1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/skbuff.h> 36 #include <linux/netdevice.h> 37 #include <linux/etherdevice.h> 38 #include <linux/if_vlan.h> 39 #include <linux/ip.h> 40 #include <linux/dma-mapping.h> 41 #include <linux/jiffies.h> 42 #include <linux/prefetch.h> 43 #include <linux/export.h> 44 #include <net/ipv6.h> 45 #include <net/tcp.h> 46 #include "cxgb4.h" 47 #include "t4_regs.h" 48 #include "t4_msg.h" 49 #include "t4fw_api.h" 50 51 /* 52 * Rx buffer size. We use largish buffers if possible but settle for single 53 * pages under memory shortage. 54 */ 55 #if PAGE_SHIFT >= 16 56 # define FL_PG_ORDER 0 57 #else 58 # define FL_PG_ORDER (16 - PAGE_SHIFT) 59 #endif 60 61 /* RX_PULL_LEN should be <= RX_COPY_THRES */ 62 #define RX_COPY_THRES 256 63 #define RX_PULL_LEN 128 64 65 /* 66 * Main body length for sk_buffs used for Rx Ethernet packets with fragments. 67 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room. 68 */ 69 #define RX_PKT_SKB_LEN 512 70 71 /* Ethernet header padding prepended to RX_PKTs */ 72 #define RX_PKT_PAD 2 73 74 /* 75 * Max number of Tx descriptors we clean up at a time. Should be modest as 76 * freeing skbs isn't cheap and it happens while holding locks. We just need 77 * to free packets faster than they arrive, we eventually catch up and keep 78 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. 79 */ 80 #define MAX_TX_RECLAIM 16 81 82 /* 83 * Max number of Rx buffers we replenish at a time. Again keep this modest, 84 * allocating buffers isn't cheap either. 85 */ 86 #define MAX_RX_REFILL 16U 87 88 /* 89 * Period of the Rx queue check timer. This timer is infrequent as it has 90 * something to do only when the system experiences severe memory shortage. 91 */ 92 #define RX_QCHECK_PERIOD (HZ / 2) 93 94 /* 95 * Period of the Tx queue check timer. 96 */ 97 #define TX_QCHECK_PERIOD (HZ / 2) 98 99 /* 100 * Max number of Tx descriptors to be reclaimed by the Tx timer. 101 */ 102 #define MAX_TIMER_TX_RECLAIM 100 103 104 /* 105 * Timer index used when backing off due to memory shortage. 106 */ 107 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1) 108 109 /* 110 * An FL with <= FL_STARVE_THRES buffers is starving and a periodic timer will 111 * attempt to refill it. 112 */ 113 #define FL_STARVE_THRES 4 114 115 /* 116 * Suspend an Ethernet Tx queue with fewer available descriptors than this. 117 * This is the same as calc_tx_descs() for a TSO packet with 118 * nr_frags == MAX_SKB_FRAGS. 119 */ 120 #define ETHTXQ_STOP_THRES \ 121 (1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8)) 122 123 /* 124 * Suspension threshold for non-Ethernet Tx queues. We require enough room 125 * for a full sized WR. 126 */ 127 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc)) 128 129 /* 130 * Max Tx descriptor space we allow for an Ethernet packet to be inlined 131 * into a WR. 132 */ 133 #define MAX_IMM_TX_PKT_LEN 128 134 135 /* 136 * Max size of a WR sent through a control Tx queue. 137 */ 138 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN 139 140 enum { 141 /* packet alignment in FL buffers */ 142 FL_ALIGN = L1_CACHE_BYTES < 32 ? 32 : L1_CACHE_BYTES, 143 /* egress status entry size */ 144 STAT_LEN = L1_CACHE_BYTES > 64 ? 128 : 64 145 }; 146 147 struct tx_sw_desc { /* SW state per Tx descriptor */ 148 struct sk_buff *skb; 149 struct ulptx_sgl *sgl; 150 }; 151 152 struct rx_sw_desc { /* SW state per Rx descriptor */ 153 struct page *page; 154 dma_addr_t dma_addr; 155 }; 156 157 /* 158 * The low bits of rx_sw_desc.dma_addr have special meaning. 159 */ 160 enum { 161 RX_LARGE_BUF = 1 << 0, /* buffer is larger than PAGE_SIZE */ 162 RX_UNMAPPED_BUF = 1 << 1, /* buffer is not mapped */ 163 }; 164 165 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d) 166 { 167 return d->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF); 168 } 169 170 static inline bool is_buf_mapped(const struct rx_sw_desc *d) 171 { 172 return !