1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/delay.h> 36 #include "cxgb4.h" 37 #include "t4_regs.h" 38 #include "t4_values.h" 39 #include "t4fw_api.h" 40 #include "t4fw_version.h" 41 42 /** 43 * t4_wait_op_done_val - wait until an operation is completed 44 * @adapter: the adapter performing the operation 45 * @reg: the register to check for completion 46 * @mask: a single-bit field within @reg that indicates completion 47 * @polarity: the value of the field when the operation is completed 48 * @attempts: number of check iterations 49 * @delay: delay in usecs between iterations 50 * @valp: where to store the value of the register at completion time 51 * 52 * Wait until an operation is completed by checking a bit in a register 53 * up to @attempts times. If @valp is not NULL the value of the register 54 * at the time it indicated completion is stored there. Returns 0 if the 55 * operation completes and -EAGAIN otherwise. 56 */ 57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 58 int polarity, int attempts, int delay, u32 *valp) 59 { 60 while (1) { 61 u32 val = t4_read_reg(adapter, reg); 62 63 if (!!(val & mask) == polarity) { 64 if (valp) 65 *valp = val; 66 return 0; 67 } 68 if (--attempts == 0) 69 return -EAGAIN; 70 if (delay) 71 udelay(delay); 72 } 73 } 74 75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 76 int polarity, int attempts, int delay) 77 { 78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 79 delay, NULL); 80 } 81 82 /** 83 * t4_set_reg_field - set a register field to a value 84 * @adapter: the adapter to program 85 * @addr: the register address 86 * @mask: specifies the portion of the register to modify 87 * @val: the new value for the register field 88 * 89 * Sets a register field specified by the supplied mask to the 90 * given value. 91 */ 92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 93 u32 val) 94 { 95 u32 v = t4_read_reg(adapter, addr) & ~mask; 96 97 t4_write_reg(adapter, addr, v | val); 98 (void) t4_read_reg(adapter, addr); /* flush */ 99 } 100 101 /** 102 * t4_read_indirect - read indirectly addressed registers 103 * @adap: the adapter 104 * @addr_reg: register holding the indirect address 105 * @data_reg: register holding the value of the indirect register 106 * @vals: where the read register values are stored 107 * @nregs: how many indirect registers to read 108 * @start_idx: index of first indirect register to read 109 * 110 * Reads registers that are accessed indirectly through an address/data 111 * register pair. 112 */ 113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 114 unsigned int data_reg, u32 *vals, 115 unsigned int nregs, unsigned int start_idx) 116 { 117 while (nregs--) { 118 t4_write_reg(adap, addr_reg, start_idx); 119 *vals++ = t4_read_reg(adap, data_reg); 120 start_idx++; 121 } 122 } 123 124 /** 125 * t4_write_indirect - write indirectly addressed registers 126 * @adap: the adapter 127 * @addr_reg: register holding the indirect addresses 128 * @data_reg: register holding the value for the indirect registers 129 * @vals: values to write 130 * @nregs: how many indirect registers to write 131 * @start_idx: address of first indirect register to write 132 * 133 * Writes a sequential block of registers that are accessed indirectly 134 * through an address/data register pair. 135 */ 136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 137 unsigned int data_reg, const u32 *vals, 138 unsigned int nregs, unsigned int start_idx) 139 { 140 while (nregs--) { 141 t4_write_reg(adap, addr_reg, start_idx++); 142 t4_write_reg(adap, data_reg, *vals++); 143 } 144 } 145 146 /* 147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor 148 * mechanism. This guarantees that we get the real value even if we're 149 * operating within a Virtual Machine and the Hypervisor is trapping our 150 * Configuration Space accesses. 151 */ 152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val) 153 { 154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg); 155 156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 157 req |= ENABLE_F; 158 else 159 req |= T6_ENABLE_F; 160 161 if (is_t4(adap->params.chip)) 162 req |= LOCALCFG_F; 163 164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req); 165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A); 166 167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a 168 * Configuration Space read. (None of the other fields matter when 169 * ENABLE is 0 so a simple register write is easier than a 170 * read-modify-write via t4_set_reg_field().) 171 */ 172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0); 173 } 174 175 /* 176 * t4_report_fw_error - report firmware error 177 * @adap: the adapter 178 * 179 * The adapter firmware can indicate error conditions to the host. 180 * If the firmware has indicated an error, print out the reason for 181 * the firmware error. 182 */ 183 static void t4_report_fw_error(struct adapter *adap) 184 { 185 static const char *const reason[] = { 186 "Crash", /* PCIE_FW_EVAL_CRASH */ 187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */ 188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */ 189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */ 190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ 191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ 192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ 193 "Reserved", /* reserved */ 194 }; 195 u32 pcie_fw; 196 197 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 198 if (pcie_fw & PCIE_FW_ERR_F) { 199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n", 200 reason[PCIE_FW_EVAL_G(pcie_fw)]); 201 adap->flags &= ~CXGB4_FW_OK; 202 } 203 } 204 205 /* 206 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 207 */ 208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 209 u32 mbox_addr) 210 { 211 for ( ; nflit; nflit--, mbox_addr += 8) 212 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 213 } 214 215 /* 216 * Handle a FW assertion reported in a mailbox. 217 */ 218 static void fw_asrt(struct adapter *adap, u32 mbox_addr) 219 { 220 struct fw_debug_cmd asrt; 221 222 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); 223 dev_alert(adap->pdev_dev, 224 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 225 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line), 226 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y)); 227 } 228 229 /** 230 * t4_record_mbox - record a Firmware Mailbox Command/Reply in the log 231 * @adapter: the adapter 232 * @cmd: the Firmware Mailbox Command or Reply 233 * @size: command length in bytes 234 * @access: the time (ms) needed to access the Firmware Mailbox 235 * @execute: the time (ms) the command spent being executed 236 */ 237 static void t4_record_mbox(struct adapter *adapter, 238 const __be64 *cmd, unsigned int size, 239 int access, int execute) 240 { 241 struct mbox_cmd_log *log = adapter->mbox_log; 242 struct mbox_cmd *entry; 243 int i; 244 245 entry = mbox_cmd_log_entry(log, log->cursor++); 246 if (log->cursor == log->size) 247 log->cursor = 0; 248 249 for (i = 0; i < size / 8; i++) 250 entry->cmd[i] = be64_to_cpu(cmd[i]); 251 while (i < MBOX_LEN / 8) 252 entry->cmd[i++] = 0; 253 entry->timestamp = jiffies; 254 entry->seqno = log->seqno++; 255 entry->access = access; 256 entry->execute = execute; 257 } 258 259 /** 260 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox 261 * @adap: the adapter 262 * @mbox: index of the mailbox to use 263 * @cmd: the command to write 264 * @size: command length in bytes 265 * @rpl: where to optionally store the reply 266 * @sleep_ok: if true we may sleep while awaiting command completion 267 * @timeout: time to wait for command to finish before timing out 268 * 269 * Sends the given command to FW through the selected mailbox and waits 270 * for the FW to execute the command. If @rpl is not %NULL it is used to 271 * store the FW's reply to the command. The command and its optional 272 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms 273 * to respond. @sleep_ok determines whether we may sleep while awaiting 274 * the response. If sleeping is allowed we use progressive backoff 275 * otherwise we spin. 276 * 277 * The return value is 0 on success or a negative errno on failure. A 278 * failure can happen either because we are not able to execute the 279 * command or FW executes it but signals an error. In the latter case 280 * the return value is the error code indicated by FW (negated). 281 */ 282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, 283 int size, void *rpl, bool sleep_ok, int timeout) 284 { 285 static const int delay[] = { 286 1, 1, 3, 5, 10, 10, 20, 50, 100, 200 287 }; 288 289 struct mbox_list entry; 290 u16 access = 0; 291 u16 execute = 0; 292 u32 v; 293 u64 res; 294 int i, ms, delay_idx, ret; 295 const __be64 *p = cmd; 296 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); 297 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A); 298 __be64 cmd_rpl[MBOX_LEN / 8]; 299 u32 pcie_fw; 300 301 if ((size & 15) || size > MBOX_LEN) 302 return -EINVAL; 303 304 /* 305 * If the device is off-line, as in EEH, commands will time out. 306 * Fail them early so we don't waste time waiting. 307 */ 308 if (adap->pdev->error_state != pci_channel_io_normal) 309 return -EIO; 310 311 /* If we have a negative timeout, that implies that we can't sleep. */ 312 if (timeout < 0) { 313 sleep_ok = false; 314 timeout = -timeout; 315 } 316 317 /* Queue ourselves onto the mailbox access list. When our entry is at 318 * the front of the list, we have rights to access the mailbox. So we 319 * wait [for a while] till we're at the front [or bail out with an 320 * EBUSY] ... 321 */ 322 spin_lock_bh(&adap->mbox_lock); 323 list_add_tail(&entry.list, &adap->mlist.list); 324 spin_unlock_bh(&adap->mbox_lock); 325 326 delay_idx = 0; 327 ms = delay[0]; 328 329 for (i = 0; ; i += ms) { 330 /* If we've waited too long, return a busy indication. This 331 * really ought to be based on our initial position in the 332 * mailbox access list but this is a start. We very rarely 333 * contend on access to the mailbox ... 334 */ 335 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 336 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) { 337 spin_lock_bh(&adap->mbox_lock); 338 list_del(&entry.list); 339 spin_unlock_bh(&adap->mbox_lock); 340 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY; 341 t4_record_mbox(adap, cmd, size, access, ret); 342 return ret; 343 } 344 345 /* If we're at the head, break out and start the mailbox 346 * protocol. 347 */ 348 if (list_first_entry(&adap->mlist.list, struct mbox_list, 349 list) == &entry) 350 break; 351 352 /* Delay for a bit before checking again ... */ 353 if (sleep_ok) { 354 ms = delay[delay_idx]; /* last element may repeat */ 355 if (delay_idx < ARRAY_SIZE(delay) - 1) 356 delay_idx++; 357 msleep(ms); 358 } else { 359 mdelay(ms); 360 } 361 } 362 363 /* Loop trying to get ownership of the mailbox. Return an error 364 * if we can't gain ownership. 365 */ 366 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 367 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 368 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 369 if (v != MBOX_OWNER_DRV) { 370 spin_lock_bh(&adap->mbox_lock); 371 list_del(&entry.list); 372 spin_unlock_bh(&adap->mbox_lock); 373 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT; 374 t4_record_mbox(adap, cmd, size, access, ret); 375 return ret; 376 } 377 378 /* Copy in the new mailbox command and send it on its way ... */ 379 t4_record_mbox(adap, cmd, size, access, 0); 380 for (i = 0; i < size; i += 8) 381 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++)); 382 383 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW)); 384 t4_read_reg(adap, ctl_reg); /* flush write */ 385 386 delay_idx = 0; 387 ms = delay[0]; 388 389 for (i = 0; 390 !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) && 391 i < timeout; 392 i += ms) { 393 if (sleep_ok) { 394 ms = delay[delay_idx]; /* last element may repeat */ 395 if (delay_idx < ARRAY_SIZE(delay) - 1) 396 delay_idx++; 397 msleep(ms); 398 } else 399 mdelay(ms); 400 401 v = t4_read_reg(adap, ctl_reg); 402 if (MBOWNER_G(v) == MBOX_OWNER_DRV) { 403 if (!(v & MBMSGVALID_F)) { 404 t4_write_reg(adap, ctl_reg, 0); 405 continue; 406 } 407 408 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg); 409 res = be64_to_cpu(cmd_rpl[0]); 410 411 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) { 412 fw_asrt(adap, data_reg); 413 res = FW_CMD_RETVAL_V(EIO); 414 } else if (rpl) { 415 memcpy(rpl, cmd_rpl, size); 416 } 417 418 t4_write_reg(adap, ctl_reg, 0); 419 420 execute = i + ms; 421 t4_record_mbox(adap, cmd_rpl, 422 MBOX_LEN, access, execute); 423 spin_lock_bh(&adap->mbox_lock); 424 list_del(&entry.list); 425 spin_unlock_bh(&adap->mbox_lock); 426 return -FW_CMD_RETVAL_G((int)res); 427 } 428 } 429 430 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT; 431 t4_record_mbox(adap, cmd, size, access, ret); 432 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n", 433 *(const u8 *)cmd, mbox); 434 t4_report_fw_error(adap); 435 spin_lock_bh(&adap->mbox_lock); 436 list_del(&entry.list); 437 spin_unlock_bh(&adap->mbox_lock); 438 t4_fatal_err(adap); 439 return ret; 440 } 441 442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 443 void *rpl, bool sleep_ok) 444 { 445 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok, 446 FW_CMD_MAX_TIMEOUT); 447 } 448 449 static int t4_edc_err_read(struct adapter *adap, int idx) 450 { 451 u32 edc_ecc_err_addr_reg; 452 u32 rdata_reg; 453 454 if (is_t4(adap->params.chip)) { 455 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); 456 return 0; 457 } 458 if (idx != 0 && idx != 1) { 459 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); 460 return 0; 461 } 462 463 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx); 464 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx); 465 466 CH_WARN(adap, 467 "edc%d err addr 0x%x: 0x%x.\n", 468 idx, edc_ecc_err_addr_reg, 469 t4_read_reg(adap, edc_ecc_err_addr_reg)); 470 CH_WARN(adap, 471 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", 472 rdata_reg, 473 (unsigned long long)t4_read_reg64(adap, rdata_reg), 474 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8), 475 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16), 476 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24), 477 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32), 478 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40), 479 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48), 480 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56), 481 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64)); 482 483 return 0; 484 } 485 486 /** 487 * t4_memory_rw_init - Get memory window relative offset, base, and size. 488 * @adap: the adapter 489 * @win: PCI-E Memory Window to use 490 * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC 491 * @mem_off: memory relative offset with respect to @mtype. 492 * @mem_base: configured memory base address. 493 * @mem_aperture: configured memory window aperture. 494 * 495 * Get the configured memory window's relative offset, base, and size. 496 */ 497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off, 498 u32 *mem_base, u32 *mem_aperture) 499 { 500 u32 edc_size, mc_size, mem_reg; 501 502 /* Offset into the region of memory which is being accessed 503 * MEM_EDC0 = 0 504 * MEM_EDC1 = 1 505 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller 506 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5) 507 * MEM_HMA = 4 508 */ 509 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A)); 510 if (mtype == MEM_HMA) { 511 *mem_off = 2 * (edc_size * 1024 * 1024); 512 } else if (mtype != MEM_MC1) { 513 *mem_off = (mtype * (edc_size * 1024 * 1024)); 514 } else { 515 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap, 516 MA_EXT_MEMORY0_BAR_A)); 517 *mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; 518 } 519 520 /* Each PCI-E Memory Window is programmed with a window size -- or 521 * "aperture" -- which controls the granularity of its mapping onto 522 * adapter memory. We need to grab that aperture in order to know 523 * how to use the specified window. The window is also programmed 524 * with the base address of the Memory Window in BAR0's address 525 * space. For T4 this is an absolute PCI-E Bus Address. For T5 526 * the address is relative to BAR0. 527 */ 528 mem_reg = t4_read_reg(adap, 529 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 530 win)); 531 /* a dead adapter will return 0xffffffff for PIO reads */ 532 if (mem_reg == 0xffffffff) 533 return -ENXIO; 534 535 *mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X); 536 *mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X; 537 if (is_t4(adap->params.chip)) 538 *mem_base -= adap->t4_bar0; 539 540 return 0; 541 } 542 543 /** 544 * t4_memory_update_win - Move memory window to specified address. 545 * @adap: the adapter 546 * @win: PCI-E Memory Window to use 547 * @addr: location to move. 548 * 549 * Move memory window to specified address. 550 */ 551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr) 552 { 553 t4_write_reg(adap, 554 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win), 555 addr); 556 /* Read it back to ensure that changes propagate before we 557 * attempt to use the new value. 558 */ 559 t4_read_reg(adap, 560 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); 561 } 562 563 /** 564 * t4_memory_rw_residual - Read/Write residual data. 565 * @adap: the adapter 566 * @off: relative offset within residual to start read/write. 567 * @addr: address within indicated memory type. 568 * @buf: host memory buffer 569 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 570 * 571 * Read/Write residual data less than 32-bits. 572 */ 573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf, 574 int dir) 575 { 576 union { 577 u32 word; 578 char byte[4]; 579 } last; 580 unsigned char *bp; 581 int i; 582 583 if (dir == T4_MEMORY_READ) { 584 last.word = le32_to_cpu((__force __le32) 585 t4_read_reg(adap, addr)); 586 for (bp = (unsigned char *)buf, i = off; i < 4; i++) 587 bp[i] = last.byte[i]; 588 } else { 589 last.word = *buf; 590 for (i = off; i < 4; i++) 591 last.byte[i] = 0; 592 t4_write_reg(adap, addr, 593 (__force u32)cpu_to_le32(last.word)); 594 } 595 } 596 597 /** 598 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window 599 * @adap: the adapter 600 * @win: PCI-E Memory Window to use 601 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 602 * @addr: address within indicated memory type 603 * @len: amount of memory to transfer 604 * @hbuf: host memory buffer 605 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 606 * 607 * Reads/writes an [almost] arbitrary memory region in the firmware: the 608 * firmware memory address and host buffer must be aligned on 32-bit 609 * boundaries; the length may be arbitrary. The memory is transferred as 610 * a raw byte sequence from/to the firmware's memory. If this memory 611 * contains data structures which contain multi-byte integers, it's the 612 * caller's responsibility to perform appropriate byte order conversions. 613 */ 614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr, 615 u32 len, void *hbuf, int dir) 616 { 617 u32 pos, offset, resid, memoffset; 618 u32 win_pf, mem_aperture, mem_base; 619 u32 *buf; 620 int ret; 621 622 /* Argument sanity checks ... 623 */ 624 if (addr & 0x3 || (uintptr_t)hbuf & 0x3) 625 return -EINVAL; 626 buf = (u32 *)hbuf; 627 628 /* It's convenient to be able to handle lengths which aren't a 629 * multiple of 32-bits because we often end up transferring files to 630 * the firmware. So we'll handle that by normalizing the length here 631 * and then handling any residual transfer at the end. 632 */ 633 resid = len & 0x3; 634 len -= resid; 635 636 ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base, 637 &mem_aperture); 638 if (ret) 639 return ret; 640 641 /* Determine the PCIE_MEM_ACCESS_OFFSET */ 642 addr = addr + memoffset; 643 644 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf); 645 646 /* Calculate our initial PCI-E Memory Window Position and Offset into 647 * that Window. 648 */ 649 pos = addr & ~(mem_aperture - 1); 650 offset = addr - pos; 651 652 /* Set up initial PCI-E Memory Window to cover the start of our 653 * transfer. 654 */ 655 t4_memory_update_win(adap, win, pos | win_pf); 656 657 /* Transfer data to/from the adapter as long as there's an integral 658 * number of 32-bit transfers to complete. 659 * 660 * A note on Endianness issues: 661 * 662 * The "register" reads and writes below from/to the PCI-E Memory 663 * Window invoke the standard adapter Big-Endian to PCI-E Link 664 * Little-Endian "swizzel." As a result, if we have the following 665 * data in adapter memory: 666 * 667 * Memory: ... | b0 | b1 | b2 | b3 | ... 668 * Address: i+0 i+1 i+2 i+3 669 * 670 * Then a read of the adapter memory via the PCI-E Memory Window 671 * will yield: 672 * 673 * x = readl(i) 674 * 31 0 675 * [ b3 | b2 | b1 | b0 ] 676 * 677 * If this value is stored into local memory on a Little-Endian system 678 * it will show up correctly in local memory as: 679 * 680 * ( ..., b0, b1, b2, b3, ... ) 681 * 682 * But on a Big-Endian system, the store will show up in memory 683 * incorrectly swizzled as: 684 * 685 * ( ..., b3, b2, b1, b0, ... ) 686 * 687 * So we need to account for this in the reads and writes to the 688 * PCI-E Memory Window below by undoing the register read/write 689 * swizzels. 690 */ 691 while (len > 0) { 692 if (dir == T4_MEMORY_READ) 693 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap, 694 mem_base + offset)); 695 else 696 t4_write_reg(adap, mem_base + offset, 697 (__force u32)cpu_to_le32(*buf++)); 698 offset += sizeof(__be32); 699 len -= sizeof(__be32); 700 701 /* If we've reached the end of our current window aperture, 702 * move the PCI-E Memory Window on to the next. Note that 703 * doing this here after "len" may be 0 allows us to set up 704 * the PCI-E Memory Window for a possible final residual 705 * transfer below ... 706 */ 707 if (offset == mem_aperture) { 708 pos += mem_aperture; 709 offset = 0; 710 t4_memory_update_win(adap, win, pos | win_pf); 711 } 712 } 713 714 /* If the original transfer had a length which wasn't a multiple of 715 * 32-bits, now's where we need to finish off the transfer of the 716 * residual amount. The PCI-E Memory Window has already been moved 717 * above (if necessary) to cover this final transfer. 718 */ 719 if (resid) 720 t4_memory_rw_residual(adap, resid, mem_base + offset, 721 (u8 *)buf, dir); 722 723 return 0; 724 } 725 726 /* Return the specified PCI-E Configuration Space register from our Physical 727 * Function. We try first via a Firmware LDST Command since we prefer to let 728 * the firmware own all of these registers, but if that fails we go for it 729 * directly ourselves. 730 */ 731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg) 732 { 733 u32 val, ldst_addrspace; 734 735 /* If fw_attach != 0, construct and send the Firmware LDST Command to 736 * retrieve the specified PCI-E Configuration Space register. 737 */ 738 struct fw_ldst_cmd ldst_cmd; 739 int ret; 740 741 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 742 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE); 743 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 744 FW_CMD_REQUEST_F | 745 FW_CMD_READ_F | 746 ldst_addrspace); 747 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 748 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1); 749 ldst_cmd.u.pcie.ctrl_to_fn = 750 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf)); 751 ldst_cmd.u.pcie.r = reg; 752 753 /* If the LDST Command succeeds, return the result, otherwise 754 * fall through to reading it directly ourselves ... 755 */ 756 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 757 &ldst_cmd); 758 if (ret == 0) 759 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]); 760 else 761 /* Read the desired Configuration Space register via the PCI-E 762 * Backdoor mechanism. 763 */ 764 t4_hw_pci_read_cfg4(adap, reg, &val); 765 return val; 766 } 767 768 /* Get the window based on base passed to it. 769 * Window aperture is currently unhandled, but there is no use case for it 770 * right now 771 */ 772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask, 773 u32 memwin_base) 774 { 775 u32 ret; 776 777 if (is_t4(adap->params.chip)) { 778 u32 bar0; 779 780 /* Truncation intentional: we only read the bottom 32-bits of 781 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor 782 * mechanism to read BAR0 instead of using 783 * pci_resource_start() because we could be operating from 784 * within a Virtual Machine which is trapping our accesses to 785 * our Configuration Space and we need to set up the PCI-E 786 * Memory Window decoders with the actual addresses which will 787 * be coming across the PCI-E link. 788 */ 789 bar0 = t4_read_pcie_cfg4(adap, pci_base); 790 bar0 &= pci_mask; 791 adap->t4_bar0 = bar0; 792 793 ret = bar0 + memwin_base; 794 } else { 795 /* For T5, only relative offset inside the PCIe BAR is passed */ 796 ret = memwin_base; 797 } 798 return ret; 799 } 800 801 /* Get the default utility window (win0) used by everyone */ 802 u32 t4_get_util_window(struct adapter *adap) 803 { 804 return t4_get_window(adap, PCI_BASE_ADDRESS_0, 805 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE); 806 } 807 808 /* Set up memory window for accessing adapter memory ranges. (Read 809 * back MA register to ensure that changes propagate before we attempt 810 * to use the new values.) 811 */ 812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window) 813 { 814 t4_write_reg(adap, 815 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window), 816 memwin_base | BIR_V(0) | 817 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X)); 818 t4_read_reg(adap, 819 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window)); 820 } 821 822 /** 823 * t4_get_regs_len - return the size of the chips register set 824 * @adapter: the adapter 825 * 826 * Returns the size of the chip's BAR0 register space. 827 */ 828 unsigned int t4_get_regs_len(struct adapter *adapter) 829 { 830 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 831 832 switch (chip_version) { 833 case CHELSIO_T4: 834 return T4_REGMAP_SIZE; 835 836 case CHELSIO_T5: 837 case CHELSIO_T6: 838 return T5_REGMAP_SIZE; 839 } 840 841 dev_err(adapter->pdev_dev, 842 "Unsupported chip version %d\n", chip_version); 843 return 0; 844 } 845 846 /** 847 * t4_get_regs - read chip registers into provided buffer 848 * @adap: the adapter 849 * @buf: register buffer 850 * @buf_size: size (in bytes) of register buffer 851 * 852 * If the provided register buffer isn't large enough for the chip's 853 * full register range, the register dump will be truncated to the 854 * register buffer's size. 855 */ 856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size) 857 { 858 static const unsigned int t4_reg_ranges[] = { 859 0x1008, 0x1108, 860 0x1180, 0x1184, 861 0x1190, 0x1194, 862 0x11a0, 0x11a4, 863 0x11b0, 0x11b4, 864 0x11fc, 0x123c, 865 0x1300, 0x173c, 866 0x1800, 0x18fc, 867 0x3000, 0x30d8, 868 0x30e0, 0x30e4, 869 0x30ec, 0x5910, 870 0x5920, 0x5924, 871 0x5960, 0x5960, 872 0x5968, 0x5968, 873 0x5970, 0x5970, 874 0x5978, 0x5978, 875 0x5980, 0x5980, 876 0x5988, 0x5988, 877 0x5990, 0x5990, 878 0x5998, 0x5998, 879 0x59a0, 0x59d4, 880 0x5a00, 0x5ae0, 881 0x5ae8, 0x5ae8, 882 0x5af0, 0x5af0, 883 0x5af8, 0x5af8, 884 0x6000, 0x6098, 885 0x6100, 0x6150, 886 0x6200, 0x6208, 887 0x6240, 0x6248, 888 0x6280, 0x62b0, 889 0x62c0, 0x6338, 890 0x6370, 0x638c, 891 0x6400, 0x643c, 892 0x6500, 0x6524, 893 0x6a00, 0x6a04, 894 0x6a14, 0x6a38, 895 0x6a60, 0x6a70, 896 0x6a78, 0x6a78, 897 0x6b00, 0x6b0c, 898 0x6b1c, 0x6b84, 899 0x6bf0, 0x6bf8, 900 0x6c00, 0x6c0c, 901 0x6c1c, 0x6c84, 902 0x6cf0, 0x6cf8, 903 0x6d00, 0x6d0c, 904 0x6d1c, 0x6d84, 905 0x6df0, 0x6df8, 906 0x6e00, 0x6e0c, 907 0x6e1c, 0x6e84, 908 0x6ef0, 0x6ef8, 909 0x6f00, 0x6f0c, 910 0x6f1c, 0x6f84, 911 0x6ff0, 0x6ff8, 912 0x7000, 0x700c, 913 0x701c, 0x7084, 914 0x70f0, 0x70f8, 915 0x7100, 0x710c, 916 0x711c, 0x7184, 917 0x71f0, 0x71f8, 918 0x7200, 0x720c, 919 0x721c, 0x7284, 920 0x72f0, 0x72f8, 921 0x7300, 0x730c, 922 0x731c, 0x7384, 923 0x73f0, 0x73f8, 924 0x7400, 0x7450, 925 0x7500, 0x7530, 926 0x7600, 0x760c, 927 0x7614, 0x761c, 928 0x7680, 0x76cc, 929 0x7700, 0x7798, 930 0x77c0, 0x77fc, 931 0x7900, 0x79fc, 932 0x7b00, 0x7b58, 933 0x7b60, 0x7b84, 934 0x7b8c, 0x7c38, 935 0x7d00, 0x7d38, 936 0x7d40, 0x7d80, 937 0x7d8c, 0x7ddc, 938 0x7de4, 0x7e04, 939 0x7e10, 0x7e1c, 940 0x7e24, 0x7e38, 941 0x7e40, 0x7e44, 942 0x7e4c, 0x7e78, 943 0x7e80, 0x7ea4, 944 0x7eac, 0x7edc, 945 0x7ee8, 0x7efc, 946 0x8dc0, 0x8e04, 947 0x8e10, 0x8e1c, 948 0x8e30, 0x8e78, 949 0x8ea0, 0x8eb8, 950 0x8ec0, 0x8f6c, 951 0x8fc0, 0x9008, 952 0x9010, 0x9058, 953 0x9060, 0x9060, 954 0x9068, 0x9074, 955 0x90fc, 0x90fc, 956 0x9400, 0x9408, 957 0x9410, 0x9458, 958 0x9600, 0x9600, 959 0x9608, 0x9638, 960 0x9640, 0x96bc, 961 0x9800, 0x9808, 962 0x9820, 0x983c, 963 0x9850, 0x9864, 964 0x9c00, 0x9c6c, 965 0x9c80, 0x9cec, 966 0x9d00, 0x9d6c, 967 0x9d80, 0x9dec, 968 0x9e00, 0x9e6c, 969 0x9e80, 0x9eec, 970 0x9f00, 0x9f6c, 971 0x9f80, 0x9fec, 972 0xd004, 0xd004, 973 0xd010, 0xd03c, 974 0xdfc0, 0xdfe0, 975 0xe000, 0xea7c, 976 0xf000, 0x11110, 977 0x11118, 0x11190, 978 0x19040, 0x1906c, 979 0x19078, 0x19080, 980 0x1908c, 0x190e4, 981 0x190f0, 0x190f8, 982 0x19100, 0x19110, 983 0x19120, 0x19124, 984 0x19150, 0x19194, 985 0x1919c, 0x191b0, 986 0x191d0, 0x191e8, 987 0x19238, 0x1924c, 988 0x193f8, 0x1943c, 989 0x1944c, 0x19474, 990 0x19490, 0x194e0, 991 0x194f0, 0x194f8, 992 0x19800, 0x19c08, 993 0x19c10, 0x19c90, 994 0x19ca0, 0x19ce4, 995 0x19cf0, 0x19d40, 996 0x19d50, 0x19d94, 997 0x19da0, 0x19de8, 998 0x19df0, 0x19e40, 999 0x19e50, 0x19e90, 1000 0x19ea0, 0x19f4c, 1001 0x1a000, 0x1a004, 1002 0x1a010, 0x1a06c, 1003 0x1a0b0, 0x1a0e4, 1004 0x1a0ec, 0x1a0f4, 1005 0x1a100, 0x1a108, 1006 0x1a114, 0x1a120, 1007 0x1a128, 0x1a130, 1008 0x1a138, 0x1a138, 1009 0x1a190, 0x1a1c4, 1010 0x1a1fc, 0x1a1fc, 1011 0x1e040, 0x1e04c, 1012 0x1e284, 0x1e28c, 1013 0x1e2c0, 0x1e2c0, 1014 0x1e2e0, 0x1e2e0, 1015 0x1e300, 0x1e384, 1016 0x1e3c0, 0x1e3c8, 1017 0x1e440, 0x1e44c, 1018 0x1e684, 0x1e68c, 1019 0x1e6c0, 0x1e6c0, 1020 0x1e6e0, 0x1e6e0, 1021 0x1e700, 0x1e784, 1022 0x1e7c0, 0x1e7c8, 1023 0x1e840, 0x1e84c, 1024 0x1ea84, 0x1ea8c, 1025 0x1eac0, 0x1eac0, 1026 0x1eae0, 0x1eae0, 1027 0x1eb00, 0x1eb84, 1028 0x1ebc0, 0x1ebc8, 1029 0x1ec40, 0x1ec4c, 1030 0x1ee84, 0x1ee8c, 1031 0x1eec0, 0x1eec0, 1032 0x1eee0, 0x1eee0, 1033 0x1ef00, 0x1ef84, 1034 0x1efc0, 0x1efc8, 1035 0x1f040, 0x1f04c, 1036 0x1f284, 0x1f28c, 1037 0x1f2c0, 0x1f2c0, 1038 0x1f2e0, 0x1f2e0, 1039 0x1f300, 0x1f384, 1040 0x1f3c0, 0x1f3c8, 1041 0x1f440, 0x1f44c, 1042 0x1f684, 0x1f68c, 1043 0x1f6c0, 0x1f6c0, 1044 0x1f6e0, 0x1f6e0, 1045 0x1f700, 0x1f784, 1046 0x1f7c0, 0x1f7c8, 1047 0x1f840, 0x1f84c, 1048 0x1fa84, 0x1fa8c, 1049 0x1fac0, 0x1fac0, 1050 0x1fae0, 0x1fae0, 1051 0x1fb00, 0x1fb84, 1052 0x1fbc0, 0x1fbc8, 1053 0x1fc40, 0x1fc4c, 1054 0x1fe84, 0x1fe8c, 1055 0x1fec0, 0x1fec0, 1056 0x1fee0, 0x1fee0, 1057 0x1ff00, 0x1ff84, 1058 0x1ffc0, 0x1ffc8, 1059 0x20000, 0x2002c, 1060 0x20100, 0x2013c, 1061 0x20190, 0x201a0, 1062 0x201a8, 0x201b8, 1063 0x201c4, 0x201c8, 1064 0x20200, 0x20318, 1065 0x20400, 0x204b4, 1066 0x204c0, 0x20528, 1067 0x20540, 0x20614, 1068 0x21000, 0x21040, 1069 0x2104c, 0x21060, 1070 0x210c0, 0x210ec, 1071 0x21200, 0x21268, 1072 0x21270, 0x21284, 1073 0x212fc, 0x21388, 1074 0x21400, 0x21404, 1075 0x21500, 0x21500, 1076 0x21510, 0x21518, 1077 0x2152c, 0x21530, 1078 0x2153c, 0x2153c, 1079 0x21550, 0x21554, 1080 0x21600, 0x21600, 1081 0x21608, 0x2161c, 1082 0x21624, 0x21628, 1083 0x21630, 0x21634, 1084 0x2163c, 0x2163c, 1085 0x21700, 0x2171c, 1086 0x21780, 0x2178c, 1087 0x21800, 0x21818, 1088 0x21820, 0x21828, 1089 0x21830, 0x21848, 1090 0x21850, 0x21854, 1091 0x21860, 0x21868, 1092 0x21870, 0x21870, 1093 0x21878, 0x21898, 1094 0x218a0, 0x218a8, 1095 0x218b0, 0x218c8, 1096 0x218d0, 0x218d4, 1097 0x218e0, 0x218e8, 1098 0x218f0, 0x218f0, 1099 0x218f8, 0x21a18, 1100 0x21a20, 0x21a28, 1101 0x21a30, 0x21a48, 1102 0x21a50, 0x21a54, 1103 0x21a60, 0x21a68, 1104 0x21a70, 0x21a70, 1105 0x21a78, 0x21a98, 1106 0x21aa0, 0x21aa8, 1107 0x21ab0, 0x21ac8, 1108 0x21ad0, 0x21ad4, 1109 0x21ae0, 0x21ae8, 1110 0x21af0, 0x21af0, 1111 0x21af8, 0x21c18, 1112 0x21c20, 0x21c20, 1113 0x21c28, 0x21c30, 1114 0x21c38, 0x21c38, 1115 0x21c80, 0x21c98, 1116 0x21ca0, 0x21ca8, 1117 0x21cb0, 0x21cc8, 1118 0x21cd0, 0x21cd4, 1119 0x21ce0, 0x21ce8, 1120 0x21cf0, 0x21cf0, 1121 0x21cf8, 0x21d7c, 1122 0x21e00, 0x21e04, 1123 0x22000, 0x2202c, 1124 0x22100, 0x2213c, 1125 0x22190, 0x221a0, 1126 0x221a8, 0x221b8, 1127 0x221c4, 0x221c8, 1128 0x22200, 0x22318, 1129 0x22400, 0x224b4, 1130 0x224c0, 0x22528, 1131 0x22540, 0x22614, 1132 0x23000, 0x23040, 1133 0x2304c, 0x23060, 1134 0x230c0, 0x230ec, 1135 0x23200, 0x23268, 1136 0x23270, 0x23284, 1137 0x232fc, 0x23388, 1138 0x23400, 0x23404, 1139 0x23500, 0x23500, 1140 0x23510, 0x23518, 1141 0x2352c, 0x23530, 1142 0x2353c, 0x2353c, 1143 0x23550, 0x23554, 1144 0x23600, 0x23600, 1145 0x23608, 0x2361c, 1146 0x23624, 0x23628, 1147 0x23630, 0x23634, 1148 0x2363c, 0x2363c, 1149 0x23700, 0x2371c, 1150 0x23780, 0x2378c, 1151 0x23800, 0x23818, 1152 0x23820, 0x23828, 1153 0x23830, 0x23848, 1154 0x23850, 0x23854, 1155 0x23860, 0x23868, 1156 0x23870, 0x23870, 1157 0x23878, 0x23898, 1158 0x238a0, 0x238a8, 1159 0x238b0, 0x238c8, 1160 0x238d0, 0x238d4, 1161 0x238e0, 0x238e8, 1162 0x238f0, 0x238f0, 1163 0x238f8, 0x23a18, 1164 0x23a20, 0x23a28, 1165 0x23a30, 0x23a48, 1166 0x23a50, 0x23a54, 1167 0x23a60, 0x23a68, 1168 0x23a70, 0x23a70, 1169 0x23a78, 0x23a98, 1170 0x23aa0, 0x23aa8, 1171 0x23ab0, 0x23ac8, 1172 0x23ad0, 0x23ad4, 1173 0x23ae0, 0x23ae8, 1174 0x23af0, 0x23af0, 1175 0x23af8, 0x23c18, 1176 0x23c20, 0x23c20, 1177 0x23c28, 0x23c30, 1178 0x23c38, 0x23c38, 1179 0x23c80, 0x23c98, 1180 0x23ca0, 0x23ca8, 1181 0x23cb0, 0x23cc8, 1182 0x23cd0, 0x23cd4, 1183 0x23ce0, 0x23ce8, 1184 0x23cf0, 0x23cf0, 1185 0x23cf8, 0x23d7c, 1186 0x23e00, 0x23e04, 1187 0x24000, 0x2402c, 1188 0x24100, 0x2413c, 1189 0x24190, 0x241a0, 1190 0x241a8, 0x241b8, 1191 0x241c4, 0x241c8, 1192 0x24200, 0x24318, 1193 0x24400, 0x244b4, 1194 0x244c0, 0x24528, 1195 0x24540, 0x24614, 1196 0x25000, 0x25040, 1197 0x2504c, 0x25060, 1198 0x250c0, 0x250ec, 1199 0x25200, 0x25268, 1200 0x25270, 0x25284, 1201 0x252fc, 0x25388, 1202 0x25400, 0x25404, 1203 0x25500, 0x25500, 1204 0x25510, 0x25518, 1205 0x2552c, 0x25530, 1206 0x2553c, 0x2553c, 1207 0x25550, 0x25554, 1208 0x25600, 0x25600, 1209 0x25608, 0x2561c, 1210 0x25624, 0x25628, 1211 0x25630, 0x25634, 1212 0x2563c, 0x2563c, 1213 0x25700, 0x2571c, 1214 0x25780, 0x2578c, 1215 0x25800, 0x25818, 1216 0x25820, 0x25828, 1217 0x25830, 0x25848, 1218 0x25850, 0x25854, 1219 0x25860, 0x25868, 1220 0x25870, 0x25870, 1221 0x25878, 0x25898, 1222 0x258a0, 0x258a8, 1223 0x258b0, 0x258c8, 1224 0x258d0, 0x258d4, 1225 0x258e0, 0x258e8, 1226 0x258f0, 0x258f0, 1227 0x258f8, 0x25a18, 1228 0x25a20, 0x25a28, 1229 0x25a30, 0x25a48, 1230 0x25a50, 0x25a54, 1231 0x25a60, 0x25a68, 1232 0x25a70, 0x25a70, 1233 0x25a78, 0x25a98, 1234 0x25aa0, 0x25aa8, 1235 0x25ab0, 0x25ac8, 1236 0x25ad0, 0x25ad4, 1237 0x25ae0, 0x25ae8, 1238 0x25af0, 0x25af0, 1239 0x25af8, 0x25c18, 1240 0x25c20, 0x25c20, 1241 0x25c28, 0x25c30, 1242 0x25c38, 0x25c38, 1243 0x25c80, 0x25c98, 1244 0x25ca0, 0x25ca8, 1245 0x25cb0, 0x25cc8, 1246 0x25cd0, 0x25cd4, 1247 0x25ce0, 0x25ce8, 1248 0x25cf0, 0x25cf0, 1249 0x25cf8, 0x25d7c, 1250 0x25e00, 0x25e04, 1251 0x26000, 0x2602c, 1252 0x26100, 0x2613c, 1253 0x26190, 0x261a0, 1254 0x261a8, 0x261b8, 1255 0x261c4, 0x261c8, 1256 0x26200, 0x26318, 1257 0x26400, 0x264b4, 1258 0x264c0, 0x26528, 1259 0x26540, 0x26614, 1260 0x27000, 0x27040, 1261 0x2704c, 0x27060, 1262 0x270c0, 0x270ec, 1263 0x27200, 0x27268, 1264 0x27270, 0x27284, 1265 0x272fc, 0x27388, 1266 0x27400, 0x27404, 1267 0x27500, 0x27500, 1268 0x27510, 0x27518, 1269 0x2752c, 0x27530, 1270 0x2753c, 0x2753c, 1271 0x27550, 0x27554, 1272 0x27600, 0x27600, 1273 0x27608, 0x2761c, 1274 0x27624, 0x27628, 1275 0x27630, 0x27634, 1276 0x2763c, 0x2763c, 1277 0x27700, 0x2771c, 1278 0x27780, 0x2778c, 1279 0x27800, 0x27818, 1280 0x27820, 0x27828, 1281 0x27830, 0x27848, 1282 0x27850, 0x27854, 1283 0x27860, 0x27868, 1284 0x27870, 0x27870, 1285 0x27878, 0x27898, 1286 0x278a0, 0x278a8, 1287 0x278b0, 0x278c8, 1288 0x278d0, 0x278d4, 1289 0x278e0, 0x278e8, 1290 0x278f0, 0x278f0, 1291 0x278f8, 0x27a18, 1292 0x27a20, 0x27a28, 1293 0x27a30, 0x27a48, 1294 0x27a50, 0x27a54, 1295 0x27a60, 0x27a68, 1296 0x27a70, 0x27a70, 1297 0x27a78, 0x27a98, 1298 0x27aa0, 0x27aa8, 1299 0x27ab0, 0x27ac8, 1300 0x27ad0, 0x27ad4, 1301 0x27ae0, 0x27ae8, 1302 0x27af0, 0x27af0, 1303 0x27af8, 0x27c18, 1304 0x27c20, 0x27c20, 1305 0x27c28, 0x27c30, 1306 0x27c38, 0x27c38, 1307 0x27c80, 0x27c98, 1308 0x27ca0, 0x27ca8, 1309 0x27cb0, 0x27cc8, 1310 0x27cd0, 0x27cd4, 1311 0x27ce0, 0x27ce8, 1312 0x27cf0, 0x27cf0, 1313 0x27cf8, 0x27d7c, 1314 0x27e00, 0x27e04, 1315 }; 1316 1317 static const unsigned int t5_reg_ranges[] = { 1318 0x1008, 0x10c0, 1319 0x10cc, 0x10f8, 1320 0x1100, 0x1100, 1321 0x110c, 0x1148, 1322 0x1180, 0x1184, 1323 0x1190, 0x1194, 1324 0x11a0, 0x11a4, 1325 0x11b0, 0x11b4, 1326 0x11fc, 0x123c, 1327 0x1280, 0x173c, 1328 0x1800, 0x18fc, 1329 0x3000, 0x3028, 1330 0x3060, 0x30b0, 1331 0x30b8, 0x30d8, 1332 0x30e0, 0x30fc, 1333 0x3140, 0x357c, 1334 0x35a8, 0x35cc, 1335 0x35ec, 0x35ec, 1336 0x3600, 0x5624, 1337 0x56cc, 0x56ec, 1338 0x56f4, 0x5720, 1339 0x5728, 0x575c, 1340 0x580c, 0x5814, 1341 0x5890, 0x589c, 1342 0x58a4, 0x58ac, 1343 0x58b8, 0x58bc, 1344 0x5940, 0x59c8, 1345 0x59d0, 0x59dc, 1346 0x59fc, 0x5a18, 1347 0x5a60, 0x5a70, 1348 0x5a80, 0x5a9c, 1349 0x5b94, 0x5bfc, 1350 0x6000, 0x6020, 1351 0x6028, 0x6040, 1352 0x6058, 0x609c, 1353 0x60a8, 0x614c, 1354 0x7700, 0x7798, 1355 0x77c0, 0x78fc, 1356 0x7b00, 0x7b58, 1357 0x7b60, 0x7b84, 1358 0x7b8c, 0x7c54, 1359 0x7d00, 0x7d38, 1360 0x7d40, 0x7d80, 1361 0x7d8c, 0x7ddc, 1362 0x7de4, 0x7e04, 1363 0x7e10, 0x7e1c, 1364 0x7e24, 0x7e38, 1365 0x7e40, 0x7e44, 1366 0x7e4c, 0x7e78, 1367 0x7e80, 0x7edc, 1368 0x7ee8, 0x7efc, 1369 0x8dc0, 0x8de0, 1370 0x8df8, 0x8e04, 1371 0x8e10, 0x8e84, 1372 0x8ea0, 0x8f84, 1373 0x8fc0, 0x9058, 1374 0x9060, 0x9060, 1375 0x9068, 0x90f8, 1376 0x9400, 0x9408, 1377 0x9410, 0x9470, 1378 0x9600, 0x9600, 1379 0x9608, 0x9638, 1380 0x9640, 0x96f4, 1381 0x9800, 0x9808, 1382 0x9810, 0x9864, 1383 0x9c00, 0x9c6c, 1384 0x9c80, 0x9cec, 1385 0x9d00, 0x9d6c, 1386 0x9d80, 0x9dec, 1387 0x9e00, 0x9e6c, 1388 0x9e80, 0x9eec, 1389 0x9f00, 0x9f6c, 1390 0x9f80, 0xa020, 1391 0xd000, 0xd004, 1392 0xd010, 0xd03c, 1393 0xdfc0, 0xdfe0, 1394 0xe000, 0x1106c, 1395 0x11074, 0x11088, 1396 0x1109c, 0x1117c, 1397 0x11190, 0x11204, 1398 0x19040, 0x1906c, 1399 0x19078, 0x19080, 1400 0x1908c, 0x190e8, 1401 0x190f0, 0x190f8, 1402 0x19100, 0x19110, 1403 0x19120, 0x19124, 1404 0x19150, 0x19194, 1405 0x1919c, 0x191b0, 1406 0x191d0, 0x191e8, 1407 0x19238, 0x19290, 1408 0x193f8, 0x19428, 1409 0x19430, 0x19444, 1410 0x1944c, 0x1946c, 1411 0x19474, 0x19474, 1412 0x19490, 0x194cc, 1413 0x194f0, 0x194f8, 1414 0x19c00, 0x19c08, 1415 0x19c10, 0x19c60, 1416 0x19c94, 0x19ce4, 1417 0x19cf0, 0x19d40, 1418 0x19d50, 0x19d94, 1419 0x19da0, 0x19de8, 1420 0x19df0, 0x19e10, 1421 0x19e50, 0x19e90, 1422 0x19ea0, 0x19f24, 1423 0x19f34, 0x19f34, 1424 0x19f40, 0x19f50, 1425 0x19f90, 0x19fb4, 1426 0x19fc4, 0x19fe4, 1427 0x1a000, 0x1a004, 1428 0x1a010, 0x1a06c, 1429 0x1a0b0, 0x1a0e4, 1430 0x1a0ec, 0x1a0f8, 1431 0x1a100, 0x1a108, 1432 0x1a114, 0x1a130, 1433 0x1a138, 0x1a1c4, 1434 0x1a1fc, 0x1a1fc, 1435 0x1e008, 0x1e00c, 1436 0x1e040, 0x1e044, 1437 0x1e04c, 0x1e04c, 1438 0x1e284, 0x1e290, 1439 0x1e2c0, 0x1e2c0, 1440 0x1e2e0, 0x1e2e0, 1441 0x1e300, 0x1e384, 1442 0x1e3c0, 0x1e3c8, 1443 0x1e408, 0x1e40c, 1444 0x1e440, 0x1e444, 1445 0x1e44c, 0x1e44c, 1446 0x1e684, 0x1e690, 1447 0x1e6c0, 0x1e6c0, 1448 0x1e6e0, 0x1e6e0, 1449 0x1e700, 0x1e784, 1450 0x1e7c0, 0x1e7c8, 1451 0x1e808, 0x1e80c, 1452 0x1e840, 0x1e844, 1453 0x1e84c, 0x1e84c, 1454 0x1ea84, 0x1ea90, 1455 0x1eac0, 0x1eac0, 1456 0x1eae0, 0x1eae0, 1457 0x1eb00, 0x1eb84, 1458 0x1ebc0, 0x1ebc8, 1459 0x1ec08, 0x1ec0c, 1460 0x1ec40, 0x1ec44, 1461 0x1ec4c, 0x1ec4c, 1462 0x1ee84, 0x1ee90, 1463 0x1eec0, 0x1eec0, 1464 0x1eee0, 0x1eee0, 1465 0x1ef00, 0x1ef84, 1466 0x1efc0, 0x1efc8, 1467 0x1f008, 0x1f00c, 1468 0x1f040, 0x1f044, 1469 0x1f04c, 0x1f04c, 1470 0x1f284, 0x1f290, 1471 0x1f2c0, 0x1f2c0, 1472 0x1f2e0, 0x1f2e0, 1473 0x1f300, 0x1f384, 1474 0x1f3c0, 0x1f3c8, 1475 0x1f408, 0x1f40c, 1476 0x1f440, 0x1f444, 1477 0x1f44c, 0x1f44c, 1478 0x1f684, 0x1f690, 1479 0x1f6c0, 0x1f6c0, 1480 0x1f6e0, 0x1f6e0, 1481 0x1f700, 0x1f784, 1482 0x1f7c0, 0x1f7c8, 1483 0x1f808, 0x1f80c, 1484 0x1f840, 0x1f844, 1485 0x1f84c, 0x1f84c, 1486 0x1fa84, 0x1fa90, 1487 0x1fac0, 0x1fac0, 1488 0x1fae0, 0x1fae0, 1489 0x1fb00, 0x1fb84, 1490 0x1fbc0, 0x1fbc8, 1491 0x1fc08, 0x1fc0c, 1492 0x1fc40, 0x1fc44, 1493 0x1fc4c, 0x1fc4c, 1494 0x1fe84, 0x1fe90, 1495 0x1fec0, 0x1fec0, 1496 0x1fee0, 0x1fee0, 1497 0x1ff00, 0x1ff84, 1498 0x1ffc0, 0x1ffc8, 1499 0x30000, 0x30030, 1500 0x30100, 0x30144, 1501 0x30190, 0x301a0, 1502 0x301a8, 0x301b8, 1503 0x301c4, 0x301c8, 1504 0x301d0, 0x301d0, 1505 0x30200, 0x30318, 1506 0x30400, 0x304b4, 1507 0x304c0, 0x3052c, 1508 0x30540, 0x3061c, 1509 0x30800, 0x30828, 1510 0x30834, 0x30834, 1511 0x308c0, 0x30908, 1512 0x30910, 0x309ac, 1513 0x30a00, 0x30a14, 1514 0x30a1c, 0x30a2c, 1515 0x30a44, 0x30a50, 1516 0x30a74, 0x30a74, 1517 0x30a7c, 0x30afc, 1518 0x30b08, 0x30c24, 1519 0x30d00, 0x30d00, 1520 0x30d08, 0x30d14, 1521 0x30d1c, 0x30d20, 1522 0x30d3c, 0x30d3c, 1523 0x30d48, 0x30d50, 1524 0x31200, 0x3120c, 1525 0x31220, 0x31220, 1526 0x31240, 0x31240, 1527 0x31600, 0x3160c, 1528 0x31a00, 0x31a1c, 1529 0x31e00, 0x31e20, 1530 0x31e38, 0x31e3c, 1531 0x31e80, 0x31e80, 1532 0x31e88, 0x31ea8, 1533 0x31eb0, 0x31eb4, 1534 0x31ec8, 0x31ed4, 1535 0x31fb8, 0x32004, 1536 0x32200, 0x32200, 1537 0x32208, 0x32240, 1538 0x32248, 0x32280, 1539 0x32288, 0x322c0, 1540 0x322c8, 0x322fc, 1541 0x32600, 0x32630, 1542 0x32a00, 0x32abc, 1543 0x32b00, 0x32b10, 1544 0x32b20, 0x32b30, 1545 0x32b40, 0x32b50, 1546 0x32b60, 0x32b70, 1547 0x33000, 0x33028, 1548 0x33030, 0x33048, 1549 0x33060, 0x33068, 1550 0x33070, 0x3309c, 1551 0x330f0, 0x33128, 1552 0x33130, 0x33148, 1553 0x33160, 0x33168, 1554 0x33170, 0x3319c, 1555 0x331f0, 0x33238, 1556 0x33240, 0x33240, 1557 0x33248, 0x33250, 1558 0x3325c, 0x33264, 1559 0x33270, 0x332b8, 1560 0x332c0, 0x332e4, 1561 0x332f8, 0x33338, 1562 0x33340, 0x33340, 1563 0x33348, 0x33350, 1564 0x3335c, 0x33364, 1565 0x33370, 0x333b8, 1566 0x333c0, 0x333e4, 1567 0x333f8, 0x33428, 1568 0x33430, 0x33448, 1569 0x33460, 0x33468, 1570 0x33470, 0x3349c, 1571 0x334f0, 0x33528, 1572 0x33530, 0x33548, 1573 0x33560, 0x33568, 1574 0x33570, 0x3359c, 1575 0x335f0, 0x33638, 1576 0x33640, 0x33640, 1577 0x33648, 0x33650, 1578 0x3365c, 0x33664, 1579 0x33670, 0x336b8, 1580 0x336c0, 