xref: /linux/drivers/net/ethernet/chelsio/cxgb4/t4_hw.c (revision 140eb5227767c6754742020a16d2691222b9c19b)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41 
42 /**
43  *	t4_wait_op_done_val - wait until an operation is completed
44  *	@adapter: the adapter performing the operation
45  *	@reg: the register to check for completion
46  *	@mask: a single-bit field within @reg that indicates completion
47  *	@polarity: the value of the field when the operation is completed
48  *	@attempts: number of check iterations
49  *	@delay: delay in usecs between iterations
50  *	@valp: where to store the value of the register at completion time
51  *
52  *	Wait until an operation is completed by checking a bit in a register
53  *	up to @attempts times.  If @valp is not NULL the value of the register
54  *	at the time it indicated completion is stored there.  Returns 0 if the
55  *	operation completes and	-EAGAIN	otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 			       int polarity, int attempts, int delay, u32 *valp)
59 {
60 	while (1) {
61 		u32 val = t4_read_reg(adapter, reg);
62 
63 		if (!!(val & mask) == polarity) {
64 			if (valp)
65 				*valp = val;
66 			return 0;
67 		}
68 		if (--attempts == 0)
69 			return -EAGAIN;
70 		if (delay)
71 			udelay(delay);
72 	}
73 }
74 
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 				  int polarity, int attempts, int delay)
77 {
78 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 				   delay, NULL);
80 }
81 
82 /**
83  *	t4_set_reg_field - set a register field to a value
84  *	@adapter: the adapter to program
85  *	@addr: the register address
86  *	@mask: specifies the portion of the register to modify
87  *	@val: the new value for the register field
88  *
89  *	Sets a register field specified by the supplied mask to the
90  *	given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 		      u32 val)
94 {
95 	u32 v = t4_read_reg(adapter, addr) & ~mask;
96 
97 	t4_write_reg(adapter, addr, v | val);
98 	(void) t4_read_reg(adapter, addr);      /* flush */
99 }
100 
101 /**
102  *	t4_read_indirect - read indirectly addressed registers
103  *	@adap: the adapter
104  *	@addr_reg: register holding the indirect address
105  *	@data_reg: register holding the value of the indirect register
106  *	@vals: where the read register values are stored
107  *	@nregs: how many indirect registers to read
108  *	@start_idx: index of first indirect register to read
109  *
110  *	Reads registers that are accessed indirectly through an address/data
111  *	register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 			     unsigned int data_reg, u32 *vals,
115 			     unsigned int nregs, unsigned int start_idx)
116 {
117 	while (nregs--) {
118 		t4_write_reg(adap, addr_reg, start_idx);
119 		*vals++ = t4_read_reg(adap, data_reg);
120 		start_idx++;
121 	}
122 }
123 
124 /**
125  *	t4_write_indirect - write indirectly addressed registers
126  *	@adap: the adapter
127  *	@addr_reg: register holding the indirect addresses
128  *	@data_reg: register holding the value for the indirect registers
129  *	@vals: values to write
130  *	@nregs: how many indirect registers to write
131  *	@start_idx: address of first indirect register to write
132  *
133  *	Writes a sequential block of registers that are accessed indirectly
134  *	through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 		       unsigned int data_reg, const u32 *vals,
138 		       unsigned int nregs, unsigned int start_idx)
139 {
140 	while (nregs--) {
141 		t4_write_reg(adap, addr_reg, start_idx++);
142 		t4_write_reg(adap, data_reg, *vals++);
143 	}
144 }
145 
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 
156 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 		req |= ENABLE_F;
158 	else
159 		req |= T6_ENABLE_F;
160 
161 	if (is_t4(adap->params.chip))
162 		req |= LOCALCFG_F;
163 
164 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 
167 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 	 * Configuration Space read.  (None of the other fields matter when
169 	 * ENABLE is 0 so a simple register write is easier than a
170 	 * read-modify-write via t4_set_reg_field().)
171 	 */
172 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174 
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 	static const char *const reason[] = {
186 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 		"Reserved",                     /* reserved */
194 	};
195 	u32 pcie_fw;
196 
197 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 	if (pcie_fw & PCIE_FW_ERR_F)
199 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 }
202 
203 /*
204  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
205  */
206 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
207 			 u32 mbox_addr)
208 {
209 	for ( ; nflit; nflit--, mbox_addr += 8)
210 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
211 }
212 
213 /*
214  * Handle a FW assertion reported in a mailbox.
215  */
216 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
217 {
218 	struct fw_debug_cmd asrt;
219 
220 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
221 	dev_alert(adap->pdev_dev,
222 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
223 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
224 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
225 }
226 
227 /**
228  *	t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
229  *	@adapter: the adapter
230  *	@cmd: the Firmware Mailbox Command or Reply
231  *	@size: command length in bytes
232  *	@access: the time (ms) needed to access the Firmware Mailbox
233  *	@execute: the time (ms) the command spent being executed
234  */
235 static void t4_record_mbox(struct adapter *adapter,
236 			   const __be64 *cmd, unsigned int size,
237 			   int access, int execute)
238 {
239 	struct mbox_cmd_log *log = adapter->mbox_log;
240 	struct mbox_cmd *entry;
241 	int i;
242 
243 	entry = mbox_cmd_log_entry(log, log->cursor++);
244 	if (log->cursor == log->size)
245 		log->cursor = 0;
246 
247 	for (i = 0; i < size / 8; i++)
248 		entry->cmd[i] = be64_to_cpu(cmd[i]);
249 	while (i < MBOX_LEN / 8)
250 		entry->cmd[i++] = 0;
251 	entry->timestamp = jiffies;
252 	entry->seqno = log->seqno++;
253 	entry->access = access;
254 	entry->execute = execute;
255 }
256 
257 /**
258  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
259  *	@adap: the adapter
260  *	@mbox: index of the mailbox to use
261  *	@cmd: the command to write
262  *	@size: command length in bytes
263  *	@rpl: where to optionally store the reply
264  *	@sleep_ok: if true we may sleep while awaiting command completion
265  *	@timeout: time to wait for command to finish before timing out
266  *
267  *	Sends the given command to FW through the selected mailbox and waits
268  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
269  *	store the FW's reply to the command.  The command and its optional
270  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
271  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
272  *	the response.  If sleeping is allowed we use progressive backoff
273  *	otherwise we spin.
274  *
275  *	The return value is 0 on success or a negative errno on failure.  A
276  *	failure can happen either because we are not able to execute the
277  *	command or FW executes it but signals an error.  In the latter case
278  *	the return value is the error code indicated by FW (negated).
279  */
280 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
281 			    int size, void *rpl, bool sleep_ok, int timeout)
282 {
283 	static const int delay[] = {
284 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
285 	};
286 
287 	struct mbox_list entry;
288 	u16 access = 0;
289 	u16 execute = 0;
290 	u32 v;
291 	u64 res;
292 	int i, ms, delay_idx, ret;
293 	const __be64 *p = cmd;
294 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
295 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
296 	__be64 cmd_rpl[MBOX_LEN / 8];
297 	u32 pcie_fw;
298 
299 	if ((size & 15) || size > MBOX_LEN)
300 		return -EINVAL;
301 
302 	/*
303 	 * If the device is off-line, as in EEH, commands will time out.
304 	 * Fail them early so we don't waste time waiting.
305 	 */
306 	if (adap->pdev->error_state != pci_channel_io_normal)
307 		return -EIO;
308 
309 	/* If we have a negative timeout, that implies that we can't sleep. */
310 	if (timeout < 0) {
311 		sleep_ok = false;
312 		timeout = -timeout;
313 	}
314 
315 	/* Queue ourselves onto the mailbox access list.  When our entry is at
316 	 * the front of the list, we have rights to access the mailbox.  So we
317 	 * wait [for a while] till we're at the front [or bail out with an
318 	 * EBUSY] ...
319 	 */
320 	spin_lock(&adap->mbox_lock);
321 	list_add_tail(&entry.list, &adap->mlist.list);
322 	spin_unlock(&adap->mbox_lock);
323 
324 	delay_idx = 0;
325 	ms = delay[0];
326 
327 	for (i = 0; ; i += ms) {
328 		/* If we've waited too long, return a busy indication.  This
329 		 * really ought to be based on our initial position in the
330 		 * mailbox access list but this is a start.  We very rearely
331 		 * contend on access to the mailbox ...
332 		 */
333 		pcie_fw = t4_read_reg(adap, PCIE_FW_A);
334 		if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
335 			spin_lock(&adap->mbox_lock);
336 			list_del(&entry.list);
337 			spin_unlock(&adap->mbox_lock);
338 			ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
339 			t4_record_mbox(adap, cmd, size, access, ret);
340 			return ret;
341 		}
342 
343 		/* If we're at the head, break out and start the mailbox
344 		 * protocol.
345 		 */
346 		if (list_first_entry(&adap->mlist.list, struct mbox_list,
347 				     list) == &entry)
348 			break;
349 
350 		/* Delay for a bit before checking again ... */
351 		if (sleep_ok) {
352 			ms = delay[delay_idx];  /* last element may repeat */
353 			if (delay_idx < ARRAY_SIZE(delay) - 1)
354 				delay_idx++;
355 			msleep(ms);
356 		} else {
357 			mdelay(ms);
358 		}
359 	}
360 
361 	/* Loop trying to get ownership of the mailbox.  Return an error
362 	 * if we can't gain ownership.
363 	 */
364 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
365 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
366 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367 	if (v != MBOX_OWNER_DRV) {
368 		spin_lock(&adap->mbox_lock);
369 		list_del(&entry.list);
370 		spin_unlock(&adap->mbox_lock);
371 		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
372 		t4_record_mbox(adap, cmd, size, access, ret);
373 		return ret;
374 	}
375 
376 	/* Copy in the new mailbox command and send it on its way ... */
377 	t4_record_mbox(adap, cmd, size, access, 0);
378 	for (i = 0; i < size; i += 8)
379 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
380 
381 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
382 	t4_read_reg(adap, ctl_reg);          /* flush write */
383 
384 	delay_idx = 0;
385 	ms = delay[0];
386 
387 	for (i = 0;
388 	     !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
389 	     i < timeout;
390 	     i += ms) {
391 		if (sleep_ok) {
392 			ms = delay[delay_idx];  /* last element may repeat */
393 			if (delay_idx < ARRAY_SIZE(delay) - 1)
394 				delay_idx++;
395 			msleep(ms);
396 		} else
397 			mdelay(ms);
398 
399 		v = t4_read_reg(adap, ctl_reg);
400 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
401 			if (!(v & MBMSGVALID_F)) {
402 				t4_write_reg(adap, ctl_reg, 0);
403 				continue;
404 			}
405 
406 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
407 			res = be64_to_cpu(cmd_rpl[0]);
408 
409 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
410 				fw_asrt(adap, data_reg);
411 				res = FW_CMD_RETVAL_V(EIO);
412 			} else if (rpl) {
413 				memcpy(rpl, cmd_rpl, size);
414 			}
415 
416 			t4_write_reg(adap, ctl_reg, 0);
417 
418 			execute = i + ms;
419 			t4_record_mbox(adap, cmd_rpl,
420 				       MBOX_LEN, access, execute);
421 			spin_lock(&adap->mbox_lock);
422 			list_del(&entry.list);
423 			spin_unlock(&adap->mbox_lock);
424 			return -FW_CMD_RETVAL_G((int)res);
425 		}
426 	}
427 
428 	ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
429 	t4_record_mbox(adap, cmd, size, access, ret);
430 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
431 		*(const u8 *)cmd, mbox);
432 	t4_report_fw_error(adap);
433 	spin_lock(&adap->mbox_lock);
434 	list_del(&entry.list);
435 	spin_unlock(&adap->mbox_lock);
436 	t4_fatal_err(adap);
437 	return ret;
438 }
439 
440 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
441 		    void *rpl, bool sleep_ok)
442 {
443 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
444 				       FW_CMD_MAX_TIMEOUT);
445 }
446 
447 static int t4_edc_err_read(struct adapter *adap, int idx)
448 {
449 	u32 edc_ecc_err_addr_reg;
450 	u32 rdata_reg;
451 
452 	if (is_t4(adap->params.chip)) {
453 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
454 		return 0;
455 	}
456 	if (idx != 0 && idx != 1) {
457 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
458 		return 0;
459 	}
460 
461 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
462 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
463 
464 	CH_WARN(adap,
465 		"edc%d err addr 0x%x: 0x%x.\n",
466 		idx, edc_ecc_err_addr_reg,
467 		t4_read_reg(adap, edc_ecc_err_addr_reg));
468 	CH_WARN(adap,
469 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
470 		rdata_reg,
471 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
472 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
473 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
474 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
475 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
476 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
477 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
478 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
479 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
480 
481 	return 0;
482 }
483 
484 /**
485  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
486  *	@adap: the adapter
487  *	@win: PCI-E Memory Window to use
488  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
489  *	@addr: address within indicated memory type
490  *	@len: amount of memory to transfer
491  *	@hbuf: host memory buffer
492  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
493  *
494  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
495  *	firmware memory address and host buffer must be aligned on 32-bit
496  *	boudaries; the length may be arbitrary.  The memory is transferred as
497  *	a raw byte sequence from/to the firmware's memory.  If this memory
498  *	contains data structures which contain multi-byte integers, it's the
499  *	caller's responsibility to perform appropriate byte order conversions.
500  */
501 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
502 		 u32 len, void *hbuf, int dir)
503 {
504 	u32 pos, offset, resid, memoffset;
505 	u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
506 	u32 *buf;
507 
508 	/* Argument sanity checks ...
509 	 */
510 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
511 		return -EINVAL;
512 	buf = (u32 *)hbuf;
513 
514 	/* It's convenient to be able to handle lengths which aren't a
515 	 * multiple of 32-bits because we often end up transferring files to
516 	 * the firmware.  So we'll handle that by normalizing the length here
517 	 * and then handling any residual transfer at the end.
518 	 */
519 	resid = len & 0x3;
520 	len -= resid;
521 
522 	/* Offset into the region of memory which is being accessed
523 	 * MEM_EDC0 = 0
524 	 * MEM_EDC1 = 1
525 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
526 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
527 	 */
528 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
529 	if (mtype != MEM_MC1)
530 		memoffset = (mtype * (edc_size * 1024 * 1024));
531 	else {
532 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
533 						      MA_EXT_MEMORY0_BAR_A));
534 		memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
535 	}
536 
537 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
538 	addr = addr + memoffset;
539 
540 	/* Each PCI-E Memory Window is programmed with a window size -- or
541 	 * "aperture" -- which controls the granularity of its mapping onto
542 	 * adapter memory.  We need to grab that aperture in order to know
543 	 * how to use the specified window.  The window is also programmed
544 	 * with the base address of the Memory Window in BAR0's address
545 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
546 	 * the address is relative to BAR0.
547 	 */
548 	mem_reg = t4_read_reg(adap,
549 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
550 						  win));
551 	mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
552 	mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
553 	if (is_t4(adap->params.chip))
554 		mem_base -= adap->t4_bar0;
555 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
556 
557 	/* Calculate our initial PCI-E Memory Window Position and Offset into
558 	 * that Window.
559 	 */
560 	pos = addr & ~(mem_aperture-1);
561 	offset = addr - pos;
562 
563 	/* Set up initial PCI-E Memory Window to cover the start of our
564 	 * transfer.  (Read it back to ensure that changes propagate before we
565 	 * attempt to use the new value.)
566 	 */
567 	t4_write_reg(adap,
568 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
569 		     pos | win_pf);
570 	t4_read_reg(adap,
571 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
572 
573 	/* Transfer data to/from the adapter as long as there's an integral
574 	 * number of 32-bit transfers to complete.
575 	 *
576 	 * A note on Endianness issues:
577 	 *
578 	 * The "register" reads and writes below from/to the PCI-E Memory
579 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
580 	 * Little-Endian "swizzel."  As a result, if we have the following
581 	 * data in adapter memory:
582 	 *
583 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
584 	 *     Address:      i+0  i+1  i+2  i+3
585 	 *
586 	 * Then a read of the adapter memory via the PCI-E Memory Window
587 	 * will yield:
588 	 *
589 	 *     x = readl(i)
590 	 *         31                  0
591 	 *         [ b3 | b2 | b1 | b0 ]
592 	 *
593 	 * If this value is stored into local memory on a Little-Endian system
594 	 * it will show up correctly in local memory as:
595 	 *
596 	 *     ( ..., b0, b1, b2, b3, ... )
597 	 *
598 	 * But on a Big-Endian system, the store will show up in memory
599 	 * incorrectly swizzled as:
600 	 *
601 	 *     ( ..., b3, b2, b1, b0, ... )
602 	 *
603 	 * So we need to account for this in the reads and writes to the
604 	 * PCI-E Memory Window below by undoing the register read/write
605 	 * swizzels.
606 	 */
607 	while (len > 0) {
608 		if (dir == T4_MEMORY_READ)
609 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
610 						mem_base + offset));
611 		else
612 			t4_write_reg(adap, mem_base + offset,
613 				     (__force u32)cpu_to_le32(*buf++));
614 		offset += sizeof(__be32);
615 		len -= sizeof(__be32);
616 
617 		/* If we've reached the end of our current window aperture,
618 		 * move the PCI-E Memory Window on to the next.  Note that
619 		 * doing this here after "len" may be 0 allows us to set up
620 		 * the PCI-E Memory Window for a possible final residual
621 		 * transfer below ...
622 		 */
623 		if (offset == mem_aperture) {
624 			pos += mem_aperture;
625 			offset = 0;
626 			t4_write_reg(adap,
627 				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
628 						    win), pos | win_pf);
629 			t4_read_reg(adap,
630 				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
631 						    win));
632 		}
633 	}
634 
635 	/* If the original transfer had a length which wasn't a multiple of
636 	 * 32-bits, now's where we need to finish off the transfer of the
637 	 * residual amount.  The PCI-E Memory Window has already been moved
638 	 * above (if necessary) to cover this final transfer.
639 	 */
640 	if (resid) {
641 		union {
642 			u32 word;
643 			char byte[4];
644 		} last;
645 		unsigned char *bp;
646 		int i;
647 
648 		if (dir == T4_MEMORY_READ) {
649 			last.word = le32_to_cpu(
650 					(__force __le32)t4_read_reg(adap,
651 						mem_base + offset));
652 			for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
653 				bp[i] = last.byte[i];
654 		} else {
655 			last.word = *buf;
656 			for (i = resid; i < 4; i++)
657 				last.byte[i] = 0;
658 			t4_write_reg(adap, mem_base + offset,
659 				     (__force u32)cpu_to_le32(last.word));
660 		}
661 	}
662 
663 	return 0;
664 }
665 
666 /* Return the specified PCI-E Configuration Space register from our Physical
667  * Function.  We try first via a Firmware LDST Command since we prefer to let
668  * the firmware own all of these registers, but if that fails we go for it
669  * directly ourselves.
670  */
671 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
672 {
673 	u32 val, ldst_addrspace;
674 
675 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
676 	 * retrieve the specified PCI-E Configuration Space register.
677 	 */
678 	struct fw_ldst_cmd ldst_cmd;
679 	int ret;
680 
681 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
682 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
683 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
684 					       FW_CMD_REQUEST_F |
685 					       FW_CMD_READ_F |
686 					       ldst_addrspace);
687 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
688 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
689 	ldst_cmd.u.pcie.ctrl_to_fn =
690 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
691 	ldst_cmd.u.pcie.r = reg;
692 
693 	/* If the LDST Command succeeds, return the result, otherwise
694 	 * fall through to reading it directly ourselves ...
695 	 */
696 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
697 			 &ldst_cmd);
698 	if (ret == 0)
699 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
700 	else
701 		/* Read the desired Configuration Space register via the PCI-E
702 		 * Backdoor mechanism.
703 		 */
704 		t4_hw_pci_read_cfg4(adap, reg, &val);
705 	return val;
706 }
707 
708 /* Get the window based on base passed to it.
709  * Window aperture is currently unhandled, but there is no use case for it
710  * right now
711  */
712 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
713 			 u32 memwin_base)
714 {
715 	u32 ret;
716 
717 	if (is_t4(adap->params.chip)) {
718 		u32 bar0;
719 
720 		/* Truncation intentional: we only read the bottom 32-bits of
721 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
722 		 * mechanism to read BAR0 instead of using
723 		 * pci_resource_start() because we could be operating from
724 		 * within a Virtual Machine which is trapping our accesses to
725 		 * our Configuration Space and we need to set up the PCI-E
726 		 * Memory Window decoders with the actual addresses which will
727 		 * be coming across the PCI-E link.
728 		 */
729 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
730 		bar0 &= pci_mask;
731 		adap->t4_bar0 = bar0;
732 
733 		ret = bar0 + memwin_base;
734 	} else {
735 		/* For T5, only relative offset inside the PCIe BAR is passed */
736 		ret = memwin_base;
737 	}
738 	return ret;
739 }
740 
741 /* Get the default utility window (win0) used by everyone */
742 u32 t4_get_util_window(struct adapter *adap)
743 {
744 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
745 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
746 }
747 
748 /* Set up memory window for accessing adapter memory ranges.  (Read
749  * back MA register to ensure that changes propagate before we attempt
750  * to use the new values.)
751  */
752 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
753 {
754 	t4_write_reg(adap,
755 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
756 		     memwin_base | BIR_V(0) |
757 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
758 	t4_read_reg(adap,
759 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
760 }
761 
762 /**
763  *	t4_get_regs_len - return the size of the chips register set
764  *	@adapter: the adapter
765  *
766  *	Returns the size of the chip's BAR0 register space.
767  */
768 unsigned int t4_get_regs_len(struct adapter *adapter)
769 {
770 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
771 
772 	switch (chip_version) {
773 	case CHELSIO_T4:
774 		return T4_REGMAP_SIZE;
775 
776 	case CHELSIO_T5:
777 	case CHELSIO_T6:
778 		return T5_REGMAP_SIZE;
779 	}
780 
781 	dev_err(adapter->pdev_dev,
782 		"Unsupported chip version %d\n", chip_version);
783 	return 0;
784 }
785 
786 /**
787  *	t4_get_regs - read chip registers into provided buffer
788  *	@adap: the adapter
789  *	@buf: register buffer
790  *	@buf_size: size (in bytes) of register buffer
791  *
792  *	If the provided register buffer isn't large enough for the chip's
793  *	full register range, the register dump will be truncated to the
794  *	register buffer's size.
795  */
796 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
797 {
798 	static const unsigned int t4_reg_ranges[] = {
799 		0x1008, 0x1108,
800 		0x1180, 0x1184,
801 		0x1190, 0x1194,
802 		0x11a0, 0x11a4,
803 		0x11b0, 0x11b4,
804 		0x11fc, 0x123c,
805 		0x1300, 0x173c,
806 		0x1800, 0x18fc,
807 		0x3000, 0x30d8,
808 		0x30e0, 0x30e4,
809 		0x30ec, 0x5910,
810 		0x5920, 0x5924,
811 		0x5960, 0x5960,
812 		0x5968, 0x5968,
813 		0x5970, 0x5970,
814 		0x5978, 0x5978,
815 		0x5980, 0x5980,
816 		0x5988, 0x5988,
817 		0x5990, 0x5990,
818 		0x5998, 0x5998,
819 		0x59a0, 0x59d4,
820 		0x5a00, 0x5ae0,
821 		0x5ae8, 0x5ae8,
822 		0x5af0, 0x5af0,
823 		0x5af8, 0x5af8,
824 		0x6000, 0x6098,
825 		0x6100, 0x6150,
826 		0x6200, 0x6208,
827 		0x6240, 0x6248,
828 		0x6280, 0x62b0,
829 		0x62c0, 0x6338,
830 		0x6370, 0x638c,
831 		0x6400, 0x643c,
832 		0x6500, 0x6524,
833 		0x6a00, 0x6a04,
834 		0x6a14, 0x6a38,
835 		0x6a60, 0x6a70,
836 		0x6a78, 0x6a78,
837 		0x6b00, 0x6b0c,
838 		0x6b1c, 0x6b84,
839 		0x6bf0, 0x6bf8,
840 		0x6c00, 0x6c0c,
841 		0x6c1c, 0x6c84,
842 		0x6cf0, 0x6cf8,
843 		0x6d00, 0x6d0c,
844 		0x6d1c, 0x6d84,
845 		0x6df0, 0x6df8,
846 		0x6e00, 0x6e0c,
847 		0x6e1c, 0x6e84,
848 		0x6ef0, 0x6ef8,
849 		0x6f00, 0x6f0c,
850 		0x6f1c, 0x6f84,
851 		0x6ff0, 0x6ff8,
852 		0x7000, 0x700c,
853 		0x701c, 0x7084,
854 		0x70f0, 0x70f8,
855 		0x7100, 0x710c,
856 		0x711c, 0x7184,
857 		0x71f0, 0x71f8,
858 		0x7200, 0x720c,
859 		0x721c, 0x7284,
860 		0x72f0, 0x72f8,
861 		0x7300, 0x730c,
862 		0x731c, 0x7384,
863 		0x73f0, 0x73f8,
864 		0x7400, 0x7450,
865 		0x7500, 0x7530,
866 		0x7600, 0x760c,
867 		0x7614, 0x761c,
868 		0x7680, 0x76cc,
869 		0x7700, 0x7798,
870 		0x77c0, 0x77fc,
871 		0x7900, 0x79fc,
872 		0x7b00, 0x7b58,
873 		0x7b60, 0x7b84,
874 		0x7b8c, 0x7c38,
875 		0x7d00, 0x7d38,
876 		0x7d40, 0x7d80,
877 		0x7d8c, 0x7ddc,
878 		0x7de4, 0x7e04,
879 		0x7e10, 0x7e1c,
880 		0x7e24, 0x7e38,
881 		0x7e40, 0x7e44,
882 		0x7e4c, 0x7e78,
883 		0x7e80, 0x7ea4,
884 		0x7eac, 0x7edc,
885 		0x7ee8, 0x7efc,
886 		0x8dc0, 0x8e04,
887 		0x8e10, 0x8e1c,
888 		0x8e30, 0x8e78,
889 		0x8ea0, 0x8eb8,
890 		0x8ec0, 0x8f6c,
891 		0x8fc0, 0x9008,
892 		0x9010, 0x9058,
893 		0x9060, 0x9060,
894 		0x9068, 0x9074,
895 		0x90fc, 0x90fc,
896 		0x9400, 0x9408,
897 		0x9410, 0x9458,
898 		0x9600, 0x9600,
899 		0x9608, 0x9638,
900 		0x9640, 0x96bc,
901 		0x9800, 0x9808,
902 		0x9820, 0x983c,
903 		0x9850, 0x9864,
904 		0x9c00, 0x9c6c,
905 		0x9c80, 0x9cec,
906 		0x9d00, 0x9d6c,
907 		0x9d80, 0x9dec,
908 		0x9e00, 0x9e6c,
909 		0x9e80, 0x9eec,
910 		0x9f00, 0x9f6c,
911 		0x9f80, 0x9fec,
912 		0xd004, 0xd004,
913 		0xd010, 0xd03c,
914 		0xdfc0, 0xdfe0,
915 		0xe000, 0xea7c,
916 		0xf000, 0x11110,
917 		0x11118, 0x11190,
918 		0x19040, 0x1906c,
919 		0x19078, 0x19080,
920 		0x1908c, 0x190e4,
921 		0x190f0, 0x190f8,
922 		0x19100, 0x19110,
923 		0x19120, 0x19124,
924 		0x19150, 0x19194,
925 		0x1919c, 0x191b0,
926 		0x191d0, 0x191e8,
927 		0x19238, 0x1924c,
928 		0x193f8, 0x1943c,
929 		0x1944c, 0x19474,
930 		0x19490, 0x194e0,
931 		0x194f0, 0x194f8,
932 		0x19800, 0x19c08,
933 		0x19c10, 0x19c90,
934 		0x19ca0, 0x19ce4,
935 		0x19cf0, 0x19d40,
936 		0x19d50, 0x19d94,
937 		0x19da0, 0x19de8,
938 		0x19df0, 0x19e40,
939 		0x19e50, 0x19e90,
940 		0x19ea0, 0x19f4c,
941 		0x1a000, 0x1a004,
942 		0x1a010, 0x1a06c,
943 		0x1a0b0, 0x1a0e4,
944 		0x1a0ec, 0x1a0f4,
945 		0x1a100, 0x1a108,
946 		0x1a114, 0x1a120,
947 		0x1a128, 0x1a130,
948 		0x1a138, 0x1a138,
949 		0x1a190, 0x1a1c4,
950 		0x1a1fc, 0x1a1fc,
951 		0x1e040, 0x1e04c,
952 		0x1e284, 0x1e28c,
953 		0x1e2c0, 0x1e2c0,
954 		0x1e2e0, 0x1e2e0,
955 		0x1e300, 0x1e384,
956 		0x1e3c0, 0x1e3c8,
957 		0x1e440, 0x1e44c,
958 		0x1e684, 0x1e68c,
959 		0x1e6c0, 0x1e6c0,
960 		0x1e6e0, 0x1e6e0,
961 		0x1e700, 0x1e784,
962 		0x1e7c0, 0x1e7c8,
963 		0x1e840, 0x1e84c,
964 		0x1ea84, 0x1ea8c,
965 		0x1eac0, 0x1eac0,
966 		0x1eae0, 0x1eae0,
967 		0x1eb00, 0x1eb84,
968 		0x1ebc0, 0x1ebc8,
969 		0x1ec40, 0x1ec4c,
970 		0x1ee84, 0x1ee8c,
971 		0x1eec0, 0x1eec0,
972 		0x1eee0, 0x1eee0,
973 		0x1ef00, 0x1ef84,
974 		0x1efc0, 0x1efc8,
975 		0x1f040, 0x1f04c,
976 		0x1f284, 0x1f28c,
977 		0x1f2c0, 0x1f2c0,
978 		0x1f2e0, 0x1f2e0,
979 		0x1f300, 0x1f384,
980 		0x1f3c0, 0x1f3c8,
981 		0x1f440, 0x1f44c,
982 		0x1f684, 0x1f68c,
983 		0x1f6c0, 0x1f6c0,
984 		0x1f6e0, 0x1f6e0,
985 		0x1f700, 0x1f784,
986 		0x1f7c0, 0x1f7c8,
987 		0x1f840, 0x1f84c,
988 		0x1fa84, 0x1fa8c,
989 		0x1fac0, 0x1fac0,
990 		0x1fae0, 0x1fae0,
991 		0x1fb00, 0x1fb84,
992 		0x1fbc0, 0x1fbc8,
993 		0x1fc40, 0x1fc4c,
994 		0x1fe84, 0x1fe8c,
995 		0x1fec0, 0x1fec0,
996 		0x1fee0, 0x1fee0,
997 		0x1ff00, 0x1ff84,
998 		0x1ffc0, 0x1ffc8,
999 		0x20000, 0x2002c,
1000 		0x20100, 0x2013c,
1001 		0x20190, 0x201a0,
1002 		0x201a8, 0x201b8,
1003 		0x201c4, 0x201c8,
1004 		0x20200, 0x20318,
1005 		0x20400, 0x204b4,
1006 		0x204c0, 0x20528,
1007 		0x20540, 0x20614,
1008 		0x21000, 0x21040,
1009 		0x2104c, 0x21060,
1010 		0x210c0, 0x210ec,
1011 		0x21200, 0x21268,
1012 		0x21270, 0x21284,
1013 		0x212fc, 0x21388,