(d->dma_addr & RX_UNMAPPED_BUF); 173 } 174 175 /** 176 * txq_avail - return the number of available slots in a Tx queue 177 * @q: the Tx queue 178 * 179 * Returns the number of descriptors in a Tx queue available to write new 180 * packets. 181 */ 182 static inline unsigned int txq_avail(const struct sge_txq *q) 183 { 184 return q->size - 1 - q->in_use; 185 } 186 187 /** 188 * fl_cap - return the capacity of a free-buffer list 189 * @fl: the FL 190 * 191 * Returns the capacity of a free-buffer list. The capacity is less than 192 * the size because one descriptor needs to be left unpopulated, otherwise 193 * HW will think the FL is empty. 194 */ 195 static inline unsigned int fl_cap(const struct sge_fl *fl) 196 { 197 return fl->size - 8; /* 1 descriptor = 8 buffers */ 198 } 199 200 static inline bool fl_starving(const struct sge_fl *fl) 201 { 202 return fl->avail - fl->pend_cred <= FL_STARVE_THRES; 203 } 204 205 static int map_skb(struct device *dev, const struct sk_buff *skb, 206 dma_addr_t *addr) 207 { 208 const skb_frag_t *fp, *end; 209 const struct skb_shared_info *si; 210 211 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 212 if (dma_mapping_error(dev, *addr)) 213 goto out_err; 214 215 si = skb_shinfo(skb); 216 end = &si->frags[si->nr_frags]; 217 218 for (fp = si->frags; fp < end; fp++) { 219 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp), 220 DMA_TO_DEVICE); 221 if (dma_mapping_error(dev, *addr)) 222 goto unwind; 223 } 224 return 0; 225 226 unwind: 227 while (fp-- > si->frags) 228 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE); 229 230 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); 231 out_err: 232 return -ENOMEM; 233 } 234 235 #ifdef CONFIG_NEED_DMA_MAP_STATE 236 static void unmap_skb(struct device *dev, const struct sk_buff *skb, 237 const dma_addr_t *addr) 238 { 239 const skb_frag_t *fp, *end; 240 const struct skb_shared_info *si; 241 242 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE); 243 244 si = skb_shinfo(skb); 245 end = &si->frags[si->nr_frags]; 246 for (fp = si->frags; fp < end; fp++) 247 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE); 248 } 249 250 /** 251 * deferred_unmap_destructor - unmap a packet when it is freed 252 * @skb: the packet 253 * 254 * This is the packet destructor used for Tx packets that need to remain 255 * mapped until they are freed rather than until their Tx descriptors are 256 * freed. 257 */ 258 static void deferred_unmap_destructor(struct sk_buff *skb) 259 { 260 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head); 261 } 262 #endif 263 264 static void unmap_sgl(struct device *dev, const struct sk_buff *skb, 265 const struct ulptx_sgl *sgl, const struct sge_txq *q) 266 { 267 const struct ulptx_sge_pair *p; 268 unsigned int nfrags = skb_shinfo(skb)->nr_frags; 269 270 if (likely(skb_headlen(skb))) 271 dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), 272 DMA_TO_DEVICE); 273 else { 274 dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), 275 DMA_TO_DEVICE); 276 nfrags--; 277 } 278 279 /* 280 * the complexity below is because of the possibility of a wrap-around 281 * in the middle of an SGL 282 */ 283 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) { 284 if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) { 285 unmap: dma_unmap_page(dev, be64_to_cpu(p->addr[0]), 286 ntohl(p->len[0]), DMA_TO_DEVICE); 287 dma_unmap_page(dev, be64_to_cpu(p->addr[1]), 288 ntohl(p->len[1]), DMA_TO_DEVICE); 289 p++; 290 } else if ((u8 *)p == (u8 *)q->stat) { 291 p = (const struct ulptx_sge_pair *)q->desc; 292 goto unmap; 293 } else if ((u8 *)p + 8 == (u8 *)q->stat) { 294 const __be64 *addr = (const __be64 *)q->desc; 295 296 