859 PM_TX_DBG_DATA_A, data, 2, 5860 PM_TX_DBG_STAT_MSB_A); 5861 cycles[i] = (((u64)data[0] << 32) | data[1]); 5862 } 5863 } 5864 } 5865 5866 /** 5867 * t4_pmrx_get_stats - returns the HW stats from PMRX 5868 * @adap: the adapter 5869 * @cnt: where to store the count statistics 5870 * @cycles: where to store the cycle statistics 5871 * 5872 * Returns performance statistics from PMRX. 5873 */ 5874 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 5875 { 5876 int i; 5877 u32 data[2]; 5878 5879 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 5880 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1); 5881 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A); 5882 if (is_t4(adap->params.chip)) { 5883 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A); 5884 } else { 5885 t4_read_indirect(adap, PM_RX_DBG_CTRL_A, 5886 PM_RX_DBG_DATA_A, data, 2, 5887 PM_RX_DBG_STAT_MSB_A); 5888 cycles[i] = (((u64)data[0] << 32) | data[1]); 5889 } 5890 } 5891 } 5892 5893 /** 5894 * compute_mps_bg_map - compute the MPS Buffer Group Map for a Port 5895 * @adap: the adapter 5896 * @pidx: the port index 5897 * 5898 * Computes and returns a bitmap indicating which MPS buffer groups are 5899 * associated with the given Port. Bit i is set if buffer group i is 5900 * used by the Port. 5901 */ 5902 static inline unsigned int compute_mps_bg_map(struct adapter *adapter, 5903 int pidx) 5904 { 5905 unsigned int chip_version, nports; 5906 5907 chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 5908 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 5909 5910 switch (chip_version) { 5911 case CHELSIO_T4: 5912 case CHELSIO_T5: 5913 switch (nports) { 5914 case 1: return 0xf; 5915 case 2: return 3 << (2 * pidx); 5916 case 4: return 1 << pidx; 5917 } 5918 break; 5919 5920 case CHELSIO_T6: 5921 switch (nports) { 5922 case 2: return 1 << (2 * pidx); 5923 } 5924 break; 5925 } 5926 5927 dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n", 5928 chip_version, nports); 5929 5930 return 0; 5931 } 5932 5933 /** 5934 * t4_get_mps_bg_map - return the buffer groups associated with a port 5935 * @adapter: the adapter 5936 * @pidx: the port index 5937 * 5938 * Returns a bitmap indicating which MPS buffer groups are associated 5939 * with the given Port. Bit i is set if buffer group i is used by the 5940 * Port. 5941 */ 5942 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx) 5943 { 5944 u8 *mps_bg_map; 5945 unsigned int nports; 5946 5947 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 5948 if (pidx >= nports) { 5949 CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n", 5950 pidx, nports); 5951 return 0; 5952 } 5953 5954 /* If we've already retrieved/computed this, just return the result. 5955 */ 5956 mps_bg_map = adapter->params.mps_bg_map; 5957 if (mps_bg_map[pidx]) 5958 return mps_bg_map[pidx]; 5959 5960 /* Newer Firmware can tell us what the MPS Buffer Group Map is. 5961 * If we're talking to such Firmware, let it tell us. If the new 5962 * API isn't supported, revert back to old hardcoded way. The value 5963 * obtained from Firmware is encoded in below format: 5964 * 5965 * val = (( MPSBGMAP[Port 3] << 24 ) | 5966 * ( MPSBGMAP[Port 2] << 16 ) | 5967 * ( MPSBGMAP[Port 1] << 8 ) | 5968 * ( MPSBGMAP[Port 0] << 0 )) 5969 */ 5970 if (adapter->flags & FW_OK) { 5971 u32 param, val; 5972 int ret; 5973 5974 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 5975 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP)); 5976 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf, 5977 0, 1, ¶m, &val); 5978 if (!ret) { 5979 int p; 5980 5981 /* Store the BG Map for all of the Ports in order to 5982 * avoid more calls to the Firmware in the future. 5983 */ 5984 for (p = 0; p < MAX_NPORTS; p++, val >>= 8) 5985 mps_bg_map[p] = val & 0xff; 5986 5987 return mps_bg_map[pidx]; 5988 } 5989 } 5990 5991 /* Either we're not talking to the Firmware or we're dealing with 5992 * older Firmware which doesn't support the new API to get the MPS 5993 * Buffer Group Map. Fall back to computing it ourselves. 5994 */ 5995 mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx); 5996 return mps_bg_map[pidx]; 5997 } 5998 5999 /** 6000 * t4_get_tp_ch_map - return TP ingress channels associated with a port 6001 * @adapter: the adapter 6002 * @pidx: the port index 6003 * 6004 * Returns a bitmap indicating which TP Ingress Channels are associated 6005 * with a given Port. Bit i is set if TP Ingress Channel i is used by 6006 * the Port. 6007 */ 6008 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx) 6009 { 6010 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 6011 unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A)); 6012 6013 if (pidx >= nports) { 6014 dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n", 6015 pidx, nports); 6016 return 0; 6017 } 6018 6019 switch (chip_version) { 6020 case CHELSIO_T4: 6021 case CHELSIO_T5: 6022 /* Note that this happens to be the same values as the MPS 6023 * Buffer Group Map for these Chips. But we replicate the code 6024 * here because they're really separate concepts. 6025 */ 6026 switch (nports) { 6027 case 1: return 0xf; 6028 case 2: return 3 << (2 * pidx); 6029 case 4: return 1 << pidx; 6030 } 6031 break; 6032 6033 case CHELSIO_T6: 6034 switch (nports) { 6035 case 2: return 1 << pidx; 6036 } 6037 break; 6038 } 6039 6040 dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n", 6041 chip_version, nports); 6042 return 0; 6043 } 6044 6045 /** 6046 * t4_get_port_type_description - return Port Type string description 6047 * @port_type: firmware Port Type enumeration 6048 */ 6049 const char *t4_get_port_type_description(enum fw_port_type port_type) 6050 { 6051 static const char *const port_type_description[] = { 6052 "Fiber_XFI", 6053 "Fiber_XAUI", 6054 "BT_SGMII", 6055 "BT_XFI", 6056 "BT_XAUI", 6057 "KX4", 6058 "CX4", 6059 "KX", 6060 "KR", 6061 "SFP", 6062 "BP_AP", 6063 "BP4_AP", 6064 "QSFP_10G", 6065 "QSA", 6066 "QSFP", 6067 "BP40_BA", 6068 "KR4_100G", 6069 "CR4_QSFP", 6070 "CR_QSFP", 6071 "CR2_QSFP", 6072 "SFP28", 6073 "KR_SFP28", 6074 }; 6075 6076 if (port_type < ARRAY_SIZE(port_type_description)) 6077 return port_type_description[port_type]; 6078 return "UNKNOWN"; 6079 } 6080 6081 /** 6082 * t4_get_port_stats_offset - collect port stats relative to a previous 6083 * snapshot 6084 * @adap: The adapter 6085 * @idx: The port 6086 * @stats: Current stats to fill 6087 * @offset: Previous stats snapshot 6088 */ 6089 void t4_get_port_stats_offset(struct adapter *adap, int idx, 6090 struct port_stats *stats, 6091 struct port_stats *offset) 6092 { 6093 u64 *s, *o; 6094 int i; 6095 6096 t4_get_port_stats(adap, idx, stats); 6097 for (i = 0, s = (u64 *)stats, o = (u64 *)offset; 6098 i < (sizeof(struct port_stats) / sizeof(u64)); 6099 i++, s++, o++) 6100 *s -= *o; 6101 } 6102 6103 /** 6104 * t4_get_port_stats - collect port statistics 6105 * @adap: the adapter 6106 * @idx: the port index 6107 * @p: the stats structure to fill 6108 * 6109 * Collect statistics related to the given port from HW. 6110 */ 6111 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 6112 { 6113 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6114 u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A); 6115 6116 #define GET_STAT(name) \ 6117 t4_read_reg64(adap, \ 6118 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \ 6119 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L))) 6120 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6121 6122 p->tx_octets = GET_STAT(TX_PORT_BYTES); 6123 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 6124 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 6125 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 6126 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 6127 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 6128 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 6129 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 6130 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 6131 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 6132 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 6133 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 6134 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 6135 p->tx_drop = GET_STAT(TX_PORT_DROP); 6136 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 6137 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 6138 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 6139 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 6140 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 6141 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 6142 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 6143 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 6144 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 6145 6146 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6147 if (stat_ctl & COUNTPAUSESTATTX_F) 6148 p->tx_frames_64 -= p->tx_pause; 6149 if (stat_ctl & COUNTPAUSEMCTX_F) 6150 p->tx_mcast_frames -= p->tx_pause; 6151 } 6152 p->rx_octets = GET_STAT(RX_PORT_BYTES); 6153 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 6154 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 6155 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 6156 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 6157 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 6158 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 6159 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); 6160 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 6161 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 6162 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 6163 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 6164 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 6165 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 6166 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 6167 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 6168 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 6169 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 6170 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 6171 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 6172 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 6173 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 6174 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 6175 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 6176 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 6177 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 6178 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 6179 6180 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6181 if (stat_ctl & COUNTPAUSESTATRX_F) 6182 p->rx_frames_64 -= p->rx_pause; 6183 if (stat_ctl & COUNTPAUSEMCRX_F) 6184 p->rx_mcast_frames -= p->rx_pause; 6185 } 6186 6187 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 6188 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 6189 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 6190 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 6191 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 6192 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 6193 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 6194 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 6195 6196 #undef GET_STAT 6197 #undef GET_STAT_COM 6198 } 6199 6200 /** 6201 * t4_get_lb_stats - collect loopback port statistics 6202 * @adap: the adapter 6203 * @idx: the loopback port index 6204 * @p: the stats structure to fill 6205 * 6206 * Return HW statistics for the given loopback port. 6207 */ 6208 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) 6209 { 6210 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6211 6212 #define GET_STAT(name) \ 6213 t4_read_reg64(adap, \ 6214 (is_t4(adap->params.chip) ? \ 6215 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \ 6216 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L))) 6217 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6218 6219 p->octets = GET_STAT(BYTES); 6220 p->frames = GET_STAT(FRAMES); 6221 p->bcast_frames = GET_STAT(BCAST); 6222 p->mcast_frames = GET_STAT(MCAST); 6223 p->ucast_frames = GET_STAT(UCAST); 6224 p->error_frames = GET_STAT(ERROR); 6225 6226 p->frames_64 = GET_STAT(64B); 6227 p->frames_65_127 = GET_STAT(65B_127B); 6228 p->frames_128_255 = GET_STAT(128B_255B); 6229 p->frames_256_511 = GET_STAT(256B_511B); 6230 p->frames_512_1023 = GET_STAT(512B_1023B); 6231 p->frames_1024_1518 = GET_STAT(1024B_1518B); 6232 p->frames_1519_max = GET_STAT(1519B_MAX); 6233 p->drop = GET_STAT(DROP_FRAMES); 6234 6235 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; 6236 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; 6237 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; 6238 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; 6239 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; 6240 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; 6241 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; 6242 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; 6243 6244 #undef GET_STAT 6245 #undef GET_STAT_COM 6246 } 6247 6248 /* t4_mk_filtdelwr - create a delete filter WR 6249 * @ftid: the filter ID 6250 * @wr: the filter work request to populate 6251 * @qid: ingress queue to receive the delete notification 6252 * 6253 * Creates a filter work request to delete the supplied filter. If @qid is 6254 * negative the delete notification is suppressed. 6255 */ 6256 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 6257 { 6258 memset(wr, 0, sizeof(*wr)); 6259 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR)); 6260 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16)); 6261 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) | 6262 FW_FILTER_WR_NOREPLY_V(qid < 0)); 6263 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F); 6264 if (qid >= 0) 6265 wr->rx_chan_rx_rpl_iq = 6266 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid)); 6267 } 6268 6269 #define INIT_CMD(var, cmd, rd_wr) do { \ 6270 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \ 6271 FW_CMD_REQUEST_F | \ 6272 FW_CMD_##rd_wr##_F); \ 6273 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ 6274 } while (0) 6275 6276 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 6277 u32 addr, u32 val) 6278 { 6279 u32 ldst_addrspace; 6280 struct fw_ldst_cmd c; 6281 6282 memset(&c, 0, sizeof(c)); 6283 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE); 6284 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6285 FW_CMD_REQUEST_F | 6286 FW_CMD_WRITE_F | 6287 ldst_addrspace); 6288 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6289 c.u.addrval.addr = cpu_to_be32(addr); 6290 c.u.addrval.val = cpu_to_be32(val); 6291 6292 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6293 } 6294 6295 /** 6296 * t4_mdio_rd - read a PHY register through MDIO 6297 * @adap: the adapter 6298 * @mbox: mailbox to use for the FW command 6299 * @phy_addr: the PHY address 6300 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6301 * @reg: the register to read 6302 * @valp: where to store the value 6303 * 6304 * Issues a FW command through the given mailbox to read a PHY register. 6305 */ 6306 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6307 unsigned int mmd, unsigned int reg, u16 *valp) 6308 { 6309 int ret; 6310 u32 ldst_addrspace; 6311 struct fw_ldst_cmd c; 6312 6313 memset(&c, 0, sizeof(c)); 6314 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6315 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6316 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6317 ldst_addrspace); 6318 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6319 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6320 FW_LDST_CMD_MMD_V(mmd)); 6321 c.u.mdio.raddr = cpu_to_be16(reg); 6322 6323 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6324 if (ret == 0) 6325 *valp = be16_to_cpu(c.u.mdio.rval); 6326 return ret; 6327 } 6328 6329 /** 6330 * t4_mdio_wr - write a PHY register through MDIO 6331 * @adap: the adapter 6332 * @mbox: mailbox to use for the FW command 6333 * @phy_addr: the PHY address 6334 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6335 * @reg: the register to write 6336 * @valp: value to write 6337 * 6338 * Issues a FW command through the given mailbox to write a PHY register. 