1014 		0x21400, 0x21404,
1015 		0x21500, 0x21500,
1016 		0x21510, 0x21518,
1017 		0x2152c, 0x21530,
1018 		0x2153c, 0x2153c,
1019 		0x21550, 0x21554,
1020 		0x21600, 0x21600,
1021 		0x21608, 0x2161c,
1022 		0x21624, 0x21628,
1023 		0x21630, 0x21634,
1024 		0x2163c, 0x2163c,
1025 		0x21700, 0x2171c,
1026 		0x21780, 0x2178c,
1027 		0x21800, 0x21818,
1028 		0x21820, 0x21828,
1029 		0x21830, 0x21848,
1030 		0x21850, 0x21854,
1031 		0x21860, 0x21868,
1032 		0x21870, 0x21870,
1033 		0x21878, 0x21898,
1034 		0x218a0, 0x218a8,
1035 		0x218b0, 0x218c8,
1036 		0x218d0, 0x218d4,
1037 		0x218e0, 0x218e8,
1038 		0x218f0, 0x218f0,
1039 		0x218f8, 0x21a18,
1040 		0x21a20, 0x21a28,
1041 		0x21a30, 0x21a48,
1042 		0x21a50, 0x21a54,
1043 		0x21a60, 0x21a68,
1044 		0x21a70, 0x21a70,
1045 		0x21a78, 0x21a98,
1046 		0x21aa0, 0x21aa8,
1047 		0x21ab0, 0x21ac8,
1048 		0x21ad0, 0x21ad4,
1049 		0x21ae0, 0x21ae8,
1050 		0x21af0, 0x21af0,
1051 		0x21af8, 0x21c18,
1052 		0x21c20, 0x21c20,
1053 		0x21c28, 0x21c30,
1054 		0x21c38, 0x21c38,
1055 		0x21c80, 0x21c98,
1056 		0x21ca0, 0x21ca8,
1057 		0x21cb0, 0x21cc8,
1058 		0x21cd0, 0x21cd4,
1059 		0x21ce0, 0x21ce8,
1060 		0x21cf0, 0x21cf0,
1061 		0x21cf8, 0x21d7c,
1062 		0x21e00, 0x21e04,
1063 		0x22000, 0x2202c,
1064 		0x22100, 0x2213c,
1065 		0x22190, 0x221a0,
1066 		0x221a8, 0x221b8,
1067 		0x221c4, 0x221c8,
1068 		0x22200, 0x22318,
1069 		0x22400, 0x224b4,
1070 		0x224c0, 0x22528,
1071 		0x22540, 0x22614,
1072 		0x23000, 0x23040,
1073 		0x2304c, 0x23060,
1074 		0x230c0, 0x230ec,
1075 		0x23200, 0x23268,
1076 		0x23270, 0x23284,
1077 		0x232fc, 0x23388,
1078 		0x23400, 0x23404,
1079 		0x23500, 0x23500,
1080 		0x23510, 0x23518,
1081 		0x2352c, 0x23530,
1082 		0x2353c, 0x2353c,
1083 		0x23550, 0x23554,
1084 		0x23600, 0x23600,
1085 		0x23608, 0x2361c,
1086 		0x23624, 0x23628,
1087 		0x23630, 0x23634,
1088 		0x2363c, 0x2363c,
1089 		0x23700, 0x2371c,
1090 		0x23780, 0x2378c,
1091 		0x23800, 0x23818,
1092 		0x23820, 0x23828,
1093 		0x23830, 0x23848,
1094 		0x23850, 0x23854,
1095 		0x23860, 0x23868,
1096 		0x23870, 0x23870,
1097 		0x23878, 0x23898,
1098 		0x238a0, 0x238a8,
1099 		0x238b0, 0x238c8,
1100 		0x238d0, 0x238d4,
1101 		0x238e0, 0x238e8,
1102 		0x238f0, 0x238f0,
1103 		0x238f8, 0x23a18,
1104 		0x23a20, 0x23a28,
1105 		0x23a30, 0x23a48,
1106 		0x23a50, 0x23a54,
1107 		0x23a60, 0x23a68,
1108 		0x23a70, 0x23a70,
1109 		0x23a78, 0x23a98,
1110 		0x23aa0, 0x23aa8,
1111 		0x23ab0, 0x23ac8,
1112 		0x23ad0, 0x23ad4,
1113 		0x23ae0, 0x23ae8,
1114 		0x23af0, 0x23af0,
1115 		0x23af8, 0x23c18,
1116 		0x23c20, 0x23c20,
1117 		0x23c28, 0x23c30,
1118 		0x23c38, 0x23c38,
1119 		0x23c80, 0x23c98,
1120 		0x23ca0, 0x23ca8,
1121 		0x23cb0, 0x23cc8,
1122 		0x23cd0, 0x23cd4,
1123 		0x23ce0, 0x23ce8,
1124 		0x23cf0, 0x23cf0,
1125 		0x23cf8, 0x23d7c,
1126 		0x23e00, 0x23e04,
1127 		0x24000, 0x2402c,
1128 		0x24100, 0x2413c,
1129 		0x24190, 0x241a0,
1130 		0x241a8, 0x241b8,
1131 		0x241c4, 0x241c8,
1132 		0x24200, 0x24318,
1133 		0x24400, 0x244b4,
1134 		0x244c0, 0x24528,
1135 		0x24540, 0x24614,
1136 		0x25000, 0x25040,
1137 		0x2504c, 0x25060,
1138 		0x250c0, 0x250ec,
1139 		0x25200, 0x25268,
1140 		0x25270, 0x25284,
1141 		0x252fc, 0x25388,
1142 		0x25400, 0x25404,
1143 		0x25500, 0x25500,
1144 		0x25510, 0x25518,
1145 		0x2552c, 0x25530,
1146 		0x2553c, 0x2553c,
1147 		0x25550, 0x25554,
1148 		0x25600, 0x25600,
1149 		0x25608, 0x2561c,
1150 		0x25624, 0x25628,
1151 		0x25630, 0x25634,
1152 		0x2563c, 0x2563c,
1153 		0x25700, 0x2571c,
1154 		0x25780, 0x2578c,
1155 		0x25800, 0x25818,
1156 		0x25820, 0x25828,
1157 		0x25830, 0x25848,
1158 		0x25850, 0x25854,
1159 		0x25860, 0x25868,
1160 		0x25870, 0x25870,
1161 		0x25878, 0x25898,
1162 		0x258a0, 0x258a8,
1163 		0x258b0, 0x258c8,
1164 		0x258d0, 0x258d4,
1165 		0x258e0, 0x258e8,
1166 		0x258f0, 0x258f0,
1167 		0x258f8, 0x25a18,
1168 		0x25a20, 0x25a28,
1169 		0x25a30, 0x25a48,
1170 		0x25a50, 0x25a54,
1171 		0x25a60, 0x25a68,
1172 		0x25a70, 0x25a70,
1173 		0x25a78, 0x25a98,
1174 		0x25aa0, 0x25aa8,
1175 		0x25ab0, 0x25ac8,
1176 		0x25ad0, 0x25ad4,
1177 		0x25ae0, 0x25ae8,
1178 		0x25af0, 0x25af0,
1179 		0x25af8, 0x25c18,
1180 		0x25c20, 0x25c20,
1181 		0x25c28, 0x25c30,
1182 		0x25c38, 0x25c38,
1183 		0x25c80, 0x25c98,
1184 		0x25ca0, 0x25ca8,
1185 		0x25cb0, 0x25cc8,
1186 		0x25cd0, 0x25cd4,
1187 		0x25ce0, 0x25ce8,
1188 		0x25cf0, 0x25cf0,
1189 		0x25cf8, 0x25d7c,
1190 		0x25e00, 0x25e04,
1191 		0x26000, 0x2602c,
1192 		0x26100, 0x2613c,
1193 		0x26190, 0x261a0,
1194 		0x261a8, 0x261b8,
1195 		0x261c4, 0x261c8,
1196 		0x26200, 0x26318,
1197 		0x26400, 0x264b4,
1198 		0x264c0, 0x26528,
1199 		0x26540, 0x26614,
1200 		0x27000, 0x27040,
1201 		0x2704c, 0x27060,
1202 		0x270c0, 0x270ec,
1203 		0x27200, 0x27268,
1204 		0x27270, 0x27284,
1205 		0x272fc, 0x27388,
1206 		0x27400, 0x27404,
1207 		0x27500, 0x27500,
1208 		0x27510, 0x27518,
1209 		0x2752c, 0x27530,
1210 		0x2753c, 0x2753c,
1211 		0x27550, 0x27554,
1212 		0x27600, 0x27600,
1213 		0x27608, 0x2761c,
1214 		0x27624, 0x27628,
1215 		0x27630, 0x27634,
1216 		0x2763c, 0x2763c,
1217 		0x27700, 0x2771c,
1218 		0x27780, 0x2778c,
1219 		0x27800, 0x27818,
1220 		0x27820, 0x27828,
1221 		0x27830, 0x27848,
1222 		0x27850, 0x27854,
1223 		0x27860, 0x27868,
1224 		0x27870, 0x27870,
1225 		0x27878, 0x27898,
1226 		0x278a0, 0x278a8,
1227 		0x278b0, 0x278c8,
1228 		0x278d0, 0x278d4,
1229 		0x278e0, 0x278e8,
1230 		0x278f0, 0x278f0,
1231 		0x278f8, 0x27a18,
1232 		0x27a20, 0x27a28,
1233 		0x27a30, 0x27a48,
1234 		0x27a50, 0x27a54,
1235 		0x27a60, 0x27a68,
1236 		0x27a70, 0x27a70,
1237 		0x27a78, 0x27a98,
1238 		0x27aa0, 0x27aa8,
1239 		0x27ab0, 0x27ac8,
1240 		0x27ad0, 0x27ad4,
1241 		0x27ae0, 0x27ae8,
1242 		0x27af0, 0x27af0,
1243 		0x27af8, 0x27c18,
1244 		0x27c20, 0x27c20,
1245 		0x27c28, 0x27c30,
1246 		0x27c38, 0x27c38,
1247 		0x27c80, 0x27c98,
1248 		0x27ca0, 0x27ca8,
1249 		0x27cb0, 0x27cc8,
1250 		0x27cd0, 0x27cd4,
1251 		0x27ce0, 0x27ce8,
1252 		0x27cf0, 0x27cf0,
1253 		0x27cf8, 0x27d7c,
1254 		0x27e00, 0x27e04,
1255 	};
1256 
1257 	static const unsigned int t5_reg_ranges[] = {
1258 		0x1008, 0x10c0,
1259 		0x10cc, 0x10f8,
1260 		0x1100, 0x1100,
1261 		0x110c, 0x1148,
1262 		0x1180, 0x1184,
1263 		0x1190, 0x1194,
1264 		0x11a0, 0x11a4,
1265 		0x11b0, 0x11b4,
1266 		0x11fc, 0x123c,
1267 		0x1280, 0x173c,
1268 		0x1800, 0x18fc,
1269 		0x3000, 0x3028,
1270 		0x3060, 0x30b0,
1271 		0x30b8, 0x30d8,
1272 		0x30e0, 0x30fc,
1273 		0x3140, 0x357c,
1274 		0x35a8, 0x35cc,
1275 		0x35ec, 0x35ec,
1276 		0x3600, 0x5624,
1277 		0x56cc, 0x56ec,
1278 		0x56f4, 0x5720,
1279 		0x5728, 0x575c,
1280 		0x580c, 0x5814,
1281 		0x5890, 0x589c,
1282 		0x58a4, 0x58ac,
1283 		0x58b8, 0x58bc,
1284 		0x5940, 0x59c8,
1285 		0x59d0, 0x59dc,
1286 		0x59fc, 0x5a18,
1287 		0x5a60, 0x5a70,
1288 		0x5a80, 0x5a9c,
1289 		0x5b94, 0x5bfc,
1290 		0x6000, 0x6020,
1291 		0x6028, 0x6040,
1292 		0x6058, 0x609c,
1293 		0x60a8, 0x614c,
1294 		0x7700, 0x7798,
1295 		0x77c0, 0x78fc,
1296 		0x7b00, 0x7b58,
1297 		0x7b60, 0x7b84,
1298 		0x7b8c, 0x7c54,
1299 		0x7d00, 0x7d38,
1300 		0x7d40, 0x7d80,
1301 		0x7d8c, 0x7ddc,
1302 		0x7de4, 0x7e04,
1303 		0x7e10, 0x7e1c,
1304 		0x7e24, 0x7e38,
1305 		0x7e40, 0x7e44,
1306 		0x7e4c, 0x7e78,
1307 		0x7e80, 0x7edc,
1308 		0x7ee8, 0x7efc,
1309 		0x8dc0, 0x8de0,
1310 		0x8df8, 0x8e04,
1311 		0x8e10, 0x8e84,
1312 		0x8ea0, 0x8f84,
1313 		0x8fc0, 0x9058,
1314 		0x9060, 0x9060,
1315 		0x9068, 0x90f8,
1316 		0x9400, 0x9408,
1317 		0x9410, 0x9470,
1318 		0x9600, 0x9600,
1319 		0x9608, 0x9638,
1320 		0x9640, 0x96f4,
1321 		0x9800, 0x9808,
1322 		0x9820, 0x983c,
1323 		0x9850, 0x9864,
1324 		0x9c00, 0x9c6c,
1325 		0x9c80, 0x9cec,
1326 		0x9d00, 0x9d6c,
1327 		0x9d80, 0x9dec,
1328 		0x9e00, 0x9e6c,
1329 		0x9e80, 0x9eec,
1330 		0x9f00, 0x9f6c,
1331 		0x9f80, 0xa020,
1332 		0xd004, 0xd004,
1333 		0xd010, 0xd03c,
1334 		0xdfc0, 0xdfe0,
1335 		0xe000, 0x1106c,
1336 		0x11074, 0x11088,
1337 		0x1109c, 0x1117c,
1338 		0x11190, 0x11204,
1339 		0x19040, 0x1906c,
1340 		0x19078, 0x19080,
1341 		0x1908c, 0x190e8,
1342 		0x190f0, 0x190f8,
1343 		0x19100, 0x19110,
1344 		0x19120, 0x19124,
1345 		0x19150, 0x19194,
1346 		0x1919c, 0x191b0,
1347 		0x191d0, 0x191e8,
1348 		0x19238, 0x19290,
1349 		0x193f8, 0x19428,
1350 		0x19430, 0x19444,
1351 		0x1944c, 0x1946c,
1352 		0x19474, 0x19474,
1353 		0x19490, 0x194cc,
1354 		0x194f0, 0x194f8,
1355 		0x19c00, 0x19c08,
1356 		0x19c10, 0x19c60,
1357 		0x19c94, 0x19ce4,
1358 		0x19cf0, 0x19d40,
1359 		0x19d50, 0x19d94,
1360 		0x19da0, 0x19de8,
1361 		0x19df0, 0x19e10,
1362 		0x19e50, 0x19e90,
1363 		0x19ea0, 0x19f24,
1364 		0x19f34, 0x19f34,
1365 		0x19f40, 0x19f50,
1366 		0x19f90, 0x19fb4,
1367 		0x19fc4, 0x19fe4,
1368 		0x1a000, 0x1a004,
1369 		0x1a010, 0x1a06c,
1370 		0x1a0b0, 0x1a0e4,
1371 		0x1a0ec, 0x1a0f8,
1372 		0x1a100, 0x1a108,
1373 		0x1a114, 0x1a120,
1374 		0x1a128, 0x1a130,
1375 		0x1a138, 0x1a138,
1376 		0x1a190, 0x1a1c4,
1377 		0x1a1fc, 0x1a1fc,
1378 		0x1e008, 0x1e00c,
1379 		0x1e040, 0x1e044,
1380 		0x1e04c, 0x1e04c,
1381 		0x1e284, 0x1e290,
1382 		0x1e2c0, 0x1e2c0,
1383 		0x1e2e0, 0x1e2e0,
1384 		0x1e300, 0x1e384,
1385 		0x1e3c0, 0x1e3c8,
1386 		0x1e408, 0x1e40c,
1387 		0x1e440, 0x1e444,
1388 		0x1e44c, 0x1e44c,
1389 		0x1e684, 0x1e690,
1390 		0x1e6c0, 0x1e6c0,
1391 		0x1e6e0, 0x1e6e0,
1392 		0x1e700, 0x1e784,
1393 		0x1e7c0, 0x1e7c8,
1394 		0x1e808, 0x1e80c,
1395 		0x1e840, 0x1e844,
1396 		0x1e84c, 0x1e84c,
1397 		0x1ea84, 0x1ea90,
1398 		0x1eac0, 0x1eac0,
1399 		0x1eae0, 0x1eae0,
1400 		0x1eb00, 0x1eb84,
1401 		0x1ebc0, 0x1ebc8,
1402 		0x1ec08, 0x1ec0c,
1403 		0x1ec40, 0x1ec44,
1404 		0x1ec4c, 0x1ec4c,
1405 		0x1ee84, 0x1ee90,
1406 		0x1eec0, 0x1eec0,
1407 		0x1eee0, 0x1eee0,
1408 		0x1ef00, 0x1ef84,
1409 		0x1efc0, 0x1efc8,
1410 		0x1f008, 0x1f00c,
1411 		0x1f040, 0x1f044,
1412 		0x1f04c, 0x1f04c,
1413 		0x1f284, 0x1f290,
1414 		0x1f2c0, 0x1f2c0,
1415 		0x1f2e0, 0x1f2e0,
1416 		0x1f300, 0x1f384,
1417 		0x1f3c0, 0x1f3c8,
1418 		0x1f408, 0x1f40c,
1419 		0x1f440, 0x1f444,
1420 		0x1f44c, 0x1f44c,
1421 		0x1f684, 0x1f690,
1422 		0x1f6c0, 0x1f6c0,
1423 		0x1f6e0, 0x1f6e0,
1424 		0x1f700, 0x1f784,
1425 		0x1f7c0, 0x1f7c8,
1426 		0x1f808, 0x1f80c,
1427 		0x1f840, 0x1f844,
1428 		0x1f84c, 0x1f84c,
1429 		0x1fa84, 0x1fa90,
1430 		0x1fac0, 0x1fac0,
1431 		0x1fae0, 0x1fae0,
1432 		0x1fb00, 0x1fb84,
1433 		0x1fbc0, 0x1fbc8,
1434 		0x1fc08, 0x1fc0c,
1435 		0x1fc40, 0x1fc44,
1436 		0x1fc4c, 0x1fc4c,
1437 		0x1fe84, 0x1fe90,
1438 		0x1fec0, 0x1fec0,
1439 		0x1fee0, 0x1fee0,
1440 		0x1ff00, 0x1ff84,
1441 		0x1ffc0, 0x1ffc8,
1442 		0x30000, 0x30030,
1443 		0x30100, 0x30144,
1444 		0x30190, 0x301a0,
1445 		0x301a8, 0x301b8,
1446 		0x301c4, 0x301c8,
1447 		0x301d0, 0x301d0,
1448 		0x30200, 0x30318,
1449 		0x30400, 0x304b4,
1450 		0x304c0, 0x3052c,
1451 		0x30540, 0x3061c,
1452 		0x30800, 0x30828,
1453 		0x30834, 0x30834,
1454 		0x308c0, 0x30908,
1455 		0x30910, 0x309ac,
1456 		0x30a00, 0x30a14,
1457 		0x30a1c, 0x30a2c,
1458 		0x30a44, 0x30a50,
1459 		0x30a74, 0x30a74,
1460 		0x30a7c, 0x30afc,
1461 		0x30b08, 0x30c24,
1462 		0x30d00, 0x30d00,
1463 		0x30d08, 0x30d14,
1464 		0x30d1c, 0x30d20,
1465 		0x30d3c, 0x30d3c,
1466 		0x30d48, 0x30d50,
1467 		0x31200, 0x3120c,
1468 		0x31220, 0x31220,
1469 		0x31240, 0x31240,
1470 		0x31600, 0x3160c,
1471 		0x31a00, 0x31a1c,
1472 		0x31e00, 0x31e20,
1473 		0x31e38, 0x31e3c,
1474 		0x31e80, 0x31e80,
1475 		0x31e88, 0x31ea8,
1476 		0x31eb0, 0x31eb4,
1477 		0x31ec8, 0x31ed4,
1478 		0x31fb8, 0x32004,
1479 		0x32200, 0x32200,
1480 		0x32208, 0x32240,
1481 		0x32248, 0x32280,
1482 		0x32288, 0x322c0,
1483 		0x322c8, 0x322fc,
1484 		0x32600, 0x32630,
1485 		0x32a00, 0x32abc,
1486 		0x32b00, 0x32b10,
1487 		0x32b20, 0x32b30,
1488 		0x32b40, 0x32b50,
1489 		0x32b60, 0x32b70,
1490 		0x33000, 0x33028,
1491 		0x33030, 0x33048,
1492 		0x33060, 0x33068,
1493 		0x33070, 0x3309c,
1494 		0x330f0, 0x33128,
1495 		0x33130, 0x33148,
1496 		0x33160, 0x33168,
1497 		0x33170, 0x3319c,
1498 		0x331f0, 0x33238,
1499 		0x33240, 0x33240,
1500 		0x33248, 0x33250,
1501 		0x3325c, 0x33264,
1502 		0x33270, 0x332b8,
1503 		0x332c0, 0x332e4,
1504 		0x332f8, 0x33338,
1505 		0x33340, 0x33340,
1506 		0x33348, 0x33350,
1507 		0x3335c, 0x33364,
1508 		0x33370, 0x333b8,
1509 		0x333c0, 0x333e4,
1510 		0x333f8, 0x33428,
1511 		0x33430, 0x33448,
1512 		0x33460, 0x33468,
1513 		0x33470, 0x3349c,
1514 		0x334f0, 0x33528,
1515 		0x33530, 0x33548,
1516 		0x33560, 0x33568,
1517 		0x33570, 0x3359c,
1518 		0x335f0, 0x33638,
1519 		0x33640, 0x33640,
1520 		0x33648, 0x33650,
1521 		0x3365c, 0x33664,
1522 		0x33670, 0x336b8,
1523 		0x336c0, 0x336e4,
1524 		0x336f8, 0x33738,
1525 		0x33740, 0x33740,
1526 		0x33748, 0x33750,
1527 		0x3375c, 0x33764,
1528 		0x33770, 0x337b8,
1529 		0x337c0, 0x337e4,
1530 		0x337f8, 0x337fc,
1531 		0x33814, 0x33814,
1532 		0x3382c, 0x3382c,
1533 		0x33880, 0x3388c,
1534 		0x338e8, 0x338ec,
1535 		0x33900, 0x33928,
1536 		0x33930, 0x33948,
1537 		0x33960, 0x33968,
1538 		0x33970, 0x3399c,
1539 		0x339f0, 0x33a38,
1540 		0x33a40, 0x33a40,
1541 		0x33a48, 0x33a50,
1542 		0x33a5c, 0x33a64,
1543 		0x33a70, 0x33ab8,
1544 		0x33ac0, 0x33ae4,
1545 		0x33af8, 0x33b10,
1546 		0x33b28, 0x33b28,
1547 		0x33b3c, 0x33b50,
1548 		0x33bf0, 0x33c10,
1549 		0x33c28, 0x33c28,
1550 		0x33c3c, 0x33c50,
1551 		0x33cf0, 0x33cfc,
1552 		0x34000, 0x34030,
1553 		0x34100, 0x34144,
1554 		0x34190, 0x341a0,
1555 		0x341a8, 0x341b8,
1556 		0x341c4, 0x341c8,
1557 		0x341d0, 0x341d0,
1558 		0x34200, 0x34318,
1559 		0x34400, 0x344b4,
1560 		0x344c0, 0x3452c,
1561 		0x34540, 0x3461c,
1562 		0x34800, 0x34828,
1563 		0x34834, 0x34834,
1564 		0x348c0, 0x34908,
1565 		0x34910, 0x349ac,
1566 		0x34a00, 0x34a14,
1567 		0x34a1c, 0x34a2c,
1568 		0x34a44, 0x34a50,
1569 		0x34a74, 0x34a74,
1570 		0x34a7c, 0x34afc,
1571 		0x34b08, 0x34c24,
1572 		0x34d00, 0x34d00,
1573 		0x34d08, 0x34d14,
1574 		0x34d1c, 0x34d20,
1575 		0x34d3c, 0x34d3c,
1576 		0x34d48, 0x34d50,
1577 		0x35200, 0x3520c,
1578 		0x35220, 0x35220,
1579 		0x35240, 0x35240,
1580 		0x35600, 0x3560c,
1581 		0x35a00, 0x35a1c,
1582 		0x35e00, 0x35e20,
1583 		0x35e38, 0x35e3c,
1584 		0x35e80, 0x35e80,
1585 		0x35e88, 0x35ea8,
1586 		0x35eb0, 0x35eb4,
1587 		0x35ec8, 0x35ed4,
1588 		0x35fb8, 0x36004,
1589 		0x36200, 0x36200,
1590 		0x36208, 0x36240,
1591 		0x36248, 0x36280,
1592 		0x36288, 0x362c0,
1593 		0x362c8, 0x362fc,
1594 		0x36600, 0x36630,
1595 		0x36a00, 0x36abc,
1596 		0x36b00, 0x36b10,
1597 		0x36b20, 0x36b30,
1598 		0x36b40, 0x36b50,
1599 		0x36b60, 0x36b70,
1600 		0x37000, 0x37028,
1601 		0x37030, 0x37048,
1602 		0x37060, 0x37068,
1603 		0x37070, 0x3709c,
1604 		0x370f0, 0x37128,
1605 		0x37130, 0x37148,
1606 		0x37160, 0x37168,
1607 		0x37170, 0x3719c,
1608 		0x371f0, 0x37238,
1609 		0x37240, 0x37240,
1610 		0x37248, 0x37250,
1611 		0x3725c, 0x37264,
1612 		0x37270, 0x372b8,
1613 		0x372c0, 0x372e4,
1614 		0x372f8, 0x37338,
1615 		0x37340, 0x37340,
1616 		0x37348, 0x37350,
1617 		0x3735c, 0x37364,
1618 		0x37370, 0x373b8,
1619 		0x373c0, 0x373e4,
1620 		0x373f8, 0x37428,
1621 		0x37430, 0x37448,
1622 		0x37460, 0x37468,
1623 		0x37470, 0x3749c,
1624 		0x374f0, 0x37528,
1625 		0x37530, 0x37548,
1626 		0x37560, 0x37568,
1627 		0x37570, 0x3759c,
1628 		0x375f0, 0x37638,
1629 		0x37640, 0x37640,
1630 		0x37648, 0x37650,
1631 		0x3765c, 0x37664,
1632 		0x37670, 0x376b8,
1633 		0x376c0, 0x376e4,
1634 		0x376f8, 0x37738,
1635 		0x37740, 0x37740,
1636 		0x37748, 0x37750,
1637 		0x3775c, 0x37764,
1638 		0x37770, 0x377b8,
1639 		0x377c0, 0x377e4,
1640 		0x377f8, 0x377fc,
1641 		0x37814, 0x37814,
1642 		0x3782c, 0x3782c,
1643 		0x37880, 0x3788c,
1644 		0x378e8, 0x378ec,
1645 		0x37900, 0x37928,
1646 		0x37930, 0x37948,
1647 		0x37960, 0x37968,
1648 		0x37970, 0x3799c,
1649 		0x379f0, 0x37a38,
1650 		0x37a40, 0x37a40,
1651 		0x37a48, 0x37a50,
1652 		0x37a5c, 0x37a64,
1653 		0x37a70, 0x37ab8,
1654 		0x37ac0, 0x37ae4,
1655 		0x37af8, 0x37b10,
1656 		0x37b28, 0x37b28,
1657 		0x37b3c, 0x37b50,
1658 		0x37bf0, 0x37c10,
1659 		0x37c28, 0x37c28,
1660 		0x37c3c, 0x37c50,
1661 		0x37cf0, 0x37cfc,
1662 		0x38000, 0x38030,
1663 		0x38100, 0x38144,
1664 		0x38190, 0x381a0,
1665 		0x381a8, 0x381b8,
1666 		0x381c4, 0x381c8,
1667 		0x381d0, 0x381d0,
1668 		0x38200, 0x38318,
1669 		0x38400, 0x384b4,
1670 		0x384c0, 0x3852c,
1671 		0x38540, 0x3861c,
1672 		0x38800, 0x38828,
1673 		0x38834, 0x38834,
1674 		0x388c0, 0x38908,
1675 		0x38910, 0x389ac,
1676 		0x38a00, 0x38a14,
1677 		0x38a1c, 0x38a2c,
1678 		0x38a44, 0x38a50,
1679 		0x38a74, 0x38a74,
1680 		0x38a7c, 0x38afc,
1681 		0x38b08, 0x38c24,
1682 		0x38d00, 0x38d00,
1683 		0x38d08, 0x38d14,
1684 		0x38d1c, 0x38d20,
1685 		0x38d3c, 0x38d3c,
1686 		0x38d48, 0x38d50,
1687 		0x39200, 0x3920c,
1688 		0x39220, 0x39220,
1689 		0x39240, 0x39240,
1690 		0x39600, 0x3960c,
1691 		0x39a00, 0x39a1c,
1692 		0x39e00, 0x39e20,
1693 		0x39e38, 0x39e3c,
1694 		0x39e80, 0x39e80,
1695 		0x39e88, 0x39ea8,
1696 		0x39eb0, 0x39eb4,
1697 		0x39ec8, 0x39ed4,
1698 		0x39fb8, 0x3a004,
1699 		0x3a200, 0x3a200,
1700 		0x3a208, 0x3a240,
1701 		0x3a248, 0x3a280,
1702 		0x3a288, 0x3a2c0,
1703 		0x3a2c8, 0x3a2fc,
1704 		0x3a600, 0x3a630,
1705 		0x3aa00, 0x3aabc,
1706 		0x3ab00, 0x3ab10,
1707 		0x3ab20, 0x3ab30,
1708 		0x3ab40, 0x3ab50,
1709 		0x3ab60, 0x3ab70,
1710 		0x3b000, 0x3b028,
1711 		0x3b030, 0x3b048,
1712 		0x3b060, 0x3b068,
1713 		0x3b070, 0x3b09c,
1714 		0x3b0f0, 0x3b128,
1715 		0x3b130, 0x3b148,
1716 		0x3b160, 0x3b168,
1717 		0x3b170, 0x3b19c,
1718 		0x3b1f0, 0x3b238,
1719 		0x3b240, 0x3b240,
1720 		0x3b248, 0x3b250,
1721 		0x3b25c, 0x3b264,
1722 		0x3b270, 0x3b2b8,
1723 		0x3b2c0, 0x3b2e4,
1724 		0x3b2f8, 0x3b338,
1725 		0x3b340, 0x3b340,
1726 		0x3b348, 0x3b350,
1727 		0x3b35c, 0x3b364,
1728 		0x3b370, 0x3b3b8,
1729 		0x3b3c0, 0x3b3e4,
1730 		0x3b3f8, 0x3b428,
1731 		0x3b430, 0x3b448,
1732 		0x3b460, 0x3b468,
1733 		0x3b470, 0x3b49c,
1734 		0x3b4f0, 0x3b528,
1735 		0x3b530, 0x3b548,
1736 		0x3b560, 0x3b568,
1737 		0x3b570, 0x3b59c,
1738 		0x3b5f0, 0x3b638,
1739 		0x3b640, 0x3b640,
1740 		0x3b648, 0x3b650,
1741 		0x3b65c, 0x3b664,
1742 		0x3b670, 0x3b6b8,
1743 		0x3b6c0, 0x3b6e4,
1744 		0x3b6f8, 0x3b738,
1745 		0x3b740, 0x3b740,
1746 		0x3b748, 0x3b750,
1747 		0x3b75c, 0x3b764,
1748 		0x3b770, 0x3b7b8,
1749 		0x3b7c0, 0x3b7e4,
1750 		0x3b7f8, 0x3b7fc,
1751 		0x3b814, 0x3b814,
1752 		0x3b82c, 0x3b82c,
1753 		0x3b880, 0x3b88c,
1754 		0x3b8e8, 0x3b8ec,
1755 		0x3b900, 0x3b928,
1756 		0x3b930, 0x3b948,
1757 		0x3b960, 0x3b968,
1758 		0x3b970, 0x3b99c,
1759 		0x3b9f0, 0x3ba38,
1760 		0x3ba40, 0x3ba40,
1761 		0x3ba48, 0x3ba50,
1762 		0x3ba5c, 0x3ba64,
1763 		0x3ba70, 0x3bab8,
1764 		0x3bac0, 0x3bae4,
1765 		0x3baf8, 0x3bb10,
1766 		0x3bb28, 0x3bb28,
1767 		0x3bb3c, 0x3bb50,
1768 		0x3bbf0, 0x3bc10,
1769 		0x3bc28, 0x3bc28,
1770 		0x3bc3c, 0x3bc50,
1771 		0x3bcf0, 0x3bcfc,
1772 		0x3c000, 0x3c030,
1773 		0x3c100, 0x3c144,
1774 		0x3c190, 0x3c1a0,
1775 		0x3c1a8, 0x3c1b8,
1776 		0x3c1c4, 0x3c1c8,
1777 		0x3c1d0, 0x3c1d0,
1778 		0x3c200, 0x3c318,
1779 		0x3c400, 0x3c4b4,
1780 		0x3c4c0, 0x3c52c,
1781 		0x3c540, 0x3c61c,
1782 		0x3c800, 0x3c828,
1783 		0x3c834, 0x3c834,
1784 		0x3c8c0, 0x3c908,
1785 		0x3c910, 0x3c9ac,
1786 		0x3ca00, 0x3ca14,
1787 		0x3ca1c, 0x3ca2c,
1788 		0x3ca44, 0x3ca50,
1789 		0x3ca74, 0x3ca74,
1790 		0x3ca7c, 0x3cafc,
1791 		0x3cb08, 0x3cc24,
1792 		0x3cd00, 0x3cd00,
1793 		0x3cd08, 0x3cd14,
1794 		0x3cd1c, 0x3cd20,
1795 		0x3cd3c, 0x3cd3c,
1796 		0x3cd48, 0x3cd50,
1797 		0x3d200, 0x3d20c,
1798 		0x3d220, 0x3d220,
1799 		0x3d240, 0x3d240,
1800 		0x3d600, 0x3d60c,
1801 		0x3da00, 0x3da1c,
1802 		0x3de00, 0x3de20,
1803 		0x3de38, 0x3de3c,
1804 		0x3de80, 0x3de80,
1805 		0x3de88, 0x3dea8,
1806 		0x3deb0, 0x3deb4,
1807 		0x3dec8, 0x3ded4,
1808 		0x3dfb8, 0x3e004,
1809 		0x3e200, 0x3e200,
1810 		0x3e208, 0x3e240,
1811 		0x3e248, 0x3e280,
1812 		0x3e288, 0x3e2c0,
1813 		0x3e2c8, 0x3e2fc,
1814 		0x3e600, 0x3e630,
1815 		0x3ea00, 0x3eabc,
1816 		0x3eb00, 0x3eb10,
1817 		0x3eb20, 0x3eb30,
1818 		0x3eb40, 0x3eb50,
1819 		0x3eb60, 0x3eb70,
1820 		0x3f000, 0x3f028,
1821 		0x3f030, 0x3f048,
1822 		0x3f060, 0x3f068,
1823 		0x3f070, 0x3f09c,
1824 		0x3f0f0, 0x3f128,
1825 		0x3f130, 0x3f148,
1826 		0x3f160, 0x3f168,
1827 		0x3f170, 0x3f19c,
1828 		0x3f1f0, 0x3f238,
1829 		0x3f240, 0x3f240,
1830 		0x3f248, 0x3f250,
1831 		0x3f25c, 0x3f264,
1832 		0x3f270, 0x3f2b8,
1833 		0x3f2c0, 0x3f2e4,
1834 		0x3f2f8, 0x3f338,
1835 		0x3f340, 0x3f340,
1836 		0x3f348, 0x3f350,
1837 		0x3f35c, 0x3f364,
1838 		0x3f370, 0x3f3b8,
1839 		0x3f3c0, 0x3f3e4,
1840 		0x3f3f8, 0x3f428,
1841 		0x3f430, 0x3f448,
1842 		0x3f460, 0x3f468,
1843 		0x3f470, 0x3f49c,
1844 		0x3f4f0, 0x3f528,
1845 		0x3f530, 0x3f548,
1846 		0x3f560, 0x3f568,
1847 		0x3f570, 0x3f59c,
1848 		0x3f5f0, 0x3f638,
1849 		0x3f640, 0x3f640,
1850 		0x3f648, 0x3f650,
1851 		0x3f65c, 0x3f664,
1852 		0x3f670, 0x3f6b8,
1853 		0x3f6c0, 0x3f6e4,
1854 		0x3f6f8, 0x3f738,
1855 		0x3f740, 0x3f740,
1856 		0x3f748, 0x3f750,
1857 		0x3f75c, 0x3f764,
1858 		0x3f770, 0x3f7b8,
1859 		0x3f7c0, 0x3f7e4,
1860 		0x3f7f8, 0x3f7fc,
1861 		0x3f814, 0x3f814,
1862 		0x3f82c, 0x3f82c,
1863 		0x3f880, 0x3f88c,
1864 		0x3f8e8, 0x3f8ec,
1865 		0x3f900, 0x3f928,
1866 		0x3f930, 0x3f948,
1867 		0x3f960, 0x3f968,
1868 		0x3f970, 0x3f99c,
1869 		0x3f9f0, 0x3fa38,
1870 		0x3fa40, 0x3fa40,
1871 		0x3fa48, 0x3fa50,
1872 		0x3fa5c, 0x3fa64,
1873 		0x3fa70, 0x3fab8,
1874 		0x3fac0, 0x3fae4,
1875 		0x3faf8, 0x3fb10,
1876 		0x3fb28, 0x3fb28,
1877 		0x3fb3c, 0x3fb50,
1878 		0x3fbf0, 0x3fc10,
1879 		0x3fc28, 0x3fc28,
1880 		0x3fc3c, 0x3fc50,
1881 		0x3fcf0, 0x3fcfc,
1882 		0x40000, 0x4000c,
1883 		0x40040, 0x40050,
1884 		0x40060, 0x40068,
1885 		0x4007c, 0x4008c,
1886 		0x40094, 0x400b0,
1887 		0x400c0, 0x40144,
1888 		0x40180, 0x4018c,
1889 		0x40200, 0x40254,
1890 		0x40260, 0x40264,
1891 		0x40270, 0x40288,
1892 		0x40290, 0x40298,
1893 		0x402ac, 0x402c8,
1894 		0x402d0, 0x402e0,
1895 		0x402f0, 0x402f0,
1896 		0x40300, 0x4033c,
1897 		0x403f8, 0x403fc,
1898 		0x41304, 0x413c4,
1899 		0x41400, 0x4140c,
1900 		0x41414, 0x4141c,
1901 		0x41480, 0x414d0,
1902 		0x44000, 0x44054,
1903 		0x4405c, 0x44078,
1904 		0x440c0, 0x44174,
1905 		0x44180, 0x441ac,
1906 		0x441b4, 0x441b8,
1907 		0x441c0, 0x44254,
1908 		0x4425c, 0x44278,
1909 		0x442c0, 0x44374,
1910 		0x44380, 0x443ac,
1911 		0x443b4, 0x443b8,
1912 		0x443c0, 0x44454,
1913 		0x4445c, 0x44478,
1914 		0x444c0, 0x44574,
1915 		0x44580, 0x445ac,
1916 		0x445b4, 0x445b8,
1917 		0x445c0, 0x44654,
1918 		0x4465c, 0x44678,
1919 		0x446c0, 0x44774,
1920 		0x44780, 0x447ac,
1921 		0x447b4, 0x447b8,
1922 		0x447c0, 0x44854,
1923 		0x4485c, 0x44878,
1924 		0x448c0, 0x44974,
1925 		0x44980, 0x449ac,
1926 		0x449b4, 0x449b8,
1927 		0x449c0, 0x449fc,
1928 		0x45000, 0x45004,
1929 		0x45010, 0x45030,
1930 		0x45040, 0x45060,
1931 		0x45068, 0x45068,
1932 		0x45080, 0x45084,
1933 		0x450a0, 0x450b0,
1934 		0x45200, 0x45204,
1935 		0x45210, 0x45230,
1936 		0x45240, 0x45260,
1937 		0x45268, 0x45268,
1938 		0x45280, 0x45284,
1939 		0x452a0, 0x452b0,
1940 		0x460c0, 0x460e4,
1941 		0x47000, 0x4703c,
1942 		0x47044, 0x4708c,
1943 		0x47200, 0x47250,
1944 		0x47400, 0x47408,
1945 		0x47414, 0x47420,
1946 		0x47600, 0x47618,
1947 		0x47800, 0x47814,
1948 		0x48000, 0x4800c,
1949 		0x48040, 0x48050,
1950 		0x48060, 0x48068,
1951 		0x4807c, 0x4808c,
1952 		0x48094, 0x480b0,
1953 		0x480c0, 0x48144,
1954 		0x48180, 0x4818c,
1955 		0x48200, 0x48254,
1956 		0x48260, 0x48264,
1957 		0x48270, 0x48288,
1958 		0x48290, 0x48298,
1959 		0x482ac, 0x482c8,
1960 		0x482d0, 0x482e0,
1961 		0x482f0, 0x482f0,
1962 		0x48300, 0x4833c,
1963 		0x483f8, 0x483fc,
1964 		0x49304, 0x493c4,
1965 		0x49400, 0x4940c,
1966 		0x49414, 0x4941c,
1967 		0x49480, 0x494d0,
1968 		0x4c000, 0x4c054,
1969 		0x4c05c, 0x4c078,
1970 		0x4c0c0, 0x4c174,
1971 		0x4c180, 0x4c1ac,
1972 		0x4c1b4, 0x4c1b8,
1973 		0x4c1c0, 0x4c254,
1974 		0x4c25c, 0x4c278,
1975 		0x4c2c0, 0x4c374,
1976 		0x4c380, 0x4c3ac,
1977 		0x4c3b4, 0x4c3b8,
1978 		0x4c3c0, 0x4c454,
1979 		0x4c45c, 0x4c478,
1980 		0x4c4c0, 0x4c574,
1981 		0x4c580, 0x4c5ac,
1982 		0x4c5b4, 0x4c5b8,
1983 		0x4c5c0, 0x4c654,
1984 		0x4c65c, 0x4c678,
1985 		0x4c6c0, 0x4c774,
1986 		0x4c780, 0x4c7ac,
1987 		0x4c7b4, 0x4c7b8,
1988 		0x4c7c0, 0x4c854,
1989 		0x4c85c, 0x4c878,
1990 		0x4c8c0, 0x4c974,
1991 		0x4c980, 0x4c9ac,
1992 		0x4c9b4, 0x4c9b8,
1993 		0x4c9c0, 0x4c9fc,
1994 		0x4d000, 0x4d004,
1995 		0x4d010, 0x4d030,
1996 		0x4d040, 0x4d060,
1997 		0x4d068, 0x4d068,
1998 		0x4d080, 0x4d084,
1999 		0x4d0a0, 0x4d0b0,
2000 		0x4d200, 0x4d204,
2001 		0x4d210, 0x4d230,
2002 		0x4d240, 0x4d260,
2003 		0x4d268, 0x4d268,
2004 		0x4d280, 0x4d284,
2005 		0x4d2a0, 0x4d2b0,
2006 		0x4e0c0, 0x4e0e4,
2007 		0x4f000, 0x4f03c,
2008 		0x4f044, 0x4f08c,
2009 		0x4f200, 0x4f250,
2010 		0x4f400, 0x4f408,
2011 		0x4f414, 0x4f420,
2012 		0x4f600, 0x4f618,
2013 		0x4f800, 0x4f814,
2014 		0x50000, 0x50084,
2015 		0x50090, 0x500cc,
2016 		0x50400, 0x50400,
2017 		0x50800, 0x50884,
2018 		0x50890, 0x508cc,
2019 		0x50c00, 0x50c00,
2020 		0x51000, 0x5101c,
2021 		0x51300, 0x51308,
2022 	};
2023 
2024 	static const unsigned int t6_reg_ranges[] = {
2025 		0x1008, 0x101c,
2026 		0x1024, 0x10a8,
2027 		0x10b4, 0x10f8,
2028 		0x1100, 0x1114,
2029 		0x111c, 0x112c,
2030 		0x1138, 0x113c,
2031 		0x1144, 0x114c,
2032 		0x1180, 0x1184,
2033 		0x1190, 0x1194,
2034 		0x11a0, 0x11a4,
2035 		0x11b0, 0x11b4,
2036 		0x11fc, 0x1274,
2037 		0x1280, 0x133c,
2038 		0x1800, 0x18fc,
2039 		0x3000, 0x302c,
2040 		0x3060, 0x30b0,
2041 		0x30b8, 0x30d8,
2042 		0x30e0, 0x30fc,
2043 		0x3140, 0x357c,
2044 		0x35a8, 0x35cc,
2045 		0x35ec, 0x35ec,
2046 		0x3600, 0x5624,
2047 		0x56cc, 0x56ec,
2048 		0x56f4, 0x5720,
2049 		0x5728, 0x575c,
2050 		0x580c, 0x5814,
2051 		0x5890, 0x589c,
2052 		0x58a4, 0x58ac,
2053 		0x58b8, 0x58bc,
2054 		0x5940, 0x595c,
2055 		0x5980, 0x598c,
2056 		0x59b0, 0x59c8,
2057 		0x59d0, 0x59dc,
2058 		0x59fc, 0x5a18,
2059 		0x5a60, 0x5a6c,
2060 		0x5a80, 0x5a8c,
2061 		0x5a94, 0x5a9c,
2062 		0x5b94, 0x5bfc,
2063 		0x5c10, 0x5e48,
2064 		0x5e50, 0x5e94,
2065 		0x5ea0, 0x5eb0,
2066 		0x5ec0, 0x5ec0,
2067 		0x5ec8, 0x5ed0,
2068 		0x5ee0, 0x5ee0,
2069 		0x5ef0, 0x5ef0,
2070 		0x5f00, 0x5f00,
2071 		0x6000, 0x6020,
2072 		0x6028, 0x6040,
2073 		0x6058, 0x609c,
2074 		0x60a8, 0x619c,
2075 		0x7700, 0x7798,
2076 		0x77c0, 0x7880,
2077 		0x78cc, 0x78fc,
2078 		0x7b00, 0x7b58,
2079 		0x7b60, 0x7b84,
2080 		0x7b8c, 0x7c54,
2081 		0x7d00, 0x7d38,
2082 		0x7d40, 0x7d84,
2083 		0x7d8c, 0x7ddc,
2084 		0x7de4, 0x7e04,
2085 		0x7e10, 0x7e1c,
2086 		0x7e24, 0x7e38,
2087 		0x7e40, 0x7e44,
2088 		0x7e4c, 0x7e78,
2089 		0x7e80, 0x7edc,
2090 		0x7ee8, 0x7efc,
2091 		0x8dc0, 0x8de4,
2092 		0x8df8, 0x8e04,
2093 		0x8e10, 0x8e84,
2094 		0x8ea0, 0x8f88,
2095 		0x8fb8, 0x9058,
2096 		0x9060, 0x9060,
2097 		0x9068, 0x90f8,
2098 		0x9100, 0x9124,
2099 		0x9400, 0x9470,
2100 		0x9600, 0x9600,
2101 		0x9608, 0x9638,
2102 		0x9640, 0x9704,
2103 		0x9710, 0x971c,
2104 		0x9800, 0x9808,
2105 		0x9820, 0x983c,
2106 		0x9850, 0x9864,
2107 		0x9c00, 0x9c6c,
2108 		0x9c80, 0x9cec,
2109 		0x9d00, 0x9d6c,
2110 		0x9d80, 0x9dec,
2111 		0x9e00, 0x9e6c,
2112 		0x9e80, 0x9eec,
2113 		0x9f00, 0x9f6c,
2114 		0x9f80, 0xa020,
2115 		0xd004, 0xd03c,
2116 		0xd100, 0xd118,
2117 		0xd200, 0xd214,
2118 		0xd220, 0xd234,
2119 		0xd240, 0xd254,
2120 		0xd260, 0xd274,
2121 		0xd280, 0xd294,
2122 		0xd2a0, 0xd2b4,
2123 		0xd2c0, 0xd2d4,
2124 		0xd2e0, 0xd2f4,
2125 		0xd300, 0xd31c,
2126 		0xdfc0, 0xdfe0,
2127 		0xe000, 0xf008,
2128 		0xf010, 0xf018,
2129 		0xf020, 0xf028,
2130 		0x11000, 0x11014,
2131 		0x11048, 0x1106c,
2132 		0x11074, 0x11088,
2133 		0x11098, 0x11120,
2134 		0x1112c, 0x1117c,
2135 		0x11190, 0x112e0,
2136 		0x11300, 0x1130c,
2137 		0x12000, 0x1206c,
2138 		0x19040, 0x1906c,
2139 		0x19078, 0x19080,
2140 		0x1908c, 0x190e8,
2141 		0x190f0, 0x190f8,
2142 		0x19100, 0x19110,
2143 		0x19120, 0x19124,
2144 		0x19150, 0x19194,
2145 		0x1919c, 0x191b0,
2146 		0x191d0, 0x191e8,
2147 		0x19238, 0x19290,
2148 		0x192a4, 0x192b0,
2149 		0x192bc, 0x192bc,
2150 		0x19348, 0x1934c,
2151 		0x193f8, 0x19418,
2152 		0x19420, 0x19428,
2153 		0x19430, 0x19444,
2154 		0x1944c, 0x1946c,
2155 		0x19474, 0x19474,
2156 		0x19490, 0x194cc,
2157 		0x194f0, 0x194f8,
2158 		0x19c00, 0x19c48,
2159 		0x19c50, 0x19c80,
2160 		0x19c94, 0x19c98,
2161 		0x19ca0, 0x19cbc,
2162 		0x19ce4, 0x19ce4,
2163 		0x19cf0, 0x19cf8,
2164 		0x19d00, 0x19d28,
2165 		0x19d50, 0x19d78,
2166 		0x19d94, 0x19d98,
2167 		0x19da0, 0x19dc8,
2168 		0x19df0, 0x19e10,
2169 		0x19e50, 0x19e6c,
2170 		0x19ea0, 0x19ebc,
2171 		0x19ec4, 0x19ef4,
2172 		0x19f04, 0x19f2c,
2173 		0x19f34, 0x19f34,
2174 		0x19f40, 0x19f50,
2175 		0x19f90, 0x19fac,
2176 		0x19fc4, 0x19fc8,
2177 		0x19fd0, 0x19fe4,
2178 		0x1a000, 0x1a004,
2179 		0x1a010, 0x1a06c,
2180 		0x1a0b0, 0x1a0e4,
2181 		0x1a0ec, 0x1a0f8,
2182 		0x1a100, 0x1a108,
2183 		0x1a114, 0x1a120,
2184 		0x1a128, 0x1a130,
2185 		0x1a138, 0x1a138,
2186 		0x1a190, 0x1a1c4,
2187 		0x1a1fc, 0x1a1fc,
2188 		0x1e008, 0x1e00c,
2189 		0x1e040, 0x1e044,
2190 		0x1e04c, 0x1e04c,
2191 		0x1e284, 0x1e290,
2192 		0x1e2c0, 0x1e2c0,
2193 		0x1e2e0, 0x1e2e0,
2194 		0x1e300, 0x1e384,
2195 		0x1e3c0, 0x1e3c8,
2196 		0x1e408, 0x1e40c,
2197 		0x1e440, 0x1e444,
2198 		0x1e44c, 0x1e44c,
2199 		0x1e684, 0x1e690,
2200 		0x1e6c0, 0x1e6c0,
2201 		0x1e6e0, 0x1e6e0,
2202 		0x1e700, 0x1e784,
2203 		0x1e7c0, 0x1e7c8,
2204 		0x1e808, 0x1e80c,
2205 		0x1e840, 0x1e844,
2206 		0x1e84c, 0x1e84c,
2207 		0x1ea84, 0x1ea90,
2208 		0x1eac0, 0x1eac0,
2209 		0x1eae0, 0x1eae0,
2210 		0x1eb00, 0x1eb84,
2211 		0x1ebc0, 0x1ebc8,
2212 		0x1ec08, 0x1ec0c,
2213 		0x1ec40, 0x1ec44,
2214 		0x1ec4c, 0x1ec4c,
2215 		0x1ee84, 0x1ee90,
2216 		0x1eec0, 0x1eec0,
2217 		0x1eee0, 0x1eee0,
2218 		0x1ef00, 0x1ef84,
2219 		0x1efc0, 0x1efc8,
2220 		0x1f008, 0x1f00c,
2221 		0x1f040, 0x1f044,
2222 		0x1f04c, 0x1f04c,
2223 		0x1f284, 0x1f290,
2224 		0x1f2c0, 0x1f2c0,
2225 		0x1f2e0, 0x1f2e0,
2226 		0x1f300, 0x1f384,
2227 		0x1f3c0, 0x1f3c8,
2228 		0x1f408, 0x1f40c,
2229 		0x1f440, 0x1f444,
2230 		0x1f44c, 0x1f44c,