dma_unmap_page(dev, be64_to_cpu(addr[0]), 297 ntohl(p->len[0]), DMA_TO_DEVICE); 298 dma_unmap_page(dev, be64_to_cpu(addr[1]), 299 ntohl(p->len[1]), DMA_TO_DEVICE); 300 p = (const struct ulptx_sge_pair *)&addr[2]; 301 } else { 302 const __be64 *addr = (const __be64 *)q->desc; 303 304 dma_unmap_page(dev, be64_to_cpu(p->addr[0]), 305 ntohl(p->len[0]), DMA_TO_DEVICE); 306 dma_unmap_page(dev, be64_to_cpu(addr[0]), 307 ntohl(p->len[1]), DMA_TO_DEVICE); 308 p = (const struct ulptx_sge_pair *)&addr[1]; 309 } 310 } 311 if (nfrags) { 312 __be64 addr; 313 314 if ((u8 *)p == (u8 *)q->stat) 315 p = (const struct ulptx_sge_pair *)q->desc; 316 addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] : 317 *(const __be64 *)q->desc; 318 dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]), 319 DMA_TO_DEVICE); 320 } 321 } 322 323 /** 324 * free_tx_desc - reclaims Tx descriptors and their buffers 325 * @adapter: the adapter 326 * @q: the Tx queue to reclaim descriptors from 327 * @n: the number of descriptors to reclaim 328 * @unmap: whether the buffers should be unmapped for DMA 329 * 330 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated 331 * Tx buffers. Called with the Tx queue lock held. 332 */ 333 static void free_tx_desc(struct adapter *adap, struct sge_txq *q, 334 unsigned int n, bool unmap) 335 { 336 struct tx_sw_desc *d; 337 unsigned int cidx = q->cidx; 338 struct device *dev = adap->pdev_dev; 339 340 d = &q->sdesc[cidx]; 341 while (n--) { 342 if (d->skb) { /* an SGL is present */ 343 if (unmap) 344 unmap_sgl(dev, d->skb, d->sgl, q); 345 kfree_skb(d->skb); 346 d->skb = NULL; 347 } 348 ++d; 349 if (++cidx == q->size) { 350 cidx = 0; 351 d = q->sdesc; 352 } 353 } 354 q->cidx = cidx; 355 } 356 357 /* 358 * Return the number of reclaimable descriptors in a Tx queue. 359 */ 360 static inline int reclaimable(const struct sge_txq *q) 361 { 362 int hw_cidx = ntohs(q->stat->cidx); 363 hw_cidx -= q->cidx; 364 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx; 365 } 366 367 /** 368 * reclaim_completed_tx - reclaims completed Tx descriptors 369 * @adap: the adapter 370 * @q: the Tx queue to reclaim completed descriptors from 371 * @unmap: whether the buffers should be unmapped for DMA 372 * 373 * Reclaims Tx descriptors that the SGE has indicated it has processed, 374 * and frees the associated buffers if possible. Called with the Tx 375 * queue locked. 376 */ 377 static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, 378 bool unmap) 379 { 380 int avail = reclaimable(q); 381 382 if (avail) { 383 /* 384 * Limit the amount of clean up work we do at a time to keep 385 * the Tx lock hold time O(1). 386 */ 387 if (avail > MAX_TX_RECLAIM) 388 avail = MAX_TX_RECLAIM; 389 390 free_tx_desc(adap, q, avail, unmap); 391 q->in_use -= avail; 392 } 393 } 394 395 static inline int get_buf_size(const struct rx_sw_desc *d) 396 { 397 #if FL_PG_ORDER > 0 398 return (d->dma_addr & RX_LARGE_BUF) ? (PAGE_SIZE << FL_PG_ORDER) : 399 PAGE_SIZE; 400 #else 401 return PAGE_SIZE; 402 #endif 403 } 404 405 /** 406 * free_rx_bufs - free the Rx buffers on an SGE free list 407 * @adap: the adapter 408 * @q: the SGE free list to free buffers from 409 * @n: how many buffers to free 410 * 411 * Release the next @n buffers on an SGE free-buffer Rx queue. The 412 * buffers must be made inaccessible to HW before calling this function. 413 */ 414 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n) 415 { 416 while (n--) { 417 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 418 419 if (is_buf_mapped(d)) 420 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 421 get_buf_size(d), PCI_DMA_FROMDEVICE); 422 put_page(d->page); 423 d->page = NULL; 424 if (++q->cidx == q->size) 425 q->cidx = 0; 426 q->avail--; 427 } 428 } 429 430 /** 431 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list 432 * @adap: the adapter 433 * @q: the SGE free list 434 * 435 * Unmap the current buffer on an SGE free-buffer Rx queue. The 436 * buffer must be made inaccessible to HW before calling this function. 