6339 */ 6340 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6341 unsigned int mmd, unsigned int reg, u16 val) 6342 { 6343 u32 ldst_addrspace; 6344 struct fw_ldst_cmd c; 6345 6346 memset(&c, 0, sizeof(c)); 6347 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6348 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6349 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6350 ldst_addrspace); 6351 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6352 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6353 FW_LDST_CMD_MMD_V(mmd)); 6354 c.u.mdio.raddr = cpu_to_be16(reg); 6355 c.u.mdio.rval = cpu_to_be16(val); 6356 6357 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6358 } 6359 6360 /** 6361 * t4_sge_decode_idma_state - decode the idma state 6362 * @adap: the adapter 6363 * @state: the state idma is stuck in 6364 */ 6365 void t4_sge_decode_idma_state(struct adapter *adapter, int state) 6366 { 6367 static const char * const t4_decode[] = { 6368 "IDMA_IDLE", 6369 "IDMA_PUSH_MORE_CPL_FIFO", 6370 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6371 "Not used", 6372 "IDMA_PHYSADDR_SEND_PCIEHDR", 6373 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6374 "IDMA_PHYSADDR_SEND_PAYLOAD", 6375 "IDMA_SEND_FIFO_TO_IMSG", 6376 "IDMA_FL_REQ_DATA_FL_PREP", 6377 "IDMA_FL_REQ_DATA_FL", 6378 "IDMA_FL_DROP", 6379 "IDMA_FL_H_REQ_HEADER_FL", 6380 "IDMA_FL_H_SEND_PCIEHDR", 6381 "IDMA_FL_H_PUSH_CPL_FIFO", 6382 "IDMA_FL_H_SEND_CPL", 6383 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6384 "IDMA_FL_H_SEND_IP_HDR", 6385 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6386 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6387 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6388 "IDMA_FL_D_SEND_PCIEHDR", 6389 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6390 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6391 "IDMA_FL_SEND_PCIEHDR", 6392 "IDMA_FL_PUSH_CPL_FIFO", 6393 "IDMA_FL_SEND_CPL", 6394 "IDMA_FL_SEND_PAYLOAD_FIRST", 6395 "IDMA_FL_SEND_PAYLOAD", 6396 "IDMA_FL_REQ_NEXT_DATA_FL", 6397 "IDMA_FL_SEND_NEXT_PCIEHDR", 6398 "IDMA_FL_SEND_PADDING", 6399 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6400 "IDMA_FL_SEND_FIFO_TO_IMSG", 6401 "IDMA_FL_REQ_DATAFL_DONE", 6402 "IDMA_FL_REQ_HEADERFL_DONE", 6403 }; 6404 static const char * const t5_decode[] = { 6405 "IDMA_IDLE", 6406 "IDMA_ALMOST_IDLE", 6407 "IDMA_PUSH_MORE_CPL_FIFO", 6408 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6409 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6410 "IDMA_PHYSADDR_SEND_PCIEHDR", 6411 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6412 "IDMA_PHYSADDR_SEND_PAYLOAD", 6413 "IDMA_SEND_FIFO_TO_IMSG", 6414 "IDMA_FL_REQ_DATA_FL", 6415 "IDMA_FL_DROP", 6416 "IDMA_FL_DROP_SEND_INC", 6417 "IDMA_FL_H_REQ_HEADER_FL", 6418 "IDMA_FL_H_SEND_PCIEHDR", 6419 "IDMA_FL_H_PUSH_CPL_FIFO", 6420 "IDMA_FL_H_SEND_CPL", 6421 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6422 "IDMA_FL_H_SEND_IP_HDR", 6423 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6424 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6425 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6426 "IDMA_FL_D_SEND_PCIEHDR", 6427 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6428 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6429 "IDMA_FL_SEND_PCIEHDR", 6430 "IDMA_FL_PUSH_CPL_FIFO", 6431 "IDMA_FL_SEND_CPL", 6432 "IDMA_FL_SEND_PAYLOAD_FIRST", 6433 "IDMA_FL_SEND_PAYLOAD", 6434 "IDMA_FL_REQ_NEXT_DATA_FL", 6435 "IDMA_FL_SEND_NEXT_PCIEHDR", 6436 "IDMA_FL_SEND_PADDING", 6437 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6438 }; 6439 static const char * const t6_decode[] = { 6440 "IDMA_IDLE", 6441 "IDMA_PUSH_MORE_CPL_FIFO", 6442 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6443 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6444 "IDMA_PHYSADDR_SEND_PCIEHDR", 6445 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6446 "IDMA_PHYSADDR_SEND_PAYLOAD", 6447 "IDMA_FL_REQ_DATA_FL", 6448 "IDMA_FL_DROP", 6449 "IDMA_FL_DROP_SEND_INC", 6450 "IDMA_FL_H_REQ_HEADER_FL", 6451 "IDMA_FL_H_SEND_PCIEHDR", 6452 "IDMA_FL_H_PUSH_CPL_FIFO", 6453 "IDMA_FL_H_SEND_CPL", 6454 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6455 "IDMA_FL_H_SEND_IP_HDR", 6456 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6457 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6458 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6459 "IDMA_FL_D_SEND_PCIEHDR", 6460 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6461 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6462 "IDMA_FL_SEND_PCIEHDR", 6463 "IDMA_FL_PUSH_CPL_FIFO", 6464 "IDMA_FL_SEND_CPL", 6465 "IDMA_FL_SEND_PAYLOAD_FIRST", 6466 "IDMA_FL_SEND_PAYLOAD", 6467 "IDMA_FL_REQ_NEXT_DATA_FL", 6468 "IDMA_FL_SEND_NEXT_PCIEHDR", 6469 "IDMA_FL_SEND_PADDING", 6470 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6471 }; 6472 static const u32 sge_regs[] = { 6473 SGE_DEBUG_DATA_LOW_INDEX_2_A, 6474 SGE_DEBUG_DATA_LOW_INDEX_3_A, 6475 SGE_DEBUG_DATA_HIGH_INDEX_10_A, 6476 }; 6477 const char **sge_idma_decode; 6478 int sge_idma_decode_nstates; 6479 int i; 6480 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6481 6482 /* Select the right set of decode strings to dump depending on the 6483 * adapter chip type. 6484 */ 6485 switch (chip_version) { 6486 case CHELSIO_T4: 6487 sge_idma_decode = (const char **)t4_decode; 6488 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6489 break; 6490 6491 case CHELSIO_T5: 6492 sge_idma_decode = (const char **)t5_decode; 6493 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6494 break; 6495 6496 case CHELSIO_T6: 6497 sge_idma_decode = (const char **)t6_decode; 6498 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); 6499 break; 6500 6501 default: 6502 dev_err(adapter->pdev_dev, 6503 "Unsupported chip version %d\n", chip_version); 6504 return; 6505 } 6506 6507 if (is_t4(adapter->params.chip)) { 6508 sge_idma_decode = (const char **)t4_decode; 6509 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6510 } else { 6511 sge_idma_decode = (const char **)t5_decode; 6512 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6513 } 6514 6515 if (state < sge_idma_decode_nstates) 6516 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); 6517 else 6518 CH_WARN(adapter, "idma state %d unknown\n", state); 6519 6520 for (i = 0; i < ARRAY_SIZE(sge_regs); i++) 6521 CH_WARN(adapter, "SGE register %#x value %#x\n", 6522 sge_regs[i], t4_read_reg(adapter, sge_regs[i])); 6523 } 6524 6525 /** 6526 * t4_sge_ctxt_flush - flush the SGE context cache 6527 * @adap: the adapter 6528 * @mbox: mailbox to use for the FW command 6529 * 6530 * Issues a FW command through the given mailbox to flush the 6531 * SGE context cache. 6532 */ 6533 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox) 6534 { 6535 int ret; 6536 u32 ldst_addrspace; 6537 struct fw_ldst_cmd c; 6538 6539 memset(&c, 0, sizeof(c)); 6540 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC); 6541 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6542 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6543 ldst_addrspace); 6544 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6545 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F); 6546 6547 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6548 return ret; 6549 } 6550 6551 /** 6552 * t4_fw_hello - establish communication with FW 6553 * @adap: the adapter 6554 * @mbox: mailbox to use for the FW command 6555 * @evt_mbox: mailbox to receive async FW events 6556 * @master: specifies the caller's willingness to be the device master 6557 * @state: returns the current device state (if non-NULL) 6558 * 6559 * Issues a command to establish communication with FW. Returns either 6560 * an error (negative integer) or the mailbox of the Master PF. 6561 */ 6562 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 6563 enum dev_master master, enum dev_state *state) 6564 { 6565 int ret; 6566 struct fw_hello_cmd c; 6567 u32 v; 6568 unsigned int master_mbox; 6569 int retries = FW_CMD_HELLO_RETRIES; 6570 6571 retry: 6572 memset(&c, 0, sizeof(c)); 6573 INIT_CMD(c, HELLO, WRITE); 6574 c.err_to_clearinit = cpu_to_be32( 6575 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) | 6576 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) | 6577 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? 6578 mbox : FW_HELLO_CMD_MBMASTER_M) | 6579 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) | 6580 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) | 6581 FW_HELLO_CMD_CLEARINIT_F); 6582 6583 /* 6584 * Issue the HELLO command to the firmware. If it's not successful 6585 * but indicates that we got a "busy" or "timeout" condition, retry 6586 * the HELLO until we exhaust our retry limit. If we do exceed our 6587 * retry limit, check to see if the firmware left us any error 6588 * information and report that if so. 6589 */ 6590 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6591 if (ret < 0) { 6592 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 6593 goto retry; 6594 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F) 6595 t4_report_fw_error(adap); 6596 return ret; 6597 } 6598 6599 v = be32_to_cpu(c.err_to_clearinit); 6600 master_mbox = FW_HELLO_CMD_MBMASTER_G(v); 6601 if (state) { 6602 if (v & FW_HELLO_CMD_ERR_F) 6603 *state = DEV_STATE_ERR; 6604 else if (v & FW_HELLO_CMD_INIT_F) 6605 *state = DEV_STATE_INIT; 6606 else 6607 *state = DEV_STATE_UNINIT; 6608 } 6609 6610 /* 6611 * If we're not the Master PF then we need to wait around for the 6612 * Master PF Driver to finish setting up the adapter. 6613 * 6614 * Note that we also do this wait if we're a non-Master-capable PF and 6615 * there is no current Master PF; a Master PF may show up momentarily 6616 * and we wouldn't want to fail pointlessly. (This can happen when an 6617 * OS loads lots of different drivers rapidly at the same time). In 6618 * this case, the Master PF returned by the firmware will be 6619 * PCIE_FW_MASTER_M so the test below will work ... 6620 */ 6621 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 && 6622 master_mbox != mbox) { 6623 int waiting = FW_CMD_HELLO_TIMEOUT; 6624 6625 /* 6626 * Wait for the firmware to either indicate an error or 6627 * initialized state. If we see either of these we bail out 6628 * and report the issue to the caller. If we exhaust the 6629 * "hello timeout" and we haven't exhausted our retries, try 6630 * again. Otherwise bail with a timeout error. 6631 */ 6632 for (;;) { 6633 u32 pcie_fw; 6634 6635 msleep(50); 6636 waiting -= 50; 6637 6638 /* 6639 * If neither Error nor Initialialized are indicated 6640 * by the firmware keep waiting till we exaust our 6641 * timeout ... and then retry if we haven't exhausted 6642 * our retries ... 6643 */ 6644 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 6645 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) { 6646 if (waiting <= 0) { 6647 if (retries-- > 0) 6648 goto retry; 6649 6650 return -ETIMEDOUT; 6651 } 6652 continue; 6653 } 6654 6655 /* 6656 * We either have an Error or Initialized condition 6657 * report errors preferentially. 6658 */ 6659 if (state) { 6660 if (pcie_fw & PCIE_FW_ERR_F) 6661 *state = DEV_STATE_ERR; 6662 else if (pcie_fw & PCIE_FW_INIT_F) 6663 *state = DEV_STATE_INIT; 6664 } 6665 6666 /* 6667 * If we arrived before a Master PF was selected and 6668 * there's not a valid Master PF, grab its identity 6669 * for our caller. 6670 */ 6671 if (master_mbox == PCIE_FW_MASTER_M && 6672 (pcie_fw & PCIE_FW_MASTER_VLD_F)) 6673 master_mbox = PCIE_FW_MASTER_G(pcie_fw); 6674 break; 6675 } 6676 } 6677 6678 return master_mbox; 6679 } 6680 6681 /** 6682 * t4_fw_bye - end communication with FW 6683 * @adap: the adapter 6684 * @mbox: mailbox to use for the FW command 6685 * 6686 * Issues a command to terminate communication with FW. 6687 */ 6688 int t4_fw_bye(struct adapter *adap, unsigned int mbox) 6689 { 6690 struct fw_bye_cmd c; 6691 6692 memset(&c, 0, sizeof(c)); 6693 INIT_CMD(c, BYE, WRITE); 6694 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6695 } 6696 6697 /** 6698 * t4_init_cmd - ask FW to initialize the device 6699 * @adap: the adapter 6700 * @mbox: mailbox to use for the FW command 6701 * 6702 * Issues a command to FW to partially initialize the device. This 6703 * performs initialization that generally doesn't depend on user input. 6704 */ 6705 int t4_early_init(struct adapter *adap, unsigned int mbox) 6706 { 6707 struct fw_initialize_cmd c; 6708 6709 memset(&c, 0, sizeof(c)); 6710 INIT_CMD(c, INITIALIZE, WRITE); 6711 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6712 } 6713 6714 /** 6715 * t4_fw_reset - issue a reset to FW 6716 * @adap: the adapter 6717 * @mbox: mailbox to use for the FW command 6718 * @reset: specifies the type of reset to perform 6719 * 6720 * Issues a reset command of the specified type to FW. 6721 */ 6722 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 6723 { 6724 struct fw_reset_cmd c; 6725 6726 memset(&c, 0, sizeof(c)); 6727 INIT_CMD(c, RESET, WRITE); 6728 c.val = cpu_to_be32(reset); 6729 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6730 } 6731 6732 /** 6733 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 6734 * @adap: the adapter 6735 * @mbox: mailbox to use for the FW RESET command (if desired) 6736 * @force: force uP into RESET even if FW RESET command fails 6737 * 6738 * Issues a RESET command to firmware (if desired) with a HALT indication 6739 * and then puts the microprocessor into RESET state. The RESET command 6740 * will only be issued if a legitimate mailbox is provided (mbox <= 6741 * PCIE_FW_MASTER_M). 6742 * 6743 * This is generally used in order for the host to safely manipulate the 6744 * adapter without fear of conflicting with whatever the firmware might 6745 * be doing. The only way out of this state is to RESTART the firmware 6746 * ... 6747 */ 6748 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 6749 { 6750 int ret = 0; 6751 6752 /* 6753 * If a legitimate mailbox is provided, issue a RESET command 6754 * with a HALT indication. 6755 */ 6756 if (mbox <= PCIE_FW_MASTER_M) { 6757 struct fw_reset_cmd c; 6758 6759 memset(&c, 0, sizeof(c)); 6760 INIT_CMD(c, RESET, WRITE); 6761 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F); 6762 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F); 6763 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6764 } 6765 6766 /* 6767 * Normally we won't complete the operation if the firmware RESET 6768 * command fails but if our caller insists we'll go ahead and put the 6769 * uP into RESET. This can be useful if the firmware is hung or even 6770 * missing ... We'll have to take the risk of putting the uP into 6771 * RESET without the cooperation of firmware in that case. 6772 * 6773 * We also force the firmware's HALT flag to be on in case we bypassed 6774 * the firmware RESET command above or we're dealing with old firmware 6775 * which doesn't have the HALT capability. This will serve as a flag 6776 * for the incoming firmware to know that it's coming out of a HALT 6777 * rather than a RESET ... if it's new enough to understand that ... 6778 */ 6779 if (ret == 0 || force) { 6780 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F); 6781 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 6782 PCIE_FW_HALT_F); 6783 } 6784 6785 /* 6786 * And we always return the result of the firmware RESET command 6787 * even when we force the uP into RESET ... 6788 */ 6789 return ret; 6790 } 6791 6792 /** 6793 * t4_fw_restart - restart the firmware by taking the uP out of RESET 6794 * @adap: the adapter 6795 * @reset: if we want to do a RESET to restart things 6796 * 6797 * Restart firmware previously halted by t4_fw_halt(). On successful 6798 * return the previous PF Master remains as the new PF Master and there 6799 * is no need to issue a new HELLO command, etc. 6800 * 6801 * We do this in two ways: 6802 * 6803 * 1. If we're dealing with newer firmware we'll simply want to take 6804 * the chip's microprocessor out of RESET. This will cause the 6805 * firmware to start up from its start vector. And then we'll loop 6806 * until the firmware indicates it's started again (PCIE_FW.HALT 6807 * reset to 0) or we timeout. 6808 * 6809 * 2. If we're dealing with older firmware then we'll need to RESET 6810 * the chip since older firmware won't recognize the PCIE_FW.HALT 6811 * flag and automatically RESET itself on startup. 6812 */ 6813 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) 6814 { 6815 if (reset) { 6816 /* 6817 * Since we're directing the RESET instead of the firmware 6818 * doing it automatically, we need to clear the PCIE_FW.HALT 6819 * bit. 6820 */ 6821 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0); 6822 6823 /* 6824 * If we've been given a valid mailbox, first try to get the 6825 * firmware to do the RESET. If that works, great and we can 6826 * return success. Otherwise, if we haven't been given a 6827 * valid mailbox or the RESET command failed, fall back to 6828 * hitting the chip with a hammer. 