2231 		0x1f684, 0x1f690,
2232 		0x1f6c0, 0x1f6c0,
2233 		0x1f6e0, 0x1f6e0,
2234 		0x1f700, 0x1f784,
2235 		0x1f7c0, 0x1f7c8,
2236 		0x1f808, 0x1f80c,
2237 		0x1f840, 0x1f844,
2238 		0x1f84c, 0x1f84c,
2239 		0x1fa84, 0x1fa90,
2240 		0x1fac0, 0x1fac0,
2241 		0x1fae0, 0x1fae0,
2242 		0x1fb00, 0x1fb84,
2243 		0x1fbc0, 0x1fbc8,
2244 		0x1fc08, 0x1fc0c,
2245 		0x1fc40, 0x1fc44,
2246 		0x1fc4c, 0x1fc4c,
2247 		0x1fe84, 0x1fe90,
2248 		0x1fec0, 0x1fec0,
2249 		0x1fee0, 0x1fee0,
2250 		0x1ff00, 0x1ff84,
2251 		0x1ffc0, 0x1ffc8,
2252 		0x30000, 0x30030,
2253 		0x30100, 0x30168,
2254 		0x30190, 0x301a0,
2255 		0x301a8, 0x301b8,
2256 		0x301c4, 0x301c8,
2257 		0x301d0, 0x301d0,
2258 		0x30200, 0x30320,
2259 		0x30400, 0x304b4,
2260 		0x304c0, 0x3052c,
2261 		0x30540, 0x3061c,
2262 		0x30800, 0x308a0,
2263 		0x308c0, 0x30908,
2264 		0x30910, 0x309b8,
2265 		0x30a00, 0x30a04,
2266 		0x30a0c, 0x30a14,
2267 		0x30a1c, 0x30a2c,
2268 		0x30a44, 0x30a50,
2269 		0x30a74, 0x30a74,
2270 		0x30a7c, 0x30afc,
2271 		0x30b08, 0x30c24,
2272 		0x30d00, 0x30d14,
2273 		0x30d1c, 0x30d3c,
2274 		0x30d44, 0x30d4c,
2275 		0x30d54, 0x30d74,
2276 		0x30d7c, 0x30d7c,
2277 		0x30de0, 0x30de0,
2278 		0x30e00, 0x30ed4,
2279 		0x30f00, 0x30fa4,
2280 		0x30fc0, 0x30fc4,
2281 		0x31000, 0x31004,
2282 		0x31080, 0x310fc,
2283 		0x31208, 0x31220,
2284 		0x3123c, 0x31254,
2285 		0x31300, 0x31300,
2286 		0x31308, 0x3131c,
2287 		0x31338, 0x3133c,
2288 		0x31380, 0x31380,
2289 		0x31388, 0x313a8,
2290 		0x313b4, 0x313b4,
2291 		0x31400, 0x31420,
2292 		0x31438, 0x3143c,
2293 		0x31480, 0x31480,
2294 		0x314a8, 0x314a8,
2295 		0x314b0, 0x314b4,
2296 		0x314c8, 0x314d4,
2297 		0x31a40, 0x31a4c,
2298 		0x31af0, 0x31b20,
2299 		0x31b38, 0x31b3c,
2300 		0x31b80, 0x31b80,
2301 		0x31ba8, 0x31ba8,
2302 		0x31bb0, 0x31bb4,
2303 		0x31bc8, 0x31bd4,
2304 		0x32140, 0x3218c,
2305 		0x321f0, 0x321f4,
2306 		0x32200, 0x32200,
2307 		0x32218, 0x32218,
2308 		0x32400, 0x32400,
2309 		0x32408, 0x3241c,
2310 		0x32618, 0x32620,
2311 		0x32664, 0x32664,
2312 		0x326a8, 0x326a8,
2313 		0x326ec, 0x326ec,
2314 		0x32a00, 0x32abc,
2315 		0x32b00, 0x32b18,
2316 		0x32b20, 0x32b38,
2317 		0x32b40, 0x32b58,
2318 		0x32b60, 0x32b78,
2319 		0x32c00, 0x32c00,
2320 		0x32c08, 0x32c3c,
2321 		0x33000, 0x3302c,
2322 		0x33034, 0x33050,
2323 		0x33058, 0x33058,
2324 		0x33060, 0x3308c,
2325 		0x3309c, 0x330ac,
2326 		0x330c0, 0x330c0,
2327 		0x330c8, 0x330d0,
2328 		0x330d8, 0x330e0,
2329 		0x330ec, 0x3312c,
2330 		0x33134, 0x33150,
2331 		0x33158, 0x33158,
2332 		0x33160, 0x3318c,
2333 		0x3319c, 0x331ac,
2334 		0x331c0, 0x331c0,
2335 		0x331c8, 0x331d0,
2336 		0x331d8, 0x331e0,
2337 		0x331ec, 0x33290,
2338 		0x33298, 0x332c4,
2339 		0x332e4, 0x33390,
2340 		0x33398, 0x333c4,
2341 		0x333e4, 0x3342c,
2342 		0x33434, 0x33450,
2343 		0x33458, 0x33458,
2344 		0x33460, 0x3348c,
2345 		0x3349c, 0x334ac,
2346 		0x334c0, 0x334c0,
2347 		0x334c8, 0x334d0,
2348 		0x334d8, 0x334e0,
2349 		0x334ec, 0x3352c,
2350 		0x33534, 0x33550,
2351 		0x33558, 0x33558,
2352 		0x33560, 0x3358c,
2353 		0x3359c, 0x335ac,
2354 		0x335c0, 0x335c0,
2355 		0x335c8, 0x335d0,
2356 		0x335d8, 0x335e0,
2357 		0x335ec, 0x33690,
2358 		0x33698, 0x336c4,
2359 		0x336e4, 0x33790,
2360 		0x33798, 0x337c4,
2361 		0x337e4, 0x337fc,
2362 		0x33814, 0x33814,
2363 		0x33854, 0x33868,
2364 		0x33880, 0x3388c,
2365 		0x338c0, 0x338d0,
2366 		0x338e8, 0x338ec,
2367 		0x33900, 0x3392c,
2368 		0x33934, 0x33950,
2369 		0x33958, 0x33958,
2370 		0x33960, 0x3398c,
2371 		0x3399c, 0x339ac,
2372 		0x339c0, 0x339c0,
2373 		0x339c8, 0x339d0,
2374 		0x339d8, 0x339e0,
2375 		0x339ec, 0x33a90,
2376 		0x33a98, 0x33ac4,
2377 		0x33ae4, 0x33b10,
2378 		0x33b24, 0x33b28,
2379 		0x33b38, 0x33b50,
2380 		0x33bf0, 0x33c10,
2381 		0x33c24, 0x33c28,
2382 		0x33c38, 0x33c50,
2383 		0x33cf0, 0x33cfc,
2384 		0x34000, 0x34030,
2385 		0x34100, 0x34168,
2386 		0x34190, 0x341a0,
2387 		0x341a8, 0x341b8,
2388 		0x341c4, 0x341c8,
2389 		0x341d0, 0x341d0,
2390 		0x34200, 0x34320,
2391 		0x34400, 0x344b4,
2392 		0x344c0, 0x3452c,
2393 		0x34540, 0x3461c,
2394 		0x34800, 0x348a0,
2395 		0x348c0, 0x34908,
2396 		0x34910, 0x349b8,
2397 		0x34a00, 0x34a04,
2398 		0x34a0c, 0x34a14,
2399 		0x34a1c, 0x34a2c,
2400 		0x34a44, 0x34a50,
2401 		0x34a74, 0x34a74,
2402 		0x34a7c, 0x34afc,
2403 		0x34b08, 0x34c24,
2404 		0x34d00, 0x34d14,
2405 		0x34d1c, 0x34d3c,
2406 		0x34d44, 0x34d4c,
2407 		0x34d54, 0x34d74,
2408 		0x34d7c, 0x34d7c,
2409 		0x34de0, 0x34de0,
2410 		0x34e00, 0x34ed4,
2411 		0x34f00, 0x34fa4,
2412 		0x34fc0, 0x34fc4,
2413 		0x35000, 0x35004,
2414 		0x35080, 0x350fc,
2415 		0x35208, 0x35220,
2416 		0x3523c, 0x35254,
2417 		0x35300, 0x35300,
2418 		0x35308, 0x3531c,
2419 		0x35338, 0x3533c,
2420 		0x35380, 0x35380,
2421 		0x35388, 0x353a8,
2422 		0x353b4, 0x353b4,
2423 		0x35400, 0x35420,
2424 		0x35438, 0x3543c,
2425 		0x35480, 0x35480,
2426 		0x354a8, 0x354a8,
2427 		0x354b0, 0x354b4,
2428 		0x354c8, 0x354d4,
2429 		0x35a40, 0x35a4c,
2430 		0x35af0, 0x35b20,
2431 		0x35b38, 0x35b3c,
2432 		0x35b80, 0x35b80,
2433 		0x35ba8, 0x35ba8,
2434 		0x35bb0, 0x35bb4,
2435 		0x35bc8, 0x35bd4,
2436 		0x36140, 0x3618c,
2437 		0x361f0, 0x361f4,
2438 		0x36200, 0x36200,
2439 		0x36218, 0x36218,
2440 		0x36400, 0x36400,
2441 		0x36408, 0x3641c,
2442 		0x36618, 0x36620,
2443 		0x36664, 0x36664,
2444 		0x366a8, 0x366a8,
2445 		0x366ec, 0x366ec,
2446 		0x36a00, 0x36abc,
2447 		0x36b00, 0x36b18,
2448 		0x36b20, 0x36b38,
2449 		0x36b40, 0x36b58,
2450 		0x36b60, 0x36b78,
2451 		0x36c00, 0x36c00,
2452 		0x36c08, 0x36c3c,
2453 		0x37000, 0x3702c,
2454 		0x37034, 0x37050,
2455 		0x37058, 0x37058,
2456 		0x37060, 0x3708c,
2457 		0x3709c, 0x370ac,
2458 		0x370c0, 0x370c0,
2459 		0x370c8, 0x370d0,
2460 		0x370d8, 0x370e0,
2461 		0x370ec, 0x3712c,
2462 		0x37134, 0x37150,
2463 		0x37158, 0x37158,
2464 		0x37160, 0x3718c,
2465 		0x3719c, 0x371ac,
2466 		0x371c0, 0x371c0,
2467 		0x371c8, 0x371d0,
2468 		0x371d8, 0x371e0,
2469 		0x371ec, 0x37290,
2470 		0x37298, 0x372c4,
2471 		0x372e4, 0x37390,
2472 		0x37398, 0x373c4,
2473 		0x373e4, 0x3742c,
2474 		0x37434, 0x37450,
2475 		0x37458, 0x37458,
2476 		0x37460, 0x3748c,
2477 		0x3749c, 0x374ac,
2478 		0x374c0, 0x374c0,
2479 		0x374c8, 0x374d0,
2480 		0x374d8, 0x374e0,
2481 		0x374ec, 0x3752c,
2482 		0x37534, 0x37550,
2483 		0x37558, 0x37558,
2484 		0x37560, 0x3758c,
2485 		0x3759c, 0x375ac,
2486 		0x375c0, 0x375c0,
2487 		0x375c8, 0x375d0,
2488 		0x375d8, 0x375e0,
2489 		0x375ec, 0x37690,
2490 		0x37698, 0x376c4,
2491 		0x376e4, 0x37790,
2492 		0x37798, 0x377c4,
2493 		0x377e4, 0x377fc,
2494 		0x37814, 0x37814,
2495 		0x37854, 0x37868,
2496 		0x37880, 0x3788c,
2497 		0x378c0, 0x378d0,
2498 		0x378e8, 0x378ec,
2499 		0x37900, 0x3792c,
2500 		0x37934, 0x37950,
2501 		0x37958, 0x37958,
2502 		0x37960, 0x3798c,
2503 		0x3799c, 0x379ac,
2504 		0x379c0, 0x379c0,
2505 		0x379c8, 0x379d0,
2506 		0x379d8, 0x379e0,
2507 		0x379ec, 0x37a90,
2508 		0x37a98, 0x37ac4,
2509 		0x37ae4, 0x37b10,
2510 		0x37b24, 0x37b28,
2511 		0x37b38, 0x37b50,
2512 		0x37bf0, 0x37c10,
2513 		0x37c24, 0x37c28,
2514 		0x37c38, 0x37c50,
2515 		0x37cf0, 0x37cfc,
2516 		0x40040, 0x40040,
2517 		0x40080, 0x40084,
2518 		0x40100, 0x40100,
2519 		0x40140, 0x401bc,
2520 		0x40200, 0x40214,
2521 		0x40228, 0x40228,
2522 		0x40240, 0x40258,
2523 		0x40280, 0x40280,
2524 		0x40304, 0x40304,
2525 		0x40330, 0x4033c,
2526 		0x41304, 0x413c8,
2527 		0x413d0, 0x413dc,
2528 		0x413f0, 0x413f0,
2529 		0x41400, 0x4140c,
2530 		0x41414, 0x4141c,
2531 		0x41480, 0x414d0,
2532 		0x44000, 0x4407c,
2533 		0x440c0, 0x441ac,
2534 		0x441b4, 0x4427c,
2535 		0x442c0, 0x443ac,
2536 		0x443b4, 0x4447c,
2537 		0x444c0, 0x445ac,
2538 		0x445b4, 0x4467c,
2539 		0x446c0, 0x447ac,
2540 		0x447b4, 0x4487c,
2541 		0x448c0, 0x449ac,
2542 		0x449b4, 0x44a7c,
2543 		0x44ac0, 0x44bac,
2544 		0x44bb4, 0x44c7c,
2545 		0x44cc0, 0x44dac,
2546 		0x44db4, 0x44e7c,
2547 		0x44ec0, 0x44fac,
2548 		0x44fb4, 0x4507c,
2549 		0x450c0, 0x451ac,
2550 		0x451b4, 0x451fc,
2551 		0x45800, 0x45804,
2552 		0x45810, 0x45830,
2553 		0x45840, 0x45860,
2554 		0x45868, 0x45868,
2555 		0x45880, 0x45884,
2556 		0x458a0, 0x458b0,
2557 		0x45a00, 0x45a04,
2558 		0x45a10, 0x45a30,
2559 		0x45a40, 0x45a60,
2560 		0x45a68, 0x45a68,
2561 		0x45a80, 0x45a84,
2562 		0x45aa0, 0x45ab0,
2563 		0x460c0, 0x460e4,
2564 		0x47000, 0x4703c,
2565 		0x47044, 0x4708c,
2566 		0x47200, 0x47250,
2567 		0x47400, 0x47408,
2568 		0x47414, 0x47420,
2569 		0x47600, 0x47618,
2570 		0x47800, 0x47814,
2571 		0x47820, 0x4782c,
2572 		0x50000, 0x50084,
2573 		0x50090, 0x500cc,
2574 		0x50300, 0x50384,
2575 		0x50400, 0x50400,
2576 		0x50800, 0x50884,
2577 		0x50890, 0x508cc,
2578 		0x50b00, 0x50b84,
2579 		0x50c00, 0x50c00,
2580 		0x51000, 0x51020,
2581 		0x51028, 0x510b0,
2582 		0x51300, 0x51324,
2583 	};
2584 
2585 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2586 	const unsigned int *reg_ranges;
2587 	int reg_ranges_size, range;
2588 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2589 
2590 	/* Select the right set of register ranges to dump depending on the
2591 	 * adapter chip type.
2592 	 */
2593 	switch (chip_version) {
2594 	case CHELSIO_T4:
2595 		reg_ranges = t4_reg_ranges;
2596 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2597 		break;
2598 
2599 	case CHELSIO_T5:
2600 		reg_ranges = t5_reg_ranges;
2601 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2602 		break;
2603 
2604 	case CHELSIO_T6:
2605 		reg_ranges = t6_reg_ranges;
2606 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2607 		break;
2608 
2609 	default:
2610 		dev_err(adap->pdev_dev,
2611 			"Unsupported chip version %d\n", chip_version);
2612 		return;
2613 	}
2614 
2615 	/* Clear the register buffer and insert the appropriate register
2616 	 * values selected by the above register ranges.
2617 	 */
2618 	memset(buf, 0, buf_size);
2619 	for (range = 0; range < reg_ranges_size; range += 2) {
2620 		unsigned int reg = reg_ranges[range];
2621 		unsigned int last_reg = reg_ranges[range + 1];
2622 		u32 *bufp = (u32 *)((char *)buf + reg);
2623 
2624 		/* Iterate across the register range filling in the register
2625 		 * buffer but don't write past the end of the register buffer.
2626 		 */
2627 		while (reg <= last_reg && bufp < buf_end) {
2628 			*bufp++ = t4_read_reg(adap, reg);
2629 			reg += sizeof(u32);
2630 		}
2631 	}
2632 }
2633 
2634 #define EEPROM_STAT_ADDR   0x7bfc
2635 #define VPD_SIZE           0x800
2636 #define VPD_BASE           0x400
2637 #define VPD_BASE_OLD       0
2638 #define VPD_LEN            1024
2639 #define CHELSIO_VPD_UNIQUE_ID 0x82
2640 
2641 /**
2642  * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2643  * @phys_addr: the physical EEPROM address
2644  * @fn: the PCI function number
2645  * @sz: size of function-specific area
2646  *
2647  * Translate a physical EEPROM address to virtual.  The first 1K is
2648  * accessed through virtual addresses starting at 31K, the rest is
2649  * accessed through virtual addresses starting at 0.
2650  *
2651  * The mapping is as follows:
2652  * [0..1K) -> [31K..32K)
2653  * [1K..1K+A) -> [31K-A..31K)
2654  * [1K+A..ES) -> [0..ES-A-1K)
2655  *
2656  * where A = @fn * @sz, and ES = EEPROM size.
2657  */
2658 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2659 {
2660 	fn *= sz;
2661 	if (phys_addr < 1024)
2662 		return phys_addr + (31 << 10);
2663 	if (phys_addr < 1024 + fn)
2664 		return 31744 - fn + phys_addr - 1024;
2665 	if (phys_addr < EEPROMSIZE)
2666 		return phys_addr - 1024 - fn;
2667 	return -EINVAL;
2668 }
2669 
2670 /**
2671  *	t4_seeprom_wp - enable/disable EEPROM write protection
2672  *	@adapter: the adapter
2673  *	@enable: whether to enable or disable write protection
2674  *
2675  *	Enables or disables write protection on the serial EEPROM.
2676  */
2677 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2678 {
2679 	unsigned int v = enable ? 0xc : 0;
2680 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2681 	return ret < 0 ? ret : 0;
2682 }
2683 
2684 /**
2685  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2686  *	@adapter: adapter to read
2687  *	@p: where to store the parameters
2688  *
2689  *	Reads card parameters stored in VPD EEPROM.
2690  */
2691 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2692 {
2693 	int i, ret = 0, addr;
2694 	int ec, sn, pn, na;
2695 	u8 *vpd, csum;
2696 	unsigned int vpdr_len, kw_offset, id_len;
2697 
2698 	vpd = vmalloc(VPD_LEN);
2699 	if (!vpd)
2700 		return -ENOMEM;
2701 
2702 	/* We have two VPD data structures stored in the adapter VPD area.
2703 	 * By default, Linux calculates the size of the VPD area by traversing
2704 	 * the first VPD area at offset 0x0, so we need to tell the OS what
2705 	 * our real VPD size is.
2706 	 */
2707 	ret = pci_set_vpd_size(adapter->pdev, VPD_SIZE);
2708 	if (ret < 0)
2709 		goto out;
2710 
2711 	/* Card information normally starts at VPD_BASE but early cards had
2712 	 * it at 0.
2713 	 */
2714 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2715 	if (ret < 0)
2716 		goto out;
2717 
2718 	/* The VPD shall have a unique identifier specified by the PCI SIG.
2719 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2720 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2721 	 * is expected to automatically put this entry at the
2722 	 * beginning of the VPD.
2723 	 */
2724 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2725 
2726 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2727 	if (ret < 0)
2728 		goto out;
2729 
2730 	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2731 		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2732 		ret = -EINVAL;
2733 		goto out;
2734 	}
2735 
2736 	id_len = pci_vpd_lrdt_size(vpd);
2737 	if (id_len > ID_LEN)
2738 		id_len = ID_LEN;
2739 
2740 	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2741 	if (i < 0) {
2742 		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2743 		ret = -EINVAL;
2744 		goto out;
2745 	}
2746 
2747 	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2748 	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2749 	if (vpdr_len + kw_offset > VPD_LEN) {
2750 		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2751 		ret = -EINVAL;
2752 		goto out;
2753 	}
2754 
2755 #define FIND_VPD_KW(var, name) do { \
2756 	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2757 	if (var < 0) { \
2758 		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2759 		ret = -EINVAL; \
2760 		goto out; \
2761 	} \
2762 	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2763 } while (0)
2764 
2765 	FIND_VPD_KW(i, "RV");
2766 	for (csum = 0; i >= 0; i--)
2767 		csum += vpd[i];
2768 
2769 	if (csum) {
2770 		dev_err(adapter->pdev_dev,
2771 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2772 		ret = -EINVAL;
2773 		goto out;
2774 	}
2775 
2776 	FIND_VPD_KW(ec, "EC");
2777 	FIND_VPD_KW(sn, "SN");
2778 	FIND_VPD_KW(pn, "PN");
2779 	FIND_VPD_KW(na, "NA");
2780 #undef FIND_VPD_KW
2781 
2782 	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2783 	strim(p->id);
2784 	memcpy(p->ec, vpd + ec, EC_LEN);
2785 	strim(p->ec);
2786 	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2787 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2788 	strim(p->sn);
2789 	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2790 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2791 	strim(p->pn);
2792 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2793 	strim((char *)p->na);
2794 
2795 out:
2796 	vfree(vpd);
2797 	return ret < 0 ? ret : 0;
2798 }
2799 
2800 /**
2801  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2802  *	@adapter: adapter to read
2803  *	@p: where to store the parameters
2804  *
2805  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2806  *	Clock.  This can only be called after a connection to the firmware
2807  *	is established.
2808  */
2809 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2810 {
2811 	u32 cclk_param, cclk_val;
2812 	int ret;
2813 
2814 	/* Grab the raw VPD parameters.
2815 	 */
2816 	ret = t4_get_raw_vpd_params(adapter, p);
2817 	if (ret)
2818 		return ret;
2819 
2820 	/* Ask firmware for the Core Clock since it knows how to translate the
2821 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2822 	 */
2823 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2824 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2825 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2826 			      1, &cclk_param, &cclk_val);
2827 
2828 	if (ret)
2829 		return ret;
2830 	p->cclk = cclk_val;
2831 
2832 	return 0;
2833 }
2834 
2835 /* serial flash and firmware constants */
2836 enum {
2837 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2838 
2839 	/* flash command opcodes */
2840 	SF_PROG_PAGE    = 2,          /* program page */
2841 	SF_WR_DISABLE   = 4,          /* disable writes */
2842 	SF_RD_STATUS    = 5,          /* read status register */
2843 	SF_WR_ENABLE    = 6,          /* enable writes */
2844 	SF_RD_DATA_FAST = 0xb,        /* read flash */
2845 	SF_RD_ID        = 0x9f,       /* read ID */
2846 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2847 };
2848 
2849 /**
2850  *	sf1_read - read data from the serial flash
2851  *	@adapter: the adapter
2852  *	@byte_cnt: number of bytes to read
2853  *	@cont: whether another operation will be chained
2854  *	@lock: whether to lock SF for PL access only
2855  *	@valp: where to store the read data
2856  *
2857  *	Reads up to 4 bytes of data from the serial flash.  The location of
2858  *	the read needs to be specified prior to calling this by issuing the
2859  *	appropriate commands to the serial flash.
2860  */
2861 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2862 		    int lock, u32 *valp)
2863 {
2864 	int ret;
2865 
2866 	if (!byte_cnt || byte_cnt > 4)
2867 		return -EINVAL;
2868 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2869 		return -EBUSY;
2870 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2871 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2872 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2873 	if (!ret)
2874 		*valp = t4_read_reg(adapter, SF_DATA_A);
2875 	return ret;
2876 }
2877 
2878 /**
2879  *	sf1_write - write data to the serial flash
2880  *	@adapter: the adapter
2881  *	@byte_cnt: number of bytes to write
2882  *	@cont: whether another operation will be chained
2883  *	@lock: whether to lock SF for PL access only
2884  *	@val: value to write
2885  *
2886  *	Writes up to 4 bytes of data to the serial flash.  The location of
2887  *	the write needs to be specified prior to calling this by issuing the
2888  *	appropriate commands to the serial flash.
2889  */
2890 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2891 		     int lock, u32 val)
2892 {
2893 	if (!byte_cnt || byte_cnt > 4)
2894 		return -EINVAL;
2895 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2896 		return -EBUSY;
2897 	t4_write_reg(adapter, SF_DATA_A, val);
2898 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2899 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2900 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2901 }
2902 
2903 /**
2904  *	flash_wait_op - wait for a flash operation to complete
2905  *	@adapter: the adapter
2906  *	@attempts: max number of polls of the status register
2907  *	@delay: delay between polls in ms
2908  *
2909  *	Wait for a flash operation to complete by polling the status register.
2910  */
2911 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2912 {
2913 	int ret;
2914 	u32 status;
2915 
2916 	while (1) {
2917 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2918 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2919 			return ret;
2920 		if (!(status & 1))
2921 			return 0;
2922 		if (--attempts == 0)
2923 			return -EAGAIN;
2924 		if (delay)
2925 			msleep(delay);
2926 	}
2927 }
2928 
2929 /**
2930  *	t4_read_flash - read words from serial flash
2931  *	@adapter: the adapter
2932  *	@addr: the start address for the read
2933  *	@nwords: how many 32-bit words to read
2934  *	@data: where to store the read data
2935  *	@byte_oriented: whether to store data as bytes or as words
2936  *
2937  *	Read the specified number of 32-bit words from the serial flash.
2938  *	If @byte_oriented is set the read data is stored as a byte array
2939  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
2940  *	natural endianness.
2941  */
2942 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2943 		  unsigned int nwords, u32 *data, int byte_oriented)
2944 {
2945 	int ret;
2946 
2947 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2948 		return -EINVAL;
2949 
2950 	addr = swab32(addr) | SF_RD_DATA_FAST;
2951 
2952 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2953 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2954 		return ret;
2955 
2956 	for ( ; nwords; nwords--, data++) {
2957 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2958 		if (nwords == 1)
2959 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2960 		if (ret)
2961 			return ret;
2962 		if (byte_oriented)
2963 			*data = (__force __u32)(cpu_to_be32(*data));
2964 	}
2965 	return 0;
2966 }
2967 
2968 /**
2969  *	t4_write_flash - write up to a page of data to the serial flash
2970  *	@adapter: the adapter
2971  *	@addr: the start address to write
2972  *	@n: length of data to write in bytes
2973  *	@data: the data to write
2974  *
2975  *	Writes up to a page of data (256 bytes) to the serial flash starting
2976  *	at the given address.  All the data must be written to the same page.
2977  */
2978 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2979 			  unsigned int n, const u8 *data)
2980 {
2981 	int ret;
2982 	u32 buf[64];
2983 	unsigned int i, c, left, val, offset = addr & 0xff;
2984 
2985 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
2986 		return -EINVAL;
2987 
2988 	val = swab32(addr) | SF_PROG_PAGE;
2989 
2990 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2991 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2992 		goto unlock;
2993 
2994 	for (left = n; left; left -= c) {
2995 		c = min(left, 4U);
2996 		for (val = 0, i = 0; i < c; ++i)
2997 			val = (val << 8) + *data++;
2998 
2999 		ret = sf1_write(adapter, c, c != left, 1, val);
3000 		if (ret)
3001 			goto unlock;
3002 	}
3003 	ret = flash_wait_op(adapter, 8, 1);
3004 	if (ret)
3005 		goto unlock;
3006 
3007 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3008 
3009 	/* Read the page to verify the write succeeded */
3010 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
3011 	if (ret)
3012 		return ret;
3013 
3014 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3015 		dev_err(adapter->pdev_dev,
3016 			"failed to correctly write the flash page at %#x\n",
3017 			addr);
3018 		return -EIO;
3019 	}
3020 	return 0;
3021 
3022 unlock:
3023 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3024 	return ret;
3025 }
3026 
3027 /**
3028  *	t4_get_fw_version - read the firmware version
3029  *	@adapter: the adapter
3030  *	@vers: where to place the version
3031  *
3032  *	Reads the FW version from flash.
3033  */
3034 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3035 {
3036 	return t4_read_flash(adapter, FLASH_FW_START +
3037 			     offsetof(struct fw_hdr, fw_ver), 1,
3038 			     vers, 0);
3039 }
3040 
3041 /**
3042  *	t4_get_bs_version - read the firmware bootstrap version
3043  *	@adapter: the adapter
3044  *	@vers: where to place the version
3045  *
3046  *	Reads the FW Bootstrap version from flash.
3047  */
3048 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3049 {
3050 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3051 			     offsetof(struct fw_hdr, fw_ver), 1,
3052 			     vers, 0);
3053 }
3054 
3055 /**
3056  *	t4_get_tp_version - read the TP microcode version
3057  *	@adapter: the adapter
3058  *	@vers: where to place the version
3059  *
3060  *	Reads the TP microcode version from flash.
3061  */
3062 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3063 {
3064 	return t4_read_flash(adapter, FLASH_FW_START +
3065 			     offsetof(struct fw_hdr, tp_microcode_ver),
3066 			     1, vers, 0);
3067 }
3068 
3069 /**
3070  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3071  *	@adapter: the adapter
3072  *	@vers: where to place the version
3073  *
3074  *	Reads the Expansion ROM header from FLASH and returns the version
3075  *	number (if present) through the @vers return value pointer.  We return
3076  *	this in the Firmware Version Format since it's convenient.  Return
3077  *	0 on success, -ENOENT if no Expansion ROM is present.
3078  */
3079 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3080 {
3081 	struct exprom_header {
3082 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3083 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3084 	} *hdr;
3085 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3086 					   sizeof(u32))];
3087 	int ret;
3088 
3089 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3090 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3091 			    0);
3092 	if (ret)
3093 		return ret;
3094 
3095 	hdr = (struct exprom_header *)exprom_header_buf;
3096 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3097 		return -ENOENT;
3098 
3099 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3100 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3101 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3102 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3103 	return 0;
3104 }
3105 
3106 /**
3107  *      t4_get_vpd_version - return the VPD version
3108  *      @adapter: the adapter
3109  *      @vers: where to place the version
3110  *
3111  *      Reads the VPD via the Firmware interface (thus this can only be called
3112  *      once we're ready to issue Firmware commands).  The format of the
3113  *      VPD version is adapter specific.  Returns 0 on success, an error on
3114  *      failure.
3115  *
3116  *      Note that early versions of the Firmware didn't include the ability
3117  *      to retrieve the VPD version, so we zero-out the return-value parameter
3118  *      in that case to avoid leaving it with garbage in it.
3119  *
3120  *      Also note that the Firmware will return its cached copy of the VPD
3121  *      Revision ID, not the actual Revision ID as written in the Serial
3122  *      EEPROM.  This is only an issue if a new VPD has been written and the
3123  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3124  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3125  *      if the Host Driver will be performing a full adapter initialization.
3126  */
3127 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3128 {
3129 	u32 vpdrev_param;
3130 	int ret;
3131 
3132 	vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3133 			FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3134 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3135 			      1, &vpdrev_param, vers);
3136 	if (ret)
3137 		*vers = 0;
3138 	return ret;
3139 }
3140 
3141 /**
3142  *      t4_get_scfg_version - return the Serial Configuration version
3143  *      @adapter: the adapter
3144  *      @vers: where to place the version
3145  *
3146  *      Reads the Serial Configuration Version via the Firmware interface
3147  *      (thus this can only be called once we're ready to issue Firmware
3148  *      commands).  The format of the Serial Configuration version is
3149  *      adapter specific.  Returns 0 on success, an error on failure.
3150  *
3151  *      Note that early versions of the Firmware didn't include the ability
3152  *      to retrieve the Serial Configuration version, so we zero-out the
3153  *      return-value parameter in that case to avoid leaving it with
3154  *      garbage in it.
3155  *
3156  *      Also note that the Firmware will return its cached copy of the Serial
3157  *      Initialization Revision ID, not the actual Revision ID as written in
3158  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3159  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3160  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3161  *      been issued if the Host Driver will be performing a full adapter
3162  *      initialization.
3163  */
3164 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3165 {
3166 	u32 scfgrev_param;
3167 	int ret;
3168 
3169 	scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3170 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3171 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3172 			      1, &scfgrev_param, vers);
3173 	if (ret)
3174 		*vers = 0;
3175 	return ret;
3176 }
3177 
3178 /**
3179  *      t4_get_version_info - extract various chip/firmware version information
3180  *      @adapter: the adapter
3181  *
3182  *      Reads various chip/firmware version numbers and stores them into the
3183  *      adapter Adapter Parameters structure.  If any of the efforts fails
3184  *      the first failure will be returned, but all of the version numbers
3185  *      will be read.
3186  */
3187 int t4_get_version_info(struct adapter *adapter)
3188 {
3189 	int ret = 0;
3190 
3191 	#define FIRST_RET(__getvinfo) \
3192 	do { \
3193 		int __ret = __getvinfo; \
3194 		if (__ret && !ret) \
3195 			ret = __ret; \
3196 	} while (0)
3197 
3198 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3199 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3200 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3201 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3202 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3203 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3204 
3205 	#undef FIRST_RET
3206 	return ret;
3207 }
3208 
3209 /**
3210  *      t4_dump_version_info - dump all of the adapter configuration IDs
3211  *      @adapter: the adapter
3212  *
3213  *      Dumps all of the various bits of adapter configuration version/revision
3214  *      IDs information.  This is typically called at some point after
3215  *      t4_get_version_info() has been called.