0x336e4, 1581 0x336f8, 0x33738, 1582 0x33740, 0x33740, 1583 0x33748, 0x33750, 1584 0x3375c, 0x33764, 1585 0x33770, 0x337b8, 1586 0x337c0, 0x337e4, 1587 0x337f8, 0x337fc, 1588 0x33814, 0x33814, 1589 0x3382c, 0x3382c, 1590 0x33880, 0x3388c, 1591 0x338e8, 0x338ec, 1592 0x33900, 0x33928, 1593 0x33930, 0x33948, 1594 0x33960, 0x33968, 1595 0x33970, 0x3399c, 1596 0x339f0, 0x33a38, 1597 0x33a40, 0x33a40, 1598 0x33a48, 0x33a50, 1599 0x33a5c, 0x33a64, 1600 0x33a70, 0x33ab8, 1601 0x33ac0, 0x33ae4, 1602 0x33af8, 0x33b10, 1603 0x33b28, 0x33b28, 1604 0x33b3c, 0x33b50, 1605 0x33bf0, 0x33c10, 1606 0x33c28, 0x33c28, 1607 0x33c3c, 0x33c50, 1608 0x33cf0, 0x33cfc, 1609 0x34000, 0x34030, 1610 0x34100, 0x34144, 1611 0x34190, 0x341a0, 1612 0x341a8, 0x341b8, 1613 0x341c4, 0x341c8, 1614 0x341d0, 0x341d0, 1615 0x34200, 0x34318, 1616 0x34400, 0x344b4, 1617 0x344c0, 0x3452c, 1618 0x34540, 0x3461c, 1619 0x34800, 0x34828, 1620 0x34834, 0x34834, 1621 0x348c0, 0x34908, 1622 0x34910, 0x349ac, 1623 0x34a00, 0x34a14, 1624 0x34a1c, 0x34a2c, 1625 0x34a44, 0x34a50, 1626 0x34a74, 0x34a74, 1627 0x34a7c, 0x34afc, 1628 0x34b08, 0x34c24, 1629 0x34d00, 0x34d00, 1630 0x34d08, 0x34d14, 1631 0x34d1c, 0x34d20, 1632 0x34d3c, 0x34d3c, 1633 0x34d48, 0x34d50, 1634 0x35200, 0x3520c, 1635 0x35220, 0x35220, 1636 0x35240, 0x35240, 1637 0x35600, 0x3560c, 1638 0x35a00, 0x35a1c, 1639 0x35e00, 0x35e20, 1640 0x35e38, 0x35e3c, 1641 0x35e80, 0x35e80, 1642 0x35e88, 0x35ea8, 1643 0x35eb0, 0x35eb4, 1644 0x35ec8, 0x35ed4, 1645 0x35fb8, 0x36004, 1646 0x36200, 0x36200, 1647 0x36208, 0x36240, 1648 0x36248, 0x36280, 1649 0x36288, 0x362c0, 1650 0x362c8, 0x362fc, 1651 0x36600, 0x36630, 1652 0x36a00, 0x36abc, 1653 0x36b00, 0x36b10, 1654 0x36b20, 0x36b30, 1655 0x36b40, 0x36b50, 1656 0x36b60, 0x36b70, 1657 0x37000, 0x37028, 1658 0x37030, 0x37048, 1659 0x37060, 0x37068, 1660 0x37070, 0x3709c, 1661 0x370f0, 0x37128, 1662 0x37130, 0x37148, 1663 0x37160, 0x37168, 1664 0x37170, 0x3719c, 1665 0x371f0, 0x37238, 1666 0x37240, 0x37240, 1667 0x37248, 0x37250, 1668 0x3725c, 0x37264, 1669 0x37270, 0x372b8, 1670 0x372c0, 0x372e4, 1671 0x372f8, 0x37338, 1672 0x37340, 0x37340, 1673 0x37348, 0x37350, 1674 0x3735c, 0x37364, 1675 0x37370, 0x373b8, 1676 0x373c0, 0x373e4, 1677 0x373f8, 0x37428, 1678 0x37430, 0x37448, 1679 0x37460, 0x37468, 1680 0x37470, 0x3749c, 1681 0x374f0, 0x37528, 1682 0x37530, 0x37548, 1683 0x37560, 0x37568, 1684 0x37570, 0x3759c, 1685 0x375f0, 0x37638, 1686 0x37640, 0x37640, 1687 0x37648, 0x37650, 1688 0x3765c, 0x37664, 1689 0x37670, 0x376b8, 1690 0x376c0, 0x376e4, 1691 0x376f8, 0x37738, 1692 0x37740, 0x37740, 1693 0x37748, 0x37750, 1694 0x3775c, 0x37764, 1695 0x37770, 0x377b8, 1696 0x377c0, 0x377e4, 1697 0x377f8, 0x377fc, 1698 0x37814, 0x37814, 1699 0x3782c, 0x3782c, 1700 0x37880, 0x3788c, 1701 0x378e8, 0x378ec, 1702 0x37900, 0x37928, 1703 0x37930, 0x37948, 1704 0x37960, 0x37968, 1705 0x37970, 0x3799c, 1706 0x379f0, 0x37a38, 1707 0x37a40, 0x37a40, 1708 0x37a48, 0x37a50, 1709 0x37a5c, 0x37a64, 1710 0x37a70, 0x37ab8, 1711 0x37ac0, 0x37ae4, 1712 0x37af8, 0x37b10, 1713 0x37b28, 0x37b28, 1714 0x37b3c, 0x37b50, 1715 0x37bf0, 0x37c10, 1716 0x37c28, 0x37c28, 1717 0x37c3c, 0x37c50, 1718 0x37cf0, 0x37cfc, 1719 0x38000, 0x38030, 1720 0x38100, 0x38144, 1721 0x38190, 0x381a0, 1722 0x381a8, 0x381b8, 1723 0x381c4, 0x381c8, 1724 0x381d0, 0x381d0, 1725 0x38200, 0x38318, 1726 0x38400, 0x384b4, 1727 0x384c0, 0x3852c, 1728 0x38540, 0x3861c, 1729 0x38800, 0x38828, 1730 0x38834, 0x38834, 1731 0x388c0, 0x38908, 1732 0x38910, 0x389ac, 1733 0x38a00, 0x38a14, 1734 0x38a1c, 0x38a2c, 1735 0x38a44, 0x38a50, 1736 0x38a74, 0x38a74, 1737 0x38a7c, 0x38afc, 1738 0x38b08, 0x38c24, 1739 0x38d00, 0x38d00, 1740 0x38d08, 0x38d14, 1741 0x38d1c, 0x38d20, 1742 0x38d3c, 0x38d3c, 1743 0x38d48, 0x38d50, 1744 0x39200, 0x3920c, 1745 0x39220, 0x39220, 1746 0x39240, 0x39240, 1747 0x39600, 0x3960c, 1748 0x39a00, 0x39a1c, 1749 0x39e00, 0x39e20, 1750 0x39e38, 0x39e3c, 1751 0x39e80, 0x39e80, 1752 0x39e88, 0x39ea8, 1753 0x39eb0, 0x39eb4, 1754 0x39ec8, 0x39ed4, 1755 0x39fb8, 0x3a004, 1756 0x3a200, 0x3a200, 1757 0x3a208, 0x3a240, 1758 0x3a248, 0x3a280, 1759 0x3a288, 0x3a2c0, 1760 0x3a2c8, 0x3a2fc, 1761 0x3a600, 0x3a630, 1762 0x3aa00, 0x3aabc, 1763 0x3ab00, 0x3ab10, 1764 0x3ab20, 0x3ab30, 1765 0x3ab40, 0x3ab50, 1766 0x3ab60, 0x3ab70, 1767 0x3b000, 0x3b028, 1768 0x3b030, 0x3b048, 1769 0x3b060, 0x3b068, 1770 0x3b070, 0x3b09c, 1771 0x3b0f0, 0x3b128, 1772 0x3b130, 0x3b148, 1773 0x3b160, 0x3b168, 1774 0x3b170, 0x3b19c, 1775 0x3b1f0, 0x3b238, 1776 0x3b240, 0x3b240, 1777 0x3b248, 0x3b250, 1778 0x3b25c, 0x3b264, 1779 0x3b270, 0x3b2b8, 1780 0x3b2c0, 0x3b2e4, 1781 0x3b2f8, 0x3b338, 1782 0x3b340, 0x3b340, 1783 0x3b348, 0x3b350, 1784 0x3b35c, 0x3b364, 1785 0x3b370, 0x3b3b8, 1786 0x3b3c0, 0x3b3e4, 1787 0x3b3f8, 0x3b428, 1788 0x3b430, 0x3b448, 1789 0x3b460, 0x3b468, 1790 0x3b470, 0x3b49c, 1791 0x3b4f0, 0x3b528, 1792 0x3b530, 0x3b548, 1793 0x3b560, 0x3b568, 1794 0x3b570, 0x3b59c, 1795 0x3b5f0, 0x3b638, 1796 0x3b640, 0x3b640, 1797 0x3b648, 0x3b650, 1798 0x3b65c, 0x3b664, 1799 0x3b670, 0x3b6b8, 1800 0x3b6c0, 0x3b6e4, 1801 0x3b6f8, 0x3b738, 1802 0x3b740, 0x3b740, 1803 0x3b748, 0x3b750, 1804 0x3b75c, 0x3b764, 1805 0x3b770, 0x3b7b8, 1806 0x3b7c0, 0x3b7e4, 1807 0x3b7f8, 0x3b7fc, 1808 0x3b814, 0x3b814, 1809 0x3b82c, 0x3b82c, 1810 0x3b880, 0x3b88c, 1811 0x3b8e8, 0x3b8ec, 1812 0x3b900, 0x3b928, 1813 0x3b930, 0x3b948, 1814 0x3b960, 0x3b968, 1815 0x3b970, 0x3b99c, 1816 0x3b9f0, 0x3ba38, 1817 0x3ba40, 0x3ba40, 1818 0x3ba48, 0x3ba50, 1819 0x3ba5c, 0x3ba64, 1820 0x3ba70, 0x3bab8, 1821 0x3bac0, 0x3bae4, 1822 0x3baf8, 0x3bb10, 1823 0x3bb28, 0x3bb28, 1824 0x3bb3c, 0x3bb50, 1825 0x3bbf0, 0x3bc10, 1826 0x3bc28, 0x3bc28, 1827 0x3bc3c, 0x3bc50, 1828 0x3bcf0, 0x3bcfc, 1829 0x3c000, 0x3c030, 1830 0x3c100, 0x3c144, 1831 0x3c190, 0x3c1a0, 1832 0x3c1a8, 0x3c1b8, 1833 0x3c1c4, 0x3c1c8, 1834 0x3c1d0, 0x3c1d0, 1835 0x3c200, 0x3c318, 1836 0x3c400, 0x3c4b4, 1837 0x3c4c0, 0x3c52c, 1838 0x3c540, 0x3c61c, 1839 0x3c800, 0x3c828, 1840 0x3c834, 0x3c834, 1841 0x3c8c0, 0x3c908, 1842 0x3c910, 0x3c9ac, 1843 0x3ca00, 0x3ca14, 1844 0x3ca1c, 0x3ca2c, 1845 0x3ca44, 0x3ca50, 1846 0x3ca74, 0x3ca74, 1847 0x3ca7c, 0x3cafc, 1848 0x3cb08, 0x3cc24, 1849 0x3cd00, 0x3cd00, 1850 0x3cd08, 0x3cd14, 1851 0x3cd1c, 0x3cd20, 1852 0x3cd3c, 0x3cd3c, 1853 0x3cd48, 0x3cd50, 1854 0x3d200, 0x3d20c, 1855 0x3d220, 0x3d220, 1856 0x3d240, 0x3d240, 1857 0x3d600, 0x3d60c, 1858 0x3da00, 0x3da1c, 1859 0x3de00, 0x3de20, 1860 0x3de38, 0x3de3c, 1861 0x3de80, 0x3de80, 1862 0x3de88, 0x3dea8, 1863 0x3deb0, 0x3deb4, 1864 0x3dec8, 0x3ded4, 1865 0x3dfb8, 0x3e004, 1866 0x3e200, 0x3e200, 1867 0x3e208, 0x3e240, 1868 0x3e248, 0x3e280, 1869 0x3e288, 0x3e2c0, 1870 0x3e2c8, 0x3e2fc, 1871 0x3e600, 0x3e630, 1872 0x3ea00, 0x3eabc, 1873 0x3eb00, 0x3eb10, 1874 0x3eb20, 0x3eb30, 1875 0x3eb40, 0x3eb50, 1876 0x3eb60, 0x3eb70, 1877 0x3f000, 0x3f028, 1878 0x3f030, 0x3f048, 1879 0x3f060, 0x3f068, 1880 0x3f070, 0x3f09c, 1881 0x3f0f0, 0x3f128, 1882 0x3f130, 0x3f148, 1883 0x3f160, 0x3f168, 1884 0x3f170, 0x3f19c, 1885 0x3f1f0, 0x3f238, 1886 0x3f240, 0x3f240, 1887 0x3f248, 0x3f250, 1888 0x3f25c, 0x3f264, 1889 0x3f270, 0x3f2b8, 1890 0x3f2c0, 0x3f2e4, 1891 0x3f2f8, 0x3f338, 1892 0x3f340, 0x3f340, 1893 0x3f348, 0x3f350, 1894 0x3f35c, 0x3f364, 1895 0x3f370, 0x3f3b8, 1896 0x3f3c0, 0x3f3e4, 1897 0x3f3f8, 0x3f428, 1898 0x3f430, 0x3f448, 1899 0x3f460, 0x3f468, 1900 0x3f470, 0x3f49c, 1901 0x3f4f0, 0x3f528, 1902 0x3f530, 0x3f548, 1903 0x3f560, 0x3f568, 1904 0x3f570, 0x3f59c, 1905 0x3f5f0, 0x3f638, 1906 0x3f640, 0x3f640, 1907 0x3f648, 0x3f650, 1908 0x3f65c, 0x3f664, 1909 0x3f670, 0x3f6b8, 1910 0x3f6c0, 0x3f6e4, 1911 0x3f6f8, 0x3f738, 1912 0x3f740, 0x3f740, 1913 0x3f748, 0x3f750, 1914 0x3f75c, 0x3f764, 1915 0x3f770, 0x3f7b8, 1916 0x3f7c0, 0x3f7e4, 1917 0x3f7f8, 0x3f7fc, 1918 0x3f814, 0x3f814, 1919 0x3f82c, 0x3f82c, 1920 0x3f880, 0x3f88c, 1921 0x3f8e8, 0x3f8ec, 1922 0x3f900, 0x3f928, 1923 0x3f930, 0x3f948, 1924 0x3f960, 0x3f968, 1925 0x3f970, 0x3f99c, 1926 0x3f9f0, 0x3fa38, 1927 0x3fa40, 0x3fa40, 1928 0x3fa48, 0x3fa50, 1929 0x3fa5c, 0x3fa64, 1930 0x3fa70, 0x3fab8, 1931 0x3fac0, 0x3fae4, 1932 0x3faf8, 0x3fb10, 1933 0x3fb28, 0x3fb28, 1934 0x3fb3c, 0x3fb50, 1935 0x3fbf0, 0x3fc10, 1936 0x3fc28, 0x3fc28, 1937 0x3fc3c, 0x3fc50, 1938 0x3fcf0, 0x3fcfc, 1939 0x40000, 0x4000c, 1940 0x40040, 0x40050, 1941 0x40060, 0x40068, 1942 0x4007c, 0x4008c, 1943 0x40094, 0x400b0, 1944 0x400c0, 0x40144, 1945 0x40180, 0x4018c, 1946 0x40200, 0x40254, 1947 0x40260, 0x40264, 1948 0x40270, 0x40288, 1949 0x40290, 0x40298, 1950 0x402ac, 0x402c8, 1951 0x402d0, 0x402e0, 1952 0x402f0, 0x402f0, 1953 0x40300, 0x4033c, 1954 0x403f8, 0x403fc, 1955 0x41304, 0x413c4, 1956 0x41400, 0x4140c, 1957 0x41414, 0x4141c, 1958 0x41480, 0x414d0, 1959 0x44000, 0x44054, 1960 0x4405c, 0x44078, 1961 0x440c0, 0x44174, 1962 0x44180, 0x441ac, 1963 0x441b4, 0x441b8, 1964 0x441c0, 0x44254, 1965 0x4425c, 0x44278, 1966 0x442c0, 0x44374, 1967 0x44380, 0x443ac, 1968 0x443b4, 0x443b8, 1969 0x443c0, 0x44454, 1970 0x4445c, 0x44478, 1971 0x444c0, 0x44574, 1972 0x44580, 0x445ac, 1973 0x445b4, 0x445b8, 1974 0x445c0, 0x44654, 1975 0x4465c, 0x44678, 1976 0x446c0, 0x44774, 1977 0x44780, 0x447ac, 1978 0x447b4, 0x447b8, 1979 0x447c0, 0x44854, 1980 0x4485c, 0x44878, 1981 0x448c0, 0x44974, 1982 0x44980, 0x449ac, 1983 0x449b4, 0x449b8, 1984 0x449c0, 0x449fc, 1985 0x45000, 0x45004, 1986 0x45010, 0x45030, 1987 0x45040, 0x45060, 1988 0x45068, 0x45068, 1989 0x45080, 0x45084, 1990 0x450a0, 0x450b0, 1991 0x45200, 0x45204, 1992 0x45210, 0x45230, 1993 0x45240, 0x45260, 1994 0x45268, 0x45268, 1995 0x45280, 0x45284, 1996 0x452a0, 0x452b0, 1997 0x460c0, 0x460e4, 1998 0x47000, 0x4703c, 1999 0x47044, 0x4708c, 2000 0x47200, 0x47250, 2001 0x47400, 0x47408, 2002 0x47414, 0x47420, 2003 0x47600, 0x47618, 2004 0x47800, 0x47814, 2005 0x48000, 0x4800c, 2006 0x48040, 0x48050, 2007 0x48060, 0x48068, 2008 0x4807c, 0x4808c, 2009 0x48094, 0x480b0, 2010 0x480c0, 0x48144, 2011 0x48180, 0x4818c, 2012 0x48200, 0x48254, 2013 0x48260, 0x48264, 2014 0x48270, 0x48288, 2015 0x48290, 0x48298, 2016 0x482ac, 0x482c8, 2017 0x482d0, 0x482e0, 2018 0x482f0, 0x482f0, 2019 0x48300, 0x4833c, 2020 0x483f8, 0x483fc, 2021 0x49304, 0x493c4, 2022 0x49400, 0x4940c, 2023 0x49414, 0x4941c, 2024 0x49480, 0x494d0, 2025 0x4c000, 0x4c054, 2026 0x4c05c, 0x4c078, 2027 0x4c0c0, 0x4c174, 2028 0x4c180, 0x4c1ac, 2029 0x4c1b4, 0x4c1b8, 2030 0x4c1c0, 0x4c254, 2031 0x4c25c, 0x4c278, 2032 0x4c2c0, 0x4c374, 2033 0x4c380, 0x4c3ac, 2034 0x4c3b4, 0x4c3b8, 2035 0x4c3c0, 0x4c454, 2036 0x4c45c, 0x4c478, 2037 0x4c4c0, 0x4c574, 2038 0x4c580, 0x4c5ac, 2039 0x4c5b4, 0x4c5b8, 2040 0x4c5c0, 0x4c654, 2041 0x4c65c, 0x4c678, 2042 0x4c6c0, 0x4c774, 2043 0x4c780, 0x4c7ac, 2044 0x4c7b4, 0x4c7b8, 2045 0x4c7c0, 0x4c854, 2046 0x4c85c, 0x4c878, 2047 0x4c8c0, 0x4c974, 2048 0x4c980, 0x4c9ac, 2049 0x4c9b4, 0x4c9b8, 2050 0x4c9c0, 0x4c9fc, 2051 0x4d000, 0x4d004, 2052 0x4d010, 0x4d030, 2053 0x4d040, 0x4d060, 2054 0x4d068, 0x4d068, 2055 0x4d080, 0x4d084, 2056 0x4d0a0, 0x4d0b0, 2057 0x4d200, 0x4d204, 2058 0x4d210, 0x4d230, 2059 0x4d240, 0x4d260, 2060 0x4d268, 0x4d268, 2061 0x4d280, 0x4d284, 2062 0x4d2a0, 0x4d2b0, 2063 0x4e0c0, 0x4e0e4, 2064 0x4f000, 0x4f03c, 2065 0x4f044, 0x4f08c, 2066 0x4f200, 0x4f250, 2067 0x4f400, 0x4f408, 2068 0x4f414, 0x4f420, 2069 0x4f600, 0x4f618, 2070 0x4f800, 0x4f814, 2071 0x50000, 0x50084, 2072 0x50090, 0x500cc, 2073 0x50400, 0x50400, 2074 0x50800, 0x50884, 2075 0x50890, 0x508cc, 2076 0x50c00, 0x50c00, 2077 0x51000, 0x5101c, 2078 0x51300, 0x51308, 2079 }; 2080 2081 static const unsigned int t6_reg_ranges[] = { 2082 0x1008, 0x101c, 2083 0x1024, 0x10a8, 2084 0x10b4, 0x10f8, 2085 0x1100, 0x1114, 2086 0x111c, 0x112c, 2087 0x1138, 0x113c, 2088 0x1144, 0x114c, 2089 0x1180, 0x1184, 2090 0x1190, 0x1194, 2091 0x11a0, 0x11a4, 2092 0x11b0, 0x11b4, 2093 0x11fc, 0x123c, 2094 0x1254, 0x1274, 2095 0x1280, 0x133c, 2096 0x1800, 0x18fc, 2097 0x3000, 0x302c, 2098 0x3060, 0x30b0, 2099 0x30b8, 0x30d8, 2100 0x30e0, 0x30fc, 2101 0x3140, 0x357c, 2102 0x35a8, 0x35cc, 2103 0x35ec, 0x35ec, 2104 0x3600, 0x5624, 2105 0x56cc, 0x56ec, 2106 0x56f4, 0x5720, 2107 0x5728, 0x575c, 2108 0x580c, 0x5814, 2109 0x5890, 0x589c, 2110 0x58a4, 0x58ac, 2111 0x58b8, 0x58bc, 2112 0x5940, 0x595c, 2113 0x5980, 0x598c, 2114 0x59b0, 0x59c8, 2115 0x59d0, 0x59dc, 2116 0x59fc, 0x5a18, 2117 0x5a60, 0x5a6c, 2118 0x5a80, 0x5a8c, 2119 0x5a94, 0x5a9c, 2120 0x5b94, 0x5bfc, 2121 0x5c10, 0x5e48, 2122 0x5e50, 0x5e94, 2123 0x5ea0, 0x5eb0, 2124 0x5ec0, 0x5ec0, 2125 0x5ec8, 0x5ed0, 2126 0x5ee0, 0x5ee0, 2127 0x5ef0, 0x5ef0, 2128 0x5f00, 0x5f00, 2129 0x6000, 0x6020, 2130 0x6028, 0x6040, 2131 0x6058, 0x609c, 2132 0x60a8, 0x619c, 2133 0x7700, 0x7798, 2134 0x77c0, 0x7880, 2135 0x78cc, 0x78fc, 2136 0x7b00, 0x7b58, 2137 0x7b60, 0x7b84, 2138 0x7b8c, 0x7c54, 2139 0x7d00, 0x7d38, 2140 0x7d40, 0x7d84, 2141 0x7d8c, 0x7ddc, 2142 0x7de4, 0x7e04, 2143 0x7e10, 0x7e1c, 2144 0x7e24, 0x7e38, 2145 0x7e40, 0x7e44, 2146 0x7e4c, 0x7e78, 2147 0x7e80, 0x7edc, 2148 0x7ee8, 0x7efc, 2149 0x8dc0, 0x8de4, 2150 0x8df8, 0x8e04, 2151 0x8e10, 0x8e84, 2152 0x8ea0, 0x8f88, 2153 0x8fb8, 0x9058, 2154 0x9060, 0x9060, 2155 0x9068, 0x90f8, 2156 0x9100, 0x9124, 2157 0x9400, 0x9470, 2158 0x9600, 0x9600, 2159 0x9608, 0x9638, 2160 0x9640, 0x9704, 2161 0x9710, 0x971c, 2162 0x9800, 0x9808, 2163 0x9810, 0x9864, 2164 0x9c00, 0x9c6c, 2165 0x9c80, 0x9cec, 2166 0x9d00, 0x9d6c, 2167 0x9d80, 0x9dec, 2168 0x9e00, 0x9e6c, 2169 0x9e80, 0x9eec, 2170 0x9f00, 0x9f6c, 2171 0x9f80, 0xa020, 2172 0xd000, 0xd03c, 2173 0xd100, 0xd118, 2174 0xd200, 0xd214, 2175 0xd220, 0xd234, 2176 0xd240, 0xd254, 2177 0xd260, 0xd274, 2178 0xd280, 0xd294, 2179 0xd2a0, 0xd2b4, 2180 0xd2c0, 0xd2d4, 2181 0xd2e0, 0xd2f4, 2182 0xd300, 0xd31c, 2183 0xdfc0, 0xdfe0, 2184 0xe000, 0xf008, 2185 0xf010, 0xf018, 2186 0xf020, 0xf028, 2187 0x11000, 0x11014, 2188 0x11048, 0x1106c, 2189 0x11074, 0x11088, 2190 0x11098, 0x11120, 2191 0x1112c, 0x1117c, 2192 0x11190, 0x112e0, 2193 0x11300, 0x1130c, 2194 0x12000, 0x1206c, 2195 0x19040, 0x1906c, 2196 0x19078, 0x19080, 2197 0x1908c, 0x190e8, 2198 0x190f0, 0x190f8, 2199 0x19100, 0x19110, 2200 0x19120, 0x19124, 2201 0x19150, 0x19194, 2202 0x1919c, 0x191b0, 2203 0x191d0, 0x191e8, 2204 0x19238, 0x19290, 2205 0x192a4, 0x192b0, 2206 0x192bc, 0x192bc, 2207 0x19348, 0x1934c, 2208 0x193f8, 0x19418, 2209 0x19420, 0x19428, 2210 0x19430, 0x19444, 2211 0x1944c, 0x1946c, 2212 0x19474, 0x19474, 2213 0x19490, 0x194cc, 2214 0x194f0, 0x194f8, 2215 0x19c00, 0x19c48, 2216 0x19c50, 0x19c80, 2217 0x19c94, 0x19c98, 2218 0x19ca0, 0x19cbc, 2219 0x19ce4, 0x19ce4, 2220 0x19cf0, 0x19cf8, 2221 0x19d00, 0x19d28, 2222 0x19d50, 0x19d78, 2223 0x19d94, 0x19d98, 2224 0x19da0, 0x19dc8, 2225 0x19df0, 0x19e10, 2226 0x19e50, 0x19e6c, 2227 0x19ea0, 0x19ebc, 2228 0x19ec4, 0x19ef4, 2229 0x19f04, 0x19f2c, 2230 0x19f34, 0x19f34, 2231 0x19f40, 0x19f50, 2232 0x19f90, 0x19fac, 2233 0x19fc4, 0x19fc8, 2234 0x19fd0, 0x19fe4, 2235 0x1a000, 0x1a004, 2236 0x1a010, 0x1a06c, 2237 0x1a0b0, 0x1a0e4, 2238 0x1a0ec, 0x1a0f8, 2239 0x1a100, 0x1a108, 2240 0x1a114, 0x1a130, 2241 0x1a138, 0x1a1c4, 2242 0x1a1fc, 0x1a1fc, 2243 0x1e008, 0x1e00c, 2244 0x1e040, 0x1e044, 2245 0x1e04c, 0x1e04c, 2246 0x1e284, 0x1e290, 2247 0x1e2c0, 0x1e2c0, 2248 0x1e2e0, 0x1e2e0, 2249 0x1e300, 0x1e384, 2250 0x1e3c0, 0x1e3c8, 2251 0x1e408, 0x1e40c, 2252 0x1e440, 0x1e444, 2253 0x1e44c, 0x1e44c, 2254 0x1e684, 0x1e690, 2255 0x1e6c0, 0x1e6c0, 2256 0x1e6e0, 0x1e6e0, 2257 0x1e700, 0x1e784, 2258 0x1e7c0, 0x1e7c8, 2259 0x1e808, 0x1e80c, 2260 0x1e840, 0x1e844, 2261 0x1e84c, 0x1e84c, 2262 0x1ea84, 0x1ea90, 2263 0x1eac0, 0x1eac0, 2264 0x1eae0, 0x1eae0, 2265 0x1eb00, 0x1eb84, 2266 0x1ebc0, 0x1ebc8, 2267 0x1ec08, 0x1ec0c, 2268 0x1ec40, 0x1ec44, 2269 0x1ec4c, 0x1ec4c, 2270 0x1ee84, 0x1ee90, 2271 0x1eec0, 0x1eec0, 2272 0x1eee0, 0x1eee0, 2273 0x1ef00, 0x1ef84, 2274 0x1efc0, 0x1efc8, 2275 0x1f008, 0x1f00c, 2276 0x1f040, 0x1f044, 2277 0x1f04c, 0x1f04c, 2278 0x1f284, 0x1f290, 2279 0x1f2c0, 0x1f2c0, 2280 0x1f2e0, 0x1f2e0, 2281 0x1f300, 0x1f384, 2282 0x1f3c0, 0x1f3c8, 2283 0x1f408, 0x1f40c, 2284 0x1f440, 0x1f444, 2285 0x1f44c, 0x1f44c, 2286 0x1f684, 0x1f690, 2287 0x1f6c0, 0x1f6c0, 2288 0x1f6e0, 0x1f6e0, 2289 0x1f700, 0x1f784, 2290 0x1f7c0, 0x1f7c8, 2291 0x1f808, 0x1f80c, 2292 0x1f840, 0x1f844, 2293 0x1f84c, 0x1f84c, 2294 0x1fa84, 0x1fa90, 2295 0x1fac0, 0x1fac0, 2296 0x1fae0, 0x1fae0, 2297 0x1fb00, 0x1fb84, 2298 0x1fbc0, 0x1fbc8, 2299 0x1fc08, 0x1fc0c, 2300 0x1fc40, 0x1fc44, 2301 0x1fc4c, 0x1fc4c, 2302 0x1fe84, 0x1fe90, 2303 0x1fec0, 0x1fec0, 2304 0x1fee0, 0x1fee0, 2305 0x1ff00, 0x1ff84, 2306 0x1ffc0, 0x1ffc8, 2307 0x30000, 0x30030, 2308 0x30100, 0x30168, 2309 0x30190, 0x301a0, 2310 0x301a8, 0x301b8, 2311 0x301c4, 0x301c8, 2312 0x301d0, 0x301d0, 2313 0x30200, 0x30320, 2314 0x30400, 0x304b4, 2315 0x304c0, 0x3052c, 2316 0x30540, 0x3061c, 2317 0x30800, 0x308a0, 2318 0x308c0, 0x30908, 2319 0x30910, 0x309b8, 2320 0x30a00, 0x30a04, 2321 0x30a0c, 0x30a14, 2322 0x30a1c, 0x30a2c, 2323 0x30a44, 0x30a50, 2324 0x30a74, 0x30a74, 2325 0x30a7c, 0x30afc, 2326 0x30b08, 0x30c24, 2327 0x30d00, 0x30d14, 2328 0x30d1c, 0x30d3c, 2329 0x30d44, 0x30d4c, 2330 0x30d54, 0x30d74, 2331 0x30d7c, 0x30d7c, 2332 0x30de0, 0x30de0, 2333 0x30e00, 0x30ed4, 2334 0x30f00, 0x30fa4, 2335 0x30fc0, 0x30fc4, 2336 0x31000, 0x31004, 2337 0x31080, 0x310fc, 2338 0x31208, 0x31220, 2339 0x3123c, 0x31254, 2340 0x31300, 0x31300, 2341 0x31308, 0x3131c, 2342 0x31338, 0x3133c, 2343 0x31380, 0x31380, 2344 0x31388, 0x313a8, 2345 0x313b4, 0x313b4, 2346 0x31400, 0x31420, 2347 0x31438, 0x3143c, 2348 0x31480, 0x31480, 2349 0x314a8, 0x314a8, 2350 0x314b0, 0x314b4, 2351 0x314c8, 0x314d4, 2352 0x31a40, 0x31a4c, 2353 0x31af0, 0x31b20, 2354 0x31b38, 0x31b3c, 2355 0x31b80, 0x31b80, 2356 0x31ba8, 0x31ba8, 2357 0x31bb0, 0x31bb4, 2358 0x31bc8, 0x31bd4, 2359 0x32140, 0x3218c, 2360 0x321f0, 0x321f4, 2361 0x32200, 0x32200, 2362 0x32218, 0x32218, 2363 0x32400, 0x32400, 2364 0x32408, 0x3241c, 2365 0x32618, 0x32620, 2366 0x32664, 0x32664, 2367 0x326a8, 0x326a8, 2368 0x326ec, 0x326ec, 2369 0x32a00, 0x32abc, 2370 0x32b00, 0x32b18, 2371 0x32b20, 0x32b38, 2372 0x32b40, 0x32b58, 2373 0x32b60, 0x32b78, 2374 0x32c00, 0x32c00, 2375 0x32c08, 0x32c3c, 2376 0x33000, 0x3302c, 2377 0x33034, 0x33050, 2378 0x33058, 0x33058, 2379 0x33060, 0x3308c, 2380 0x3309c, 0x330ac, 2381 0x330c0, 0x330c0, 2382 0x330c8, 0x330d0, 2383 0x330d8, 0x330e0, 2384 0x330ec, 0x3312c, 2385 0x33134, 0x33150, 2386 0x33158, 0x33158, 2387 0x33160, 0x3318c, 2388 0x3319c, 0x331ac, 2389 0x331c0, 0x331c0, 2390 0x331c8, 0x331d0, 2391 0x331d8, 0x331e0, 2392 0x331ec, 0x33290, 2393 0x33298, 0x332c4, 2394 0x332e4, 0x33390, 2395 0x33398, 0x333c4, 2396 0x333e4, 0x3342c, 2397 0x33434, 0x33450, 2398 0x33458, 0x33458, 2399 0x33460, 0x3348c, 2400 0x3349c, 0x334ac, 2401 0x334c0, 0x334c0, 2402 0x334c8, 0x334d0, 2403 0x334d8, 0x334e0, 2404 0x334ec, 0x3352c, 2405 0x33534, 0x33550, 2406 0x33558, 0x33558, 2407 0x33560, 0x3358c, 2408 0x3359c, 0x335ac, 2409 0x335c0, 0x335c0, 2410 0x335c8, 0x335d0, 2411 0x335d8, 0x335e0, 2412 0x335ec, 0x33690, 2413 0x33698, 0x336c4, 2414 0x336e4, 0x33790, 2415 0x33798, 0x337c4, 2416 0x337e4, 0x337fc, 2417 0x33814, 0x33814, 2418 0x33854, 0x33868, 2419 0x33880, 0x3388c, 2420 0x338c0, 0x338d0, 2421 0x338e8, 0x338ec, 2422 0x33900, 0x3392c, 2423 0x33934, 0x33950, 2424 0x33958, 0x33958, 2425 0x33960, 0x3398c, 2426 0x3399c, 0x339ac, 2427 0x339c0, 0x339c0, 2428 0x339c8, 0x339d0, 2429 0x339d8, 0x339e0, 2430 0x339ec, 0x33a90, 2431 0x33a98, 0x33ac4, 2432 0x33ae4, 0x33b10, 2433 0x33b24, 0x33b28, 2434 0x33b38, 0x33b50, 2435 0x33bf0, 0x33c10, 2436 0x33c24, 0x33c28, 2437 0x33c38, 0x33c50, 2438 0x33cf0, 0x33cfc, 2439 0x34000, 0x34030, 2440 0x34100, 0x34168, 2441 0x34190, 0x341a0, 2442 0x341a8, 0x341b8, 2443 0x341c4, 0x341c8, 2444 0x341d0, 0x341d0, 2445 0x34200, 0x34320, 2446 0x34400, 0x344b4, 2447 0x344c0, 0x3452c, 2448 0x34540, 0x3461c, 2449 0x34800, 0x348a0, 2450 0x348c0, 0x34908, 2451 0x34910, 0x349b8, 2452 0x34a00, 0x34a04, 2453 0x34a0c, 0x34a14, 2454 0x34a1c, 0x34a2c, 2455 0x34a44, 0x34a50, 2456 0x34a74, 0x34a74, 2457 0x34a7c, 0x34afc, 2458 0x34b08, 0x34c24, 2459 0x34d00, 0x34d14, 2460 0x34d1c, 0x34d3c, 2461 0x34d44, 0x34d4c, 2462 0x34d54, 0x34d74, 2463 0x34d7c, 0x34d7c, 2464 0x34de0, 0x34de0, 2465 0x34e00, 0x34ed4, 2466 0x34f00, 0x34fa4, 2467 0x34fc0, 0x34fc4, 2468 0x35000, 0x35004, 2469 0x35080, 0x350fc, 2470 0x35208, 0x35220, 2471 0x3523c, 0x35254, 2472 0x35300, 0x35300, 2473 0x35308, 0x3531c, 2474 0x35338, 0x3533c, 2475 0x35380, 0x35380, 2476 0x35388, 0x353a8, 2477 0x353b4, 0x353b4, 2478 0x35400, 0x35420, 2479 0x35438, 0x3543c, 2480 0x35480, 0x35480, 2481 0x354a8, 0x354a8, 2482 0x354b0, 0x354b4, 2483 0x354c8, 0x354d4, 2484 0x35a40, 0x35a4c, 2485 0x35af0, 0x35b20, 2486 0x35b38, 0x35b3c, 2487 0x35b80, 0x35b80, 2488 0x35ba8, 0x35ba8, 2489 0x35bb0, 0x35bb4, 2490 0x35bc8, 0x35bd4, 2491 0x36140, 0x3618c, 2492 0x361f0, 0x361f4, 2493 0x36200, 0x36200, 2494 0x36218, 0x36218, 2495 0x36400, 0x36400, 2496 0x36408, 0x3641c, 2497 0x36618, 0x36620, 2498 0x36664, 0x36664, 2499 0x366a8, 0x366a8, 2500 0x366ec, 0x366ec, 2501 0x36a00, 0x36abc, 2502 0x36b00, 0x36b18, 2503 0x36b20, 0x36b38, 2504 0x36b40, 0x36b58, 2505 0x36b60, 0x36b78, 2506 0x36c00, 0x36c00, 2507 0x36c08, 0x36c3c, 2508 0x37000, 0x3702c, 2509 0x37034, 0x37050, 2510 0x37058, 0x37058, 2511 0x37060, 0x3708c, 2512 0x3709c, 0x370ac, 2513 0x370c0, 0x370c0, 2514 0x370c8, 0x370d0, 2515 0x370d8, 0x370e0, 2516 0x370ec, 0x3712c, 2517 0x37134, 0x37150, 2518 0x37158, 0x37158, 2519 0x37160, 0x3718c, 2520 0x3719c, 0x371ac, 2521 0x371c0, 0x371c0, 2522 0x371c8, 0x371d0, 2523 0x371d8, 0x371e0, 2524 0x371ec, 0x37290, 2525 0x37298, 0x372c4, 2526 0x372e4, 0x37390, 2527 0x37398, 0x373c4, 2528 0x373e4, 0x3742c, 2529 0x37434, 0x37450, 2530 0x37458, 0x37458, 2531 0x37460, 0x3748c, 2532 0x3749c, 0x374ac, 2533 0x374c0, 0x374c0, 2534 0x374c8, 0x374d0, 2535 0x374d8, 0x374e0, 2536 0x374ec, 0x3752c, 2537 0x37534, 0x37550, 2538 0x37558, 0x37558, 2539 0x37560, 0x3758c, 2540 0x3759c, 0x375ac, 2541 0x375c0, 0x375c0, 2542 0x375c8, 0x375d0, 2543 0x375d8, 0x375e0, 2544 0x375ec, 0x37690, 2545 0x37698, 0x376c4, 2546 0x376e4, 0x37790, 2547 0x37798, 0x377c4, 2548 0x377e4, 0x377fc, 2549 0x37814, 0x37814, 2550 0x37854, 0x37868, 2551 0x37880, 0x3788c, 2552 0x378c0, 0x378d0, 2553 0x378e8, 0x378ec, 2554 0x37900, 0x3792c, 2555 0x37934, 0x37950, 2556 0x37958, 0x37958, 2557 0x37960, 0x3798c, 2558 0x3799c, 0x379ac, 2559 0x379c0, 0x379c0, 2560 0x379c8, 0x379d0, 2561 0x379d8, 0x379e0, 2562 0x379ec, 0x37a90, 2563 0x37a98, 0x37ac4, 2564 0x37ae4, 0x37b10, 2565 0x37b24, 0x37b28, 2566 0x37b38, 0x37b50, 2567 0x37bf0, 0x37c10, 2568 0x37c24, 0x37c28, 2569 0x37c38, 0x37c50, 2570 0x37cf0, 0x37cfc, 2571 0x40040, 0x40040, 2572 0x40080, 0x40084, 2573 0x40100, 0x40100, 2574 0x40140, 0x401bc, 2575 0x40200, 0x40214, 2576 0x40228, 0x40228, 2577 0x40240, 0x40258, 2578 0x40280, 0x40280, 2579 0x40304, 0x40304, 2580 0x40330, 0x4033c, 2581 0x41304, 0x413c8, 2582 0x413d0, 0x413dc, 2583 0x413f0, 0x413f0, 2584 0x41400, 0x4140c, 2585 0x41414, 0x4141c, 2586 0x41480, 0x414d0, 2587 0x44000, 0x4407c, 2588 0x440c0, 0x441ac, 2589 0x441b4, 0x4427c, 2590 0x442c0, 0x443ac, 2591 0x443b4, 0x4447c, 2592 0x444c0, 0x445ac, 2593 0x445b4, 0x4467c, 2594 0x446c0, 0x447ac, 2595 0x447b4, 0x4487c, 2596 0x448c0, 0x449ac, 2597 0x449b4, 0x44a7c, 2598 0x44ac0, 0x44bac, 2599 0x44bb4, 0x44c7c, 2600 0x44cc0, 0x44dac, 2601 0x44db4, 0x44e7c, 2602 0x44ec0, 0x44fac, 2603 0x44fb4, 0x4507c, 2604 0x450c0, 0x451ac, 2605 0x451b4, 0x451fc, 2606 0x45800, 0x45804, 2607 0x45810, 0x45830, 2608 0x45840, 0x45860, 2609 0x45868, 0x45868, 2610 0x45880, 0x45884, 2611 0x458a0, 0x458b0, 2612 0x45a00, 0x45a04, 2613 0x45a10, 0x45a30, 2614 0x45a40, 0x45a60, 2615 0x45a68, 0x45a68, 2616 0x45a80, 0x45a84, 2617 0x45aa0, 0x45ab0, 2618 0x460c0, 0x460e4, 2619 0x47000, 0x4703c, 2620 0x47044, 0x4708c, 2621 0x47200, 0x47250, 2622 0x47400, 0x47408, 2623 0x47414, 0x47420, 2624 0x47600, 0x47618, 2625 0x47800, 0x47814, 2626 0x47820, 0x4782c, 2627 0x50000, 0x50084, 2628 0x50090, 0x500cc, 2629 0x50300, 0x50384, 2630 0x50400, 0x50400, 2631 0x50800, 0x50884, 2632 0x50890, 0x508cc, 2633 0x50b00, 0x50b84, 2634 0x50c00, 0x50c00, 2635 0x51000, 0x51020, 2636 0x51028, 0x510b0, 2637 0x51300, 0x51324, 2638 }; 2639 2640 u32 *buf_end = (u32 *)((char *)buf + buf_size); 2641 const unsigned int *reg_ranges; 2642 int reg_ranges_size, range; 2643 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 2644 2645 /* Select the right set of register ranges to dump depending on the 2646 * adapter chip type. 2647 */ 2648 switch (chip_version) { 2649 case CHELSIO_T4: 2650 reg_ranges = t4_reg_ranges; 2651 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); 2652 break; 2653 2654 case CHELSIO_T5: 2655 reg_ranges = t5_reg_ranges; 2656 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); 2657 break; 2658 2659 case CHELSIO_T6: 2660 reg_ranges = t6_reg_ranges; 2661 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); 2662 break; 2663 2664 default: 2665 dev_err(adap->pdev_dev, 2666 "Unsupported chip version %d\n", chip_version); 2667 return; 2668 } 2669 2670 /* Clear the register buffer and insert the appropriate register 2671 * values selected by the above register ranges. 2672 */ 2673 memset(buf, 0, buf_size); 2674 for (range = 0; range < reg_ranges_size; range += 2) { 2675 unsigned int reg = reg_ranges[range]; 2676 unsigned int last_reg = reg_ranges[range + 1]; 2677 u32 *bufp = (u32 *)((char *)buf + reg); 2678 2679 /* Iterate across the register range filling in the register 2680 * buffer but don't write past the end of the register buffer. 2681 */ 2682 while (reg <= last_reg && bufp < buf_end) { 2683 *bufp++ = t4_read_reg(adap, reg); 2684 reg += sizeof(u32); 2685 } 2686 } 2687 } 2688 2689 #define EEPROM_STAT_ADDR 0x7bfc 2690 #define VPD_BASE 0x400 2691 #define VPD_BASE_OLD 0 2692 #define VPD_LEN 1024 2693 2694 /** 2695 * t4_eeprom_ptov - translate a physical EEPROM address to virtual 2696 * @phys_addr: the physical EEPROM address 2697 * @fn: the PCI function number 2698 * @sz: size of function-specific area 2699 * 2700 * Translate a physical EEPROM address to virtual. The first 1K is 2701 * accessed through virtual addresses starting at 31K, the rest is 2702 * accessed through virtual addresses starting at 0. 2703 * 2704 * The mapping is as follows: 2705 * [0..1K) -> [31K..32K) 2706 * [1K..1K+A) -> [31K-A..31K) 2707 * [1K+A..ES) -> [0..ES-A-1K) 2708 * 2709 * where A = @fn * @sz, and ES = EEPROM size. 2710 */ 2711 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) 2712 { 2713 fn *= sz; 2714 if (phys_addr < 1024) 2715 return phys_addr + (31 << 10); 2716 if (phys_addr < 1024 + fn) 2717 return 31744 - fn + phys_addr - 1024; 2718 if (phys_addr < EEPROMSIZE) 2719 return phys_addr - 1024 - fn; 2720 return -EINVAL; 2721 } 2722 2723 /** 2724 * t4_seeprom_wp - enable/disable EEPROM write protection 2725 * @adapter: the adapter 2726 * @enable: whether to enable or disable write protection 2727 * 2728 * Enables or disables write protection on the serial EEPROM. 2729 */ 2730 int t4_seeprom_wp(struct adapter *adapter, bool enable) 2731 { 2732 unsigned int v = enable ? 0xc : 0; 2733 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v); 2734 return ret < 0 ? ret : 0; 2735 } 2736 2737 /** 2738 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM 2739 * @adapter: adapter to read 2740 * @p: where to store the parameters 2741 * 2742 * Reads card parameters stored in VPD EEPROM. 2743 */ 2744 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p) 2745 { 2746 int i, ret = 0, addr; 2747 int ec, sn, pn, na; 2748 u8 *vpd, csum, base_val = 0; 2749 unsigned int vpdr_len, kw_offset, id_len; 2750 2751 vpd = vmalloc(VPD_LEN); 2752 if (!vpd) 2753 return -ENOMEM; 2754 2755 /* Card information normally starts at VPD_BASE but early cards had 2756 * it at 0. 2757 */ 2758 ret = pci_read_vpd(adapter->pdev, VPD_BASE, 1, &base_val); 2759 if (ret < 0) 2760 goto out; 2761 2762 addr = base_val == PCI_VPD_LRDT_ID_STRING ? VPD_BASE : VPD_BASE_OLD; 2763 2764 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd); 2765 if (ret < 0) 2766 goto out; 2767 2768 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) { 2769 dev_err(adapter->pdev_dev, "missing VPD ID string\n"); 2770 ret = -EINVAL; 2771 goto out; 2772 } 2773 2774 id_len = pci_vpd_lrdt_size(vpd); 2775 if (id_len > ID_LEN) 2776 id_len = ID_LEN; 2777 2778 i = pci_vpd_find_tag(vpd, VPD_LEN, PCI_VPD_LRDT_RO_DATA); 2779 if (i < 0) { 2780 dev_err(adapter->pdev_dev, "missing VPD-R section\n"); 2781 ret = -EINVAL; 2782 goto out; 2783 } 2784 2785 vpdr_len = pci_vpd_lrdt_size(&vpd[i]); 2786 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE; 2787 if (vpdr_len + kw_offset > VPD_LEN) { 2788 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len); 2789 ret = -EINVAL; 2790 goto out; 2791 } 2792 2793 #define FIND_VPD_KW(var, name) do { \ 2794 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \ 2795 if (var < 0) { \ 2796 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \ 2797 ret = -EINVAL; \ 2798 goto out; \ 2799 } \ 2800 var += PCI_VPD_INFO_FLD_HDR_SIZE; \ 2801 } while (0) 2802 2803 FIND_VPD_KW(i, "RV"); 2804 for (csum = 0; i >= 0; i--) 2805 csum += vpd[i]; 2806 2807 if (csum) { 2808 dev_err(adapter->pdev_dev, 2809 "corrupted VPD EEPROM, actual csum %u\n", csum); 2810 ret = -EINVAL; 2811 goto out; 2812 } 2813 2814 FIND_VPD_KW(ec, "EC"); 2815 FIND_VPD_KW(sn, "SN"); 2816 FIND_VPD_KW(pn, "PN"); 2817 FIND_VPD_KW(na, "NA"); 2818 #undef FIND_VPD_KW 2819 2820 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len); 2821 strim(p->id); 2822 memcpy(p->ec, vpd + ec, EC_LEN); 2823 strim(p->ec); 2824 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE); 2825 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); 2826 strim(p->sn); 2827 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE); 2828 memcpy(p->pn, vpd + pn, min(i, PN_LEN)); 2829 strim(p->pn); 2830 memcpy(p->na, vpd + na, min(i, MACADDR_LEN)); 2831 strim((char *)p->na); 2832 2833 out: 2834 vfree(vpd); 2835 return ret < 0 ? ret : 0; 2836 } 2837 2838 /** 2839 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock 2840 * @adapter: adapter to read 2841 * @p: where to store the parameters 2842 * 2843 * Reads card parameters stored in VPD EEPROM and retrieves the Core 2844 * Clock. This can only be called after a connection to the firmware 2845 * is established. 2846 */ 2847 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p) 2848 { 2849 u32 cclk_param, cclk_val; 2850 int ret; 2851 2852 /* Grab the raw VPD parameters. 2853 */ 2854 ret = t4_get_raw_vpd_params(adapter, p); 2855 if (ret) 2856 return ret; 2857 2858 /* Ask firmware for the Core Clock since it knows how to translate the 2859 * Reference Clock ('V2') VPD field into a Core Clock value ... 2860 */ 2861 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 2862 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); 2863 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 2864 1, &cclk_param, &cclk_val); 2865 2866 if (ret) 2867 return ret; 2868 p->cclk = cclk_val; 2869 2870 return 0; 2871 } 2872 2873 /** 2874 * t4_get_pfres - retrieve VF resource limits 2875 * @adapter: the adapter 2876 * 2877 * Retrieves configured resource limits and capabilities for a physical 2878 * function. The results are stored in @adapter->pfres. 2879 */ 2880 int t4_get_pfres(struct adapter *adapter) 2881 { 2882 struct pf_resources *pfres = &adapter->params.pfres; 2883 struct fw_pfvf_cmd cmd, rpl; 2884 int v; 2885 u32 word; 2886 2887 /* Execute PFVF Read command to get VF resource limits; bail out early 2888 * with error on command failure. 2889 */ 2890 memset(&cmd, 0, sizeof(cmd)); 2891 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 2892 FW_CMD_REQUEST_F | 2893 FW_CMD_READ_F | 2894 FW_PFVF_CMD_PFN_V(adapter->pf) | 2895 FW_PFVF_CMD_VFN_V(0)); 2896 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 2897 v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl); 2898 if (v != FW_SUCCESS) 2899 return v; 2900 2901 /* Extract PF resource limits and return success. 2902 */ 2903 word = be32_to_cpu(rpl.niqflint_niq); 2904 pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word); 2905 pfres->niq = FW_PFVF_CMD_NIQ_G(word); 2906 2907 word = be32_to_cpu(rpl.type_to_neq); 2908 pfres->neq = FW_PFVF_CMD_NEQ_G(word); 2909 pfres->pmask = FW_PFVF_CMD_PMASK_G(word); 2910 2911 word = be32_to_cpu(rpl.tc_to_nexactf); 2912 pfres->tc = FW_PFVF_CMD_TC_G(word); 2913 pfres->nvi = FW_PFVF_CMD_NVI_G(word); 2914 pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word); 2915 2916 word = be32_to_cpu(rpl.r_caps_to_nethctrl); 2917 pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word); 2918 pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word); 2919 pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word); 2920 2921 return 0; 2922 } 2923 2924 /* serial flash and firmware constants */ 2925 enum { 2926 SF_ATTEMPTS = 10, /* max retries for SF operations */ 2927 2928 /* flash command opcodes */ 2929 SF_PROG_PAGE = 2, /* program page */ 2930 SF_WR_DISABLE = 4, /* disable writes */ 2931 SF_RD_STATUS = 5, /* read status register */ 2932 SF_WR_ENABLE = 6, /* enable writes */ 2933 SF_RD_DATA_FAST = 0xb, /* read flash */ 2934 SF_RD_ID = 0x9f, /* read ID */ 2935 SF_ERASE_SECTOR = 0xd8, /* erase sector */ 2936 }; 2937 2938 /** 2939 * sf1_read - read data from the serial flash 2940 * @adapter: the adapter 2941 * @byte_cnt: number of bytes to read 2942 * @cont: whether another operation will be chained 2943 * @lock: whether to lock SF for PL access only 2944 * @valp: where to store the read data 2945 * 2946 * Reads up to 4 bytes of data from the serial flash. The location of 2947 * the read needs to be specified prior to calling this by issuing the 2948 * appropriate commands to the serial flash. 2949 */ 2950 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 2951 int lock, u32 *valp) 2952 { 2953 int ret; 2954 2955 if (!byte_cnt || byte_cnt > 4) 2956 return -EINVAL; 2957 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2958 return -EBUSY; 2959 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2960 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1)); 2961 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2962 if (!ret) 2963 *valp = t4_read_reg(adapter, SF_DATA_A); 2964 return ret; 2965 } 2966 2967 /** 2968 * sf1_write - write data to the serial flash 2969 * @adapter: the adapter 2970 * @byte_cnt: number of bytes to write 2971 * @cont: whether another operation will be chained 2972 * @lock: whether to lock SF for PL access only 2973 * @val: value to write 2974 * 2975 * Writes up to 4 bytes of data to the serial flash. The location of 2976 * the write needs to be specified prior to calling this by issuing the 2977 * appropriate commands to the serial flash. 2978 */ 2979 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 2980 int lock, u32 val) 2981 { 2982 if (!byte_cnt || byte_cnt > 4) 2983 return -EINVAL; 2984 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2985 return -EBUSY; 2986 t4_write_reg(adapter, SF_DATA_A, val); 2987 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2988 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1)); 2989 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2990 } 2991 2992 /** 2993 * flash_wait_op - wait for a flash operation to complete 2994 * @adapter: the adapter 2995 * @attempts: max number of polls of the status register 2996 * @delay: delay between polls in ms 2997 * 2998 * Wait for a flash operation to complete by polling the status register. 2999 */ 3000 static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 3001 { 3002 int ret; 3003 u32 status; 3004 3005 while (1) { 3006 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 3007 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 3008 return ret; 3009 if (!(status & 1)) 3010 return 0; 3011 if (--attempts == 0) 3012 return -EAGAIN; 3013 if (delay) 3014 msleep(delay); 3015 } 3016 } 3017 3018 /** 3019 * t4_read_flash - read words from serial flash 3020 * @adapter: the adapter 3021 * @addr: the start address for the read 3022 * @nwords: how many 32-bit words to read 3023 * @data: where to store the read data 3024 * @byte_oriented: whether to store data as bytes or as words 3025 * 3026 * Read the specified number of 32-bit words from the serial flash. 3027 * If @byte_oriented is set the read data is stored as a byte array 3028 * (i.e., big-endian), otherwise as 32-bit words in the platform's 3029 * natural endianness. 3030 */ 3031 int t4_read_flash(struct adapter *adapter, unsigned int addr, 3032 unsigned int nwords, u32 *data, int byte_oriented) 3033 { 3034 int ret; 3035 3036 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 3037 return -EINVAL; 3038 3039 addr = swab32(addr) | SF_RD_DATA_FAST; 3040 3041 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 3042 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 3043 return ret; 3044 3045 for ( ; nwords; nwords--, data++) { 3046 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 3047 if (nwords == 1) 3048 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3049 if (ret) 3050 return ret; 3051 if (byte_oriented) 3052 *data = (__force __u32)(cpu_to_be32(*data)); 3053 } 3054 return 0; 3055 } 3056 3057 /** 3058 * t4_write_flash - write up to a page of data to the serial flash 3059 * @adapter: the adapter 3060 * @addr: the start address to write 3061 * @n: length of data to write in bytes 3062 * @data: the data to write 3063 * 3064 * Writes up to a page of data (256 bytes) to the serial flash starting 3065 * at the given address. All the data must be written to the same page. 3066 */ 3067 static int t4_write_flash(struct adapter *adapter, unsigned int addr, 3068 unsigned int n, const u8 *data) 3069 { 3070 int ret; 3071 u32 buf[64]; 3072 unsigned int i, c, left, val, offset = addr & 0xff; 3073 3074 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 3075 return -EINVAL; 3076 3077 val = swab32(addr) | SF_PROG_PAGE; 3078 3079 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3080 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 3081 goto unlock; 3082 3083 for (left = n; left; left -= c) { 3084 c = min(left, 4U); 3085 for (val = 0, i = 0; i < c; ++i) 3086 val = (val << 8) + *data++; 3087 3088 ret = sf1_write(adapter, c, c != left, 1, val); 3089 if (ret) 3090 goto unlock; 3091 } 3092 ret = flash_wait_op(adapter, 8, 1); 3093 if (ret) 3094 goto unlock; 3095 3096 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3097 3098 /* Read the page to verify the write succeeded */ 3099 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); 3100 if (ret) 3101 return ret; 3102 3103 if (memcmp(data - n, (u8 *)buf + offset, n)) { 3104 dev_err(adapter->pdev_dev, 3105 "failed to correctly write the flash page at %#x\n", 3106 addr); 3107 return -EIO; 3108 } 3109 return 0; 3110 3111 unlock: 3112 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3113 return ret; 3114 } 3115 3116 /** 3117 * t4_get_fw_version - read the firmware version 3118 * @adapter: the adapter 3119 * @vers: where to place the version 3120 * 3121 * Reads the FW version from flash. 3122 */ 3123 int t4_get_fw_version(struct adapter *adapter, u32 *vers) 3124 { 3125 return t4_read_flash(adapter, FLASH_FW_START + 3126 offsetof(struct fw_hdr, fw_ver), 1, 3127 vers, 0); 3128 } 3129 3130 /** 3131 * t4_get_bs_version - read the firmware bootstrap version 3132 * @adapter: the adapter 3133 * @vers: where to place the version 3134 * 3135 * Reads the FW Bootstrap version from flash. 3136 */ 3137 int t4_get_bs_version(struct adapter *adapter, u32 *vers) 3138 { 3139 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START + 3140 offsetof(struct fw_hdr, fw_ver), 1, 3141 vers, 0); 3142 } 3143 3144 /** 3145 * t4_get_tp_version - read the TP microcode version 3146 * @adapter: the adapter 3147 * @vers: where to place the version 3148 * 3149 * Reads the TP microcode version from flash. 3150 */ 3151 int t4_get_tp_version(struct adapter *adapter, u32 *vers) 3152 { 3153 return t4_read_flash(adapter, FLASH_FW_START + 3154 offsetof(struct fw_hdr, tp_microcode_ver), 3155 1, vers, 0); 3156 } 3157 3158 /** 3159 * t4_get_exprom_version - return the Expansion ROM version (if any) 3160 * @adap: the adapter 3161 * @vers: where to place the version 3162 * 3163 * Reads the Expansion ROM header from FLASH and returns the version 3164 * number (if present) through the @vers return value pointer. We return 3165 * this in the Firmware Version Format since it's convenient. Return 3166 * 0 on success, -ENOENT if no Expansion ROM is present. 3167 */ 3168 int t4_get_exprom_version(struct adapter *adap, u32 *vers) 3169 { 3170 struct exprom_header { 3171 unsigned char hdr_arr[16]; /* must start with 0x55aa */ 3172 unsigned char hdr_ver[4]; /* Expansion ROM version */ 3173 } *hdr; 3174 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), 3175 sizeof(u32))]; 3176 int ret; 3177 3178 ret = t4_read_flash(adap, FLASH_EXP_ROM_START, 3179 ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 3180 0); 3181 if (ret) 3182 return ret; 3183 3184 hdr = (struct exprom_header *)exprom_header_buf; 3185 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) 3186 return -ENOENT; 3187 3188 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) | 3189 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) | 3190 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) | 3191 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3])); 3192 return 0; 3193 } 3194 3195 /** 3196 * t4_get_vpd_version - return the VPD version 3197 * @adapter: the adapter 3198 * @vers: where to place the version 3199 * 3200 * Reads the VPD via the Firmware interface (thus this can only be called 3201 * once we're ready to issue Firmware commands). The format of the 3202 * VPD version is adapter specific. Returns 0 on success, an error on 3203 * failure. 3204 * 3205 * Note that early versions of the Firmware didn't include the ability 3206 * to retrieve the VPD version, so we zero-out the return-value parameter 3207 * in that case to avoid leaving it with garbage in it. 3208 * 3209 * Also note that the Firmware will return its cached copy of the VPD 3210 * Revision ID, not the actual Revision ID as written in the Serial 3211 * EEPROM. This is only an issue if a new VPD has been written and the 3212 * Firmware/Chip haven't yet gone through a RESET sequence. So it's best 3213 * to defer calling this routine till after a FW_RESET_CMD has been issued 3214 * if the Host Driver will be performing a full adapter initialization. 3215 */ 3216 int t4_get_vpd_version(struct adapter *adapter, u32 *vers) 3217 { 3218 u32 vpdrev_param; 3219 int ret; 3220 3221 vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3222 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV)); 3223 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3224 1, &vpdrev_param, vers); 3225 if (ret) 3226 *vers = 0; 3227 return ret; 3228 } 3229 3230 /** 3231 * t4_get_scfg_version - return the Serial Configuration version 3232 * @adapter: the adapter 3233 * @vers: where to place the version 3234 * 3235 * Reads the Serial Configuration Version via the Firmware interface 3236 * (thus this can only be called once we're ready to issue Firmware 3237 * commands). The format of the Serial Configuration version is 3238 * adapter specific. Returns 0 on success, an error on failure. 