6829 */ 6830 if (mbox <= PCIE_FW_MASTER_M) { 6831 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 6832 msleep(100); 6833 if (t4_fw_reset(adap, mbox, 6834 PIORST_F | PIORSTMODE_F) == 0) 6835 return 0; 6836 } 6837 6838 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F); 6839 msleep(2000); 6840 } else { 6841 int ms; 6842 6843 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 6844 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 6845 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F)) 6846 return 0; 6847 msleep(100); 6848 ms += 100; 6849 } 6850 return -ETIMEDOUT; 6851 } 6852 return 0; 6853 } 6854 6855 /** 6856 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 6857 * @adap: the adapter 6858 * @mbox: mailbox to use for the FW RESET command (if desired) 6859 * @fw_data: the firmware image to write 6860 * @size: image size 6861 * @force: force upgrade even if firmware doesn't cooperate 6862 * 6863 * Perform all of the steps necessary for upgrading an adapter's 6864 * firmware image. Normally this requires the cooperation of the 6865 * existing firmware in order to halt all existing activities 6866 * but if an invalid mailbox token is passed in we skip that step 6867 * (though we'll still put the adapter microprocessor into RESET in 6868 * that case). 6869 * 6870 * On successful return the new firmware will have been loaded and 6871 * the adapter will have been fully RESET losing all previous setup 6872 * state. On unsuccessful return the adapter may be completely hosed ... 6873 * positive errno indicates that the adapter is ~probably~ intact, a 6874 * negative errno indicates that things are looking bad ... 6875 */ 6876 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 6877 const u8 *fw_data, unsigned int size, int force) 6878 { 6879 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 6880 int reset, ret; 6881 6882 if (!t4_fw_matches_chip(adap, fw_hdr)) 6883 return -EINVAL; 6884 6885 /* Disable FW_OK flag so that mbox commands with FW_OK flag set 6886 * wont be sent when we are flashing FW. 6887 */ 6888 adap->flags &= ~FW_OK; 6889 6890 ret = t4_fw_halt(adap, mbox, force); 6891 if (ret < 0 && !force) 6892 goto out; 6893 6894 ret = t4_load_fw(adap, fw_data, size); 6895 if (ret < 0) 6896 goto out; 6897 6898 /* 6899 * If there was a Firmware Configuration File stored in FLASH, 6900 * there's a good chance that it won't be compatible with the new 6901 * Firmware. In order to prevent difficult to diagnose adapter 6902 * initialization issues, we clear out the Firmware Configuration File 6903 * portion of the FLASH . The user will need to re-FLASH a new 6904 * Firmware Configuration File which is compatible with the new 6905 * Firmware if that's desired. 6906 */ 6907 (void)t4_load_cfg(adap, NULL, 0); 6908 6909 /* 6910 * Older versions of the firmware don't understand the new 6911 * PCIE_FW.HALT flag and so won't know to perform a RESET when they 6912 * restart. So for newly loaded older firmware we'll have to do the 6913 * RESET for it so it starts up on a clean slate. We can tell if 6914 * the newly loaded firmware will handle this right by checking 6915 * its header flags to see if it advertises the capability. 6916 */ 6917 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); 6918 ret = t4_fw_restart(adap, mbox, reset); 6919 6920 /* Grab potentially new Firmware Device Log parameters so we can see 6921 * how healthy the new Firmware is. It's okay to contact the new 6922 * Firmware for these parameters even though, as far as it's 6923 * concerned, we've never said "HELLO" to it ... 6924 */ 6925 (void)t4_init_devlog_params(adap); 6926 out: 6927 adap->flags |= FW_OK; 6928 return ret; 6929 } 6930 6931 /** 6932 * t4_fl_pkt_align - return the fl packet alignment 6933 * @adap: the adapter 6934 * 6935 * T4 has a single field to specify the packing and padding boundary. 6936 * T5 onwards has separate fields for this and hence the alignment for 6937 * next packet offset is maximum of these two. 6938 * 6939 */ 6940 int t4_fl_pkt_align(struct adapter *adap) 6941 { 6942 u32 sge_control, sge_control2; 6943 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift; 6944 6945 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 6946 6947 /* T4 uses a single control field to specify both the PCIe Padding and 6948 * Packing Boundary. T5 introduced the ability to specify these 6949 * separately. The actual Ingress Packet Data alignment boundary 6950 * within Packed Buffer Mode is the maximum of these two 6951 * specifications. (Note that it makes no real practical sense to 6952 * have the Pading Boudary be larger than the Packing Boundary but you 6953 * could set the chip up that way and, in fact, legacy T4 code would 6954 * end doing this because it would initialize the Padding Boundary and 6955 * leave the Packing Boundary initialized to 0 (16 bytes).) 6956 * Padding Boundary values in T6 starts from 8B, 6957 * where as it is 32B for T4 and T5. 6958 */ 6959 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 6960 ingpad_shift = INGPADBOUNDARY_SHIFT_X; 6961 else 6962 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X; 6963 6964 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift); 6965 6966 fl_align = ingpadboundary; 6967 if (!is_t4(adap->params.chip)) { 6968 /* T5 has a weird interpretation of one of the PCIe Packing 6969 * Boundary values. No idea why ... 6970 */ 6971 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A); 6972 ingpackboundary = INGPACKBOUNDARY_G(sge_control2); 6973 if (ingpackboundary == INGPACKBOUNDARY_16B_X) 6974 ingpackboundary = 16; 6975 else 6976 ingpackboundary = 1 << (ingpackboundary + 6977 INGPACKBOUNDARY_SHIFT_X); 6978 6979 fl_align = max(ingpadboundary, ingpackboundary); 6980 } 6981 return fl_align; 6982 } 6983 6984 /** 6985 * t4_fixup_host_params - fix up host-dependent parameters 6986 * @adap: the adapter 6987 * @page_size: the host's Base Page Size 6988 * @cache_line_size: the host's Cache Line Size 6989 * 6990 * Various registers in T4 contain values which are dependent on the 6991 * host's Base Page and Cache Line Sizes. This function will fix all of 6992 * those registers with the appropriate values as passed in ... 6993 */ 6994 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size, 6995 unsigned int cache_line_size) 6996 { 6997 unsigned int page_shift = fls(page_size) - 1; 6998 unsigned int sge_hps = page_shift - 10; 6999 unsigned int stat_len = cache_line_size > 64 ? 128 : 64; 7000 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size; 7001 unsigned int fl_align_log = fls(fl_align) - 1; 7002 7003 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A, 7004 HOSTPAGESIZEPF0_V(sge_hps) | 7005 HOSTPAGESIZEPF1_V(sge_hps) | 7006 HOSTPAGESIZEPF2_V(sge_hps) | 7007 HOSTPAGESIZEPF3_V(sge_hps) | 7008 HOSTPAGESIZEPF4_V(sge_hps) | 7009 HOSTPAGESIZEPF5_V(sge_hps) | 7010 HOSTPAGESIZEPF6_V(sge_hps) | 7011 HOSTPAGESIZEPF7_V(sge_hps)); 7012 7013 if (is_t4(adap->params.chip)) { 7014 t4_set_reg_field(adap, SGE_CONTROL_A, 7015 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7016 EGRSTATUSPAGESIZE_F, 7017 INGPADBOUNDARY_V(fl_align_log - 7018 INGPADBOUNDARY_SHIFT_X) | 7019 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7020 } else { 7021 unsigned int pack_align; 7022 unsigned int ingpad, ingpack; 7023 unsigned int pcie_cap; 7024 7025 /* T5 introduced the separation of the Free List Padding and 7026 * Packing Boundaries. Thus, we can select a smaller Padding 7027 * Boundary to avoid uselessly chewing up PCIe Link and Memory 7028 * Bandwidth, and use a Packing Boundary which is large enough 7029 * to avoid false sharing between CPUs, etc. 7030 * 7031 * For the PCI Link, the smaller the Padding Boundary the 7032 * better. For the Memory Controller, a smaller Padding 7033 * Boundary is better until we cross under the Memory Line 7034 * Size (the minimum unit of transfer to/from Memory). If we 7035 * have a Padding Boundary which is smaller than the Memory 7036 * Line Size, that'll involve a Read-Modify-Write cycle on the 7037 * Memory Controller which is never good. 7038 */ 7039 7040 /* We want the Packing Boundary to be based on the Cache Line 7041 * Size in order to help avoid False Sharing performance 7042 * issues between CPUs, etc. We also want the Packing 7043 * Boundary to incorporate the PCI-E Maximum Payload Size. We 7044 * get best performance when the Packing Boundary is a 7045 * multiple of the Maximum Payload Size. 7046 */ 7047 pack_align = fl_align; 7048 pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP); 7049 if (pcie_cap) { 7050 unsigned int mps, mps_log; 7051 u16 devctl; 7052 7053 /* The PCIe Device Control Maximum Payload Size field 7054 * [bits 7:5] encodes sizes as powers of 2 starting at 7055 * 128 bytes. 7056 */ 7057 pci_read_config_word(adap->pdev, 7058 pcie_cap + PCI_EXP_DEVCTL, 7059 &devctl); 7060 mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7; 7061 mps = 1 << mps_log; 7062 if (mps > pack_align) 7063 pack_align = mps; 7064 } 7065 7066 /* N.B. T5/T6 have a crazy special interpretation of the "0" 7067 * value for the Packing Boundary. This corresponds to 16 7068 * bytes instead of the expected 32 bytes. So if we want 32 7069 * bytes, the best we can really do is 64 bytes ... 7070 */ 7071 if (pack_align <= 16) { 7072 ingpack = INGPACKBOUNDARY_16B_X; 7073 fl_align = 16; 7074 } else if (pack_align == 32) { 7075 ingpack = INGPACKBOUNDARY_64B_X; 7076 fl_align = 64; 7077 } else { 7078 unsigned int pack_align_log = fls(pack_align) - 1; 7079 7080 ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X; 7081 fl_align = pack_align; 7082 } 7083 7084 /* Use the smallest Ingress Padding which isn't smaller than 7085 * the Memory Controller Read/Write Size. We'll take that as 7086 * being 8 bytes since we don't know of any system with a 7087 * wider Memory Controller Bus Width. 7088 */ 7089 if (is_t5(adap->params.chip)) 7090 ingpad = INGPADBOUNDARY_32B_X; 7091 else 7092 ingpad = T6_INGPADBOUNDARY_8B_X; 7093 7094 t4_set_reg_field(adap, SGE_CONTROL_A, 7095 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7096 EGRSTATUSPAGESIZE_F, 7097 INGPADBOUNDARY_V(ingpad) | 7098 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7099 t4_set_reg_field(adap, SGE_CONTROL2_A, 7100 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M), 7101 INGPACKBOUNDARY_V(ingpack)); 7102 } 7103 /* 7104 * Adjust various SGE Free List Host Buffer Sizes. 7105 * 7106 * This is something of a crock since we're using fixed indices into 7107 * the array which are also known by the sge.c code and the T4 7108 * Firmware Configuration File. We need to come up with a much better 7109 * approach to managing this array. For now, the first four entries 7110 * are: 7111 * 7112 * 0: Host Page Size 7113 * 1: 64KB 7114 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode) 7115 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode) 7116 * 7117 * For the single-MTU buffers in unpacked mode we need to include 7118 * space for the SGE Control Packet Shift, 14 byte Ethernet header, 7119 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet 7120 * Padding boundary. All of these are accommodated in the Factory 7121 * Default Firmware Configuration File but we need to adjust it for 7122 * this host's cache line size. 7123 */ 7124 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size); 7125 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A, 7126 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1) 7127 & ~(fl_align-1)); 7128 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A, 7129 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1) 7130 & ~(fl_align-1)); 7131 7132 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12)); 7133 7134 return 0; 7135 } 7136 7137 /** 7138 * t4_fw_initialize - ask FW to initialize the device 7139 * @adap: the adapter 7140 * @mbox: mailbox to use for the FW command 7141 * 7142 * Issues a command to FW to partially initialize the device. This 7143 * performs initialization that generally doesn't depend on user input. 7144 */ 7145 int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 7146 { 7147 struct fw_initialize_cmd c; 7148 7149 memset(&c, 0, sizeof(c)); 7150 INIT_CMD(c, INITIALIZE, WRITE); 7151 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7152 } 7153 7154 /** 7155 * t4_query_params_rw - query FW or device parameters 7156 * @adap: the adapter 7157 * @mbox: mailbox to use for the FW command 7158 * @pf: the PF 7159 * @vf: the VF 7160 * @nparams: the number of parameters 7161 * @params: the parameter names 7162 * @val: the parameter values 7163 * @rw: Write and read flag 7164 * @sleep_ok: if true, we may sleep awaiting mbox cmd completion 7165 * 7166 * Reads the value of FW or device parameters. Up to 7 parameters can be 7167 * queried at once. 7168 */ 7169 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, 7170 unsigned int vf, unsigned int nparams, const u32 *params, 7171 u32 *val, int rw, bool sleep_ok) 7172 { 7173 int i, ret; 7174 struct fw_params_cmd c; 7175 __be32 *p = &c.param[0].mnem; 7176 7177 if (nparams > 7) 7178 return -EINVAL; 7179 7180 memset(&c, 0, sizeof(c)); 7181 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7182 FW_CMD_REQUEST_F | FW_CMD_READ_F | 7183 FW_PARAMS_CMD_PFN_V(pf) | 7184 FW_PARAMS_CMD_VFN_V(vf)); 7185 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7186 7187 for (i = 0; i < nparams; i++) { 7188 *p++ = cpu_to_be32(*params++); 7189 if (rw) 7190 *p = cpu_to_be32(*(val + i)); 7191 p++; 7192 } 7193 7194 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7195 if (ret == 0) 7196 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 7197 *val++ = be32_to_cpu(*p); 7198 return ret; 7199 } 7200 7201 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7202 unsigned int vf, unsigned int nparams, const u32 *params, 7203 u32 *val) 7204 { 7205 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7206 true); 7207 } 7208 7209 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf, 7210 unsigned int vf, unsigned int nparams, const u32 *params, 7211 u32 *val) 7212 { 7213 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7214 false); 7215 } 7216 7217 /** 7218 * t4_set_params_timeout - sets FW or device parameters 7219 * @adap: the adapter 7220 * @mbox: mailbox to use for the FW command 7221 * @pf: the PF 7222 * @vf: the VF 7223 * @nparams: the number of parameters 7224 * @params: the parameter names 7225 * @val: the parameter values 7226 * @timeout: the timeout time 7227 * 7228 * Sets the value of FW or device parameters. Up to 7 parameters can be 7229 * specified at once. 7230 */ 7231 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, 7232 unsigned int pf, unsigned int vf, 7233 unsigned int nparams, const u32 *params, 7234 const u32 *val, int timeout) 7235 { 7236 struct fw_params_cmd c; 7237 __be32 *p = &c.param[0].mnem; 7238 7239 if (nparams > 7) 7240 return -EINVAL; 7241 7242 memset(&c, 0, sizeof(c)); 7243 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7244 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7245 FW_PARAMS_CMD_PFN_V(pf) | 7246 FW_PARAMS_CMD_VFN_V(vf)); 7247 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7248 7249 while (nparams--) { 7250 *p++ = cpu_to_be32(*params++); 7251 *p++ = cpu_to_be32(*val++); 7252 } 7253 7254 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); 7255 } 7256 7257 /** 7258 * t4_set_params - sets FW or device parameters 7259 * @adap: the adapter 7260 * @mbox: mailbox to use for the FW command 7261 * @pf: the PF 7262 * @vf: the VF 7263 * @nparams: the number of parameters 7264 * @params: the parameter names 7265 * @val: the parameter values 7266 * 7267 * Sets the value of FW or device parameters. Up to 7 parameters can be 7268 * specified at once. 7269 */ 7270 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7271 unsigned int vf, unsigned int nparams, const u32 *params, 7272 const u32 *val) 7273 { 7274 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, 7275 FW_CMD_MAX_TIMEOUT); 7276 } 7277 7278 /** 7279 * t4_cfg_pfvf - configure PF/VF resource limits 7280 * @adap: the adapter 7281 * @mbox: mailbox to use for the FW command 7282 * @pf: the PF being configured 7283 * @vf: the VF being configured 7284 * @txq: the max number of egress queues 7285 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 7286 * @rxqi: the max number of interrupt-capable ingress queues 7287 * @rxq: the max number of interruptless ingress queues 7288 * @tc: the PCI traffic class 7289 * @vi: the max number of virtual interfaces 7290 * @cmask: the channel access rights mask for the PF/VF 7291 * @pmask: the port access rights mask for the PF/VF 7292 * @nexact: the maximum number of exact MPS filters 7293 * @rcaps: read capabilities 7294 * @wxcaps: write/execute capabilities 7295 * 7296 * Configures resource limits and capabilities for a physical or virtual 7297 * function. 