3216  */
3217 void t4_dump_version_info(struct adapter *adapter)
3218 {
3219 	/* Device information */
3220 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3221 		 adapter->params.vpd.id,
3222 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
3223 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3224 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
3225 
3226 	/* Firmware Version */
3227 	if (!adapter->params.fw_vers)
3228 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3229 	else
3230 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3231 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3232 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3233 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3234 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3235 
3236 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3237 	 * Firmware, so dev_info() is more appropriate here.)
3238 	 */
3239 	if (!adapter->params.bs_vers)
3240 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3241 	else
3242 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3243 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3244 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3245 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3246 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3247 
3248 	/* TP Microcode Version */
3249 	if (!adapter->params.tp_vers)
3250 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3251 	else
3252 		dev_info(adapter->pdev_dev,
3253 			 "TP Microcode version: %u.%u.%u.%u\n",
3254 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3255 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3256 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3257 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3258 
3259 	/* Expansion ROM version */
3260 	if (!adapter->params.er_vers)
3261 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3262 	else
3263 		dev_info(adapter->pdev_dev,
3264 			 "Expansion ROM version: %u.%u.%u.%u\n",
3265 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3266 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3267 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3268 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3269 
3270 	/* Serial Configuration version */
3271 	dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3272 		 adapter->params.scfg_vers);
3273 
3274 	/* VPD Version */
3275 	dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3276 		 adapter->params.vpd_vers);
3277 }
3278 
3279 /**
3280  *	t4_check_fw_version - check if the FW is supported with this driver
3281  *	@adap: the adapter
3282  *
3283  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
3284  *	if there's exact match, a negative error if the version could not be
3285  *	read or there's a major version mismatch
3286  */
3287 int t4_check_fw_version(struct adapter *adap)
3288 {
3289 	int i, ret, major, minor, micro;
3290 	int exp_major, exp_minor, exp_micro;
3291 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3292 
3293 	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3294 	/* Try multiple times before returning error */
3295 	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3296 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3297 
3298 	if (ret)
3299 		return ret;
3300 
3301 	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3302 	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3303 	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3304 
3305 	switch (chip_version) {
3306 	case CHELSIO_T4:
3307 		exp_major = T4FW_MIN_VERSION_MAJOR;
3308 		exp_minor = T4FW_MIN_VERSION_MINOR;
3309 		exp_micro = T4FW_MIN_VERSION_MICRO;
3310 		break;
3311 	case CHELSIO_T5:
3312 		exp_major = T5FW_MIN_VERSION_MAJOR;
3313 		exp_minor = T5FW_MIN_VERSION_MINOR;
3314 		exp_micro = T5FW_MIN_VERSION_MICRO;
3315 		break;
3316 	case CHELSIO_T6:
3317 		exp_major = T6FW_MIN_VERSION_MAJOR;
3318 		exp_minor = T6FW_MIN_VERSION_MINOR;
3319 		exp_micro = T6FW_MIN_VERSION_MICRO;
3320 		break;
3321 	default:
3322 		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3323 			adap->chip);
3324 		return -EINVAL;
3325 	}
3326 
3327 	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3328 	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3329 		dev_err(adap->pdev_dev,
3330 			"Card has firmware version %u.%u.%u, minimum "
3331 			"supported firmware is %u.%u.%u.\n", major, minor,
3332 			micro, exp_major, exp_minor, exp_micro);
3333 		return -EFAULT;
3334 	}
3335 	return 0;
3336 }
3337 
3338 /* Is the given firmware API compatible with the one the driver was compiled
3339  * with?
3340  */
3341 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3342 {
3343 
3344 	/* short circuit if it's the exact same firmware version */
3345 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3346 		return 1;
3347 
3348 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3349 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3350 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3351 		return 1;
3352 #undef SAME_INTF
3353 
3354 	return 0;
3355 }
3356 
3357 /* The firmware in the filesystem is usable, but should it be installed?
3358  * This routine explains itself in detail if it indicates the filesystem
3359  * firmware should be installed.
3360  */
3361 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3362 				int k, int c)
3363 {
3364 	const char *reason;
3365 
3366 	if (!card_fw_usable) {
3367 		reason = "incompatible or unusable";
3368 		goto install;
3369 	}
3370 
3371 	if (k > c) {
3372 		reason = "older than the version supported with this driver";
3373 		goto install;
3374 	}
3375 
3376 	return 0;
3377 
3378 install:
3379 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3380 		"installing firmware %u.%u.%u.%u on card.\n",
3381 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3382 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3383 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3384 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3385 
3386 	return 1;
3387 }
3388 
3389 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3390 	       const u8 *fw_data, unsigned int fw_size,
3391 	       struct fw_hdr *card_fw, enum dev_state state,
3392 	       int *reset)
3393 {
3394 	int ret, card_fw_usable, fs_fw_usable;
3395 	const struct fw_hdr *fs_fw;
3396 	const struct fw_hdr *drv_fw;
3397 
3398 	drv_fw = &fw_info->fw_hdr;
3399 
3400 	/* Read the header of the firmware on the card */
3401 	ret = -t4_read_flash(adap, FLASH_FW_START,
3402 			    sizeof(*card_fw) / sizeof(uint32_t),
3403 			    (uint32_t *)card_fw, 1);
3404 	if (ret == 0) {
3405 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3406 	} else {
3407 		dev_err(adap->pdev_dev,
3408 			"Unable to read card's firmware header: %d\n", ret);
3409 		card_fw_usable = 0;
3410 	}
3411 
3412 	if (fw_data != NULL) {
3413 		fs_fw = (const void *)fw_data;
3414 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3415 	} else {
3416 		fs_fw = NULL;
3417 		fs_fw_usable = 0;
3418 	}
3419 
3420 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3421 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3422 		/* Common case: the firmware on the card is an exact match and
3423 		 * the filesystem one is an exact match too, or the filesystem
3424 		 * one is absent/incompatible.
3425 		 */
3426 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3427 		   should_install_fs_fw(adap, card_fw_usable,
3428 					be32_to_cpu(fs_fw->fw_ver),
3429 					be32_to_cpu(card_fw->fw_ver))) {
3430 		ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3431 				     fw_size, 0);
3432 		if (ret != 0) {
3433 			dev_err(adap->pdev_dev,
3434 				"failed to install firmware: %d\n", ret);
3435 			goto bye;
3436 		}
3437 
3438 		/* Installed successfully, update the cached header too. */
3439 		*card_fw = *fs_fw;
3440 		card_fw_usable = 1;
3441 		*reset = 0;	/* already reset as part of load_fw */
3442 	}
3443 
3444 	if (!card_fw_usable) {
3445 		uint32_t d, c, k;
3446 
3447 		d = be32_to_cpu(drv_fw->fw_ver);
3448 		c = be32_to_cpu(card_fw->fw_ver);
3449 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3450 
3451 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3452 			"chip state %d, "
3453 			"driver compiled with %d.%d.%d.%d, "
3454 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3455 			state,
3456 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3457 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3458 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3459 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3460 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3461 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3462 		ret = EINVAL;
3463 		goto bye;
3464 	}
3465 
3466 	/* We're using whatever's on the card and it's known to be good. */
3467 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3468 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3469 
3470 bye:
3471 	return ret;
3472 }
3473 
3474 /**
3475  *	t4_flash_erase_sectors - erase a range of flash sectors
3476  *	@adapter: the adapter
3477  *	@start: the first sector to erase
3478  *	@end: the last sector to erase
3479  *
3480  *	Erases the sectors in the given inclusive range.
3481  */
3482 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3483 {
3484 	int ret = 0;
3485 
3486 	if (end >= adapter->params.sf_nsec)
3487 		return -EINVAL;
3488 
3489 	while (start <= end) {
3490 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3491 		    (ret = sf1_write(adapter, 4, 0, 1,
3492 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3493 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3494 			dev_err(adapter->pdev_dev,
3495 				"erase of flash sector %d failed, error %d\n",
3496 				start, ret);
3497 			break;
3498 		}
3499 		start++;
3500 	}
3501 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3502 	return ret;
3503 }
3504 
3505 /**
3506  *	t4_flash_cfg_addr - return the address of the flash configuration file
3507  *	@adapter: the adapter
3508  *
3509  *	Return the address within the flash where the Firmware Configuration
3510  *	File is stored.
3511  */
3512 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3513 {
3514 	if (adapter->params.sf_size == 0x100000)
3515 		return FLASH_FPGA_CFG_START;
3516 	else
3517 		return FLASH_CFG_START;
3518 }
3519 
3520 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3521  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3522  * and emit an error message for mismatched firmware to save our caller the
3523  * effort ...
3524  */
3525 static bool t4_fw_matches_chip(const struct adapter *adap,
3526 			       const struct fw_hdr *hdr)
3527 {
3528 	/* The expression below will return FALSE for any unsupported adapter
3529 	 * which will keep us "honest" in the future ...
3530 	 */
3531 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3532 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3533 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3534 		return true;
3535 
3536 	dev_err(adap->pdev_dev,
3537 		"FW image (%d) is not suitable for this adapter (%d)\n",
3538 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3539 	return false;
3540 }
3541 
3542 /**
3543  *	t4_load_fw - download firmware
3544  *	@adap: the adapter
3545  *	@fw_data: the firmware image to write
3546  *	@size: image size
3547  *
3548  *	Write the supplied firmware image to the card's serial flash.
3549  */
3550 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3551 {
3552 	u32 csum;
3553 	int ret, addr;
3554 	unsigned int i;
3555 	u8 first_page[SF_PAGE_SIZE];
3556 	const __be32 *p = (const __be32 *)fw_data;
3557 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3558 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3559 	unsigned int fw_start_sec = FLASH_FW_START_SEC;
3560 	unsigned int fw_size = FLASH_FW_MAX_SIZE;
3561 	unsigned int fw_start = FLASH_FW_START;
3562 
3563 	if (!size) {
3564 		dev_err(adap->pdev_dev, "FW image has no data\n");
3565 		return -EINVAL;
3566 	}
3567 	if (size & 511) {
3568 		dev_err(adap->pdev_dev,
3569 			"FW image size not multiple of 512 bytes\n");
3570 		return -EINVAL;
3571 	}
3572 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3573 		dev_err(adap->pdev_dev,
3574 			"FW image size differs from size in FW header\n");
3575 		return -EINVAL;
3576 	}
3577 	if (size > fw_size) {
3578 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3579 			fw_size);
3580 		return -EFBIG;
3581 	}
3582 	if (!t4_fw_matches_chip(adap, hdr))
3583 		return -EINVAL;
3584 
3585 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3586 		csum += be32_to_cpu(p[i]);
3587 
3588 	if (csum != 0xffffffff) {
3589 		dev_err(adap->pdev_dev,
3590 			"corrupted firmware image, checksum %#x\n", csum);
3591 		return -EINVAL;
3592 	}
3593 
3594 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3595 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3596 	if (ret)
3597 		goto out;
3598 
3599 	/*
3600 	 * We write the correct version at the end so the driver can see a bad
3601 	 * version if the FW write fails.  Start by writing a copy of the
3602 	 * first page with a bad version.
3603 	 */
3604 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3605 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3606 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page);
3607 	if (ret)
3608 		goto out;
3609 
3610 	addr = fw_start;
3611 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3612 		addr += SF_PAGE_SIZE;
3613 		fw_data += SF_PAGE_SIZE;
3614 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3615 		if (ret)
3616 			goto out;
3617 	}
3618 
3619 	ret = t4_write_flash(adap,
3620 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3621 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3622 out:
3623 	if (ret)
3624 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3625 			ret);
3626 	else
3627 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3628 	return ret;
3629 }
3630 
3631 /**
3632  *	t4_phy_fw_ver - return current PHY firmware version
3633  *	@adap: the adapter
3634  *	@phy_fw_ver: return value buffer for PHY firmware version
3635  *
3636  *	Returns the current version of external PHY firmware on the
3637  *	adapter.
3638  */
3639 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3640 {
3641 	u32 param, val;
3642 	int ret;
3643 
3644 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3645 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3646 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3647 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3648 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3649 			      &param, &val);
3650 	if (ret < 0)
3651 		return ret;
3652 	*phy_fw_ver = val;
3653 	return 0;
3654 }
3655 
3656 /**
3657  *	t4_load_phy_fw - download port PHY firmware
3658  *	@adap: the adapter
3659  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3660  *	@win_lock: the lock to use to guard the memory copy
3661  *	@phy_fw_version: function to check PHY firmware versions
3662  *	@phy_fw_data: the PHY firmware image to write
3663  *	@phy_fw_size: image size
3664  *
3665  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3666  *	@phy_fw_version is supplied, then it will be used to determine if
3667  *	it's necessary to perform the transfer by comparing the version
3668  *	of any existing adapter PHY firmware with that of the passed in
3669  *	PHY firmware image.  If @win_lock is non-NULL then it will be used
3670  *	around the call to t4_memory_rw() which transfers the PHY firmware
3671  *	to the adapter.
3672  *
3673  *	A negative error number will be returned if an error occurs.  If
3674  *	version number support is available and there's no need to upgrade
3675  *	the firmware, 0 will be returned.  If firmware is successfully
3676  *	transferred to the adapter, 1 will be retured.
3677  *
3678  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3679  *	a result, a RESET of the adapter would cause that RAM to lose its
3680  *	contents.  Thus, loading PHY firmware on such adapters must happen
3681  *	after any FW_RESET_CMDs ...
3682  */
3683 int t4_load_phy_fw(struct adapter *adap,
3684 		   int win, spinlock_t *win_lock,
3685 		   int (*phy_fw_version)(const u8 *, size_t),
3686 		   const u8 *phy_fw_data, size_t phy_fw_size)
3687 {
3688 	unsigned long mtype = 0, maddr = 0;
3689 	u32 param, val;
3690 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3691 	int ret;
3692 
3693 	/* If we have version number support, then check to see if the adapter
3694 	 * already has up-to-date PHY firmware loaded.
3695 	 */
3696 	 if (phy_fw_version) {
3697 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3698 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3699 		if (ret < 0)
3700 			return ret;
3701 
3702 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3703 			CH_WARN(adap, "PHY Firmware already up-to-date, "
3704 				"version %#x\n", cur_phy_fw_ver);
3705 			return 0;
3706 		}
3707 	}
3708 
3709 	/* Ask the firmware where it wants us to copy the PHY firmware image.
3710 	 * The size of the file requires a special version of the READ coommand
3711 	 * which will pass the file size via the values field in PARAMS_CMD and
3712 	 * retrieve the return value from firmware and place it in the same
3713 	 * buffer values
3714 	 */
3715 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3716 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3717 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3718 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3719 	val = phy_fw_size;
3720 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3721 				 &param, &val, 1, true);
3722 	if (ret < 0)
3723 		return ret;
3724 	mtype = val >> 8;
3725 	maddr = (val & 0xff) << 16;
3726 
3727 	/* Copy the supplied PHY Firmware image to the adapter memory location
3728 	 * allocated by the adapter firmware.
3729 	 */
3730 	if (win_lock)
3731 		spin_lock_bh(win_lock);
3732 	ret = t4_memory_rw(adap, win, mtype, maddr,
3733 			   phy_fw_size, (__be32 *)phy_fw_data,
3734 			   T4_MEMORY_WRITE);
3735 	if (win_lock)
3736 		spin_unlock_bh(win_lock);
3737 	if (ret)
3738 		return ret;
3739 
3740 	/* Tell the firmware that the PHY firmware image has been written to
3741 	 * RAM and it can now start copying it over to the PHYs.  The chip
3742 	 * firmware will RESET the affected PHYs as part of this operation
3743 	 * leaving them running the new PHY firmware image.
3744 	 */
3745 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3746 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3747 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3748 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3749 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3750 				    &param, &val, 30000);
3751 
3752 	/* If we have version number support, then check to see that the new
3753 	 * firmware got loaded properly.
3754 	 */
3755 	if (phy_fw_version) {
3756 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3757 		if (ret < 0)
3758 			return ret;
3759 
3760 		if (cur_phy_fw_ver != new_phy_fw_vers) {
3761 			CH_WARN(adap, "PHY Firmware did not update: "
3762 				"version on adapter %#x, "
3763 				"version flashed %#x\n",
3764 				cur_phy_fw_ver, new_phy_fw_vers);
3765 			return -ENXIO;
3766 		}
3767 	}
3768 
3769 	return 1;
3770 }
3771 
3772 /**
3773  *	t4_fwcache - firmware cache operation
3774  *	@adap: the adapter
3775  *	@op  : the operation (flush or flush and invalidate)
3776  */
3777 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3778 {
3779 	struct fw_params_cmd c;
3780 
3781 	memset(&c, 0, sizeof(c));
3782 	c.op_to_vfn =
3783 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3784 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3785 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3786 			    FW_PARAMS_CMD_VFN_V(0));
3787 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3788 	c.param[0].mnem =
3789 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3790 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3791 	c.param[0].val = (__force __be32)op;
3792 
3793 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3794 }
3795 
3796 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3797 			unsigned int *pif_req_wrptr,
3798 			unsigned int *pif_rsp_wrptr)
3799 {
3800 	int i, j;
3801 	u32 cfg, val, req, rsp;
3802 
3803 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3804 	if (cfg & LADBGEN_F)
3805 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3806 
3807 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3808 	req = POLADBGWRPTR_G(val);
3809 	rsp = PILADBGWRPTR_G(val);
3810 	if (pif_req_wrptr)
3811 		*pif_req_wrptr = req;
3812 	if (pif_rsp_wrptr)
3813 		*pif_rsp_wrptr = rsp;
3814 
3815 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3816 		for (j = 0; j < 6; j++) {
3817 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3818 				     PILADBGRDPTR_V(rsp));
3819 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3820 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3821 			req++;
3822 			rsp++;
3823 		}
3824 		req = (req + 2) & POLADBGRDPTR_M;
3825 		rsp = (rsp + 2) & PILADBGRDPTR_M;
3826 	}
3827 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3828 }
3829 
3830 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3831 {
3832 	u32 cfg;
3833 	int i, j, idx;
3834 
3835 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3836 	if (cfg & LADBGEN_F)
3837 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3838 
3839 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3840 		for (j = 0; j < 5; j++) {
3841 			idx = 8 * i + j;
3842 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3843 				     PILADBGRDPTR_V(idx));
3844 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3845 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3846 		}
3847 	}
3848 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3849 }
3850 
3851 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3852 {
3853 	unsigned int i, j;
3854 
3855 	for (i = 0; i < 8; i++) {
3856 		u32 *p = la_buf + i;
3857 
3858 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3859 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3860 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3861 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3862 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3863 	}
3864 }
3865 
3866 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3867 		     FW_PORT_CAP32_ANEG)
3868 
3869 /**
3870  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3871  *	@caps16: a 16-bit Port Capabilities value
3872  *
3873  *	Returns the equivalent 32-bit Port Capabilities value.
3874  */
3875 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3876 {
3877 	fw_port_cap32_t caps32 = 0;
3878 
3879 	#define CAP16_TO_CAP32(__cap) \
3880 		do { \
3881 			if (caps16 & FW_PORT_CAP_##__cap) \
3882 				caps32 |= FW_PORT_CAP32_##__cap; \
3883 		} while (0)
3884 
3885 	CAP16_TO_CAP32(SPEED_100M);
3886 	CAP16_TO_CAP32(SPEED_1G);
3887 	CAP16_TO_CAP32(SPEED_25G);
3888 	CAP16_TO_CAP32(SPEED_10G);
3889 	CAP16_TO_CAP32(SPEED_40G);
3890 	CAP16_TO_CAP32(SPEED_100G);
3891 	CAP16_TO_CAP32(FC_RX);
3892 	CAP16_TO_CAP32(FC_TX);
3893 	CAP16_TO_CAP32(ANEG);
3894 	CAP16_TO_CAP32(MDIX);
3895 	CAP16_TO_CAP32(MDIAUTO);
3896 	CAP16_TO_CAP32(FEC_RS);
3897 	CAP16_TO_CAP32(FEC_BASER_RS);
3898 	CAP16_TO_CAP32(802_3_PAUSE);
3899 	CAP16_TO_CAP32(802_3_ASM_DIR);
3900 
3901 	#undef CAP16_TO_CAP32
3902 
3903 	return caps32;
3904 }
3905 
3906 /**
3907  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3908  *	@caps32: a 32-bit Port Capabilities value
3909  *
3910  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
3911  *	not all 32-bit Port Capabilities can be represented in the 16-bit
3912  *	Port Capabilities and some fields/values may not make it.
3913  */
3914 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
3915 {
3916 	fw_port_cap16_t caps16 = 0;
3917 
3918 	#define CAP32_TO_CAP16(__cap) \
3919 		do { \
3920 			if (caps32 & FW_PORT_CAP32_##__cap) \
3921 				caps16 |= FW_PORT_CAP_##__cap; \
3922 		} while (0)
3923 
3924 	CAP32_TO_CAP16(SPEED_100M);
3925 	CAP32_TO_CAP16(SPEED_1G);
3926 	CAP32_TO_CAP16(SPEED_10G);
3927 	CAP32_TO_CAP16(SPEED_25G);
3928 	CAP32_TO_CAP16(SPEED_40G);
3929 	CAP32_TO_CAP16(SPEED_100G);
3930 	CAP32_TO_CAP16(FC_RX);
3931 	CAP32_TO_CAP16(FC_TX);
3932 	CAP32_TO_CAP16(802_3_PAUSE);
3933 	CAP32_TO_CAP16(802_3_ASM_DIR);
3934 	CAP32_TO_CAP16(ANEG);
3935 	CAP32_TO_CAP16(MDIX);
3936 	CAP32_TO_CAP16(MDIAUTO);
3937 	CAP32_TO_CAP16(FEC_RS);
3938 	CAP32_TO_CAP16(FEC_BASER_RS);
3939 
3940 	#undef CAP32_TO_CAP16
3941 
3942 	return caps16;
3943 }
3944 
3945 /* Translate Firmware Port Capabilities Pause specification to Common Code */
3946 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
3947 {
3948 	enum cc_pause cc_pause = 0;
3949 
3950 	if (fw_pause & FW_PORT_CAP32_FC_RX)
3951 		cc_pause |= PAUSE_RX;
3952 	if (fw_pause & FW_PORT_CAP32_FC_TX)
3953 		cc_pause |= PAUSE_TX;
3954 
3955 	return cc_pause;
3956 }
3957 
3958 /* Translate Common Code Pause specification into Firmware Port Capabilities */
3959 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
3960 {
3961 	fw_port_cap32_t fw_pause = 0;
3962 
3963 	if (cc_pause & PAUSE_RX)
3964 		fw_pause |= FW_PORT_CAP32_FC_RX;
3965 	if (cc_pause & PAUSE_TX)
3966 		fw_pause |= FW_PORT_CAP32_FC_TX;
3967 
3968 	return fw_pause;
3969 }
3970 
3971 /* Translate Firmware Forward Error Correction specification to Common Code */
3972 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
3973 {
3974 	enum cc_fec cc_fec = 0;
3975 
3976 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
3977 		cc_fec |= FEC_RS;
3978 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
3979 		cc_fec |= FEC_BASER_RS;
3980 
3981 	return cc_fec;
3982 }
3983 
3984 /* Translate Common Code Forward Error Correction specification to Firmware */
3985 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
3986 {
3987 	fw_port_cap32_t fw_fec = 0;
3988 
3989 	if (cc_fec & FEC_RS)
3990 		fw_fec |= FW_PORT_CAP32_FEC_RS;
3991 	if (cc_fec & FEC_BASER_RS)
3992 		fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
3993 
3994 	return fw_fec;
3995 }
3996 
3997 /**
3998  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3999  *	@adapter: the adapter
4000  *	@mbox: the Firmware Mailbox to use
4001  *	@port: the Port ID
4002  *	@lc: the Port's Link Configuration
4003  *
4004  *	Set up a port's MAC and PHY according to a desired link configuration.
4005  *	- If the PHY can auto-negotiate first decide what to advertise, then
4006  *	  enable/disable auto-negotiation as desired, and reset.
4007  *	- If the PHY does not auto-negotiate just reset it.
4008  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4009  *	  otherwise do it later based on the outcome of auto-negotiation.
4010  */
4011 int t4_link_l1cfg(struct adapter *adapter, unsigned int mbox,
4012 		  unsigned int port, struct link_config *lc)
4013 {
4014 	unsigned int fw_caps = adapter->params.fw_caps_support;
4015 	struct fw_port_cmd cmd;
4016 	unsigned int fw_mdi = FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO);
4017 	fw_port_cap32_t fw_fc, cc_fec, fw_fec, rcap;
4018 
4019 	lc->link_ok = 0;
4020 
4021 	/* Convert driver coding of Pause Frame Flow Control settings into the
4022 	 * Firmware's API.
4023 	 */
4024 	fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4025 
4026 	/* Convert Common Code Forward Error Control settings into the
4027 	 * Firmware's API.  If the current Requested FEC has "Automatic"
4028 	 * (IEEE 802.3) specified, then we use whatever the Firmware
4029 	 * sent us as part of it's IEEE 802.3-based interpratation of
4030 	 * the Transceiver Module EPROM FEC parameters.  Otherwise we
4031 	 * use whatever is in the current Requested FEC settings.
4032 	 */
4033 	if (lc->requested_fec & FEC_AUTO)
4034 		cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4035 	else
4036 		cc_fec = lc->requested_fec;
4037 	fw_fec = cc_to_fwcap_fec(cc_fec);
4038 
4039 	/* Figure out what our Requested Port Capabilities are going to be.
4040 	 */
4041 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4042 		rcap = (lc->pcaps & ADVERT_MASK) | fw_fc | fw_fec;
4043 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4044 		lc->fec = cc_fec;
4045 	} else if (lc->autoneg == AUTONEG_DISABLE) {
4046 		rcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4047 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4048 		lc->fec = cc_fec;
4049 	} else {
4050 		rcap = lc->acaps | fw_fc | fw_fec | fw_mdi;
4051 	}
4052 
4053 	/* And send that on to the Firmware ...
4054 	 */
4055 	memset(&cmd, 0, sizeof(cmd));
4056 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4057 				       FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4058 				       FW_PORT_CMD_PORTID_V(port));
4059 	cmd.action_to_len16 =
4060 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4061 						 ? FW_PORT_ACTION_L1_CFG
4062 						 : FW_PORT_ACTION_L1_CFG32) |
4063 			    FW_LEN16(cmd));
4064 	if (fw_caps == FW_CAPS16)
4065 		cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4066 	else
4067 		cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4068 	return t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4069 }
4070 
4071 /**
4072  *	t4_restart_aneg - restart autonegotiation
4073  *	@adap: the adapter
4074  *	@mbox: mbox to use for the FW command
4075  *	@port: the port id
4076  *
4077  *	Restarts autonegotiation for the selected port.
4078  */
4079 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4080 {
4081 	struct fw_port_cmd c;
4082 
4083 	memset(&c, 0, sizeof(c));
4084 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4085 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4086 				     FW_PORT_CMD_PORTID_V(port));
4087 	c.action_to_len16 =
4088 		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
4089 			    FW_LEN16(c));
4090 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP32_ANEG);
4091 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4092 }
4093 
4094 typedef void (*int_handler_t)(struct adapter *adap);
4095 
4096 struct intr_info {
4097 	unsigned int mask;       /* bits to check in interrupt status */
4098 	const char *msg;         /* message to print or NULL */
4099 	short stat_idx;          /* stat counter to increment or -1 */
4100 	unsigned short fatal;    /* whether the condition reported is fatal */
4101 	int_handler_t int_handler; /* platform-specific int handler */
4102 };
4103 
4104 /**
4105  *	t4_handle_intr_status - table driven interrupt handler
4106  *	@adapter: the adapter that generated the interrupt
4107  *	@reg: the interrupt status register to process
4108  *	@acts: table of interrupt actions
4109  *
4110  *	A table driven interrupt handler that applies a set of masks to an
4111  *	interrupt status word and performs the corresponding actions if the
4112  *	interrupts described by the mask have occurred.  The actions include
4113  *	optionally emitting a warning or alert message.  The table is terminated
4114  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
4115  *	conditions.
4116  */
4117 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4118 				 const struct intr_info *acts)
4119 {
4120 	int fatal = 0;
4121 	unsigned int mask = 0;
4122 	unsigned int status = t4_read_reg(adapter, reg);
4123 
4124 	for ( ; acts->mask; ++acts) {
4125 		if (!(status & acts->mask))
4126 			continue;
4127 		if (acts->fatal) {
4128 			fatal++;
4129 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4130 				  status & acts->mask);
4131 		} else if (acts->msg && printk_ratelimit())
4132 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4133 				 status & acts->mask);
4134 		if (acts->int_handler)
4135 			acts->int_handler(adapter);
4136 		mask |= acts->mask;
4137 	}
4138 	status &= mask;
4139 	if (status)                           /* clear processed interrupts */
4140 		t4_write_reg(adapter, reg, status);
4141 	return fatal;
4142 }
4143 
4144 /*
4145  * Interrupt handler for the PCIE module.
4146  */
4147 static void pcie_intr_handler(struct adapter *adapter)
4148 {
4149 	static const struct intr_info sysbus_intr_info[] = {
4150 		{ RNPP_F, "RXNP array parity error", -1, 1 },
4151 		{ RPCP_F, "RXPC array parity error", -1, 1 },
4152 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
4153 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
4154 		{ RFTP_F, "RXFT array parity error", -1, 1 },
4155 		{ 0 }
4156 	};
4157 	static const struct intr_info pcie_port_intr_info[] = {
4158 		{ TPCP_F, "TXPC array parity error", -1, 1 },
4159 		{ TNPP_F, "TXNP array parity error", -1, 1 },
4160 		{ TFTP_F, "TXFT array parity error", -1, 1 },
4161 		{ TCAP_F, "TXCA array parity error", -1, 1 },
4162 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
4163 		{ RCAP_F, "RXCA array parity error", -1, 1 },
4164 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
4165 		{ RDPE_F, "Rx data parity error", -1, 1 },
4166 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
4167 		{ 0 }
4168 	};
4169 	static const struct intr_info pcie_intr_info[] = {
4170 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4171 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4172 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4173 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4174 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4175 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4176 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4177 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4178 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4179 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4180 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4181 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4182 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4183 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4184 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4185 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4186 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4187 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4188 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4189 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4190 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4191 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4192 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4193 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4194 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4195 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4196 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4197 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
4198 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
4199 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
4200 		  -1, 0 },
4201 		{ 0 }
4202 	};
4203 
4204 	static struct intr_info t5_pcie_intr_info[] = {
4205 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
4206 		  -1, 1 },
4207 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4208 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4209 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4210 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4211 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4212 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4213 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4214 		  -1, 1 },
4215 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4216 		  -1, 1 },
4217 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4218 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4219 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4220 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4221 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
4222 		  -1, 1 },
4223 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4224 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4225 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4226 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4227 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4228 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4229 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4230 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4231 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4232 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4233 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4234 		  -1, 1 },
4235 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4236 		  -1, 1 },
4237 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4238 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4239 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4240 		{ READRSPERR_F, "Outbound read error", -1, 0 },
4241 		{ 0 }
4242 	};
4243 
4244 	int fat;
4245 
4246 	if (is_t4(adapter->params.chip))
4247 		fat = t4_handle_intr_status(adapter,
4248 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4249 				sysbus_intr_info) +
4250 			t4_handle_intr_status(adapter,
4251 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4252 					pcie_port_intr_info) +
4253 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4254 					      pcie_intr_info);
4255 	else
4256 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4257 					    t5_pcie_intr_info);
4258 
4259 	if (fat)
4260 		t4_fatal_err(adapter);
4261 }
4262 
4263 /*
4264  * TP interrupt handler.
4265  */
4266 static void tp_intr_handler(struct adapter *adapter)
4267 {
4268 	static const struct intr_info tp_intr_info[] = {
4269 		{ 0x3fffffff, "TP parity error", -1, 1 },
4270 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4271 		{ 0 }
4272 	};
4273 
4274 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4275 		t4_fatal_err(adapter);
4276 }
4277 
4278 /*
4279  * SGE interrupt handler.
4280  */
4281 static void sge_intr_handler(struct adapter *adapter)
4282 {
4283 	u64 v;
4284 	u32 err;
4285 
4286 	static const struct intr_info sge_intr_info[] = {
4287 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
4288 		  "SGE received CPL exceeding IQE size", -1, 1 },
4289 		{ ERR_INVALID_CIDX_INC_F,
4290 		  "SGE GTS CIDX increment too large", -1, 0 },
4291 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4292 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4293 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4294 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4295 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4296 		  0 },
4297 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4298 		  0 },
4299 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4300 		  0 },
4301 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4302 		  0 },
4303 		{ ERR_ING_CTXT_PRIO_F,
4304 		  "SGE too many priority ingress contexts", -1, 0 },
4305 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4306 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4307 		{ 0 }
4308 	};
4309 
4310 	static struct intr_info t4t5_sge_intr_info[] = {
4311 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4312 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4313 		{ ERR_EGR_CTXT_PRIO_F,
4314 		  "SGE too many priority egress contexts", -1, 0 },
4315 		{ 0 }
4316 	};
4317 
4318 	v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
4319 		((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
4320 	if (v) {
4321 		dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
4322 				(unsigned long long)v);
4323 		t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
4324 		t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
4325 	}
4326 
4327 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4328 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4329 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4330 					   t4t5_sge_intr_info);
4331 
4332 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4333 	if (err & ERROR_QID_VALID_F) {
4334 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4335 			ERROR_QID_G(err));
4336 		if (err & UNCAPTURED_ERROR_F)
4337 			dev_err(adapter->pdev_dev,
4338 				"SGE UNCAPTURED_ERROR set (clearing)\n");
4339 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4340 			     UNCAPTURED_ERROR_F);
4341 	}
4342 
4343 	if (v != 0)
4344 		t4_fatal_err(adapter);
4345 }
4346 
4347 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4348 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4349 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4350 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4351 
4352 /*
4353  * CIM interrupt handler.
4354  */
4355 static void cim_intr_handler(struct adapter *adapter)
4356 {
4357 	static const struct intr_info cim_intr_info[] = {
4358 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4359 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4360 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4361 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4362 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4363 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4364 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4365 		{ TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4366 		{ 0 }
4367 	};
4368 	static const struct intr_info cim_upintr_info[] = {
4369 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4370 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4371 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
4372 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
4373 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4374 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4375 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4376 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4377 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4378 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4379 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4380 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4381 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4382 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4383 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4384 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4385 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4386 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4387 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4388 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4389 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4390 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4391 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4392 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4393 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4394 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4395 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4396 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4397 		{ 0 }
4398 	};
4399 
4400 	u32 val, fw_err;
4401 	int fat;
4402 
4403 	fw_err = t4_read_reg(adapter, PCIE_FW_A);
4404 	if (fw_err & PCIE_FW_ERR_F)
4405 		t4_report_fw_error(adapter);
4406 
4407 	/* When the Firmware detects an internal error which normally
4408 	 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4409 	 * in order to make sure the Host sees the Firmware Crash.  So
4410 	 * if we have a Timer0 interrupt and don't see a Firmware Crash,
4411 	 * ignore the Timer0 interrupt.
4412 	 */
4413 
4414 	val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4415 	if (val & TIMER0INT_F)
4416 		if (!(fw_err & PCIE_FW_ERR_F) ||
4417 		    (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4418 			t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4419 				     TIMER0INT_F);
4420 
4421 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4422 				    cim_intr_info) +
4423 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4424 				    cim_upintr_info);
4425 	if (fat)
4426 		t4_fatal_err(adapter);
4427 }
4428 
4429 /*
4430  * ULP RX interrupt handler.
4431  */
4432 static void ulprx_intr_handler(struct adapter *adapter)
4433 {
4434 	static const struct intr_info ulprx_intr_info[] = {
4435 		{ 0x1800000, "ULPRX context error", -1, 1 },
4436 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4437 		{ 0 }
4438 	};
4439 
4440 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4441 		t4_fatal_err(adapter);
4442 }
4443 
4444 /*
4445  * ULP TX interrupt handler.
4446  */
4447 static void ulptx_intr_handler(struct adapter *adapter)
4448 {
4449 	static const struct intr_info ulptx_intr_info[] = {
4450 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4451 		  0 },
4452 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4453 		  0 },
4454 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4455 		  0 },
4456 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4457 		  0 },
4458 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4459 		{ 0 }
4460 	};
4461 
4462 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4463 		t4_fatal_err(adapter);
4464 }
4465 
4466 /*
4467  * PM TX interrupt handler.
4468  */
4469 static void pmtx_intr_handler(struct adapter *adapter)
4470 {
4471 	static const struct intr_info pmtx_intr_info[] = {
4472 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4473 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4474 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4475 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4476 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4477 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4478 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4479 		  -1, 1 },
4480 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4481 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4482 		{ 0 }
4483 	};
4484 
4485 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4486 		t4_fatal_err(adapter);
4487 }
4488 
4489 /*
4490  * PM RX interrupt handler.
4491  */
4492 static void pmrx_intr_handler(struct adapter *adapter)
4493 {
4494 	static const struct intr_info pmrx_intr_info[] = {
4495 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4496 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4497 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4498 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4499 		  -1, 1 },
4500 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4501 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4502 		{ 0 }
4503 	};
4504 
4505 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4506 		t4_fatal_err(adapter);
4507 }
4508 
4509 /*
4510  * CPL switch interrupt handler.
4511  */
4512 static void cplsw_intr_handler(struct adapter *adapter)
4513 {
4514 	static const struct intr_info cplsw_intr_info[] = {
4515 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4516 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4517 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4518 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4519 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4520 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4521 		{ 0 }
4522 	};
4523 
4524 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4525 		t4_fatal_err(adapter);
4526 }
4527 
4528 /*
4529  * LE interrupt handler.
4530  */
4531 static void le_intr_handler(struct adapter *adap)
4532 {
4533 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4534 	static const struct intr_info le_intr_info[] = {
4535 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4536 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4537 		{ PARITYERR_F, "LE parity error", -1, 1 },
4538 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4539 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4540 		{ 0 }
4541 	};
4542 
4543 	static struct intr_info t6_le_intr_info[] = {
4544 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4545 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4546 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4547 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4548 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4549 		{ 0 }
4550 	};
4551 
4552 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4553 				  (chip <= CHELSIO_T5) ?
4554 				  le_intr_info : t6_le_intr_info))
4555 		t4_fatal_err(adap);
4556 }
4557 
4558 /*
4559  * MPS interrupt handler.
4560  */
4561 static void mps_intr_handler(struct adapter *adapter)
4562 {
4563 	static const struct intr_info mps_rx_intr_info[] = {
4564 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4565 		{ 0 }
4566 	};
4567 	static const struct intr_info mps_tx_intr_info[] = {
4568 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4569 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4570 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4571 		  -1, 1 },
4572 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4573 		  -1, 1 },
4574 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4575 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4576 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4577 		{ 0 }
4578 	};
4579 	static const struct intr_info t6_mps_tx_intr_info[] = {
4580 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4581 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4582 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4583 		  -1, 1 },
4584 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4585 		  -1, 1 },
4586 		/* MPS Tx Bubble is normal for T6 */
4587 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4588 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4589 		{ 0 }
4590 	};
4591 	static const struct intr_info mps_trc_intr_info[] = {
4592 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4593 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4594 		  -1, 1 },
4595 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4596 		{ 0 }
4597 	};
4598 	static const struct intr_info mps_stat_sram_intr_info[] = {
4599 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4600 		{ 0 }
4601 	};
4602 	static const struct intr_info mps_stat_tx_intr_info[] = {
4603 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4604 		{ 0 }
4605 	};
4606 	static const struct intr_info mps_stat_rx_intr_info[] = {
4607 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4608 		{ 0 }
4609 	};
4610 	static const struct intr_info mps_cls_intr_info[] = {
4611 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4612 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4613 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4614 		{ 0 }
4615 	};
4616 
4617 	int fat;
4618 
4619 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4620 				    mps_rx_intr_info) +
4621 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4622 				    is_t6(adapter->params.chip)
4623 				    ? t6_mps_tx_intr_info
4624 				    : mps_tx_intr_info) +
4625 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4626 				    mps_trc_intr_info) +
4627 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4628 				    mps_stat_sram_intr_info) +
4629 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4630 				    mps_stat_tx_intr_info) +
4631 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4632 				    mps_stat_rx_intr_info) +
4633 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4634 				    mps_cls_intr_info);
4635 
4636 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4637 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4638 	if (fat)
4639 		t4_fatal_err(adapter);
4640 }
4641 
4642 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4643 		      ECC_UE_INT_CAUSE_F)
4644 
4645 /*
4646  * EDC/MC interrupt handler.