3239 * 3240 * Note that early versions of the Firmware didn't include the ability 3241 * to retrieve the Serial Configuration version, so we zero-out the 3242 * return-value parameter in that case to avoid leaving it with 3243 * garbage in it. 3244 * 3245 * Also note that the Firmware will return its cached copy of the Serial 3246 * Initialization Revision ID, not the actual Revision ID as written in 3247 * the Serial EEPROM. This is only an issue if a new VPD has been written 3248 * and the Firmware/Chip haven't yet gone through a RESET sequence. So 3249 * it's best to defer calling this routine till after a FW_RESET_CMD has 3250 * been issued if the Host Driver will be performing a full adapter 3251 * initialization. 3252 */ 3253 int t4_get_scfg_version(struct adapter *adapter, u32 *vers) 3254 { 3255 u32 scfgrev_param; 3256 int ret; 3257 3258 scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3259 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV)); 3260 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3261 1, &scfgrev_param, vers); 3262 if (ret) 3263 *vers = 0; 3264 return ret; 3265 } 3266 3267 /** 3268 * t4_get_version_info - extract various chip/firmware version information 3269 * @adapter: the adapter 3270 * 3271 * Reads various chip/firmware version numbers and stores them into the 3272 * adapter Adapter Parameters structure. If any of the efforts fails 3273 * the first failure will be returned, but all of the version numbers 3274 * will be read. 3275 */ 3276 int t4_get_version_info(struct adapter *adapter) 3277 { 3278 int ret = 0; 3279 3280 #define FIRST_RET(__getvinfo) \ 3281 do { \ 3282 int __ret = __getvinfo; \ 3283 if (__ret && !ret) \ 3284 ret = __ret; \ 3285 } while (0) 3286 3287 FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers)); 3288 FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers)); 3289 FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers)); 3290 FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers)); 3291 FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers)); 3292 FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers)); 3293 3294 #undef FIRST_RET 3295 return ret; 3296 } 3297 3298 /** 3299 * t4_dump_version_info - dump all of the adapter configuration IDs 3300 * @adapter: the adapter 3301 * 3302 * Dumps all of the various bits of adapter configuration version/revision 3303 * IDs information. This is typically called at some point after 3304 * t4_get_version_info() has been called. 3305 */ 3306 void t4_dump_version_info(struct adapter *adapter) 3307 { 3308 /* Device information */ 3309 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n", 3310 adapter->params.vpd.id, 3311 CHELSIO_CHIP_RELEASE(adapter->params.chip)); 3312 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n", 3313 adapter->params.vpd.sn, adapter->params.vpd.pn); 3314 3315 /* Firmware Version */ 3316 if (!adapter->params.fw_vers) 3317 dev_warn(adapter->pdev_dev, "No firmware loaded\n"); 3318 else 3319 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n", 3320 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers), 3321 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers), 3322 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers), 3323 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers)); 3324 3325 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap 3326 * Firmware, so dev_info() is more appropriate here.) 3327 */ 3328 if (!adapter->params.bs_vers) 3329 dev_info(adapter->pdev_dev, "No bootstrap loaded\n"); 3330 else 3331 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n", 3332 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers), 3333 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers), 3334 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers), 3335 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers)); 3336 3337 /* TP Microcode Version */ 3338 if (!adapter->params.tp_vers) 3339 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n"); 3340 else 3341 dev_info(adapter->pdev_dev, 3342 "TP Microcode version: %u.%u.%u.%u\n", 3343 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers), 3344 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers), 3345 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers), 3346 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers)); 3347 3348 /* Expansion ROM version */ 3349 if (!adapter->params.er_vers) 3350 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n"); 3351 else 3352 dev_info(adapter->pdev_dev, 3353 "Expansion ROM version: %u.%u.%u.%u\n", 3354 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers), 3355 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers), 3356 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers), 3357 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers)); 3358 3359 /* Serial Configuration version */ 3360 dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n", 3361 adapter->params.scfg_vers); 3362 3363 /* VPD Version */ 3364 dev_info(adapter->pdev_dev, "VPD version: %#x\n", 3365 adapter->params.vpd_vers); 3366 } 3367 3368 /** 3369 * t4_check_fw_version - check if the FW is supported with this driver 3370 * @adap: the adapter 3371 * 3372 * Checks if an adapter's FW is compatible with the driver. Returns 0 3373 * if there's exact match, a negative error if the version could not be 3374 * read or there's a major version mismatch 3375 */ 3376 int t4_check_fw_version(struct adapter *adap) 3377 { 3378 int i, ret, major, minor, micro; 3379 int exp_major, exp_minor, exp_micro; 3380 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 3381 3382 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3383 /* Try multiple times before returning error */ 3384 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++) 3385 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3386 3387 if (ret) 3388 return ret; 3389 3390 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers); 3391 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers); 3392 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers); 3393 3394 switch (chip_version) { 3395 case CHELSIO_T4: 3396 exp_major = T4FW_MIN_VERSION_MAJOR; 3397 exp_minor = T4FW_MIN_VERSION_MINOR; 3398 exp_micro = T4FW_MIN_VERSION_MICRO; 3399 break; 3400 case CHELSIO_T5: 3401 exp_major = T5FW_MIN_VERSION_MAJOR; 3402 exp_minor = T5FW_MIN_VERSION_MINOR; 3403 exp_micro = T5FW_MIN_VERSION_MICRO; 3404 break; 3405 case CHELSIO_T6: 3406 exp_major = T6FW_MIN_VERSION_MAJOR; 3407 exp_minor = T6FW_MIN_VERSION_MINOR; 3408 exp_micro = T6FW_MIN_VERSION_MICRO; 3409 break; 3410 default: 3411 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n", 3412 adap->chip); 3413 return -EINVAL; 3414 } 3415 3416 if (major < exp_major || (major == exp_major && minor < exp_minor) || 3417 (major == exp_major && minor == exp_minor && micro < exp_micro)) { 3418 dev_err(adap->pdev_dev, 3419 "Card has firmware version %u.%u.%u, minimum " 3420 "supported firmware is %u.%u.%u.\n", major, minor, 3421 micro, exp_major, exp_minor, exp_micro); 3422 return -EFAULT; 3423 } 3424 return 0; 3425 } 3426 3427 /* Is the given firmware API compatible with the one the driver was compiled 3428 * with? 3429 */ 3430 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) 3431 { 3432 3433 /* short circuit if it's the exact same firmware version */ 3434 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 3435 return 1; 3436 3437 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 3438 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 3439 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) 3440 return 1; 3441 #undef SAME_INTF 3442 3443 return 0; 3444 } 3445 3446 /* The firmware in the filesystem is usable, but should it be installed? 3447 * This routine explains itself in detail if it indicates the filesystem 3448 * firmware should be installed. 3449 */ 3450 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable, 3451 int k, int c) 3452 { 3453 const char *reason; 3454 3455 if (!card_fw_usable) { 3456 reason = "incompatible or unusable"; 3457 goto install; 3458 } 3459 3460 if (k > c) { 3461 reason = "older than the version supported with this driver"; 3462 goto install; 3463 } 3464 3465 return 0; 3466 3467 install: 3468 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, " 3469 "installing firmware %u.%u.%u.%u on card.\n", 3470 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3471 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason, 3472 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3473 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3474 3475 return 1; 3476 } 3477 3478 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info, 3479 const u8 *fw_data, unsigned int fw_size, 3480 struct fw_hdr *card_fw, enum dev_state state, 3481 int *reset) 3482 { 3483 int ret, card_fw_usable, fs_fw_usable; 3484 const struct fw_hdr *fs_fw; 3485 const struct fw_hdr *drv_fw; 3486 3487 drv_fw = &fw_info->fw_hdr; 3488 3489 /* Read the header of the firmware on the card */ 3490 ret = t4_read_flash(adap, FLASH_FW_START, 3491 sizeof(*card_fw) / sizeof(uint32_t), 3492 (uint32_t *)card_fw, 1); 3493 if (ret == 0) { 3494 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); 3495 } else { 3496 dev_err(adap->pdev_dev, 3497 "Unable to read card's firmware header: %d\n", ret); 3498 card_fw_usable = 0; 3499 } 3500 3501 if (fw_data != NULL) { 3502 fs_fw = (const void *)fw_data; 3503 fs_fw_usable = fw_compatible(drv_fw, fs_fw); 3504 } else { 3505 fs_fw = NULL; 3506 fs_fw_usable = 0; 3507 } 3508 3509 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && 3510 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { 3511 /* Common case: the firmware on the card is an exact match and 3512 * the filesystem one is an exact match too, or the filesystem 3513 * one is absent/incompatible. 3514 */ 3515 } else if (fs_fw_usable && state == DEV_STATE_UNINIT && 3516 should_install_fs_fw(adap, card_fw_usable, 3517 be32_to_cpu(fs_fw->fw_ver), 3518 be32_to_cpu(card_fw->fw_ver))) { 3519 ret = t4_fw_upgrade(adap, adap->mbox, fw_data, 3520 fw_size, 0); 3521 if (ret != 0) { 3522 dev_err(adap->pdev_dev, 3523 "failed to install firmware: %d\n", ret); 3524 goto bye; 3525 } 3526 3527 /* Installed successfully, update the cached header too. */ 3528 *card_fw = *fs_fw; 3529 card_fw_usable = 1; 3530 *reset = 0; /* already reset as part of load_fw */ 3531 } 3532 3533 if (!card_fw_usable) { 3534 uint32_t d, c, k; 3535 3536 d = be32_to_cpu(drv_fw->fw_ver); 3537 c = be32_to_cpu(card_fw->fw_ver); 3538 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; 3539 3540 dev_err(adap->pdev_dev, "Cannot find a usable firmware: " 3541 "chip state %d, " 3542 "driver compiled with %d.%d.%d.%d, " 3543 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", 3544 state, 3545 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d), 3546 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d), 3547 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3548 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), 3549 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3550 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3551 ret = -EINVAL; 3552 goto bye; 3553 } 3554 3555 /* We're using whatever's on the card and it's known to be good. */ 3556 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver); 3557 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); 3558 3559 bye: 3560 return ret; 3561 } 3562 3563 /** 3564 * t4_flash_erase_sectors - erase a range of flash sectors 3565 * @adapter: the adapter 3566 * @start: the first sector to erase 3567 * @end: the last sector to erase 3568 * 3569 * Erases the sectors in the given inclusive range. 3570 */ 3571 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 3572 { 3573 int ret = 0; 3574 3575 if (end >= adapter->params.sf_nsec) 3576 return -EINVAL; 3577 3578 while (start <= end) { 3579 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3580 (ret = sf1_write(adapter, 4, 0, 1, 3581 SF_ERASE_SECTOR | (start << 8))) != 0 || 3582 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 3583 dev_err(adapter->pdev_dev, 3584 "erase of flash sector %d failed, error %d\n", 3585 start, ret); 3586 break; 3587 } 3588 start++; 3589 } 3590 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3591 return ret; 3592 } 3593 3594 /** 3595 * t4_flash_cfg_addr - return the address of the flash configuration file 3596 * @adapter: the adapter 3597 * 3598 * Return the address within the flash where the Firmware Configuration 3599 * File is stored. 3600 */ 3601 unsigned int t4_flash_cfg_addr(struct adapter *adapter) 3602 { 3603 if (adapter->params.sf_size == 0x100000) 3604 return FLASH_FPGA_CFG_START; 3605 else 3606 return FLASH_CFG_START; 3607 } 3608 3609 /* Return TRUE if the specified firmware matches the adapter. I.e. T4 3610 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead 3611 * and emit an error message for mismatched firmware to save our caller the 3612 * effort ... 3613 */ 3614 static bool t4_fw_matches_chip(const struct adapter *adap, 3615 const struct fw_hdr *hdr) 3616 { 3617 /* The expression below will return FALSE for any unsupported adapter 3618 * which will keep us "honest" in the future ... 3619 */ 3620 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) || 3621 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) || 3622 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6)) 3623 return true; 3624 3625 dev_err(adap->pdev_dev, 3626 "FW image (%d) is not suitable for this adapter (%d)\n", 3627 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip)); 3628 return false; 3629 } 3630 3631 /** 3632 * t4_load_fw - download firmware 3633 * @adap: the adapter 3634 * @fw_data: the firmware image to write 3635 * @size: image size 3636 * 3637 * Write the supplied firmware image to the card's serial flash. 3638 */ 3639 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 3640 { 3641 u32 csum; 3642 int ret, addr; 3643 unsigned int i; 3644 u8 first_page[SF_PAGE_SIZE]; 3645 const __be32 *p = (const __be32 *)fw_data; 3646 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 3647 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 3648 unsigned int fw_start_sec = FLASH_FW_START_SEC; 3649 unsigned int fw_size = FLASH_FW_MAX_SIZE; 3650 unsigned int fw_start = FLASH_FW_START; 3651 3652 if (!size) { 3653 dev_err(adap->pdev_dev, "FW image has no data\n"); 3654 return -EINVAL; 3655 } 3656 if (size & 511) { 3657 dev_err(adap->pdev_dev, 3658 "FW image size not multiple of 512 bytes\n"); 3659 return -EINVAL; 3660 } 3661 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) { 3662 dev_err(adap->pdev_dev, 3663 "FW image size differs from size in FW header\n"); 3664 return -EINVAL; 3665 } 3666 if (size > fw_size) { 3667 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n", 3668 fw_size); 3669 return -EFBIG; 3670 } 3671 if (!t4_fw_matches_chip(adap, hdr)) 3672 return -EINVAL; 3673 3674 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 3675 csum += be32_to_cpu(p[i]); 3676 3677 if (csum != 0xffffffff) { 3678 dev_err(adap->pdev_dev, 3679 "corrupted firmware image, checksum %#x\n", csum); 3680 return -EINVAL; 3681 } 3682 3683 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 3684 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 3685 if (ret) 3686 goto out; 3687 3688 /* 3689 * We write the correct version at the end so the driver can see a bad 3690 * version if the FW write fails. Start by writing a copy of the 3691 * first page with a bad version. 3692 */ 3693 memcpy(first_page, fw_data, SF_PAGE_SIZE); 3694 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); 3695 ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page); 3696 if (ret) 3697 goto out; 3698 3699 addr = fw_start; 3700 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 3701 addr += SF_PAGE_SIZE; 3702 fw_data += SF_PAGE_SIZE; 3703 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data); 3704 if (ret) 3705 goto out; 3706 } 3707 3708 ret = t4_write_flash(adap, 3709 fw_start + offsetof(struct fw_hdr, fw_ver), 3710 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver); 3711 out: 3712 if (ret) 3713 dev_err(adap->pdev_dev, "firmware download failed, error %d\n", 3714 ret); 3715 else 3716 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3717 return ret; 3718 } 3719 3720 /** 3721 * t4_phy_fw_ver - return current PHY firmware version 3722 * @adap: the adapter 3723 * @phy_fw_ver: return value buffer for PHY firmware version 3724 * 3725 * Returns the current version of external PHY firmware on the 3726 * adapter. 3727 */ 3728 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver) 3729 { 3730 u32 param, val; 3731 int ret; 3732 3733 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3734 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3735 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3736 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION)); 3737 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3738 ¶m, &val); 3739 if (ret) 3740 return ret; 3741 *phy_fw_ver = val; 3742 return 0; 3743 } 3744 3745 /** 3746 * t4_load_phy_fw - download port PHY firmware 3747 * @adap: the adapter 3748 * @win: the PCI-E Memory Window index to use for t4_memory_rw() 3749 * @phy_fw_version: function to check PHY firmware versions 3750 * @phy_fw_data: the PHY firmware image to write 3751 * @phy_fw_size: image size 3752 * 3753 * Transfer the specified PHY firmware to the adapter. If a non-NULL 3754 * @phy_fw_version is supplied, then it will be used to determine if 3755 * it's necessary to perform the transfer by comparing the version 3756 * of any existing adapter PHY firmware with that of the passed in 3757 * PHY firmware image. 3758 * 3759 * A negative error number will be returned if an error occurs. If 3760 * version number support is available and there's no need to upgrade 3761 * the firmware, 0 will be returned. If firmware is successfully 3762 * transferred to the adapter, 1 will be returned. 3763 * 3764 * NOTE: some adapters only have local RAM to store the PHY firmware. As 3765 * a result, a RESET of the adapter would cause that RAM to lose its 3766 * contents. Thus, loading PHY firmware on such adapters must happen 3767 * after any FW_RESET_CMDs ... 3768 */ 3769 int t4_load_phy_fw(struct adapter *adap, int win, 3770 int (*phy_fw_version)(const u8 *, size_t), 3771 const u8 *phy_fw_data, size_t phy_fw_size) 3772 { 3773 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0; 3774 unsigned long mtype = 0, maddr = 0; 3775 u32 param, val; 3776 int ret; 3777 3778 /* If we have version number support, then check to see if the adapter 3779 * already has up-to-date PHY firmware loaded. 3780 */ 3781 if (phy_fw_version) { 3782 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size); 3783 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3784 if (ret < 0) 3785 return ret; 3786 3787 if (cur_phy_fw_ver >= new_phy_fw_vers) { 3788 CH_WARN(adap, "PHY Firmware already up-to-date, " 3789 "version %#x\n", cur_phy_fw_ver); 3790 return 0; 3791 } 3792 } 3793 3794 /* Ask the firmware where it wants us to copy the PHY firmware image. 3795 * The size of the file requires a special version of the READ command 3796 * which will pass the file size via the values field in PARAMS_CMD and 3797 * retrieve the return value from firmware and place it in the same 3798 * buffer values 3799 */ 3800 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3801 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3802 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3803 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3804 val = phy_fw_size; 3805 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1, 3806 ¶m, &val, 1, true); 3807 if (ret < 0) 3808 return ret; 3809 mtype = val >> 8; 3810 maddr = (val & 0xff) << 16; 3811 3812 /* Copy the supplied PHY Firmware image to the adapter memory location 3813 * allocated by the adapter firmware. 3814 */ 3815 ret = t4_memory_rw(adap, win, mtype, maddr, 3816 phy_fw_size, (__be32 *)phy_fw_data, 3817 T4_MEMORY_WRITE); 3818 if (ret) 3819 return ret; 3820 3821 /* Tell the firmware that the PHY firmware image has been written to 3822 * RAM and it can now start copying it over to the PHYs. The chip 3823 * firmware will RESET the affected PHYs as part of this operation 3824 * leaving them running the new PHY firmware image. 3825 */ 3826 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3827 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3828 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3829 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3830 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 3831 ¶m, &val, 30000); 3832 3833 /* If we have version number support, then check to see that the new 3834 * firmware got loaded properly. 3835 */ 3836 if (phy_fw_version) { 3837 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3838 if (ret < 0) 3839 return ret; 3840 3841 if (cur_phy_fw_ver != new_phy_fw_vers) { 3842 CH_WARN(adap, "PHY Firmware did not update: " 3843 "version on adapter %#x, " 3844 "version flashed %#x\n", 3845 cur_phy_fw_ver, new_phy_fw_vers); 3846 return -ENXIO; 3847 } 3848 } 3849 3850 return 1; 3851 } 3852 3853 /** 3854 * t4_fwcache - firmware cache operation 3855 * @adap: the adapter 3856 * @op : the operation (flush or flush and invalidate) 3857 */ 3858 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) 3859 { 3860 struct fw_params_cmd c; 3861 3862 memset(&c, 0, sizeof(c)); 3863 c.op_to_vfn = 3864 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 3865 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 3866 FW_PARAMS_CMD_PFN_V(adap->pf) | 3867 FW_PARAMS_CMD_VFN_V(0)); 3868 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 3869 c.param[0].mnem = 3870 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3871 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE)); 3872 c.param[0].val = cpu_to_be32(op); 3873 3874 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); 3875 } 3876 3877 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, 3878 unsigned int *pif_req_wrptr, 3879 unsigned int *pif_rsp_wrptr) 3880 { 3881 int i, j; 3882 u32 cfg, val, req, rsp; 3883 3884 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3885 if (cfg & LADBGEN_F) 3886 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3887 3888 val = t4_read_reg(adap, CIM_DEBUGSTS_A); 3889 req = POLADBGWRPTR_G(val); 3890 rsp = PILADBGWRPTR_G(val); 3891 if (pif_req_wrptr) 3892 *pif_req_wrptr = req; 3893 if (pif_rsp_wrptr) 3894 *pif_rsp_wrptr = rsp; 3895 3896 for (i = 0; i < CIM_PIFLA_SIZE; i++) { 3897 for (j = 0; j < 6; j++) { 3898 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) | 3899 PILADBGRDPTR_V(rsp)); 3900 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A); 3901 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A); 3902 req++; 3903 rsp++; 3904 } 3905 req = (req + 2) & POLADBGRDPTR_M; 3906 rsp = (rsp + 2) & PILADBGRDPTR_M; 3907 } 3908 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3909 } 3910 3911 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) 3912 { 3913 u32 cfg; 3914 int i, j, idx; 3915 3916 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3917 if (cfg & LADBGEN_F) 3918 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3919 3920 for (i = 0; i < CIM_MALA_SIZE; i++) { 3921 for (j = 0; j < 5; j++) { 3922 idx = 8 * i + j; 3923 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) | 3924 PILADBGRDPTR_V(idx)); 3925 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A); 3926 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A); 3927 } 3928 } 3929 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3930 } 3931 3932 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) 3933 { 3934 unsigned int i, j; 3935 3936 for (i = 0; i < 8; i++) { 3937 u32 *p = la_buf + i; 3938 3939 t4_write_reg(adap, ULP_RX_LA_CTL_A, i); 3940 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A); 3941 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j); 3942 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) 3943 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A); 3944 } 3945 } 3946 3947 /* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port 3948 * Capabilities which we control with separate controls -- see, for instance, 3949 * Pause Frames and Forward Error Correction. In order to determine what the 3950 * full set of Advertised Port Capabilities are, the base Advertised Port 3951 * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised 3952 * Port Capabilities associated with those other controls. See 3953 * t4_link_acaps() for how this is done. 3954 */ 3955 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \ 3956 FW_PORT_CAP32_ANEG) 3957 3958 /** 3959 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits 3960 * @caps16: a 16-bit Port Capabilities value 3961 * 3962 * Returns the equivalent 32-bit Port Capabilities value. 3963 */ 3964 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16) 3965 { 3966 fw_port_cap32_t caps32 = 0; 3967 3968 #define CAP16_TO_CAP32(__cap) \ 3969 do { \ 3970 if (caps16 & FW_PORT_CAP_##__cap) \ 3971 caps32 |= FW_PORT_CAP32_##__cap; \ 3972 } while (0) 3973 3974 CAP16_TO_CAP32(SPEED_100M); 3975 CAP16_TO_CAP32(SPEED_1G); 3976 CAP16_TO_CAP32(SPEED_25G); 3977 CAP16_TO_CAP32(SPEED_10G); 3978 CAP16_TO_CAP32(SPEED_40G); 3979 CAP16_TO_CAP32(SPEED_100G); 3980 CAP16_TO_CAP32(FC_RX); 3981 CAP16_TO_CAP32(FC_TX); 3982 CAP16_TO_CAP32(ANEG); 3983 CAP16_TO_CAP32(FORCE_PAUSE); 3984 CAP16_TO_CAP32(MDIAUTO); 3985 CAP16_TO_CAP32(MDISTRAIGHT); 3986 CAP16_TO_CAP32(FEC_RS); 3987 CAP16_TO_CAP32(FEC_BASER_RS); 3988 CAP16_TO_CAP32(802_3_PAUSE); 3989 CAP16_TO_CAP32(802_3_ASM_DIR); 3990 3991 #undef CAP16_TO_CAP32 3992 3993 return caps32; 3994 } 3995 3996 /** 3997 * fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits 3998 * @caps32: a 32-bit Port Capabilities value 3999 * 4000 * Returns the equivalent 16-bit Port Capabilities value. Note that 4001 * not all 32-bit Port Capabilities can be represented in the 16-bit 4002 * Port Capabilities and some fields/values may not make it. 4003 */ 4004 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32) 4005 { 4006 fw_port_cap16_t caps16 = 0; 4007 4008 #define CAP32_TO_CAP16(__cap) \ 4009 do { \ 4010 if (caps32 & FW_PORT_CAP32_##__cap) \ 4011 caps16 |= FW_PORT_CAP_##__cap; \ 4012 } while (0) 4013 4014 CAP32_TO_CAP16(SPEED_100M); 4015 CAP32_TO_CAP16(SPEED_1G); 4016 CAP32_TO_CAP16(SPEED_10G); 4017 CAP32_TO_CAP16(SPEED_25G); 4018 CAP32_TO_CAP16(SPEED_40G); 4019 CAP32_TO_CAP16(SPEED_100G); 4020 CAP32_TO_CAP16(FC_RX); 4021 CAP32_TO_CAP16(FC_TX); 4022 CAP32_TO_CAP16(802_3_PAUSE); 4023 CAP32_TO_CAP16(802_3_ASM_DIR); 4024 CAP32_TO_CAP16(ANEG); 4025 CAP32_TO_CAP16(FORCE_PAUSE); 4026 CAP32_TO_CAP16(MDIAUTO); 4027 CAP32_TO_CAP16(MDISTRAIGHT); 4028 CAP32_TO_CAP16(FEC_RS); 4029 CAP32_TO_CAP16(FEC_BASER_RS); 4030 4031 #undef CAP32_TO_CAP16 4032 4033 return caps16; 4034 } 4035 4036 /* Translate Firmware Port Capabilities Pause specification to Common Code */ 4037 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause) 4038 { 4039 enum cc_pause cc_pause = 0; 4040 4041 if (fw_pause & FW_PORT_CAP32_FC_RX) 4042 cc_pause |= PAUSE_RX; 4043 if (fw_pause & FW_PORT_CAP32_FC_TX) 4044 cc_pause |= PAUSE_TX; 4045 4046 return cc_pause; 4047 } 4048 4049 /* Translate Common Code Pause specification into Firmware Port Capabilities */ 4050 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause) 4051 { 4052 /* Translate orthogonal RX/TX Pause Controls for L1 Configure 4053 * commands, etc. 4054 */ 4055 fw_port_cap32_t fw_pause = 0; 4056 4057 if (cc_pause & PAUSE_RX) 4058 fw_pause |= FW_PORT_CAP32_FC_RX; 4059 if (cc_pause & PAUSE_TX) 4060 fw_pause |= FW_PORT_CAP32_FC_TX; 4061 if (!(cc_pause & PAUSE_AUTONEG)) 4062 fw_pause |= FW_PORT_CAP32_FORCE_PAUSE; 4063 4064 /* Translate orthogonal Pause controls into IEEE 802.3 Pause, 4065 * Asymmetrical Pause for use in reporting to upper layer OS code, etc. 4066 * Note that these bits are ignored in L1 Configure commands. 4067 */ 4068 if (cc_pause & PAUSE_RX) { 4069 if (cc_pause & PAUSE_TX) 4070 fw_pause |= FW_PORT_CAP32_802_3_PAUSE; 4071 else 4072 fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR | 4073 FW_PORT_CAP32_802_3_PAUSE; 4074 } else if (cc_pause & PAUSE_TX) { 4075 fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR; 4076 } 4077 4078 return fw_pause; 4079 } 4080 4081 /* Translate Firmware Forward Error Correction specification to Common Code */ 4082 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec) 4083 { 4084 enum cc_fec cc_fec = 0; 4085 4086 if (fw_fec & FW_PORT_CAP32_FEC_RS) 4087 cc_fec |= FEC_RS; 4088 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) 4089 cc_fec |= FEC_BASER_RS; 4090 4091 return cc_fec; 4092 } 4093 4094 /* Translate Common Code Forward Error Correction specification to Firmware */ 4095 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec) 4096 { 4097 fw_port_cap32_t fw_fec = 0; 4098 4099 if (cc_fec & FEC_RS) 4100 fw_fec |= FW_PORT_CAP32_FEC_RS; 4101 if (cc_fec & FEC_BASER_RS) 4102 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS; 4103 4104 return fw_fec; 4105 } 4106 4107 /** 4108 * t4_link_acaps - compute Link Advertised Port Capabilities 4109 * @adapter: the adapter 4110 * @port: the Port ID 4111 * @lc: the Port's Link Configuration 4112 * 4113 * Synthesize the Advertised Port Capabilities we'll be using based on 4114 * the base Advertised Port Capabilities (which have been filtered by 4115 * ADVERT_MASK) plus the individual controls for things like Pause 4116 * Frames, Forward Error Correction, MDI, etc. 4117 */ 4118 fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port, 4119 struct link_config *lc) 4120 { 4121 fw_port_cap32_t fw_fc, fw_fec, acaps; 4122 unsigned int fw_mdi; 4123 char cc_fec; 4124 4125 fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps); 4126 4127 /* Convert driver coding of Pause Frame Flow Control settings into the 4128 * Firmware's API. 4129 */ 4130 fw_fc = cc_to_fwcap_pause(lc->requested_fc); 4131 4132 /* Convert Common Code Forward Error Control settings into the 4133 * Firmware's API. If the current Requested FEC has "Automatic" 4134 * (IEEE 802.3) specified, then we use whatever the Firmware 4135 * sent us as part of its IEEE 802.3-based interpretation of 4136 * the Transceiver Module EPROM FEC parameters. Otherwise we 4137 * use whatever is in the current Requested FEC settings. 4138 */ 4139 if (lc->requested_fec & FEC_AUTO) 4140 cc_fec = fwcap_to_cc_fec(lc->def_acaps); 4141 else 4142 cc_fec = lc->requested_fec; 4143 fw_fec = cc_to_fwcap_fec(cc_fec); 4144 4145 /* Figure out what our Requested Port Capabilities are going to be. 4146 * Note parallel structure in t4_handle_get_port_info() and 4147 * init_link_config(). 4148 */ 4149 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 4150 acaps = lc->acaps | fw_fc | fw_fec; 4151 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4152 lc->fec = cc_fec; 4153 } else if (lc->autoneg == AUTONEG_DISABLE) { 4154 acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi; 4155 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4156 lc->fec = cc_fec; 4157 } else { 4158 acaps = lc->acaps | fw_fc | fw_fec | fw_mdi; 4159 } 4160 4161 /* Some Requested Port Capabilities are trivially wrong if they exceed 4162 * the Physical Port Capabilities. We can check that here and provide 4163 * moderately useful feedback in the system log. 4164 * 4165 * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so 4166 * we need to exclude this from this check in order to maintain 4167 * compatibility ... 4168 */ 4169 if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) { 4170 dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n", 4171 acaps, lc->pcaps); 4172 return -EINVAL; 4173 } 4174 4175 return acaps; 4176 } 4177 4178 /** 4179 * t4_link_l1cfg_core - apply link configuration to MAC/PHY 4180 * @adapter: the adapter 4181 * @mbox: the Firmware Mailbox to use 4182 * @port: the Port ID 4183 * @lc: the Port's Link Configuration 4184 * @sleep_ok: if true we may sleep while awaiting command completion 4185 * @timeout: time to wait for command to finish before timing out 4186 * (negative implies @sleep_ok=false) 4187 * 4188 * Set up a port's MAC and PHY according to a desired link configuration. 4189 * - If the PHY can auto-negotiate first decide what to advertise, then 4190 * enable/disable auto-negotiation as desired, and reset. 4191 * - If the PHY does not auto-negotiate just reset it. 4192 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 4193 * otherwise do it later based on the outcome of auto-negotiation. 4194 */ 4195 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox, 4196 unsigned int port, struct link_config *lc, 4197 u8 sleep_ok, int timeout) 4198 { 4199 unsigned int fw_caps = adapter->params.fw_caps_support; 4200 struct fw_port_cmd cmd; 4201 fw_port_cap32_t rcap; 4202 int ret; 4203 4204 if (!(lc->pcaps & FW_PORT_CAP32_ANEG) && 4205 lc->autoneg == AUTONEG_ENABLE) { 4206 return -EINVAL; 4207 } 4208 4209 /* Compute our Requested Port Capabilities and send that on to the 4210 * Firmware. 4211 */ 4212 rcap = t4_link_acaps(adapter, port, lc); 4213 memset(&cmd, 0, sizeof(cmd)); 4214 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4215 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4216 FW_PORT_CMD_PORTID_V(port)); 4217 cmd.action_to_len16 = 4218 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4219 ? FW_PORT_ACTION_L1_CFG 4220 : FW_PORT_ACTION_L1_CFG32) | 4221 FW_LEN16(cmd)); 4222 if (fw_caps == FW_CAPS16) 4223 cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap)); 4224 else 4225 cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap); 4226 4227 ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL, 4228 sleep_ok, timeout); 4229 4230 /* Unfortunately, even if the Requested Port Capabilities "fit" within 4231 * the Physical Port Capabilities, some combinations of features may 4232 * still not be legal. For example, 40Gb/s and Reed-Solomon Forward 4233 * Error Correction. So if the Firmware rejects the L1 Configure 4234 * request, flag that here. 4235 */ 4236 if (ret) { 4237 dev_err(adapter->pdev_dev, 4238 "Requested Port Capabilities %#x rejected, error %d\n", 4239 rcap, -ret); 4240 return ret; 4241 } 4242 return 0; 4243 } 4244 4245 /** 4246 * t4_restart_aneg - restart autonegotiation 4247 * @adap: the adapter 4248 * @mbox: mbox to use for the FW command 4249 * @port: the port id 4250 * 4251 * Restarts autonegotiation for the selected port. 4252 */ 4253 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 4254 { 4255 unsigned int fw_caps = adap->params.fw_caps_support; 4256 struct fw_port_cmd c; 4257 4258 memset(&c, 0, sizeof(c)); 4259 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4260 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4261 FW_PORT_CMD_PORTID_V(port)); 4262 c.action_to_len16 = 4263 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4264 ? FW_PORT_ACTION_L1_CFG 4265 : FW_PORT_ACTION_L1_CFG32) | 4266 FW_LEN16(c)); 4267 if (fw_caps == FW_CAPS16) 4268 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG); 4269 else 4270 c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG); 4271 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4272 } 4273 4274 typedef void (*int_handler_t)(struct adapter *adap); 4275 4276 struct intr_info { 4277 unsigned int mask; /* bits to check in interrupt status */ 4278 const char *msg; /* message to print or NULL */ 4279 short stat_idx; /* stat counter to increment or -1 */ 4280 unsigned short fatal; /* whether the condition reported is fatal */ 4281 int_handler_t int_handler; /* platform-specific int handler */ 4282 }; 4283 4284 /** 4285 * t4_handle_intr_status - table driven interrupt handler 4286 * @adapter: the adapter that generated the interrupt 4287 * @reg: the interrupt status register to process 4288 * @acts: table of interrupt actions 4289 * 4290 * A table driven interrupt handler that applies a set of masks to an 4291 * interrupt status word and performs the corresponding actions if the 4292 * interrupts described by the mask have occurred. The actions include 4293 * optionally emitting a warning or alert message. The table is terminated 4294 * by an entry specifying mask 0. Returns the number of fatal interrupt 4295 * conditions. 4296 */ 4297 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, 4298 const struct intr_info *acts) 4299 { 4300 int fatal = 0; 4301 unsigned int mask = 0; 4302 unsigned int status = t4_read_reg(adapter, reg); 4303 4304 for ( ; acts->mask; ++acts) { 4305 if (!(status & acts->mask)) 4306 continue; 4307 if (acts->fatal) { 4308 fatal++; 4309 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4310 status & acts->mask); 4311 } else if (acts->msg && printk_ratelimit()) 4312 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4313 status & acts->mask); 4314 if (acts->int_handler) 4315 acts->int_handler(adapter); 4316 mask |= acts->mask; 4317 } 4318 status &= mask; 4319 if (status) /* clear processed interrupts */ 4320 t4_write_reg(adapter, reg, status); 4321 return fatal; 4322 } 4323 4324 /* 4325 * Interrupt handler for the PCIE module. 4326 */ 4327 static void pcie_intr_handler(struct adapter *adapter) 4328 { 4329 static const struct intr_info sysbus_intr_info[] = { 4330 { RNPP_F, "RXNP array parity error", -1, 1 }, 4331 { RPCP_F, "RXPC array parity error", -1, 1 }, 4332 { RCIP_F, "RXCIF array parity error", -1, 1 }, 4333 { RCCP_F, "Rx completions control array parity error", -1, 1 }, 4334 { RFTP_F, "RXFT array parity error", -1, 1 }, 4335 { 0 } 4336 }; 4337 static const struct intr_info pcie_port_intr_info[] = { 4338 { TPCP_F, "TXPC array parity error", -1, 1 }, 4339 { TNPP_F, "TXNP array parity error", -1, 1 }, 4340 { TFTP_F, "TXFT array parity error", -1, 1 }, 4341 { TCAP_F, "TXCA array parity error", -1, 1 }, 4342 { TCIP_F, "TXCIF array parity error", -1, 1 }, 4343 { RCAP_F, "RXCA array parity error", -1, 1 }, 4344 { OTDD_F, "outbound request TLP discarded", -1, 1 }, 4345 { RDPE_F, "Rx data parity error", -1, 1 }, 4346 { TDUE_F, "Tx uncorrectable data error", -1, 1 }, 4347 { 0 } 4348 }; 4349 static const struct intr_info pcie_intr_info[] = { 4350 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 }, 4351 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 }, 4352 { MSIDATAPERR_F, "MSI data parity error", -1, 1 }, 4353 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4354 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4355 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4356 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4357 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 }, 4358 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 }, 4359 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4360 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 }, 4361 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4362 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4363 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 }, 4364 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4365 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4366 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4367 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4368 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4369 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4370 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4371 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 }, 4372 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 }, 4373 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4374 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 }, 4375 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 }, 4376 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 }, 4377 { PCIESINT_F, "PCI core secondary fault", -1, 1 }, 4378 { PCIEPINT_F, "PCI core primary fault", -1, 1 }, 4379 { UNXSPLCPLERR_F, "PCI unexpected split completion error", 4380 -1, 0 }, 4381 { 0 } 4382 }; 4383 4384 static struct intr_info t5_pcie_intr_info[] = { 4385 { MSTGRPPERR_F, "Master Response Read Queue parity error", 4386 -1, 1 }, 4387 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 }, 4388 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 }, 4389 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4390 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4391 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4392 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4393 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error", 4394 -1, 1 }, 4395 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error", 4396 -1, 1 }, 4397 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4398 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 }, 4399 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4400 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4401 { DREQWRPERR_F, "PCI DMA channel write request parity error", 4402 -1, 1 }, 4403 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4404 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4405 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4406 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4407 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4408 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4409 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4410 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 }, 4411 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 }, 4412 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4413 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error", 4414 -1, 1 }, 4415 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error", 4416 -1, 1 }, 4417 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 }, 4418 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 }, 4419 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 }, 4420 { READRSPERR_F, "Outbound read error", -1, 0 }, 4421 { 0 } 4422 }; 4423 4424 int fat; 4425 4426 if (is_t4(adapter->params.chip)) 4427 fat = t4_handle_intr_status(adapter, 4428 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A, 4429 sysbus_intr_info) + 4430 t4_handle_intr_status(adapter, 4431 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A, 4432 pcie_port_intr_info) + 4433 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4434 pcie_intr_info); 4435 else 4436 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4437 t5_pcie_intr_info); 4438 4439 if (fat) 4440 t4_fatal_err(adapter); 4441 } 4442 4443 /* 4444 * TP interrupt handler. 4445 */ 4446 static void tp_intr_handler(struct adapter *adapter) 4447 { 4448 static const struct intr_info tp_intr_info[] = { 4449 { 0x3fffffff, "TP parity error", -1, 1 }, 4450 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 }, 4451 { 0 } 4452 }; 4453 4454 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info)) 4455 t4_fatal_err(adapter); 4456 } 4457 4458 /* 4459 * SGE interrupt handler. 