7298 */ 7299 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 7300 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 7301 unsigned int rxqi, unsigned int rxq, unsigned int tc, 7302 unsigned int vi, unsigned int cmask, unsigned int pmask, 7303 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 7304 { 7305 struct fw_pfvf_cmd c; 7306 7307 memset(&c, 0, sizeof(c)); 7308 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F | 7309 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) | 7310 FW_PFVF_CMD_VFN_V(vf)); 7311 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7312 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) | 7313 FW_PFVF_CMD_NIQ_V(rxq)); 7314 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) | 7315 FW_PFVF_CMD_PMASK_V(pmask) | 7316 FW_PFVF_CMD_NEQ_V(txq)); 7317 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) | 7318 FW_PFVF_CMD_NVI_V(vi) | 7319 FW_PFVF_CMD_NEXACTF_V(nexact)); 7320 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) | 7321 FW_PFVF_CMD_WX_CAPS_V(wxcaps) | 7322 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl)); 7323 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7324 } 7325 7326 /** 7327 * t4_alloc_vi - allocate a virtual interface 7328 * @adap: the adapter 7329 * @mbox: mailbox to use for the FW command 7330 * @port: physical port associated with the VI 7331 * @pf: the PF owning the VI 7332 * @vf: the VF owning the VI 7333 * @nmac: number of MAC addresses needed (1 to 5) 7334 * @mac: the MAC addresses of the VI 7335 * @rss_size: size of RSS table slice associated with this VI 7336 * 7337 * Allocates a virtual interface for the given physical port. If @mac is 7338 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 7339 * @mac should be large enough to hold @nmac Ethernet addresses, they are 7340 * stored consecutively so the space needed is @nmac * 6 bytes. 7341 * Returns a negative error number or the non-negative VI id. 7342 */ 7343 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 7344 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 7345 unsigned int *rss_size) 7346 { 7347 int ret; 7348 struct fw_vi_cmd c; 7349 7350 memset(&c, 0, sizeof(c)); 7351 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | 7352 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 7353 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf)); 7354 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c)); 7355 c.portid_pkd = FW_VI_CMD_PORTID_V(port); 7356 c.nmac = nmac - 1; 7357 7358 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7359 if (ret) 7360 return ret; 7361 7362 if (mac) { 7363 memcpy(mac, c.mac, sizeof(c.mac)); 7364 switch (nmac) { 7365 case 5: 7366 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 7367 case 4: 7368 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 7369 case 3: 7370 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 7371 case 2: 7372 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 7373 } 7374 } 7375 if (rss_size) 7376 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd)); 7377 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid)); 7378 } 7379 7380 /** 7381 * t4_free_vi - free a virtual interface 7382 * @adap: the adapter 7383 * @mbox: mailbox to use for the FW command 7384 * @pf: the PF owning the VI 7385 * @vf: the VF owning the VI 7386 * @viid: virtual interface identifiler 7387 * 7388 * Free a previously allocated virtual interface. 7389 */ 7390 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, 7391 unsigned int vf, unsigned int viid) 7392 { 7393 struct fw_vi_cmd c; 7394 7395 memset(&c, 0, sizeof(c)); 7396 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 7397 FW_CMD_REQUEST_F | 7398 FW_CMD_EXEC_F | 7399 FW_VI_CMD_PFN_V(pf) | 7400 FW_VI_CMD_VFN_V(vf)); 7401 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c)); 7402 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid)); 7403 7404 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7405 } 7406 7407 /** 7408 * t4_set_rxmode - set Rx properties of a virtual interface 7409 * @adap: the adapter 7410 * @mbox: mailbox to use for the FW command 7411 * @viid: the VI id 7412 * @mtu: the new MTU or -1 7413 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 7414 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 7415 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 7416 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 7417 * @sleep_ok: if true we may sleep while awaiting command completion 7418 * 7419 * Sets Rx properties of a virtual interface. 7420 */ 7421 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 7422 int mtu, int promisc, int all_multi, int bcast, int vlanex, 7423 bool sleep_ok) 7424 { 7425 struct fw_vi_rxmode_cmd c; 7426 7427 /* convert to FW values */ 7428 if (mtu < 0) 7429 mtu = FW_RXMODE_MTU_NO_CHG; 7430 if (promisc < 0) 7431 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; 7432 if (all_multi < 0) 7433 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; 7434 if (bcast < 0) 7435 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; 7436 if (vlanex < 0) 7437 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; 7438 7439 memset(&c, 0, sizeof(c)); 7440 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 7441 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7442 FW_VI_RXMODE_CMD_VIID_V(viid)); 7443 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7444 c.mtu_to_vlanexen = 7445 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) | 7446 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | 7447 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | 7448 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | 7449 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); 7450 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 7451 } 7452 7453 /** 7454 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 7455 * @adap: the adapter 7456 * @mbox: mailbox to use for the FW command 7457 * @viid: the VI id 7458 * @free: if true any existing filters for this VI id are first removed 7459 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7460 * @addr: the MAC address(es) 7461 * @idx: where to store the index of each allocated filter 7462 * @hash: pointer to hash address filter bitmap 7463 * @sleep_ok: call is allowed to sleep 7464 * 7465 * Allocates an exact-match filter for each of the supplied addresses and 7466 * sets it to the corresponding address. If @idx is not %NULL it should 7467 * have at least @naddr entries, each of which will be set to the index of 7468 * the filter allocated for the corresponding MAC address. If a filter 7469 * could not be allocated for an address its index is set to 0xffff. 7470 * If @hash is not %NULL addresses that fail to allocate an exact filter 7471 * are hashed and update the hash filter bitmap pointed at by @hash. 7472 * 7473 * Returns a negative error number or the number of filters allocated. 7474 */ 7475 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 7476 unsigned int viid, bool free, unsigned int naddr, 7477 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 7478 { 7479 int offset, ret = 0; 7480 struct fw_vi_mac_cmd c; 7481 unsigned int nfilters = 0; 7482 unsigned int max_naddr = adap->params.arch.mps_tcam_size; 7483 unsigned int rem = naddr; 7484 7485 if (naddr > max_naddr) 7486 return -EINVAL; 7487 7488 for (offset = 0; offset < naddr ; /**/) { 7489 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ? 7490 rem : ARRAY_SIZE(c.u.exact)); 7491 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 7492 u.exact[fw_naddr]), 16); 7493 struct fw_vi_mac_exact *p; 7494 int i; 7495 7496 memset(&c, 0, sizeof(c)); 7497 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7498 FW_CMD_REQUEST_F | 7499 FW_CMD_WRITE_F | 7500 FW_CMD_EXEC_V(free) | 7501 FW_VI_MAC_CMD_VIID_V(viid)); 7502 c.freemacs_to_len16 = 7503 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) | 7504 FW_CMD_LEN16_V(len16)); 7505 7506 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7507 p->valid_to_idx = 7508 cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7509 FW_VI_MAC_CMD_IDX_V( 7510 FW_VI_MAC_ADD_MAC)); 7511 memcpy(p->macaddr, addr[offset + i], 7512 sizeof(p->macaddr)); 7513 } 7514 7515 /* It's okay if we run out of space in our MAC address arena. 7516 * Some of the addresses we submit may get stored so we need 7517 * to run through the reply to see what the results were ... 7518 */ 7519 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7520 if (ret && ret != -FW_ENOMEM) 7521 break; 7522 7523 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7524 u16 index = FW_VI_MAC_CMD_IDX_G( 7525 be16_to_cpu(p->valid_to_idx)); 7526 7527 if (idx) 7528 idx[offset + i] = (index >= max_naddr ? 7529 0xffff : index); 7530 if (index < max_naddr) 7531 nfilters++; 7532 else if (hash) 7533 *hash |= (1ULL << 7534 hash_mac_addr(addr[offset + i])); 7535 } 7536 7537 free = false; 7538 offset += fw_naddr; 7539 rem -= fw_naddr; 7540 } 7541 7542 if (ret == 0 || ret == -FW_ENOMEM) 7543 ret = nfilters; 7544 return ret; 7545 } 7546 7547 /** 7548 * t4_free_mac_filt - frees exact-match filters of given MAC addresses 7549 * @adap: the adapter 7550 * @mbox: mailbox to use for the FW command 7551 * @viid: the VI id 7552 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7553 * @addr: the MAC address(es) 7554 * @sleep_ok: call is allowed to sleep 7555 * 7556 * Frees the exact-match filter for each of the supplied addresses 7557 * 7558 * Returns a negative error number or the number of filters freed. 7559 */ 7560 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox, 7561 unsigned int viid, unsigned int naddr, 7562 const u8 **addr, bool sleep_ok) 7563 { 7564 int offset, ret = 0; 7565 struct fw_vi_mac_cmd c; 7566 unsigned int nfilters = 0; 7567 unsigned int max_naddr = is_t4(adap->params.chip) ? 7568 NUM_MPS_CLS_SRAM_L_INSTANCES : 7569 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 7570 unsigned int rem = naddr; 7571 7572 if (naddr > max_naddr) 7573 return -EINVAL; 7574 7575 for (offset = 0; offset < (int)naddr ; /**/) { 7576 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) 7577 ? rem 7578 : ARRAY_SIZE(c.u.exact)); 7579 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 7580 u.exact[fw_naddr]), 16); 7581 struct fw_vi_mac_exact *p; 7582 int i; 7583 7584 memset(&c, 0, sizeof(c)); 7585 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7586 FW_CMD_REQUEST_F | 7587 FW_CMD_WRITE_F | 7588 FW_CMD_EXEC_V(0) | 7589 FW_VI_MAC_CMD_VIID_V(viid)); 7590 c.freemacs_to_len16 = 7591 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7592 FW_CMD_LEN16_V(len16)); 7593 7594 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) { 7595 p->valid_to_idx = cpu_to_be16( 7596 FW_VI_MAC_CMD_VALID_F | 7597 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE)); 7598 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 7599 } 7600 7601 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7602 if (ret) 7603 break; 7604 7605 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7606 u16 index = FW_VI_MAC_CMD_IDX_G( 7607 be16_to_cpu(p->valid_to_idx)); 7608 7609 if (index < max_naddr) 7610 nfilters++; 7611 } 7612 7613 offset += fw_naddr; 7614 rem -= fw_naddr; 7615 } 7616 7617 if (ret == 0) 7618 ret = nfilters; 7619 return ret; 7620 } 7621 7622 /** 7623 * t4_change_mac - modifies the exact-match filter for a MAC address 7624 * @adap: the adapter 7625 * @mbox: mailbox to use for the FW command 7626 * @viid: the VI id 7627 * @idx: index of existing filter for old value of MAC address, or -1 7628 * @addr: the new MAC address value 7629 * @persist: whether a new MAC allocation should be persistent 7630 * @add_smt: if true also add the address to the HW SMT 7631 * 7632 * Modifies an exact-match filter and sets it to the new MAC address. 7633 * Note that in general it is not possible to modify the value of a given 7634 * filter so the generic way to modify an address filter is to free the one 7635 * being used by the old address value and allocate a new filter for the 7636 * new address value. @idx can be -1 if the address is a new addition. 7637 * 7638 * Returns a negative error number or the index of the filter with the new 7639 * MAC value. 7640 */ 7641 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 7642 int idx, const u8 *addr, bool persist, bool add_smt) 7643 { 7644 int ret, mode; 7645 struct fw_vi_mac_cmd c; 7646 struct fw_vi_mac_exact *p = c.u.exact; 7647 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size; 7648 7649 if (idx < 0) /* new allocation */ 7650 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 7651 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 7652 7653 memset(&c, 0, sizeof(c)); 7654 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7655 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7656 FW_VI_MAC_CMD_VIID_V(viid)); 7657 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1)); 7658 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7659 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) | 7660 FW_VI_MAC_CMD_IDX_V(idx)); 7661 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7662 7663 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7664 if (ret == 0) { 7665 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 7666 if (ret >= max_mac_addr) 7667 ret = -ENOMEM; 7668 } 7669 return ret; 7670 } 7671 7672 /** 7673 * t4_set_addr_hash - program the MAC inexact-match hash filter 7674 * @adap: the adapter 7675 * @mbox: mailbox to use for the FW command 7676 * @viid: the VI id 7677 * @ucast: whether the hash filter should also match unicast addresses 7678 * @vec: the value to be written to the hash filter 7679 * @sleep_ok: call is allowed to sleep 7680 * 7681 * Sets the 64-bit inexact-match hash filter for a virtual interface. 7682 */ 7683 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 7684 bool ucast, u64 vec, bool sleep_ok) 7685 { 7686 struct fw_vi_mac_cmd c; 7687 7688 memset(&c, 0, sizeof(c)); 7689 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7690 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7691 FW_VI_ENABLE_CMD_VIID_V(viid)); 7692 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F | 7693 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | 7694 FW_CMD_LEN16_V(1)); 7695 c.u.hash.hashvec = cpu_to_be64(vec); 7696 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 7697 } 7698 7699 /** 7700 * t4_enable_vi_params - enable/disable a virtual interface 7701 * @adap: the adapter 7702 * @mbox: mailbox to use for the FW command 7703 * @viid: the VI id 7704 * @rx_en: 1=enable Rx, 0=disable Rx 7705 * @tx_en: 1=enable Tx, 0=disable Tx 7706 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 7707 * 7708 * Enables/disables a virtual interface. Note that setting DCB Enable 7709 * only makes sense when enabling a Virtual Interface ... 7710 */ 7711 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, 7712 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) 7713 { 7714 struct fw_vi_enable_cmd c; 7715 7716 memset(&c, 0, sizeof(c)); 7717 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 7718 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7719 FW_VI_ENABLE_CMD_VIID_V(viid)); 7720 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) | 7721 FW_VI_ENABLE_CMD_EEN_V(tx_en) | 7722 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) | 7723 FW_LEN16(c)); 7724 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 7725 } 7726 7727 /** 7728 * t4_enable_vi - enable/disable a virtual interface 7729 * @adap: the adapter 7730 * @mbox: mailbox to use for the FW command 7731 * @viid: the VI id 7732 * @rx_en: 1=enable Rx, 0=disable Rx 7733 * @tx_en: 1=enable Tx, 0=disable Tx 7734 * 7735 * Enables/disables a virtual interface. 