4647  */
4648 static void mem_intr_handler(struct adapter *adapter, int idx)
4649 {
4650 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4651 
4652 	unsigned int addr, cnt_addr, v;
4653 
4654 	if (idx <= MEM_EDC1) {
4655 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4656 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4657 	} else if (idx == MEM_MC) {
4658 		if (is_t4(adapter->params.chip)) {
4659 			addr = MC_INT_CAUSE_A;
4660 			cnt_addr = MC_ECC_STATUS_A;
4661 		} else {
4662 			addr = MC_P_INT_CAUSE_A;
4663 			cnt_addr = MC_P_ECC_STATUS_A;
4664 		}
4665 	} else {
4666 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4667 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4668 	}
4669 
4670 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4671 	if (v & PERR_INT_CAUSE_F)
4672 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4673 			  name[idx]);
4674 	if (v & ECC_CE_INT_CAUSE_F) {
4675 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4676 
4677 		t4_edc_err_read(adapter, idx);
4678 
4679 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4680 		if (printk_ratelimit())
4681 			dev_warn(adapter->pdev_dev,
4682 				 "%u %s correctable ECC data error%s\n",
4683 				 cnt, name[idx], cnt > 1 ? "s" : "");
4684 	}
4685 	if (v & ECC_UE_INT_CAUSE_F)
4686 		dev_alert(adapter->pdev_dev,
4687 			  "%s uncorrectable ECC data error\n", name[idx]);
4688 
4689 	t4_write_reg(adapter, addr, v);
4690 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4691 		t4_fatal_err(adapter);
4692 }
4693 
4694 /*
4695  * MA interrupt handler.
4696  */
4697 static void ma_intr_handler(struct adapter *adap)
4698 {
4699 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4700 
4701 	if (status & MEM_PERR_INT_CAUSE_F) {
4702 		dev_alert(adap->pdev_dev,
4703 			  "MA parity error, parity status %#x\n",
4704 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4705 		if (is_t5(adap->params.chip))
4706 			dev_alert(adap->pdev_dev,
4707 				  "MA parity error, parity status %#x\n",
4708 				  t4_read_reg(adap,
4709 					      MA_PARITY_ERROR_STATUS2_A));
4710 	}
4711 	if (status & MEM_WRAP_INT_CAUSE_F) {
4712 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4713 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4714 			  "client %u to address %#x\n",
4715 			  MEM_WRAP_CLIENT_NUM_G(v),
4716 			  MEM_WRAP_ADDRESS_G(v) << 4);
4717 	}
4718 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4719 	t4_fatal_err(adap);
4720 }
4721 
4722 /*
4723  * SMB interrupt handler.
4724  */
4725 static void smb_intr_handler(struct adapter *adap)
4726 {
4727 	static const struct intr_info smb_intr_info[] = {
4728 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4729 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4730 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4731 		{ 0 }
4732 	};
4733 
4734 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4735 		t4_fatal_err(adap);
4736 }
4737 
4738 /*
4739  * NC-SI interrupt handler.
4740  */
4741 static void ncsi_intr_handler(struct adapter *adap)
4742 {
4743 	static const struct intr_info ncsi_intr_info[] = {
4744 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4745 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4746 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4747 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4748 		{ 0 }
4749 	};
4750 
4751 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4752 		t4_fatal_err(adap);
4753 }
4754 
4755 /*
4756  * XGMAC interrupt handler.
4757  */
4758 static void xgmac_intr_handler(struct adapter *adap, int port)
4759 {
4760 	u32 v, int_cause_reg;
4761 
4762 	if (is_t4(adap->params.chip))
4763 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4764 	else
4765 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4766 
4767 	v = t4_read_reg(adap, int_cause_reg);
4768 
4769 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4770 	if (!v)
4771 		return;
4772 
4773 	if (v & TXFIFO_PRTY_ERR_F)
4774 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4775 			  port);
4776 	if (v & RXFIFO_PRTY_ERR_F)
4777 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4778 			  port);
4779 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4780 	t4_fatal_err(adap);
4781 }
4782 
4783 /*
4784  * PL interrupt handler.
4785  */
4786 static void pl_intr_handler(struct adapter *adap)
4787 {
4788 	static const struct intr_info pl_intr_info[] = {
4789 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
4790 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4791 		{ 0 }
4792 	};
4793 
4794 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4795 		t4_fatal_err(adap);
4796 }
4797 
4798 #define PF_INTR_MASK (PFSW_F)
4799 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4800 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4801 		CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
4802 
4803 /**
4804  *	t4_slow_intr_handler - control path interrupt handler
4805  *	@adapter: the adapter
4806  *
4807  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4808  *	The designation 'slow' is because it involves register reads, while
4809  *	data interrupts typically don't involve any MMIOs.
4810  */
4811 int t4_slow_intr_handler(struct adapter *adapter)
4812 {
4813 	u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4814 
4815 	if (!(cause & GLBL_INTR_MASK))
4816 		return 0;
4817 	if (cause & CIM_F)
4818 		cim_intr_handler(adapter);
4819 	if (cause & MPS_F)
4820 		mps_intr_handler(adapter);
4821 	if (cause & NCSI_F)
4822 		ncsi_intr_handler(adapter);
4823 	if (cause & PL_F)
4824 		pl_intr_handler(adapter);
4825 	if (cause & SMB_F)
4826 		smb_intr_handler(adapter);
4827 	if (cause & XGMAC0_F)
4828 		xgmac_intr_handler(adapter, 0);
4829 	if (cause & XGMAC1_F)
4830 		xgmac_intr_handler(adapter, 1);
4831 	if (cause & XGMAC_KR0_F)
4832 		xgmac_intr_handler(adapter, 2);
4833 	if (cause & XGMAC_KR1_F)
4834 		xgmac_intr_handler(adapter, 3);
4835 	if (cause & PCIE_F)
4836 		pcie_intr_handler(adapter);
4837 	if (cause & MC_F)
4838 		mem_intr_handler(adapter, MEM_MC);
4839 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
4840 		mem_intr_handler(adapter, MEM_MC1);
4841 	if (cause & EDC0_F)
4842 		mem_intr_handler(adapter, MEM_EDC0);
4843 	if (cause & EDC1_F)
4844 		mem_intr_handler(adapter, MEM_EDC1);
4845 	if (cause & LE_F)
4846 		le_intr_handler(adapter);
4847 	if (cause & TP_F)
4848 		tp_intr_handler(adapter);
4849 	if (cause & MA_F)
4850 		ma_intr_handler(adapter);
4851 	if (cause & PM_TX_F)
4852 		pmtx_intr_handler(adapter);
4853 	if (cause & PM_RX_F)
4854 		pmrx_intr_handler(adapter);
4855 	if (cause & ULP_RX_F)
4856 		ulprx_intr_handler(adapter);
4857 	if (cause & CPL_SWITCH_F)
4858 		cplsw_intr_handler(adapter);
4859 	if (cause & SGE_F)
4860 		sge_intr_handler(adapter);
4861 	if (cause & ULP_TX_F)
4862 		ulptx_intr_handler(adapter);
4863 
4864 	/* Clear the interrupts just processed for which we are the master. */
4865 	t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4866 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4867 	return 1;
4868 }
4869 
4870 /**
4871  *	t4_intr_enable - enable interrupts
4872  *	@adapter: the adapter whose interrupts should be enabled
4873  *
4874  *	Enable PF-specific interrupts for the calling function and the top-level
4875  *	interrupt concentrator for global interrupts.  Interrupts are already
4876  *	enabled at each module,	here we just enable the roots of the interrupt
4877  *	hierarchies.
4878  *
4879  *	Note: this function should be called only when the driver manages
4880  *	non PF-specific interrupts from the various HW modules.  Only one PCI
4881  *	function at a time should be doing this.
4882  */
4883 void t4_intr_enable(struct adapter *adapter)
4884 {
4885 	u32 val = 0;
4886 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4887 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4888 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4889 
4890 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4891 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
4892 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4893 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
4894 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
4895 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4896 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4897 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
4898 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
4899 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4900 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
4901 }
4902 
4903 /**
4904  *	t4_intr_disable - disable interrupts
4905  *	@adapter: the adapter whose interrupts should be disabled
4906  *
4907  *	Disable interrupts.  We only disable the top-level interrupt
4908  *	concentrators.  The caller must be a PCI function managing global
4909  *	interrupts.
4910  */
4911 void t4_intr_disable(struct adapter *adapter)
4912 {
4913 	u32 whoami, pf;
4914 
4915 	if (pci_channel_offline(adapter->pdev))
4916 		return;
4917 
4918 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4919 	pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4920 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4921 
4922 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4923 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
4924 }
4925 
4926 /**
4927  *	t4_config_rss_range - configure a portion of the RSS mapping table
4928  *	@adapter: the adapter
4929  *	@mbox: mbox to use for the FW command
4930  *	@viid: virtual interface whose RSS subtable is to be written
4931  *	@start: start entry in the table to write
4932  *	@n: how many table entries to write
4933  *	@rspq: values for the response queue lookup table
4934  *	@nrspq: number of values in @rspq
4935  *
4936  *	Programs the selected part of the VI's RSS mapping table with the
4937  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4938  *	until the full table range is populated.
4939  *
4940  *	The caller must ensure the values in @rspq are in the range allowed for
4941  *	@viid.
4942  */
4943 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4944 			int start, int n, const u16 *rspq, unsigned int nrspq)
4945 {
4946 	int ret;
4947 	const u16 *rsp = rspq;
4948 	const u16 *rsp_end = rspq + nrspq;
4949 	struct fw_rss_ind_tbl_cmd cmd;
4950 
4951 	memset(&cmd, 0, sizeof(cmd));
4952 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
4953 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4954 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
4955 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4956 
4957 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
4958 	while (n > 0) {
4959 		int nq = min(n, 32);
4960 		__be32 *qp = &cmd.iq0_to_iq2;
4961 
4962 		cmd.niqid = cpu_to_be16(nq);
4963 		cmd.startidx = cpu_to_be16(start);
4964 
4965 		start += nq;
4966 		n -= nq;
4967 
4968 		while (nq > 0) {
4969 			unsigned int v;
4970 
4971 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
4972 			if (++rsp >= rsp_end)
4973 				rsp = rspq;
4974 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
4975 			if (++rsp >= rsp_end)
4976 				rsp = rspq;
4977 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
4978 			if (++rsp >= rsp_end)
4979 				rsp = rspq;
4980 
4981 			*qp++ = cpu_to_be32(v);
4982 			nq -= 3;
4983 		}
4984 
4985 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4986 		if (ret)
4987 			return ret;
4988 	}
4989 	return 0;
4990 }
4991 
4992 /**
4993  *	t4_config_glbl_rss - configure the global RSS mode
4994  *	@adapter: the adapter
4995  *	@mbox: mbox to use for the FW command
4996  *	@mode: global RSS mode
4997  *	@flags: mode-specific flags
4998  *
4999  *	Sets the global RSS mode.
5000  */
5001 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5002 		       unsigned int flags)
5003 {
5004 	struct fw_rss_glb_config_cmd c;
5005 
5006 	memset(&c, 0, sizeof(c));
5007 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5008 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5009 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5010 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5011 		c.u.manual.mode_pkd =
5012 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5013 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5014 		c.u.basicvirtual.mode_pkd =
5015 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5016 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5017 	} else
5018 		return -EINVAL;
5019 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5020 }
5021 
5022 /**
5023  *	t4_config_vi_rss - configure per VI RSS settings
5024  *	@adapter: the adapter
5025  *	@mbox: mbox to use for the FW command
5026  *	@viid: the VI id
5027  *	@flags: RSS flags
5028  *	@defq: id of the default RSS queue for the VI.
5029  *
5030  *	Configures VI-specific RSS properties.
5031  */
5032 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5033 		     unsigned int flags, unsigned int defq)
5034 {
5035 	struct fw_rss_vi_config_cmd c;
5036 
5037 	memset(&c, 0, sizeof(c));
5038 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5039 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5040 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5041 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5042 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5043 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5044 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5045 }
5046 
5047 /* Read an RSS table row */
5048 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5049 {
5050 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5051 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5052 				   5, 0, val);
5053 }
5054 
5055 /**
5056  *	t4_read_rss - read the contents of the RSS mapping table
5057  *	@adapter: the adapter
5058  *	@map: holds the contents of the RSS mapping table
5059  *
5060  *	Reads the contents of the RSS hash->queue mapping table.
5061  */
5062 int t4_read_rss(struct adapter *adapter, u16 *map)
5063 {
5064 	u32 val;
5065 	int i, ret;
5066 
5067 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
5068 		ret = rd_rss_row(adapter, i, &val);
5069 		if (ret)
5070 			return ret;
5071 		*map++ = LKPTBLQUEUE0_G(val);
5072 		*map++ = LKPTBLQUEUE1_G(val);
5073 	}
5074 	return 0;
5075 }
5076 
5077 static unsigned int t4_use_ldst(struct adapter *adap)
5078 {
5079 	return (adap->flags & FW_OK) || !adap->use_bd;
5080 }
5081 
5082 /**
5083  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5084  * @adap: the adapter
5085  * @cmd: TP fw ldst address space type
5086  * @vals: where the indirect register values are stored/written
5087  * @nregs: how many indirect registers to read/write
5088  * @start_idx: index of first indirect register to read/write
5089  * @rw: Read (1) or Write (0)
5090  * @sleep_ok: if true we may sleep while awaiting command completion
5091  *
5092  * Access TP indirect registers through LDST
5093  */
5094 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5095 			    unsigned int nregs, unsigned int start_index,
5096 			    unsigned int rw, bool sleep_ok)
5097 {
5098 	int ret = 0;
5099 	unsigned int i;
5100 	struct fw_ldst_cmd c;
5101 
5102 	for (i = 0; i < nregs; i++) {
5103 		memset(&c, 0, sizeof(c));
5104 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5105 						FW_CMD_REQUEST_F |
5106 						(rw ? FW_CMD_READ_F :
5107 						      FW_CMD_WRITE_F) |
5108 						FW_LDST_CMD_ADDRSPACE_V(cmd));
5109 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5110 
5111 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5112 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5113 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5114 				      sleep_ok);
5115 		if (ret)
5116 			return ret;
5117 
5118 		if (rw)
5119 			vals[i] = be32_to_cpu(c.u.addrval.val);
5120 	}
5121 	return 0;
5122 }
5123 
5124 /**
5125  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5126  * @adap: the adapter
5127  * @reg_addr: Address Register
5128  * @reg_data: Data register
5129  * @buff: where the indirect register values are stored/written
5130  * @nregs: how many indirect registers to read/write
5131  * @start_index: index of first indirect register to read/write
5132  * @rw: READ(1) or WRITE(0)
5133  * @sleep_ok: if true we may sleep while awaiting command completion
5134  *
5135  * Read/Write TP indirect registers through LDST if possible.
5136  * Else, use backdoor access
5137  **/
5138 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5139 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5140 			      bool sleep_ok)
5141 {
5142 	int rc = -EINVAL;
5143 	int cmd;
5144 
5145 	switch (reg_addr) {
5146 	case TP_PIO_ADDR_A:
5147 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5148 		break;
5149 	case TP_TM_PIO_ADDR_A:
5150 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5151 		break;
5152 	case TP_MIB_INDEX_A:
5153 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5154 		break;
5155 	default:
5156 		goto indirect_access;
5157 	}
5158 
5159 	if (t4_use_ldst(adap))
5160 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5161 				      sleep_ok);
5162 
5163 indirect_access:
5164 
5165 	if (rc) {
5166 		if (rw)
5167 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5168 					 start_index);
5169 		else
5170 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5171 					  start_index);
5172 	}
5173 }
5174 
5175 /**
5176  * t4_tp_pio_read - Read TP PIO registers
5177  * @adap: the adapter
5178  * @buff: where the indirect register values are written
5179  * @nregs: how many indirect registers to read
5180  * @start_index: index of first indirect register to read
5181  * @sleep_ok: if true we may sleep while awaiting command completion
5182  *
5183  * Read TP PIO Registers
5184  **/
5185 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5186 		    u32 start_index, bool sleep_ok)
5187 {
5188 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5189 			  start_index, 1, sleep_ok);
5190 }
5191 
5192 /**
5193  * t4_tp_pio_write - Write TP PIO registers
5194  * @adap: the adapter
5195  * @buff: where the indirect register values are stored
5196  * @nregs: how many indirect registers to write
5197  * @start_index: index of first indirect register to write
5198  * @sleep_ok: if true we may sleep while awaiting command completion
5199  *
5200  * Write TP PIO Registers
5201  **/
5202 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5203 			    u32 start_index, bool sleep_ok)
5204 {
5205 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5206 			  start_index, 0, sleep_ok);
5207 }
5208 
5209 /**
5210  * t4_tp_tm_pio_read - Read TP TM PIO registers
5211  * @adap: the adapter
5212  * @buff: where the indirect register values are written
5213  * @nregs: how many indirect registers to read
5214  * @start_index: index of first indirect register to read
5215  * @sleep_ok: if true we may sleep while awaiting command completion
5216  *
5217  * Read TP TM PIO Registers
5218  **/
5219 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5220 		       u32 start_index, bool sleep_ok)
5221 {
5222 	t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5223 			  nregs, start_index, 1, sleep_ok);
5224 }
5225 
5226 /**
5227  * t4_tp_mib_read - Read TP MIB registers
5228  * @adap: the adapter
5229  * @buff: where the indirect register values are written
5230  * @nregs: how many indirect registers to read
5231  * @start_index: index of first indirect register to read
5232  * @sleep_ok: if true we may sleep while awaiting command completion
5233  *
5234  * Read TP MIB Registers
5235  **/
5236 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5237 		    bool sleep_ok)
5238 {
5239 	t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5240 			  start_index, 1, sleep_ok);
5241 }
5242 
5243 /**
5244  *	t4_read_rss_key - read the global RSS key
5245  *	@adap: the adapter
5246  *	@key: 10-entry array holding the 320-bit RSS key
5247  *      @sleep_ok: if true we may sleep while awaiting command completion
5248  *
5249  *	Reads the global 320-bit RSS key.
5250  */
5251 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5252 {
5253 	t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5254 }
5255 
5256 /**
5257  *	t4_write_rss_key - program one of the RSS keys
5258  *	@adap: the adapter
5259  *	@key: 10-entry array holding the 320-bit RSS key
5260  *	@idx: which RSS key to write
5261  *      @sleep_ok: if true we may sleep while awaiting command completion
5262  *
5263  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5264  *	0..15 the corresponding entry in the RSS key table is written,
5265  *	otherwise the global RSS key is written.
5266  */
5267 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5268 		      bool sleep_ok)
5269 {
5270 	u8 rss_key_addr_cnt = 16;
5271 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5272 
5273 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5274 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5275 	 * as index[5:4](upper 2) into key table
5276 	 */
5277 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5278 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5279 		rss_key_addr_cnt = 32;
5280 
5281 	t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5282 
5283 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5284 		if (rss_key_addr_cnt > 16)
5285 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5286 				     KEYWRADDRX_V(idx >> 4) |
5287 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
5288 		else
5289 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5290 				     KEYWRADDR_V(idx) | KEYWREN_F);
5291 	}
5292 }
5293 
5294 /**
5295  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5296  *	@adapter: the adapter
5297  *	@index: the entry in the PF RSS table to read
5298  *	@valp: where to store the returned value
5299  *      @sleep_ok: if true we may sleep while awaiting command completion
5300  *
5301  *	Reads the PF RSS Configuration Table at the specified index and returns
5302  *	the value found there.
5303  */
5304 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5305 			   u32 *valp, bool sleep_ok)
5306 {
5307 	t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5308 }
5309 
5310 /**
5311  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5312  *	@adapter: the adapter
5313  *	@index: the entry in the VF RSS table to read
5314  *	@vfl: where to store the returned VFL
5315  *	@vfh: where to store the returned VFH
5316  *      @sleep_ok: if true we may sleep while awaiting command completion
5317  *
5318  *	Reads the VF RSS Configuration Table at the specified index and returns
5319  *	the (VFL, VFH) values found there.
5320  */
5321 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5322 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5323 {
5324 	u32 vrt, mask, data;
5325 
5326 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5327 		mask = VFWRADDR_V(VFWRADDR_M);
5328 		data = VFWRADDR_V(index);
5329 	} else {
5330 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5331 		 data = T6_VFWRADDR_V(index);
5332 	}
5333 
5334 	/* Request that the index'th VF Table values be read into VFL/VFH.
5335 	 */
5336 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5337 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5338 	vrt |= data | VFRDEN_F;
5339 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5340 
5341 	/* Grab the VFL/VFH values ...
5342 	 */
5343 	t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5344 	t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5345 }
5346 
5347 /**
5348  *	t4_read_rss_pf_map - read PF RSS Map
5349  *	@adapter: the adapter
5350  *      @sleep_ok: if true we may sleep while awaiting command completion
5351  *
5352  *	Reads the PF RSS Map register and returns its value.
5353  */
5354 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5355 {
5356 	u32 pfmap;
5357 
5358 	t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5359 	return pfmap;
5360 }
5361 
5362 /**
5363  *	t4_read_rss_pf_mask - read PF RSS Mask
5364  *	@adapter: the adapter
5365  *      @sleep_ok: if true we may sleep while awaiting command completion
5366  *
5367  *	Reads the PF RSS Mask register and returns its value.
5368  */
5369 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5370 {
5371 	u32 pfmask;
5372 
5373 	t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5374 	return pfmask;
5375 }
5376 
5377 /**
5378  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5379  *	@adap: the adapter
5380  *	@v4: holds the TCP/IP counter values
5381  *	@v6: holds the TCP/IPv6 counter values
5382  *      @sleep_ok: if true we may sleep while awaiting command completion
5383  *
5384  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5385  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5386  */
5387 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5388 			 struct tp_tcp_stats *v6, bool sleep_ok)
5389 {
5390 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5391 
5392 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5393 #define STAT(x)     val[STAT_IDX(x)]
5394 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5395 
5396 	if (v4) {
5397 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5398 			       TP_MIB_TCP_OUT_RST_A, sleep_ok);
5399 		v4->tcp_out_rsts = STAT(OUT_RST);
5400 		v4->tcp_in_segs  = STAT64(IN_SEG);
5401 		v4->tcp_out_segs = STAT64(OUT_SEG);
5402 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5403 	}
5404 	if (v6) {
5405 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5406 			       TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5407 		v6->tcp_out_rsts = STAT(OUT_RST);
5408 		v6->tcp_in_segs  = STAT64(IN_SEG);
5409 		v6->tcp_out_segs = STAT64(OUT_SEG);
5410 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5411 	}
5412 #undef STAT64
5413 #undef STAT
5414 #undef STAT_IDX
5415 }
5416 
5417 /**
5418  *	t4_tp_get_err_stats - read TP's error MIB counters
5419  *	@adap: the adapter
5420  *	@st: holds the counter values
5421  *      @sleep_ok: if true we may sleep while awaiting command completion
5422  *
5423  *	Returns the values of TP's error counters.
5424  */
5425 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5426 			 bool sleep_ok)
5427 {
5428 	int nchan = adap->params.arch.nchan;
5429 
5430 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5431 		       sleep_ok);
5432 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5433 		       sleep_ok);
5434 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5435 		       sleep_ok);
5436 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5437 		       TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5438 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5439 		       TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5440 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5441 		       sleep_ok);
5442 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5443 		       TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5444 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5445 		       TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5446 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5447 		       sleep_ok);
5448 }
5449 
5450 /**
5451  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5452  *	@adap: the adapter
5453  *	@st: holds the counter values
5454  *      @sleep_ok: if true we may sleep while awaiting command completion
5455  *
5456  *	Returns the values of TP's CPL counters.
5457  */
5458 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5459 			 bool sleep_ok)
5460 {
5461 	int nchan = adap->params.arch.nchan;
5462 
5463 	t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5464 
5465 	t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5466 }
5467 
5468 /**
5469  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5470  *	@adap: the adapter
5471  *	@st: holds the counter values
5472  *      @sleep_ok: if true we may sleep while awaiting command completion
5473  *
5474  *	Returns the values of TP's RDMA counters.
5475  */
5476 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5477 			  bool sleep_ok)
5478 {
5479 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5480 		       sleep_ok);
5481 }
5482 
5483 /**
5484  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5485  *	@adap: the adapter
5486  *	@idx: the port index
5487  *	@st: holds the counter values
5488  *      @sleep_ok: if true we may sleep while awaiting command completion
5489  *
5490  *	Returns the values of TP's FCoE counters for the selected port.
5491  */
5492 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5493 		       struct tp_fcoe_stats *st, bool sleep_ok)
5494 {
5495 	u32 val[2];
5496 
5497 	t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5498 		       sleep_ok);
5499 
5500 	t4_tp_mib_read(adap, &st->frames_drop, 1,
5501 		       TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5502 
5503 	t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5504 		       sleep_ok);
5505 
5506 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5507 }
5508 
5509 /**
5510  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5511  *	@adap: the adapter
5512  *	@st: holds the counter values
5513  *      @sleep_ok: if true we may sleep while awaiting command completion
5514  *
5515  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5516  */
5517 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5518 		      bool sleep_ok)
5519 {
5520 	u32 val[4];
5521 
5522 	t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5523 	st->frames = val[0];
5524 	st->drops = val[1];
5525 	st->octets = ((u64)val[2] << 32) | val[3];
5526 }
5527 
5528 /**
5529  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5530  *	@adap: the adapter
5531  *	@mtus: where to store the MTU values
5532  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5533  *
5534  *	Reads the HW path MTU table.
5535  */
5536 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5537 {
5538 	u32 v;
5539 	int i;
5540 
5541 	for (i = 0; i < NMTUS; ++i) {
5542 		t4_write_reg(adap, TP_MTU_TABLE_A,
5543 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
5544 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
5545 		mtus[i] = MTUVALUE_G(v);
5546 		if (mtu_log)
5547 			mtu_log[i] = MTUWIDTH_G(v);
5548 	}
5549 }
5550 
5551 /**
5552  *	t4_read_cong_tbl - reads the congestion control table
5553  *	@adap: the adapter
5554  *	@incr: where to store the alpha values
5555  *
5556  *	Reads the additive increments programmed into the HW congestion
5557  *	control table.
5558  */
5559 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5560 {
5561 	unsigned int mtu, w;
5562 
5563 	for (mtu = 0; mtu < NMTUS; ++mtu)
5564 		for (w = 0; w < NCCTRL_WIN; ++w) {
5565 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
5566 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5567 			incr[mtu][w] = (u16)t4_read_reg(adap,
5568 						TP_CCTRL_TABLE_A) & 0x1fff;
5569 		}
5570 }
5571 
5572 /**
5573  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5574  *	@adap: the adapter
5575  *	@addr: the indirect TP register address
5576  *	@mask: specifies the field within the register to modify
5577  *	@val: new value for the field
5578  *
5579  *	Sets a field of an indirect TP register to the given value.
5580  */
5581 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5582 			    unsigned int mask, unsigned int val)
5583 {
5584 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5585 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5586 	t4_write_reg(adap, TP_PIO_DATA_A, val);
5587 }
5588 
5589 /**
5590  *	init_cong_ctrl - initialize congestion control parameters
5591  *	@a: the alpha values for congestion control
5592  *	@b: the beta values for congestion control
5593  *
5594  *	Initialize the congestion control parameters.
5595  */
5596 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5597 {
5598 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5599 	a[9] = 2;
5600 	a[10] = 3;
5601 	a[11] = 4;
5602 	a[12] = 5;
5603 	a[13] = 6;
5604 	a[14] = 7;
5605 	a[15] = 8;
5606 	a[16] = 9;
5607 	a[17] = 10;
5608 	a[18] = 14;
5609 	a[19] = 17;
5610 	a[20] = 21;
5611 	a[21] = 25;
5612 	a[22] = 30;
5613 	a[23] = 35;
5614 	a[24] = 45;
5615 	a[25] = 60;
5616 	a[26] = 80;
5617 	a[27] = 100;
5618 	a[28] = 200;
5619 	a[29] = 300;
5620 	a[30] = 400;
5621 	a[31] = 500;
5622 
5623 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5624 	b[9] = b[10] = 1;
5625 	b[11] = b[12] = 2;
5626 	b[13] = b[14] = b[15] = b[16] = 3;
5627 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5628 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5629 	b[28] = b[29] = 6;
5630 	b[30] = b[31] = 7;
5631 }
5632 
5633 /* The minimum additive increment value for the congestion control table */
5634 #define CC_MIN_INCR 2U
5635 
5636 /**
5637  *	t4_load_mtus - write the MTU and congestion control HW tables
5638  *	@adap: the adapter
5639  *	@mtus: the values for the MTU table
5640  *	@alpha: the values for the congestion control alpha parameter
5641  *	@beta: the values for the congestion control beta parameter
5642  *
5643  *	Write the HW MTU table with the supplied MTUs and the high-speed
5644  *	congestion control table with the supplied alpha, beta, and MTUs.
5645  *	We write the two tables together because the additive increments
5646  *	depend on the MTUs.
5647  */
5648 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5649 		  const unsigned short *alpha, const unsigned short *beta)
5650 {
5651 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5652 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5653 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5654 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5655 	};
5656 
5657 	unsigned int i, w;
5658 
5659 	for (i = 0; i < NMTUS; ++i) {
5660 		unsigned int mtu = mtus[i];
5661 		unsigned int log2 = fls(mtu);
5662 
5663 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5664 			log2--;
5665 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5666 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5667 
5668 		for (w = 0; w < NCCTRL_WIN; ++w) {
5669 			unsigned int inc;
5670 
5671 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5672 				  CC_MIN_INCR);
5673 
5674 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5675 				     (w << 16) | (beta[w] << 13) | inc);
5676 		}
5677 	}
5678 }
5679 
5680 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5681  * clocks.  The formula is
5682  *
5683  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5684  *
5685  * which is equivalent to
5686  *
5687  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5688  */
5689 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5690 {
5691 	u64 v = bytes256 * adap->params.vpd.cclk;
5692 
5693 	return v * 62 + v / 2;
5694 }
5695 
5696 /**
5697  *	t4_get_chan_txrate - get the current per channel Tx rates
5698  *	@adap: the adapter
5699  *	@nic_rate: rates for NIC traffic
5700  *	@ofld_rate: rates for offloaded traffic
5701  *
5702  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5703  *	for each channel.
5704  */
5705 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5706 {
5707 	u32 v;
5708 
5709 	v = t4_read_reg(adap, TP_TX_TRATE_A);
5710 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5711 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5712 	if (adap->params.arch.nchan == NCHAN) {
5713 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5714 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5715 	}
5716 
5717 	v = t4_read_reg(adap, TP_TX_ORATE_A);
5718 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5719 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5720 	if (adap->params.arch.nchan == NCHAN) {
5721 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5722 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5723 	}
5724 }
5725 
5726 /**
5727  *	t4_set_trace_filter - configure one of the tracing filters
5728  *	@adap: the adapter
5729  *	@tp: the desired trace filter parameters
5730  *	@idx: which filter to configure
5731  *	@enable: whether to enable or disable the filter
5732  *
5733  *	Configures one of the tracing filters available in HW.  If @enable is
5734  *	%0 @tp is not examined and may be %NULL. The user is responsible to
5735  *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5736  */
5737 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5738 			int idx, int enable)
5739 {
5740 	int i, ofst = idx * 4;
5741 	u32 data_reg, mask_reg, cfg;
5742 	u32 multitrc = TRCMULTIFILTER_F;
5743 
5744 	if (!enable) {
5745 		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5746 		return 0;
5747 	}
5748 
5749 	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5750 	if (cfg & TRCMULTIFILTER_F) {
5751 		/* If multiple tracers are enabled, then maximum
5752 		 * capture size is 2.5KB (FIFO size of a single channel)
5753 		 * minus 2 flits for CPL_TRACE_PKT header.
5754 		 */
5755 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5756 			return -EINVAL;
5757 	} else {
5758 		/* If multiple tracers are disabled, to avoid deadlocks
5759 		 * maximum packet capture size of 9600 bytes is recommended.
5760 		 * Also in this mode, only trace0 can be enabled and running.
5761 		 */
5762 		multitrc = 0;
5763 		if (tp->snap_len > 9600 || idx)
5764 			return -EINVAL;
5765 	}
5766 
5767 	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5768 	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5769 	    tp->min_len > TFMINPKTSIZE_M)
5770 		return -EINVAL;
5771 
5772 	/* stop the tracer we'll be changing */
5773 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5774 
5775 	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5776 	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5777 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5778 
5779 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5780 		t4_write_reg(adap, data_reg, tp->data[i]);
5781 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5782 	}
5783 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5784 		     TFCAPTUREMAX_V(tp->snap_len) |
5785 		     TFMINPKTSIZE_V(tp->min_len));
5786 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5787 		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5788 		     (is_t4(adap->params.chip) ?
5789 		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5790 		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
5791 		     T5_TFINVERTMATCH_V(tp->invert)));
5792 
5793 	return 0;
5794 }
5795 
5796 /**
5797  *	t4_get_trace_filter - query one of the tracing filters
5798  *	@adap: the adapter
5799  *	@tp: the current trace filter parameters
5800  *	@idx: which trace filter to query
5801  *	@enabled: non-zero if the filter is enabled
5802  *
5803  *	Returns the current settings of one of the HW tracing filters.
5804  */
5805 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5806 			 int *enabled)
5807 {
5808 	u32 ctla, ctlb;
5809 	int i, ofst = idx * 4;
5810 	u32 data_reg, mask_reg;
5811 
5812 	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5813 	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5814 
5815 	if (is_t4(adap->params.chip)) {
5816 		*enabled = !!(ctla & TFEN_F);
5817 		tp->port =  TFPORT_G(ctla);
5818 		tp->invert = !!(ctla & TFINVERTMATCH_F);
5819 	} else {
5820 		*enabled = !!(ctla & T5_TFEN_F);
5821 		tp->port = T5_TFPORT_G(ctla);
5822 		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5823 	}
5824 	tp->snap_len = TFCAPTUREMAX_G(ctlb);
5825 	tp->min_len = TFMINPKTSIZE_G(ctlb);
5826 	tp->skip_ofst = TFOFFSET_G(ctla);
5827 	tp->skip_len = TFLENGTH_G(ctla);
5828 
5829 	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5830 	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5831 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5832 
5833 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5834 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5835 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5836 	}
5837 }
5838 
5839 /**
5840  *	t4_pmtx_get_stats - returns the HW stats from PMTX
5841  *	@adap: the adapter
5842  *	@cnt: where to store the count statistics
5843  *	@cycles: where to store the cycle statistics
5844  *
5845  *	Returns performance statistics from PMTX.
5846  */
5847 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5848 {
5849 	int i;
5850 	u32 data[2];
5851 
5852 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5853 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5854 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5855 		if (is_t4(adap->params.chip)) {
5856 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5857 		} else {
5858 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5859 					 PM_TX_DBG_DATA_A, data, 2,
5860 					 PM_TX_DBG_STAT_MSB_A);
5861 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5862 		}
5863 	}
5864 }
5865 
5866 /**
5867  *	t4_pmrx_get_stats - returns the HW stats from PMRX
5868  *	@adap: the adapter
5869  *	@cnt: where to store the count statistics
5870  *	@cycles: where to store the cycle statistics
5871  *
5872  *	Returns performance statistics from PMRX.
5873  */
5874 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5875 {
5876 	int i;
5877 	u32 data[2];
5878 
5879 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5880 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5881 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5882 		if (is_t4(adap->params.chip)) {
5883 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5884 		} else {
5885 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5886 					 PM_RX_DBG_DATA_A, data, 2,
5887 					 PM_RX_DBG_STAT_MSB_A);
5888 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5889 		}
5890 	}
5891 }
5892 
5893 /**
5894  *	compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
5895  *	@adap: the adapter
5896  *	@pidx: the port index
5897  *
5898  *	Computes and returns a bitmap indicating which MPS buffer groups are
5899  *	associated with the given Port.  Bit i is set if buffer group i is
5900  *	used by the Port.
5901  */
5902 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
5903 					      int pidx)
5904 {
5905 	unsigned int chip_version, nports;
5906 
5907 	chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
5908 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
5909 
5910 	switch (chip_version) {
5911 	case CHELSIO_T4:
5912 	case CHELSIO_T5:
5913 		switch (nports) {
5914 		case 1: return 0xf;
5915 		case 2: return 3 << (2 * pidx);
5916 		case 4: return 1 << pidx;
5917 		}
5918 		break;
5919 
5920 	case CHELSIO_T6:
5921 		switch (nports) {
5922 		case 2: return 1 << (2 * pidx);
5923 		}
5924 		break;
5925 	}
5926 
5927 	dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
5928 		chip_version, nports);
5929 
5930 	return 0;
5931 }
5932 
5933 /**
5934  *	t4_get_mps_bg_map - return the buffer groups associated with a port
5935  *	@adapter: the adapter
5936  *	@pidx: the port index
5937  *
5938  *	Returns a bitmap indicating which MPS buffer groups are associated
5939  *	with the given Port.  Bit i is set if buffer group i is used by the
5940  *	Port.
5941  */
5942 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
5943 {
5944 	u8 *mps_bg_map;
5945 	unsigned int nports;
5946 
5947 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
5948 	if (pidx >= nports) {
5949 		CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
5950 			pidx, nports);
5951 		return 0;
5952 	}
5953 
5954 	/* If we've already retrieved/computed this, just return the result.
5955 	 */
5956 	mps_bg_map = adapter->params.mps_bg_map;
5957 	if (mps_bg_map[pidx])
5958 		return mps_bg_map[pidx];
5959 
5960 	/* Newer Firmware can tell us what the MPS Buffer Group Map is.
5961 	 * If we're talking to such Firmware, let it tell us.  If the new
5962 	 * API isn't supported, revert back to old hardcoded way.  The value
5963 	 * obtained from Firmware is encoded in below format:
5964 	 *
5965 	 * val = (( MPSBGMAP[Port 3] << 24 ) |
5966 	 *        ( MPSBGMAP[Port 2] << 16 ) |
5967 	 *        ( MPSBGMAP[Port 1] <<  8 ) |
5968 	 *        ( MPSBGMAP[Port 0] <<  0 ))
5969 	 */
5970 	if (adapter->flags & FW_OK) {
5971 		u32 param, val;
5972 		int ret;
5973 
5974 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
5975 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
5976 		ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
5977 					 0, 1, &param, &val);
5978 		if (!ret) {
5979 			int p;
5980 
5981 			/* Store the BG Map for all of the Ports in order to
5982 			 * avoid more calls to the Firmware in the future.