4460 */ 4461 static void sge_intr_handler(struct adapter *adapter) 4462 { 4463 u32 v = 0, perr; 4464 u32 err; 4465 4466 static const struct intr_info sge_intr_info[] = { 4467 { ERR_CPL_EXCEED_IQE_SIZE_F, 4468 "SGE received CPL exceeding IQE size", -1, 1 }, 4469 { ERR_INVALID_CIDX_INC_F, 4470 "SGE GTS CIDX increment too large", -1, 0 }, 4471 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 }, 4472 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full }, 4473 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F, 4474 "SGE IQID > 1023 received CPL for FL", -1, 0 }, 4475 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1, 4476 0 }, 4477 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1, 4478 0 }, 4479 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1, 4480 0 }, 4481 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1, 4482 0 }, 4483 { ERR_ING_CTXT_PRIO_F, 4484 "SGE too many priority ingress contexts", -1, 0 }, 4485 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 }, 4486 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 }, 4487 { 0 } 4488 }; 4489 4490 static struct intr_info t4t5_sge_intr_info[] = { 4491 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped }, 4492 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full }, 4493 { ERR_EGR_CTXT_PRIO_F, 4494 "SGE too many priority egress contexts", -1, 0 }, 4495 { 0 } 4496 }; 4497 4498 perr = t4_read_reg(adapter, SGE_INT_CAUSE1_A); 4499 if (perr) { 4500 v |= perr; 4501 dev_alert(adapter->pdev_dev, "SGE Cause1 Parity Error %#x\n", 4502 perr); 4503 } 4504 4505 perr = t4_read_reg(adapter, SGE_INT_CAUSE2_A); 4506 if (perr) { 4507 v |= perr; 4508 dev_alert(adapter->pdev_dev, "SGE Cause2 Parity Error %#x\n", 4509 perr); 4510 } 4511 4512 if (CHELSIO_CHIP_VERSION(adapter->params.chip) >= CHELSIO_T5) { 4513 perr = t4_read_reg(adapter, SGE_INT_CAUSE5_A); 4514 /* Parity error (CRC) for err_T_RxCRC is trivial, ignore it */ 4515 perr &= ~ERR_T_RXCRC_F; 4516 if (perr) { 4517 v |= perr; 4518 dev_alert(adapter->pdev_dev, 4519 "SGE Cause5 Parity Error %#x\n", perr); 4520 } 4521 } 4522 4523 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info); 4524 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4525 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, 4526 t4t5_sge_intr_info); 4527 4528 err = t4_read_reg(adapter, SGE_ERROR_STATS_A); 4529 if (err & ERROR_QID_VALID_F) { 4530 dev_err(adapter->pdev_dev, "SGE error for queue %u\n", 4531 ERROR_QID_G(err)); 4532 if (err & UNCAPTURED_ERROR_F) 4533 dev_err(adapter->pdev_dev, 4534 "SGE UNCAPTURED_ERROR set (clearing)\n"); 4535 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F | 4536 UNCAPTURED_ERROR_F); 4537 } 4538 4539 if (v != 0) 4540 t4_fatal_err(adapter); 4541 } 4542 4543 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\ 4544 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F) 4545 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\ 4546 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F) 4547 4548 /* 4549 * CIM interrupt handler. 4550 */ 4551 static void cim_intr_handler(struct adapter *adapter) 4552 { 4553 static const struct intr_info cim_intr_info[] = { 4554 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 }, 4555 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, 4556 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, 4557 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 }, 4558 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 }, 4559 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 }, 4560 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 }, 4561 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 }, 4562 { 0 } 4563 }; 4564 static const struct intr_info cim_upintr_info[] = { 4565 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 }, 4566 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 }, 4567 { ILLWRINT_F, "CIM illegal write", -1, 1 }, 4568 { ILLRDINT_F, "CIM illegal read", -1, 1 }, 4569 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 }, 4570 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 }, 4571 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 }, 4572 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 }, 4573 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 }, 4574 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 }, 4575 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 }, 4576 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 }, 4577 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 }, 4578 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 }, 4579 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 }, 4580 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 }, 4581 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 }, 4582 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 }, 4583 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 }, 4584 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 }, 4585 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 }, 4586 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 }, 4587 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 }, 4588 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 }, 4589 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 }, 4590 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 }, 4591 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 }, 4592 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 }, 4593 { 0 } 4594 }; 4595 4596 u32 val, fw_err; 4597 int fat; 4598 4599 fw_err = t4_read_reg(adapter, PCIE_FW_A); 4600 if (fw_err & PCIE_FW_ERR_F) 4601 t4_report_fw_error(adapter); 4602 4603 /* When the Firmware detects an internal error which normally 4604 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt 4605 * in order to make sure the Host sees the Firmware Crash. So 4606 * if we have a Timer0 interrupt and don't see a Firmware Crash, 4607 * ignore the Timer0 interrupt. 4608 */ 4609 4610 val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A); 4611 if (val & TIMER0INT_F) 4612 if (!(fw_err & PCIE_FW_ERR_F) || 4613 (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH)) 4614 t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A, 4615 TIMER0INT_F); 4616 4617 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A, 4618 cim_intr_info) + 4619 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A, 4620 cim_upintr_info); 4621 if (fat) 4622 t4_fatal_err(adapter); 4623 } 4624 4625 /* 4626 * ULP RX interrupt handler. 4627 */ 4628 static void ulprx_intr_handler(struct adapter *adapter) 4629 { 4630 static const struct intr_info ulprx_intr_info[] = { 4631 { 0x1800000, "ULPRX context error", -1, 1 }, 4632 { 0x7fffff, "ULPRX parity error", -1, 1 }, 4633 { 0 } 4634 }; 4635 4636 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info)) 4637 t4_fatal_err(adapter); 4638 } 4639 4640 /* 4641 * ULP TX interrupt handler. 4642 */ 4643 static void ulptx_intr_handler(struct adapter *adapter) 4644 { 4645 static const struct intr_info ulptx_intr_info[] = { 4646 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1, 4647 0 }, 4648 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1, 4649 0 }, 4650 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1, 4651 0 }, 4652 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1, 4653 0 }, 4654 { 0xfffffff, "ULPTX parity error", -1, 1 }, 4655 { 0 } 4656 }; 4657 4658 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info)) 4659 t4_fatal_err(adapter); 4660 } 4661 4662 /* 4663 * PM TX interrupt handler. 4664 */ 4665 static void pmtx_intr_handler(struct adapter *adapter) 4666 { 4667 static const struct intr_info pmtx_intr_info[] = { 4668 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 }, 4669 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 }, 4670 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 }, 4671 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 }, 4672 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 }, 4673 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 }, 4674 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", 4675 -1, 1 }, 4676 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 }, 4677 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1}, 4678 { 0 } 4679 }; 4680 4681 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info)) 4682 t4_fatal_err(adapter); 4683 } 4684 4685 /* 4686 * PM RX interrupt handler. 4687 */ 4688 static void pmrx_intr_handler(struct adapter *adapter) 4689 { 4690 static const struct intr_info pmrx_intr_info[] = { 4691 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 }, 4692 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 }, 4693 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 }, 4694 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", 4695 -1, 1 }, 4696 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 }, 4697 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1}, 4698 { 0 } 4699 }; 4700 4701 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info)) 4702 t4_fatal_err(adapter); 4703 } 4704 4705 /* 4706 * CPL switch interrupt handler. 4707 */ 4708 static void cplsw_intr_handler(struct adapter *adapter) 4709 { 4710 static const struct intr_info cplsw_intr_info[] = { 4711 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 }, 4712 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 }, 4713 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 }, 4714 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 }, 4715 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 }, 4716 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 }, 4717 { 0 } 4718 }; 4719 4720 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info)) 4721 t4_fatal_err(adapter); 4722 } 4723 4724 /* 4725 * LE interrupt handler. 4726 */ 4727 static void le_intr_handler(struct adapter *adap) 4728 { 4729 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); 4730 static const struct intr_info le_intr_info[] = { 4731 { LIPMISS_F, "LE LIP miss", -1, 0 }, 4732 { LIP0_F, "LE 0 LIP error", -1, 0 }, 4733 { PARITYERR_F, "LE parity error", -1, 1 }, 4734 { UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4735 { REQQPARERR_F, "LE request queue parity error", -1, 1 }, 4736 { 0 } 4737 }; 4738 4739 static struct intr_info t6_le_intr_info[] = { 4740 { T6_LIPMISS_F, "LE LIP miss", -1, 0 }, 4741 { T6_LIP0_F, "LE 0 LIP error", -1, 0 }, 4742 { CMDTIDERR_F, "LE cmd tid error", -1, 1 }, 4743 { TCAMINTPERR_F, "LE parity error", -1, 1 }, 4744 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4745 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 }, 4746 { HASHTBLMEMCRCERR_F, "LE hash table mem crc error", -1, 0 }, 4747 { 0 } 4748 }; 4749 4750 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A, 4751 (chip <= CHELSIO_T5) ? 4752 le_intr_info : t6_le_intr_info)) 4753 t4_fatal_err(adap); 4754 } 4755 4756 /* 4757 * MPS interrupt handler. 4758 */ 4759 static void mps_intr_handler(struct adapter *adapter) 4760 { 4761 static const struct intr_info mps_rx_intr_info[] = { 4762 { 0xffffff, "MPS Rx parity error", -1, 1 }, 4763 { 0 } 4764 }; 4765 static const struct intr_info mps_tx_intr_info[] = { 4766 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4767 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4768 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4769 -1, 1 }, 4770 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4771 -1, 1 }, 4772 { BUBBLE_F, "MPS Tx underflow", -1, 1 }, 4773 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4774 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4775 { 0 } 4776 }; 4777 static const struct intr_info t6_mps_tx_intr_info[] = { 4778 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4779 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4780 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4781 -1, 1 }, 4782 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4783 -1, 1 }, 4784 /* MPS Tx Bubble is normal for T6 */ 4785 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4786 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4787 { 0 } 4788 }; 4789 static const struct intr_info mps_trc_intr_info[] = { 4790 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 }, 4791 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error", 4792 -1, 1 }, 4793 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 }, 4794 { 0 } 4795 }; 4796 static const struct intr_info mps_stat_sram_intr_info[] = { 4797 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, 4798 { 0 } 4799 }; 4800 static const struct intr_info mps_stat_tx_intr_info[] = { 4801 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, 4802 { 0 } 4803 }; 4804 static const struct intr_info mps_stat_rx_intr_info[] = { 4805 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, 4806 { 0 } 4807 }; 4808 static const struct intr_info mps_cls_intr_info[] = { 4809 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 }, 4810 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 }, 4811 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 }, 4812 { 0 } 4813 }; 4814 4815 int fat; 4816 4817 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A, 4818 mps_rx_intr_info) + 4819 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A, 4820 is_t6(adapter->params.chip) 4821 ? t6_mps_tx_intr_info 4822 : mps_tx_intr_info) + 4823 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A, 4824 mps_trc_intr_info) + 4825 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A, 4826 mps_stat_sram_intr_info) + 4827 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A, 4828 mps_stat_tx_intr_info) + 4829 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A, 4830 mps_stat_rx_intr_info) + 4831 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A, 4832 mps_cls_intr_info); 4833 4834 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0); 4835 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */ 4836 if (fat) 4837 t4_fatal_err(adapter); 4838 } 4839 4840 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \ 4841 ECC_UE_INT_CAUSE_F) 4842 4843 /* 4844 * EDC/MC interrupt handler. 4845 */ 4846 static void mem_intr_handler(struct adapter *adapter, int idx) 4847 { 4848 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" }; 4849 4850 unsigned int addr, cnt_addr, v; 4851 4852 if (idx <= MEM_EDC1) { 4853 addr = EDC_REG(EDC_INT_CAUSE_A, idx); 4854 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx); 4855 } else if (idx == MEM_MC) { 4856 if (is_t4(adapter->params.chip)) { 4857 addr = MC_INT_CAUSE_A; 4858 cnt_addr = MC_ECC_STATUS_A; 4859 } else { 4860 addr = MC_P_INT_CAUSE_A; 4861 cnt_addr = MC_P_ECC_STATUS_A; 4862 } 4863 } else { 4864 addr = MC_REG(MC_P_INT_CAUSE_A, 1); 4865 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1); 4866 } 4867 4868 v = t4_read_reg(adapter, addr) & MEM_INT_MASK; 4869 if (v & PERR_INT_CAUSE_F) 4870 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n", 4871 name[idx]); 4872 if (v & ECC_CE_INT_CAUSE_F) { 4873 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr)); 4874 4875 t4_edc_err_read(adapter, idx); 4876 4877 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M)); 4878 if (printk_ratelimit()) 4879 dev_warn(adapter->pdev_dev, 4880 "%u %s correctable ECC data error%s\n", 4881 cnt, name[idx], cnt > 1 ? "s" : ""); 4882 } 4883 if (v & ECC_UE_INT_CAUSE_F) 4884 dev_alert(adapter->pdev_dev, 4885 "%s uncorrectable ECC data error\n", name[idx]); 4886 4887 t4_write_reg(adapter, addr, v); 4888 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F)) 4889 t4_fatal_err(adapter); 4890 } 4891 4892 /* 4893 * MA interrupt handler. 4894 */ 4895 static void ma_intr_handler(struct adapter *adap) 4896 { 4897 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A); 4898 4899 if (status & MEM_PERR_INT_CAUSE_F) { 4900 dev_alert(adap->pdev_dev, 4901 "MA parity error, parity status %#x\n", 4902 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A)); 4903 if (is_t5(adap->params.chip)) 4904 dev_alert(adap->pdev_dev, 4905 "MA parity error, parity status %#x\n", 4906 t4_read_reg(adap, 4907 MA_PARITY_ERROR_STATUS2_A)); 4908 } 4909 if (status & MEM_WRAP_INT_CAUSE_F) { 4910 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A); 4911 dev_alert(adap->pdev_dev, "MA address wrap-around error by " 4912 "client %u to address %#x\n", 4913 MEM_WRAP_CLIENT_NUM_G(v), 4914 MEM_WRAP_ADDRESS_G(v) << 4); 4915 } 4916 t4_write_reg(adap, MA_INT_CAUSE_A, status); 4917 t4_fatal_err(adap); 4918 } 4919 4920 /* 4921 * SMB interrupt handler. 4922 */ 4923 static void smb_intr_handler(struct adapter *adap) 4924 { 4925 static const struct intr_info smb_intr_info[] = { 4926 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 }, 4927 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 }, 4928 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 }, 4929 { 0 } 4930 }; 4931 4932 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info)) 4933 t4_fatal_err(adap); 4934 } 4935 4936 /* 4937 * NC-SI interrupt handler. 4938 */ 4939 static void ncsi_intr_handler(struct adapter *adap) 4940 { 4941 static const struct intr_info ncsi_intr_info[] = { 4942 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 }, 4943 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 }, 4944 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 }, 4945 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 }, 4946 { 0 } 4947 }; 4948 4949 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info)) 4950 t4_fatal_err(adap); 4951 } 4952 4953 /* 4954 * XGMAC interrupt handler. 4955 */ 4956 static void xgmac_intr_handler(struct adapter *adap, int port) 4957 { 4958 u32 v, int_cause_reg; 4959 4960 if (is_t4(adap->params.chip)) 4961 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A); 4962 else 4963 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A); 4964 4965 v = t4_read_reg(adap, int_cause_reg); 4966 4967 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F; 4968 if (!v) 4969 return; 4970 4971 if (v & TXFIFO_PRTY_ERR_F) 4972 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n", 4973 port); 4974 if (v & RXFIFO_PRTY_ERR_F) 4975 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n", 4976 port); 4977 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v); 4978 t4_fatal_err(adap); 4979 } 4980 4981 /* 4982 * PL interrupt handler. 4983 */ 4984 static void pl_intr_handler(struct adapter *adap) 4985 { 4986 static const struct intr_info pl_intr_info[] = { 4987 { FATALPERR_F, "T4 fatal parity error", -1, 1 }, 4988 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 }, 4989 { 0 } 4990 }; 4991 4992 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info)) 4993 t4_fatal_err(adap); 4994 } 4995 4996 #define PF_INTR_MASK (PFSW_F) 4997 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \ 4998 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \ 4999 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F) 5000 5001 /** 5002 * t4_slow_intr_handler - control path interrupt handler 5003 * @adapter: the adapter 5004 * 5005 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 5006 * The designation 'slow' is because it involves register reads, while 5007 * data interrupts typically don't involve any MMIOs. 5008 */ 5009 int t4_slow_intr_handler(struct adapter *adapter) 5010 { 5011 /* There are rare cases where a PL_INT_CAUSE bit may end up getting 5012 * set when the corresponding PL_INT_ENABLE bit isn't set. It's 5013 * easiest just to mask that case here. 5014 */ 5015 u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A); 5016 u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A); 5017 u32 cause = raw_cause & enable; 5018 5019 if (!(cause & GLBL_INTR_MASK)) 5020 return 0; 5021 if (cause & CIM_F) 5022 cim_intr_handler(adapter); 5023 if (cause & MPS_F) 5024 mps_intr_handler(adapter); 5025 if (cause & NCSI_F) 5026 ncsi_intr_handler(adapter); 5027 if (cause & PL_F) 5028 pl_intr_handler(adapter); 5029 if (cause & SMB_F) 5030 smb_intr_handler(adapter); 5031 if (cause & XGMAC0_F) 5032 xgmac_intr_handler(adapter, 0); 5033 if (cause & XGMAC1_F) 5034 xgmac_intr_handler(adapter, 1); 5035 if (cause & XGMAC_KR0_F) 5036 xgmac_intr_handler(adapter, 2); 5037 if (cause & XGMAC_KR1_F) 5038 xgmac_intr_handler(adapter, 3); 5039 if (cause & PCIE_F) 5040 pcie_intr_handler(adapter); 5041 if (cause & MC_F) 5042 mem_intr_handler(adapter, MEM_MC); 5043 if (is_t5(adapter->params.chip) && (cause & MC1_F)) 5044 mem_intr_handler(adapter, MEM_MC1); 5045 if (cause & EDC0_F) 5046 mem_intr_handler(adapter, MEM_EDC0); 5047 if (cause & EDC1_F) 5048 mem_intr_handler(adapter, MEM_EDC1); 5049 if (cause & LE_F) 5050 le_intr_handler(adapter); 5051 if (cause & TP_F) 5052 tp_intr_handler(adapter); 5053 if (cause & MA_F) 5054 ma_intr_handler(adapter); 5055 if (cause & PM_TX_F) 5056 pmtx_intr_handler(adapter); 5057 if (cause & PM_RX_F) 5058 pmrx_intr_handler(adapter); 5059 if (cause & ULP_RX_F) 5060 ulprx_intr_handler(adapter); 5061 if (cause & CPL_SWITCH_F) 5062 cplsw_intr_handler(adapter); 5063 if (cause & SGE_F) 5064 sge_intr_handler(adapter); 5065 if (cause & ULP_TX_F) 5066 ulptx_intr_handler(adapter); 5067 5068 /* Clear the interrupts just processed for which we are the master. */ 5069 t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK); 5070 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */ 5071 return 1; 5072 } 5073 5074 /** 5075 * t4_intr_enable - enable interrupts 5076 * @adapter: the adapter whose interrupts should be enabled 5077 * 5078 * Enable PF-specific interrupts for the calling function and the top-level 5079 * interrupt concentrator for global interrupts. Interrupts are already 5080 * enabled at each module, here we just enable the roots of the interrupt 5081 * hierarchies. 5082 * 5083 * Note: this function should be called only when the driver manages 5084 * non PF-specific interrupts from the various HW modules. Only one PCI 5085 * function at a time should be doing this. 5086 */ 5087 void t4_intr_enable(struct adapter *adapter) 5088 { 5089 u32 val = 0; 5090 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5091 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 5092 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5093 5094 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 5095 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F; 5096 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F | 5097 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F | 5098 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F | 5099 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F | 5100 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F | 5101 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F | 5102 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val); 5103 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK); 5104 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf); 5105 } 5106 5107 /** 5108 * t4_intr_disable - disable interrupts 5109 * @adapter: the adapter whose interrupts should be disabled 5110 * 5111 * Disable interrupts. We only disable the top-level interrupt 5112 * concentrators. The caller must be a PCI function managing global 5113 * interrupts. 5114 */ 5115 void t4_intr_disable(struct adapter *adapter) 5116 { 5117 u32 whoami, pf; 5118 5119 if (pci_channel_offline(adapter->pdev)) 5120 return; 5121 5122 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5123 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 5124 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5125 5126 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0); 5127 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0); 5128 } 5129 5130 unsigned int t4_chip_rss_size(struct adapter *adap) 5131 { 5132 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 5133 return RSS_NENTRIES; 5134 else 5135 return T6_RSS_NENTRIES; 5136 } 5137 5138 /** 5139 * t4_config_rss_range - configure a portion of the RSS mapping table 5140 * @adapter: the adapter 5141 * @mbox: mbox to use for the FW command 5142 * @viid: virtual interface whose RSS subtable is to be written 5143 * @start: start entry in the table to write 5144 * @n: how many table entries to write 5145 * @rspq: values for the response queue lookup table 5146 * @nrspq: number of values in @rspq 5147 * 5148 * Programs the selected part of the VI's RSS mapping table with the 5149 * provided values. If @nrspq < @n the supplied values are used repeatedly 5150 * until the full table range is populated. 5151 * 5152 * The caller must ensure the values in @rspq are in the range allowed for 5153 * @viid. 5154 */ 5155 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 5156 int start, int n, const u16 *rspq, unsigned int nrspq) 5157 { 5158 int ret; 5159 const u16 *rsp = rspq; 5160 const u16 *rsp_end = rspq + nrspq; 5161 struct fw_rss_ind_tbl_cmd cmd; 5162 5163 memset(&cmd, 0, sizeof(cmd)); 5164 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | 5165 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5166 FW_RSS_IND_TBL_CMD_VIID_V(viid)); 5167 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 5168 5169 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */ 5170 while (n > 0) { 5171 int nq = min(n, 32); 5172 __be32 *qp = &cmd.iq0_to_iq2; 5173 5174 cmd.niqid = cpu_to_be16(nq); 5175 cmd.startidx = cpu_to_be16(start); 5176 5177 start += nq; 5178 n -= nq; 5179 5180 while (nq > 0) { 5181 unsigned int v; 5182 5183 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp); 5184 if (++rsp >= rsp_end) 5185 rsp = rspq; 5186 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp); 5187 if (++rsp >= rsp_end) 5188 rsp = rspq; 5189 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp); 5190 if (++rsp >= rsp_end) 5191 rsp = rspq; 5192 5193 *qp++ = cpu_to_be32(v); 5194 nq -= 3; 5195 } 5196 5197 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 5198 if (ret) 5199 return ret; 5200 } 5201 return 0; 5202 } 5203 5204 /** 5205 * t4_config_glbl_rss - configure the global RSS mode 5206 * @adapter: the adapter 5207 * @mbox: mbox to use for the FW command 5208 * @mode: global RSS mode 5209 * @flags: mode-specific flags 5210 * 5211 * Sets the global RSS mode. 5212 */ 5213 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 5214 unsigned int flags) 5215 { 5216 struct fw_rss_glb_config_cmd c; 5217 5218 memset(&c, 0, sizeof(c)); 5219 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | 5220 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 5221 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5222 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 5223 c.u.manual.mode_pkd = 5224 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5225 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 5226 c.u.basicvirtual.mode_pkd = 5227 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5228 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); 5229 } else 5230 return -EINVAL; 5231 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5232 } 5233 5234 /** 5235 * t4_config_vi_rss - configure per VI RSS settings 5236 * @adapter: the adapter 5237 * @mbox: mbox to use for the FW command 5238 * @viid: the VI id 5239 * @flags: RSS flags 5240 * @defq: id of the default RSS queue for the VI. 5241 * 5242 * Configures VI-specific RSS properties. 5243 */ 5244 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, 5245 unsigned int flags, unsigned int defq) 5246 { 5247 struct fw_rss_vi_config_cmd c; 5248 5249 memset(&c, 0, sizeof(c)); 5250 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 5251 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5252 FW_RSS_VI_CONFIG_CMD_VIID_V(viid)); 5253 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5254 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | 5255 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq)); 5256 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5257 } 5258 5259 /* Read an RSS table row */ 5260 static int rd_rss_row(struct adapter *adap, int row, u32 *val) 5261 { 5262 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row); 5263 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1, 5264 5, 0, val); 5265 } 5266 5267 /** 5268 * t4_read_rss - read the contents of the RSS mapping table 5269 * @adapter: the adapter 5270 * @map: holds the contents of the RSS mapping table 5271 * 5272 * Reads the contents of the RSS hash->queue mapping table. 5273 */ 5274 int t4_read_rss(struct adapter *adapter, u16 *map) 5275 { 5276 int i, ret, nentries; 5277 u32 val; 5278 5279 nentries = t4_chip_rss_size(adapter); 5280 for (i = 0; i < nentries / 2; ++i) { 5281 ret = rd_rss_row(adapter, i, &val); 5282 if (ret) 5283 return ret; 5284 *map++ = LKPTBLQUEUE0_G(val); 5285 *map++ = LKPTBLQUEUE1_G(val); 5286 } 5287 return 0; 5288 } 5289 5290 static unsigned int t4_use_ldst(struct adapter *adap) 5291 { 5292 return (adap->flags & CXGB4_FW_OK) && !adap->use_bd; 5293 } 5294 5295 /** 5296 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST 5297 * @adap: the adapter 5298 * @cmd: TP fw ldst address space type 5299 * @vals: where the indirect register values are stored/written 5300 * @nregs: how many indirect registers to read/write 5301 * @start_index: index of first indirect register to read/write 5302 * @rw: Read (1) or Write (0) 5303 * @sleep_ok: if true we may sleep while awaiting command completion 5304 * 5305 * Access TP indirect registers through LDST 5306 */ 5307 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals, 5308 unsigned int nregs, unsigned int start_index, 5309 unsigned int rw, bool sleep_ok) 5310 { 5311 int ret = 0; 5312 unsigned int i; 5313 struct fw_ldst_cmd c; 5314 5315 for (i = 0; i < nregs; i++) { 5316 memset(&c, 0, sizeof(c)); 5317 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5318 FW_CMD_REQUEST_F | 5319 (rw ? FW_CMD_READ_F : 5320 FW_CMD_WRITE_F) | 5321 FW_LDST_CMD_ADDRSPACE_V(cmd)); 5322 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5323 5324 c.u.addrval.addr = cpu_to_be32(start_index + i); 5325 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); 5326 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, 5327 sleep_ok); 5328 if (ret) 5329 return ret; 5330 5331 if (rw) 5332 vals[i] = be32_to_cpu(c.u.addrval.val); 5333 } 5334 return 0; 5335 } 5336 5337 /** 5338 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor 5339 * @adap: the adapter 5340 * @reg_addr: Address Register 5341 * @reg_data: Data register 5342 * @buff: where the indirect register values are stored/written 5343 * @nregs: how many indirect registers to read/write 5344 * @start_index: index of first indirect register to read/write 5345 * @rw: READ(1) or WRITE(0) 5346 * @sleep_ok: if true we may sleep while awaiting command completion 5347 * 5348 * Read/Write TP indirect registers through LDST if possible. 5349 * Else, use backdoor access 5350 **/ 5351 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data, 5352 u32 *buff, u32 nregs, u32 start_index, int rw, 5353 bool sleep_ok) 5354 { 5355 int rc = -EINVAL; 5356 int cmd; 5357 5358 switch (reg_addr) { 5359 case TP_PIO_ADDR_A: 5360 cmd = FW_LDST_ADDRSPC_TP_PIO; 5361 break; 5362 case TP_TM_PIO_ADDR_A: 5363 cmd = FW_LDST_ADDRSPC_TP_TM_PIO; 5364 break; 5365 case TP_MIB_INDEX_A: 5366 cmd = FW_LDST_ADDRSPC_TP_MIB; 5367 break; 5368 default: 5369 goto indirect_access; 5370 } 5371 5372 if (t4_use_ldst(adap)) 5373 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw, 5374 sleep_ok); 5375 5376 indirect_access: 5377 5378 if (rc) { 5379 if (rw) 5380 t4_read_indirect(adap, reg_addr, reg_data, buff, nregs, 5381 start_index); 5382 else 5383 t4_write_indirect(adap, reg_addr, reg_data, buff, nregs, 5384 start_index); 5385 } 5386 } 5387 5388 /** 5389 * t4_tp_pio_read - Read TP PIO registers 5390 * @adap: the adapter 5391 * @buff: where the indirect register values are written 5392 * @nregs: how many indirect registers to read 5393 * @start_index: index of first indirect register to read 5394 * @sleep_ok: if true we may sleep while awaiting command completion 5395 * 5396 * Read TP PIO Registers 5397 **/ 5398 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5399 u32 start_index, bool sleep_ok) 5400 { 5401 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5402 start_index, 1, sleep_ok); 5403 } 5404 5405 /** 5406 * t4_tp_pio_write - Write TP PIO registers 5407 * @adap: the adapter 5408 * @buff: where the indirect register values are stored 5409 * @nregs: how many indirect registers to write 5410 * @start_index: index of first indirect register to write 5411 * @sleep_ok: if true we may sleep while awaiting command completion 5412 * 5413 * Write TP PIO Registers 5414 **/ 5415 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs, 5416 u32 start_index, bool sleep_ok) 5417 { 5418 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5419 start_index, 0, sleep_ok); 5420 } 5421 5422 /** 5423 * t4_tp_tm_pio_read - Read TP TM PIO registers 5424 * @adap: the adapter 5425 * @buff: where the indirect register values are written 5426 * @nregs: how many indirect registers to read 5427 * @start_index: index of first indirect register to read 5428 * @sleep_ok: if true we may sleep while awaiting command completion 5429 * 5430 * Read TP TM PIO Registers 5431 **/ 5432 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5433 u32 start_index, bool sleep_ok) 5434 { 5435 t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff, 5436 nregs, start_index, 1, sleep_ok); 5437 } 5438 5439 /** 5440 * t4_tp_mib_read - Read TP MIB registers 5441 * @adap: the adapter 5442 * @buff: where the indirect register values are written 5443 * @nregs: how many indirect registers to read 5444 * @start_index: index of first indirect register to read 5445 * @sleep_ok: if true we may sleep while awaiting command completion 5446 * 5447 * Read TP MIB Registers 5448 **/ 5449 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index, 5450 bool sleep_ok) 5451 { 5452 t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs, 5453 start_index, 1, sleep_ok); 5454 } 5455 5456 /** 5457 * t4_read_rss_key - read the global RSS key 5458 * @adap: the adapter 5459 * @key: 10-entry array holding the 320-bit RSS key 5460 * @sleep_ok: if true we may sleep while awaiting command completion 5461 * 5462 * Reads the global 320-bit RSS key. 5463 */ 5464 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok) 5465 { 5466 t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5467 } 5468 5469 /** 5470 * t4_write_rss_key - program one of the RSS keys 5471 * @adap: the adapter 5472 * @key: 10-entry array holding the 320-bit RSS key 5473 * @idx: which RSS key to write 5474 * @sleep_ok: if true we may sleep while awaiting command completion 5475 * 5476 * Writes one of the RSS keys with the given 320-bit value. If @idx is 5477 * 0..15 the corresponding entry in the RSS key table is written, 5478 * otherwise the global RSS key is written. 5479 */ 5480 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx, 5481 bool sleep_ok) 5482 { 5483 u8 rss_key_addr_cnt = 16; 5484 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A); 5485 5486 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble), 5487 * allows access to key addresses 16-63 by using KeyWrAddrX 5488 * as index[5:4](upper 2) into key table 5489 */ 5490 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) && 5491 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3)) 5492 rss_key_addr_cnt = 32; 5493 5494 t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5495 5496 if (idx >= 0 && idx < rss_key_addr_cnt) { 5497 if (rss_key_addr_cnt > 16) 5498 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5499 KEYWRADDRX_V(idx >> 4) | 5500 T6_VFWRADDR_V(idx) | KEYWREN_F); 5501 else 5502 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5503 KEYWRADDR_V(idx) | KEYWREN_F); 5504 } 5505 } 5506 5507 /** 5508 * t4_read_rss_pf_config - read PF RSS Configuration Table 5509 * @adapter: the adapter 5510 * @index: the entry in the PF RSS table to read 5511 * @valp: where to store the returned value 5512 * @sleep_ok: if true we may sleep while awaiting command completion 5513 * 5514 * Reads the PF RSS Configuration Table at the specified index and returns 5515 * the value found there. 5516 */ 5517 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, 5518 u32 *valp, bool sleep_ok) 5519 { 5520 t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok); 5521 } 5522 5523 /** 5524 * t4_read_rss_vf_config - read VF RSS Configuration Table 5525 * @adapter: the adapter 5526 * @index: the entry in the VF RSS table to read 5527 * @vfl: where to store the returned VFL 5528 * @vfh: where to store the returned VFH 5529 * @sleep_ok: if true we may sleep while awaiting command completion 5530 * 5531 * Reads the VF RSS Configuration Table at the specified index and returns 5532 * the (VFL, VFH) values found there. 5533 */ 5534 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, 5535 u32 *vfl, u32 *vfh, bool sleep_ok) 5536 { 5537 u32 vrt, mask, data; 5538 5539 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) { 5540 mask = VFWRADDR_V(VFWRADDR_M); 5541 data = VFWRADDR_V(index); 5542 } else { 5543 mask = T6_VFWRADDR_V(T6_VFWRADDR_M); 5544 data = T6_VFWRADDR_V(index); 5545 } 5546 5547 /* Request that the index'th VF Table values be read into VFL/VFH. 5548 */ 5549 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A); 5550 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask); 5551 vrt |= data | VFRDEN_F; 5552 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt); 5553 5554 /* Grab the VFL/VFH values ... 5555 */ 5556 t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok); 5557 t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok); 5558 } 5559 5560 /** 5561 * t4_read_rss_pf_map - read PF RSS Map 5562 * @adapter: the adapter 5563 * @sleep_ok: if true we may sleep while awaiting command completion 5564 * 5565 * Reads the PF RSS Map register and returns its value. 5566 */ 5567 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok) 5568 { 5569 u32 pfmap; 5570 5571 t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok); 5572 return pfmap; 5573 } 5574 5575 /** 5576 * t4_read_rss_pf_mask - read PF RSS Mask 5577 * @adapter: the adapter 5578 * @sleep_ok: if true we may sleep while awaiting command completion 5579 * 5580 * Reads the PF RSS Mask register and returns its value. 5581 */ 5582 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok) 5583 { 5584 u32 pfmask; 5585 5586 t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok); 5587 return pfmask; 5588 } 5589 5590 /** 5591 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 5592 * @adap: the adapter 5593 * @v4: holds the TCP/IP counter values 5594 * @v6: holds the TCP/IPv6 counter values 5595 * @sleep_ok: if true we may sleep while awaiting command completion 5596 * 5597 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 5598 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 5599 */ 5600 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 5601 struct tp_tcp_stats *v6, bool sleep_ok) 5602 { 5603 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1]; 5604 5605 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A) 5606 #define STAT(x) val[STAT_IDX(x)] 5607 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 5608 5609 if (v4) { 5610 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5611 TP_MIB_TCP_OUT_RST_A, sleep_ok); 5612 v4->tcp_out_rsts = STAT(OUT_RST); 5613 v4->tcp_in_segs = STAT64(IN_SEG); 5614 v4->tcp_out_segs = STAT64(OUT_SEG); 5615 v4->tcp_retrans_segs = STAT64(RXT_SEG); 5616 } 5617 if (v6) { 5618 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5619 TP_MIB_TCP_V6OUT_RST_A, sleep_ok); 5620 v6->tcp_out_rsts = STAT(OUT_RST); 5621 v6->tcp_in_segs = STAT64(IN_SEG); 5622 v6->tcp_out_segs = STAT64(OUT_SEG); 5623 v6->tcp_retrans_segs = STAT64(RXT_SEG); 5624 } 5625 #undef STAT64 5626 #undef STAT 5627 #undef STAT_IDX 5628 } 5629 5630 /** 5631 * t4_tp_get_err_stats - read TP's error MIB counters 5632 * @adap: the adapter 5633 * @st: holds the counter values 5634 * @sleep_ok: if true we may sleep while awaiting command completion 5635 * 5636 * Returns the values of TP's error counters. 5637 */ 5638 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st, 5639 bool sleep_ok) 5640 { 5641 int nchan = adap->params.arch.nchan; 5642 5643 t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A, 5644 sleep_ok); 5645 t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A, 5646 sleep_ok); 5647 t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A, 5648 sleep_ok); 5649 t4_tp_mib_read(adap, st->tnl_cong_drops, nchan, 5650 TP_MIB_TNL_CNG_DROP_0_A, sleep_ok); 5651 t4_tp_mib_read(adap, st->ofld_chan_drops, nchan, 5652 TP_MIB_OFD_CHN_DROP_0_A, sleep_ok); 5653 t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A, 5654 sleep_ok); 5655 t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan, 5656 TP_MIB_OFD_VLN_DROP_0_A, sleep_ok); 5657 t4_tp_mib_read(adap, st->tcp6_in_errs, nchan, 5658 TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok); 5659 t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A, 5660 sleep_ok); 5661 } 5662 5663 /** 5664 * t4_tp_get_cpl_stats - read TP's CPL MIB counters 5665 * @adap: the adapter 5666 * @st: holds the counter values 5667 * @sleep_ok: if true we may sleep while awaiting command completion 5668 * 5669 * Returns the values of TP's CPL counters. 5670 */ 5671 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st, 5672 bool sleep_ok) 5673 { 5674 int nchan = adap->params.arch.nchan; 5675 5676 t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok); 5677 5678 t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok); 5679 } 5680 5681 /** 5682 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters 5683 * @adap: the adapter 5684 * @st: holds the counter values 5685 * @sleep_ok: if true we may sleep while awaiting command completion 5686 * 5687 * Returns the values of TP's RDMA counters. 5688 */ 5689 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st, 5690 bool sleep_ok) 5691 { 5692 t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A, 5693 sleep_ok); 5694 } 5695 5696 /** 5697 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port 5698 * @adap: the adapter 5699 * @idx: the port index 5700 * @st: holds the counter values 5701 * @sleep_ok: if true we may sleep while awaiting command completion 5702 * 5703 * Returns the values of TP's FCoE counters for the selected port. 5704 */ 5705 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, 5706 struct tp_fcoe_stats *st, bool sleep_ok) 5707 { 5708 u32 val[2]; 5709 5710 t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx, 5711 sleep_ok); 5712 5713 t4_tp_mib_read(adap, &st->frames_drop, 1, 5714 TP_MIB_FCOE_DROP_0_A + idx, sleep_ok); 5715 5716 t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx, 5717 sleep_ok); 5718 5719 st->octets_ddp = ((u64)val[0] << 32) | val[1]; 5720 } 5721 5722 /** 5723 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters 5724 * @adap: the adapter 5725 * @st: holds the counter values 5726 * @sleep_ok: if true we may sleep while awaiting command completion 5727 * 5728 * Returns the values of TP's counters for non-TCP directly-placed packets. 