7736 */ 7737 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 7738 bool rx_en, bool tx_en) 7739 { 7740 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); 7741 } 7742 7743 /** 7744 * t4_identify_port - identify a VI's port by blinking its LED 7745 * @adap: the adapter 7746 * @mbox: mailbox to use for the FW command 7747 * @viid: the VI id 7748 * @nblinks: how many times to blink LED at 2.5 Hz 7749 * 7750 * Identifies a VI's port by blinking its LED. 7751 */ 7752 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 7753 unsigned int nblinks) 7754 { 7755 struct fw_vi_enable_cmd c; 7756 7757 memset(&c, 0, sizeof(c)); 7758 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 7759 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7760 FW_VI_ENABLE_CMD_VIID_V(viid)); 7761 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c)); 7762 c.blinkdur = cpu_to_be16(nblinks); 7763 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7764 } 7765 7766 /** 7767 * t4_iq_stop - stop an ingress queue and its FLs 7768 * @adap: the adapter 7769 * @mbox: mailbox to use for the FW command 7770 * @pf: the PF owning the queues 7771 * @vf: the VF owning the queues 7772 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 7773 * @iqid: ingress queue id 7774 * @fl0id: FL0 queue id or 0xffff if no attached FL0 7775 * @fl1id: FL1 queue id or 0xffff if no attached FL1 7776 * 7777 * Stops an ingress queue and its associated FLs, if any. This causes 7778 * any current or future data/messages destined for these queues to be 7779 * tossed. 7780 */ 7781 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, 7782 unsigned int vf, unsigned int iqtype, unsigned int iqid, 7783 unsigned int fl0id, unsigned int fl1id) 7784 { 7785 struct fw_iq_cmd c; 7786 7787 memset(&c, 0, sizeof(c)); 7788 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 7789 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 7790 FW_IQ_CMD_VFN_V(vf)); 7791 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c)); 7792 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 7793 c.iqid = cpu_to_be16(iqid); 7794 c.fl0id = cpu_to_be16(fl0id); 7795 c.fl1id = cpu_to_be16(fl1id); 7796 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7797 } 7798 7799 /** 7800 * t4_iq_free - free an ingress queue and its FLs 7801 * @adap: the adapter 7802 * @mbox: mailbox to use for the FW command 7803 * @pf: the PF owning the queues 7804 * @vf: the VF owning the queues 7805 * @iqtype: the ingress queue type 7806 * @iqid: ingress queue id 7807 * @fl0id: FL0 queue id or 0xffff if no attached FL0 7808 * @fl1id: FL1 queue id or 0xffff if no attached FL1 7809 * 7810 * Frees an ingress queue and its associated FLs, if any. 7811 */ 7812 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 7813 unsigned int vf, unsigned int iqtype, unsigned int iqid, 7814 unsigned int fl0id, unsigned int fl1id) 7815 { 7816 struct fw_iq_cmd c; 7817 7818 memset(&c, 0, sizeof(c)); 7819 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 7820 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 7821 FW_IQ_CMD_VFN_V(vf)); 7822 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c)); 7823 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 7824 c.iqid = cpu_to_be16(iqid); 7825 c.fl0id = cpu_to_be16(fl0id); 7826 c.fl1id = cpu_to_be16(fl1id); 7827 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7828 } 7829 7830 /** 7831 * t4_eth_eq_free - free an Ethernet egress queue 7832 * @adap: the adapter 7833 * @mbox: mailbox to use for the FW command 7834 * @pf: the PF owning the queue 7835 * @vf: the VF owning the queue 7836 * @eqid: egress queue id 7837 * 7838 * Frees an Ethernet egress queue. 7839 */ 7840 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 7841 unsigned int vf, unsigned int eqid) 7842 { 7843 struct fw_eq_eth_cmd c; 7844 7845 memset(&c, 0, sizeof(c)); 7846 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | 7847 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7848 FW_EQ_ETH_CMD_PFN_V(pf) | 7849 FW_EQ_ETH_CMD_VFN_V(vf)); 7850 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c)); 7851 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid)); 7852 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7853 } 7854 7855 /** 7856 * t4_ctrl_eq_free - free a control egress queue 7857 * @adap: the adapter 7858 * @mbox: mailbox to use for the FW command 7859 * @pf: the PF owning the queue 7860 * @vf: the VF owning the queue 7861 * @eqid: egress queue id 7862 * 7863 * Frees a control egress queue. 7864 */ 7865 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 7866 unsigned int vf, unsigned int eqid) 7867 { 7868 struct fw_eq_ctrl_cmd c; 7869 7870 memset(&c, 0, sizeof(c)); 7871 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | 7872 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7873 FW_EQ_CTRL_CMD_PFN_V(pf) | 7874 FW_EQ_CTRL_CMD_VFN_V(vf)); 7875 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c)); 7876 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid)); 7877 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7878 } 7879 7880 /** 7881 * t4_ofld_eq_free - free an offload egress queue 7882 * @adap: the adapter 7883 * @mbox: mailbox to use for the FW command 7884 * @pf: the PF owning the queue 7885 * @vf: the VF owning the queue 7886 * @eqid: egress queue id 7887 * 7888 * Frees a control egress queue. 7889 */ 7890 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 7891 unsigned int vf, unsigned int eqid) 7892 { 7893 struct fw_eq_ofld_cmd c; 7894 7895 memset(&c, 0, sizeof(c)); 7896 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | 7897 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7898 FW_EQ_OFLD_CMD_PFN_V(pf) | 7899 FW_EQ_OFLD_CMD_VFN_V(vf)); 7900 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c)); 7901 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid)); 7902 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7903 } 7904 7905 /** 7906 * t4_link_down_rc_str - return a string for a Link Down Reason Code 7907 * @adap: the adapter 7908 * @link_down_rc: Link Down Reason Code 7909 * 7910 * Returns a string representation of the Link Down Reason Code. 7911 */ 7912 static const char *t4_link_down_rc_str(unsigned char link_down_rc) 7913 { 7914 static const char * const reason[] = { 7915 "Link Down", 7916 "Remote Fault", 7917 "Auto-negotiation Failure", 7918 "Reserved", 7919 "Insufficient Airflow", 7920 "Unable To Determine Reason", 7921 "No RX Signal Detected", 7922 "Reserved", 7923 }; 7924 7925 if (link_down_rc >= ARRAY_SIZE(reason)) 7926 return "Bad Reason Code"; 7927 7928 return reason[link_down_rc]; 7929 } 7930 7931 /** 7932 * Return the highest speed set in the port capabilities, in Mb/s. 7933 */ 7934 static unsigned int fwcap_to_speed(fw_port_cap32_t caps) 7935 { 7936 #define TEST_SPEED_RETURN(__caps_speed, __speed) \ 7937 do { \ 7938 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 7939 return __speed; \ 7940 } while (0) 7941 7942 TEST_SPEED_RETURN(400G, 400000); 7943 TEST_SPEED_RETURN(200G, 200000); 7944 TEST_SPEED_RETURN(100G, 100000); 7945 TEST_SPEED_RETURN(50G, 50000); 7946 TEST_SPEED_RETURN(40G, 40000); 7947 TEST_SPEED_RETURN(25G, 25000); 7948 TEST_SPEED_RETURN(10G, 10000); 7949 TEST_SPEED_RETURN(1G, 1000); 7950 TEST_SPEED_RETURN(100M, 100); 7951 7952 #undef TEST_SPEED_RETURN 7953 7954 return 0; 7955 } 7956 7957 /** 7958 * fwcap_to_fwspeed - return highest speed in Port Capabilities 7959 * @acaps: advertised Port Capabilities 7960 * 7961 * Get the highest speed for the port from the advertised Port 7962 * Capabilities. It will be either the highest speed from the list of 7963 * speeds or whatever user has set using ethtool. 7964 */ 7965 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps) 7966 { 7967 #define TEST_SPEED_RETURN(__caps_speed) \ 7968 do { \ 7969 if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 7970 return FW_PORT_CAP32_SPEED_##__caps_speed; \ 7971 } while (0) 7972 7973 TEST_SPEED_RETURN(400G); 7974 TEST_SPEED_RETURN(200G); 7975 TEST_SPEED_RETURN(100G); 7976 TEST_SPEED_RETURN(50G); 7977 TEST_SPEED_RETURN(40G); 7978 TEST_SPEED_RETURN(25G); 7979 TEST_SPEED_RETURN(10G); 7980 TEST_SPEED_RETURN(1G); 7981 TEST_SPEED_RETURN(100M); 7982 7983 #undef TEST_SPEED_RETURN 7984 7985 return 0; 7986 } 7987 7988 /** 7989 * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities 7990 * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value 7991 * 7992 * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new 7993 * 32-bit Port Capabilities value. 7994 */ 7995 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus) 7996 { 7997 fw_port_cap32_t linkattr = 0; 7998 7999 /* Unfortunately the format of the Link Status in the old 8000 * 16-bit Port Information message isn't the same as the 8001 * 16-bit Port Capabilities bitfield used everywhere else ... 8002 */ 8003 if (lstatus & FW_PORT_CMD_RXPAUSE_F) 8004 linkattr |= FW_PORT_CAP32_FC_RX; 8005 if (lstatus & FW_PORT_CMD_TXPAUSE_F) 8006 linkattr |= FW_PORT_CAP32_FC_TX; 8007 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) 8008 linkattr |= FW_PORT_CAP32_SPEED_100M; 8009 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) 8010 linkattr |= FW_PORT_CAP32_SPEED_1G; 8011 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) 8012 linkattr |= FW_PORT_CAP32_SPEED_10G; 8013 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G)) 8014 linkattr |= FW_PORT_CAP32_SPEED_25G; 8015 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) 8016 linkattr |= FW_PORT_CAP32_SPEED_40G; 8017 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G)) 8018 linkattr |= FW_PORT_CAP32_SPEED_100G; 8019 8020 return linkattr; 8021 } 8022 8023 /** 8024 * t4_handle_get_port_info - process a FW reply message 8025 * @pi: the port info 8026 * @rpl: start of the FW message 8027 * 8028 * Processes a GET_PORT_INFO FW reply message. 8029 */ 8030 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl) 8031 { 8032 const struct fw_port_cmd *cmd = (const void *)rpl; 8033 int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16)); 8034 struct adapter *adapter = pi->adapter; 8035 struct link_config *lc = &pi->link_cfg; 8036 int link_ok, linkdnrc; 8037 enum fw_port_type port_type; 8038 enum fw_port_module_type mod_type; 8039 unsigned int speed, fc, fec; 8040 fw_port_cap32_t pcaps, acaps, lpacaps, linkattr; 8041 8042 /* Extract the various fields from the Port Information message. 8043 */ 8044 switch (action) { 8045 case FW_PORT_ACTION_GET_PORT_INFO: { 8046 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype); 8047 8048 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0; 8049 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus); 8050 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 8051 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus); 8052 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap)); 8053 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap)); 8054 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap)); 8055 linkattr = lstatus_to_fwcap(lstatus); 8056 break; 8057 } 8058 8059 case FW_PORT_ACTION_GET_PORT_INFO32: { 8060 u32 lstatus32; 8061 8062 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32); 8063 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0; 8064 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32); 8065 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 8066 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32); 8067 pcaps = be32_to_cpu(cmd->u.info32.pcaps32); 8068 acaps = be32_to_cpu(cmd->u.info32.acaps32); 8069 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32); 8070 linkattr = be32_to_cpu(cmd->u.info32.linkattr32); 8071 break; 8072 } 8073 8074 default: 8075 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n", 8076 be32_to_cpu(cmd->action_to_len16)); 8077 return; 8078 } 8079 8080 fec = fwcap_to_cc_fec(acaps); 8081 fc = fwcap_to_cc_pause(linkattr); 8082 speed = fwcap_to_speed(linkattr); 8083 8084 if (mod_type != pi->mod_type) { 8085 /* With the newer SFP28 and QSFP28 Transceiver Module Types, 8086 * various fundamental Port Capabilities which used to be 8087 * immutable can now change radically. We can now have 8088 * Speeds, Auto-Negotiation, Forward Error Correction, etc. 8089 * all change based on what Transceiver Module is inserted. 8090 * So we need to record the Physical "Port" Capabilities on 8091 * every Transceiver Module change. 8092 */ 8093 lc->pcaps = pcaps; 8094 8095 /* When a new Transceiver Module is inserted, the Firmware 8096 * will examine its i2c EPROM to determine its type and 8097 * general operating parameters including things like Forward 8098 * Error Control, etc. Various IEEE 802.3 standards dictate 8099 * how to interpret these i2c values to determine default 8100 * "sutomatic" settings. We record these for future use when 8101 * the user explicitly requests these standards-based values. 8102 */ 8103 lc->def_acaps = acaps; 8104 8105 /* Some versions of the early T6 Firmware "cheated" when 8106 * handling different Transceiver Modules by changing the 8107 * underlaying Port Type reported to the Host Drivers. As 8108 * such we need to capture whatever Port Type the Firmware 8109 * sends us and record it in case it's different from what we 8110 * were told earlier. Unfortunately, since Firmware is 8111 * forever, we'll need to keep this code here forever, but in 8112 * later T6 Firmware it should just be an assignment of the 8113 * same value already recorded. 8114 */ 8115 pi->port_type = port_type; 8116 8117 pi->mod_type = mod_type; 8118 t4_os_portmod_changed(adapter, pi->port_id); 8119 } 8120 8121 if (link_ok != lc->link_ok || speed != lc->speed || 8122 fc != lc->fc || fec != lc->fec) { /* something changed */ 8123 if (!link_ok && lc->link_ok) { 8124 lc->link_down_rc = linkdnrc; 8125 dev_warn(adapter->pdev_dev, "Port %d link down, reason: %s\n", 8126 pi->tx_chan, t4_link_down_rc_str(linkdnrc)); 8127 } 8128 lc->link_ok = link_ok; 8129 lc->speed = speed; 8130 lc->fc = fc; 8131 lc->fec = fec; 8132 8133 lc->lpacaps = lpacaps; 8134 lc->acaps = acaps & ADVERT_MASK; 8135 8136 if (lc->acaps & FW_PORT_CAP32_ANEG) { 8137 lc->autoneg = AUTONEG_ENABLE; 8138 } else { 8139 /* When Autoneg is disabled, user needs to set 8140 * single speed. 8141 * Similar to cxgb4_ethtool.c: set_link_ksettings 8142 */ 8143 lc->acaps = 0; 8144 lc->speed_caps = fwcap_to_fwspeed(acaps); 8145 lc->autoneg = AUTONEG_DISABLE; 8146 } 8147 8148 t4_os_link_changed(adapter, pi->port_id, link_ok); 8149 } 8150 } 8151 8152 /** 8153 * t4_update_port_info - retrieve and update port information if changed 8154 * @pi: the port_info 8155 * 8156 * We issue a Get Port Information Command to the Firmware and, if 8157 * successful, we check to see if anything is different from what we 8158 * last recorded and update things accordingly. 8159 */ 8160 int t4_update_port_info(struct port_info *pi) 8161 { 8162 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8163 struct fw_port_cmd port_cmd; 8164 int ret; 8165 8166 memset(&port_cmd, 0, sizeof(port_cmd)); 8167 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8168 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8169 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8170 port_cmd.action_to_len16 = cpu_to_be32( 8171 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 8172 ? FW_PORT_ACTION_GET_PORT_INFO 8173 : FW_PORT_ACTION_GET_PORT_INFO32) | 8174 FW_LEN16(port_cmd)); 8175 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8176 &port_cmd, sizeof(port_cmd), &port_cmd); 8177 if (ret) 8178 return ret; 8179 8180 t4_handle_get_port_info(pi, (__be64 *)&port_cmd); 8181 return 0; 8182 } 8183 8184 /** 8185 * t4_get_link_params - retrieve basic link parameters for given port 8186 * @pi: the port 8187 * @link_okp: value return pointer for link up/down 8188 * @speedp: value return pointer for speed (Mb/s) 8189 * @mtup: value return pointer for mtu 8190 * 8191 * Retrieves basic link parameters for a port: link up/down, speed (Mb/s), 8192 * and MTU for a specified port. A negative error is returned on 8193 * failure; 0 on success. 8194 */ 8195 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp, 8196 unsigned int *speedp, unsigned int *mtup) 8197 { 8198 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8199 struct fw_port_cmd port_cmd; 8200 unsigned int action, link_ok, speed, mtu; 8201 fw_port_cap32_t linkattr; 8202 int ret; 8203 8204 memset(&port_cmd, 0, sizeof(port_cmd)); 8205 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8206 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8207 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8208 action = (fw_caps == FW_CAPS16 8209 ? FW_PORT_ACTION_GET_PORT_INFO 8210 : FW_PORT_ACTION_GET_PORT_INFO32); 8211 port_cmd.action_to_len16 = cpu_to_be32( 8212 FW_PORT_CMD_ACTION_V(action) | 8213 FW_LEN16(port_cmd)); 8214 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8215 &port_cmd, sizeof(port_cmd), &port_cmd); 8216 if (ret) 8217 return ret; 8218 8219 if (action == FW_PORT_ACTION_GET_PORT_INFO) { 8220 u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype); 8221 8222 link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F); 8223 linkattr = lstatus_to_fwcap(lstatus); 8224 mtu = be16_to_cpu(port_cmd.u.info.mtu); 8225 } else { 8226 u32 lstatus32 = 8227 be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32); 8228 8229 link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F); 8230 linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32); 8231 mtu = FW_PORT_CMD_MTU32_G( 8232 be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32)); 8233 } 8234 speed = fwcap_to_speed(linkattr); 8235 8236 *link_okp = link_ok; 8237 *speedp = fwcap_to_speed(linkattr); 8238 *mtup = mtu; 8239 8240 return 0; 8241 } 8242 8243 /** 8244 * t4_handle_fw_rpl - process a FW reply message 8245 * @adap: the adapter 8246 * @rpl: start of the FW message 8247 * 8248 * Processes a FW message, such as link state change messages. 