5983 			 */
5984 			for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
5985 				mps_bg_map[p] = val & 0xff;
5986 
5987 			return mps_bg_map[pidx];
5988 		}
5989 	}
5990 
5991 	/* Either we're not talking to the Firmware or we're dealing with
5992 	 * older Firmware which doesn't support the new API to get the MPS
5993 	 * Buffer Group Map.  Fall back to computing it ourselves.
5994 	 */
5995 	mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
5996 	return mps_bg_map[pidx];
5997 }
5998 
5999 /**
6000  *	t4_get_tp_ch_map - return TP ingress channels associated with a port
6001  *	@adapter: the adapter
6002  *	@pidx: the port index
6003  *
6004  *	Returns a bitmap indicating which TP Ingress Channels are associated
6005  *	with a given Port.  Bit i is set if TP Ingress Channel i is used by
6006  *	the Port.
6007  */
6008 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6009 {
6010 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6011 	unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6012 
6013 	if (pidx >= nports) {
6014 		dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6015 			 pidx, nports);
6016 		return 0;
6017 	}
6018 
6019 	switch (chip_version) {
6020 	case CHELSIO_T4:
6021 	case CHELSIO_T5:
6022 		/* Note that this happens to be the same values as the MPS
6023 		 * Buffer Group Map for these Chips.  But we replicate the code
6024 		 * here because they're really separate concepts.
6025 		 */
6026 		switch (nports) {
6027 		case 1: return 0xf;
6028 		case 2: return 3 << (2 * pidx);
6029 		case 4: return 1 << pidx;
6030 		}
6031 		break;
6032 
6033 	case CHELSIO_T6:
6034 		switch (nports) {
6035 		case 2: return 1 << pidx;
6036 		}
6037 		break;
6038 	}
6039 
6040 	dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6041 		chip_version, nports);
6042 	return 0;
6043 }
6044 
6045 /**
6046  *      t4_get_port_type_description - return Port Type string description
6047  *      @port_type: firmware Port Type enumeration
6048  */
6049 const char *t4_get_port_type_description(enum fw_port_type port_type)
6050 {
6051 	static const char *const port_type_description[] = {
6052 		"Fiber_XFI",
6053 		"Fiber_XAUI",
6054 		"BT_SGMII",
6055 		"BT_XFI",
6056 		"BT_XAUI",
6057 		"KX4",
6058 		"CX4",
6059 		"KX",
6060 		"KR",
6061 		"SFP",
6062 		"BP_AP",
6063 		"BP4_AP",
6064 		"QSFP_10G",
6065 		"QSA",
6066 		"QSFP",
6067 		"BP40_BA",
6068 		"KR4_100G",
6069 		"CR4_QSFP",
6070 		"CR_QSFP",
6071 		"CR2_QSFP",
6072 		"SFP28",
6073 		"KR_SFP28",
6074 	};
6075 
6076 	if (port_type < ARRAY_SIZE(port_type_description))
6077 		return port_type_description[port_type];
6078 	return "UNKNOWN";
6079 }
6080 
6081 /**
6082  *      t4_get_port_stats_offset - collect port stats relative to a previous
6083  *                                 snapshot
6084  *      @adap: The adapter
6085  *      @idx: The port
6086  *      @stats: Current stats to fill
6087  *      @offset: Previous stats snapshot
6088  */
6089 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6090 			      struct port_stats *stats,
6091 			      struct port_stats *offset)
6092 {
6093 	u64 *s, *o;
6094 	int i;
6095 
6096 	t4_get_port_stats(adap, idx, stats);
6097 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6098 			i < (sizeof(struct port_stats) / sizeof(u64));
6099 			i++, s++, o++)
6100 		*s -= *o;
6101 }
6102 
6103 /**
6104  *	t4_get_port_stats - collect port statistics
6105  *	@adap: the adapter
6106  *	@idx: the port index
6107  *	@p: the stats structure to fill
6108  *
6109  *	Collect statistics related to the given port from HW.
6110  */
6111 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6112 {
6113 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6114 	u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6115 
6116 #define GET_STAT(name) \
6117 	t4_read_reg64(adap, \
6118 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6119 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6120 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6121 
6122 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6123 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6124 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6125 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6126 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6127 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6128 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6129 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6130 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6131 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6132 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6133 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6134 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6135 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
6136 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6137 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6138 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6139 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6140 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6141 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6142 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6143 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6144 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6145 
6146 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6147 		if (stat_ctl & COUNTPAUSESTATTX_F)
6148 			p->tx_frames_64 -= p->tx_pause;
6149 		if (stat_ctl & COUNTPAUSEMCTX_F)
6150 			p->tx_mcast_frames -= p->tx_pause;
6151 	}
6152 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6153 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6154 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6155 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6156 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6157 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6158 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6159 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6160 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6161 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6162 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6163 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6164 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6165 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6166 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6167 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6168 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6169 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6170 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6171 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6172 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6173 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6174 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6175 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6176 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6177 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6178 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6179 
6180 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6181 		if (stat_ctl & COUNTPAUSESTATRX_F)
6182 			p->rx_frames_64 -= p->rx_pause;
6183 		if (stat_ctl & COUNTPAUSEMCRX_F)
6184 			p->rx_mcast_frames -= p->rx_pause;
6185 	}
6186 
6187 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6188 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6189 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6190 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6191 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6192 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6193 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6194 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6195 
6196 #undef GET_STAT
6197 #undef GET_STAT_COM
6198 }
6199 
6200 /**
6201  *	t4_get_lb_stats - collect loopback port statistics
6202  *	@adap: the adapter
6203  *	@idx: the loopback port index
6204  *	@p: the stats structure to fill
6205  *
6206  *	Return HW statistics for the given loopback port.
6207  */
6208 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6209 {
6210 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6211 
6212 #define GET_STAT(name) \
6213 	t4_read_reg64(adap, \
6214 	(is_t4(adap->params.chip) ? \
6215 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6216 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6217 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6218 
6219 	p->octets           = GET_STAT(BYTES);
6220 	p->frames           = GET_STAT(FRAMES);
6221 	p->bcast_frames     = GET_STAT(BCAST);
6222 	p->mcast_frames     = GET_STAT(MCAST);
6223 	p->ucast_frames     = GET_STAT(UCAST);
6224 	p->error_frames     = GET_STAT(ERROR);
6225 
6226 	p->frames_64        = GET_STAT(64B);
6227 	p->frames_65_127    = GET_STAT(65B_127B);
6228 	p->frames_128_255   = GET_STAT(128B_255B);
6229 	p->frames_256_511   = GET_STAT(256B_511B);
6230 	p->frames_512_1023  = GET_STAT(512B_1023B);
6231 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
6232 	p->frames_1519_max  = GET_STAT(1519B_MAX);
6233 	p->drop             = GET_STAT(DROP_FRAMES);
6234 
6235 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6236 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6237 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6238 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6239 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6240 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6241 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6242 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6243 
6244 #undef GET_STAT
6245 #undef GET_STAT_COM
6246 }
6247 
6248 /*     t4_mk_filtdelwr - create a delete filter WR
6249  *     @ftid: the filter ID
6250  *     @wr: the filter work request to populate
6251  *     @qid: ingress queue to receive the delete notification
6252  *
6253  *     Creates a filter work request to delete the supplied filter.  If @qid is
6254  *     negative the delete notification is suppressed.
6255  */
6256 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6257 {
6258 	memset(wr, 0, sizeof(*wr));
6259 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6260 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6261 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6262 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
6263 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6264 	if (qid >= 0)
6265 		wr->rx_chan_rx_rpl_iq =
6266 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6267 }
6268 
6269 #define INIT_CMD(var, cmd, rd_wr) do { \
6270 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6271 					FW_CMD_REQUEST_F | \
6272 					FW_CMD_##rd_wr##_F); \
6273 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6274 } while (0)
6275 
6276 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6277 			  u32 addr, u32 val)
6278 {
6279 	u32 ldst_addrspace;
6280 	struct fw_ldst_cmd c;
6281 
6282 	memset(&c, 0, sizeof(c));
6283 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6284 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6285 					FW_CMD_REQUEST_F |
6286 					FW_CMD_WRITE_F |
6287 					ldst_addrspace);
6288 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6289 	c.u.addrval.addr = cpu_to_be32(addr);
6290 	c.u.addrval.val = cpu_to_be32(val);
6291 
6292 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6293 }
6294 
6295 /**
6296  *	t4_mdio_rd - read a PHY register through MDIO
6297  *	@adap: the adapter
6298  *	@mbox: mailbox to use for the FW command
6299  *	@phy_addr: the PHY address
6300  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6301  *	@reg: the register to read
6302  *	@valp: where to store the value
6303  *
6304  *	Issues a FW command through the given mailbox to read a PHY register.
6305  */
6306 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6307 	       unsigned int mmd, unsigned int reg, u16 *valp)
6308 {
6309 	int ret;
6310 	u32 ldst_addrspace;
6311 	struct fw_ldst_cmd c;
6312 
6313 	memset(&c, 0, sizeof(c));
6314 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6315 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6316 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6317 					ldst_addrspace);
6318 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6319 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6320 					 FW_LDST_CMD_MMD_V(mmd));
6321 	c.u.mdio.raddr = cpu_to_be16(reg);
6322 
6323 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6324 	if (ret == 0)
6325 		*valp = be16_to_cpu(c.u.mdio.rval);
6326 	return ret;
6327 }
6328 
6329 /**
6330  *	t4_mdio_wr - write a PHY register through MDIO
6331  *	@adap: the adapter
6332  *	@mbox: mailbox to use for the FW command
6333  *	@phy_addr: the PHY address
6334  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6335  *	@reg: the register to write
6336  *	@valp: value to write
6337  *
6338  *	Issues a FW command through the given mailbox to write a PHY register.
6339  */
6340 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6341 	       unsigned int mmd, unsigned int reg, u16 val)
6342 {
6343 	u32 ldst_addrspace;
6344 	struct fw_ldst_cmd c;
6345 
6346 	memset(&c, 0, sizeof(c));
6347 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6348 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6349 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6350 					ldst_addrspace);
6351 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6352 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6353 					 FW_LDST_CMD_MMD_V(mmd));
6354 	c.u.mdio.raddr = cpu_to_be16(reg);
6355 	c.u.mdio.rval = cpu_to_be16(val);
6356 
6357 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6358 }
6359 
6360 /**
6361  *	t4_sge_decode_idma_state - decode the idma state
6362  *	@adap: the adapter
6363  *	@state: the state idma is stuck in
6364  */
6365 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6366 {
6367 	static const char * const t4_decode[] = {
6368 		"IDMA_IDLE",
6369 		"IDMA_PUSH_MORE_CPL_FIFO",
6370 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6371 		"Not used",
6372 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6373 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6374 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6375 		"IDMA_SEND_FIFO_TO_IMSG",
6376 		"IDMA_FL_REQ_DATA_FL_PREP",
6377 		"IDMA_FL_REQ_DATA_FL",
6378 		"IDMA_FL_DROP",
6379 		"IDMA_FL_H_REQ_HEADER_FL",
6380 		"IDMA_FL_H_SEND_PCIEHDR",
6381 		"IDMA_FL_H_PUSH_CPL_FIFO",
6382 		"IDMA_FL_H_SEND_CPL",
6383 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6384 		"IDMA_FL_H_SEND_IP_HDR",
6385 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6386 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6387 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6388 		"IDMA_FL_D_SEND_PCIEHDR",
6389 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6390 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6391 		"IDMA_FL_SEND_PCIEHDR",
6392 		"IDMA_FL_PUSH_CPL_FIFO",
6393 		"IDMA_FL_SEND_CPL",
6394 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6395 		"IDMA_FL_SEND_PAYLOAD",
6396 		"IDMA_FL_REQ_NEXT_DATA_FL",
6397 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6398 		"IDMA_FL_SEND_PADDING",
6399 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6400 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6401 		"IDMA_FL_REQ_DATAFL_DONE",
6402 		"IDMA_FL_REQ_HEADERFL_DONE",
6403 	};
6404 	static const char * const t5_decode[] = {
6405 		"IDMA_IDLE",
6406 		"IDMA_ALMOST_IDLE",
6407 		"IDMA_PUSH_MORE_CPL_FIFO",
6408 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6409 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6410 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6411 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6412 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6413 		"IDMA_SEND_FIFO_TO_IMSG",
6414 		"IDMA_FL_REQ_DATA_FL",
6415 		"IDMA_FL_DROP",
6416 		"IDMA_FL_DROP_SEND_INC",
6417 		"IDMA_FL_H_REQ_HEADER_FL",
6418 		"IDMA_FL_H_SEND_PCIEHDR",
6419 		"IDMA_FL_H_PUSH_CPL_FIFO",
6420 		"IDMA_FL_H_SEND_CPL",
6421 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6422 		"IDMA_FL_H_SEND_IP_HDR",
6423 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6424 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6425 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6426 		"IDMA_FL_D_SEND_PCIEHDR",
6427 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6428 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6429 		"IDMA_FL_SEND_PCIEHDR",
6430 		"IDMA_FL_PUSH_CPL_FIFO",
6431 		"IDMA_FL_SEND_CPL",
6432 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6433 		"IDMA_FL_SEND_PAYLOAD",
6434 		"IDMA_FL_REQ_NEXT_DATA_FL",
6435 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6436 		"IDMA_FL_SEND_PADDING",
6437 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6438 	};
6439 	static const char * const t6_decode[] = {
6440 		"IDMA_IDLE",
6441 		"IDMA_PUSH_MORE_CPL_FIFO",
6442 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6443 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6444 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6445 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6446 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6447 		"IDMA_FL_REQ_DATA_FL",
6448 		"IDMA_FL_DROP",
6449 		"IDMA_FL_DROP_SEND_INC",
6450 		"IDMA_FL_H_REQ_HEADER_FL",
6451 		"IDMA_FL_H_SEND_PCIEHDR",
6452 		"IDMA_FL_H_PUSH_CPL_FIFO",
6453 		"IDMA_FL_H_SEND_CPL",
6454 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6455 		"IDMA_FL_H_SEND_IP_HDR",
6456 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6457 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6458 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6459 		"IDMA_FL_D_SEND_PCIEHDR",
6460 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6461 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6462 		"IDMA_FL_SEND_PCIEHDR",
6463 		"IDMA_FL_PUSH_CPL_FIFO",
6464 		"IDMA_FL_SEND_CPL",
6465 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6466 		"IDMA_FL_SEND_PAYLOAD",
6467 		"IDMA_FL_REQ_NEXT_DATA_FL",
6468 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6469 		"IDMA_FL_SEND_PADDING",
6470 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6471 	};
6472 	static const u32 sge_regs[] = {
6473 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
6474 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
6475 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6476 	};
6477 	const char **sge_idma_decode;
6478 	int sge_idma_decode_nstates;
6479 	int i;
6480 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6481 
6482 	/* Select the right set of decode strings to dump depending on the
6483 	 * adapter chip type.
6484 	 */
6485 	switch (chip_version) {
6486 	case CHELSIO_T4:
6487 		sge_idma_decode = (const char **)t4_decode;
6488 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6489 		break;
6490 
6491 	case CHELSIO_T5:
6492 		sge_idma_decode = (const char **)t5_decode;
6493 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6494 		break;
6495 
6496 	case CHELSIO_T6:
6497 		sge_idma_decode = (const char **)t6_decode;
6498 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6499 		break;
6500 
6501 	default:
6502 		dev_err(adapter->pdev_dev,
6503 			"Unsupported chip version %d\n", chip_version);
6504 		return;
6505 	}
6506 
6507 	if (is_t4(adapter->params.chip)) {
6508 		sge_idma_decode = (const char **)t4_decode;
6509 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6510 	} else {
6511 		sge_idma_decode = (const char **)t5_decode;
6512 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6513 	}
6514 
6515 	if (state < sge_idma_decode_nstates)
6516 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6517 	else
6518 		CH_WARN(adapter, "idma state %d unknown\n", state);
6519 
6520 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6521 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6522 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6523 }
6524 
6525 /**
6526  *      t4_sge_ctxt_flush - flush the SGE context cache
6527  *      @adap: the adapter
6528  *      @mbox: mailbox to use for the FW command
6529  *
6530  *      Issues a FW command through the given mailbox to flush the
6531  *      SGE context cache.
6532  */
6533 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
6534 {
6535 	int ret;
6536 	u32 ldst_addrspace;
6537 	struct fw_ldst_cmd c;
6538 
6539 	memset(&c, 0, sizeof(c));
6540 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
6541 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6542 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6543 					ldst_addrspace);
6544 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6545 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6546 
6547 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6548 	return ret;
6549 }
6550 
6551 /**
6552  *      t4_fw_hello - establish communication with FW
6553  *      @adap: the adapter
6554  *      @mbox: mailbox to use for the FW command
6555  *      @evt_mbox: mailbox to receive async FW events
6556  *      @master: specifies the caller's willingness to be the device master
6557  *	@state: returns the current device state (if non-NULL)
6558  *
6559  *	Issues a command to establish communication with FW.  Returns either
6560  *	an error (negative integer) or the mailbox of the Master PF.
6561  */
6562 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6563 		enum dev_master master, enum dev_state *state)
6564 {
6565 	int ret;
6566 	struct fw_hello_cmd c;
6567 	u32 v;
6568 	unsigned int master_mbox;
6569 	int retries = FW_CMD_HELLO_RETRIES;
6570 
6571 retry:
6572 	memset(&c, 0, sizeof(c));
6573 	INIT_CMD(c, HELLO, WRITE);
6574 	c.err_to_clearinit = cpu_to_be32(
6575 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6576 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6577 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6578 					mbox : FW_HELLO_CMD_MBMASTER_M) |
6579 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6580 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6581 		FW_HELLO_CMD_CLEARINIT_F);
6582 
6583 	/*
6584 	 * Issue the HELLO command to the firmware.  If it's not successful
6585 	 * but indicates that we got a "busy" or "timeout" condition, retry
6586 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6587 	 * retry limit, check to see if the firmware left us any error
6588 	 * information and report that if so.
6589 	 */
6590 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6591 	if (ret < 0) {
6592 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6593 			goto retry;
6594 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6595 			t4_report_fw_error(adap);
6596 		return ret;
6597 	}
6598 
6599 	v = be32_to_cpu(c.err_to_clearinit);
6600 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6601 	if (state) {
6602 		if (v & FW_HELLO_CMD_ERR_F)
6603 			*state = DEV_STATE_ERR;
6604 		else if (v & FW_HELLO_CMD_INIT_F)
6605 			*state = DEV_STATE_INIT;
6606 		else
6607 			*state = DEV_STATE_UNINIT;
6608 	}
6609 
6610 	/*
6611 	 * If we're not the Master PF then we need to wait around for the
6612 	 * Master PF Driver to finish setting up the adapter.
6613 	 *
6614 	 * Note that we also do this wait if we're a non-Master-capable PF and
6615 	 * there is no current Master PF; a Master PF may show up momentarily
6616 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6617 	 * OS loads lots of different drivers rapidly at the same time).  In
6618 	 * this case, the Master PF returned by the firmware will be
6619 	 * PCIE_FW_MASTER_M so the test below will work ...
6620 	 */
6621 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6622 	    master_mbox != mbox) {
6623 		int waiting = FW_CMD_HELLO_TIMEOUT;
6624 
6625 		/*
6626 		 * Wait for the firmware to either indicate an error or
6627 		 * initialized state.  If we see either of these we bail out
6628 		 * and report the issue to the caller.  If we exhaust the
6629 		 * "hello timeout" and we haven't exhausted our retries, try
6630 		 * again.  Otherwise bail with a timeout error.
6631 		 */
6632 		for (;;) {
6633 			u32 pcie_fw;
6634 
6635 			msleep(50);
6636 			waiting -= 50;
6637 
6638 			/*
6639 			 * If neither Error nor Initialialized are indicated
6640 			 * by the firmware keep waiting till we exaust our
6641 			 * timeout ... and then retry if we haven't exhausted
6642 			 * our retries ...
6643 			 */
6644 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6645 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6646 				if (waiting <= 0) {
6647 					if (retries-- > 0)
6648 						goto retry;
6649 
6650 					return -ETIMEDOUT;
6651 				}
6652 				continue;
6653 			}
6654 
6655 			/*
6656 			 * We either have an Error or Initialized condition
6657 			 * report errors preferentially.
6658 			 */
6659 			if (state) {
6660 				if (pcie_fw & PCIE_FW_ERR_F)
6661 					*state = DEV_STATE_ERR;
6662 				else if (pcie_fw & PCIE_FW_INIT_F)
6663 					*state = DEV_STATE_INIT;
6664 			}
6665 
6666 			/*
6667 			 * If we arrived before a Master PF was selected and
6668 			 * there's not a valid Master PF, grab its identity
6669 			 * for our caller.
6670 			 */
6671 			if (master_mbox == PCIE_FW_MASTER_M &&
6672 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
6673 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6674 			break;
6675 		}
6676 	}
6677 
6678 	return master_mbox;
6679 }
6680 
6681 /**
6682  *	t4_fw_bye - end communication with FW
6683  *	@adap: the adapter
6684  *	@mbox: mailbox to use for the FW command
6685  *
6686  *	Issues a command to terminate communication with FW.
6687  */
6688 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6689 {
6690 	struct fw_bye_cmd c;
6691 
6692 	memset(&c, 0, sizeof(c));
6693 	INIT_CMD(c, BYE, WRITE);
6694 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6695 }
6696 
6697 /**
6698  *	t4_init_cmd - ask FW to initialize the device
6699  *	@adap: the adapter
6700  *	@mbox: mailbox to use for the FW command
6701  *
6702  *	Issues a command to FW to partially initialize the device.  This
6703  *	performs initialization that generally doesn't depend on user input.
6704  */
6705 int t4_early_init(struct adapter *adap, unsigned int mbox)
6706 {
6707 	struct fw_initialize_cmd c;
6708 
6709 	memset(&c, 0, sizeof(c));
6710 	INIT_CMD(c, INITIALIZE, WRITE);
6711 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6712 }
6713 
6714 /**
6715  *	t4_fw_reset - issue a reset to FW
6716  *	@adap: the adapter
6717  *	@mbox: mailbox to use for the FW command
6718  *	@reset: specifies the type of reset to perform
6719  *
6720  *	Issues a reset command of the specified type to FW.
6721  */
6722 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6723 {
6724 	struct fw_reset_cmd c;
6725 
6726 	memset(&c, 0, sizeof(c));
6727 	INIT_CMD(c, RESET, WRITE);
6728 	c.val = cpu_to_be32(reset);
6729 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6730 }
6731 
6732 /**
6733  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6734  *	@adap: the adapter
6735  *	@mbox: mailbox to use for the FW RESET command (if desired)
6736  *	@force: force uP into RESET even if FW RESET command fails
6737  *
6738  *	Issues a RESET command to firmware (if desired) with a HALT indication
6739  *	and then puts the microprocessor into RESET state.  The RESET command
6740  *	will only be issued if a legitimate mailbox is provided (mbox <=
6741  *	PCIE_FW_MASTER_M).
6742  *
6743  *	This is generally used in order for the host to safely manipulate the
6744  *	adapter without fear of conflicting with whatever the firmware might
6745  *	be doing.  The only way out of this state is to RESTART the firmware
6746  *	...
6747  */
6748 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6749 {
6750 	int ret = 0;
6751 
6752 	/*
6753 	 * If a legitimate mailbox is provided, issue a RESET command
6754 	 * with a HALT indication.
6755 	 */
6756 	if (mbox <= PCIE_FW_MASTER_M) {
6757 		struct fw_reset_cmd c;
6758 
6759 		memset(&c, 0, sizeof(c));
6760 		INIT_CMD(c, RESET, WRITE);
6761 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
6762 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
6763 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6764 	}
6765 
6766 	/*
6767 	 * Normally we won't complete the operation if the firmware RESET
6768 	 * command fails but if our caller insists we'll go ahead and put the
6769 	 * uP into RESET.  This can be useful if the firmware is hung or even
6770 	 * missing ...  We'll have to take the risk of putting the uP into
6771 	 * RESET without the cooperation of firmware in that case.
6772 	 *
6773 	 * We also force the firmware's HALT flag to be on in case we bypassed
6774 	 * the firmware RESET command above or we're dealing with old firmware
6775 	 * which doesn't have the HALT capability.  This will serve as a flag
6776 	 * for the incoming firmware to know that it's coming out of a HALT
6777 	 * rather than a RESET ... if it's new enough to understand that ...
6778 	 */
6779 	if (ret == 0 || force) {
6780 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
6781 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
6782 				 PCIE_FW_HALT_F);
6783 	}
6784 
6785 	/*
6786 	 * And we always return the result of the firmware RESET command
6787 	 * even when we force the uP into RESET ...
6788 	 */
6789 	return ret;
6790 }
6791 
6792 /**
6793  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6794  *	@adap: the adapter
6795  *	@reset: if we want to do a RESET to restart things
6796  *
6797  *	Restart firmware previously halted by t4_fw_halt().  On successful
6798  *	return the previous PF Master remains as the new PF Master and there
6799  *	is no need to issue a new HELLO command, etc.
6800  *
6801  *	We do this in two ways:
6802  *
6803  *	 1. If we're dealing with newer firmware we'll simply want to take
6804  *	    the chip's microprocessor out of RESET.  This will cause the
6805  *	    firmware to start up from its start vector.  And then we'll loop
6806  *	    until the firmware indicates it's started again (PCIE_FW.HALT
6807  *	    reset to 0) or we timeout.
6808  *
6809  *	 2. If we're dealing with older firmware then we'll need to RESET
6810  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6811  *	    flag and automatically RESET itself on startup.
6812  */
6813 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6814 {
6815 	if (reset) {
6816 		/*
6817 		 * Since we're directing the RESET instead of the firmware
6818 		 * doing it automatically, we need to clear the PCIE_FW.HALT
6819 		 * bit.
6820 		 */
6821 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6822 
6823 		/*
6824 		 * If we've been given a valid mailbox, first try to get the
6825 		 * firmware to do the RESET.  If that works, great and we can
6826 		 * return success.  Otherwise, if we haven't been given a
6827 		 * valid mailbox or the RESET command failed, fall back to
6828 		 * hitting the chip with a hammer.
6829 		 */
6830 		if (mbox <= PCIE_FW_MASTER_M) {
6831 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6832 			msleep(100);
6833 			if (t4_fw_reset(adap, mbox,
6834 					PIORST_F | PIORSTMODE_F) == 0)
6835 				return 0;
6836 		}
6837 
6838 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6839 		msleep(2000);
6840 	} else {
6841 		int ms;
6842 
6843 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6844 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6845 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6846 				return 0;
6847 			msleep(100);
6848 			ms += 100;
6849 		}
6850 		return -ETIMEDOUT;
6851 	}
6852 	return 0;
6853 }
6854 
6855 /**
6856  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6857  *	@adap: the adapter
6858  *	@mbox: mailbox to use for the FW RESET command (if desired)
6859  *	@fw_data: the firmware image to write
6860  *	@size: image size
6861  *	@force: force upgrade even if firmware doesn't cooperate
6862  *
6863  *	Perform all of the steps necessary for upgrading an adapter's
6864  *	firmware image.  Normally this requires the cooperation of the
6865  *	existing firmware in order to halt all existing activities
6866  *	but if an invalid mailbox token is passed in we skip that step
6867  *	(though we'll still put the adapter microprocessor into RESET in
6868  *	that case).
6869  *
6870  *	On successful return the new firmware will have been loaded and
6871  *	the adapter will have been fully RESET losing all previous setup
6872  *	state.  On unsuccessful return the adapter may be completely hosed ...
6873  *	positive errno indicates that the adapter is ~probably~ intact, a
6874  *	negative errno indicates that things are looking bad ...
6875  */
6876 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6877 		  const u8 *fw_data, unsigned int size, int force)
6878 {
6879 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6880 	int reset, ret;
6881 
6882 	if (!t4_fw_matches_chip(adap, fw_hdr))
6883 		return -EINVAL;
6884 
6885 	/* Disable FW_OK flag so that mbox commands with FW_OK flag set
6886 	 * wont be sent when we are flashing FW.
6887 	 */
6888 	adap->flags &= ~FW_OK;
6889 
6890 	ret = t4_fw_halt(adap, mbox, force);
6891 	if (ret < 0 && !force)
6892 		goto out;
6893 
6894 	ret = t4_load_fw(adap, fw_data, size);
6895 	if (ret < 0)
6896 		goto out;
6897 
6898 	/*
6899 	 * If there was a Firmware Configuration File stored in FLASH,
6900 	 * there's a good chance that it won't be compatible with the new
6901 	 * Firmware.  In order to prevent difficult to diagnose adapter
6902 	 * initialization issues, we clear out the Firmware Configuration File
6903 	 * portion of the FLASH .  The user will need to re-FLASH a new
6904 	 * Firmware Configuration File which is compatible with the new
6905 	 * Firmware if that's desired.
6906 	 */
6907 	(void)t4_load_cfg(adap, NULL, 0);
6908 
6909 	/*
6910 	 * Older versions of the firmware don't understand the new
6911 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6912 	 * restart.  So for newly loaded older firmware we'll have to do the
6913 	 * RESET for it so it starts up on a clean slate.  We can tell if
6914 	 * the newly loaded firmware will handle this right by checking
6915 	 * its header flags to see if it advertises the capability.
6916 	 */
6917 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6918 	ret = t4_fw_restart(adap, mbox, reset);
6919 
6920 	/* Grab potentially new Firmware Device Log parameters so we can see
6921 	 * how healthy the new Firmware is.  It's okay to contact the new
6922 	 * Firmware for these parameters even though, as far as it's
6923 	 * concerned, we've never said "HELLO" to it ...
6924 	 */
6925 	(void)t4_init_devlog_params(adap);
6926 out:
6927 	adap->flags |= FW_OK;
6928 	return ret;
6929 }
6930 
6931 /**
6932  *	t4_fl_pkt_align - return the fl packet alignment
6933  *	@adap: the adapter
6934  *
6935  *	T4 has a single field to specify the packing and padding boundary.
6936  *	T5 onwards has separate fields for this and hence the alignment for
6937  *	next packet offset is maximum of these two.
6938  *
6939  */
6940 int t4_fl_pkt_align(struct adapter *adap)
6941 {
6942 	u32 sge_control, sge_control2;
6943 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
6944 
6945 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
6946 
6947 	/* T4 uses a single control field to specify both the PCIe Padding and
6948 	 * Packing Boundary.  T5 introduced the ability to specify these
6949 	 * separately.  The actual Ingress Packet Data alignment boundary
6950 	 * within Packed Buffer Mode is the maximum of these two
6951 	 * specifications.  (Note that it makes no real practical sense to
6952 	 * have the Pading Boudary be larger than the Packing Boundary but you
6953 	 * could set the chip up that way and, in fact, legacy T4 code would
6954 	 * end doing this because it would initialize the Padding Boundary and
6955 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
6956 	 * Padding Boundary values in T6 starts from 8B,
6957 	 * where as it is 32B for T4 and T5.
6958 	 */
6959 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
6960 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
6961 	else
6962 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
6963 
6964 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
6965 
6966 	fl_align = ingpadboundary;
6967 	if (!is_t4(adap->params.chip)) {
6968 		/* T5 has a weird interpretation of one of the PCIe Packing
6969 		 * Boundary values.  No idea why ...
6970 		 */
6971 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
6972 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
6973 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
6974 			ingpackboundary = 16;
6975 		else
6976 			ingpackboundary = 1 << (ingpackboundary +
6977 						INGPACKBOUNDARY_SHIFT_X);
6978 
6979 		fl_align = max(ingpadboundary, ingpackboundary);
6980 	}
6981 	return fl_align;
6982 }
6983 
6984 /**
6985  *	t4_fixup_host_params - fix up host-dependent parameters
6986  *	@adap: the adapter
6987  *	@page_size: the host's Base Page Size
6988  *	@cache_line_size: the host's Cache Line Size
6989  *
6990  *	Various registers in T4 contain values which are dependent on the
6991  *	host's Base Page and Cache Line Sizes.  This function will fix all of
6992  *	those registers with the appropriate values as passed in ...
6993  */
6994 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
6995 			 unsigned int cache_line_size)
6996 {
6997 	unsigned int page_shift = fls(page_size) - 1;
6998 	unsigned int sge_hps = page_shift - 10;
6999 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7000 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7001 	unsigned int fl_align_log = fls(fl_align) - 1;
7002 
7003 	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7004 		     HOSTPAGESIZEPF0_V(sge_hps) |
7005 		     HOSTPAGESIZEPF1_V(sge_hps) |
7006 		     HOSTPAGESIZEPF2_V(sge_hps) |
7007 		     HOSTPAGESIZEPF3_V(sge_hps) |
7008 		     HOSTPAGESIZEPF4_V(sge_hps) |
7009 		     HOSTPAGESIZEPF5_V(sge_hps) |
7010 		     HOSTPAGESIZEPF6_V(sge_hps) |
7011 		     HOSTPAGESIZEPF7_V(sge_hps));
7012 
7013 	if (is_t4(adap->params.chip)) {
7014 		t4_set_reg_field(adap, SGE_CONTROL_A,
7015 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7016 				 EGRSTATUSPAGESIZE_F,
7017 				 INGPADBOUNDARY_V(fl_align_log -
7018 						  INGPADBOUNDARY_SHIFT_X) |
7019 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7020 	} else {
7021 		unsigned int pack_align;
7022 		unsigned int ingpad, ingpack;
7023 		unsigned int pcie_cap;
7024 
7025 		/* T5 introduced the separation of the Free List Padding and
7026 		 * Packing Boundaries.  Thus, we can select a smaller Padding
7027 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
7028 		 * Bandwidth, and use a Packing Boundary which is large enough
7029 		 * to avoid false sharing between CPUs, etc.
7030 		 *
7031 		 * For the PCI Link, the smaller the Padding Boundary the
7032 		 * better.  For the Memory Controller, a smaller Padding
7033 		 * Boundary is better until we cross under the Memory Line
7034 		 * Size (the minimum unit of transfer to/from Memory).  If we
7035 		 * have a Padding Boundary which is smaller than the Memory
7036 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
7037 		 * Memory Controller which is never good.
7038 		 */
7039 
7040 		/* We want the Packing Boundary to be based on the Cache Line
7041 		 * Size in order to help avoid False Sharing performance
7042 		 * issues between CPUs, etc.  We also want the Packing
7043 		 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7044 		 * get best performance when the Packing Boundary is a
7045 		 * multiple of the Maximum Payload Size.
7046 		 */
7047 		pack_align = fl_align;
7048 		pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP);
7049 		if (pcie_cap) {
7050 			unsigned int mps, mps_log;
7051 			u16 devctl;
7052 
7053 			/* The PCIe Device Control Maximum Payload Size field
7054 			 * [bits 7:5] encodes sizes as powers of 2 starting at
7055 			 * 128 bytes.
7056 			 */
7057 			pci_read_config_word(adap->pdev,
7058 					     pcie_cap + PCI_EXP_DEVCTL,
7059 					     &devctl);
7060 			mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7061 			mps = 1 << mps_log;
7062 			if (mps > pack_align)
7063 				pack_align = mps;
7064 		}
7065 
7066 		/* N.B. T5/T6 have a crazy special interpretation of the "0"
7067 		 * value for the Packing Boundary.  This corresponds to 16
7068 		 * bytes instead of the expected 32 bytes.  So if we want 32
7069 		 * bytes, the best we can really do is 64 bytes ...
7070 		 */
7071 		if (pack_align <= 16) {
7072 			ingpack = INGPACKBOUNDARY_16B_X;
7073 			fl_align = 16;
7074 		} else if (pack_align == 32) {
7075 			ingpack = INGPACKBOUNDARY_64B_X;
7076 			fl_align = 64;
7077 		} else {
7078 			unsigned int pack_align_log = fls(pack_align) - 1;
7079 
7080 			ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7081 			fl_align = pack_align;
7082 		}
7083 
7084 		/* Use the smallest Ingress Padding which isn't smaller than
7085 		 * the Memory Controller Read/Write Size.  We'll take that as
7086 		 * being 8 bytes since we don't know of any system with a
7087 		 * wider Memory Controller Bus Width.
7088 		 */
7089 		if (is_t5(adap->params.chip))
7090 			ingpad = INGPADBOUNDARY_32B_X;
7091 		else
7092 			ingpad = T6_INGPADBOUNDARY_8B_X;
7093 
7094 		t4_set_reg_field(adap, SGE_CONTROL_A,
7095 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7096 				 EGRSTATUSPAGESIZE_F,
7097 				 INGPADBOUNDARY_V(ingpad) |
7098 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7099 		t4_set_reg_field(adap, SGE_CONTROL2_A,
7100 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7101 				 INGPACKBOUNDARY_V(ingpack));
7102 	}
7103 	/*
7104 	 * Adjust various SGE Free List Host Buffer Sizes.
7105 	 *
7106 	 * This is something of a crock since we're using fixed indices into
7107 	 * the array which are also known by the sge.c code and the T4
7108 	 * Firmware Configuration File.  We need to come up with a much better
7109 	 * approach to managing this array.  For now, the first four entries
7110 	 * are:
7111 	 *
7112 	 *   0: Host Page Size
7113 	 *   1: 64KB
7114 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7115 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7116 	 *
7117 	 * For the single-MTU buffers in unpacked mode we need to include
7118 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7119 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7120 	 * Padding boundary.  All of these are accommodated in the Factory
7121 	 * Default Firmware Configuration File but we need to adjust it for
7122 	 * this host's cache line size.
7123 	 */
7124 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7125 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7126 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7127 		     & ~(fl_align-1));
7128 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7129 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7130 		     & ~(fl_align-1));
7131 
7132 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7133 
7134 	return 0;
7135 }
7136 
7137 /**
7138  *	t4_fw_initialize - ask FW to initialize the device
7139  *	@adap: the adapter
7140  *	@mbox: mailbox to use for the FW command
7141  *
7142  *	Issues a command to FW to partially initialize the device.  This
7143  *	performs initialization that generally doesn't depend on user input.
7144  */
7145 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7146 {
7147 	struct fw_initialize_cmd c;
7148 
7149 	memset(&c, 0, sizeof(c));
7150 	INIT_CMD(c, INITIALIZE, WRITE);
7151 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7152 }
7153 
7154 /**
7155  *	t4_query_params_rw - query FW or device parameters
7156  *	@adap: the adapter
7157  *	@mbox: mailbox to use for the FW command
7158  *	@pf: the PF
7159  *	@vf: the VF
7160  *	@nparams: the number of parameters
7161  *	@params: the parameter names
7162  *	@val: the parameter values
7163  *	@rw: Write and read flag
7164  *	@sleep_ok: if true, we may sleep awaiting mbox cmd completion
7165  *
7166  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7167  *	queried at once.
7168  */
7169 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7170 		       unsigned int vf, unsigned int nparams, const u32 *params,
7171 		       u32 *val, int rw, bool sleep_ok)
7172 {
7173 	int i, ret;
7174 	struct fw_params_cmd c;
7175 	__be32 *p = &c.param[0].mnem;
7176 
7177 	if (nparams > 7)
7178 		return -EINVAL;
7179 
7180 	memset(&c, 0, sizeof(c));
7181 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7182 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
7183 				  FW_PARAMS_CMD_PFN_V(pf) |
7184 				  FW_PARAMS_CMD_VFN_V(vf));
7185 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7186 
7187 	for (i = 0; i < nparams; i++) {
7188 		*p++ = cpu_to_be32(*params++);
7189 		if (rw)
7190 			*p = cpu_to_be32(*(val + i));
7191 		p++;
7192 	}
7193 
7194 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7195 	if (ret == 0)
7196 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7197 			*val++ = be32_to_cpu(*p);
7198 	return ret;
7199 }
7200 
7201 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7202 		    unsigned int vf, unsigned int nparams, const u32 *params,
7203 		    u32 *val)
7204 {
7205 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7206 				  true);
7207 }
7208 
7209 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7210 		       unsigned int vf, unsigned int nparams, const u32 *params,
7211 		       u32 *val)
7212 {
7213 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7214 				  false);
7215 }
7216 
7217 /**
7218  *      t4_set_params_timeout - sets FW or device parameters
7219  *      @adap: the adapter
7220  *      @mbox: mailbox to use for the FW command
7221  *      @pf: the PF
7222  *      @vf: the VF
7223  *      @nparams: the number of parameters
7224  *      @params: the parameter names
7225  *      @val: the parameter values
7226  *      @timeout: the timeout time
7227  *
7228  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7229  *      specified at once.