5729 */ 5730 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st, 5731 bool sleep_ok) 5732 { 5733 u32 val[4]; 5734 5735 t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok); 5736 st->frames = val[0]; 5737 st->drops = val[1]; 5738 st->octets = ((u64)val[2] << 32) | val[3]; 5739 } 5740 5741 /** 5742 * t4_read_mtu_tbl - returns the values in the HW path MTU table 5743 * @adap: the adapter 5744 * @mtus: where to store the MTU values 5745 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 5746 * 5747 * Reads the HW path MTU table. 5748 */ 5749 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 5750 { 5751 u32 v; 5752 int i; 5753 5754 for (i = 0; i < NMTUS; ++i) { 5755 t4_write_reg(adap, TP_MTU_TABLE_A, 5756 MTUINDEX_V(0xff) | MTUVALUE_V(i)); 5757 v = t4_read_reg(adap, TP_MTU_TABLE_A); 5758 mtus[i] = MTUVALUE_G(v); 5759 if (mtu_log) 5760 mtu_log[i] = MTUWIDTH_G(v); 5761 } 5762 } 5763 5764 /** 5765 * t4_read_cong_tbl - reads the congestion control table 5766 * @adap: the adapter 5767 * @incr: where to store the alpha values 5768 * 5769 * Reads the additive increments programmed into the HW congestion 5770 * control table. 5771 */ 5772 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) 5773 { 5774 unsigned int mtu, w; 5775 5776 for (mtu = 0; mtu < NMTUS; ++mtu) 5777 for (w = 0; w < NCCTRL_WIN; ++w) { 5778 t4_write_reg(adap, TP_CCTRL_TABLE_A, 5779 ROWINDEX_V(0xffff) | (mtu << 5) | w); 5780 incr[mtu][w] = (u16)t4_read_reg(adap, 5781 TP_CCTRL_TABLE_A) & 0x1fff; 5782 } 5783 } 5784 5785 /** 5786 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 5787 * @adap: the adapter 5788 * @addr: the indirect TP register address 5789 * @mask: specifies the field within the register to modify 5790 * @val: new value for the field 5791 * 5792 * Sets a field of an indirect TP register to the given value. 5793 */ 5794 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 5795 unsigned int mask, unsigned int val) 5796 { 5797 t4_write_reg(adap, TP_PIO_ADDR_A, addr); 5798 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask; 5799 t4_write_reg(adap, TP_PIO_DATA_A, val); 5800 } 5801 5802 /** 5803 * init_cong_ctrl - initialize congestion control parameters 5804 * @a: the alpha values for congestion control 5805 * @b: the beta values for congestion control 5806 * 5807 * Initialize the congestion control parameters. 5808 */ 5809 static void init_cong_ctrl(unsigned short *a, unsigned short *b) 5810 { 5811 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 5812 a[9] = 2; 5813 a[10] = 3; 5814 a[11] = 4; 5815 a[12] = 5; 5816 a[13] = 6; 5817 a[14] = 7; 5818 a[15] = 8; 5819 a[16] = 9; 5820 a[17] = 10; 5821 a[18] = 14; 5822 a[19] = 17; 5823 a[20] = 21; 5824 a[21] = 25; 5825 a[22] = 30; 5826 a[23] = 35; 5827 a[24] = 45; 5828 a[25] = 60; 5829 a[26] = 80; 5830 a[27] = 100; 5831 a[28] = 200; 5832 a[29] = 300; 5833 a[30] = 400; 5834 a[31] = 500; 5835 5836 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 5837 b[9] = b[10] = 1; 5838 b[11] = b[12] = 2; 5839 b[13] = b[14] = b[15] = b[16] = 3; 5840 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 5841 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 5842 b[28] = b[29] = 6; 5843 b[30] = b[31] = 7; 5844 } 5845 5846 /* The minimum additive increment value for the congestion control table */ 5847 #define CC_MIN_INCR 2U 5848 5849 /** 5850 * t4_load_mtus - write the MTU and congestion control HW tables 5851 * @adap: the adapter 5852 * @mtus: the values for the MTU table 5853 * @alpha: the values for the congestion control alpha parameter 5854 * @beta: the values for the congestion control beta parameter 5855 * 5856 * Write the HW MTU table with the supplied MTUs and the high-speed 5857 * congestion control table with the supplied alpha, beta, and MTUs. 5858 * We write the two tables together because the additive increments 5859 * depend on the MTUs. 5860 */ 5861 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 5862 const unsigned short *alpha, const unsigned short *beta) 5863 { 5864 static const unsigned int avg_pkts[NCCTRL_WIN] = { 5865 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 5866 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 5867 28672, 40960, 57344, 81920, 114688, 163840, 229376 5868 }; 5869 5870 unsigned int i, w; 5871 5872 for (i = 0; i < NMTUS; ++i) { 5873 unsigned int mtu = mtus[i]; 5874 unsigned int log2 = fls(mtu); 5875 5876 if (!(mtu & ((1 << log2) >> 2))) /* round */ 5877 log2--; 5878 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) | 5879 MTUWIDTH_V(log2) | MTUVALUE_V(mtu)); 5880 5881 for (w = 0; w < NCCTRL_WIN; ++w) { 5882 unsigned int inc; 5883 5884 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 5885 CC_MIN_INCR); 5886 5887 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) | 5888 (w << 16) | (beta[w] << 13) | inc); 5889 } 5890 } 5891 } 5892 5893 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core 5894 * clocks. The formula is 5895 * 5896 * bytes/s = bytes256 * 256 * ClkFreq / 4096 5897 * 5898 * which is equivalent to 5899 * 5900 * bytes/s = 62.5 * bytes256 * ClkFreq_ms 5901 */ 5902 static u64 chan_rate(struct adapter *adap, unsigned int bytes256) 5903 { 5904 u64 v = bytes256 * adap->params.vpd.cclk; 5905 5906 return v * 62 + v / 2; 5907 } 5908 5909 /** 5910 * t4_get_chan_txrate - get the current per channel Tx rates 5911 * @adap: the adapter 5912 * @nic_rate: rates for NIC traffic 5913 * @ofld_rate: rates for offloaded traffic 5914 * 5915 * Return the current Tx rates in bytes/s for NIC and offloaded traffic 5916 * for each channel. 5917 */ 5918 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) 5919 { 5920 u32 v; 5921 5922 v = t4_read_reg(adap, TP_TX_TRATE_A); 5923 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v)); 5924 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v)); 5925 if (adap->params.arch.nchan == NCHAN) { 5926 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v)); 5927 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v)); 5928 } 5929 5930 v = t4_read_reg(adap, TP_TX_ORATE_A); 5931 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v)); 5932 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v)); 5933 if (adap->params.arch.nchan == NCHAN) { 5934 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v)); 5935 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v)); 5936 } 5937 } 5938 5939 /** 5940 * t4_set_trace_filter - configure one of the tracing filters 5941 * @adap: the adapter 5942 * @tp: the desired trace filter parameters 5943 * @idx: which filter to configure 5944 * @enable: whether to enable or disable the filter 5945 * 5946 * Configures one of the tracing filters available in HW. If @enable is 5947 * %0 @tp is not examined and may be %NULL. The user is responsible to 5948 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register 5949 */ 5950 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, 5951 int idx, int enable) 5952 { 5953 int i, ofst = idx * 4; 5954 u32 data_reg, mask_reg, cfg; 5955 5956 if (!enable) { 5957 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5958 return 0; 5959 } 5960 5961 cfg = t4_read_reg(adap, MPS_TRC_CFG_A); 5962 if (cfg & TRCMULTIFILTER_F) { 5963 /* If multiple tracers are enabled, then maximum 5964 * capture size is 2.5KB (FIFO size of a single channel) 5965 * minus 2 flits for CPL_TRACE_PKT header. 5966 */ 5967 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) 5968 return -EINVAL; 5969 } else { 5970 /* If multiple tracers are disabled, to avoid deadlocks 5971 * maximum packet capture size of 9600 bytes is recommended. 5972 * Also in this mode, only trace0 can be enabled and running. 5973 */ 5974 if (tp->snap_len > 9600 || idx) 5975 return -EINVAL; 5976 } 5977 5978 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 || 5979 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M || 5980 tp->min_len > TFMINPKTSIZE_M) 5981 return -EINVAL; 5982 5983 /* stop the tracer we'll be changing */ 5984 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5985 5986 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A); 5987 data_reg = MPS_TRC_FILTER0_MATCH_A + idx; 5988 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx; 5989 5990 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5991 t4_write_reg(adap, data_reg, tp->data[i]); 5992 t4_write_reg(adap, mask_reg, ~tp->mask[i]); 5993 } 5994 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst, 5995 TFCAPTUREMAX_V(tp->snap_len) | 5996 TFMINPKTSIZE_V(tp->min_len)); 5997 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 5998 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) | 5999 (is_t4(adap->params.chip) ? 6000 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) : 6001 T5_TFPORT_V(tp->port) | T5_TFEN_F | 6002 T5_TFINVERTMATCH_V(tp->invert))); 6003 6004 return 0; 6005 } 6006 6007 /** 6008 * t4_get_trace_filter - query one of the tracing filters 6009 * @adap: the adapter 6010 * @tp: the current trace filter parameters 6011 * @idx: which trace filter to query 6012 * @enabled: non-zero if the filter is enabled 6013 * 6014 * Returns the current settings of one of the HW tracing filters. 6015 */ 6016 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, 6017 int *enabled) 6018 { 6019 u32 ctla, ctlb; 6020 int i, ofst = idx * 4; 6021 u32 data_reg, mask_reg; 6022 6023 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst); 6024 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst); 6025 6026 if (is_t4(adap->params.chip)) { 6027 *enabled = !!(ctla & TFEN_F); 6028 tp->port = TFPORT_G(ctla); 6029 tp->invert = !!(ctla & TFINVERTMATCH_F); 6030 } else { 6031 *enabled = !!(ctla & T5_TFEN_F); 6032 tp->port = T5_TFPORT_G(ctla); 6033 tp->invert = !!(ctla & T5_TFINVERTMATCH_F); 6034 } 6035 tp->snap_len = TFCAPTUREMAX_G(ctlb); 6036 tp->min_len = TFMINPKTSIZE_G(ctlb); 6037 tp->skip_ofst = TFOFFSET_G(ctla); 6038 tp->skip_len = TFLENGTH_G(ctla); 6039 6040 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx; 6041 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst; 6042 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst; 6043 6044 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 6045 tp->mask[i] = ~t4_read_reg(adap, mask_reg); 6046 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; 6047 } 6048 } 6049 6050 /** 6051 * t4_pmtx_get_stats - returns the HW stats from PMTX 6052 * @adap: the adapter 6053 * @cnt: where to store the count statistics 6054 * @cycles: where to store the cycle statistics 6055 * 6056 * Returns performance statistics from PMTX. 6057 */ 6058 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6059 { 6060 int i; 6061 u32 data[2]; 6062 6063 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 6064 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1); 6065 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A); 6066 if (is_t4(adap->params.chip)) { 6067 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A); 6068 } else { 6069 t4_read_indirect(adap, PM_TX_DBG_CTRL_A, 6070 PM_TX_DBG_DATA_A, data, 2, 6071 PM_TX_DBG_STAT_MSB_A); 6072 cycles[i] = (((u64)data[0] << 32) | data[1]); 6073 } 6074 } 6075 } 6076 6077 /** 6078 * t4_pmrx_get_stats - returns the HW stats from PMRX 6079 * @adap: the adapter 6080 * @cnt: where to store the count statistics 6081 * @cycles: where to store the cycle statistics 6082 * 6083 * Returns performance statistics from PMRX. 6084 */ 6085 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6086 { 6087 int i; 6088 u32 data[2]; 6089 6090 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 6091 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1); 6092 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A); 6093 if (is_t4(adap->params.chip)) { 6094 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A); 6095 } else { 6096 t4_read_indirect(adap, PM_RX_DBG_CTRL_A, 6097 PM_RX_DBG_DATA_A, data, 2, 6098 PM_RX_DBG_STAT_MSB_A); 6099 cycles[i] = (((u64)data[0] << 32) | data[1]); 6100 } 6101 } 6102 } 6103 6104 /** 6105 * compute_mps_bg_map - compute the MPS Buffer Group Map for a Port 6106 * @adapter: the adapter 6107 * @pidx: the port index 6108 * 6109 * Computes and returns a bitmap indicating which MPS buffer groups are 6110 * associated with the given Port. Bit i is set if buffer group i is 6111 * used by the Port. 6112 */ 6113 static inline unsigned int compute_mps_bg_map(struct adapter *adapter, 6114 int pidx) 6115 { 6116 unsigned int chip_version, nports; 6117 6118 chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6119 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6120 6121 switch (chip_version) { 6122 case CHELSIO_T4: 6123 case CHELSIO_T5: 6124 switch (nports) { 6125 case 1: return 0xf; 6126 case 2: return 3 << (2 * pidx); 6127 case 4: return 1 << pidx; 6128 } 6129 break; 6130 6131 case CHELSIO_T6: 6132 switch (nports) { 6133 case 2: return 1 << (2 * pidx); 6134 } 6135 break; 6136 } 6137 6138 dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n", 6139 chip_version, nports); 6140 6141 return 0; 6142 } 6143 6144 /** 6145 * t4_get_mps_bg_map - return the buffer groups associated with a port 6146 * @adapter: the adapter 6147 * @pidx: the port index 6148 * 6149 * Returns a bitmap indicating which MPS buffer groups are associated 6150 * with the given Port. Bit i is set if buffer group i is used by the 6151 * Port. 6152 */ 6153 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx) 6154 { 6155 u8 *mps_bg_map; 6156 unsigned int nports; 6157 6158 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6159 if (pidx >= nports) { 6160 CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n", 6161 pidx, nports); 6162 return 0; 6163 } 6164 6165 /* If we've already retrieved/computed this, just return the result. 6166 */ 6167 mps_bg_map = adapter->params.mps_bg_map; 6168 if (mps_bg_map[pidx]) 6169 return mps_bg_map[pidx]; 6170 6171 /* Newer Firmware can tell us what the MPS Buffer Group Map is. 6172 * If we're talking to such Firmware, let it tell us. If the new 6173 * API isn't supported, revert back to old hardcoded way. The value 6174 * obtained from Firmware is encoded in below format: 6175 * 6176 * val = (( MPSBGMAP[Port 3] << 24 ) | 6177 * ( MPSBGMAP[Port 2] << 16 ) | 6178 * ( MPSBGMAP[Port 1] << 8 ) | 6179 * ( MPSBGMAP[Port 0] << 0 )) 6180 */ 6181 if (adapter->flags & CXGB4_FW_OK) { 6182 u32 param, val; 6183 int ret; 6184 6185 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6186 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP)); 6187 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf, 6188 0, 1, ¶m, &val); 6189 if (!ret) { 6190 int p; 6191 6192 /* Store the BG Map for all of the Ports in order to 6193 * avoid more calls to the Firmware in the future. 6194 */ 6195 for (p = 0; p < MAX_NPORTS; p++, val >>= 8) 6196 mps_bg_map[p] = val & 0xff; 6197 6198 return mps_bg_map[pidx]; 6199 } 6200 } 6201 6202 /* Either we're not talking to the Firmware or we're dealing with 6203 * older Firmware which doesn't support the new API to get the MPS 6204 * Buffer Group Map. Fall back to computing it ourselves. 6205 */ 6206 mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx); 6207 return mps_bg_map[pidx]; 6208 } 6209 6210 /** 6211 * t4_get_tp_e2c_map - return the E2C channel map associated with a port 6212 * @adapter: the adapter 6213 * @pidx: the port index 6214 */ 6215 static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx) 6216 { 6217 unsigned int nports; 6218 u32 param, val = 0; 6219 int ret; 6220 6221 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6222 if (pidx >= nports) { 6223 CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n", 6224 pidx, nports); 6225 return 0; 6226 } 6227 6228 /* FW version >= 1.16.44.0 can determine E2C channel map using 6229 * FW_PARAMS_PARAM_DEV_TPCHMAP API. 6230 */ 6231 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6232 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP)); 6233 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf, 6234 0, 1, ¶m, &val); 6235 if (!ret) 6236 return (val >> (8 * pidx)) & 0xff; 6237 6238 return 0; 6239 } 6240 6241 /** 6242 * t4_get_tp_ch_map - return TP ingress channels associated with a port 6243 * @adap: the adapter 6244 * @pidx: the port index 6245 * 6246 * Returns a bitmap indicating which TP Ingress Channels are associated 6247 * with a given Port. Bit i is set if TP Ingress Channel i is used by 6248 * the Port. 6249 */ 6250 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx) 6251 { 6252 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 6253 unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A)); 6254 6255 if (pidx >= nports) { 6256 dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n", 6257 pidx, nports); 6258 return 0; 6259 } 6260 6261 switch (chip_version) { 6262 case CHELSIO_T4: 6263 case CHELSIO_T5: 6264 /* Note that this happens to be the same values as the MPS 6265 * Buffer Group Map for these Chips. But we replicate the code 6266 * here because they're really separate concepts. 6267 */ 6268 switch (nports) { 6269 case 1: return 0xf; 6270 case 2: return 3 << (2 * pidx); 6271 case 4: return 1 << pidx; 6272 } 6273 break; 6274 6275 case CHELSIO_T6: 6276 switch (nports) { 6277 case 1: 6278 case 2: return 1 << pidx; 6279 } 6280 break; 6281 } 6282 6283 dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n", 6284 chip_version, nports); 6285 return 0; 6286 } 6287 6288 /** 6289 * t4_get_port_type_description - return Port Type string description 6290 * @port_type: firmware Port Type enumeration 6291 */ 6292 const char *t4_get_port_type_description(enum fw_port_type port_type) 6293 { 6294 static const char *const port_type_description[] = { 6295 "Fiber_XFI", 6296 "Fiber_XAUI", 6297 "BT_SGMII", 6298 "BT_XFI", 6299 "BT_XAUI", 6300 "KX4", 6301 "CX4", 6302 "KX", 6303 "KR", 6304 "SFP", 6305 "BP_AP", 6306 "BP4_AP", 6307 "QSFP_10G", 6308 "QSA", 6309 "QSFP", 6310 "BP40_BA", 6311 "KR4_100G", 6312 "CR4_QSFP", 6313 "CR_QSFP", 6314 "CR2_QSFP", 6315 "SFP28", 6316 "KR_SFP28", 6317 "KR_XLAUI" 6318 }; 6319 6320 if (port_type < ARRAY_SIZE(port_type_description)) 6321 return port_type_description[port_type]; 6322 return "UNKNOWN"; 6323 } 6324 6325 /** 6326 * t4_get_port_stats_offset - collect port stats relative to a previous 6327 * snapshot 6328 * @adap: The adapter 6329 * @idx: The port 6330 * @stats: Current stats to fill 6331 * @offset: Previous stats snapshot 6332 */ 6333 void t4_get_port_stats_offset(struct adapter *adap, int idx, 6334 struct port_stats *stats, 6335 struct port_stats *offset) 6336 { 6337 u64 *s, *o; 6338 int i; 6339 6340 t4_get_port_stats(adap, idx, stats); 6341 for (i = 0, s = (u64 *)stats, o = (u64 *)offset; 6342 i < (sizeof(struct port_stats) / sizeof(u64)); 6343 i++, s++, o++) 6344 *s -= *o; 6345 } 6346 6347 /** 6348 * t4_get_port_stats - collect port statistics 6349 * @adap: the adapter 6350 * @idx: the port index 6351 * @p: the stats structure to fill 6352 * 6353 * Collect statistics related to the given port from HW. 6354 */ 6355 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 6356 { 6357 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6358 u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A); 6359 6360 #define GET_STAT(name) \ 6361 t4_read_reg64(adap, \ 6362 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \ 6363 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L))) 6364 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6365 6366 p->tx_octets = GET_STAT(TX_PORT_BYTES); 6367 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 6368 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 6369 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 6370 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 6371 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 6372 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 6373 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 6374 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 6375 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 6376 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 6377 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 6378 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 6379 p->tx_drop = GET_STAT(TX_PORT_DROP); 6380 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 6381 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 6382 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 6383 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 6384 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 6385 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 6386 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 6387 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 6388 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 6389 6390 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6391 if (stat_ctl & COUNTPAUSESTATTX_F) 6392 p->tx_frames_64 -= p->tx_pause; 6393 if (stat_ctl & COUNTPAUSEMCTX_F) 6394 p->tx_mcast_frames -= p->tx_pause; 6395 } 6396 p->rx_octets = GET_STAT(RX_PORT_BYTES); 6397 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 6398 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 6399 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 6400 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 6401 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 6402 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 6403 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); 6404 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 6405 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 6406 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 6407 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 6408 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 6409 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 6410 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 6411 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 6412 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 6413 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 6414 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 6415 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 6416 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 6417 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 6418 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 6419 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 6420 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 6421 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 6422 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 6423 6424 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6425 if (stat_ctl & COUNTPAUSESTATRX_F) 6426 p->rx_frames_64 -= p->rx_pause; 6427 if (stat_ctl & COUNTPAUSEMCRX_F) 6428 p->rx_mcast_frames -= p->rx_pause; 6429 } 6430 6431 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 6432 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 6433 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 6434 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 6435 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 6436 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 6437 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 6438 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 6439 6440 #undef GET_STAT 6441 #undef GET_STAT_COM 6442 } 6443 6444 /** 6445 * t4_get_lb_stats - collect loopback port statistics 6446 * @adap: the adapter 6447 * @idx: the loopback port index 6448 * @p: the stats structure to fill 6449 * 6450 * Return HW statistics for the given loopback port. 6451 */ 6452 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) 6453 { 6454 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6455 6456 #define GET_STAT(name) \ 6457 t4_read_reg64(adap, \ 6458 (is_t4(adap->params.chip) ? \ 6459 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \ 6460 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L))) 6461 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6462 6463 p->octets = GET_STAT(BYTES); 6464 p->frames = GET_STAT(FRAMES); 6465 p->bcast_frames = GET_STAT(BCAST); 6466 p->mcast_frames = GET_STAT(MCAST); 6467 p->ucast_frames = GET_STAT(UCAST); 6468 p->error_frames = GET_STAT(ERROR); 6469 6470 p->frames_64 = GET_STAT(64B); 6471 p->frames_65_127 = GET_STAT(65B_127B); 6472 p->frames_128_255 = GET_STAT(128B_255B); 6473 p->frames_256_511 = GET_STAT(256B_511B); 6474 p->frames_512_1023 = GET_STAT(512B_1023B); 6475 p->frames_1024_1518 = GET_STAT(1024B_1518B); 6476 p->frames_1519_max = GET_STAT(1519B_MAX); 6477 p->drop = GET_STAT(DROP_FRAMES); 6478 6479 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; 6480 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; 6481 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; 6482 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; 6483 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; 6484 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; 6485 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; 6486 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; 6487 6488 #undef GET_STAT 6489 #undef GET_STAT_COM 6490 } 6491 6492 /* t4_mk_filtdelwr - create a delete filter WR 6493 * @ftid: the filter ID 6494 * @wr: the filter work request to populate 6495 * @qid: ingress queue to receive the delete notification 6496 * 6497 * Creates a filter work request to delete the supplied filter. If @qid is 6498 * negative the delete notification is suppressed. 6499 */ 6500 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 6501 { 6502 memset(wr, 0, sizeof(*wr)); 6503 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR)); 6504 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16)); 6505 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) | 6506 FW_FILTER_WR_NOREPLY_V(qid < 0)); 6507 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F); 6508 if (qid >= 0) 6509 wr->rx_chan_rx_rpl_iq = 6510 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid)); 6511 } 6512 6513 #define INIT_CMD(var, cmd, rd_wr) do { \ 6514 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \ 6515 FW_CMD_REQUEST_F | \ 6516 FW_CMD_##rd_wr##_F); \ 6517 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ 6518 } while (0) 6519 6520 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 6521 u32 addr, u32 val) 6522 { 6523 u32 ldst_addrspace; 6524 struct fw_ldst_cmd c; 6525 6526 memset(&c, 0, sizeof(c)); 6527 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE); 6528 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6529 FW_CMD_REQUEST_F | 6530 FW_CMD_WRITE_F | 6531 ldst_addrspace); 6532 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6533 c.u.addrval.addr = cpu_to_be32(addr); 6534 c.u.addrval.val = cpu_to_be32(val); 6535 6536 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6537 } 6538 6539 /** 6540 * t4_mdio_rd - read a PHY register through MDIO 6541 * @adap: the adapter 6542 * @mbox: mailbox to use for the FW command 6543 * @phy_addr: the PHY address 6544 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6545 * @reg: the register to read 6546 * @valp: where to store the value 6547 * 6548 * Issues a FW command through the given mailbox to read a PHY register. 6549 */ 6550 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6551 unsigned int mmd, unsigned int reg, u16 *valp) 6552 { 6553 int ret; 6554 u32 ldst_addrspace; 6555 struct fw_ldst_cmd c; 6556 6557 memset(&c, 0, sizeof(c)); 6558 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6559 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6560 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6561 ldst_addrspace); 6562 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6563 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6564 FW_LDST_CMD_MMD_V(mmd)); 6565 c.u.mdio.raddr = cpu_to_be16(reg); 6566 6567 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6568 if (ret == 0) 6569 *valp = be16_to_cpu(c.u.mdio.rval); 6570 return ret; 6571 } 6572 6573 /** 6574 * t4_mdio_wr - write a PHY register through MDIO 6575 * @adap: the adapter 6576 * @mbox: mailbox to use for the FW command 6577 * @phy_addr: the PHY address 6578 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6579 * @reg: the register to write 6580 * @val: value to write 6581 * 6582 * Issues a FW command through the given mailbox to write a PHY register. 6583 */ 6584 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6585 unsigned int mmd, unsigned int reg, u16 val) 6586 { 6587 u32 ldst_addrspace; 6588 struct fw_ldst_cmd c; 6589 6590 memset(&c, 0, sizeof(c)); 6591 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6592 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6593 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6594 ldst_addrspace); 6595 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6596 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6597 FW_LDST_CMD_MMD_V(mmd)); 6598 c.u.mdio.raddr = cpu_to_be16(reg); 6599 c.u.mdio.rval = cpu_to_be16(val); 6600 6601 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6602 } 6603 6604 /** 6605 * t4_sge_decode_idma_state - decode the idma state 6606 * @adapter: the adapter 6607 * @state: the state idma is stuck in 6608 */ 6609 void t4_sge_decode_idma_state(struct adapter *adapter, int state) 6610 { 6611 static const char * const t4_decode[] = { 6612 "IDMA_IDLE", 6613 "IDMA_PUSH_MORE_CPL_FIFO", 6614 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6615 "Not used", 6616 "IDMA_PHYSADDR_SEND_PCIEHDR", 6617 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6618 "IDMA_PHYSADDR_SEND_PAYLOAD", 6619 "IDMA_SEND_FIFO_TO_IMSG", 6620 "IDMA_FL_REQ_DATA_FL_PREP", 6621 "IDMA_FL_REQ_DATA_FL", 6622 "IDMA_FL_DROP", 6623 "IDMA_FL_H_REQ_HEADER_FL", 6624 "IDMA_FL_H_SEND_PCIEHDR", 6625 "IDMA_FL_H_PUSH_CPL_FIFO", 6626 "IDMA_FL_H_SEND_CPL", 6627 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6628 "IDMA_FL_H_SEND_IP_HDR", 6629 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6630 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6631 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6632 "IDMA_FL_D_SEND_PCIEHDR", 6633 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6634 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6635 "IDMA_FL_SEND_PCIEHDR", 6636 "IDMA_FL_PUSH_CPL_FIFO", 6637 "IDMA_FL_SEND_CPL", 6638 "IDMA_FL_SEND_PAYLOAD_FIRST", 6639 "IDMA_FL_SEND_PAYLOAD", 6640 "IDMA_FL_REQ_NEXT_DATA_FL", 6641 "IDMA_FL_SEND_NEXT_PCIEHDR", 6642 "IDMA_FL_SEND_PADDING", 6643 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6644 "IDMA_FL_SEND_FIFO_TO_IMSG", 6645 "IDMA_FL_REQ_DATAFL_DONE", 6646 "IDMA_FL_REQ_HEADERFL_DONE", 6647 }; 6648 static const char * const t5_decode[] = { 6649 "IDMA_IDLE", 6650 "IDMA_ALMOST_IDLE", 6651 "IDMA_PUSH_MORE_CPL_FIFO", 6652 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6653 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6654 "IDMA_PHYSADDR_SEND_PCIEHDR", 6655 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6656 "IDMA_PHYSADDR_SEND_PAYLOAD", 6657 "IDMA_SEND_FIFO_TO_IMSG", 6658 "IDMA_FL_REQ_DATA_FL", 6659 "IDMA_FL_DROP", 6660 "IDMA_FL_DROP_SEND_INC", 6661 "IDMA_FL_H_REQ_HEADER_FL", 6662 "IDMA_FL_H_SEND_PCIEHDR", 6663 "IDMA_FL_H_PUSH_CPL_FIFO", 6664 "IDMA_FL_H_SEND_CPL", 6665 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6666 "IDMA_FL_H_SEND_IP_HDR", 6667 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6668 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6669 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6670 "IDMA_FL_D_SEND_PCIEHDR", 6671 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6672 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6673 "IDMA_FL_SEND_PCIEHDR", 6674 "IDMA_FL_PUSH_CPL_FIFO", 6675 "IDMA_FL_SEND_CPL", 6676 "IDMA_FL_SEND_PAYLOAD_FIRST", 6677 "IDMA_FL_SEND_PAYLOAD", 6678 "IDMA_FL_REQ_NEXT_DATA_FL", 6679 "IDMA_FL_SEND_NEXT_PCIEHDR", 6680 "IDMA_FL_SEND_PADDING", 6681 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6682 }; 6683 static const char * const t6_decode[] = { 6684 "IDMA_IDLE", 6685 "IDMA_PUSH_MORE_CPL_FIFO", 6686 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6687 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6688 "IDMA_PHYSADDR_SEND_PCIEHDR", 6689 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6690 "IDMA_PHYSADDR_SEND_PAYLOAD", 6691 "IDMA_FL_REQ_DATA_FL", 6692 "IDMA_FL_DROP", 6693 "IDMA_FL_DROP_SEND_INC", 6694 "IDMA_FL_H_REQ_HEADER_FL", 6695 "IDMA_FL_H_SEND_PCIEHDR", 6696 "IDMA_FL_H_PUSH_CPL_FIFO", 6697 "IDMA_FL_H_SEND_CPL", 6698 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6699 "IDMA_FL_H_SEND_IP_HDR", 6700 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6701 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6702 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6703 "IDMA_FL_D_SEND_PCIEHDR", 6704 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6705 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6706 "IDMA_FL_SEND_PCIEHDR", 6707 "IDMA_FL_PUSH_CPL_FIFO", 6708 "IDMA_FL_SEND_CPL", 6709 "IDMA_FL_SEND_PAYLOAD_FIRST", 6710 "IDMA_FL_SEND_PAYLOAD", 6711 "IDMA_FL_REQ_NEXT_DATA_FL", 6712 "IDMA_FL_SEND_NEXT_PCIEHDR", 6713 "IDMA_FL_SEND_PADDING", 6714 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6715 }; 6716 static const u32 sge_regs[] = { 6717 SGE_DEBUG_DATA_LOW_INDEX_2_A, 6718 SGE_DEBUG_DATA_LOW_INDEX_3_A, 6719 SGE_DEBUG_DATA_HIGH_INDEX_10_A, 6720 }; 6721 const char **sge_idma_decode; 6722 int sge_idma_decode_nstates; 6723 int i; 6724 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6725 6726 /* Select the right set of decode strings to dump depending on the 6727 * adapter chip type. 6728 */ 6729 switch (chip_version) { 6730 case CHELSIO_T4: 6731 sge_idma_decode = (const char **)t4_decode; 6732 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6733 break; 6734 6735 case CHELSIO_T5: 6736 sge_idma_decode = (const char **)t5_decode; 6737 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6738 break; 6739 6740 case CHELSIO_T6: 6741 sge_idma_decode = (const char **)t6_decode; 6742 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); 6743 break; 6744 6745 default: 6746 dev_err(adapter->pdev_dev, 6747 "Unsupported chip version %d\n", chip_version); 6748 return; 6749 } 6750 6751 if (is_t4(adapter->params.chip)) { 6752 sge_idma_decode = (const char **)t4_decode; 6753 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6754 } else { 6755 sge_idma_decode = (const char **)t5_decode; 6756 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6757 } 6758 6759 if (state < sge_idma_decode_nstates) 6760 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); 6761 else 6762 CH_WARN(adapter, "idma state %d unknown\n", state); 6763 6764 for (i = 0; i < ARRAY_SIZE(sge_regs); i++) 6765 CH_WARN(adapter, "SGE register %#x value %#x\n", 6766 sge_regs[i], t4_read_reg(adapter, sge_regs[i])); 6767 } 6768 6769 /** 6770 * t4_sge_ctxt_flush - flush the SGE context cache 6771 * @adap: the adapter 6772 * @mbox: mailbox to use for the FW command 6773 * @ctxt_type: Egress or Ingress 6774 * 6775 * Issues a FW command through the given mailbox to flush the 6776 * SGE context cache. 6777 */ 6778 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type) 6779 { 6780 int ret; 6781 u32 ldst_addrspace; 6782 struct fw_ldst_cmd c; 6783 6784 memset(&c, 0, sizeof(c)); 6785 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ? 6786 FW_LDST_ADDRSPC_SGE_EGRC : 6787 FW_LDST_ADDRSPC_SGE_INGC); 6788 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6789 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6790 ldst_addrspace); 6791 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6792 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F); 6793 6794 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6795 return ret; 6796 } 6797 6798 /** 6799 * t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values 6800 * @adap: the adapter 6801 * @ndbqtimers: size of the provided SGE Doorbell Queue Timer table 6802 * @dbqtimers: SGE Doorbell Queue Timer table 6803 * 6804 * Reads the SGE Doorbell Queue Timer values into the provided table. 6805 * Returns 0 on success (Firmware and Hardware support this feature), 6806 * an error on failure. 6807 */ 6808 int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers, 6809 u16 *dbqtimers) 6810 { 6811 int ret, dbqtimerix; 6812 6813 ret = 0; 6814 dbqtimerix = 0; 6815 while (dbqtimerix < ndbqtimers) { 6816 int nparams, param; 6817 u32 params[7], vals[7]; 6818 6819 nparams = ndbqtimers - dbqtimerix; 6820 if (nparams > ARRAY_SIZE(params)) 6821 nparams = ARRAY_SIZE(params); 6822 6823 for (param = 0; param < nparams; param++) 6824 params[param] = 6825 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6826 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) | 6827 FW_PARAMS_PARAM_Y_V(dbqtimerix + param)); 6828 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6829 nparams, params, vals); 6830 if (ret) 6831 break; 6832 6833 for (param = 0; param < nparams; param++) 6834 dbqtimers[dbqtimerix++] = vals[param]; 6835 } 6836 return ret; 6837 } 6838 6839 /** 6840 * t4_fw_hello - establish communication with FW 6841 * @adap: the adapter 6842 * @mbox: mailbox to use for the FW command 6843 * @evt_mbox: mailbox to receive async FW events 6844 * @master: specifies the caller's willingness to be the device master 6845 * @state: returns the current device state (if non-NULL) 6846 * 6847 * Issues a command to establish communication with FW. Returns either 6848 * an error (negative integer) or the mailbox of the Master PF. 6849 */ 6850 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 6851 enum dev_master master, enum dev_state *state) 6852 { 6853 int ret; 6854 struct fw_hello_cmd c; 6855 u32 v; 6856 unsigned int master_mbox; 6857 int retries = FW_CMD_HELLO_RETRIES; 6858 6859 retry: 6860 memset(&c, 0, sizeof(c)); 6861 INIT_CMD(c, HELLO, WRITE); 6862 c.err_to_clearinit = cpu_to_be32( 6863 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) | 6864 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) | 6865 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? 6866 mbox : FW_HELLO_CMD_MBMASTER_M) | 6867 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) | 6868 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) | 6869 FW_HELLO_CMD_CLEARINIT_F); 6870 6871 /* 6872 * Issue the HELLO command to the firmware. If it's not successful 6873 * but indicates that we got a "busy" or "timeout" condition, retry 6874 * the HELLO until we exhaust our retry limit. If we do exceed our 6875 * retry limit, check to see if the firmware left us any error 6876 * information and report that if so. 6877 */ 6878 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6879 if (ret < 0) { 6880 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 6881 goto retry; 6882 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F) 6883 t4_report_fw_error(adap); 6884 return ret; 6885 } 6886 6887 v = be32_to_cpu(c.err_to_clearinit); 6888 master_mbox = FW_HELLO_CMD_MBMASTER_G(v); 6889 if (state) { 6890 if (v & FW_HELLO_CMD_ERR_F) 6891 *state = DEV_STATE_ERR; 6892 else if (v & FW_HELLO_CMD_INIT_F) 6893 *state = DEV_STATE_INIT; 6894 else 6895 *state = DEV_STATE_UNINIT; 6896 } 6897 6898 /* 6899 * If we're not the Master PF then we need to wait around for the 6900 * Master PF Driver to finish setting up the adapter. 6901 * 6902 * Note that we also do this wait if we're a non-Master-capable PF and 6903 * there is no current Master PF; a Master PF may show up momentarily 6904 * and we wouldn't want to fail pointlessly. (This can happen when an 6905 * OS loads lots of different drivers rapidly at the same time). In 6906 * this case, the Master PF returned by the firmware will be 6907 * PCIE_FW_MASTER_M so the test below will work ... 6908 */ 6909 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 && 6910 master_mbox != mbox) { 6911 int waiting = FW_CMD_HELLO_TIMEOUT; 6912 6913 /* 6914 * Wait for the firmware to either indicate an error or 6915 * initialized state. If we see either of these we bail out 6916 * and report the issue to the caller. If we exhaust the 6917 * "hello timeout" and we haven't exhausted our retries, try 6918 * again. Otherwise bail with a timeout error. 6919 */ 6920 for (;;) { 6921 u32 pcie_fw; 6922 6923 msleep(50); 6924 waiting -= 50; 6925 6926 /* 6927 * If neither Error nor Initialized are indicated 6928 * by the firmware keep waiting till we exhaust our 6929 * timeout ... and then retry if we haven't exhausted 6930 * our retries ... 6931 */ 6932 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 6933 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) { 6934 if (waiting <= 0) { 6935 if (retries-- > 0) 6936 goto retry; 6937 6938 return -ETIMEDOUT; 6939 } 6940 continue; 6941 } 6942 6943 /* 6944 * We either have an Error or Initialized condition 6945 * report errors preferentially. 6946 */ 6947 if (state) { 6948 if (pcie_fw & PCIE_FW_ERR_F) 6949 *state = DEV_STATE_ERR; 6950 else if (pcie_fw & PCIE_FW_INIT_F) 6951 *state = DEV_STATE_INIT; 6952 } 6953 6954 /* 6955 * If we arrived before a Master PF was selected and 6956 * there's not a valid Master PF, grab its identity 6957 * for our caller. 6958 */ 6959 if (master_mbox == PCIE_FW_MASTER_M && 6960 (pcie_fw & PCIE_FW_MASTER_VLD_F)) 6961 master_mbox = PCIE_FW_MASTER_G(pcie_fw); 6962 break; 6963 } 6964 } 6965 6966 return master_mbox; 6967 } 6968 6969 /** 6970 * t4_fw_bye - end communication with FW 6971 * @adap: the adapter 6972 * @mbox: mailbox to use for the FW command 6973 * 6974 * Issues a command to terminate communication with FW. 6975 */ 6976 int t4_fw_bye(struct adapter *adap, unsigned int mbox) 6977 { 6978 struct fw_bye_cmd c; 6979 6980 memset(&c, 0, sizeof(c)); 6981 INIT_CMD(c, BYE, WRITE); 6982 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6983 } 6984 6985 /** 6986 * t4_init_cmd - ask FW to initialize the device 6987 * @adap: the adapter 6988 * @mbox: mailbox to use for the FW command 6989 * 6990 * Issues a command to FW to partially initialize the device. This 6991 * performs initialization that generally doesn't depend on user input. 6992 */ 6993 int t4_early_init(struct adapter *adap, unsigned int mbox) 6994 { 6995 struct fw_initialize_cmd c; 6996 6997 memset(&c, 0, sizeof(c)); 6998 INIT_CMD(c, INITIALIZE, WRITE); 6999 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7000 } 7001 7002 /** 7003 * t4_fw_reset - issue a reset to FW 7004 * @adap: the adapter 7005 * @mbox: mailbox to use for the FW command 7006 * @reset: specifies the type of reset to perform 7007 * 7008 * Issues a reset command of the specified type to FW. 7009 */ 7010 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 7011 { 7012 struct fw_reset_cmd c; 7013 7014 memset(&c, 0, sizeof(c)); 7015 INIT_CMD(c, RESET, WRITE); 7016 c.val = cpu_to_be32(reset); 7017 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7018 } 7019 7020 /** 7021 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 7022 * @adap: the adapter 7023 * @mbox: mailbox to use for the FW RESET command (if desired) 7024 * @force: force uP into RESET even if FW RESET command fails 7025 * 7026 * Issues a RESET command to firmware (if desired) with a HALT indication 7027 * and then puts the microprocessor into RESET state. The RESET command 7028 * will only be issued if a legitimate mailbox is provided (mbox <= 7029 * PCIE_FW_MASTER_M). 