8249 */ 8250 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 8251 { 8252 u8 opcode = *(const u8 *)rpl; 8253 8254 /* This might be a port command ... this simplifies the following 8255 * conditionals ... We can get away with pre-dereferencing 8256 * action_to_len16 because it's in the first 16 bytes and all messages 8257 * will be at least that long. 8258 */ 8259 const struct fw_port_cmd *p = (const void *)rpl; 8260 unsigned int action = 8261 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16)); 8262 8263 if (opcode == FW_PORT_CMD && 8264 (action == FW_PORT_ACTION_GET_PORT_INFO || 8265 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 8266 int i; 8267 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid)); 8268 struct port_info *pi = NULL; 8269 8270 for_each_port(adap, i) { 8271 pi = adap2pinfo(adap, i); 8272 if (pi->tx_chan == chan) 8273 break; 8274 } 8275 8276 t4_handle_get_port_info(pi, rpl); 8277 } else { 8278 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", 8279 opcode); 8280 return -EINVAL; 8281 } 8282 return 0; 8283 } 8284 8285 static void get_pci_mode(struct adapter *adapter, struct pci_params *p) 8286 { 8287 u16 val; 8288 8289 if (pci_is_pcie(adapter->pdev)) { 8290 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); 8291 p->speed = val & PCI_EXP_LNKSTA_CLS; 8292 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 8293 } 8294 } 8295 8296 /** 8297 * init_link_config - initialize a link's SW state 8298 * @lc: pointer to structure holding the link state 8299 * @pcaps: link Port Capabilities 8300 * @acaps: link current Advertised Port Capabilities 8301 * 8302 * Initializes the SW state maintained for each link, including the link's 8303 * capabilities and default speed/flow-control/autonegotiation settings. 8304 */ 8305 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps, 8306 fw_port_cap32_t acaps) 8307 { 8308 lc->pcaps = pcaps; 8309 lc->def_acaps = acaps; 8310 lc->lpacaps = 0; 8311 lc->speed_caps = 0; 8312 lc->speed = 0; 8313 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 8314 8315 /* For Forward Error Control, we default to whatever the Firmware 8316 * tells us the Link is currently advertising. 8317 */ 8318 lc->requested_fec = FEC_AUTO; 8319 lc->fec = fwcap_to_cc_fec(lc->def_acaps); 8320 8321 if (lc->pcaps & FW_PORT_CAP32_ANEG) { 8322 lc->acaps = lc->pcaps & ADVERT_MASK; 8323 lc->autoneg = AUTONEG_ENABLE; 8324 lc->requested_fc |= PAUSE_AUTONEG; 8325 } else { 8326 lc->acaps = 0; 8327 lc->autoneg = AUTONEG_DISABLE; 8328 } 8329 } 8330 8331 #define CIM_PF_NOACCESS 0xeeeeeeee 8332 8333 int t4_wait_dev_ready(void __iomem *regs) 8334 { 8335 u32 whoami; 8336 8337 whoami = readl(regs + PL_WHOAMI_A); 8338 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS) 8339 return 0; 8340 8341 msleep(500); 8342 whoami = readl(regs + PL_WHOAMI_A); 8343 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO); 8344 } 8345 8346 struct flash_desc { 8347 u32 vendor_and_model_id; 8348 u32 size_mb; 8349 }; 8350 8351 static int t4_get_flash_params(struct adapter *adap) 8352 { 8353 /* Table for non-Numonix supported flash parts. Numonix parts are left 8354 * to the preexisting code. All flash parts have 64KB sectors. 8355 */ 8356 static struct flash_desc supported_flash[] = { 8357 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ 8358 }; 8359 8360 unsigned int part, manufacturer; 8361 unsigned int density, size; 8362 u32 flashid = 0; 8363 int ret; 8364 8365 /* Issue a Read ID Command to the Flash part. We decode supported 8366 * Flash parts and their sizes from this. There's a newer Query 8367 * Command which can retrieve detailed geometry information but many 8368 * Flash parts don't support it. 8369 */ 8370 8371 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID); 8372 if (!ret) 8373 ret = sf1_read(adap, 3, 0, 1, &flashid); 8374 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */ 8375 if (ret) 8376 return ret; 8377 8378 /* Check to see if it's one of our non-standard supported Flash parts. 8379 */ 8380 for (part = 0; part < ARRAY_SIZE(supported_flash); part++) 8381 if (supported_flash[part].vendor_and_model_id == flashid) { 8382 adap->params.sf_size = supported_flash[part].size_mb; 8383 adap->params.sf_nsec = 8384 adap->params.sf_size / SF_SEC_SIZE; 8385 goto found; 8386 } 8387 8388 /* Decode Flash part size. The code below looks repetative with 8389 * common encodings, but that's not guaranteed in the JEDEC 8390 * specification for the Read JADEC ID command. The only thing that 8391 * we're guaranteed by the JADEC specification is where the 8392 * Manufacturer ID is in the returned result. After that each 8393 * Manufacturer ~could~ encode things completely differently. 8394 * Note, all Flash parts must have 64KB sectors. 8395 */ 8396 manufacturer = flashid & 0xff; 8397 switch (manufacturer) { 8398 case 0x20: { /* Micron/Numonix */ 8399 /* This Density -> Size decoding table is taken from Micron 8400 * Data Sheets. 8401 */ 8402 density = (flashid >> 16) & 0xff; 8403 switch (density) { 8404 case 0x14: /* 1MB */ 8405 size = 1 << 20; 8406 break; 8407 case 0x15: /* 2MB */ 8408 size = 1 << 21; 8409 break; 8410 case 0x16: /* 4MB */ 8411 size = 1 << 22; 8412 break; 8413 case 0x17: /* 8MB */ 8414 size = 1 << 23; 8415 break; 8416 case 0x18: /* 16MB */ 8417 size = 1 << 24; 8418 break; 8419 case 0x19: /* 32MB */ 8420 size = 1 << 25; 8421 break; 8422 case 0x20: /* 64MB */ 8423 size = 1 << 26; 8424 break; 8425 case 0x21: /* 128MB */ 8426 size = 1 << 27; 8427 break; 8428 case 0x22: /* 256MB */ 8429 size = 1 << 28; 8430 break; 8431 8432 default: 8433 dev_err(adap->pdev_dev, "Micron Flash Part has bad size, ID = %#x, Density code = %#x\n", 8434 flashid, density); 8435 return -EINVAL; 8436 } 8437 break; 8438 } 8439 case 0xc2: { /* Macronix */ 8440 /* This Density -> Size decoding table is taken from Macronix 8441 * Data Sheets. 8442 */ 8443 density = (flashid >> 16) & 0xff; 8444 switch (density) { 8445 case 0x17: /* 8MB */ 8446 size = 1 << 23; 8447 break; 8448 case 0x18: /* 16MB */ 8449 size = 1 << 24; 8450 break; 8451 default: 8452 dev_err(adap->pdev_dev, "Macronix Flash Part has bad size, ID = %#x, Density code = %#x\n", 8453 flashid, density); 8454 return -EINVAL; 8455 } 8456 break; 8457 } 8458 case 0xef: { /* Winbond */ 8459 /* This Density -> Size decoding table is taken from Winbond 8460 * Data Sheets. 8461 */ 8462 density = (flashid >> 16) & 0xff; 8463 switch (density) { 8464 case 0x17: /* 8MB */ 8465 size = 1 << 23; 8466 break; 8467 case 0x18: /* 16MB */ 8468 size = 1 << 24; 8469 break; 8470 default: 8471 dev_err(adap->pdev_dev, "Winbond Flash Part has bad size, ID = %#x, Density code = %#x\n", 8472 flashid, density); 8473 return -EINVAL; 8474 } 8475 break; 8476 } 8477 default: 8478 dev_err(adap->pdev_dev, "Unsupported Flash Part, ID = %#x\n", 8479 flashid); 8480 return -EINVAL; 8481 } 8482 8483 /* Store decoded Flash size and fall through into vetting code. */ 8484 adap->params.sf_size = size; 8485 adap->params.sf_nsec = size / SF_SEC_SIZE; 8486 8487 found: 8488 if (adap->params.sf_size < FLASH_MIN_SIZE) 8489 dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n", 8490 flashid, adap->params.sf_size, FLASH_MIN_SIZE); 8491 return 0; 8492 } 8493 8494 static void set_pcie_completion_timeout(struct adapter *adapter, u8 range) 8495 { 8496 u16 val; 8497 u32 pcie_cap; 8498 8499 pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); 8500 if (pcie_cap) { 8501 pci_read_config_word(adapter->pdev, 8502 pcie_cap + PCI_EXP_DEVCTL2, &val); 8503 val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT; 8504 val |= range; 8505 pci_write_config_word(adapter->pdev, 8506 pcie_cap + PCI_EXP_DEVCTL2, val); 8507 } 8508 } 8509 8510 /** 8511 * t4_prep_adapter - prepare SW and HW for operation 8512 * @adapter: the adapter 8513 * @reset: if true perform a HW reset 8514 * 8515 * Initialize adapter SW state for the various HW modules, set initial 8516 * values for some adapter tunables, take PHYs out of reset, and 8517 * initialize the MDIO interface. 8518 */ 8519 int t4_prep_adapter(struct adapter *adapter) 8520 { 8521 int ret, ver; 8522 uint16_t device_id; 8523 u32 pl_rev; 8524 8525 get_pci_mode(adapter, &adapter->params.pci); 8526 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A)); 8527 8528 ret = t4_get_flash_params(adapter); 8529 if (ret < 0) { 8530 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret); 8531 return ret; 8532 } 8533 8534 /* Retrieve adapter's device ID 8535 */ 8536 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id); 8537 ver = device_id >> 12; 8538 adapter->params.chip = 0; 8539 switch (ver) { 8540 case CHELSIO_T4: 8541 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 8542 adapter->params.arch.sge_fl_db = DBPRIO_F; 8543 adapter->params.arch.mps_tcam_size = 8544 NUM_MPS_CLS_SRAM_L_INSTANCES; 8545 adapter->params.arch.mps_rplc_size = 128; 8546 adapter->params.arch.nchan = NCHAN; 8547 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 8548 adapter->params.arch.vfcount = 128; 8549 /* Congestion map is for 4 channels so that 8550 * MPS can have 4 priority per port. 8551 */ 8552 adapter->params.arch.cng_ch_bits_log = 2; 8553 break; 8554 case CHELSIO_T5: 8555 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 8556 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F; 8557 adapter->params.arch.mps_tcam_size = 8558 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 8559 adapter->params.arch.mps_rplc_size = 128; 8560 adapter->params.arch.nchan = NCHAN; 8561 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 8562 adapter->params.arch.vfcount = 128; 8563 adapter->params.arch.cng_ch_bits_log = 2; 8564 break; 8565 case CHELSIO_T6: 8566 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 8567 adapter->params.arch.sge_fl_db = 0; 8568 adapter->params.arch.mps_tcam_size = 8569 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 8570 adapter->params.arch.mps_rplc_size = 256; 8571 adapter->params.arch.nchan = 2; 8572 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS; 8573 adapter->params.arch.vfcount = 256; 8574 /* Congestion map will be for 2 channels so that 8575 * MPS can have 8 priority per port. 8576 */ 8577 adapter->params.arch.cng_ch_bits_log = 3; 8578 break; 8579 default: 8580 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 8581 device_id); 8582 return -EINVAL; 8583 } 8584 8585 adapter->params.cim_la_size = CIMLA_SIZE; 8586 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 8587 8588 /* 8589 * Default port for debugging in case we can't reach FW. 8590 */ 8591 adapter->params.nports = 1; 8592 adapter->params.portvec = 1; 8593 adapter->params.vpd.cclk = 50000; 8594 8595 /* Set pci completion timeout value to 4 seconds. */ 8596 set_pcie_completion_timeout(adapter, 0xd); 8597 return 0; 8598 } 8599 8600 /** 8601 * t4_shutdown_adapter - shut down adapter, host & wire 8602 * @adapter: the adapter 8603 * 8604 * Perform an emergency shutdown of the adapter and stop it from 8605 * continuing any further communication on the ports or DMA to the 8606 * host. This is typically used when the adapter and/or firmware 8607 * have crashed and we want to prevent any further accidental 8608 * communication with the rest of the world. This will also force 8609 * the port Link Status to go down -- if register writes work -- 8610 * which should help our peers figure out that we're down. 8611 */ 8612 int t4_shutdown_adapter(struct adapter *adapter) 8613 { 8614 int port; 8615 8616 t4_intr_disable(adapter); 8617 t4_write_reg(adapter, DBG_GPIO_EN_A, 0); 8618 for_each_port(adapter, port) { 8619 u32 a_port_cfg = is_t4(adapter->params.chip) ? 8620 PORT_REG(port, XGMAC_PORT_CFG_A) : 8621 T5_PORT_REG(port, MAC_PORT_CFG_A); 8622 8623 t4_write_reg(adapter, a_port_cfg, 8624 t4_read_reg(adapter, a_port_cfg) 8625 & ~SIGNAL_DET_V(1)); 8626 } 8627 t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0); 8628 8629 return 0; 8630 } 8631 8632 /** 8633 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information 8634 * @adapter: the adapter 8635 * @qid: the Queue ID 8636 * @qtype: the Ingress or Egress type for @qid 8637 * @user: true if this request is for a user mode queue 8638 * @pbar2_qoffset: BAR2 Queue Offset 8639 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 8640 * 8641 * Returns the BAR2 SGE Queue Registers information associated with the 8642 * indicated Absolute Queue ID. These are passed back in return value 8643 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 8644 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 8645 * 8646 * This may return an error which indicates that BAR2 SGE Queue 8647 * registers aren't available. If an error is not returned, then the 8648 * following values are returned: 8649 * 8650 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 8651 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 8652 * 8653 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 8654 * require the "Inferred Queue ID" ability may be used. E.g. the 8655 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 8656 * then these "Inferred Queue ID" register may not be used. 8657 */ 8658 int t4_bar2_sge_qregs(struct adapter *adapter, 8659 unsigned int qid, 8660 enum t4_bar2_qtype qtype, 8661 int user, 8662 u64 *pbar2_qoffset, 8663 unsigned int *pbar2_qid) 8664 { 8665 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 8666 u64 bar2_page_offset, bar2_qoffset; 8667 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 8668 8669 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */ 8670 if (!user && is_t4(adapter->params.chip)) 8671 return -EINVAL; 8672 8673 /* Get our SGE Page Size parameters. 8674 */ 8675 page_shift = adapter->params.sge.hps + 10; 8676 page_size = 1 << page_shift; 8677 8678 /* Get the right Queues per Page parameters for our Queue. 8679 */ 8680 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 8681 ? adapter->params.sge.eq_qpp 8682 : adapter->params.sge.iq_qpp); 8683 qpp_mask = (1 << qpp_shift) - 1; 8684 8685 /* Calculate the basics of the BAR2 SGE Queue register area: 8686 * o The BAR2 page the Queue registers will be in. 8687 * o The BAR2 Queue ID. 8688 * o The BAR2 Queue ID Offset into the BAR2 page. 8689 */ 8690 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 8691 bar2_qid = qid & qpp_mask; 8692 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 8693 8694 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 8695 * hardware will infer the Absolute Queue ID simply from the writes to 8696 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 8697 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 8698 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 8699 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 8700 * from the BAR2 Page and BAR2 Queue ID. 8701 * 8702 * One important censequence of this is that some BAR2 SGE registers 8703 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 8704 * there. But other registers synthesize the SGE Queue ID purely 8705 * from the writes to the registers -- the Write Combined Doorbell 8706 * Buffer is a good example. These BAR2 SGE Registers are only 8707 * available for those BAR2 SGE Register areas where the SGE Absolute 8708 * Queue ID can be inferred from simple writes. 8709 */ 8710 bar2_qoffset = bar2_page_offset; 8711 bar2_qinferred = (bar2_qid_offset < page_size); 8712 if (bar2_qinferred) { 8713 bar2_qoffset += bar2_qid_offset; 8714 bar2_qid = 0; 8715 } 8716 8717 *pbar2_qoffset = bar2_qoffset; 8718 *pbar2_qid = bar2_qid; 8719 return 0; 8720 } 8721 8722 /** 8723 * t4_init_devlog_params - initialize adapter->params.devlog 8724 * @adap: the adapter 8725 * 8726 * Initialize various fields of the adapter's Firmware Device Log 8727 * Parameters structure. 8728 */ 8729 int t4_init_devlog_params(struct adapter *adap) 8730 { 8731 struct devlog_params *dparams = &adap->params.devlog; 8732 u32 pf_dparams; 8733 unsigned int devlog_meminfo; 8734 struct fw_devlog_cmd devlog_cmd; 8735 int ret; 8736 8737 /* If we're dealing with newer firmware, the Device Log Paramerters 8738 * are stored in a designated register which allows us to access the 8739 * Device Log even if we can't talk to the firmware. 