7230  */
7231 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7232 			  unsigned int pf, unsigned int vf,
7233 			  unsigned int nparams, const u32 *params,
7234 			  const u32 *val, int timeout)
7235 {
7236 	struct fw_params_cmd c;
7237 	__be32 *p = &c.param[0].mnem;
7238 
7239 	if (nparams > 7)
7240 		return -EINVAL;
7241 
7242 	memset(&c, 0, sizeof(c));
7243 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7244 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7245 				  FW_PARAMS_CMD_PFN_V(pf) |
7246 				  FW_PARAMS_CMD_VFN_V(vf));
7247 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7248 
7249 	while (nparams--) {
7250 		*p++ = cpu_to_be32(*params++);
7251 		*p++ = cpu_to_be32(*val++);
7252 	}
7253 
7254 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7255 }
7256 
7257 /**
7258  *	t4_set_params - sets FW or device parameters
7259  *	@adap: the adapter
7260  *	@mbox: mailbox to use for the FW command
7261  *	@pf: the PF
7262  *	@vf: the VF
7263  *	@nparams: the number of parameters
7264  *	@params: the parameter names
7265  *	@val: the parameter values
7266  *
7267  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7268  *	specified at once.
7269  */
7270 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7271 		  unsigned int vf, unsigned int nparams, const u32 *params,
7272 		  const u32 *val)
7273 {
7274 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7275 				     FW_CMD_MAX_TIMEOUT);
7276 }
7277 
7278 /**
7279  *	t4_cfg_pfvf - configure PF/VF resource limits
7280  *	@adap: the adapter
7281  *	@mbox: mailbox to use for the FW command
7282  *	@pf: the PF being configured
7283  *	@vf: the VF being configured
7284  *	@txq: the max number of egress queues
7285  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7286  *	@rxqi: the max number of interrupt-capable ingress queues
7287  *	@rxq: the max number of interruptless ingress queues
7288  *	@tc: the PCI traffic class
7289  *	@vi: the max number of virtual interfaces
7290  *	@cmask: the channel access rights mask for the PF/VF
7291  *	@pmask: the port access rights mask for the PF/VF
7292  *	@nexact: the maximum number of exact MPS filters
7293  *	@rcaps: read capabilities
7294  *	@wxcaps: write/execute capabilities
7295  *
7296  *	Configures resource limits and capabilities for a physical or virtual
7297  *	function.
7298  */
7299 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7300 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7301 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7302 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7303 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7304 {
7305 	struct fw_pfvf_cmd c;
7306 
7307 	memset(&c, 0, sizeof(c));
7308 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7309 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7310 				  FW_PFVF_CMD_VFN_V(vf));
7311 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7312 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7313 				     FW_PFVF_CMD_NIQ_V(rxq));
7314 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7315 				    FW_PFVF_CMD_PMASK_V(pmask) |
7316 				    FW_PFVF_CMD_NEQ_V(txq));
7317 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7318 				      FW_PFVF_CMD_NVI_V(vi) |
7319 				      FW_PFVF_CMD_NEXACTF_V(nexact));
7320 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7321 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7322 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7323 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7324 }
7325 
7326 /**
7327  *	t4_alloc_vi - allocate a virtual interface
7328  *	@adap: the adapter
7329  *	@mbox: mailbox to use for the FW command
7330  *	@port: physical port associated with the VI
7331  *	@pf: the PF owning the VI
7332  *	@vf: the VF owning the VI
7333  *	@nmac: number of MAC addresses needed (1 to 5)
7334  *	@mac: the MAC addresses of the VI
7335  *	@rss_size: size of RSS table slice associated with this VI
7336  *
7337  *	Allocates a virtual interface for the given physical port.  If @mac is
7338  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7339  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7340  *	stored consecutively so the space needed is @nmac * 6 bytes.
7341  *	Returns a negative error number or the non-negative VI id.
7342  */
7343 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7344 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7345 		unsigned int *rss_size)
7346 {
7347 	int ret;
7348 	struct fw_vi_cmd c;
7349 
7350 	memset(&c, 0, sizeof(c));
7351 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7352 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7353 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7354 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7355 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7356 	c.nmac = nmac - 1;
7357 
7358 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7359 	if (ret)
7360 		return ret;
7361 
7362 	if (mac) {
7363 		memcpy(mac, c.mac, sizeof(c.mac));
7364 		switch (nmac) {
7365 		case 5:
7366 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7367 		case 4:
7368 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7369 		case 3:
7370 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7371 		case 2:
7372 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7373 		}
7374 	}
7375 	if (rss_size)
7376 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7377 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7378 }
7379 
7380 /**
7381  *	t4_free_vi - free a virtual interface
7382  *	@adap: the adapter
7383  *	@mbox: mailbox to use for the FW command
7384  *	@pf: the PF owning the VI
7385  *	@vf: the VF owning the VI
7386  *	@viid: virtual interface identifiler
7387  *
7388  *	Free a previously allocated virtual interface.
7389  */
7390 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7391 	       unsigned int vf, unsigned int viid)
7392 {
7393 	struct fw_vi_cmd c;
7394 
7395 	memset(&c, 0, sizeof(c));
7396 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7397 				  FW_CMD_REQUEST_F |
7398 				  FW_CMD_EXEC_F |
7399 				  FW_VI_CMD_PFN_V(pf) |
7400 				  FW_VI_CMD_VFN_V(vf));
7401 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7402 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7403 
7404 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7405 }
7406 
7407 /**
7408  *	t4_set_rxmode - set Rx properties of a virtual interface
7409  *	@adap: the adapter
7410  *	@mbox: mailbox to use for the FW command
7411  *	@viid: the VI id
7412  *	@mtu: the new MTU or -1
7413  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7414  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7415  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7416  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7417  *	@sleep_ok: if true we may sleep while awaiting command completion
7418  *
7419  *	Sets Rx properties of a virtual interface.
7420  */
7421 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7422 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7423 		  bool sleep_ok)
7424 {
7425 	struct fw_vi_rxmode_cmd c;
7426 
7427 	/* convert to FW values */
7428 	if (mtu < 0)
7429 		mtu = FW_RXMODE_MTU_NO_CHG;
7430 	if (promisc < 0)
7431 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7432 	if (all_multi < 0)
7433 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7434 	if (bcast < 0)
7435 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7436 	if (vlanex < 0)
7437 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7438 
7439 	memset(&c, 0, sizeof(c));
7440 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7441 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7442 				   FW_VI_RXMODE_CMD_VIID_V(viid));
7443 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7444 	c.mtu_to_vlanexen =
7445 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7446 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7447 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7448 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7449 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7450 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7451 }
7452 
7453 /**
7454  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7455  *	@adap: the adapter
7456  *	@mbox: mailbox to use for the FW command
7457  *	@viid: the VI id
7458  *	@free: if true any existing filters for this VI id are first removed
7459  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7460  *	@addr: the MAC address(es)
7461  *	@idx: where to store the index of each allocated filter
7462  *	@hash: pointer to hash address filter bitmap
7463  *	@sleep_ok: call is allowed to sleep
7464  *
7465  *	Allocates an exact-match filter for each of the supplied addresses and
7466  *	sets it to the corresponding address.  If @idx is not %NULL it should
7467  *	have at least @naddr entries, each of which will be set to the index of
7468  *	the filter allocated for the corresponding MAC address.  If a filter
7469  *	could not be allocated for an address its index is set to 0xffff.
7470  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7471  *	are hashed and update the hash filter bitmap pointed at by @hash.
7472  *
7473  *	Returns a negative error number or the number of filters allocated.
7474  */
7475 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7476 		      unsigned int viid, bool free, unsigned int naddr,
7477 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7478 {
7479 	int offset, ret = 0;
7480 	struct fw_vi_mac_cmd c;
7481 	unsigned int nfilters = 0;
7482 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7483 	unsigned int rem = naddr;
7484 
7485 	if (naddr > max_naddr)
7486 		return -EINVAL;
7487 
7488 	for (offset = 0; offset < naddr ; /**/) {
7489 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7490 					 rem : ARRAY_SIZE(c.u.exact));
7491 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7492 						     u.exact[fw_naddr]), 16);
7493 		struct fw_vi_mac_exact *p;
7494 		int i;
7495 
7496 		memset(&c, 0, sizeof(c));
7497 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7498 					   FW_CMD_REQUEST_F |
7499 					   FW_CMD_WRITE_F |
7500 					   FW_CMD_EXEC_V(free) |
7501 					   FW_VI_MAC_CMD_VIID_V(viid));
7502 		c.freemacs_to_len16 =
7503 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
7504 				    FW_CMD_LEN16_V(len16));
7505 
7506 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7507 			p->valid_to_idx =
7508 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7509 					    FW_VI_MAC_CMD_IDX_V(
7510 						    FW_VI_MAC_ADD_MAC));
7511 			memcpy(p->macaddr, addr[offset + i],
7512 			       sizeof(p->macaddr));
7513 		}
7514 
7515 		/* It's okay if we run out of space in our MAC address arena.
7516 		 * Some of the addresses we submit may get stored so we need
7517 		 * to run through the reply to see what the results were ...
7518 		 */
7519 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7520 		if (ret && ret != -FW_ENOMEM)
7521 			break;
7522 
7523 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7524 			u16 index = FW_VI_MAC_CMD_IDX_G(
7525 					be16_to_cpu(p->valid_to_idx));
7526 
7527 			if (idx)
7528 				idx[offset + i] = (index >= max_naddr ?
7529 						   0xffff : index);
7530 			if (index < max_naddr)
7531 				nfilters++;
7532 			else if (hash)
7533 				*hash |= (1ULL <<
7534 					  hash_mac_addr(addr[offset + i]));
7535 		}
7536 
7537 		free = false;
7538 		offset += fw_naddr;
7539 		rem -= fw_naddr;
7540 	}
7541 
7542 	if (ret == 0 || ret == -FW_ENOMEM)
7543 		ret = nfilters;
7544 	return ret;
7545 }
7546 
7547 /**
7548  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
7549  *	@adap: the adapter
7550  *	@mbox: mailbox to use for the FW command
7551  *	@viid: the VI id
7552  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7553  *	@addr: the MAC address(es)
7554  *	@sleep_ok: call is allowed to sleep
7555  *
7556  *	Frees the exact-match filter for each of the supplied addresses
7557  *
7558  *	Returns a negative error number or the number of filters freed.
7559  */
7560 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
7561 		     unsigned int viid, unsigned int naddr,
7562 		     const u8 **addr, bool sleep_ok)
7563 {
7564 	int offset, ret = 0;
7565 	struct fw_vi_mac_cmd c;
7566 	unsigned int nfilters = 0;
7567 	unsigned int max_naddr = is_t4(adap->params.chip) ?
7568 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
7569 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7570 	unsigned int rem = naddr;
7571 
7572 	if (naddr > max_naddr)
7573 		return -EINVAL;
7574 
7575 	for (offset = 0; offset < (int)naddr ; /**/) {
7576 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7577 					 ? rem
7578 					 : ARRAY_SIZE(c.u.exact));
7579 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7580 						     u.exact[fw_naddr]), 16);
7581 		struct fw_vi_mac_exact *p;
7582 		int i;
7583 
7584 		memset(&c, 0, sizeof(c));
7585 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7586 				     FW_CMD_REQUEST_F |
7587 				     FW_CMD_WRITE_F |
7588 				     FW_CMD_EXEC_V(0) |
7589 				     FW_VI_MAC_CMD_VIID_V(viid));
7590 		c.freemacs_to_len16 =
7591 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7592 					    FW_CMD_LEN16_V(len16));
7593 
7594 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
7595 			p->valid_to_idx = cpu_to_be16(
7596 				FW_VI_MAC_CMD_VALID_F |
7597 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
7598 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7599 		}
7600 
7601 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7602 		if (ret)
7603 			break;
7604 
7605 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7606 			u16 index = FW_VI_MAC_CMD_IDX_G(
7607 						be16_to_cpu(p->valid_to_idx));
7608 
7609 			if (index < max_naddr)
7610 				nfilters++;
7611 		}
7612 
7613 		offset += fw_naddr;
7614 		rem -= fw_naddr;
7615 	}
7616 
7617 	if (ret == 0)
7618 		ret = nfilters;
7619 	return ret;
7620 }
7621 
7622 /**
7623  *	t4_change_mac - modifies the exact-match filter for a MAC address
7624  *	@adap: the adapter
7625  *	@mbox: mailbox to use for the FW command
7626  *	@viid: the VI id
7627  *	@idx: index of existing filter for old value of MAC address, or -1
7628  *	@addr: the new MAC address value
7629  *	@persist: whether a new MAC allocation should be persistent
7630  *	@add_smt: if true also add the address to the HW SMT
7631  *
7632  *	Modifies an exact-match filter and sets it to the new MAC address.
7633  *	Note that in general it is not possible to modify the value of a given
7634  *	filter so the generic way to modify an address filter is to free the one
7635  *	being used by the old address value and allocate a new filter for the
7636  *	new address value.  @idx can be -1 if the address is a new addition.
7637  *
7638  *	Returns a negative error number or the index of the filter with the new
7639  *	MAC value.
7640  */
7641 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7642 		  int idx, const u8 *addr, bool persist, bool add_smt)
7643 {
7644 	int ret, mode;
7645 	struct fw_vi_mac_cmd c;
7646 	struct fw_vi_mac_exact *p = c.u.exact;
7647 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
7648 
7649 	if (idx < 0)                             /* new allocation */
7650 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7651 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7652 
7653 	memset(&c, 0, sizeof(c));
7654 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7655 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7656 				   FW_VI_MAC_CMD_VIID_V(viid));
7657 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
7658 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7659 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
7660 				      FW_VI_MAC_CMD_IDX_V(idx));
7661 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7662 
7663 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7664 	if (ret == 0) {
7665 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7666 		if (ret >= max_mac_addr)
7667 			ret = -ENOMEM;
7668 	}
7669 	return ret;
7670 }
7671 
7672 /**
7673  *	t4_set_addr_hash - program the MAC inexact-match hash filter
7674  *	@adap: the adapter
7675  *	@mbox: mailbox to use for the FW command
7676  *	@viid: the VI id
7677  *	@ucast: whether the hash filter should also match unicast addresses
7678  *	@vec: the value to be written to the hash filter
7679  *	@sleep_ok: call is allowed to sleep
7680  *
7681  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
7682  */
7683 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7684 		     bool ucast, u64 vec, bool sleep_ok)
7685 {
7686 	struct fw_vi_mac_cmd c;
7687 
7688 	memset(&c, 0, sizeof(c));
7689 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7690 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7691 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7692 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
7693 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
7694 					  FW_CMD_LEN16_V(1));
7695 	c.u.hash.hashvec = cpu_to_be64(vec);
7696 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7697 }
7698 
7699 /**
7700  *      t4_enable_vi_params - enable/disable a virtual interface
7701  *      @adap: the adapter
7702  *      @mbox: mailbox to use for the FW command
7703  *      @viid: the VI id
7704  *      @rx_en: 1=enable Rx, 0=disable Rx
7705  *      @tx_en: 1=enable Tx, 0=disable Tx
7706  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7707  *
7708  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7709  *      only makes sense when enabling a Virtual Interface ...
7710  */
7711 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7712 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7713 {
7714 	struct fw_vi_enable_cmd c;
7715 
7716 	memset(&c, 0, sizeof(c));
7717 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
7718 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7719 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7720 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
7721 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
7722 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
7723 				     FW_LEN16(c));
7724 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7725 }
7726 
7727 /**
7728  *	t4_enable_vi - enable/disable a virtual interface
7729  *	@adap: the adapter
7730  *	@mbox: mailbox to use for the FW command
7731  *	@viid: the VI id
7732  *	@rx_en: 1=enable Rx, 0=disable Rx
7733  *	@tx_en: 1=enable Tx, 0=disable Tx
7734  *
7735  *	Enables/disables a virtual interface.
7736  */
7737 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7738 		 bool rx_en, bool tx_en)
7739 {
7740 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7741 }
7742 
7743 /**
7744  *	t4_identify_port - identify a VI's port by blinking its LED
7745  *	@adap: the adapter
7746  *	@mbox: mailbox to use for the FW command
7747  *	@viid: the VI id
7748  *	@nblinks: how many times to blink LED at 2.5 Hz
7749  *
7750  *	Identifies a VI's port by blinking its LED.
7751  */
7752 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7753 		     unsigned int nblinks)
7754 {
7755 	struct fw_vi_enable_cmd c;
7756 
7757 	memset(&c, 0, sizeof(c));
7758 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
7759 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7760 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7761 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
7762 	c.blinkdur = cpu_to_be16(nblinks);
7763 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7764 }
7765 
7766 /**
7767  *	t4_iq_stop - stop an ingress queue and its FLs
7768  *	@adap: the adapter
7769  *	@mbox: mailbox to use for the FW command
7770  *	@pf: the PF owning the queues
7771  *	@vf: the VF owning the queues
7772  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7773  *	@iqid: ingress queue id
7774  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7775  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7776  *
7777  *	Stops an ingress queue and its associated FLs, if any.  This causes
7778  *	any current or future data/messages destined for these queues to be
7779  *	tossed.
7780  */
7781 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7782 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7783 	       unsigned int fl0id, unsigned int fl1id)
7784 {
7785 	struct fw_iq_cmd c;
7786 
7787 	memset(&c, 0, sizeof(c));
7788 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7789 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7790 				  FW_IQ_CMD_VFN_V(vf));
7791 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
7792 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7793 	c.iqid = cpu_to_be16(iqid);
7794 	c.fl0id = cpu_to_be16(fl0id);
7795 	c.fl1id = cpu_to_be16(fl1id);
7796 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7797 }
7798 
7799 /**
7800  *	t4_iq_free - free an ingress queue and its FLs
7801  *	@adap: the adapter
7802  *	@mbox: mailbox to use for the FW command
7803  *	@pf: the PF owning the queues
7804  *	@vf: the VF owning the queues
7805  *	@iqtype: the ingress queue type
7806  *	@iqid: ingress queue id
7807  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7808  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7809  *
7810  *	Frees an ingress queue and its associated FLs, if any.
7811  */
7812 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7813 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7814 	       unsigned int fl0id, unsigned int fl1id)
7815 {
7816 	struct fw_iq_cmd c;
7817 
7818 	memset(&c, 0, sizeof(c));
7819 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7820 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7821 				  FW_IQ_CMD_VFN_V(vf));
7822 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
7823 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7824 	c.iqid = cpu_to_be16(iqid);
7825 	c.fl0id = cpu_to_be16(fl0id);
7826 	c.fl1id = cpu_to_be16(fl1id);
7827 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7828 }
7829 
7830 /**
7831  *	t4_eth_eq_free - free an Ethernet egress queue
7832  *	@adap: the adapter
7833  *	@mbox: mailbox to use for the FW command
7834  *	@pf: the PF owning the queue
7835  *	@vf: the VF owning the queue
7836  *	@eqid: egress queue id
7837  *
7838  *	Frees an Ethernet egress queue.
7839  */
7840 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7841 		   unsigned int vf, unsigned int eqid)
7842 {
7843 	struct fw_eq_eth_cmd c;
7844 
7845 	memset(&c, 0, sizeof(c));
7846 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
7847 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7848 				  FW_EQ_ETH_CMD_PFN_V(pf) |
7849 				  FW_EQ_ETH_CMD_VFN_V(vf));
7850 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
7851 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
7852 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7853 }
7854 
7855 /**
7856  *	t4_ctrl_eq_free - free a control egress queue
7857  *	@adap: the adapter
7858  *	@mbox: mailbox to use for the FW command
7859  *	@pf: the PF owning the queue
7860  *	@vf: the VF owning the queue
7861  *	@eqid: egress queue id
7862  *
7863  *	Frees a control egress queue.
7864  */
7865 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7866 		    unsigned int vf, unsigned int eqid)
7867 {
7868 	struct fw_eq_ctrl_cmd c;
7869 
7870 	memset(&c, 0, sizeof(c));
7871 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
7872 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7873 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
7874 				  FW_EQ_CTRL_CMD_VFN_V(vf));
7875 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
7876 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
7877 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7878 }
7879 
7880 /**
7881  *	t4_ofld_eq_free - free an offload egress queue
7882  *	@adap: the adapter
7883  *	@mbox: mailbox to use for the FW command
7884  *	@pf: the PF owning the queue
7885  *	@vf: the VF owning the queue
7886  *	@eqid: egress queue id
7887  *
7888  *	Frees a control egress queue.
7889  */
7890 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7891 		    unsigned int vf, unsigned int eqid)
7892 {
7893 	struct fw_eq_ofld_cmd c;
7894 
7895 	memset(&c, 0, sizeof(c));
7896 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
7897 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7898 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
7899 				  FW_EQ_OFLD_CMD_VFN_V(vf));
7900 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
7901 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
7902 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7903 }
7904 
7905 /**
7906  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
7907  *	@adap: the adapter
7908  *	@link_down_rc: Link Down Reason Code
7909  *
7910  *	Returns a string representation of the Link Down Reason Code.
7911  */
7912 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
7913 {
7914 	static const char * const reason[] = {
7915 		"Link Down",
7916 		"Remote Fault",
7917 		"Auto-negotiation Failure",
7918 		"Reserved",
7919 		"Insufficient Airflow",
7920 		"Unable To Determine Reason",
7921 		"No RX Signal Detected",
7922 		"Reserved",
7923 	};
7924 
7925 	if (link_down_rc >= ARRAY_SIZE(reason))
7926 		return "Bad Reason Code";
7927 
7928 	return reason[link_down_rc];
7929 }
7930 
7931 /**
7932  * Return the highest speed set in the port capabilities, in Mb/s.
7933  */
7934 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
7935 {
7936 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
7937 		do { \
7938 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
7939 				return __speed; \
7940 		} while (0)
7941 
7942 	TEST_SPEED_RETURN(400G, 400000);
7943 	TEST_SPEED_RETURN(200G, 200000);
7944 	TEST_SPEED_RETURN(100G, 100000);
7945 	TEST_SPEED_RETURN(50G,   50000);
7946 	TEST_SPEED_RETURN(40G,   40000);
7947 	TEST_SPEED_RETURN(25G,   25000);
7948 	TEST_SPEED_RETURN(10G,   10000);
7949 	TEST_SPEED_RETURN(1G,     1000);
7950 	TEST_SPEED_RETURN(100M,    100);
7951 
7952 	#undef TEST_SPEED_RETURN
7953 
7954 	return 0;
7955 }
7956 
7957 /**
7958  *	fwcap_to_fwspeed - return highest speed in Port Capabilities
7959  *	@acaps: advertised Port Capabilities
7960  *
7961  *	Get the highest speed for the port from the advertised Port
7962  *	Capabilities.  It will be either the highest speed from the list of
7963  *	speeds or whatever user has set using ethtool.
7964  */
7965 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
7966 {
7967 	#define TEST_SPEED_RETURN(__caps_speed) \
7968 		do { \
7969 			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
7970 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
7971 		} while (0)
7972 
7973 	TEST_SPEED_RETURN(400G);
7974 	TEST_SPEED_RETURN(200G);
7975 	TEST_SPEED_RETURN(100G);
7976 	TEST_SPEED_RETURN(50G);
7977 	TEST_SPEED_RETURN(40G);
7978 	TEST_SPEED_RETURN(25G);
7979 	TEST_SPEED_RETURN(10G);
7980 	TEST_SPEED_RETURN(1G);
7981 	TEST_SPEED_RETURN(100M);
7982 
7983 	#undef TEST_SPEED_RETURN
7984 
7985 	return 0;
7986 }
7987 
7988 /**
7989  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
7990  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
7991  *
7992  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
7993  *	32-bit Port Capabilities value.
7994  */
7995 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
7996 {
7997 	fw_port_cap32_t linkattr = 0;
7998 
7999 	/* Unfortunately the format of the Link Status in the old
8000 	 * 16-bit Port Information message isn't the same as the
8001 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8002 	 */
8003 	if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8004 		linkattr |= FW_PORT_CAP32_FC_RX;
8005 	if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8006 		linkattr |= FW_PORT_CAP32_FC_TX;
8007 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8008 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8009 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8010 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8011 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8012 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8013 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8014 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8015 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8016 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8017 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8018 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8019 
8020 	return linkattr;
8021 }
8022 
8023 /**
8024  *	t4_handle_get_port_info - process a FW reply message
8025  *	@pi: the port info
8026  *	@rpl: start of the FW message
8027  *
8028  *	Processes a GET_PORT_INFO FW reply message.
8029  */
8030 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8031 {
8032 	const struct fw_port_cmd *cmd = (const void *)rpl;
8033 	int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8034 	struct adapter *adapter = pi->adapter;
8035 	struct link_config *lc = &pi->link_cfg;
8036 	int link_ok, linkdnrc;
8037 	enum fw_port_type port_type;
8038 	enum fw_port_module_type mod_type;
8039 	unsigned int speed, fc, fec;
8040 	fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8041 
8042 	/* Extract the various fields from the Port Information message.
8043 	 */
8044 	switch (action) {
8045 	case FW_PORT_ACTION_GET_PORT_INFO: {
8046 		u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8047 
8048 		link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8049 		linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8050 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8051 		mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8052 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8053 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8054 		lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8055 		linkattr = lstatus_to_fwcap(lstatus);
8056 		break;
8057 	}
8058 
8059 	case FW_PORT_ACTION_GET_PORT_INFO32: {
8060 		u32 lstatus32;
8061 
8062 		lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8063 		link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8064 		linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8065 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8066 		mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8067 		pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8068 		acaps = be32_to_cpu(cmd->u.info32.acaps32);
8069 		lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8070 		linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8071 		break;
8072 	}
8073 
8074 	default:
8075 		dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8076 			be32_to_cpu(cmd->action_to_len16));
8077 		return;
8078 	}
8079 
8080 	fec = fwcap_to_cc_fec(acaps);
8081 	fc = fwcap_to_cc_pause(linkattr);
8082 	speed = fwcap_to_speed(linkattr);
8083 
8084 	if (mod_type != pi->mod_type) {
8085 		/* With the newer SFP28 and QSFP28 Transceiver Module Types,
8086 		 * various fundamental Port Capabilities which used to be
8087 		 * immutable can now change radically.  We can now have
8088 		 * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8089 		 * all change based on what Transceiver Module is inserted.
8090 		 * So we need to record the Physical "Port" Capabilities on
8091 		 * every Transceiver Module change.
8092 		 */
8093 		lc->pcaps = pcaps;
8094 
8095 		/* When a new Transceiver Module is inserted, the Firmware
8096 		 * will examine its i2c EPROM to determine its type and
8097 		 * general operating parameters including things like Forward
8098 		 * Error Control, etc.  Various IEEE 802.3 standards dictate
8099 		 * how to interpret these i2c values to determine default
8100 		 * "sutomatic" settings.  We record these for future use when
8101 		 * the user explicitly requests these standards-based values.
8102 		 */
8103 		lc->def_acaps = acaps;
8104 
8105 		/* Some versions of the early T6 Firmware "cheated" when
8106 		 * handling different Transceiver Modules by changing the
8107 		 * underlaying Port Type reported to the Host Drivers.  As
8108 		 * such we need to capture whatever Port Type the Firmware
8109 		 * sends us and record it in case it's different from what we
8110 		 * were told earlier.  Unfortunately, since Firmware is
8111 		 * forever, we'll need to keep this code here forever, but in
8112 		 * later T6 Firmware it should just be an assignment of the
8113 		 * same value already recorded.
8114 		 */
8115 		pi->port_type = port_type;
8116 
8117 		pi->mod_type = mod_type;
8118 		t4_os_portmod_changed(adapter, pi->port_id);
8119 	}
8120 
8121 	if (link_ok != lc->link_ok || speed != lc->speed ||
8122 	    fc != lc->fc || fec != lc->fec) {	/* something changed */
8123 		if (!link_ok && lc->link_ok) {
8124 			lc->link_down_rc = linkdnrc;
8125 			dev_warn(adapter->pdev_dev, "Port %d link down, reason: %s\n",
8126 				 pi->tx_chan, t4_link_down_rc_str(linkdnrc));
8127 		}
8128 		lc->link_ok = link_ok;
8129 		lc->speed = speed;
8130 		lc->fc = fc;
8131 		lc->fec = fec;
8132 
8133 		lc->lpacaps = lpacaps;
8134 		lc->acaps = acaps & ADVERT_MASK;
8135 
8136 		if (lc->acaps & FW_PORT_CAP32_ANEG) {
8137 			lc->autoneg = AUTONEG_ENABLE;
8138 		} else {
8139 			/* When Autoneg is disabled, user needs to set
8140 			 * single speed.
8141 			 * Similar to cxgb4_ethtool.c: set_link_ksettings
8142 			 */
8143 			lc->acaps = 0;
8144 			lc->speed_caps = fwcap_to_fwspeed(acaps);
8145 			lc->autoneg = AUTONEG_DISABLE;
8146 		}
8147 
8148 		t4_os_link_changed(adapter, pi->port_id, link_ok);
8149 	}
8150 }
8151 
8152 /**
8153  *	t4_update_port_info - retrieve and update port information if changed
8154  *	@pi: the port_info
8155  *
8156  *	We issue a Get Port Information Command to the Firmware and, if
8157  *	successful, we check to see if anything is different from what we
8158  *	last recorded and update things accordingly.
8159  */
8160 int t4_update_port_info(struct port_info *pi)
8161 {
8162 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8163 	struct fw_port_cmd port_cmd;
8164 	int ret;
8165 
8166 	memset(&port_cmd, 0, sizeof(port_cmd));
8167 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8168 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8169 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8170 	port_cmd.action_to_len16 = cpu_to_be32(
8171 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8172 				     ? FW_PORT_ACTION_GET_PORT_INFO
8173 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
8174 		FW_LEN16(port_cmd));
8175 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8176 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8177 	if (ret)
8178 		return ret;
8179 
8180 	t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8181 	return 0;
8182 }
8183 
8184 /**
8185  *	t4_get_link_params - retrieve basic link parameters for given port
8186  *	@pi: the port
8187  *	@link_okp: value return pointer for link up/down
8188  *	@speedp: value return pointer for speed (Mb/s)
8189  *	@mtup: value return pointer for mtu
8190  *
8191  *	Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8192  *	and MTU for a specified port.  A negative error is returned on
8193  *	failure; 0 on success.
8194  */
8195 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8196 		       unsigned int *speedp, unsigned int *mtup)
8197 {
8198 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8199 	struct fw_port_cmd port_cmd;
8200 	unsigned int action, link_ok, speed, mtu;
8201 	fw_port_cap32_t linkattr;
8202 	int ret;
8203 
8204 	memset(&port_cmd, 0, sizeof(port_cmd));
8205 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8206 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8207 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8208 	action = (fw_caps == FW_CAPS16
8209 		  ? FW_PORT_ACTION_GET_PORT_INFO
8210 		  : FW_PORT_ACTION_GET_PORT_INFO32);
8211 	port_cmd.action_to_len16 = cpu_to_be32(
8212 		FW_PORT_CMD_ACTION_V(action) |
8213 		FW_LEN16(port_cmd));
8214 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8215 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8216 	if (ret)
8217 		return ret;
8218 
8219 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8220 		u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8221 
8222 		link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8223 		linkattr = lstatus_to_fwcap(lstatus);
8224 		mtu = be16_to_cpu(port_cmd.u.info.mtu);
8225 	} else {
8226 		u32 lstatus32 =
8227 			   be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8228 
8229 		link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8230 		linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8231 		mtu = FW_PORT_CMD_MTU32_G(
8232 			be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8233 	}
8234 	speed = fwcap_to_speed(linkattr);
8235 
8236 	*link_okp = link_ok;
8237 	*speedp = fwcap_to_speed(linkattr);
8238 	*mtup = mtu;
8239 
8240 	return 0;
8241 }
8242 
8243 /**
8244  *      t4_handle_fw_rpl - process a FW reply message
8245  *      @adap: the adapter
8246  *      @rpl: start of the FW message
8247  *
8248  *      Processes a FW message, such as link state change messages.
8249  */
8250 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8251 {
8252 	u8 opcode = *(const u8 *)rpl;
8253 
8254 	/* This might be a port command ... this simplifies the following
8255 	 * conditionals ...  We can get away with pre-dereferencing
8256 	 * action_to_len16 because it's in the first 16 bytes and all messages
8257 	 * will be at least that long.
8258 	 */
8259 	const struct fw_port_cmd *p = (const void *)rpl;
8260 	unsigned int action =
8261 		FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8262 
8263 	if (opcode == FW_PORT_CMD &&
8264 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8265 	     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8266 		int i;
8267 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8268 		struct port_info *pi = NULL;
8269 
8270 		for_each_port(adap, i) {
8271 			pi = adap2pinfo(adap, i);
8272 			if (pi->tx_chan == chan)
8273 				break;
8274 		}
8275 
8276 		t4_handle_get_port_info(pi, rpl);
8277 	} else {
8278 		dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8279 			 opcode);
8280 		return -EINVAL;
8281 	}
8282 	return 0;
8283 }
8284 
8285 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8286 {
8287 	u16 val;
8288 
8289 	if (pci_is_pcie(adapter->pdev)) {
8290 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8291 		p->speed = val & PCI_EXP_LNKSTA_CLS;
8292 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8293 	}
8294 }
8295 
8296 /**
8297  *	init_link_config - initialize a link's SW state
8298  *	@lc: pointer to structure holding the link state
8299  *	@pcaps: link Port Capabilities
8300  *	@acaps: link current Advertised Port Capabilities
8301  *
8302  *	Initializes the SW state maintained for each link, including the link's
8303  *	capabilities and default speed/flow-control/autonegotiation settings.
8304  */
8305 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8306 			     fw_port_cap32_t acaps)
8307 {
8308 	lc->pcaps = pcaps;
8309 	lc->def_acaps = acaps;
8310 	lc->lpacaps = 0;
8311 	lc->speed_caps = 0;
8312 	lc->speed = 0;
8313 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8314 
8315 	/* For Forward Error Control, we default to whatever the Firmware
8316 	 * tells us the Link is currently advertising.
8317 	 */
8318 	lc->requested_fec = FEC_AUTO;
8319 	lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8320 
8321 	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8322 		lc->acaps = lc->pcaps & ADVERT_MASK;
8323 		lc->autoneg = AUTONEG_ENABLE;
8324 		lc->requested_fc |= PAUSE_AUTONEG;
8325 	} else {
8326 		lc->acaps = 0;
8327 		lc->autoneg = AUTONEG_DISABLE;
8328 	}
8329 }
8330 
8331 #define CIM_PF_NOACCESS 0xeeeeeeee
8332 
8333 int t4_wait_dev_ready(void __iomem *regs)
8334 {
8335 	u32 whoami;
8336 
8337 	whoami = readl(regs + PL_WHOAMI_A);
8338 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8339 		return 0;
8340 
8341 	msleep(500);
8342 	whoami = readl(regs + PL_WHOAMI_A);
8343 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8344 }
8345 
8346 struct flash_desc {
8347 	u32 vendor_and_model_id;
8348 	u32 size_mb;
8349 };
8350 
8351 static int t4_get_flash_params(struct adapter *adap)
8352 {
8353 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
8354 	 * to the preexisting code.  All flash parts have 64KB sectors.
8355 	 */
8356 	static struct flash_desc supported_flash[] = {
8357 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8358 	};
8359 
8360 	unsigned int part, manufacturer;
8361 	unsigned int density, size;
8362 	u32 flashid = 0;
8363 	int ret;
8364 
8365 	/* Issue a Read ID Command to the Flash part.  We decode supported
8366 	 * Flash parts and their sizes from this.  There's a newer Query
8367 	 * Command which can retrieve detailed geometry information but many
8368 	 * Flash parts don't support it.
8369 	 */
8370 
8371 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8372 	if (!ret)
8373 		ret = sf1_read(adap, 3, 0, 1, &flashid);
8374 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8375 	if (ret)
8376 		return ret;
8377 
8378 	/* Check to see if it's one of our non-standard supported Flash parts.
8379 	 */
8380 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8381 		if (supported_flash[part].vendor_and_model_id == flashid) {
8382 			adap->params.sf_size = supported_flash[part].size_mb;
8383 			adap->params.sf_nsec =
8384 				adap->params.sf_size / SF_SEC_SIZE;
8385 			goto found;
8386 		}
8387 
8388 	/* Decode Flash part size.  The code below looks repetative with
8389 	 * common encodings, but that's not guaranteed in the JEDEC
8390 	 * specification for the Read JADEC ID command.  The only thing that
8391 	 * we're guaranteed by the JADEC specification is where the
8392 	 * Manufacturer ID is in the returned result.  After that each
8393 	 * Manufacturer ~could~ encode things completely differently.
8394 	 * Note, all Flash parts must have 64KB sectors.
8395 	 */
8396 	manufacturer = flashid & 0xff;
8397 	switch (manufacturer) {
8398 	case 0x20: { /* Micron/Numonix */
8399 		/* This Density -> Size decoding table is taken from Micron
8400 		 * Data Sheets.
8401 		 */
8402 		density = (flashid >> 16) & 0xff;
8403 		switch (density) {
8404 		case 0x14: /* 1MB */
8405 			size = 1 << 20;
8406 			break;
8407 		case 0x15: /* 2MB */
8408 			size = 1 << 21;
8409 			break;
8410 		case 0x16: /* 4MB */
8411 			size = 1 << 22;
8412 			break;
8413 		case 0x17: /* 8MB */
8414 			size = 1 << 23;
8415 			break;
8416 		case 0x18: /* 16MB */
8417 			size = 1 << 24;
8418 			break;
8419 		case 0x19: /* 32MB */
8420 			size = 1 << 25;
8421 			break;
8422 		case 0x20: /* 64MB */
8423 			size = 1 << 26;
8424 			break;
8425 		case 0x21: /* 128MB */
8426 			size = 1 << 27;
8427 			break;
8428 		case 0x22: /* 256MB */
8429 			size = 1 << 28;
8430 			break;
8431 
8432 		default:
8433 			dev_err(adap->pdev_dev, "Micron Flash Part has bad size, ID = %#x, Density code = %#x\n",
8434 				flashid, density);
8435 			return -EINVAL;
8436 		}
8437 		break;
8438 	}
8439 	case 0xc2: { /* Macronix */
8440 		/* This Density -> Size decoding table is taken from Macronix
8441 		 * Data Sheets.
8442 		 */
8443 		density = (flashid >> 16) & 0xff;
8444 		switch (density) {
8445 		case 0x17: /* 8MB */
8446 			size = 1 << 23;
8447 			break;
8448 		case 0x18: /* 16MB */
8449 			size = 1 << 24;
8450 			break;
8451 		default:
8452 			dev_err(adap->pdev_dev, "Macronix Flash Part has bad size, ID = %#x, Density code = %#x\n",
8453 				flashid, density);
8454 			return -EINVAL;
8455 		}
8456 		break;
8457 	}
8458 	case 0xef: { /* Winbond */
8459 		/* This Density -> Size decoding table is taken from Winbond
8460 		 * Data Sheets.