7030 * 7031 * This is generally used in order for the host to safely manipulate the 7032 * adapter without fear of conflicting with whatever the firmware might 7033 * be doing. The only way out of this state is to RESTART the firmware 7034 * ... 7035 */ 7036 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 7037 { 7038 int ret = 0; 7039 7040 /* 7041 * If a legitimate mailbox is provided, issue a RESET command 7042 * with a HALT indication. 7043 */ 7044 if (mbox <= PCIE_FW_MASTER_M) { 7045 struct fw_reset_cmd c; 7046 7047 memset(&c, 0, sizeof(c)); 7048 INIT_CMD(c, RESET, WRITE); 7049 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F); 7050 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F); 7051 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7052 } 7053 7054 /* 7055 * Normally we won't complete the operation if the firmware RESET 7056 * command fails but if our caller insists we'll go ahead and put the 7057 * uP into RESET. This can be useful if the firmware is hung or even 7058 * missing ... We'll have to take the risk of putting the uP into 7059 * RESET without the cooperation of firmware in that case. 7060 * 7061 * We also force the firmware's HALT flag to be on in case we bypassed 7062 * the firmware RESET command above or we're dealing with old firmware 7063 * which doesn't have the HALT capability. This will serve as a flag 7064 * for the incoming firmware to know that it's coming out of a HALT 7065 * rather than a RESET ... if it's new enough to understand that ... 7066 */ 7067 if (ret == 0 || force) { 7068 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F); 7069 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 7070 PCIE_FW_HALT_F); 7071 } 7072 7073 /* 7074 * And we always return the result of the firmware RESET command 7075 * even when we force the uP into RESET ... 7076 */ 7077 return ret; 7078 } 7079 7080 /** 7081 * t4_fw_restart - restart the firmware by taking the uP out of RESET 7082 * @adap: the adapter 7083 * @mbox: mailbox to use for the FW command 7084 * @reset: if we want to do a RESET to restart things 7085 * 7086 * Restart firmware previously halted by t4_fw_halt(). On successful 7087 * return the previous PF Master remains as the new PF Master and there 7088 * is no need to issue a new HELLO command, etc. 7089 * 7090 * We do this in two ways: 7091 * 7092 * 1. If we're dealing with newer firmware we'll simply want to take 7093 * the chip's microprocessor out of RESET. This will cause the 7094 * firmware to start up from its start vector. And then we'll loop 7095 * until the firmware indicates it's started again (PCIE_FW.HALT 7096 * reset to 0) or we timeout. 7097 * 7098 * 2. If we're dealing with older firmware then we'll need to RESET 7099 * the chip since older firmware won't recognize the PCIE_FW.HALT 7100 * flag and automatically RESET itself on startup. 7101 */ 7102 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) 7103 { 7104 if (reset) { 7105 /* 7106 * Since we're directing the RESET instead of the firmware 7107 * doing it automatically, we need to clear the PCIE_FW.HALT 7108 * bit. 7109 */ 7110 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0); 7111 7112 /* 7113 * If we've been given a valid mailbox, first try to get the 7114 * firmware to do the RESET. If that works, great and we can 7115 * return success. Otherwise, if we haven't been given a 7116 * valid mailbox or the RESET command failed, fall back to 7117 * hitting the chip with a hammer. 7118 */ 7119 if (mbox <= PCIE_FW_MASTER_M) { 7120 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 7121 msleep(100); 7122 if (t4_fw_reset(adap, mbox, 7123 PIORST_F | PIORSTMODE_F) == 0) 7124 return 0; 7125 } 7126 7127 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F); 7128 msleep(2000); 7129 } else { 7130 int ms; 7131 7132 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 7133 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 7134 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F)) 7135 return 0; 7136 msleep(100); 7137 ms += 100; 7138 } 7139 return -ETIMEDOUT; 7140 } 7141 return 0; 7142 } 7143 7144 /** 7145 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 7146 * @adap: the adapter 7147 * @mbox: mailbox to use for the FW RESET command (if desired) 7148 * @fw_data: the firmware image to write 7149 * @size: image size 7150 * @force: force upgrade even if firmware doesn't cooperate 7151 * 7152 * Perform all of the steps necessary for upgrading an adapter's 7153 * firmware image. Normally this requires the cooperation of the 7154 * existing firmware in order to halt all existing activities 7155 * but if an invalid mailbox token is passed in we skip that step 7156 * (though we'll still put the adapter microprocessor into RESET in 7157 * that case). 7158 * 7159 * On successful return the new firmware will have been loaded and 7160 * the adapter will have been fully RESET losing all previous setup 7161 * state. On unsuccessful return the adapter may be completely hosed ... 7162 * positive errno indicates that the adapter is ~probably~ intact, a 7163 * negative errno indicates that things are looking bad ... 7164 */ 7165 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 7166 const u8 *fw_data, unsigned int size, int force) 7167 { 7168 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 7169 int reset, ret; 7170 7171 if (!t4_fw_matches_chip(adap, fw_hdr)) 7172 return -EINVAL; 7173 7174 /* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag 7175 * set wont be sent when we are flashing FW. 7176 */ 7177 adap->flags &= ~CXGB4_FW_OK; 7178 7179 ret = t4_fw_halt(adap, mbox, force); 7180 if (ret < 0 && !force) 7181 goto out; 7182 7183 ret = t4_load_fw(adap, fw_data, size); 7184 if (ret < 0) 7185 goto out; 7186 7187 /* 7188 * If there was a Firmware Configuration File stored in FLASH, 7189 * there's a good chance that it won't be compatible with the new 7190 * Firmware. In order to prevent difficult to diagnose adapter 7191 * initialization issues, we clear out the Firmware Configuration File 7192 * portion of the FLASH . The user will need to re-FLASH a new 7193 * Firmware Configuration File which is compatible with the new 7194 * Firmware if that's desired. 7195 */ 7196 (void)t4_load_cfg(adap, NULL, 0); 7197 7198 /* 7199 * Older versions of the firmware don't understand the new 7200 * PCIE_FW.HALT flag and so won't know to perform a RESET when they 7201 * restart. So for newly loaded older firmware we'll have to do the 7202 * RESET for it so it starts up on a clean slate. We can tell if 7203 * the newly loaded firmware will handle this right by checking 7204 * its header flags to see if it advertises the capability. 7205 */ 7206 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); 7207 ret = t4_fw_restart(adap, mbox, reset); 7208 7209 /* Grab potentially new Firmware Device Log parameters so we can see 7210 * how healthy the new Firmware is. It's okay to contact the new 7211 * Firmware for these parameters even though, as far as it's 7212 * concerned, we've never said "HELLO" to it ... 7213 */ 7214 (void)t4_init_devlog_params(adap); 7215 out: 7216 adap->flags |= CXGB4_FW_OK; 7217 return ret; 7218 } 7219 7220 /** 7221 * t4_fl_pkt_align - return the fl packet alignment 7222 * @adap: the adapter 7223 * 7224 * T4 has a single field to specify the packing and padding boundary. 7225 * T5 onwards has separate fields for this and hence the alignment for 7226 * next packet offset is maximum of these two. 7227 * 7228 */ 7229 int t4_fl_pkt_align(struct adapter *adap) 7230 { 7231 u32 sge_control, sge_control2; 7232 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift; 7233 7234 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 7235 7236 /* T4 uses a single control field to specify both the PCIe Padding and 7237 * Packing Boundary. T5 introduced the ability to specify these 7238 * separately. The actual Ingress Packet Data alignment boundary 7239 * within Packed Buffer Mode is the maximum of these two 7240 * specifications. (Note that it makes no real practical sense to 7241 * have the Padding Boundary be larger than the Packing Boundary but you 7242 * could set the chip up that way and, in fact, legacy T4 code would 7243 * end doing this because it would initialize the Padding Boundary and 7244 * leave the Packing Boundary initialized to 0 (16 bytes).) 7245 * Padding Boundary values in T6 starts from 8B, 7246 * where as it is 32B for T4 and T5. 7247 */ 7248 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 7249 ingpad_shift = INGPADBOUNDARY_SHIFT_X; 7250 else 7251 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X; 7252 7253 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift); 7254 7255 fl_align = ingpadboundary; 7256 if (!is_t4(adap->params.chip)) { 7257 /* T5 has a weird interpretation of one of the PCIe Packing 7258 * Boundary values. No idea why ... 7259 */ 7260 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A); 7261 ingpackboundary = INGPACKBOUNDARY_G(sge_control2); 7262 if (ingpackboundary == INGPACKBOUNDARY_16B_X) 7263 ingpackboundary = 16; 7264 else 7265 ingpackboundary = 1 << (ingpackboundary + 7266 INGPACKBOUNDARY_SHIFT_X); 7267 7268 fl_align = max(ingpadboundary, ingpackboundary); 7269 } 7270 return fl_align; 7271 } 7272 7273 /** 7274 * t4_fixup_host_params - fix up host-dependent parameters 7275 * @adap: the adapter 7276 * @page_size: the host's Base Page Size 7277 * @cache_line_size: the host's Cache Line Size 7278 * 7279 * Various registers in T4 contain values which are dependent on the 7280 * host's Base Page and Cache Line Sizes. This function will fix all of 7281 * those registers with the appropriate values as passed in ... 7282 */ 7283 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size, 7284 unsigned int cache_line_size) 7285 { 7286 unsigned int page_shift = fls(page_size) - 1; 7287 unsigned int sge_hps = page_shift - 10; 7288 unsigned int stat_len = cache_line_size > 64 ? 128 : 64; 7289 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size; 7290 unsigned int fl_align_log = fls(fl_align) - 1; 7291 7292 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A, 7293 HOSTPAGESIZEPF0_V(sge_hps) | 7294 HOSTPAGESIZEPF1_V(sge_hps) | 7295 HOSTPAGESIZEPF2_V(sge_hps) | 7296 HOSTPAGESIZEPF3_V(sge_hps) | 7297 HOSTPAGESIZEPF4_V(sge_hps) | 7298 HOSTPAGESIZEPF5_V(sge_hps) | 7299 HOSTPAGESIZEPF6_V(sge_hps) | 7300 HOSTPAGESIZEPF7_V(sge_hps)); 7301 7302 if (is_t4(adap->params.chip)) { 7303 t4_set_reg_field(adap, SGE_CONTROL_A, 7304 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7305 EGRSTATUSPAGESIZE_F, 7306 INGPADBOUNDARY_V(fl_align_log - 7307 INGPADBOUNDARY_SHIFT_X) | 7308 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7309 } else { 7310 unsigned int pack_align; 7311 unsigned int ingpad, ingpack; 7312 7313 /* T5 introduced the separation of the Free List Padding and 7314 * Packing Boundaries. Thus, we can select a smaller Padding 7315 * Boundary to avoid uselessly chewing up PCIe Link and Memory 7316 * Bandwidth, and use a Packing Boundary which is large enough 7317 * to avoid false sharing between CPUs, etc. 7318 * 7319 * For the PCI Link, the smaller the Padding Boundary the 7320 * better. For the Memory Controller, a smaller Padding 7321 * Boundary is better until we cross under the Memory Line 7322 * Size (the minimum unit of transfer to/from Memory). If we 7323 * have a Padding Boundary which is smaller than the Memory 7324 * Line Size, that'll involve a Read-Modify-Write cycle on the 7325 * Memory Controller which is never good. 7326 */ 7327 7328 /* We want the Packing Boundary to be based on the Cache Line 7329 * Size in order to help avoid False Sharing performance 7330 * issues between CPUs, etc. We also want the Packing 7331 * Boundary to incorporate the PCI-E Maximum Payload Size. We 7332 * get best performance when the Packing Boundary is a 7333 * multiple of the Maximum Payload Size. 7334 */ 7335 pack_align = fl_align; 7336 if (pci_is_pcie(adap->pdev)) { 7337 unsigned int mps, mps_log; 7338 u16 devctl; 7339 7340 /* The PCIe Device Control Maximum Payload Size field 7341 * [bits 7:5] encodes sizes as powers of 2 starting at 7342 * 128 bytes. 7343 */ 7344 pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL, 7345 &devctl); 7346 mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7; 7347 mps = 1 << mps_log; 7348 if (mps > pack_align) 7349 pack_align = mps; 7350 } 7351 7352 /* N.B. T5/T6 have a crazy special interpretation of the "0" 7353 * value for the Packing Boundary. This corresponds to 16 7354 * bytes instead of the expected 32 bytes. So if we want 32 7355 * bytes, the best we can really do is 64 bytes ... 7356 */ 7357 if (pack_align <= 16) { 7358 ingpack = INGPACKBOUNDARY_16B_X; 7359 fl_align = 16; 7360 } else if (pack_align == 32) { 7361 ingpack = INGPACKBOUNDARY_64B_X; 7362 fl_align = 64; 7363 } else { 7364 unsigned int pack_align_log = fls(pack_align) - 1; 7365 7366 ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X; 7367 fl_align = pack_align; 7368 } 7369 7370 /* Use the smallest Ingress Padding which isn't smaller than 7371 * the Memory Controller Read/Write Size. We'll take that as 7372 * being 8 bytes since we don't know of any system with a 7373 * wider Memory Controller Bus Width. 7374 */ 7375 if (is_t5(adap->params.chip)) 7376 ingpad = INGPADBOUNDARY_32B_X; 7377 else 7378 ingpad = T6_INGPADBOUNDARY_8B_X; 7379 7380 t4_set_reg_field(adap, SGE_CONTROL_A, 7381 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7382 EGRSTATUSPAGESIZE_F, 7383 INGPADBOUNDARY_V(ingpad) | 7384 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7385 t4_set_reg_field(adap, SGE_CONTROL2_A, 7386 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M), 7387 INGPACKBOUNDARY_V(ingpack)); 7388 } 7389 /* 7390 * Adjust various SGE Free List Host Buffer Sizes. 7391 * 7392 * This is something of a crock since we're using fixed indices into 7393 * the array which are also known by the sge.c code and the T4 7394 * Firmware Configuration File. We need to come up with a much better 7395 * approach to managing this array. For now, the first four entries 7396 * are: 7397 * 7398 * 0: Host Page Size 7399 * 1: 64KB 7400 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode) 7401 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode) 7402 * 7403 * For the single-MTU buffers in unpacked mode we need to include 7404 * space for the SGE Control Packet Shift, 14 byte Ethernet header, 7405 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet 7406 * Padding boundary. All of these are accommodated in the Factory 7407 * Default Firmware Configuration File but we need to adjust it for 7408 * this host's cache line size. 7409 */ 7410 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size); 7411 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A, 7412 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1) 7413 & ~(fl_align-1)); 7414 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A, 7415 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1) 7416 & ~(fl_align-1)); 7417 7418 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12)); 7419 7420 return 0; 7421 } 7422 7423 /** 7424 * t4_fw_initialize - ask FW to initialize the device 7425 * @adap: the adapter 7426 * @mbox: mailbox to use for the FW command 7427 * 7428 * Issues a command to FW to partially initialize the device. This 7429 * performs initialization that generally doesn't depend on user input. 7430 */ 7431 int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 7432 { 7433 struct fw_initialize_cmd c; 7434 7435 memset(&c, 0, sizeof(c)); 7436 INIT_CMD(c, INITIALIZE, WRITE); 7437 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7438 } 7439 7440 /** 7441 * t4_query_params_rw - query FW or device parameters 7442 * @adap: the adapter 7443 * @mbox: mailbox to use for the FW command 7444 * @pf: the PF 7445 * @vf: the VF 7446 * @nparams: the number of parameters 7447 * @params: the parameter names 7448 * @val: the parameter values 7449 * @rw: Write and read flag 7450 * @sleep_ok: if true, we may sleep awaiting mbox cmd completion 7451 * 7452 * Reads the value of FW or device parameters. Up to 7 parameters can be 7453 * queried at once. 7454 */ 7455 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, 7456 unsigned int vf, unsigned int nparams, const u32 *params, 7457 u32 *val, int rw, bool sleep_ok) 7458 { 7459 int i, ret; 7460 struct fw_params_cmd c; 7461 __be32 *p = &c.param[0].mnem; 7462 7463 if (nparams > 7) 7464 return -EINVAL; 7465 7466 memset(&c, 0, sizeof(c)); 7467 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7468 FW_CMD_REQUEST_F | FW_CMD_READ_F | 7469 FW_PARAMS_CMD_PFN_V(pf) | 7470 FW_PARAMS_CMD_VFN_V(vf)); 7471 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7472 7473 for (i = 0; i < nparams; i++) { 7474 *p++ = cpu_to_be32(*params++); 7475 if (rw) 7476 *p = cpu_to_be32(*(val + i)); 7477 p++; 7478 } 7479 7480 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7481 if (ret == 0) 7482 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 7483 *val++ = be32_to_cpu(*p); 7484 return ret; 7485 } 7486 7487 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7488 unsigned int vf, unsigned int nparams, const u32 *params, 7489 u32 *val) 7490 { 7491 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7492 true); 7493 } 7494 7495 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf, 7496 unsigned int vf, unsigned int nparams, const u32 *params, 7497 u32 *val) 7498 { 7499 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7500 false); 7501 } 7502 7503 /** 7504 * t4_set_params_timeout - sets FW or device parameters 7505 * @adap: the adapter 7506 * @mbox: mailbox to use for the FW command 7507 * @pf: the PF 7508 * @vf: the VF 7509 * @nparams: the number of parameters 7510 * @params: the parameter names 7511 * @val: the parameter values 7512 * @timeout: the timeout time 7513 * 7514 * Sets the value of FW or device parameters. Up to 7 parameters can be 7515 * specified at once. 7516 */ 7517 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, 7518 unsigned int pf, unsigned int vf, 7519 unsigned int nparams, const u32 *params, 7520 const u32 *val, int timeout) 7521 { 7522 struct fw_params_cmd c; 7523 __be32 *p = &c.param[0].mnem; 7524 7525 if (nparams > 7) 7526 return -EINVAL; 7527 7528 memset(&c, 0, sizeof(c)); 7529 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7530 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7531 FW_PARAMS_CMD_PFN_V(pf) | 7532 FW_PARAMS_CMD_VFN_V(vf)); 7533 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7534 7535 while (nparams--) { 7536 *p++ = cpu_to_be32(*params++); 7537 *p++ = cpu_to_be32(*val++); 7538 } 7539 7540 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); 7541 } 7542 7543 /** 7544 * t4_set_params - sets FW or device parameters 7545 * @adap: the adapter 7546 * @mbox: mailbox to use for the FW command 7547 * @pf: the PF 7548 * @vf: the VF 7549 * @nparams: the number of parameters 7550 * @params: the parameter names 7551 * @val: the parameter values 7552 * 7553 * Sets the value of FW or device parameters. Up to 7 parameters can be 7554 * specified at once. 7555 */ 7556 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7557 unsigned int vf, unsigned int nparams, const u32 *params, 7558 const u32 *val) 7559 { 7560 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, 7561 FW_CMD_MAX_TIMEOUT); 7562 } 7563 7564 /** 7565 * t4_cfg_pfvf - configure PF/VF resource limits 7566 * @adap: the adapter 7567 * @mbox: mailbox to use for the FW command 7568 * @pf: the PF being configured 7569 * @vf: the VF being configured 7570 * @txq: the max number of egress queues 7571 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 7572 * @rxqi: the max number of interrupt-capable ingress queues 7573 * @rxq: the max number of interruptless ingress queues 7574 * @tc: the PCI traffic class 7575 * @vi: the max number of virtual interfaces 7576 * @cmask: the channel access rights mask for the PF/VF 7577 * @pmask: the port access rights mask for the PF/VF 7578 * @nexact: the maximum number of exact MPS filters 7579 * @rcaps: read capabilities 7580 * @wxcaps: write/execute capabilities 7581 * 7582 * Configures resource limits and capabilities for a physical or virtual 7583 * function. 7584 */ 7585 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 7586 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 7587 unsigned int rxqi, unsigned int rxq, unsigned int tc, 7588 unsigned int vi, unsigned int cmask, unsigned int pmask, 7589 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 7590 { 7591 struct fw_pfvf_cmd c; 7592 7593 memset(&c, 0, sizeof(c)); 7594 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F | 7595 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) | 7596 FW_PFVF_CMD_VFN_V(vf)); 7597 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7598 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) | 7599 FW_PFVF_CMD_NIQ_V(rxq)); 7600 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) | 7601 FW_PFVF_CMD_PMASK_V(pmask) | 7602 FW_PFVF_CMD_NEQ_V(txq)); 7603 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) | 7604 FW_PFVF_CMD_NVI_V(vi) | 7605 FW_PFVF_CMD_NEXACTF_V(nexact)); 7606 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) | 7607 FW_PFVF_CMD_WX_CAPS_V(wxcaps) | 7608 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl)); 7609 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7610 } 7611 7612 /** 7613 * t4_alloc_vi - allocate a virtual interface 7614 * @adap: the adapter 7615 * @mbox: mailbox to use for the FW command 7616 * @port: physical port associated with the VI 7617 * @pf: the PF owning the VI 7618 * @vf: the VF owning the VI 7619 * @nmac: number of MAC addresses needed (1 to 5) 7620 * @mac: the MAC addresses of the VI 7621 * @rss_size: size of RSS table slice associated with this VI 7622 * @vivld: the destination to store the VI Valid value. 7623 * @vin: the destination to store the VIN value. 7624 * 7625 * Allocates a virtual interface for the given physical port. If @mac is 7626 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 7627 * @mac should be large enough to hold @nmac Ethernet addresses, they are 7628 * stored consecutively so the space needed is @nmac * 6 bytes. 7629 * Returns a negative error number or the non-negative VI id. 7630 */ 7631 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 7632 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 7633 unsigned int *rss_size, u8 *vivld, u8 *vin) 7634 { 7635 int ret; 7636 struct fw_vi_cmd c; 7637 7638 memset(&c, 0, sizeof(c)); 7639 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | 7640 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 7641 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf)); 7642 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c)); 7643 c.portid_pkd = FW_VI_CMD_PORTID_V(port); 7644 c.nmac = nmac - 1; 7645 7646 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7647 if (ret) 7648 return ret; 7649 7650 if (mac) { 7651 memcpy(mac, c.mac, sizeof(c.mac)); 7652 switch (nmac) { 7653 case 5: 7654 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 7655 fallthrough; 7656 case 4: 7657 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 7658 fallthrough; 7659 case 3: 7660 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 7661 fallthrough; 7662 case 2: 7663 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 7664 } 7665 } 7666 if (rss_size) 7667 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd)); 7668 7669 if (vivld) 7670 *vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16)); 7671 7672 if (vin) 7673 *vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16)); 7674 7675 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid)); 7676 } 7677 7678 /** 7679 * t4_free_vi - free a virtual interface 7680 * @adap: the adapter 7681 * @mbox: mailbox to use for the FW command 7682 * @pf: the PF owning the VI 7683 * @vf: the VF owning the VI 7684 * @viid: virtual interface identifiler 7685 * 7686 * Free a previously allocated virtual interface. 7687 */ 7688 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, 7689 unsigned int vf, unsigned int viid) 7690 { 7691 struct fw_vi_cmd c; 7692 7693 memset(&c, 0, sizeof(c)); 7694 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 7695 FW_CMD_REQUEST_F | 7696 FW_CMD_EXEC_F | 7697 FW_VI_CMD_PFN_V(pf) | 7698 FW_VI_CMD_VFN_V(vf)); 7699 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c)); 7700 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid)); 7701 7702 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7703 } 7704 7705 /** 7706 * t4_set_rxmode - set Rx properties of a virtual interface 7707 * @adap: the adapter 7708 * @mbox: mailbox to use for the FW command 7709 * @viid: the VI id 7710 * @viid_mirror: the mirror VI id 7711 * @mtu: the new MTU or -1 7712 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 7713 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 7714 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 7715 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 7716 * @sleep_ok: if true we may sleep while awaiting command completion 7717 * 7718 * Sets Rx properties of a virtual interface. 7719 */ 7720 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 7721 unsigned int viid_mirror, int mtu, int promisc, int all_multi, 7722 int bcast, int vlanex, bool sleep_ok) 7723 { 7724 struct fw_vi_rxmode_cmd c, c_mirror; 7725 int ret; 7726 7727 /* convert to FW values */ 7728 if (mtu < 0) 7729 mtu = FW_RXMODE_MTU_NO_CHG; 7730 if (promisc < 0) 7731 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; 7732 if (all_multi < 0) 7733 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; 7734 if (bcast < 0) 7735 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; 7736 if (vlanex < 0) 7737 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; 7738 7739 memset(&c, 0, sizeof(c)); 7740 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 7741 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7742 FW_VI_RXMODE_CMD_VIID_V(viid)); 7743 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7744 c.mtu_to_vlanexen = 7745 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) | 7746 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | 7747 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | 7748 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | 7749 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); 7750 7751 if (viid_mirror) { 7752 memcpy(&c_mirror, &c, sizeof(c_mirror)); 7753 c_mirror.op_to_viid = 7754 cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 7755 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7756 FW_VI_RXMODE_CMD_VIID_V(viid_mirror)); 7757 } 7758 7759 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 7760 if (ret) 7761 return ret; 7762 7763 if (viid_mirror) 7764 ret = t4_wr_mbox_meat(adap, mbox, &c_mirror, sizeof(c_mirror), 7765 NULL, sleep_ok); 7766 7767 return ret; 7768 } 7769 7770 /** 7771 * t4_free_encap_mac_filt - frees MPS entry at given index 7772 * @adap: the adapter 7773 * @viid: the VI id 7774 * @idx: index of MPS entry to be freed 7775 * @sleep_ok: call is allowed to sleep 7776 * 7777 * Frees the MPS entry at supplied index 7778 * 7779 * Returns a negative error number or zero on success 7780 */ 7781 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid, 7782 int idx, bool sleep_ok) 7783 { 7784 struct fw_vi_mac_exact *p; 7785 u8 addr[] = {0, 0, 0, 0, 0, 0}; 7786 struct fw_vi_mac_cmd c; 7787 int ret = 0; 7788 u32 exact; 7789 7790 memset(&c, 0, sizeof(c)); 7791 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7792 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7793 FW_CMD_EXEC_V(0) | 7794 FW_VI_MAC_CMD_VIID_V(viid)); 7795 exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC); 7796 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7797 exact | 7798 FW_CMD_LEN16_V(1)); 7799 p = c.u.exact; 7800 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7801 FW_VI_MAC_CMD_IDX_V(idx)); 7802 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7803 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7804 return ret; 7805 } 7806 7807 /** 7808 * t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam 7809 * @adap: the adapter 7810 * @viid: the VI id 7811 * @addr: the MAC address 7812 * @mask: the mask 7813 * @idx: index of the entry in mps tcam 7814 * @lookup_type: MAC address for inner (1) or outer (0) header 7815 * @port_id: the port index 7816 * @sleep_ok: call is allowed to sleep 7817 * 7818 * Removes the mac entry at the specified index using raw mac interface. 7819 * 7820 * Returns a negative error number on failure. 7821 */ 7822 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid, 7823 const u8 *addr, const u8 *mask, unsigned int idx, 7824 u8 lookup_type, u8 port_id, bool sleep_ok) 7825 { 7826 struct fw_vi_mac_cmd c; 7827 struct fw_vi_mac_raw *p = &c.u.raw; 7828 u32 val; 7829 7830 memset(&c, 0, sizeof(c)); 7831 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7832 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7833 FW_CMD_EXEC_V(0) | 7834 FW_VI_MAC_CMD_VIID_V(viid)); 7835 val = FW_CMD_LEN16_V(1) | 7836 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7837 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7838 FW_CMD_LEN16_V(val)); 7839 7840 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) | 7841 FW_VI_MAC_ID_BASED_FREE); 7842 7843 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7844 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7845 DATAPORTNUM_V(port_id)); 7846 /* Lookup mask and port mask */ 7847 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7848 DATAPORTNUM_V(DATAPORTNUM_M)); 7849 7850 /* Copy the address and the mask */ 7851 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7852 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7853 7854 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7855 } 7856 7857 /** 7858 * t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support 7859 * @adap: the adapter 7860 * @viid: the VI id 7861 * @addr: the MAC address 7862 * @mask: the mask 7863 * @vni: the VNI id for the tunnel protocol 7864 * @vni_mask: mask for the VNI id 7865 * @dip_hit: to enable DIP match for the MPS entry 7866 * @lookup_type: MAC address for inner (1) or outer (0) header 7867 * @sleep_ok: call is allowed to sleep 7868 * 7869 * Allocates an MPS entry with specified MAC address and VNI value. 7870 * 7871 * Returns a negative error number or the allocated index for this mac. 7872 */ 7873 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid, 7874 const u8 *addr, const u8 *mask, unsigned int vni, 7875 unsigned int vni_mask, u8 dip_hit, u8 lookup_type, 7876 bool sleep_ok) 7877 { 7878 struct fw_vi_mac_cmd c; 7879 struct fw_vi_mac_vni *p = c.u.exact_vni; 7880 int ret = 0; 7881 u32 val; 7882 7883 memset(&c, 0, sizeof(c)); 7884 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7885 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7886 FW_VI_MAC_CMD_VIID_V(viid)); 7887 val = FW_CMD_LEN16_V(1) | 7888 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI); 7889 c.freemacs_to_len16 = cpu_to_be32(val); 7890 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7891 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC)); 7892 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7893 memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask)); 7894 7895 p->lookup_type_to_vni = 7896 cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) | 7897 FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) | 7898 FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type)); 7899 p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask)); 7900 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7901 if (ret == 0) 7902 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 7903 return ret; 7904 } 7905 7906 /** 7907 * t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam 7908 * @adap: the adapter 7909 * @viid: the VI id 7910 * @addr: the MAC address 7911 * @mask: the mask 7912 * @idx: index at which to add this entry 7913 * @lookup_type: MAC address for inner (1) or outer (0) header 7914 * @port_id: the port index 7915 * @sleep_ok: call is allowed to sleep 7916 * 7917 * Adds the mac entry at the specified index using raw mac interface. 7918 * 7919 * Returns a negative error number or the allocated index for this mac. 7920 */ 7921 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid, 7922 const u8 *addr, const u8 *mask, unsigned int idx, 7923 u8 lookup_type, u8 port_id, bool sleep_ok) 7924 { 7925 int ret = 0; 7926 struct fw_vi_mac_cmd c; 7927 struct fw_vi_mac_raw *p = &c.u.raw; 7928 u32 val; 7929 7930 memset(&c, 0, sizeof(c)); 7931 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7932 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7933 FW_VI_MAC_CMD_VIID_V(viid)); 7934 val = FW_CMD_LEN16_V(1) | 7935 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7936 c.freemacs_to_len16 = cpu_to_be32(val); 7937 7938 /* Specify that this is an inner mac address */ 7939 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx)); 7940 7941 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7942 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7943 DATAPORTNUM_V(port_id)); 7944 /* Lookup mask and port mask */ 7945 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7946 DATAPORTNUM_V(DATAPORTNUM_M)); 7947 7948 /* Copy the address and the mask */ 7949 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7950 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7951 7952 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7953 if (ret == 0) { 7954 ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd)); 7955 if (ret != idx) 7956 ret = -ENOMEM; 7957 } 7958 7959 return ret; 7960 } 7961 7962 /** 7963 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 7964 * @adap: the adapter 7965 * @mbox: mailbox to use for the FW command 7966 * @viid: the VI id 7967 * @free: if true any existing filters for this VI id are first removed 7968 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7969 * @addr: the MAC address(es) 7970 * @idx: where to store the index of each allocated filter 7971 * @hash: pointer to hash address filter bitmap 7972 * @sleep_ok: call is allowed to sleep 7973 * 7974 * Allocates an exact-match filter for each of the supplied addresses and 7975 * sets it to the corresponding address. If @idx is not %NULL it should 7976 * have at least @naddr entries, each of which will be set to the index of 7977 * the filter allocated for the corresponding MAC address. If a filter 7978 * could not be allocated for an address its index is set to 0xffff. 7979 * If @hash is not %NULL addresses that fail to allocate an exact filter 7980 * are hashed and update the hash filter bitmap pointed at by @hash. 7981 * 7982 * Returns a negative error number or the number of filters allocated. 7983 */ 7984 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 7985 unsigned int viid, bool free, unsigned int naddr, 7986 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 7987 { 7988 int offset, ret = 0; 7989 struct fw_vi_mac_cmd c; 7990 unsigned int nfilters = 0; 7991 unsigned int max_naddr = adap->params.arch.mps_tcam_size; 7992 unsigned int rem = naddr; 7993 7994 if (naddr > max_naddr) 7995 return -EINVAL; 7996 7997 for (offset = 0; offset < naddr ; /**/) { 7998 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ? 7999 rem : ARRAY_SIZE(c.u.exact)); 8000 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 8001 u.exact[fw_naddr]), 16); 8002 struct fw_vi_mac_exact *p; 8003 int i; 8004 8005 memset(&c, 0, sizeof(c)); 8006 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8007 FW_CMD_REQUEST_F | 8008 FW_CMD_WRITE_F | 8009 FW_CMD_EXEC_V(free) | 8010 FW_VI_MAC_CMD_VIID_V(viid)); 8011 c.freemacs_to_len16 = 8012 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) | 8013 FW_CMD_LEN16_V(len16)); 8014 8015 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8016 p->valid_to_idx = 8017 cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 8018 FW_VI_MAC_CMD_IDX_V( 8019 FW_VI_MAC_ADD_MAC)); 8020 memcpy(p->macaddr, addr[offset + i], 8021 sizeof(p->macaddr)); 8022 } 8023 8024 /* It's okay if we run out of space in our MAC address arena. 8025 * Some of the addresses we submit may get stored so we need 8026 * to run through the reply to see what the results were ... 8027 */ 8028 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 8029 if (ret && ret != -FW_ENOMEM) 8030 break; 8031 8032 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8033 u16 index = FW_VI_MAC_CMD_IDX_G( 8034 be16_to_cpu(p->valid_to_idx)); 8035 8036 if (idx) 8037 idx[offset + i] = (index >= max_naddr ? 8038 0xffff : index); 8039 if (index < max_naddr) 8040 nfilters++; 8041 else if (hash) 8042 *hash |= (1ULL << 8043 hash_mac_addr(addr[offset + i])); 8044 } 8045 8046 free = false; 8047 offset += fw_naddr; 8048 rem -= fw_naddr; 8049 } 8050 8051 if (ret == 0 || ret == -FW_ENOMEM) 8052 ret = nfilters; 8053 return ret; 8054 } 8055 8056 /** 8057 * t4_free_mac_filt - frees exact-match filters of given MAC addresses 8058 * @adap: the adapter 8059 * @mbox: mailbox to use for the FW command 8060 * @viid: the VI id 8061 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 8062 * @addr: the MAC address(es) 8063 * @sleep_ok: call is allowed to sleep 8064 * 8065 * Frees the exact-match filter for each of the supplied addresses 8066 * 8067 * Returns a negative error number or the number of filters freed. 8068 */ 8069 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox, 8070 unsigned int viid, unsigned int naddr, 8071 const u8 **addr, bool sleep_ok) 8072 { 8073 int offset, ret = 0; 8074 struct fw_vi_mac_cmd c; 8075 unsigned int nfilters = 0; 8076 unsigned int max_naddr = is_t4(adap->params.chip) ? 8077 NUM_MPS_CLS_SRAM_L_INSTANCES : 8078 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 8079 unsigned int rem = naddr; 8080 8081 if (naddr > max_naddr) 8082 return -EINVAL; 8083 8084 for (offset = 0; offset < (int)naddr ; /**/) { 8085 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) 8086 ? rem 8087 : ARRAY_SIZE(c.u.exact)); 8088 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 8089 u.exact[fw_naddr]), 16); 8090 struct fw_vi_mac_exact *p; 8091 int i; 8092 8093 memset(&c, 0, sizeof(c)); 8094 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8095 FW_CMD_REQUEST_F | 8096 FW_CMD_WRITE_F | 8097 FW_CMD_EXEC_V(0) | 8098 FW_VI_MAC_CMD_VIID_V(viid)); 8099 c.freemacs_to_len16 = 8100 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 8101 FW_CMD_LEN16_V(len16)); 8102 8103 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) { 8104 p->valid_to_idx = cpu_to_be16( 8105 FW_VI_MAC_CMD_VALID_F | 8106 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE)); 8107 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 8108 } 8109 8110 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 8111 if (ret) 8112 break; 8113 8114 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8115 u16 index = FW_VI_MAC_CMD_IDX_G( 8116 be16_to_cpu(p->valid_to_idx)); 8117 8118 if (index < max_naddr) 8119 nfilters++; 8120 } 8121 8122 offset += fw_naddr; 8123 rem -= fw_naddr; 8124 } 8125 8126 if (ret == 0) 8127 ret = nfilters; 8128 return ret; 8129 } 8130 8131 /** 8132 * t4_change_mac - modifies the exact-match filter for a MAC address 8133 * @adap: the adapter 8134 * @mbox: mailbox to use for the FW command 8135 * @viid: the VI id 8136 * @idx: index of existing filter for old value of MAC address, or -1 8137 * @addr: the new MAC address value 8138 * @persist: whether a new MAC allocation should be persistent 8139 * @smt_idx: the destination to store the new SMT index. 8140 * 8141 * Modifies an exact-match filter and sets it to the new MAC address. 8142 * Note that in general it is not possible to modify the value of a given 8143 * filter so the generic way to modify an address filter is to free the one 8144 * being used by the old address value and allocate a new filter for the 8145 * new address value. @idx can be -1 if the address is a new addition. 8146 * 8147 * Returns a negative error number or the index of the filter with the new 8148 * MAC value. 8149 */ 8150 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 8151 int idx, const u8 *addr, bool persist, u8 *smt_idx) 8152 { 8153 int ret, mode; 8154 struct fw_vi_mac_cmd c; 8155 struct fw_vi_mac_exact *p = c.u.exact; 8156 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size; 8157 8158 if (idx < 0) /* new allocation */ 8159 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 8160 mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 8161 8162 memset(&c, 0, sizeof(c)); 8163 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8164 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 8165 FW_VI_MAC_CMD_VIID_V(viid)); 8166 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1)); 8167 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 8168 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) | 8169 FW_VI_MAC_CMD_IDX_V(idx)); 8170 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 8171 8172 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 8173 if (ret == 0) { 8174 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 8175 if (ret >= max_mac_addr) 8176 ret = -ENOMEM; 8177 if (smt_idx) { 8178 if (adap->params.viid_smt_extn_support) { 8179 *smt_idx = FW_VI_MAC_CMD_SMTID_G 8180 (be32_to_cpu(c.op_to_viid)); 8181 } else { 8182 /* In T4/T5, SMT contains 256 SMAC entries 8183 * organized in 128 rows of 2 entries each. 8184 * In T6, SMT contains 256 SMAC entries in 8185 * 256 rows. 8186 */ 8187 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= 8188 CHELSIO_T5) 8189 *smt_idx = (viid & FW_VIID_VIN_M) << 1; 8190 else 8191 *smt_idx = (viid & FW_VIID_VIN_M); 8192 } 8193 } 8194 } 8195 return ret; 8196 } 8197 8198 /** 8199 * t4_set_addr_hash - program the MAC inexact-match hash filter 8200 * @adap: the adapter 8201 * @mbox: mailbox to use for the FW command 8202 * @viid: the VI id 8203 * @ucast: whether the hash filter should also match unicast addresses 8204 * @vec: the value to be written to the hash filter 8205 * @sleep_ok: call is allowed to sleep 8206 * 8207 * Sets the 64-bit inexact-match hash filter for a virtual interface. 8208 */ 8209 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 8210 bool ucast, u64 vec, bool sleep_ok) 8211 { 8212 struct fw_vi_mac_cmd c; 8213 8214 memset(&c, 0, sizeof(c)); 8215 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8216 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 8217 FW_VI_ENABLE_CMD_VIID_V(viid)); 8218 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F | 8219 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | 8220 FW_CMD_LEN16_V(1)); 8221 c.u.hash.hashvec = cpu_to_be64(vec); 8222 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 8223 } 8224 8225 /** 8226 * t4_enable_vi_params - enable/disable a virtual interface 8227 * @adap: the adapter 8228 * @mbox: mailbox to use for the FW command 8229 * @viid: the VI id 8230 * @rx_en: 1=enable Rx, 0=disable Rx 8231 * @tx_en: 1=enable Tx, 0=disable Tx 8232 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8233 * 8234 * Enables/disables a virtual interface. Note that setting DCB Enable 8235 * only makes sense when enabling a Virtual Interface ... 