8740 */ 8741 pf_dparams = 8742 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG)); 8743 if (pf_dparams) { 8744 unsigned int nentries, nentries128; 8745 8746 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams); 8747 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4; 8748 8749 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams); 8750 nentries = (nentries128 + 1) * 128; 8751 dparams->size = nentries * sizeof(struct fw_devlog_e); 8752 8753 return 0; 8754 } 8755 8756 /* Otherwise, ask the firmware for it's Device Log Parameters. 8757 */ 8758 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 8759 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) | 8760 FW_CMD_REQUEST_F | FW_CMD_READ_F); 8761 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 8762 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), 8763 &devlog_cmd); 8764 if (ret) 8765 return ret; 8766 8767 devlog_meminfo = 8768 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); 8769 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo); 8770 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4; 8771 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); 8772 8773 return 0; 8774 } 8775 8776 /** 8777 * t4_init_sge_params - initialize adap->params.sge 8778 * @adapter: the adapter 8779 * 8780 * Initialize various fields of the adapter's SGE Parameters structure. 8781 */ 8782 int t4_init_sge_params(struct adapter *adapter) 8783 { 8784 struct sge_params *sge_params = &adapter->params.sge; 8785 u32 hps, qpp; 8786 unsigned int s_hps, s_qpp; 8787 8788 /* Extract the SGE Page Size for our PF. 8789 */ 8790 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A); 8791 s_hps = (HOSTPAGESIZEPF0_S + 8792 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf); 8793 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M); 8794 8795 /* Extract the SGE Egress and Ingess Queues Per Page for our PF. 8796 */ 8797 s_qpp = (QUEUESPERPAGEPF0_S + 8798 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf); 8799 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A); 8800 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 8801 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A); 8802 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 8803 8804 return 0; 8805 } 8806 8807 /** 8808 * t4_init_tp_params - initialize adap->params.tp 8809 * @adap: the adapter 8810 * @sleep_ok: if true we may sleep while awaiting command completion 8811 * 8812 * Initialize various fields of the adapter's TP Parameters structure. 8813 */ 8814 int t4_init_tp_params(struct adapter *adap, bool sleep_ok) 8815 { 8816 int chan; 8817 u32 v; 8818 8819 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A); 8820 adap->params.tp.tre = TIMERRESOLUTION_G(v); 8821 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v); 8822 8823 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 8824 for (chan = 0; chan < NCHAN; chan++) 8825 adap->params.tp.tx_modq[chan] = chan; 8826 8827 /* Cache the adapter's Compressed Filter Mode and global Incress 8828 * Configuration. 8829 */ 8830 t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1, 8831 TP_VLAN_PRI_MAP_A, sleep_ok); 8832 t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1, 8833 TP_INGRESS_CONFIG_A, sleep_ok); 8834 8835 /* For T6, cache the adapter's compressed error vector 8836 * and passing outer header info for encapsulated packets. 8837 */ 8838 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 8839 v = t4_read_reg(adap, TP_OUT_CONFIG_A); 8840 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0; 8841 } 8842 8843 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field 8844 * shift positions of several elements of the Compressed Filter Tuple 8845 * for this adapter which we need frequently ... 8846 */ 8847 adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F); 8848 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F); 8849 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F); 8850 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F); 8851 adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F); 8852 adap->params.tp.protocol_shift = t4_filter_field_shift(adap, 8853 PROTOCOL_F); 8854 adap->params.tp.ethertype_shift = t4_filter_field_shift(adap, 8855 ETHERTYPE_F); 8856 adap->params.tp.macmatch_shift = t4_filter_field_shift(adap, 8857 MACMATCH_F); 8858 adap->params.tp.matchtype_shift = t4_filter_field_shift(adap, 8859 MPSHITTYPE_F); 8860 adap->params.tp.frag_shift = t4_filter_field_shift(adap, 8861 FRAGMENTATION_F); 8862 8863 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID 8864 * represents the presence of an Outer VLAN instead of a VNIC ID. 8865 */ 8866 if ((adap->params.tp.ingress_config & VNIC_F) == 0) 8867 adap->params.tp.vnic_shift = -1; 8868 8869 v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A); 8870 adap->params.tp.hash_filter_mask = v; 8871 v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A); 8872 adap->params.tp.hash_filter_mask |= ((u64)v << 32); 8873 return 0; 8874 } 8875 8876 /** 8877 * t4_filter_field_shift - calculate filter field shift 8878 * @adap: the adapter 8879 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) 8880 * 8881 * Return the shift position of a filter field within the Compressed 8882 * Filter Tuple. The filter field is specified via its selection bit 8883 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. 8884 */ 8885 int t4_filter_field_shift(const struct adapter *adap, int filter_sel) 8886 { 8887 unsigned int filter_mode = adap->params.tp.vlan_pri_map; 8888 unsigned int sel; 8889 int field_shift; 8890 8891 if ((filter_mode & filter_sel) == 0) 8892 return -1; 8893 8894 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { 8895 switch (filter_mode & sel) { 8896 case FCOE_F: 8897 field_shift += FT_FCOE_W; 8898 break; 8899 case PORT_F: 8900 field_shift += FT_PORT_W; 8901 break; 8902 case VNIC_ID_F: 8903 field_shift += FT_VNIC_ID_W; 8904 break; 8905 case VLAN_F: 8906 field_shift += FT_VLAN_W; 8907 break; 8908 case TOS_F: 8909 field_shift += FT_TOS_W; 8910 break; 8911 case PROTOCOL_F: 8912 field_shift += FT_PROTOCOL_W; 8913 break; 8914 case ETHERTYPE_F: 8915 field_shift += FT_ETHERTYPE_W; 8916 break; 8917 case MACMATCH_F: 8918 field_shift += FT_MACMATCH_W; 8919 break; 8920 case MPSHITTYPE_F: 8921 field_shift += FT_MPSHITTYPE_W; 8922 break; 8923 case FRAGMENTATION_F: 8924 field_shift += FT_FRAGMENTATION_W; 8925 break; 8926 } 8927 } 8928 return field_shift; 8929 } 8930 8931 int t4_init_rss_mode(struct adapter *adap, int mbox) 8932 { 8933 int i, ret; 8934 struct fw_rss_vi_config_cmd rvc; 8935 8936 memset(&rvc, 0, sizeof(rvc)); 8937 8938 for_each_port(adap, i) { 8939 struct port_info *p = adap2pinfo(adap, i); 8940 8941 rvc.op_to_viid = 8942 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 8943 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8944 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid)); 8945 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc)); 8946 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); 8947 if (ret) 8948 return ret; 8949 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen); 8950 } 8951 return 0; 8952 } 8953 8954 /** 8955 * t4_init_portinfo - allocate a virtual interface and initialize port_info 8956 * @pi: the port_info 8957 * @mbox: mailbox to use for the FW command 8958 * @port: physical port associated with the VI 8959 * @pf: the PF owning the VI 8960 * @vf: the VF owning the VI 8961 * @mac: the MAC address of the VI 8962 * 8963 * Allocates a virtual interface for the given physical port. If @mac is 8964 * not %NULL it contains the MAC address of the VI as assigned by FW. 8965 * @mac should be large enough to hold an Ethernet address. 8966 * Returns < 0 on error. 8967 */ 8968 int t4_init_portinfo(struct port_info *pi, int mbox, 8969 int port, int pf, int vf, u8 mac[]) 8970 { 8971 struct adapter *adapter = pi->adapter; 8972 unsigned int fw_caps = adapter->params.fw_caps_support; 8973 struct fw_port_cmd cmd; 8974 unsigned int rss_size; 8975 enum fw_port_type port_type; 8976 int mdio_addr; 8977 fw_port_cap32_t pcaps, acaps; 8978 int ret; 8979 8980 /* If we haven't yet determined whether we're talking to Firmware 8981 * which knows the new 32-bit Port Capabilities, it's time to find 8982 * out now. This will also tell new Firmware to send us Port Status 8983 * Updates using the new 32-bit Port Capabilities version of the 8984 * Port Information message. 8985 */ 8986 if (fw_caps == FW_CAPS_UNKNOWN) { 8987 u32 param, val; 8988 8989 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 8990 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32)); 8991 val = 1; 8992 ret = t4_set_params(adapter, mbox, pf, vf, 1, ¶m, &val); 8993 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16); 8994 adapter->params.fw_caps_support = fw_caps; 8995 } 8996 8997 memset(&cmd, 0, sizeof(cmd)); 8998 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8999 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9000 FW_PORT_CMD_PORTID_V(port)); 9001 cmd.action_to_len16 = cpu_to_be32( 9002 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 9003 ? FW_PORT_ACTION_GET_PORT_INFO 9004 : FW_PORT_ACTION_GET_PORT_INFO32) | 9005 FW_LEN16(cmd)); 9006 ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd); 9007 if (ret) 9008 return ret; 9009 9010 /* Extract the various fields from the Port Information message. 9011 */ 9012 if (fw_caps == FW_CAPS16) { 9013 u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype); 9014 9015 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 9016 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F) 9017 ? FW_PORT_CMD_MDIOADDR_G(lstatus) 9018 : -1); 9019 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap)); 9020 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap)); 9021 } else { 9022 u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32); 9023 9024 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 9025 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F) 9026 ? FW_PORT_CMD_MDIOADDR32_G(lstatus32) 9027 : -1); 9028 pcaps = be32_to_cpu(cmd.u.info32.pcaps32); 9029 acaps = be32_to_cpu(cmd.u.info32.acaps32); 9030 } 9031 9032 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size); 9033 if (ret < 0) 9034 return ret; 9035 9036 pi->viid = ret; 9037 pi->tx_chan = port; 9038 pi->lport = port; 9039 pi->rss_size = rss_size; 9040 9041 pi->port_type = port_type; 9042 pi->mdio_addr = mdio_addr; 9043 pi->mod_type = FW_PORT_MOD_TYPE_NA; 9044 9045 init_link_config(&pi->link_cfg, pcaps, acaps); 9046 return 0; 9047 } 9048 9049 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf) 9050 { 9051 u8 addr[6]; 9052 int ret, i, j = 0; 9053 9054 for_each_port(adap, i) { 9055 struct port_info *pi = adap2pinfo(adap, i); 9056 9057 while ((adap->params.portvec & (1 << j)) == 0) 9058 j++; 9059 9060 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr); 9061 if (ret) 9062 return ret; 9063 9064 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN); 9065 j++; 9066 } 9067 return 0; 9068 } 9069 9070 /** 9071 * t4_read_cimq_cfg - read CIM queue configuration 9072 * @adap: the adapter 9073 * @base: holds the queue base addresses in bytes 9074 * @size: holds the queue sizes in bytes 9075 * @thres: holds the queue full thresholds in bytes 9076 * 9077 * Returns the current configuration of the CIM queues, starting with 9078 * the IBQs, then the OBQs. 9079 */ 9080 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) 9081 { 9082 unsigned int i, v; 9083 int cim_num_obq = is_t4(adap->params.chip) ? 9084 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9085 9086 for (i = 0; i < CIM_NUM_IBQ; i++) { 9087 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F | 9088 QUENUMSELECT_V(i)); 9089 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9090 /* value is in 256-byte units */ 9091 *base++ = CIMQBASE_G(v) * 256; 9092 *size++ = CIMQSIZE_G(v) * 256; 9093 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */ 9094 } 9095 for (i = 0; i < cim_num_obq; i++) { 9096 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9097 QUENUMSELECT_V(i)); 9098 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9099 /* value is in 256-byte units */ 9100 *base++ = CIMQBASE_G(v) * 256; 9101 *size++ = CIMQSIZE_G(v) * 256; 9102 } 9103 } 9104 9105 /** 9106 * t4_read_cim_ibq - read the contents of a CIM inbound queue 9107 * @adap: the adapter 9108 * @qid: the queue index 9109 * @data: where to store the queue contents 9110 * @n: capacity of @data in 32-bit words 9111 * 9112 * Reads the contents of the selected CIM queue starting at address 0 up 9113 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9114 * error and the number of 32-bit words actually read on success. 9115 */ 9116 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9117 { 9118 int i, err, attempts; 9119 unsigned int addr; 9120 const unsigned int nwords = CIM_IBQ_SIZE * 4; 9121 9122 if (qid > 5 || (n & 3)) 9123 return -EINVAL; 9124 9125 addr = qid * nwords; 9126 if (n > nwords) 9127 n = nwords; 9128 9129 /* It might take 3-10ms before the IBQ debug read access is allowed. 9130 * Wait for 1 Sec with a delay of 1 usec. 9131 */ 9132 attempts = 1000000; 9133 9134 for (i = 0; i < n; i++, addr++) { 9135 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) | 9136 IBQDBGEN_F); 9137 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0, 9138 attempts, 1); 9139 if (err) 9140 return err; 9141 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A); 9142 } 9143 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0); 9144 return i; 9145 } 9146 9147 /** 9148 * t4_read_cim_obq - read the contents of a CIM outbound queue 9149 * @adap: the adapter 9150 * @qid: the queue index 9151 * @data: where to store the queue contents 9152 * @n: capacity of @data in 32-bit words 9153 * 9154 * Reads the contents of the selected CIM queue starting at address 0 up 9155 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9156 * error and the number of 32-bit words actually read on success. 9157 */ 9158 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9159 { 9160 int i, err; 9161 unsigned int addr, v, nwords; 9162 int cim_num_obq = is_t4(adap->params.chip) ? 9163 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9164 9165 if ((qid > (cim_num_obq - 1)) || (n & 3)) 9166 return -EINVAL; 9167 9168 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9169 QUENUMSELECT_V(qid)); 9170 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9171 9172 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */ 9173 nwords = CIMQSIZE_G(v) * 64; /* same */ 9174 if (n > nwords) 9175 n = nwords; 9176 9177 for (i = 0; i < n; i++, addr++) { 9178 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) | 9179 OBQDBGEN_F); 9180 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0, 9181 2, 1); 9182 if (err) 9183 return err; 9184 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A); 9185 } 9186 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0); 9187 return i; 9188 } 9189 9190 /** 9191 * t4_cim_read - read a block from CIM internal address space 9192 * @adap: the adapter 9193 * @addr: the start address within the CIM address space 9194 * @n: number of words to read 9195 * @valp: where to store the result 9196 * 9197 * Reads a block of 4-byte words from the CIM intenal address space. 9198 */ 9199 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, 9200 unsigned int *valp) 9201 { 9202 int ret = 0; 9203 9204 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9205 return -EBUSY; 9206 9207 for ( ; !ret && n--; addr += 4) { 9208 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr); 9209 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9210 0, 5, 2); 9211 if (!ret) 9212 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A); 9213 } 9214 return ret; 9215 } 9216 9217 /** 9218 * t4_cim_write - write a block into CIM internal address space 9219 * @adap: the adapter 9220 * @addr: the start address within the CIM address space 9221 * @n: number of words to write 9222 * @valp: set of values to write 9223 * 9224 * Writes a block of 4-byte words into the CIM intenal address space. 