8461 		 */
8462 		density = (flashid >> 16) & 0xff;
8463 		switch (density) {
8464 		case 0x17: /* 8MB */
8465 			size = 1 << 23;
8466 			break;
8467 		case 0x18: /* 16MB */
8468 			size = 1 << 24;
8469 			break;
8470 		default:
8471 			dev_err(adap->pdev_dev, "Winbond Flash Part has bad size, ID = %#x, Density code = %#x\n",
8472 				flashid, density);
8473 			return -EINVAL;
8474 		}
8475 		break;
8476 	}
8477 	default:
8478 		dev_err(adap->pdev_dev, "Unsupported Flash Part, ID = %#x\n",
8479 			flashid);
8480 		return -EINVAL;
8481 	}
8482 
8483 	/* Store decoded Flash size and fall through into vetting code. */
8484 	adap->params.sf_size = size;
8485 	adap->params.sf_nsec = size / SF_SEC_SIZE;
8486 
8487 found:
8488 	if (adap->params.sf_size < FLASH_MIN_SIZE)
8489 		dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
8490 			 flashid, adap->params.sf_size, FLASH_MIN_SIZE);
8491 	return 0;
8492 }
8493 
8494 static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
8495 {
8496 	u16 val;
8497 	u32 pcie_cap;
8498 
8499 	pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
8500 	if (pcie_cap) {
8501 		pci_read_config_word(adapter->pdev,
8502 				     pcie_cap + PCI_EXP_DEVCTL2, &val);
8503 		val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
8504 		val |= range;
8505 		pci_write_config_word(adapter->pdev,
8506 				      pcie_cap + PCI_EXP_DEVCTL2, val);
8507 	}
8508 }
8509 
8510 /**
8511  *	t4_prep_adapter - prepare SW and HW for operation
8512  *	@adapter: the adapter
8513  *	@reset: if true perform a HW reset
8514  *
8515  *	Initialize adapter SW state for the various HW modules, set initial
8516  *	values for some adapter tunables, take PHYs out of reset, and
8517  *	initialize the MDIO interface.
8518  */
8519 int t4_prep_adapter(struct adapter *adapter)
8520 {
8521 	int ret, ver;
8522 	uint16_t device_id;
8523 	u32 pl_rev;
8524 
8525 	get_pci_mode(adapter, &adapter->params.pci);
8526 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
8527 
8528 	ret = t4_get_flash_params(adapter);
8529 	if (ret < 0) {
8530 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
8531 		return ret;
8532 	}
8533 
8534 	/* Retrieve adapter's device ID
8535 	 */
8536 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
8537 	ver = device_id >> 12;
8538 	adapter->params.chip = 0;
8539 	switch (ver) {
8540 	case CHELSIO_T4:
8541 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
8542 		adapter->params.arch.sge_fl_db = DBPRIO_F;
8543 		adapter->params.arch.mps_tcam_size =
8544 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
8545 		adapter->params.arch.mps_rplc_size = 128;
8546 		adapter->params.arch.nchan = NCHAN;
8547 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
8548 		adapter->params.arch.vfcount = 128;
8549 		/* Congestion map is for 4 channels so that
8550 		 * MPS can have 4 priority per port.
8551 		 */
8552 		adapter->params.arch.cng_ch_bits_log = 2;
8553 		break;
8554 	case CHELSIO_T5:
8555 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
8556 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
8557 		adapter->params.arch.mps_tcam_size =
8558 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8559 		adapter->params.arch.mps_rplc_size = 128;
8560 		adapter->params.arch.nchan = NCHAN;
8561 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
8562 		adapter->params.arch.vfcount = 128;
8563 		adapter->params.arch.cng_ch_bits_log = 2;
8564 		break;
8565 	case CHELSIO_T6:
8566 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
8567 		adapter->params.arch.sge_fl_db = 0;
8568 		adapter->params.arch.mps_tcam_size =
8569 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8570 		adapter->params.arch.mps_rplc_size = 256;
8571 		adapter->params.arch.nchan = 2;
8572 		adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
8573 		adapter->params.arch.vfcount = 256;
8574 		/* Congestion map will be for 2 channels so that
8575 		 * MPS can have 8 priority per port.
8576 		 */
8577 		adapter->params.arch.cng_ch_bits_log = 3;
8578 		break;
8579 	default:
8580 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
8581 			device_id);
8582 		return -EINVAL;
8583 	}
8584 
8585 	adapter->params.cim_la_size = CIMLA_SIZE;
8586 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8587 
8588 	/*
8589 	 * Default port for debugging in case we can't reach FW.
8590 	 */
8591 	adapter->params.nports = 1;
8592 	adapter->params.portvec = 1;
8593 	adapter->params.vpd.cclk = 50000;
8594 
8595 	/* Set pci completion timeout value to 4 seconds. */
8596 	set_pcie_completion_timeout(adapter, 0xd);
8597 	return 0;
8598 }
8599 
8600 /**
8601  *	t4_shutdown_adapter - shut down adapter, host & wire
8602  *	@adapter: the adapter
8603  *
8604  *	Perform an emergency shutdown of the adapter and stop it from
8605  *	continuing any further communication on the ports or DMA to the
8606  *	host.  This is typically used when the adapter and/or firmware
8607  *	have crashed and we want to prevent any further accidental
8608  *	communication with the rest of the world.  This will also force
8609  *	the port Link Status to go down -- if register writes work --
8610  *	which should help our peers figure out that we're down.
8611  */
8612 int t4_shutdown_adapter(struct adapter *adapter)
8613 {
8614 	int port;
8615 
8616 	t4_intr_disable(adapter);
8617 	t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
8618 	for_each_port(adapter, port) {
8619 		u32 a_port_cfg = is_t4(adapter->params.chip) ?
8620 				       PORT_REG(port, XGMAC_PORT_CFG_A) :
8621 				       T5_PORT_REG(port, MAC_PORT_CFG_A);
8622 
8623 		t4_write_reg(adapter, a_port_cfg,
8624 			     t4_read_reg(adapter, a_port_cfg)
8625 			     & ~SIGNAL_DET_V(1));
8626 	}
8627 	t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
8628 
8629 	return 0;
8630 }
8631 
8632 /**
8633  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
8634  *	@adapter: the adapter
8635  *	@qid: the Queue ID
8636  *	@qtype: the Ingress or Egress type for @qid
8637  *	@user: true if this request is for a user mode queue
8638  *	@pbar2_qoffset: BAR2 Queue Offset
8639  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
8640  *
8641  *	Returns the BAR2 SGE Queue Registers information associated with the
8642  *	indicated Absolute Queue ID.  These are passed back in return value
8643  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
8644  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
8645  *
8646  *	This may return an error which indicates that BAR2 SGE Queue
8647  *	registers aren't available.  If an error is not returned, then the
8648  *	following values are returned:
8649  *
8650  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
8651  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
8652  *
8653  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
8654  *	require the "Inferred Queue ID" ability may be used.  E.g. the
8655  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
8656  *	then these "Inferred Queue ID" register may not be used.
8657  */
8658 int t4_bar2_sge_qregs(struct adapter *adapter,
8659 		      unsigned int qid,
8660 		      enum t4_bar2_qtype qtype,
8661 		      int user,
8662 		      u64 *pbar2_qoffset,
8663 		      unsigned int *pbar2_qid)
8664 {
8665 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
8666 	u64 bar2_page_offset, bar2_qoffset;
8667 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
8668 
8669 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
8670 	if (!user && is_t4(adapter->params.chip))
8671 		return -EINVAL;
8672 
8673 	/* Get our SGE Page Size parameters.
8674 	 */
8675 	page_shift = adapter->params.sge.hps + 10;
8676 	page_size = 1 << page_shift;
8677 
8678 	/* Get the right Queues per Page parameters for our Queue.
8679 	 */
8680 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
8681 		     ? adapter->params.sge.eq_qpp
8682 		     : adapter->params.sge.iq_qpp);
8683 	qpp_mask = (1 << qpp_shift) - 1;
8684 
8685 	/*  Calculate the basics of the BAR2 SGE Queue register area:
8686 	 *  o The BAR2 page the Queue registers will be in.
8687 	 *  o The BAR2 Queue ID.
8688 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
8689 	 */
8690 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
8691 	bar2_qid = qid & qpp_mask;
8692 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
8693 
8694 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
8695 	 * hardware will infer the Absolute Queue ID simply from the writes to
8696 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
8697 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
8698 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
8699 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
8700 	 * from the BAR2 Page and BAR2 Queue ID.
8701 	 *
8702 	 * One important censequence of this is that some BAR2 SGE registers
8703 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
8704 	 * there.  But other registers synthesize the SGE Queue ID purely
8705 	 * from the writes to the registers -- the Write Combined Doorbell
8706 	 * Buffer is a good example.  These BAR2 SGE Registers are only
8707 	 * available for those BAR2 SGE Register areas where the SGE Absolute
8708 	 * Queue ID can be inferred from simple writes.
8709 	 */
8710 	bar2_qoffset = bar2_page_offset;
8711 	bar2_qinferred = (bar2_qid_offset < page_size);
8712 	if (bar2_qinferred) {
8713 		bar2_qoffset += bar2_qid_offset;
8714 		bar2_qid = 0;
8715 	}
8716 
8717 	*pbar2_qoffset = bar2_qoffset;
8718 	*pbar2_qid = bar2_qid;
8719 	return 0;
8720 }
8721 
8722 /**
8723  *	t4_init_devlog_params - initialize adapter->params.devlog
8724  *	@adap: the adapter
8725  *
8726  *	Initialize various fields of the adapter's Firmware Device Log
8727  *	Parameters structure.
8728  */
8729 int t4_init_devlog_params(struct adapter *adap)
8730 {
8731 	struct devlog_params *dparams = &adap->params.devlog;
8732 	u32 pf_dparams;
8733 	unsigned int devlog_meminfo;
8734 	struct fw_devlog_cmd devlog_cmd;
8735 	int ret;
8736 
8737 	/* If we're dealing with newer firmware, the Device Log Paramerters
8738 	 * are stored in a designated register which allows us to access the
8739 	 * Device Log even if we can't talk to the firmware.
8740 	 */
8741 	pf_dparams =
8742 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
8743 	if (pf_dparams) {
8744 		unsigned int nentries, nentries128;
8745 
8746 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
8747 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
8748 
8749 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
8750 		nentries = (nentries128 + 1) * 128;
8751 		dparams->size = nentries * sizeof(struct fw_devlog_e);
8752 
8753 		return 0;
8754 	}
8755 
8756 	/* Otherwise, ask the firmware for it's Device Log Parameters.
8757 	 */
8758 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
8759 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
8760 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
8761 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
8762 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
8763 			 &devlog_cmd);
8764 	if (ret)
8765 		return ret;
8766 
8767 	devlog_meminfo =
8768 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
8769 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
8770 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
8771 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
8772 
8773 	return 0;
8774 }
8775 
8776 /**
8777  *	t4_init_sge_params - initialize adap->params.sge
8778  *	@adapter: the adapter
8779  *
8780  *	Initialize various fields of the adapter's SGE Parameters structure.
8781  */
8782 int t4_init_sge_params(struct adapter *adapter)
8783 {
8784 	struct sge_params *sge_params = &adapter->params.sge;
8785 	u32 hps, qpp;
8786 	unsigned int s_hps, s_qpp;
8787 
8788 	/* Extract the SGE Page Size for our PF.
8789 	 */
8790 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
8791 	s_hps = (HOSTPAGESIZEPF0_S +
8792 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
8793 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
8794 
8795 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
8796 	 */
8797 	s_qpp = (QUEUESPERPAGEPF0_S +
8798 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
8799 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
8800 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
8801 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
8802 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
8803 
8804 	return 0;
8805 }
8806 
8807 /**
8808  *      t4_init_tp_params - initialize adap->params.tp
8809  *      @adap: the adapter
8810  *      @sleep_ok: if true we may sleep while awaiting command completion
8811  *
8812  *      Initialize various fields of the adapter's TP Parameters structure.
8813  */
8814 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
8815 {
8816 	int chan;
8817 	u32 v;
8818 
8819 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
8820 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
8821 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
8822 
8823 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
8824 	for (chan = 0; chan < NCHAN; chan++)
8825 		adap->params.tp.tx_modq[chan] = chan;
8826 
8827 	/* Cache the adapter's Compressed Filter Mode and global Incress
8828 	 * Configuration.
8829 	 */
8830 	t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
8831 		       TP_VLAN_PRI_MAP_A, sleep_ok);
8832 	t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
8833 		       TP_INGRESS_CONFIG_A, sleep_ok);
8834 
8835 	/* For T6, cache the adapter's compressed error vector
8836 	 * and passing outer header info for encapsulated packets.
8837 	 */
8838 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
8839 		v = t4_read_reg(adap, TP_OUT_CONFIG_A);
8840 		adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
8841 	}
8842 
8843 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
8844 	 * shift positions of several elements of the Compressed Filter Tuple
8845 	 * for this adapter which we need frequently ...
8846 	 */
8847 	adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
8848 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
8849 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
8850 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
8851 	adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
8852 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
8853 							       PROTOCOL_F);
8854 	adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
8855 								ETHERTYPE_F);
8856 	adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
8857 							       MACMATCH_F);
8858 	adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
8859 								MPSHITTYPE_F);
8860 	adap->params.tp.frag_shift = t4_filter_field_shift(adap,
8861 							   FRAGMENTATION_F);
8862 
8863 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
8864 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
8865 	 */
8866 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
8867 		adap->params.tp.vnic_shift = -1;
8868 
8869 	v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
8870 	adap->params.tp.hash_filter_mask = v;
8871 	v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
8872 	adap->params.tp.hash_filter_mask |= ((u64)v << 32);
8873 	return 0;
8874 }
8875 
8876 /**
8877  *      t4_filter_field_shift - calculate filter field shift
8878  *      @adap: the adapter
8879  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
8880  *
8881  *      Return the shift position of a filter field within the Compressed
8882  *      Filter Tuple.  The filter field is specified via its selection bit
8883  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
8884  */
8885 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
8886 {
8887 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
8888 	unsigned int sel;
8889 	int field_shift;
8890 
8891 	if ((filter_mode & filter_sel) == 0)
8892 		return -1;
8893 
8894 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
8895 		switch (filter_mode & sel) {
8896 		case FCOE_F:
8897 			field_shift += FT_FCOE_W;
8898 			break;
8899 		case PORT_F:
8900 			field_shift += FT_PORT_W;
8901 			break;
8902 		case VNIC_ID_F:
8903 			field_shift += FT_VNIC_ID_W;
8904 			break;
8905 		case VLAN_F:
8906 			field_shift += FT_VLAN_W;
8907 			break;
8908 		case TOS_F:
8909 			field_shift += FT_TOS_W;
8910 			break;
8911 		case PROTOCOL_F:
8912 			field_shift += FT_PROTOCOL_W;
8913 			break;
8914 		case ETHERTYPE_F:
8915 			field_shift += FT_ETHERTYPE_W;
8916 			break;
8917 		case MACMATCH_F:
8918 			field_shift += FT_MACMATCH_W;
8919 			break;
8920 		case MPSHITTYPE_F:
8921 			field_shift += FT_MPSHITTYPE_W;
8922 			break;
8923 		case FRAGMENTATION_F:
8924 			field_shift += FT_FRAGMENTATION_W;
8925 			break;
8926 		}
8927 	}
8928 	return field_shift;
8929 }
8930 
8931 int t4_init_rss_mode(struct adapter *adap, int mbox)
8932 {
8933 	int i, ret;
8934 	struct fw_rss_vi_config_cmd rvc;
8935 
8936 	memset(&rvc, 0, sizeof(rvc));
8937 
8938 	for_each_port(adap, i) {
8939 		struct port_info *p = adap2pinfo(adap, i);
8940 
8941 		rvc.op_to_viid =
8942 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
8943 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8944 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
8945 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
8946 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
8947 		if (ret)
8948 			return ret;
8949 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
8950 	}
8951 	return 0;
8952 }
8953 
8954 /**
8955  *	t4_init_portinfo - allocate a virtual interface and initialize port_info
8956  *	@pi: the port_info
8957  *	@mbox: mailbox to use for the FW command
8958  *	@port: physical port associated with the VI
8959  *	@pf: the PF owning the VI
8960  *	@vf: the VF owning the VI
8961  *	@mac: the MAC address of the VI
8962  *
8963  *	Allocates a virtual interface for the given physical port.  If @mac is
8964  *	not %NULL it contains the MAC address of the VI as assigned by FW.
8965  *	@mac should be large enough to hold an Ethernet address.
8966  *	Returns < 0 on error.
8967  */
8968 int t4_init_portinfo(struct port_info *pi, int mbox,
8969 		     int port, int pf, int vf, u8 mac[])
8970 {
8971 	struct adapter *adapter = pi->adapter;
8972 	unsigned int fw_caps = adapter->params.fw_caps_support;
8973 	struct fw_port_cmd cmd;
8974 	unsigned int rss_size;
8975 	enum fw_port_type port_type;
8976 	int mdio_addr;
8977 	fw_port_cap32_t pcaps, acaps;
8978 	int ret;
8979 
8980 	/* If we haven't yet determined whether we're talking to Firmware
8981 	 * which knows the new 32-bit Port Capabilities, it's time to find
8982 	 * out now.  This will also tell new Firmware to send us Port Status
8983 	 * Updates using the new 32-bit Port Capabilities version of the
8984 	 * Port Information message.
8985 	 */
8986 	if (fw_caps == FW_CAPS_UNKNOWN) {
8987 		u32 param, val;
8988 
8989 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
8990 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
8991 		val = 1;
8992 		ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
8993 		fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
8994 		adapter->params.fw_caps_support = fw_caps;
8995 	}
8996 
8997 	memset(&cmd, 0, sizeof(cmd));
8998 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8999 				       FW_CMD_REQUEST_F | FW_CMD_READ_F |
9000 				       FW_PORT_CMD_PORTID_V(port));
9001 	cmd.action_to_len16 = cpu_to_be32(
9002 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9003 				     ? FW_PORT_ACTION_GET_PORT_INFO
9004 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
9005 		FW_LEN16(cmd));
9006 	ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9007 	if (ret)
9008 		return ret;
9009 
9010 	/* Extract the various fields from the Port Information message.
9011 	 */
9012 	if (fw_caps == FW_CAPS16) {
9013 		u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9014 
9015 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9016 		mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9017 			     ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9018 			     : -1);
9019 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9020 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9021 	} else {
9022 		u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9023 
9024 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9025 		mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9026 			     ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9027 			     : -1);
9028 		pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9029 		acaps = be32_to_cpu(cmd.u.info32.acaps32);
9030 	}
9031 
9032 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size);
9033 	if (ret < 0)
9034 		return ret;
9035 
9036 	pi->viid = ret;
9037 	pi->tx_chan = port;
9038 	pi->lport = port;
9039 	pi->rss_size = rss_size;
9040 
9041 	pi->port_type = port_type;
9042 	pi->mdio_addr = mdio_addr;
9043 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
9044 
9045 	init_link_config(&pi->link_cfg, pcaps, acaps);
9046 	return 0;
9047 }
9048 
9049 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9050 {
9051 	u8 addr[6];
9052 	int ret, i, j = 0;
9053 
9054 	for_each_port(adap, i) {
9055 		struct port_info *pi = adap2pinfo(adap, i);
9056 
9057 		while ((adap->params.portvec & (1 << j)) == 0)
9058 			j++;
9059 
9060 		ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9061 		if (ret)
9062 			return ret;
9063 
9064 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9065 		j++;
9066 	}
9067 	return 0;
9068 }
9069 
9070 /**
9071  *	t4_read_cimq_cfg - read CIM queue configuration
9072  *	@adap: the adapter
9073  *	@base: holds the queue base addresses in bytes
9074  *	@size: holds the queue sizes in bytes
9075  *	@thres: holds the queue full thresholds in bytes
9076  *
9077  *	Returns the current configuration of the CIM queues, starting with
9078  *	the IBQs, then the OBQs.
9079  */
9080 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9081 {
9082 	unsigned int i, v;
9083 	int cim_num_obq = is_t4(adap->params.chip) ?
9084 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9085 
9086 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9087 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9088 			     QUENUMSELECT_V(i));
9089 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9090 		/* value is in 256-byte units */
9091 		*base++ = CIMQBASE_G(v) * 256;
9092 		*size++ = CIMQSIZE_G(v) * 256;
9093 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9094 	}
9095 	for (i = 0; i < cim_num_obq; i++) {
9096 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9097 			     QUENUMSELECT_V(i));
9098 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9099 		/* value is in 256-byte units */
9100 		*base++ = CIMQBASE_G(v) * 256;
9101 		*size++ = CIMQSIZE_G(v) * 256;
9102 	}
9103 }
9104 
9105 /**
9106  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9107  *	@adap: the adapter
9108  *	@qid: the queue index
9109  *	@data: where to store the queue contents
9110  *	@n: capacity of @data in 32-bit words
9111  *
9112  *	Reads the contents of the selected CIM queue starting at address 0 up
9113  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9114  *	error and the number of 32-bit words actually read on success.
9115  */
9116 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9117 {
9118 	int i, err, attempts;
9119 	unsigned int addr;
9120 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9121 
9122 	if (qid > 5 || (n & 3))
9123 		return -EINVAL;
9124 
9125 	addr = qid * nwords;
9126 	if (n > nwords)
9127 		n = nwords;
9128 
9129 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9130 	 * Wait for 1 Sec with a delay of 1 usec.
9131 	 */
9132 	attempts = 1000000;
9133 
9134 	for (i = 0; i < n; i++, addr++) {
9135 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9136 			     IBQDBGEN_F);
9137 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9138 				      attempts, 1);
9139 		if (err)
9140 			return err;
9141 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9142 	}
9143 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9144 	return i;
9145 }
9146 
9147 /**
9148  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9149  *	@adap: the adapter
9150  *	@qid: the queue index
9151  *	@data: where to store the queue contents
9152  *	@n: capacity of @data in 32-bit words
9153  *
9154  *	Reads the contents of the selected CIM queue starting at address 0 up
9155  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9156  *	error and the number of 32-bit words actually read on success.
9157  */
9158 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9159 {
9160 	int i, err;
9161 	unsigned int addr, v, nwords;
9162 	int cim_num_obq = is_t4(adap->params.chip) ?
9163 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9164 
9165 	if ((qid > (cim_num_obq - 1)) || (n & 3))
9166 		return -EINVAL;
9167 
9168 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9169 		     QUENUMSELECT_V(qid));
9170 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9171 
9172 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9173 	nwords = CIMQSIZE_G(v) * 64;  /* same */
9174 	if (n > nwords)
9175 		n = nwords;
9176 
9177 	for (i = 0; i < n; i++, addr++) {
9178 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9179 			     OBQDBGEN_F);
9180 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9181 				      2, 1);
9182 		if (err)
9183 			return err;
9184 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9185 	}
9186 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9187 	return i;
9188 }
9189 
9190 /**
9191  *	t4_cim_read - read a block from CIM internal address space
9192  *	@adap: the adapter
9193  *	@addr: the start address within the CIM address space
9194  *	@n: number of words to read
9195  *	@valp: where to store the result
9196  *
9197  *	Reads a block of 4-byte words from the CIM intenal address space.
9198  */
9199 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9200 		unsigned int *valp)
9201 {
9202 	int ret = 0;
9203 
9204 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9205 		return -EBUSY;
9206 
9207 	for ( ; !ret && n--; addr += 4) {
9208 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9209 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9210 				      0, 5, 2);
9211 		if (!ret)
9212 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9213 	}
9214 	return ret;
9215 }
9216 
9217 /**
9218  *	t4_cim_write - write a block into CIM internal address space
9219  *	@adap: the adapter
9220  *	@addr: the start address within the CIM address space
9221  *	@n: number of words to write
9222  *	@valp: set of values to write
9223  *
9224  *	Writes a block of 4-byte words into the CIM intenal address space.
9225  */
9226 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9227 		 const unsigned int *valp)
9228 {
9229 	int ret = 0;
9230 
9231 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9232 		return -EBUSY;
9233 
9234 	for ( ; !ret && n--; addr += 4) {
9235 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9236 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9237 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9238 				      0, 5, 2);
9239 	}
9240 	return ret;
9241 }
9242 
9243 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9244 			 unsigned int val)
9245 {
9246 	return t4_cim_write(adap, addr, 1, &val);
9247 }
9248 
9249 /**
9250  *	t4_cim_read_la - read CIM LA capture buffer
9251  *	@adap: the adapter
9252  *	@la_buf: where to store the LA data
9253  *	@wrptr: the HW write pointer within the capture buffer
9254  *
9255  *	Reads the contents of the CIM LA buffer with the most recent entry at
9256  *	the end	of the returned data and with the entry at @wrptr first.
9257  *	We try to leave the LA in the running state we find it in.
9258  */
9259 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9260 {
9261 	int i, ret;
9262 	unsigned int cfg, val, idx;
9263 
9264 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9265 	if (ret)
9266 		return ret;
9267 
9268 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
9269 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9270 		if (ret)
9271 			return ret;
9272 	}
9273 
9274 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9275 	if (ret)
9276 		goto restart;
9277 
9278 	idx = UPDBGLAWRPTR_G(val);
9279 	if (wrptr)
9280 		*wrptr = idx;
9281 
9282 	for (i = 0; i < adap->params.cim_la_size; i++) {
9283 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9284 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9285 		if (ret)
9286 			break;
9287 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9288 		if (ret)
9289 			break;
9290 		if (val & UPDBGLARDEN_F) {
9291 			ret = -ETIMEDOUT;
9292 			break;
9293 		}
9294 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9295 		if (ret)
9296 			break;
9297 
9298 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9299 		 * identify the 32-bit portion of the full 312-bit data
9300 		 */
9301 		if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9302 			idx = (idx & 0xff0) + 0x10;
9303 		else
9304 			idx++;
9305 		/* address can't exceed 0xfff */
9306 		idx &= UPDBGLARDPTR_M;
9307 	}
9308 restart:
9309 	if (cfg & UPDBGLAEN_F) {
9310 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9311 				      cfg & ~UPDBGLARDEN_F);
9312 		if (!ret)
9313 			ret = r;
9314 	}
9315 	return ret;
9316 }
9317 
9318 /**
9319  *	t4_tp_read_la - read TP LA capture buffer
9320  *	@adap: the adapter
9321  *	@la_buf: where to store the LA data
9322  *	@wrptr: the HW write pointer within the capture buffer
9323  *
9324  *	Reads the contents of the TP LA buffer with the most recent entry at
9325  *	the end	of the returned data and with the entry at @wrptr first.
9326  *	We leave the LA in the running state we find it in.
9327  */
9328 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9329 {
9330 	bool last_incomplete;
9331 	unsigned int i, cfg, val, idx;
9332 
9333 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
9334 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
9335 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9336 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
9337 
9338 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
9339 	idx = DBGLAWPTR_G(val);
9340 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
9341 	if (last_incomplete)
9342 		idx = (idx + 1) & DBGLARPTR_M;
9343 	if (wrptr)
9344 		*wrptr = idx;
9345 
9346 	val &= 0xffff;
9347 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
9348 	val |= adap->params.tp.la_mask;
9349 
9350 	for (i = 0; i < TPLA_SIZE; i++) {
9351 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
9352 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
9353 		idx = (idx + 1) & DBGLARPTR_M;
9354 	}
9355 
9356 	/* Wipe out last entry if it isn't valid */
9357 	if (last_incomplete)
9358 		la_buf[TPLA_SIZE - 1] = ~0ULL;
9359 
9360 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
9361 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9362 			     cfg | adap->params.tp.la_mask);
9363 }
9364 
9365 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
9366  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
9367  * state for more than the Warning Threshold then we'll issue a warning about
9368  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
9369  * appears to be hung every Warning Repeat second till the situation clears.
9370  * If the situation clears, we'll note that as well.
9371  */
9372 #define SGE_IDMA_WARN_THRESH 1
9373 #define SGE_IDMA_WARN_REPEAT 300
9374 
9375 /**
9376  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
9377  *	@adapter: the adapter
9378  *	@idma: the adapter IDMA Monitor state
9379  *
9380  *	Initialize the state of an SGE Ingress DMA Monitor.
9381  */
9382 void t4_idma_monitor_init(struct adapter *adapter,
9383 			  struct sge_idma_monitor_state *idma)
9384 {
9385 	/* Initialize the state variables for detecting an SGE Ingress DMA
9386 	 * hang.  The SGE has internal counters which count up on each clock
9387 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
9388 	 * same state they were on the previous clock tick.  The clock used is
9389 	 * the Core Clock so we have a limit on the maximum "time" they can
9390 	 * record; typically a very small number of seconds.  For instance,
9391 	 * with a 600MHz Core Clock, we can only count up to a bit more than
9392 	 * 7s.  So we'll synthesize a larger counter in order to not run the
9393 	 * risk of having the "timers" overflow and give us the flexibility to
9394 	 * maintain a Hung SGE State Machine of our own which operates across
9395 	 * a longer time frame.
9396 	 */
9397 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
9398 	idma->idma_stalled[0] = 0;
9399 	idma->idma_stalled[1] = 0;
9400 }
9401 
9402 /**
9403  *	t4_idma_monitor - monitor SGE Ingress DMA state
9404  *	@adapter: the adapter
9405  *	@idma: the adapter IDMA Monitor state
9406  *	@hz: number of ticks/second
9407  *	@ticks: number of ticks since the last IDMA Monitor call
9408  */
9409 void t4_idma_monitor(struct adapter *adapter,
9410 		     struct sge_idma_monitor_state *idma,
9411 		     int hz, int ticks)
9412 {
9413 	int i, idma_same_state_cnt[2];
9414 
9415 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
9416 	  * are counters inside the SGE which count up on each clock when the
9417 	  * SGE finds its Ingress DMA State Engines in the same states they
9418 	  * were in the previous clock.  The counters will peg out at
9419 	  * 0xffffffff without wrapping around so once they pass the 1s
9420 	  * threshold they'll stay above that till the IDMA state changes.
9421 	  */
9422 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
9423 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
9424 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9425 
9426 	for (i = 0; i < 2; i++) {
9427 		u32 debug0, debug11;
9428 
9429 		/* If the Ingress DMA Same State Counter ("timer") is less
9430 		 * than 1s, then we can reset our synthesized Stall Timer and
9431 		 * continue.  If we have previously emitted warnings about a
9432 		 * potential stalled Ingress Queue, issue a note indicating
9433 		 * that the Ingress Queue has resumed forward progress.
9434 		 */
9435 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
9436 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
9437 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
9438 					 "resumed after %d seconds\n",
9439 					 i, idma->idma_qid[i],
9440 					 idma->idma_stalled[i] / hz);
9441 			idma->idma_stalled[i] = 0;
9442 			continue;
9443 		}
9444 
9445 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
9446 		 * domain.  The first time we get here it'll be because we
9447 		 * passed the 1s Threshold; each additional time it'll be
9448 		 * because the RX Timer Callback is being fired on its regular
9449 		 * schedule.
9450 		 *
9451 		 * If the stall is below our Potential Hung Ingress Queue
9452 		 * Warning Threshold, continue.
9453 		 */
9454 		if (idma->idma_stalled[i] == 0) {
9455 			idma->idma_stalled[i] = hz;
9456 			idma->idma_warn[i] = 0;
9457 		} else {
9458 			idma->idma_stalled[i] += ticks;
9459 			idma->idma_warn[i] -= ticks;
9460 		}
9461 
9462 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
9463 			continue;
9464 
9465 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
9466 		 */
9467 		if (idma->idma_warn[i] > 0)
9468 			continue;
9469 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
9470 
9471 		/* Read and save the SGE IDMA State and Queue ID information.
9472 		 * We do this every time in case it changes across time ...
9473 		 * can't be too careful ...
9474 		 */
9475 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
9476 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9477 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
9478 
9479 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
9480 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9481 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
9482 
9483 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
9484 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
9485 			 i, idma->idma_qid[i], idma->idma_state[i],
9486 			 idma->idma_stalled[i] / hz,
9487 			 debug0, debug11);
9488 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
9489 	}
9490 }
9491 
9492 /**
9493  *	t4_load_cfg - download config file
9494  *	@adap: the adapter
9495  *	@cfg_data: the cfg text file to write
9496  *	@size: text file size
9497  *
9498  *	Write the supplied config text file to the card's serial flash.
9499  */
9500 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9501 {
9502 	int ret, i, n, cfg_addr;
9503 	unsigned int addr;
9504 	unsigned int flash_cfg_start_sec;
9505 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9506 
9507 	cfg_addr = t4_flash_cfg_addr(adap);
9508 	if (cfg_addr < 0)
9509 		return cfg_addr;
9510 
9511 	addr = cfg_addr;
9512 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9513 
9514 	if (size > FLASH_CFG_MAX_SIZE) {
9515 		dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
9516 			FLASH_CFG_MAX_SIZE);
9517 		return -EFBIG;
9518 	}
9519 
9520 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
9521 			 sf_sec_size);
9522 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9523 				     flash_cfg_start_sec + i - 1);
9524 	/* If size == 0 then we're simply erasing the FLASH sectors associated
9525 	 * with the on-adapter Firmware Configuration File.
9526 	 */
9527 	if (ret || size == 0)
9528 		goto out;
9529 
9530 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9531 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
9532 		if ((size - i) <  SF_PAGE_SIZE)
9533 			n = size - i;
9534 		else
9535 			n = SF_PAGE_SIZE;
9536 		ret = t4_write_flash(adap, addr, n, cfg_data);
9537 		if (ret)
9538 			goto out;
9539 
9540 		addr += SF_PAGE_SIZE;
9541 		cfg_data += SF_PAGE_SIZE;
9542 	}
9543 
9544 out:
9545 	if (ret)
9546 		dev_err(adap->pdev_dev, "config file %s failed %d\n",
9547 			(size == 0 ? "clear" : "download"), ret);
9548 	return ret;
9549 }
9550 
9551 /**
9552  *	t4_set_vf_mac - Set MAC address for the specified VF
9553  *	@adapter: The adapter
9554  *	@vf: one of the VFs instantiated by the specified PF
9555  *	@naddr: the number of MAC addresses
9556  *	@addr: the MAC address(es) to be set to the specified VF
9557  */
9558 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
9559 		      unsigned int naddr, u8 *addr)
9560 {
9561 	struct fw_acl_mac_cmd cmd;
9562 
9563 	memset(&cmd, 0, sizeof(cmd));
9564 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
9565 				    FW_CMD_REQUEST_F |
9566 				    FW_CMD_WRITE_F |
9567 				    FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
9568 				    FW_ACL_MAC_CMD_VFN_V(vf));
9569 
9570 	/* Note: Do not enable the ACL */
9571 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
9572 	cmd.nmac = naddr;
9573 
9574 	switch (adapter->pf) {
9575 	case 3:
9576 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
9577 		break;
9578 	case 2:
9579 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
9580 		break;
9581 	case 1:
9582 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
9583 		break;
9584 	case 0:
9585 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
9586 		break;
9587 	}
9588 
9589 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
9590 }
9591 
9592 /**
9593  * t4_read_pace_tbl - read the pace table
9594  * @adap: the adapter
9595  * @pace_vals: holds the returned values
9596  *
9597  * Returns the values of TP's pace table in microseconds.
9598  */
9599 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
9600 {
9601 	unsigned int i, v;
9602 
9603 	for (i = 0; i < NTX_SCHED; i++) {
9604 		t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
9605 		v = t4_read_reg(adap, TP_PACE_TABLE_A);
9606 		pace_vals[i] = dack_ticks_to_usec(adap, v);
9607 	}
9608 }
9609 
9610 /**
9611  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
9612  * @adap: the adapter
9613  * @sched: the scheduler index
9614  * @kbps: the byte rate in Kbps
9615  * @ipg: the interpacket delay in tenths of nanoseconds
9616  * @sleep_ok: if true we may sleep while awaiting command completion
9617  *
9618  * Return the current configuration of a HW Tx scheduler.
9619  */
9620 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
9621 		     unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
9622 {
9623 	unsigned int v, addr, bpt, cpt;
9624 
9625 	if (kbps) {
9626 		addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
9627 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9628 		if (sched & 1)
9629 			v >>= 16;
9630 		bpt = (v >> 8) & 0xff;
9631 		cpt = v & 0xff;
9632 		if (!cpt) {
9633 			*kbps = 0;	/* scheduler disabled */
9634 		} else {
9635 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
9636 			*kbps = (v * bpt) / 125;
9637 		}
9638 	}
9639 	if (ipg) {
9640 		addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
9641 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9642 		if (sched & 1)
9643 			v >>= 16;
9644 		v &= 0xffff;
9645 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
9646 	}
9647 }
9648 
9649 /* t4_sge_ctxt_rd - read an SGE context through FW
9650  * @adap: the adapter
9651  * @mbox: mailbox to use for the FW command
9652  * @cid: the context id
9653  * @ctype: the context type
9654  * @data: where to store the context data
9655  *
9656  * Issues a FW command through the given mailbox to read an SGE context.
9657  */
9658 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
9659 		   enum ctxt_type ctype, u32 *data)
9660 {
9661 	struct fw_ldst_cmd c;
9662 	int ret;
9663 
9664 	if (ctype == CTXT_FLM)
9665 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
9666 	else
9667 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
9668 
9669 	memset(&c, 0, sizeof(c));
9670 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
9671 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
9672 					FW_LDST_CMD_ADDRSPACE_V(ret));
9673 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9674 	c.u.idctxt.physid = cpu_to_be32(cid);
9675 
9676 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9677 	if (ret == 0) {
9678 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
9679 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
9680 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
9681 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
9682 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
9683 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
9684 	}
9685 	return ret;
9686 }
9687 
9688 /**
9689  * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
9690  * @adap: the adapter
9691  * @cid: the context id
9692  * @ctype: the context type
9693  * @data: where to store the context data
9694  *
9695  * Reads an SGE context directly, bypassing FW.  This is only for
9696  * debugging when FW is unavailable.
9697  */
9698 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
9699 		      enum ctxt_type ctype, u32 *data)
9700 {
9701 	int i, ret;
9702 
9703 	t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
9704 	ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
9705 	if (!ret)
9706 		for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
9707 			*data++ = t4_read_reg(adap, i);
9708 	return ret;
9709 }
9710 
9711 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
9712 		    int rateunit, int ratemode, int channel, int class,
9713 		    int minrate, int maxrate, int weight, int pktsize)
9714 {
9715 	struct fw_sched_cmd cmd;
9716 
9717 	memset(&cmd, 0, sizeof(cmd));
9718 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
9719 				      FW_CMD_REQUEST_F |
9720 				      FW_CMD_WRITE_F);
9721 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9722 
9723 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9724 	cmd.u.params.type = type;
9725 	cmd.u.params.level = level;
9726 	cmd.u.params.mode = mode;
9727 	cmd.u.params.ch = channel;
9728 	cmd.u.params.cl = class;
9729 	cmd.u.params.unit = rateunit;
9730 	cmd.u.params.rate = ratemode;
9731 	cmd.u.params.min = cpu_to_be32(minrate);
9732 	cmd.u.params.max = cpu_to_be32(maxrate);
9733 	cmd.u.params.weight = cpu_to_be16(weight);
9734 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9735 
9736 	return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
9737 			       NULL, 1);
9738 }
9739