8236 */ 8237 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, 8238 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) 8239 { 8240 struct fw_vi_enable_cmd c; 8241 8242 memset(&c, 0, sizeof(c)); 8243 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 8244 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8245 FW_VI_ENABLE_CMD_VIID_V(viid)); 8246 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) | 8247 FW_VI_ENABLE_CMD_EEN_V(tx_en) | 8248 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) | 8249 FW_LEN16(c)); 8250 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 8251 } 8252 8253 /** 8254 * t4_enable_vi - enable/disable a virtual interface 8255 * @adap: the adapter 8256 * @mbox: mailbox to use for the FW command 8257 * @viid: the VI id 8258 * @rx_en: 1=enable Rx, 0=disable Rx 8259 * @tx_en: 1=enable Tx, 0=disable Tx 8260 * 8261 * Enables/disables a virtual interface. 8262 */ 8263 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 8264 bool rx_en, bool tx_en) 8265 { 8266 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); 8267 } 8268 8269 /** 8270 * t4_enable_pi_params - enable/disable a Port's Virtual Interface 8271 * @adap: the adapter 8272 * @mbox: mailbox to use for the FW command 8273 * @pi: the Port Information structure 8274 * @rx_en: 1=enable Rx, 0=disable Rx 8275 * @tx_en: 1=enable Tx, 0=disable Tx 8276 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8277 * 8278 * Enables/disables a Port's Virtual Interface. Note that setting DCB 8279 * Enable only makes sense when enabling a Virtual Interface ... 8280 * If the Virtual Interface enable/disable operation is successful, 8281 * we notify the OS-specific code of a potential Link Status change 8282 * via the OS Contract API t4_os_link_changed(). 8283 */ 8284 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox, 8285 struct port_info *pi, 8286 bool rx_en, bool tx_en, bool dcb_en) 8287 { 8288 int ret = t4_enable_vi_params(adap, mbox, pi->viid, 8289 rx_en, tx_en, dcb_en); 8290 if (ret) 8291 return ret; 8292 t4_os_link_changed(adap, pi->port_id, 8293 rx_en && tx_en && pi->link_cfg.link_ok); 8294 return 0; 8295 } 8296 8297 /** 8298 * t4_identify_port - identify a VI's port by blinking its LED 8299 * @adap: the adapter 8300 * @mbox: mailbox to use for the FW command 8301 * @viid: the VI id 8302 * @nblinks: how many times to blink LED at 2.5 Hz 8303 * 8304 * Identifies a VI's port by blinking its LED. 8305 */ 8306 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 8307 unsigned int nblinks) 8308 { 8309 struct fw_vi_enable_cmd c; 8310 8311 memset(&c, 0, sizeof(c)); 8312 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 8313 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8314 FW_VI_ENABLE_CMD_VIID_V(viid)); 8315 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c)); 8316 c.blinkdur = cpu_to_be16(nblinks); 8317 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8318 } 8319 8320 /** 8321 * t4_iq_stop - stop an ingress queue and its FLs 8322 * @adap: the adapter 8323 * @mbox: mailbox to use for the FW command 8324 * @pf: the PF owning the queues 8325 * @vf: the VF owning the queues 8326 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 8327 * @iqid: ingress queue id 8328 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8329 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8330 * 8331 * Stops an ingress queue and its associated FLs, if any. This causes 8332 * any current or future data/messages destined for these queues to be 8333 * tossed. 8334 */ 8335 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, 8336 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8337 unsigned int fl0id, unsigned int fl1id) 8338 { 8339 struct fw_iq_cmd c; 8340 8341 memset(&c, 0, sizeof(c)); 8342 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 8343 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 8344 FW_IQ_CMD_VFN_V(vf)); 8345 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c)); 8346 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 8347 c.iqid = cpu_to_be16(iqid); 8348 c.fl0id = cpu_to_be16(fl0id); 8349 c.fl1id = cpu_to_be16(fl1id); 8350 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8351 } 8352 8353 /** 8354 * t4_iq_free - free an ingress queue and its FLs 8355 * @adap: the adapter 8356 * @mbox: mailbox to use for the FW command 8357 * @pf: the PF owning the queues 8358 * @vf: the VF owning the queues 8359 * @iqtype: the ingress queue type 8360 * @iqid: ingress queue id 8361 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8362 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8363 * 8364 * Frees an ingress queue and its associated FLs, if any. 8365 */ 8366 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8367 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8368 unsigned int fl0id, unsigned int fl1id) 8369 { 8370 struct fw_iq_cmd c; 8371 8372 memset(&c, 0, sizeof(c)); 8373 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 8374 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 8375 FW_IQ_CMD_VFN_V(vf)); 8376 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c)); 8377 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 8378 c.iqid = cpu_to_be16(iqid); 8379 c.fl0id = cpu_to_be16(fl0id); 8380 c.fl1id = cpu_to_be16(fl1id); 8381 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8382 } 8383 8384 /** 8385 * t4_eth_eq_free - free an Ethernet egress queue 8386 * @adap: the adapter 8387 * @mbox: mailbox to use for the FW command 8388 * @pf: the PF owning the queue 8389 * @vf: the VF owning the queue 8390 * @eqid: egress queue id 8391 * 8392 * Frees an Ethernet egress queue. 8393 */ 8394 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8395 unsigned int vf, unsigned int eqid) 8396 { 8397 struct fw_eq_eth_cmd c; 8398 8399 memset(&c, 0, sizeof(c)); 8400 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | 8401 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8402 FW_EQ_ETH_CMD_PFN_V(pf) | 8403 FW_EQ_ETH_CMD_VFN_V(vf)); 8404 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c)); 8405 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid)); 8406 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8407 } 8408 8409 /** 8410 * t4_ctrl_eq_free - free a control egress queue 8411 * @adap: the adapter 8412 * @mbox: mailbox to use for the FW command 8413 * @pf: the PF owning the queue 8414 * @vf: the VF owning the queue 8415 * @eqid: egress queue id 8416 * 8417 * Frees a control egress queue. 8418 */ 8419 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8420 unsigned int vf, unsigned int eqid) 8421 { 8422 struct fw_eq_ctrl_cmd c; 8423 8424 memset(&c, 0, sizeof(c)); 8425 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | 8426 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8427 FW_EQ_CTRL_CMD_PFN_V(pf) | 8428 FW_EQ_CTRL_CMD_VFN_V(vf)); 8429 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c)); 8430 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid)); 8431 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8432 } 8433 8434 /** 8435 * t4_ofld_eq_free - free an offload egress queue 8436 * @adap: the adapter 8437 * @mbox: mailbox to use for the FW command 8438 * @pf: the PF owning the queue 8439 * @vf: the VF owning the queue 8440 * @eqid: egress queue id 8441 * 8442 * Frees a control egress queue. 8443 */ 8444 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8445 unsigned int vf, unsigned int eqid) 8446 { 8447 struct fw_eq_ofld_cmd c; 8448 8449 memset(&c, 0, sizeof(c)); 8450 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | 8451 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8452 FW_EQ_OFLD_CMD_PFN_V(pf) | 8453 FW_EQ_OFLD_CMD_VFN_V(vf)); 8454 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c)); 8455 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid)); 8456 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8457 } 8458 8459 /** 8460 * t4_link_down_rc_str - return a string for a Link Down Reason Code 8461 * @link_down_rc: Link Down Reason Code 8462 * 8463 * Returns a string representation of the Link Down Reason Code. 8464 */ 8465 static const char *t4_link_down_rc_str(unsigned char link_down_rc) 8466 { 8467 static const char * const reason[] = { 8468 "Link Down", 8469 "Remote Fault", 8470 "Auto-negotiation Failure", 8471 "Reserved", 8472 "Insufficient Airflow", 8473 "Unable To Determine Reason", 8474 "No RX Signal Detected", 8475 "Reserved", 8476 }; 8477 8478 if (link_down_rc >= ARRAY_SIZE(reason)) 8479 return "Bad Reason Code"; 8480 8481 return reason[link_down_rc]; 8482 } 8483 8484 /* Return the highest speed set in the port capabilities, in Mb/s. */ 8485 static unsigned int fwcap_to_speed(fw_port_cap32_t caps) 8486 { 8487 #define TEST_SPEED_RETURN(__caps_speed, __speed) \ 8488 do { \ 8489 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8490 return __speed; \ 8491 } while (0) 8492 8493 TEST_SPEED_RETURN(400G, 400000); 8494 TEST_SPEED_RETURN(200G, 200000); 8495 TEST_SPEED_RETURN(100G, 100000); 8496 TEST_SPEED_RETURN(50G, 50000); 8497 TEST_SPEED_RETURN(40G, 40000); 8498 TEST_SPEED_RETURN(25G, 25000); 8499 TEST_SPEED_RETURN(10G, 10000); 8500 TEST_SPEED_RETURN(1G, 1000); 8501 TEST_SPEED_RETURN(100M, 100); 8502 8503 #undef TEST_SPEED_RETURN 8504 8505 return 0; 8506 } 8507 8508 /** 8509 * fwcap_to_fwspeed - return highest speed in Port Capabilities 8510 * @acaps: advertised Port Capabilities 8511 * 8512 * Get the highest speed for the port from the advertised Port 8513 * Capabilities. It will be either the highest speed from the list of 8514 * speeds or whatever user has set using ethtool. 8515 */ 8516 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps) 8517 { 8518 #define TEST_SPEED_RETURN(__caps_speed) \ 8519 do { \ 8520 if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8521 return FW_PORT_CAP32_SPEED_##__caps_speed; \ 8522 } while (0) 8523 8524 TEST_SPEED_RETURN(400G); 8525 TEST_SPEED_RETURN(200G); 8526 TEST_SPEED_RETURN(100G); 8527 TEST_SPEED_RETURN(50G); 8528 TEST_SPEED_RETURN(40G); 8529 TEST_SPEED_RETURN(25G); 8530 TEST_SPEED_RETURN(10G); 8531 TEST_SPEED_RETURN(1G); 8532 TEST_SPEED_RETURN(100M); 8533 8534 #undef TEST_SPEED_RETURN 8535 8536 return 0; 8537 } 8538 8539 /** 8540 * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities 8541 * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value 8542 * 8543 * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new 8544 * 32-bit Port Capabilities value. 8545 */ 8546 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus) 8547 { 8548 fw_port_cap32_t linkattr = 0; 8549 8550 /* Unfortunately the format of the Link Status in the old 8551 * 16-bit Port Information message isn't the same as the 8552 * 16-bit Port Capabilities bitfield used everywhere else ... 8553 */ 8554 if (lstatus & FW_PORT_CMD_RXPAUSE_F) 8555 linkattr |= FW_PORT_CAP32_FC_RX; 8556 if (lstatus & FW_PORT_CMD_TXPAUSE_F) 8557 linkattr |= FW_PORT_CAP32_FC_TX; 8558 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) 8559 linkattr |= FW_PORT_CAP32_SPEED_100M; 8560 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) 8561 linkattr |= FW_PORT_CAP32_SPEED_1G; 8562 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) 8563 linkattr |= FW_PORT_CAP32_SPEED_10G; 8564 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G)) 8565 linkattr |= FW_PORT_CAP32_SPEED_25G; 8566 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) 8567 linkattr |= FW_PORT_CAP32_SPEED_40G; 8568 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G)) 8569 linkattr |= FW_PORT_CAP32_SPEED_100G; 8570 8571 return linkattr; 8572 } 8573 8574 /** 8575 * t4_handle_get_port_info - process a FW reply message 8576 * @pi: the port info 8577 * @rpl: start of the FW message 8578 * 8579 * Processes a GET_PORT_INFO FW reply message. 8580 */ 8581 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl) 8582 { 8583 const struct fw_port_cmd *cmd = (const void *)rpl; 8584 fw_port_cap32_t pcaps, acaps, lpacaps, linkattr; 8585 struct link_config *lc = &pi->link_cfg; 8586 struct adapter *adapter = pi->adapter; 8587 unsigned int speed, fc, fec, adv_fc; 8588 enum fw_port_module_type mod_type; 8589 int action, link_ok, linkdnrc; 8590 enum fw_port_type port_type; 8591 8592 /* Extract the various fields from the Port Information message. 8593 */ 8594 action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16)); 8595 switch (action) { 8596 case FW_PORT_ACTION_GET_PORT_INFO: { 8597 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype); 8598 8599 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0; 8600 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus); 8601 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 8602 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus); 8603 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap)); 8604 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap)); 8605 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap)); 8606 linkattr = lstatus_to_fwcap(lstatus); 8607 break; 8608 } 8609 8610 case FW_PORT_ACTION_GET_PORT_INFO32: { 8611 u32 lstatus32; 8612 8613 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32); 8614 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0; 8615 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32); 8616 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 8617 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32); 8618 pcaps = be32_to_cpu(cmd->u.info32.pcaps32); 8619 acaps = be32_to_cpu(cmd->u.info32.acaps32); 8620 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32); 8621 linkattr = be32_to_cpu(cmd->u.info32.linkattr32); 8622 break; 8623 } 8624 8625 default: 8626 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n", 8627 be32_to_cpu(cmd->action_to_len16)); 8628 return; 8629 } 8630 8631 fec = fwcap_to_cc_fec(acaps); 8632 adv_fc = fwcap_to_cc_pause(acaps); 8633 fc = fwcap_to_cc_pause(linkattr); 8634 speed = fwcap_to_speed(linkattr); 8635 8636 /* Reset state for communicating new Transceiver Module status and 8637 * whether the OS-dependent layer wants us to redo the current 8638 * "sticky" L1 Configure Link Parameters. 8639 */ 8640 lc->new_module = false; 8641 lc->redo_l1cfg = false; 8642 8643 if (mod_type != pi->mod_type) { 8644 /* With the newer SFP28 and QSFP28 Transceiver Module Types, 8645 * various fundamental Port Capabilities which used to be 8646 * immutable can now change radically. We can now have 8647 * Speeds, Auto-Negotiation, Forward Error Correction, etc. 8648 * all change based on what Transceiver Module is inserted. 8649 * So we need to record the Physical "Port" Capabilities on 8650 * every Transceiver Module change. 8651 */ 8652 lc->pcaps = pcaps; 8653 8654 /* When a new Transceiver Module is inserted, the Firmware 8655 * will examine its i2c EPROM to determine its type and 8656 * general operating parameters including things like Forward 8657 * Error Control, etc. Various IEEE 802.3 standards dictate 8658 * how to interpret these i2c values to determine default 8659 * "sutomatic" settings. We record these for future use when 8660 * the user explicitly requests these standards-based values. 8661 */ 8662 lc->def_acaps = acaps; 8663 8664 /* Some versions of the early T6 Firmware "cheated" when 8665 * handling different Transceiver Modules by changing the 8666 * underlaying Port Type reported to the Host Drivers. As 8667 * such we need to capture whatever Port Type the Firmware 8668 * sends us and record it in case it's different from what we 8669 * were told earlier. Unfortunately, since Firmware is 8670 * forever, we'll need to keep this code here forever, but in 8671 * later T6 Firmware it should just be an assignment of the 8672 * same value already recorded. 8673 */ 8674 pi->port_type = port_type; 8675 8676 /* Record new Module Type information. 8677 */ 8678 pi->mod_type = mod_type; 8679 8680 /* Let the OS-dependent layer know if we have a new 8681 * Transceiver Module inserted. 8682 */ 8683 lc->new_module = t4_is_inserted_mod_type(mod_type); 8684 8685 t4_os_portmod_changed(adapter, pi->port_id); 8686 } 8687 8688 if (link_ok != lc->link_ok || speed != lc->speed || 8689 fc != lc->fc || adv_fc != lc->advertised_fc || 8690 fec != lc->fec) { 8691 /* something changed */ 8692 if (!link_ok && lc->link_ok) { 8693 lc->link_down_rc = linkdnrc; 8694 dev_warn_ratelimited(adapter->pdev_dev, 8695 "Port %d link down, reason: %s\n", 8696 pi->tx_chan, 8697 t4_link_down_rc_str(linkdnrc)); 8698 } 8699 lc->link_ok = link_ok; 8700 lc->speed = speed; 8701 lc->advertised_fc = adv_fc; 8702 lc->fc = fc; 8703 lc->fec = fec; 8704 8705 lc->lpacaps = lpacaps; 8706 lc->acaps = acaps & ADVERT_MASK; 8707 8708 /* If we're not physically capable of Auto-Negotiation, note 8709 * this as Auto-Negotiation disabled. Otherwise, we track 8710 * what Auto-Negotiation settings we have. Note parallel 8711 * structure in t4_link_l1cfg_core() and init_link_config(). 8712 */ 8713 if (!(lc->acaps & FW_PORT_CAP32_ANEG)) { 8714 lc->autoneg = AUTONEG_DISABLE; 8715 } else if (lc->acaps & FW_PORT_CAP32_ANEG) { 8716 lc->autoneg = AUTONEG_ENABLE; 8717 } else { 8718 /* When Autoneg is disabled, user needs to set 8719 * single speed. 8720 * Similar to cxgb4_ethtool.c: set_link_ksettings 8721 */ 8722 lc->acaps = 0; 8723 lc->speed_caps = fwcap_to_fwspeed(acaps); 8724 lc->autoneg = AUTONEG_DISABLE; 8725 } 8726 8727 t4_os_link_changed(adapter, pi->port_id, link_ok); 8728 } 8729 8730 /* If we have a new Transceiver Module and the OS-dependent code has 8731 * told us that it wants us to redo whatever "sticky" L1 Configuration 8732 * Link Parameters are set, do that now. 8733 */ 8734 if (lc->new_module && lc->redo_l1cfg) { 8735 struct link_config old_lc; 8736 int ret; 8737 8738 /* Save the current L1 Configuration and restore it if an 8739 * error occurs. We probably should fix the l1_cfg*() 8740 * routines not to change the link_config when an error 8741 * occurs ... 8742 */ 8743 old_lc = *lc; 8744 ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc); 8745 if (ret) { 8746 *lc = old_lc; 8747 dev_warn(adapter->pdev_dev, 8748 "Attempt to update new Transceiver Module settings failed\n"); 8749 } 8750 } 8751 lc->new_module = false; 8752 lc->redo_l1cfg = false; 8753 } 8754 8755 /** 8756 * t4_update_port_info - retrieve and update port information if changed 8757 * @pi: the port_info 8758 * 8759 * We issue a Get Port Information Command to the Firmware and, if 8760 * successful, we check to see if anything is different from what we 8761 * last recorded and update things accordingly. 8762 */ 8763 int t4_update_port_info(struct port_info *pi) 8764 { 8765 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8766 struct fw_port_cmd port_cmd; 8767 int ret; 8768 8769 memset(&port_cmd, 0, sizeof(port_cmd)); 8770 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8771 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8772 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8773 port_cmd.action_to_len16 = cpu_to_be32( 8774 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 8775 ? FW_PORT_ACTION_GET_PORT_INFO 8776 : FW_PORT_ACTION_GET_PORT_INFO32) | 8777 FW_LEN16(port_cmd)); 8778 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8779 &port_cmd, sizeof(port_cmd), &port_cmd); 8780 if (ret) 8781 return ret; 8782 8783 t4_handle_get_port_info(pi, (__be64 *)&port_cmd); 8784 return 0; 8785 } 8786 8787 /** 8788 * t4_get_link_params - retrieve basic link parameters for given port 8789 * @pi: the port 8790 * @link_okp: value return pointer for link up/down 8791 * @speedp: value return pointer for speed (Mb/s) 8792 * @mtup: value return pointer for mtu 8793 * 8794 * Retrieves basic link parameters for a port: link up/down, speed (Mb/s), 8795 * and MTU for a specified port. A negative error is returned on 8796 * failure; 0 on success. 8797 */ 8798 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp, 8799 unsigned int *speedp, unsigned int *mtup) 8800 { 8801 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8802 unsigned int action, link_ok, mtu; 8803 struct fw_port_cmd port_cmd; 8804 fw_port_cap32_t linkattr; 8805 int ret; 8806 8807 memset(&port_cmd, 0, sizeof(port_cmd)); 8808 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8809 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8810 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8811 action = (fw_caps == FW_CAPS16 8812 ? FW_PORT_ACTION_GET_PORT_INFO 8813 : FW_PORT_ACTION_GET_PORT_INFO32); 8814 port_cmd.action_to_len16 = cpu_to_be32( 8815 FW_PORT_CMD_ACTION_V(action) | 8816 FW_LEN16(port_cmd)); 8817 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8818 &port_cmd, sizeof(port_cmd), &port_cmd); 8819 if (ret) 8820 return ret; 8821 8822 if (action == FW_PORT_ACTION_GET_PORT_INFO) { 8823 u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype); 8824 8825 link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F); 8826 linkattr = lstatus_to_fwcap(lstatus); 8827 mtu = be16_to_cpu(port_cmd.u.info.mtu); 8828 } else { 8829 u32 lstatus32 = 8830 be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32); 8831 8832 link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F); 8833 linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32); 8834 mtu = FW_PORT_CMD_MTU32_G( 8835 be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32)); 8836 } 8837 8838 if (link_okp) 8839 *link_okp = link_ok; 8840 if (speedp) 8841 *speedp = fwcap_to_speed(linkattr); 8842 if (mtup) 8843 *mtup = mtu; 8844 8845 return 0; 8846 } 8847 8848 /** 8849 * t4_handle_fw_rpl - process a FW reply message 8850 * @adap: the adapter 8851 * @rpl: start of the FW message 8852 * 8853 * Processes a FW message, such as link state change messages. 8854 */ 8855 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 8856 { 8857 u8 opcode = *(const u8 *)rpl; 8858 8859 /* This might be a port command ... this simplifies the following 8860 * conditionals ... We can get away with pre-dereferencing 8861 * action_to_len16 because it's in the first 16 bytes and all messages 8862 * will be at least that long. 8863 */ 8864 const struct fw_port_cmd *p = (const void *)rpl; 8865 unsigned int action = 8866 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16)); 8867 8868 if (opcode == FW_PORT_CMD && 8869 (action == FW_PORT_ACTION_GET_PORT_INFO || 8870 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 8871 int i; 8872 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid)); 8873 struct port_info *pi = NULL; 8874 8875 for_each_port(adap, i) { 8876 pi = adap2pinfo(adap, i); 8877 if (pi->tx_chan == chan) 8878 break; 8879 } 8880 8881 t4_handle_get_port_info(pi, rpl); 8882 } else { 8883 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", 8884 opcode); 8885 return -EINVAL; 8886 } 8887 return 0; 8888 } 8889 8890 static void get_pci_mode(struct adapter *adapter, struct pci_params *p) 8891 { 8892 u16 val; 8893 8894 if (pci_is_pcie(adapter->pdev)) { 8895 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); 8896 p->speed = val & PCI_EXP_LNKSTA_CLS; 8897 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 8898 } 8899 } 8900 8901 /** 8902 * init_link_config - initialize a link's SW state 8903 * @lc: pointer to structure holding the link state 8904 * @pcaps: link Port Capabilities 8905 * @acaps: link current Advertised Port Capabilities 8906 * 8907 * Initializes the SW state maintained for each link, including the link's 8908 * capabilities and default speed/flow-control/autonegotiation settings. 8909 */ 8910 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps, 8911 fw_port_cap32_t acaps) 8912 { 8913 lc->pcaps = pcaps; 8914 lc->def_acaps = acaps; 8915 lc->lpacaps = 0; 8916 lc->speed_caps = 0; 8917 lc->speed = 0; 8918 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 8919 8920 /* For Forward Error Control, we default to whatever the Firmware 8921 * tells us the Link is currently advertising. 8922 */ 8923 lc->requested_fec = FEC_AUTO; 8924 lc->fec = fwcap_to_cc_fec(lc->def_acaps); 8925 8926 /* If the Port is capable of Auto-Negtotiation, initialize it as 8927 * "enabled" and copy over all of the Physical Port Capabilities 8928 * to the Advertised Port Capabilities. Otherwise mark it as 8929 * Auto-Negotiate disabled and select the highest supported speed 8930 * for the link. Note parallel structure in t4_link_l1cfg_core() 8931 * and t4_handle_get_port_info(). 8932 */ 8933 if (lc->pcaps & FW_PORT_CAP32_ANEG) { 8934 lc->acaps = lc->pcaps & ADVERT_MASK; 8935 lc->autoneg = AUTONEG_ENABLE; 8936 lc->requested_fc |= PAUSE_AUTONEG; 8937 } else { 8938 lc->acaps = 0; 8939 lc->autoneg = AUTONEG_DISABLE; 8940 lc->speed_caps = fwcap_to_fwspeed(acaps); 8941 } 8942 } 8943 8944 #define CIM_PF_NOACCESS 0xeeeeeeee 8945 8946 int t4_wait_dev_ready(void __iomem *regs) 8947 { 8948 u32 whoami; 8949 8950 whoami = readl(regs + PL_WHOAMI_A); 8951 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS) 8952 return 0; 8953 8954 msleep(500); 8955 whoami = readl(regs + PL_WHOAMI_A); 8956 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO); 8957 } 8958 8959 struct flash_desc { 8960 u32 vendor_and_model_id; 8961 u32 size_mb; 8962 }; 8963 8964 static int t4_get_flash_params(struct adapter *adap) 8965 { 8966 /* Table for non-Numonix supported flash parts. Numonix parts are left 8967 * to the preexisting code. All flash parts have 64KB sectors. 8968 */ 8969 static struct flash_desc supported_flash[] = { 8970 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ 8971 }; 8972 8973 unsigned int part, manufacturer; 8974 unsigned int density, size = 0; 8975 u32 flashid = 0; 8976 int ret; 8977 8978 /* Issue a Read ID Command to the Flash part. We decode supported 8979 * Flash parts and their sizes from this. There's a newer Query 8980 * Command which can retrieve detailed geometry information but many 8981 * Flash parts don't support it. 8982 */ 8983 8984 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID); 8985 if (!ret) 8986 ret = sf1_read(adap, 3, 0, 1, &flashid); 8987 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */ 8988 if (ret) 8989 return ret; 8990 8991 /* Check to see if it's one of our non-standard supported Flash parts. 8992 */ 8993 for (part = 0; part < ARRAY_SIZE(supported_flash); part++) 8994 if (supported_flash[part].vendor_and_model_id == flashid) { 8995 adap->params.sf_size = supported_flash[part].size_mb; 8996 adap->params.sf_nsec = 8997 adap->params.sf_size / SF_SEC_SIZE; 8998 goto found; 8999 } 9000 9001 /* Decode Flash part size. The code below looks repetitive with 9002 * common encodings, but that's not guaranteed in the JEDEC 9003 * specification for the Read JEDEC ID command. The only thing that 9004 * we're guaranteed by the JEDEC specification is where the 9005 * Manufacturer ID is in the returned result. After that each 9006 * Manufacturer ~could~ encode things completely differently. 9007 * Note, all Flash parts must have 64KB sectors. 9008 */ 9009 manufacturer = flashid & 0xff; 9010 switch (manufacturer) { 9011 case 0x20: { /* Micron/Numonix */ 9012 /* This Density -> Size decoding table is taken from Micron 9013 * Data Sheets. 9014 */ 9015 density = (flashid >> 16) & 0xff; 9016 switch (density) { 9017 case 0x14: /* 1MB */ 9018 size = 1 << 20; 9019 break; 9020 case 0x15: /* 2MB */ 9021 size = 1 << 21; 9022 break; 9023 case 0x16: /* 4MB */ 9024 size = 1 << 22; 9025 break; 9026 case 0x17: /* 8MB */ 9027 size = 1 << 23; 9028 break; 9029 case 0x18: /* 16MB */ 9030 size = 1 << 24; 9031 break; 9032 case 0x19: /* 32MB */ 9033 size = 1 << 25; 9034 break; 9035 case 0x20: /* 64MB */ 9036 size = 1 << 26; 9037 break; 9038 case 0x21: /* 128MB */ 9039 size = 1 << 27; 9040 break; 9041 case 0x22: /* 256MB */ 9042 size = 1 << 28; 9043 break; 9044 } 9045 break; 9046 } 9047 case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */ 9048 /* This Density -> Size decoding table is taken from ISSI 9049 * Data Sheets. 9050 */ 9051 density = (flashid >> 16) & 0xff; 9052 switch (density) { 9053 case 0x16: /* 32 MB */ 9054 size = 1 << 25; 9055 break; 9056 case 0x17: /* 64MB */ 9057 size = 1 << 26; 9058 break; 9059 } 9060 break; 9061 } 9062 case 0xc2: { /* Macronix */ 9063 /* This Density -> Size decoding table is taken from Macronix 9064 * Data Sheets. 9065 */ 9066 density = (flashid >> 16) & 0xff; 9067 switch (density) { 9068 case 0x17: /* 8MB */ 9069 size = 1 << 23; 9070 break; 9071 case 0x18: /* 16MB */ 9072 size = 1 << 24; 9073 break; 9074 } 9075 break; 9076 } 9077 case 0xef: { /* Winbond */ 9078 /* This Density -> Size decoding table is taken from Winbond 9079 * Data Sheets. 9080 */ 9081 density = (flashid >> 16) & 0xff; 9082 switch (density) { 9083 case 0x17: /* 8MB */ 9084 size = 1 << 23; 9085 break; 9086 case 0x18: /* 16MB */ 9087 size = 1 << 24; 9088 break; 9089 } 9090 break; 9091 } 9092 } 9093 9094 /* If we didn't recognize the FLASH part, that's no real issue: the 9095 * Hardware/Software contract says that Hardware will _*ALWAYS*_ 9096 * use a FLASH part which is at least 4MB in size and has 64KB 9097 * sectors. The unrecognized FLASH part is likely to be much larger 9098 * than 4MB, but that's all we really need. 9099 */ 9100 if (size == 0) { 9101 dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n", 9102 flashid); 9103 size = 1 << 22; 9104 } 9105 9106 /* Store decoded Flash size and fall through into vetting code. */ 9107 adap->params.sf_size = size; 9108 adap->params.sf_nsec = size / SF_SEC_SIZE; 9109 9110 found: 9111 if (adap->params.sf_size < FLASH_MIN_SIZE) 9112 dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n", 9113 flashid, adap->params.sf_size, FLASH_MIN_SIZE); 9114 return 0; 9115 } 9116 9117 /** 9118 * t4_prep_adapter - prepare SW and HW for operation 9119 * @adapter: the adapter 9120 * 9121 * Initialize adapter SW state for the various HW modules, set initial 9122 * values for some adapter tunables, take PHYs out of reset, and 9123 * initialize the MDIO interface. 9124 */ 9125 int t4_prep_adapter(struct adapter *adapter) 9126 { 9127 int ret, ver; 9128 uint16_t device_id; 9129 u32 pl_rev; 9130 9131 get_pci_mode(adapter, &adapter->params.pci); 9132 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A)); 9133 9134 ret = t4_get_flash_params(adapter); 9135 if (ret < 0) { 9136 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret); 9137 return ret; 9138 } 9139 9140 /* Retrieve adapter's device ID 9141 */ 9142 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id); 9143 ver = device_id >> 12; 9144 adapter->params.chip = 0; 9145 switch (ver) { 9146 case CHELSIO_T4: 9147 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 9148 adapter->params.arch.sge_fl_db = DBPRIO_F; 9149 adapter->params.arch.mps_tcam_size = 9150 NUM_MPS_CLS_SRAM_L_INSTANCES; 9151 adapter->params.arch.mps_rplc_size = 128; 9152 adapter->params.arch.nchan = NCHAN; 9153 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 9154 adapter->params.arch.vfcount = 128; 9155 /* Congestion map is for 4 channels so that 9156 * MPS can have 4 priority per port. 9157 */ 9158 adapter->params.arch.cng_ch_bits_log = 2; 9159 break; 9160 case CHELSIO_T5: 9161 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 9162 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F; 9163 adapter->params.arch.mps_tcam_size = 9164 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 9165 adapter->params.arch.mps_rplc_size = 128; 9166 adapter->params.arch.nchan = NCHAN; 9167 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 9168 adapter->params.arch.vfcount = 128; 9169 adapter->params.arch.cng_ch_bits_log = 2; 9170 break; 9171 case CHELSIO_T6: 9172 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 9173 adapter->params.arch.sge_fl_db = 0; 9174 adapter->params.arch.mps_tcam_size = 9175 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 9176 adapter->params.arch.mps_rplc_size = 256; 9177 adapter->params.arch.nchan = 2; 9178 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS; 9179 adapter->params.arch.vfcount = 256; 9180 /* Congestion map will be for 2 channels so that 9181 * MPS can have 8 priority per port. 9182 */ 9183 adapter->params.arch.cng_ch_bits_log = 3; 9184 break; 9185 default: 9186 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 9187 device_id); 9188 return -EINVAL; 9189 } 9190 9191 adapter->params.cim_la_size = CIMLA_SIZE; 9192 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 9193 9194 /* 9195 * Default port for debugging in case we can't reach FW. 9196 */ 9197 adapter->params.nports = 1; 9198 adapter->params.portvec = 1; 9199 adapter->params.vpd.cclk = 50000; 9200 9201 /* Set PCIe completion timeout to 4 seconds. */ 9202 pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2, 9203 PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd); 9204 return 0; 9205 } 9206 9207 /** 9208 * t4_shutdown_adapter - shut down adapter, host & wire 9209 * @adapter: the adapter 9210 * 9211 * Perform an emergency shutdown of the adapter and stop it from 9212 * continuing any further communication on the ports or DMA to the 9213 * host. This is typically used when the adapter and/or firmware 9214 * have crashed and we want to prevent any further accidental 9215 * communication with the rest of the world. This will also force 9216 * the port Link Status to go down -- if register writes work -- 9217 * which should help our peers figure out that we're down. 9218 */ 9219 int t4_shutdown_adapter(struct adapter *adapter) 9220 { 9221 int port; 9222 9223 t4_intr_disable(adapter); 9224 t4_write_reg(adapter, DBG_GPIO_EN_A, 0); 9225 for_each_port(adapter, port) { 9226 u32 a_port_cfg = is_t4(adapter->params.chip) ? 9227 PORT_REG(port, XGMAC_PORT_CFG_A) : 9228 T5_PORT_REG(port, MAC_PORT_CFG_A); 9229 9230 t4_write_reg(adapter, a_port_cfg, 9231 t4_read_reg(adapter, a_port_cfg) 9232 & ~SIGNAL_DET_V(1)); 9233 } 9234 t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0); 9235 9236 return 0; 9237 } 9238 9239 /** 9240 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information 9241 * @adapter: the adapter 9242 * @qid: the Queue ID 9243 * @qtype: the Ingress or Egress type for @qid 9244 * @user: true if this request is for a user mode queue 9245 * @pbar2_qoffset: BAR2 Queue Offset 9246 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 9247 * 9248 * Returns the BAR2 SGE Queue Registers information associated with the 9249 * indicated Absolute Queue ID. These are passed back in return value 9250 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 9251 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 9252 * 9253 * This may return an error which indicates that BAR2 SGE Queue 9254 * registers aren't available. If an error is not returned, then the 9255 * following values are returned: 9256 * 9257 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 9258 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 9259 * 9260 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 9261 * require the "Inferred Queue ID" ability may be used. E.g. the 9262 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 9263 * then these "Inferred Queue ID" register may not be used. 9264 */ 9265 int t4_bar2_sge_qregs(struct adapter *adapter, 9266 unsigned int qid, 9267 enum t4_bar2_qtype qtype, 9268 int user, 9269 u64 *pbar2_qoffset, 9270 unsigned int *pbar2_qid) 9271 { 9272 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 9273 u64 bar2_page_offset, bar2_qoffset; 9274 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 9275 9276 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */ 9277 if (!user && is_t4(adapter->params.chip)) 9278 return -EINVAL; 9279 9280 /* Get our SGE Page Size parameters. 9281 */ 9282 page_shift = adapter->params.sge.hps + 10; 9283 page_size = 1 << page_shift; 9284 9285 /* Get the right Queues per Page parameters for our Queue. 9286 */ 9287 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 9288 ? adapter->params.sge.eq_qpp 9289 : adapter->params.sge.iq_qpp); 9290 qpp_mask = (1 << qpp_shift) - 1; 9291 9292 /* Calculate the basics of the BAR2 SGE Queue register area: 9293 * o The BAR2 page the Queue registers will be in. 9294 * o The BAR2 Queue ID. 9295 * o The BAR2 Queue ID Offset into the BAR2 page. 9296 */ 9297 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 9298 bar2_qid = qid & qpp_mask; 9299 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 9300 9301 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 9302 * hardware will infer the Absolute Queue ID simply from the writes to 9303 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 9304 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 9305 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 9306 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 9307 * from the BAR2 Page and BAR2 Queue ID. 9308 * 9309 * One important censequence of this is that some BAR2 SGE registers 9310 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 9311 * there. But other registers synthesize the SGE Queue ID purely 9312 * from the writes to the registers -- the Write Combined Doorbell 9313 * Buffer is a good example. These BAR2 SGE Registers are only 9314 * available for those BAR2 SGE Register areas where the SGE Absolute 9315 * Queue ID can be inferred from simple writes. 9316 */ 9317 bar2_qoffset = bar2_page_offset; 9318 bar2_qinferred = (bar2_qid_offset < page_size); 9319 if (bar2_qinferred) { 9320 bar2_qoffset += bar2_qid_offset; 9321 bar2_qid = 0; 9322 } 9323 9324 *pbar2_qoffset = bar2_qoffset; 9325 *pbar2_qid = bar2_qid; 9326 return 0; 9327 } 9328 9329 /** 9330 * t4_init_devlog_params - initialize adapter->params.devlog 9331 * @adap: the adapter 9332 * 9333 * Initialize various fields of the adapter's Firmware Device Log 9334 * Parameters structure. 9335 */ 9336 int t4_init_devlog_params(struct adapter *adap) 9337 { 9338 struct devlog_params *dparams = &adap->params.devlog; 9339 u32 pf_dparams; 9340 unsigned int devlog_meminfo; 9341 struct fw_devlog_cmd devlog_cmd; 9342 int ret; 9343 9344 /* If we're dealing with newer firmware, the Device Log Parameters 9345 * are stored in a designated register which allows us to access the 9346 * Device Log even if we can't talk to the firmware. 9347 */ 9348 pf_dparams = 9349 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG)); 9350 if (pf_dparams) { 9351 unsigned int nentries, nentries128; 9352 9353 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams); 9354 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4; 9355 9356 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams); 9357 nentries = (nentries128 + 1) * 128; 9358 dparams->size = nentries * sizeof(struct fw_devlog_e); 9359 9360 return 0; 9361 } 9362 9363 /* Otherwise, ask the firmware for it's Device Log Parameters. 9364 */ 9365 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 9366 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) | 9367 FW_CMD_REQUEST_F | FW_CMD_READ_F); 9368 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 9369 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), 9370 &devlog_cmd); 9371 if (ret) 9372 return ret; 9373 9374 devlog_meminfo = 9375 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); 9376 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo); 9377 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4; 9378 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); 9379 9380 return 0; 9381 } 9382 9383 /** 9384 * t4_init_sge_params - initialize adap->params.sge 9385 * @adapter: the adapter 9386 * 9387 * Initialize various fields of the adapter's SGE Parameters structure. 9388 */ 9389 int t4_init_sge_params(struct adapter *adapter) 9390 { 9391 struct sge_params *sge_params = &adapter->params.sge; 9392 u32 hps, qpp; 9393 unsigned int s_hps, s_qpp; 9394 9395 /* Extract the SGE Page Size for our PF. 9396 */ 9397 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A); 9398 s_hps = (HOSTPAGESIZEPF0_S + 9399 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf); 9400 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M); 9401 9402 /* Extract the SGE Egress and Ingess Queues Per Page for our PF. 9403 */ 9404 s_qpp = (QUEUESPERPAGEPF0_S + 9405 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf); 9406 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A); 9407 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 9408 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A); 9409 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 9410 9411 return 0; 9412 } 9413 9414 /** 9415 * t4_init_tp_params - initialize adap->params.tp 9416 * @adap: the adapter 9417 * @sleep_ok: if true we may sleep while awaiting command completion 9418 * 9419 * Initialize various fields of the adapter's TP Parameters structure. 9420 */ 9421 int t4_init_tp_params(struct adapter *adap, bool sleep_ok) 9422 { 9423 u32 param, val, v; 9424 int chan, ret; 9425 9426 9427 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A); 9428 adap->params.tp.tre = TIMERRESOLUTION_G(v); 9429 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v); 9430 9431 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 9432 for (chan = 0; chan < NCHAN; chan++) 9433 adap->params.tp.tx_modq[chan] = chan; 9434 9435 /* Cache the adapter's Compressed Filter Mode/Mask and global Ingress 9436 * Configuration. 9437 */ 9438 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 9439 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) | 9440 FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK)); 9441 9442 /* Read current value */ 9443 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 9444 ¶m, &val); 9445 if (ret == 0) { 9446 dev_info(adap->pdev_dev, 9447 "Current filter mode/mask 0x%x:0x%x\n", 9448 FW_PARAMS_PARAM_FILTER_MODE_G(val), 9449 FW_PARAMS_PARAM_FILTER_MASK_G(val)); 9450 adap->params.tp.vlan_pri_map = 9451 FW_PARAMS_PARAM_FILTER_MODE_G(val); 9452 adap->params.tp.filter_mask = 9453 FW_PARAMS_PARAM_FILTER_MASK_G(val); 9454 } else { 9455 dev_info(adap->pdev_dev, 9456 "Failed to read filter mode/mask via fw api, using indirect-reg-read\n"); 9457 9458 /* Incase of older-fw (which doesn't expose the api 9459 * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses 9460 * the fw api) combination, fall-back to older method of reading 9461 * the filter mode from indirect-register 9462 */ 9463 t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1, 9464 TP_VLAN_PRI_MAP_A, sleep_ok); 9465 9466 /* With the older-fw and newer-driver combination we might run 9467 * into an issue when user wants to use hash filter region but 9468 * the filter_mask is zero, in this case filter_mask validation 9469 * is tough. To avoid that we set the filter_mask same as filter 9470 * mode, which will behave exactly as the older way of ignoring 9471 * the filter mask validation. 9472 */ 9473 adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map; 9474 } 9475 9476 t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1, 9477 TP_INGRESS_CONFIG_A, sleep_ok); 9478 9479 /* For T6, cache the adapter's compressed error vector 9480 * and passing outer header info for encapsulated packets. 