9225 */ 9226 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, 9227 const unsigned int *valp) 9228 { 9229 int ret = 0; 9230 9231 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9232 return -EBUSY; 9233 9234 for ( ; !ret && n--; addr += 4) { 9235 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++); 9236 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F); 9237 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9238 0, 5, 2); 9239 } 9240 return ret; 9241 } 9242 9243 static int t4_cim_write1(struct adapter *adap, unsigned int addr, 9244 unsigned int val) 9245 { 9246 return t4_cim_write(adap, addr, 1, &val); 9247 } 9248 9249 /** 9250 * t4_cim_read_la - read CIM LA capture buffer 9251 * @adap: the adapter 9252 * @la_buf: where to store the LA data 9253 * @wrptr: the HW write pointer within the capture buffer 9254 * 9255 * Reads the contents of the CIM LA buffer with the most recent entry at 9256 * the end of the returned data and with the entry at @wrptr first. 9257 * We try to leave the LA in the running state we find it in. 9258 */ 9259 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) 9260 { 9261 int i, ret; 9262 unsigned int cfg, val, idx; 9263 9264 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg); 9265 if (ret) 9266 return ret; 9267 9268 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */ 9269 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0); 9270 if (ret) 9271 return ret; 9272 } 9273 9274 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9275 if (ret) 9276 goto restart; 9277 9278 idx = UPDBGLAWRPTR_G(val); 9279 if (wrptr) 9280 *wrptr = idx; 9281 9282 for (i = 0; i < adap->params.cim_la_size; i++) { 9283 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9284 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F); 9285 if (ret) 9286 break; 9287 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9288 if (ret) 9289 break; 9290 if (val & UPDBGLARDEN_F) { 9291 ret = -ETIMEDOUT; 9292 break; 9293 } 9294 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]); 9295 if (ret) 9296 break; 9297 9298 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to 9299 * identify the 32-bit portion of the full 312-bit data 9300 */ 9301 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9) 9302 idx = (idx & 0xff0) + 0x10; 9303 else 9304 idx++; 9305 /* address can't exceed 0xfff */ 9306 idx &= UPDBGLARDPTR_M; 9307 } 9308 restart: 9309 if (cfg & UPDBGLAEN_F) { 9310 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9311 cfg & ~UPDBGLARDEN_F); 9312 if (!ret) 9313 ret = r; 9314 } 9315 return ret; 9316 } 9317 9318 /** 9319 * t4_tp_read_la - read TP LA capture buffer 9320 * @adap: the adapter 9321 * @la_buf: where to store the LA data 9322 * @wrptr: the HW write pointer within the capture buffer 9323 * 9324 * Reads the contents of the TP LA buffer with the most recent entry at 9325 * the end of the returned data and with the entry at @wrptr first. 9326 * We leave the LA in the running state we find it in. 9327 */ 9328 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) 9329 { 9330 bool last_incomplete; 9331 unsigned int i, cfg, val, idx; 9332 9333 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff; 9334 if (cfg & DBGLAENABLE_F) /* freeze LA */ 9335 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 9336 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F)); 9337 9338 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A); 9339 idx = DBGLAWPTR_G(val); 9340 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0; 9341 if (last_incomplete) 9342 idx = (idx + 1) & DBGLARPTR_M; 9343 if (wrptr) 9344 *wrptr = idx; 9345 9346 val &= 0xffff; 9347 val &= ~DBGLARPTR_V(DBGLARPTR_M); 9348 val |= adap->params.tp.la_mask; 9349 9350 for (i = 0; i < TPLA_SIZE; i++) { 9351 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val); 9352 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A); 9353 idx = (idx + 1) & DBGLARPTR_M; 9354 } 9355 9356 /* Wipe out last entry if it isn't valid */ 9357 if (last_incomplete) 9358 la_buf[TPLA_SIZE - 1] = ~0ULL; 9359 9360 if (cfg & DBGLAENABLE_F) /* restore running state */ 9361 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 9362 cfg | adap->params.tp.la_mask); 9363 } 9364 9365 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in 9366 * seconds). If we find one of the SGE Ingress DMA State Machines in the same 9367 * state for more than the Warning Threshold then we'll issue a warning about 9368 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel 9369 * appears to be hung every Warning Repeat second till the situation clears. 9370 * If the situation clears, we'll note that as well. 9371 */ 9372 #define SGE_IDMA_WARN_THRESH 1 9373 #define SGE_IDMA_WARN_REPEAT 300 9374 9375 /** 9376 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor 9377 * @adapter: the adapter 9378 * @idma: the adapter IDMA Monitor state 9379 * 9380 * Initialize the state of an SGE Ingress DMA Monitor. 9381 */ 9382 void t4_idma_monitor_init(struct adapter *adapter, 9383 struct sge_idma_monitor_state *idma) 9384 { 9385 /* Initialize the state variables for detecting an SGE Ingress DMA 9386 * hang. The SGE has internal counters which count up on each clock 9387 * tick whenever the SGE finds its Ingress DMA State Engines in the 9388 * same state they were on the previous clock tick. The clock used is 9389 * the Core Clock so we have a limit on the maximum "time" they can 9390 * record; typically a very small number of seconds. For instance, 9391 * with a 600MHz Core Clock, we can only count up to a bit more than 9392 * 7s. So we'll synthesize a larger counter in order to not run the 9393 * risk of having the "timers" overflow and give us the flexibility to 9394 * maintain a Hung SGE State Machine of our own which operates across 9395 * a longer time frame. 9396 */ 9397 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ 9398 idma->idma_stalled[0] = 0; 9399 idma->idma_stalled[1] = 0; 9400 } 9401 9402 /** 9403 * t4_idma_monitor - monitor SGE Ingress DMA state 9404 * @adapter: the adapter 9405 * @idma: the adapter IDMA Monitor state 9406 * @hz: number of ticks/second 9407 * @ticks: number of ticks since the last IDMA Monitor call 9408 */ 9409 void t4_idma_monitor(struct adapter *adapter, 9410 struct sge_idma_monitor_state *idma, 9411 int hz, int ticks) 9412 { 9413 int i, idma_same_state_cnt[2]; 9414 9415 /* Read the SGE Debug Ingress DMA Same State Count registers. These 9416 * are counters inside the SGE which count up on each clock when the 9417 * SGE finds its Ingress DMA State Engines in the same states they 9418 * were in the previous clock. The counters will peg out at 9419 * 0xffffffff without wrapping around so once they pass the 1s 9420 * threshold they'll stay above that till the IDMA state changes. 9421 */ 9422 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13); 9423 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A); 9424 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9425 9426 for (i = 0; i < 2; i++) { 9427 u32 debug0, debug11; 9428 9429 /* If the Ingress DMA Same State Counter ("timer") is less 9430 * than 1s, then we can reset our synthesized Stall Timer and 9431 * continue. If we have previously emitted warnings about a 9432 * potential stalled Ingress Queue, issue a note indicating 9433 * that the Ingress Queue has resumed forward progress. 9434 */ 9435 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { 9436 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz) 9437 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, " 9438 "resumed after %d seconds\n", 9439 i, idma->idma_qid[i], 9440 idma->idma_stalled[i] / hz); 9441 idma->idma_stalled[i] = 0; 9442 continue; 9443 } 9444 9445 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 9446 * domain. The first time we get here it'll be because we 9447 * passed the 1s Threshold; each additional time it'll be 9448 * because the RX Timer Callback is being fired on its regular 9449 * schedule. 9450 * 9451 * If the stall is below our Potential Hung Ingress Queue 9452 * Warning Threshold, continue. 9453 */ 9454 if (idma->idma_stalled[i] == 0) { 9455 idma->idma_stalled[i] = hz; 9456 idma->idma_warn[i] = 0; 9457 } else { 9458 idma->idma_stalled[i] += ticks; 9459 idma->idma_warn[i] -= ticks; 9460 } 9461 9462 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz) 9463 continue; 9464 9465 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. 9466 */ 9467 if (idma->idma_warn[i] > 0) 9468 continue; 9469 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz; 9470 9471 /* Read and save the SGE IDMA State and Queue ID information. 9472 * We do this every time in case it changes across time ... 9473 * can't be too careful ... 9474 */ 9475 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0); 9476 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9477 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 9478 9479 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11); 9480 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9481 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 9482 9483 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in " 9484 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n", 9485 i, idma->idma_qid[i], idma->idma_state[i], 9486 idma->idma_stalled[i] / hz, 9487 debug0, debug11); 9488 t4_sge_decode_idma_state(adapter, idma->idma_state[i]); 9489 } 9490 } 9491 9492 /** 9493 * t4_load_cfg - download config file 9494 * @adap: the adapter 9495 * @cfg_data: the cfg text file to write 9496 * @size: text file size 9497 * 9498 * Write the supplied config text file to the card's serial flash. 9499 */ 9500 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 9501 { 9502 int ret, i, n, cfg_addr; 9503 unsigned int addr; 9504 unsigned int flash_cfg_start_sec; 9505 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 9506 9507 cfg_addr = t4_flash_cfg_addr(adap); 9508 if (cfg_addr < 0) 9509 return cfg_addr; 9510 9511 addr = cfg_addr; 9512 flash_cfg_start_sec = addr / SF_SEC_SIZE; 9513 9514 if (size > FLASH_CFG_MAX_SIZE) { 9515 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n", 9516 FLASH_CFG_MAX_SIZE); 9517 return -EFBIG; 9518 } 9519 9520 i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ 9521 sf_sec_size); 9522 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 9523 flash_cfg_start_sec + i - 1); 9524 /* If size == 0 then we're simply erasing the FLASH sectors associated 9525 * with the on-adapter Firmware Configuration File. 9526 */ 9527 if (ret || size == 0) 9528 goto out; 9529 9530 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 9531 for (i = 0; i < size; i += SF_PAGE_SIZE) { 9532 if ((size - i) < SF_PAGE_SIZE) 9533 n = size - i; 9534 else 9535 n = SF_PAGE_SIZE; 9536 ret = t4_write_flash(adap, addr, n, cfg_data); 9537 if (ret) 9538 goto out; 9539 9540 addr += SF_PAGE_SIZE; 9541 cfg_data += SF_PAGE_SIZE; 9542 } 9543 9544 out: 9545 if (ret) 9546 dev_err(adap->pdev_dev, "config file %s failed %d\n", 9547 (size == 0 ? "clear" : "download"), ret); 9548 return ret; 9549 } 9550 9551 /** 9552 * t4_set_vf_mac - Set MAC address for the specified VF 9553 * @adapter: The adapter 9554 * @vf: one of the VFs instantiated by the specified PF 9555 * @naddr: the number of MAC addresses 9556 * @addr: the MAC address(es) to be set to the specified VF 9557 */ 9558 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf, 9559 unsigned int naddr, u8 *addr) 9560 { 9561 struct fw_acl_mac_cmd cmd; 9562 9563 memset(&cmd, 0, sizeof(cmd)); 9564 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) | 9565 FW_CMD_REQUEST_F | 9566 FW_CMD_WRITE_F | 9567 FW_ACL_MAC_CMD_PFN_V(adapter->pf) | 9568 FW_ACL_MAC_CMD_VFN_V(vf)); 9569 9570 /* Note: Do not enable the ACL */ 9571 cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd)); 9572 cmd.nmac = naddr; 9573 9574 switch (adapter->pf) { 9575 case 3: 9576 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3)); 9577 break; 9578 case 2: 9579 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2)); 9580 break; 9581 case 1: 9582 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1)); 9583 break; 9584 case 0: 9585 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0)); 9586 break; 9587 } 9588 9589 return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd); 9590 } 9591 9592 /** 9593 * t4_read_pace_tbl - read the pace table 9594 * @adap: the adapter 9595 * @pace_vals: holds the returned values 9596 * 9597 * Returns the values of TP's pace table in microseconds. 9598 */ 9599 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED]) 9600 { 9601 unsigned int i, v; 9602 9603 for (i = 0; i < NTX_SCHED; i++) { 9604 t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i); 9605 v = t4_read_reg(adap, TP_PACE_TABLE_A); 9606 pace_vals[i] = dack_ticks_to_usec(adap, v); 9607 } 9608 } 9609 9610 /** 9611 * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler 9612 * @adap: the adapter 9613 * @sched: the scheduler index 9614 * @kbps: the byte rate in Kbps 9615 * @ipg: the interpacket delay in tenths of nanoseconds 9616 * @sleep_ok: if true we may sleep while awaiting command completion 9617 * 9618 * Return the current configuration of a HW Tx scheduler. 9619 */ 9620 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, 9621 unsigned int *kbps, unsigned int *ipg, bool sleep_ok) 9622 { 9623 unsigned int v, addr, bpt, cpt; 9624 9625 if (kbps) { 9626 addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2; 9627 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 9628 if (sched & 1) 9629 v >>= 16; 9630 bpt = (v >> 8) & 0xff; 9631 cpt = v & 0xff; 9632 if (!cpt) { 9633 *kbps = 0; /* scheduler disabled */ 9634 } else { 9635 v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */ 9636 *kbps = (v * bpt) / 125; 9637 } 9638 } 9639 if (ipg) { 9640 addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2; 9641 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 9642 if (sched & 1) 9643 v >>= 16; 9644 v &= 0xffff; 9645 *ipg = (10000 * v) / core_ticks_per_usec(adap); 9646 } 9647 } 9648 9649 /* t4_sge_ctxt_rd - read an SGE context through FW 9650 * @adap: the adapter 9651 * @mbox: mailbox to use for the FW command 9652 * @cid: the context id 9653 * @ctype: the context type 9654 * @data: where to store the context data 9655 * 9656 * Issues a FW command through the given mailbox to read an SGE context. 9657 */ 9658 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid, 9659 enum ctxt_type ctype, u32 *data) 9660 { 9661 struct fw_ldst_cmd c; 9662 int ret; 9663 9664 if (ctype == CTXT_FLM) 9665 ret = FW_LDST_ADDRSPC_SGE_FLMC; 9666 else 9667 ret = FW_LDST_ADDRSPC_SGE_CONMC; 9668 9669 memset(&c, 0, sizeof(c)); 9670 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 9671 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9672 FW_LDST_CMD_ADDRSPACE_V(ret)); 9673 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 9674 c.u.idctxt.physid = cpu_to_be32(cid); 9675 9676 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 9677 if (ret == 0) { 9678 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0); 9679 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1); 9680 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2); 9681 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3); 9682 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4); 9683 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5); 9684 } 9685 return ret; 9686 } 9687 9688 /** 9689 * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW 9690 * @adap: the adapter 9691 * @cid: the context id 9692 * @ctype: the context type 9693 * @data: where to store the context data 9694 * 9695 * Reads an SGE context directly, bypassing FW. This is only for 9696 * debugging when FW is unavailable. 9697 */ 9698 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, 9699 enum ctxt_type ctype, u32 *data) 9700 { 9701 int i, ret; 9702 9703 t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype)); 9704 ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1); 9705 if (!ret) 9706 for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4) 9707 *data++ = t4_read_reg(adap, i); 9708 return ret; 9709 } 9710 9711 int t4_sched_params(struct adapter *adapter, int type, int level, int mode, 9712 int rateunit, int ratemode, int channel, int class, 9713 int minrate, int maxrate, int weight, int pktsize) 9714 { 9715 struct fw_sched_cmd cmd; 9716 9717 memset(&cmd, 0, sizeof(cmd)); 9718 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) | 9719 FW_CMD_REQUEST_F | 9720 FW_CMD_WRITE_F); 9721 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 9722 9723 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 9724 cmd.u.params.type = type; 9725 cmd.u.params.level = level; 9726 cmd.u.params.mode = mode; 9727 cmd.u.params.ch = channel; 9728 cmd.u.params.cl = class; 9729 cmd.u.params.unit = rateunit; 9730 cmd.u.params.rate = ratemode; 9731 cmd.u.params.min = cpu_to_be32(minrate); 9732 cmd.u.params.max = cpu_to_be32(maxrate); 9733 cmd.u.params.weight = cpu_to_be16(weight); 9734 cmd.u.params.pktsize = cpu_to_be16(pktsize); 9735 9736 return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd), 9737 NULL, 1); 9738 } 9739