9481 */ 9482 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 9483 v = t4_read_reg(adap, TP_OUT_CONFIG_A); 9484 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0; 9485 } 9486 9487 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field 9488 * shift positions of several elements of the Compressed Filter Tuple 9489 * for this adapter which we need frequently ... 9490 */ 9491 adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F); 9492 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F); 9493 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F); 9494 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F); 9495 adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F); 9496 adap->params.tp.protocol_shift = t4_filter_field_shift(adap, 9497 PROTOCOL_F); 9498 adap->params.tp.ethertype_shift = t4_filter_field_shift(adap, 9499 ETHERTYPE_F); 9500 adap->params.tp.macmatch_shift = t4_filter_field_shift(adap, 9501 MACMATCH_F); 9502 adap->params.tp.matchtype_shift = t4_filter_field_shift(adap, 9503 MPSHITTYPE_F); 9504 adap->params.tp.frag_shift = t4_filter_field_shift(adap, 9505 FRAGMENTATION_F); 9506 9507 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID 9508 * represents the presence of an Outer VLAN instead of a VNIC ID. 9509 */ 9510 if ((adap->params.tp.ingress_config & VNIC_F) == 0) 9511 adap->params.tp.vnic_shift = -1; 9512 9513 v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A); 9514 adap->params.tp.hash_filter_mask = v; 9515 v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A); 9516 adap->params.tp.hash_filter_mask |= ((u64)v << 32); 9517 return 0; 9518 } 9519 9520 /** 9521 * t4_filter_field_shift - calculate filter field shift 9522 * @adap: the adapter 9523 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) 9524 * 9525 * Return the shift position of a filter field within the Compressed 9526 * Filter Tuple. The filter field is specified via its selection bit 9527 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. 9528 */ 9529 int t4_filter_field_shift(const struct adapter *adap, int filter_sel) 9530 { 9531 unsigned int filter_mode = adap->params.tp.vlan_pri_map; 9532 unsigned int sel; 9533 int field_shift; 9534 9535 if ((filter_mode & filter_sel) == 0) 9536 return -1; 9537 9538 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { 9539 switch (filter_mode & sel) { 9540 case FCOE_F: 9541 field_shift += FT_FCOE_W; 9542 break; 9543 case PORT_F: 9544 field_shift += FT_PORT_W; 9545 break; 9546 case VNIC_ID_F: 9547 field_shift += FT_VNIC_ID_W; 9548 break; 9549 case VLAN_F: 9550 field_shift += FT_VLAN_W; 9551 break; 9552 case TOS_F: 9553 field_shift += FT_TOS_W; 9554 break; 9555 case PROTOCOL_F: 9556 field_shift += FT_PROTOCOL_W; 9557 break; 9558 case ETHERTYPE_F: 9559 field_shift += FT_ETHERTYPE_W; 9560 break; 9561 case MACMATCH_F: 9562 field_shift += FT_MACMATCH_W; 9563 break; 9564 case MPSHITTYPE_F: 9565 field_shift += FT_MPSHITTYPE_W; 9566 break; 9567 case FRAGMENTATION_F: 9568 field_shift += FT_FRAGMENTATION_W; 9569 break; 9570 } 9571 } 9572 return field_shift; 9573 } 9574 9575 int t4_init_rss_mode(struct adapter *adap, int mbox) 9576 { 9577 int i, ret; 9578 struct fw_rss_vi_config_cmd rvc; 9579 9580 memset(&rvc, 0, sizeof(rvc)); 9581 9582 for_each_port(adap, i) { 9583 struct port_info *p = adap2pinfo(adap, i); 9584 9585 rvc.op_to_viid = 9586 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 9587 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9588 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid)); 9589 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc)); 9590 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); 9591 if (ret) 9592 return ret; 9593 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen); 9594 } 9595 return 0; 9596 } 9597 9598 /** 9599 * t4_init_portinfo - allocate a virtual interface and initialize port_info 9600 * @pi: the port_info 9601 * @mbox: mailbox to use for the FW command 9602 * @port: physical port associated with the VI 9603 * @pf: the PF owning the VI 9604 * @vf: the VF owning the VI 9605 * @mac: the MAC address of the VI 9606 * 9607 * Allocates a virtual interface for the given physical port. If @mac is 9608 * not %NULL it contains the MAC address of the VI as assigned by FW. 9609 * @mac should be large enough to hold an Ethernet address. 9610 * Returns < 0 on error. 9611 */ 9612 int t4_init_portinfo(struct port_info *pi, int mbox, 9613 int port, int pf, int vf, u8 mac[]) 9614 { 9615 struct adapter *adapter = pi->adapter; 9616 unsigned int fw_caps = adapter->params.fw_caps_support; 9617 struct fw_port_cmd cmd; 9618 unsigned int rss_size; 9619 enum fw_port_type port_type; 9620 int mdio_addr; 9621 fw_port_cap32_t pcaps, acaps; 9622 u8 vivld = 0, vin = 0; 9623 int ret; 9624 9625 /* If we haven't yet determined whether we're talking to Firmware 9626 * which knows the new 32-bit Port Capabilities, it's time to find 9627 * out now. This will also tell new Firmware to send us Port Status 9628 * Updates using the new 32-bit Port Capabilities version of the 9629 * Port Information message. 9630 */ 9631 if (fw_caps == FW_CAPS_UNKNOWN) { 9632 u32 param, val; 9633 9634 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 9635 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32)); 9636 val = 1; 9637 ret = t4_set_params(adapter, mbox, pf, vf, 1, ¶m, &val); 9638 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16); 9639 adapter->params.fw_caps_support = fw_caps; 9640 } 9641 9642 memset(&cmd, 0, sizeof(cmd)); 9643 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 9644 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9645 FW_PORT_CMD_PORTID_V(port)); 9646 cmd.action_to_len16 = cpu_to_be32( 9647 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 9648 ? FW_PORT_ACTION_GET_PORT_INFO 9649 : FW_PORT_ACTION_GET_PORT_INFO32) | 9650 FW_LEN16(cmd)); 9651 ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd); 9652 if (ret) 9653 return ret; 9654 9655 /* Extract the various fields from the Port Information message. 9656 */ 9657 if (fw_caps == FW_CAPS16) { 9658 u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype); 9659 9660 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 9661 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F) 9662 ? FW_PORT_CMD_MDIOADDR_G(lstatus) 9663 : -1); 9664 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap)); 9665 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap)); 9666 } else { 9667 u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32); 9668 9669 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 9670 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F) 9671 ? FW_PORT_CMD_MDIOADDR32_G(lstatus32) 9672 : -1); 9673 pcaps = be32_to_cpu(cmd.u.info32.pcaps32); 9674 acaps = be32_to_cpu(cmd.u.info32.acaps32); 9675 } 9676 9677 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size, 9678 &vivld, &vin); 9679 if (ret < 0) 9680 return ret; 9681 9682 pi->viid = ret; 9683 pi->tx_chan = port; 9684 pi->lport = port; 9685 pi->rss_size = rss_size; 9686 pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port); 9687 9688 /* If fw supports returning the VIN as part of FW_VI_CMD, 9689 * save the returned values. 9690 */ 9691 if (adapter->params.viid_smt_extn_support) { 9692 pi->vivld = vivld; 9693 pi->vin = vin; 9694 } else { 9695 /* Retrieve the values from VIID */ 9696 pi->vivld = FW_VIID_VIVLD_G(pi->viid); 9697 pi->vin = FW_VIID_VIN_G(pi->viid); 9698 } 9699 9700 pi->port_type = port_type; 9701 pi->mdio_addr = mdio_addr; 9702 pi->mod_type = FW_PORT_MOD_TYPE_NA; 9703 9704 init_link_config(&pi->link_cfg, pcaps, acaps); 9705 return 0; 9706 } 9707 9708 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf) 9709 { 9710 u8 addr[6]; 9711 int ret, i, j = 0; 9712 9713 for_each_port(adap, i) { 9714 struct port_info *pi = adap2pinfo(adap, i); 9715 9716 while ((adap->params.portvec & (1 << j)) == 0) 9717 j++; 9718 9719 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr); 9720 if (ret) 9721 return ret; 9722 9723 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN); 9724 j++; 9725 } 9726 return 0; 9727 } 9728 9729 int t4_init_port_mirror(struct port_info *pi, u8 mbox, u8 port, u8 pf, u8 vf, 9730 u16 *mirror_viid) 9731 { 9732 int ret; 9733 9734 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, NULL, NULL, 9735 NULL, NULL); 9736 if (ret < 0) 9737 return ret; 9738 9739 if (mirror_viid) 9740 *mirror_viid = ret; 9741 9742 return 0; 9743 } 9744 9745 /** 9746 * t4_read_cimq_cfg - read CIM queue configuration 9747 * @adap: the adapter 9748 * @base: holds the queue base addresses in bytes 9749 * @size: holds the queue sizes in bytes 9750 * @thres: holds the queue full thresholds in bytes 9751 * 9752 * Returns the current configuration of the CIM queues, starting with 9753 * the IBQs, then the OBQs. 9754 */ 9755 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) 9756 { 9757 unsigned int i, v; 9758 int cim_num_obq = is_t4(adap->params.chip) ? 9759 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9760 9761 for (i = 0; i < CIM_NUM_IBQ; i++) { 9762 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F | 9763 QUENUMSELECT_V(i)); 9764 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9765 /* value is in 256-byte units */ 9766 *base++ = CIMQBASE_G(v) * 256; 9767 *size++ = CIMQSIZE_G(v) * 256; 9768 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */ 9769 } 9770 for (i = 0; i < cim_num_obq; i++) { 9771 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9772 QUENUMSELECT_V(i)); 9773 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9774 /* value is in 256-byte units */ 9775 *base++ = CIMQBASE_G(v) * 256; 9776 *size++ = CIMQSIZE_G(v) * 256; 9777 } 9778 } 9779 9780 /** 9781 * t4_read_cim_ibq - read the contents of a CIM inbound queue 9782 * @adap: the adapter 9783 * @qid: the queue index 9784 * @data: where to store the queue contents 9785 * @n: capacity of @data in 32-bit words 9786 * 9787 * Reads the contents of the selected CIM queue starting at address 0 up 9788 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9789 * error and the number of 32-bit words actually read on success. 9790 */ 9791 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9792 { 9793 int i, err, attempts; 9794 unsigned int addr; 9795 const unsigned int nwords = CIM_IBQ_SIZE * 4; 9796 9797 if (qid > 5 || (n & 3)) 9798 return -EINVAL; 9799 9800 addr = qid * nwords; 9801 if (n > nwords) 9802 n = nwords; 9803 9804 /* It might take 3-10ms before the IBQ debug read access is allowed. 9805 * Wait for 1 Sec with a delay of 1 usec. 9806 */ 9807 attempts = 1000000; 9808 9809 for (i = 0; i < n; i++, addr++) { 9810 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) | 9811 IBQDBGEN_F); 9812 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0, 9813 attempts, 1); 9814 if (err) 9815 return err; 9816 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A); 9817 } 9818 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0); 9819 return i; 9820 } 9821 9822 /** 9823 * t4_read_cim_obq - read the contents of a CIM outbound queue 9824 * @adap: the adapter 9825 * @qid: the queue index 9826 * @data: where to store the queue contents 9827 * @n: capacity of @data in 32-bit words 9828 * 9829 * Reads the contents of the selected CIM queue starting at address 0 up 9830 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9831 * error and the number of 32-bit words actually read on success. 9832 */ 9833 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9834 { 9835 int i, err; 9836 unsigned int addr, v, nwords; 9837 int cim_num_obq = is_t4(adap->params.chip) ? 9838 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9839 9840 if ((qid > (cim_num_obq - 1)) || (n & 3)) 9841 return -EINVAL; 9842 9843 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9844 QUENUMSELECT_V(qid)); 9845 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9846 9847 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */ 9848 nwords = CIMQSIZE_G(v) * 64; /* same */ 9849 if (n > nwords) 9850 n = nwords; 9851 9852 for (i = 0; i < n; i++, addr++) { 9853 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) | 9854 OBQDBGEN_F); 9855 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0, 9856 2, 1); 9857 if (err) 9858 return err; 9859 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A); 9860 } 9861 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0); 9862 return i; 9863 } 9864 9865 /** 9866 * t4_cim_read - read a block from CIM internal address space 9867 * @adap: the adapter 9868 * @addr: the start address within the CIM address space 9869 * @n: number of words to read 9870 * @valp: where to store the result 9871 * 9872 * Reads a block of 4-byte words from the CIM intenal address space. 9873 */ 9874 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, 9875 unsigned int *valp) 9876 { 9877 int ret = 0; 9878 9879 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9880 return -EBUSY; 9881 9882 for ( ; !ret && n--; addr += 4) { 9883 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr); 9884 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9885 0, 5, 2); 9886 if (!ret) 9887 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A); 9888 } 9889 return ret; 9890 } 9891 9892 /** 9893 * t4_cim_write - write a block into CIM internal address space 9894 * @adap: the adapter 9895 * @addr: the start address within the CIM address space 9896 * @n: number of words to write 9897 * @valp: set of values to write 9898 * 9899 * Writes a block of 4-byte words into the CIM intenal address space. 9900 */ 9901 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, 9902 const unsigned int *valp) 9903 { 9904 int ret = 0; 9905 9906 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9907 return -EBUSY; 9908 9909 for ( ; !ret && n--; addr += 4) { 9910 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++); 9911 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F); 9912 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9913 0, 5, 2); 9914 } 9915 return ret; 9916 } 9917 9918 static int t4_cim_write1(struct adapter *adap, unsigned int addr, 9919 unsigned int val) 9920 { 9921 return t4_cim_write(adap, addr, 1, &val); 9922 } 9923 9924 /** 9925 * t4_cim_read_la - read CIM LA capture buffer 9926 * @adap: the adapter 9927 * @la_buf: where to store the LA data 9928 * @wrptr: the HW write pointer within the capture buffer 9929 * 9930 * Reads the contents of the CIM LA buffer with the most recent entry at 9931 * the end of the returned data and with the entry at @wrptr first. 9932 * We try to leave the LA in the running state we find it in. 9933 */ 9934 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) 9935 { 9936 int i, ret; 9937 unsigned int cfg, val, idx; 9938 9939 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg); 9940 if (ret) 9941 return ret; 9942 9943 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */ 9944 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0); 9945 if (ret) 9946 return ret; 9947 } 9948 9949 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9950 if (ret) 9951 goto restart; 9952 9953 idx = UPDBGLAWRPTR_G(val); 9954 if (wrptr) 9955 *wrptr = idx; 9956 9957 for (i = 0; i < adap->params.cim_la_size; i++) { 9958 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9959 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F); 9960 if (ret) 9961 break; 9962 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9963 if (ret) 9964 break; 9965 if (val & UPDBGLARDEN_F) { 9966 ret = -ETIMEDOUT; 9967 break; 9968 } 9969 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]); 9970 if (ret) 9971 break; 9972 9973 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to 9974 * identify the 32-bit portion of the full 312-bit data 9975 */ 9976 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9) 9977 idx = (idx & 0xff0) + 0x10; 9978 else 9979 idx++; 9980 /* address can't exceed 0xfff */ 9981 idx &= UPDBGLARDPTR_M; 9982 } 9983 restart: 9984 if (cfg & UPDBGLAEN_F) { 9985 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9986 cfg & ~UPDBGLARDEN_F); 9987 if (!ret) 9988 ret = r; 9989 } 9990 return ret; 9991 } 9992 9993 /** 9994 * t4_tp_read_la - read TP LA capture buffer 9995 * @adap: the adapter 9996 * @la_buf: where to store the LA data 9997 * @wrptr: the HW write pointer within the capture buffer 9998 * 9999 * Reads the contents of the TP LA buffer with the most recent entry at 10000 * the end of the returned data and with the entry at @wrptr first. 10001 * We leave the LA in the running state we find it in. 10002 */ 10003 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) 10004 { 10005 bool last_incomplete; 10006 unsigned int i, cfg, val, idx; 10007 10008 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff; 10009 if (cfg & DBGLAENABLE_F) /* freeze LA */ 10010 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 10011 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F)); 10012 10013 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A); 10014 idx = DBGLAWPTR_G(val); 10015 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0; 10016 if (last_incomplete) 10017 idx = (idx + 1) & DBGLARPTR_M; 10018 if (wrptr) 10019 *wrptr = idx; 10020 10021 val &= 0xffff; 10022 val &= ~DBGLARPTR_V(DBGLARPTR_M); 10023 val |= adap->params.tp.la_mask; 10024 10025 for (i = 0; i < TPLA_SIZE; i++) { 10026 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val); 10027 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A); 10028 idx = (idx + 1) & DBGLARPTR_M; 10029 } 10030 10031 /* Wipe out last entry if it isn't valid */ 10032 if (last_incomplete) 10033 la_buf[TPLA_SIZE - 1] = ~0ULL; 10034 10035 if (cfg & DBGLAENABLE_F) /* restore running state */ 10036 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 10037 cfg | adap->params.tp.la_mask); 10038 } 10039 10040 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in 10041 * seconds). If we find one of the SGE Ingress DMA State Machines in the same 10042 * state for more than the Warning Threshold then we'll issue a warning about 10043 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel 10044 * appears to be hung every Warning Repeat second till the situation clears. 10045 * If the situation clears, we'll note that as well. 10046 */ 10047 #define SGE_IDMA_WARN_THRESH 1 10048 #define SGE_IDMA_WARN_REPEAT 300 10049 10050 /** 10051 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor 10052 * @adapter: the adapter 10053 * @idma: the adapter IDMA Monitor state 10054 * 10055 * Initialize the state of an SGE Ingress DMA Monitor. 10056 */ 10057 void t4_idma_monitor_init(struct adapter *adapter, 10058 struct sge_idma_monitor_state *idma) 10059 { 10060 /* Initialize the state variables for detecting an SGE Ingress DMA 10061 * hang. The SGE has internal counters which count up on each clock 10062 * tick whenever the SGE finds its Ingress DMA State Engines in the 10063 * same state they were on the previous clock tick. The clock used is 10064 * the Core Clock so we have a limit on the maximum "time" they can 10065 * record; typically a very small number of seconds. For instance, 10066 * with a 600MHz Core Clock, we can only count up to a bit more than 10067 * 7s. So we'll synthesize a larger counter in order to not run the 10068 * risk of having the "timers" overflow and give us the flexibility to 10069 * maintain a Hung SGE State Machine of our own which operates across 10070 * a longer time frame. 10071 */ 10072 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ 10073 idma->idma_stalled[0] = 0; 10074 idma->idma_stalled[1] = 0; 10075 } 10076 10077 /** 10078 * t4_idma_monitor - monitor SGE Ingress DMA state 10079 * @adapter: the adapter 10080 * @idma: the adapter IDMA Monitor state 10081 * @hz: number of ticks/second 10082 * @ticks: number of ticks since the last IDMA Monitor call 10083 */ 10084 void t4_idma_monitor(struct adapter *adapter, 10085 struct sge_idma_monitor_state *idma, 10086 int hz, int ticks) 10087 { 10088 int i, idma_same_state_cnt[2]; 10089 10090 /* Read the SGE Debug Ingress DMA Same State Count registers. These 10091 * are counters inside the SGE which count up on each clock when the 10092 * SGE finds its Ingress DMA State Engines in the same states they 10093 * were in the previous clock. The counters will peg out at 10094 * 0xffffffff without wrapping around so once they pass the 1s 10095 * threshold they'll stay above that till the IDMA state changes. 10096 */ 10097 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13); 10098 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A); 10099 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 10100 10101 for (i = 0; i < 2; i++) { 10102 u32 debug0, debug11; 10103 10104 /* If the Ingress DMA Same State Counter ("timer") is less 10105 * than 1s, then we can reset our synthesized Stall Timer and 10106 * continue. If we have previously emitted warnings about a 10107 * potential stalled Ingress Queue, issue a note indicating 10108 * that the Ingress Queue has resumed forward progress. 10109 */ 10110 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { 10111 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz) 10112 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, " 10113 "resumed after %d seconds\n", 10114 i, idma->idma_qid[i], 10115 idma->idma_stalled[i] / hz); 10116 idma->idma_stalled[i] = 0; 10117 continue; 10118 } 10119 10120 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 10121 * domain. The first time we get here it'll be because we 10122 * passed the 1s Threshold; each additional time it'll be 10123 * because the RX Timer Callback is being fired on its regular 10124 * schedule. 10125 * 10126 * If the stall is below our Potential Hung Ingress Queue 10127 * Warning Threshold, continue. 10128 */ 10129 if (idma->idma_stalled[i] == 0) { 10130 idma->idma_stalled[i] = hz; 10131 idma->idma_warn[i] = 0; 10132 } else { 10133 idma->idma_stalled[i] += ticks; 10134 idma->idma_warn[i] -= ticks; 10135 } 10136 10137 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz) 10138 continue; 10139 10140 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. 10141 */ 10142 if (idma->idma_warn[i] > 0) 10143 continue; 10144 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz; 10145 10146 /* Read and save the SGE IDMA State and Queue ID information. 10147 * We do this every time in case it changes across time ... 10148 * can't be too careful ... 10149 */ 10150 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0); 10151 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 10152 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 10153 10154 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11); 10155 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 10156 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 10157 10158 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in " 10159 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n", 10160 i, idma->idma_qid[i], idma->idma_state[i], 10161 idma->idma_stalled[i] / hz, 10162 debug0, debug11); 10163 t4_sge_decode_idma_state(adapter, idma->idma_state[i]); 10164 } 10165 } 10166 10167 /** 10168 * t4_load_cfg - download config file 10169 * @adap: the adapter 10170 * @cfg_data: the cfg text file to write 10171 * @size: text file size 10172 * 10173 * Write the supplied config text file to the card's serial flash. 10174 */ 10175 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 10176 { 10177 int ret, i, n, cfg_addr; 10178 unsigned int addr; 10179 unsigned int flash_cfg_start_sec; 10180 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10181 10182 cfg_addr = t4_flash_cfg_addr(adap); 10183 if (cfg_addr < 0) 10184 return cfg_addr; 10185 10186 addr = cfg_addr; 10187 flash_cfg_start_sec = addr / SF_SEC_SIZE; 10188 10189 if (size > FLASH_CFG_MAX_SIZE) { 10190 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n", 10191 FLASH_CFG_MAX_SIZE); 10192 return -EFBIG; 10193 } 10194 10195 i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ 10196 sf_sec_size); 10197 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 10198 flash_cfg_start_sec + i - 1); 10199 /* If size == 0 then we're simply erasing the FLASH sectors associated 10200 * with the on-adapter Firmware Configuration File. 10201 */ 10202 if (ret || size == 0) 10203 goto out; 10204 10205 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 10206 for (i = 0; i < size; i += SF_PAGE_SIZE) { 10207 if ((size - i) < SF_PAGE_SIZE) 10208 n = size - i; 10209 else 10210 n = SF_PAGE_SIZE; 10211 ret = t4_write_flash(adap, addr, n, cfg_data); 10212 if (ret) 10213 goto out; 10214 10215 addr += SF_PAGE_SIZE; 10216 cfg_data += SF_PAGE_SIZE; 10217 } 10218 10219 out: 10220 if (ret) 10221 dev_err(adap->pdev_dev, "config file %s failed %d\n", 10222 (size == 0 ? "clear" : "download"), ret); 10223 return ret; 10224 } 10225 10226 /** 10227 * t4_set_vf_mac - Set MAC address for the specified VF 10228 * @adapter: The adapter 10229 * @vf: one of the VFs instantiated by the specified PF 10230 * @naddr: the number of MAC addresses 10231 * @addr: the MAC address(es) to be set to the specified VF 10232 */ 10233 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf, 10234 unsigned int naddr, u8 *addr) 10235 { 10236 struct fw_acl_mac_cmd cmd; 10237 10238 memset(&cmd, 0, sizeof(cmd)); 10239 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) | 10240 FW_CMD_REQUEST_F | 10241 FW_CMD_WRITE_F | 10242 FW_ACL_MAC_CMD_PFN_V(adapter->pf) | 10243 FW_ACL_MAC_CMD_VFN_V(vf)); 10244 10245 /* Note: Do not enable the ACL */ 10246 cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd)); 10247 cmd.nmac = naddr; 10248 10249 switch (adapter->pf) { 10250 case 3: 10251 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3)); 10252 break; 10253 case 2: 10254 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2)); 10255 break; 10256 case 1: 10257 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1)); 10258 break; 10259 case 0: 10260 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0)); 10261 break; 10262 } 10263 10264 return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd); 10265 } 10266 10267 /** 10268 * t4_read_pace_tbl - read the pace table 10269 * @adap: the adapter 10270 * @pace_vals: holds the returned values 10271 * 10272 * Returns the values of TP's pace table in microseconds. 10273 */ 10274 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED]) 10275 { 10276 unsigned int i, v; 10277 10278 for (i = 0; i < NTX_SCHED; i++) { 10279 t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i); 10280 v = t4_read_reg(adap, TP_PACE_TABLE_A); 10281 pace_vals[i] = dack_ticks_to_usec(adap, v); 10282 } 10283 } 10284 10285 /** 10286 * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler 10287 * @adap: the adapter 10288 * @sched: the scheduler index 10289 * @kbps: the byte rate in Kbps 10290 * @ipg: the interpacket delay in tenths of nanoseconds 10291 * @sleep_ok: if true we may sleep while awaiting command completion 10292 * 10293 * Return the current configuration of a HW Tx scheduler. 10294 */ 10295 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, 10296 unsigned int *kbps, unsigned int *ipg, bool sleep_ok) 10297 { 10298 unsigned int v, addr, bpt, cpt; 10299 10300 if (kbps) { 10301 addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2; 10302 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 10303 if (sched & 1) 10304 v >>= 16; 10305 bpt = (v >> 8) & 0xff; 10306 cpt = v & 0xff; 10307 if (!cpt) { 10308 *kbps = 0; /* scheduler disabled */ 10309 } else { 10310 v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */ 10311 *kbps = (v * bpt) / 125; 10312 } 10313 } 10314 if (ipg) { 10315 addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2; 10316 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 10317 if (sched & 1) 10318 v >>= 16; 10319 v &= 0xffff; 10320 *ipg = (10000 * v) / core_ticks_per_usec(adap); 10321 } 10322 } 10323 10324 /* t4_sge_ctxt_rd - read an SGE context through FW 10325 * @adap: the adapter 10326 * @mbox: mailbox to use for the FW command 10327 * @cid: the context id 10328 * @ctype: the context type 10329 * @data: where to store the context data 10330 * 10331 * Issues a FW command through the given mailbox to read an SGE context. 10332 */ 10333 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid, 10334 enum ctxt_type ctype, u32 *data) 10335 { 10336 struct fw_ldst_cmd c; 10337 int ret; 10338 10339 if (ctype == CTXT_FLM) 10340 ret = FW_LDST_ADDRSPC_SGE_FLMC; 10341 else 10342 ret = FW_LDST_ADDRSPC_SGE_CONMC; 10343 10344 memset(&c, 0, sizeof(c)); 10345 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 10346 FW_CMD_REQUEST_F | FW_CMD_READ_F | 10347 FW_LDST_CMD_ADDRSPACE_V(ret)); 10348 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 10349 c.u.idctxt.physid = cpu_to_be32(cid); 10350 10351 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 10352 if (ret == 0) { 10353 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0); 10354 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1); 10355 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2); 10356 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3); 10357 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4); 10358 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5); 10359 } 10360 return ret; 10361 } 10362 10363 /** 10364 * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW 10365 * @adap: the adapter 10366 * @cid: the context id 10367 * @ctype: the context type 10368 * @data: where to store the context data 10369 * 10370 * Reads an SGE context directly, bypassing FW. This is only for 10371 * debugging when FW is unavailable. 10372 */ 10373 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, 10374 enum ctxt_type ctype, u32 *data) 10375 { 10376 int i, ret; 10377 10378 t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype)); 10379 ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1); 10380 if (!ret) 10381 for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4) 10382 *data++ = t4_read_reg(adap, i); 10383 return ret; 10384 } 10385 10386 int t4_sched_params(struct adapter *adapter, u8 type, u8 level, u8 mode, 10387 u8 rateunit, u8 ratemode, u8 channel, u8 class, 10388 u32 minrate, u32 maxrate, u16 weight, u16 pktsize, 10389 u16 burstsize) 10390 { 10391 struct fw_sched_cmd cmd; 10392 10393 memset(&cmd, 0, sizeof(cmd)); 10394 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) | 10395 FW_CMD_REQUEST_F | 10396 FW_CMD_WRITE_F); 10397 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10398 10399 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10400 cmd.u.params.type = type; 10401 cmd.u.params.level = level; 10402 cmd.u.params.mode = mode; 10403 cmd.u.params.ch = channel; 10404 cmd.u.params.cl = class; 10405 cmd.u.params.unit = rateunit; 10406 cmd.u.params.rate = ratemode; 10407 cmd.u.params.min = cpu_to_be32(minrate); 10408 cmd.u.params.max = cpu_to_be32(maxrate); 10409 cmd.u.params.weight = cpu_to_be16(weight); 10410 cmd.u.params.pktsize = cpu_to_be16(pktsize); 10411 cmd.u.params.burstsize = cpu_to_be16(burstsize); 10412 10413 return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd), 10414 NULL, 1); 10415 } 10416 10417 /** 10418 * t4_i2c_rd - read I2C data from adapter 10419 * @adap: the adapter 10420 * @mbox: mailbox to use for the FW command 10421 * @port: Port number if per-port device; <0 if not 10422 * @devid: per-port device ID or absolute device ID 10423 * @offset: byte offset into device I2C space 10424 * @len: byte length of I2C space data 10425 * @buf: buffer in which to return I2C data 10426 * 10427 * Reads the I2C data from the indicated device and location. 10428 */ 10429 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port, 10430 unsigned int devid, unsigned int offset, 10431 unsigned int len, u8 *buf) 10432 { 10433 struct fw_ldst_cmd ldst_cmd, ldst_rpl; 10434 unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data); 10435 int ret = 0; 10436 10437 if (len > I2C_PAGE_SIZE) 10438 return -EINVAL; 10439 10440 /* Dont allow reads that spans multiple pages */ 10441 if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE) 10442 return -EINVAL; 10443 10444 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10445 ldst_cmd.op_to_addrspace = 10446 cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 10447 FW_CMD_REQUEST_F | 10448 FW_CMD_READ_F | 10449 FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C)); 10450 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 10451 ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port); 10452 ldst_cmd.u.i2c.did = devid; 10453 10454 while (len > 0) { 10455 unsigned int i2c_len = (len < i2c_max) ? len : i2c_max; 10456 10457 ldst_cmd.u.i2c.boffset = offset; 10458 ldst_cmd.u.i2c.blen = i2c_len; 10459 10460 ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd), 10461 &ldst_rpl); 10462 if (ret) 10463 break; 10464 10465 memcpy(buf, ldst_rpl.u.i2c.data, i2c_len); 10466 offset += i2c_len; 10467 buf += i2c_len; 10468 len -= i2c_len; 10469 } 10470 10471 return ret; 10472 } 10473 10474 /** 10475 * t4_set_vlan_acl - Set a VLAN id for the specified VF 10476 * @adap: the adapter 10477 * @mbox: mailbox to use for the FW command 10478 * @vf: one of the VFs instantiated by the specified PF 10479 * @vlan: The vlanid to be set 10480 */ 10481 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf, 10482 u16 vlan) 10483 { 10484 struct fw_acl_vlan_cmd vlan_cmd; 10485 unsigned int enable; 10486 10487 enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0); 10488 memset(&vlan_cmd, 0, sizeof(vlan_cmd)); 10489 vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) | 10490 FW_CMD_REQUEST_F | 10491 FW_CMD_WRITE_F | 10492 FW_CMD_EXEC_F | 10493 FW_ACL_VLAN_CMD_PFN_V(adap->pf) | 10494 FW_ACL_VLAN_CMD_VFN_V(vf)); 10495 vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd)); 10496 /* Drop all packets that donot match vlan id */ 10497 vlan_cmd.dropnovlan_fm = (enable 10498 ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F | 10499 FW_ACL_VLAN_CMD_FM_F) : 0); 10500 if (enable != 0) { 10501 vlan_cmd.nvlan = 1; 10502 vlan_cmd.vlanid[0] = cpu_to_be16(vlan); 10503 } 10504 10505 return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL); 10506 } 10507 10508 /** 10509 * modify_device_id - Modifies the device ID of the Boot BIOS image 10510 * @device_id: the device ID to write. 10511 * @boot_data: the boot image to modify. 10512 * 10513 * Write the supplied device ID to the boot BIOS image. 10514 */ 10515 static void modify_device_id(int device_id, u8 *boot_data) 10516 { 10517 struct cxgb4_pcir_data *pcir_header; 10518 struct legacy_pci_rom_hdr *header; 10519 u8 *cur_header = boot_data; 10520 u16 pcir_offset; 10521 10522 /* Loop through all chained images and change the device ID's */ 10523 do { 10524 header = (struct legacy_pci_rom_hdr *)cur_header; 10525 pcir_offset = le16_to_cpu(header->pcir_offset); 10526 pcir_header = (struct cxgb4_pcir_data *)(cur_header + 10527 pcir_offset); 10528 10529 /** 10530 * Only modify the Device ID if code type is Legacy or HP. 10531 * 0x00: Okay to modify 10532 * 0x01: FCODE. Do not modify 10533 * 0x03: Okay to modify 10534 * 0x04-0xFF: Do not modify 10535 */ 10536 if (pcir_header->code_type == CXGB4_HDR_CODE1) { 10537 u8 csum = 0; 10538 int i; 10539 10540 /** 10541 * Modify Device ID to match current adatper 10542 */ 10543 pcir_header->device_id = cpu_to_le16(device_id); 10544 10545 /** 10546 * Set checksum temporarily to 0. 10547 * We will recalculate it later. 10548 */ 10549 header->cksum = 0x0; 10550 10551 /** 10552 * Calculate and update checksum 10553 */ 10554 for (i = 0; i < (header->size512 * 512); i++) 10555 csum += cur_header[i]; 10556 10557 /** 10558 * Invert summed value to create the checksum 10559 * Writing new checksum value directly to the boot data 10560 */ 10561 cur_header[7] = -csum; 10562 10563 } else if (pcir_header->code_type == CXGB4_HDR_CODE2) { 10564 /** 10565 * Modify Device ID to match current adatper 10566 */ 10567 pcir_header->device_id = cpu_to_le16(device_id); 10568 } 10569 10570 /** 10571 * Move header pointer up to the next image in the ROM. 10572 */ 10573 cur_header += header->size512 * 512; 10574 } while (!(pcir_header->indicator & CXGB4_HDR_INDI)); 10575 } 10576 10577 /** 10578 * t4_load_boot - download boot flash 10579 * @adap: the adapter 10580 * @boot_data: the boot image to write 10581 * @boot_addr: offset in flash to write boot_data 10582 * @size: image size 10583 * 10584 * Write the supplied boot image to the card's serial flash. 10585 * The boot image has the following sections: a 28-byte header and the 10586 * boot image. 10587 */ 10588 int t4_load_boot(struct adapter *adap, u8 *boot_data, 10589 unsigned int boot_addr, unsigned int size) 10590 { 10591 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10592 unsigned int boot_sector = (boot_addr * 1024); 10593 struct cxgb4_pci_exp_rom_header *header; 10594 struct cxgb4_pcir_data *pcir_header; 10595 int pcir_offset; 10596 unsigned int i; 10597 u16 device_id; 10598 int ret, addr; 10599 10600 /** 10601 * Make sure the boot image does not encroach on the firmware region 10602 */ 10603 if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) { 10604 dev_err(adap->pdev_dev, "boot image encroaching on firmware region\n"); 10605 return -EFBIG; 10606 } 10607 10608 /* Get boot header */ 10609 header = (struct cxgb4_pci_exp_rom_header *)boot_data; 10610 pcir_offset = le16_to_cpu(header->pcir_offset); 10611 /* PCIR Data Structure */ 10612 pcir_header = (struct cxgb4_pcir_data *)&boot_data[pcir_offset]; 10613 10614 /** 10615 * Perform some primitive sanity testing to avoid accidentally 10616 * writing garbage over the boot sectors. We ought to check for 10617 * more but it's not worth it for now ... 10618 */ 10619 if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) { 10620 dev_err(adap->pdev_dev, "boot image too small/large\n"); 10621 return -EFBIG; 10622 } 10623 10624 if (le16_to_cpu(header->signature) != BOOT_SIGNATURE) { 10625 dev_err(adap->pdev_dev, "Boot image missing signature\n"); 10626 return -EINVAL; 10627 } 10628 10629 /* Check PCI header signature */ 10630 if (le32_to_cpu(pcir_header->signature) != PCIR_SIGNATURE) { 10631 dev_err(adap->pdev_dev, "PCI header missing signature\n"); 10632 return -EINVAL; 10633 } 10634 10635 /* Check Vendor ID matches Chelsio ID*/ 10636 if (le16_to_cpu(pcir_header->vendor_id) != PCI_VENDOR_ID_CHELSIO) { 10637 dev_err(adap->pdev_dev, "Vendor ID missing signature\n"); 10638 return -EINVAL; 10639 } 10640 10641 /** 10642 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot, 10643 * and Boot configuration data sections. These 3 boot sections span 10644 * sectors 0 to 7 in flash and live right before the FW image location. 10645 */ 10646 i = DIV_ROUND_UP(size ? size : FLASH_FW_START, sf_sec_size); 10647 ret = t4_flash_erase_sectors(adap, boot_sector >> 16, 10648 (boot_sector >> 16) + i - 1); 10649 10650 /** 10651 * If size == 0 then we're simply erasing the FLASH sectors associated 10652 * with the on-adapter option ROM file 10653 */ 10654 if (ret || size == 0) 10655 goto out; 10656 /* Retrieve adapter's device ID */ 10657 pci_read_config_word(adap->pdev, PCI_DEVICE_ID, &device_id); 10658 /* Want to deal with PF 0 so I strip off PF 4 indicator */ 10659 device_id = device_id & 0xf0ff; 10660 10661 /* Check PCIE Device ID */ 10662 if (le16_to_cpu(pcir_header->device_id) != device_id) { 10663 /** 10664 * Change the device ID in the Boot BIOS image to match 10665 * the Device ID of the current adapter. 10666 */ 10667 modify_device_id(device_id, boot_data); 10668 } 10669 10670 /** 10671 * Skip over the first SF_PAGE_SIZE worth of data and write it after 10672 * we finish copying the rest of the boot image. This will ensure 10673 * that the BIOS boot header will only be written if the boot image 10674 * was written in full. 10675 */ 10676 addr = boot_sector; 10677 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 10678 addr += SF_PAGE_SIZE; 10679 boot_data += SF_PAGE_SIZE; 10680 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data); 10681 if (ret) 10682 goto out; 10683 } 10684 10685 ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE, 10686 (const u8 *)header); 10687 10688 out: 10689 if (ret) 10690 dev_err(adap->pdev_dev, "boot image load failed, error %d\n", 10691 ret); 10692 return ret; 10693 } 10694 10695 /** 10696 * t4_flash_bootcfg_addr - return the address of the flash 10697 * optionrom configuration 10698 * @adapter: the adapter 10699 * 10700 * Return the address within the flash where the OptionROM Configuration 10701 * is stored, or an error if the device FLASH is too small to contain 10702 * a OptionROM Configuration. 10703 */ 10704 static int t4_flash_bootcfg_addr(struct adapter *adapter) 10705 { 10706 /** 10707 * If the device FLASH isn't large enough to hold a Firmware 10708 * Configuration File, return an error. 10709 */ 10710 if (adapter->params.sf_size < 10711 FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE) 10712 return -ENOSPC; 10713 10714 return FLASH_BOOTCFG_START; 10715 } 10716 10717 int t4_load_bootcfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 10718 { 10719 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10720 struct cxgb4_bootcfg_data *header; 10721 unsigned int flash_cfg_start_sec; 10722 unsigned int addr, npad; 10723 int ret, i, n, cfg_addr; 10724 10725 cfg_addr = t4_flash_bootcfg_addr(adap); 10726 if (cfg_addr < 0) 10727 return cfg_addr; 10728 10729 addr = cfg_addr; 10730 flash_cfg_start_sec = addr / SF_SEC_SIZE; 10731 10732 if (size > FLASH_BOOTCFG_MAX_SIZE) { 10733 dev_err(adap->pdev_dev, "bootcfg file too large, max is %u bytes\n", 10734 FLASH_BOOTCFG_MAX_SIZE); 10735 return -EFBIG; 10736 } 10737 10738 header = (struct cxgb4_bootcfg_data *)cfg_data; 10739 if (le16_to_cpu(header->signature) != BOOT_CFG_SIG) { 10740 dev_err(adap->pdev_dev, "Wrong bootcfg signature\n"); 10741 ret = -EINVAL; 10742 goto out; 10743 } 10744 10745 i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE, 10746 sf_sec_size); 10747 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 10748 flash_cfg_start_sec + i - 1); 10749 10750 /** 10751 * If size == 0 then we're simply erasing the FLASH sectors associated 10752 * with the on-adapter OptionROM Configuration File. 10753 */ 10754 if (ret || size == 0) 10755 goto out; 10756 10757 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 10758 for (i = 0; i < size; i += SF_PAGE_SIZE) { 10759 n = min_t(u32, size - i, SF_PAGE_SIZE); 10760 10761 ret = t4_write_flash(adap, addr, n, cfg_data); 10762 if (ret) 10763 goto out; 10764 10765 addr += SF_PAGE_SIZE; 10766 cfg_data += SF_PAGE_SIZE; 10767 } 10768 10769 npad = ((size + 4 - 1) & ~3) - size; 10770 for (i = 0; i < npad; i++) { 10771 u8 data = 0; 10772 10773 ret = t4_write_flash(adap, cfg_addr + size + i, 1, &data); 10774 if (ret) 10775 goto out; 10776 } 10777 10778 out: 10779 if (ret) 10780 dev_err(adap->pdev_dev, "boot config data %s failed %d\n", 10781 (size == 0 ? "clear" : "download"), ret); 10782 return ret; 10783 } 10784