437 * 438 * This is similar to @free_rx_bufs above but does not free the buffer. 439 * Do note that the FL still loses any further access to the buffer. 440 */ 441 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q) 442 { 443 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 444 445 if (is_buf_mapped(d)) 446 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 447 get_buf_size(d), PCI_DMA_FROMDEVICE); 448 d->page = NULL; 449 if (++q->cidx == q->size) 450 q->cidx = 0; 451 q->avail--; 452 } 453 454 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) 455 { 456 if (q->pend_cred >= 8) { 457 wmb(); 458 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL), DBPRIO | 459 QID(q->cntxt_id) | PIDX(q->pend_cred / 8)); 460 q->pend_cred &= 7; 461 } 462 } 463 464 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg, 465 dma_addr_t mapping) 466 { 467 sd->page = pg; 468 sd->dma_addr = mapping; /* includes size low bits */ 469 } 470 471 /** 472 * refill_fl - refill an SGE Rx buffer ring 473 * @adap: the adapter 474 * @q: the ring to refill 475 * @n: the number of new buffers to allocate 476 * @gfp: the gfp flags for the allocations 477 * 478 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, 479 * allocated with the supplied gfp flags. The caller must assure that 480 * @n does not exceed the queue's capacity. If afterwards the queue is 481 * found critically low mark it as starving in the bitmap of starving FLs. 482 * 483 * Returns the number of buffers allocated. 484 */ 485 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n, 486 gfp_t gfp) 487 { 488 struct page *pg; 489 dma_addr_t mapping; 490 unsigned int cred = q->avail; 491 __be64 *d = &q->desc[q->pidx]; 492 struct rx_sw_desc *sd = &q->sdesc[q->pidx]; 493 494 gfp |= __GFP_NOWARN; /* failures are expected */ 495 496 #if FL_PG_ORDER > 0 497 /* 498 * Prefer large buffers 499 */ 500 while (n) { 501 pg = alloc_pages(gfp | __GFP_COMP, FL_PG_ORDER); 502 if (unlikely(!pg)) { 503 q->large_alloc_failed++; 504 break; /* fall back to single pages */ 505 } 506 507 mapping = dma_map_page(adap->pdev_dev, pg, 0, 508 PAGE_SIZE << FL_PG_ORDER, 509 PCI_DMA_FROMDEVICE); 510 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 511 __free_pages(pg, FL_PG_ORDER); 512 goto out; /* do not try small pages for this error */ 513 } 514 mapping |= RX_LARGE_BUF; 515 *d++ = cpu_to_be64(mapping); 516 517 set_rx_sw_desc(sd, pg, mapping); 518 sd++; 519 520 q->avail++; 521 if (++q->pidx == q->size) { 522 q->pidx = 0; 523 sd = q->sdesc; 524 d = q->desc; 525 } 526 n--; 527 } 528 #endif 529 530 while (n--) { 531 pg = __netdev_alloc_page(adap->port[0], gfp); 532 if (unlikely(!pg)) { 533 q->alloc_failed++; 534 break; 535 } 536 537 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE, 538 PCI_DMA_FROMDEVICE); 539 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 540 netdev_free_page(adap->port[0], pg); 541 goto out; 542 } 543 *d++ = cpu_to_be64(mapping); 544 545 set_rx_sw_desc(sd, pg, mapping); 546 sd++; 547 548 q->avail++; 549 if (++q->pidx == q->size) { 550 q->pidx = 0; 551 sd = q->sdesc; 552 d = q->desc; 553 } 554 } 555 556 out: cred = q->avail - cred; 557 q->pend_cred += cred; 558 ring_fl_db(adap, q); 559 560 if (unlikely(fl_starving(q))) { 561 smp_wmb(); 562 set_bit(q->cntxt_id - adap->sge.egr_start, 563 adap->sge.starving_fl); 564 } 565 566 return cred; 567 } 568 569 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) 570 { 571 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail), 572 GFP_ATOMIC); 573 } 574 575 /** 576 * alloc_ring - allocate resources for an SGE descriptor ring 577 * @dev: the PCI device's core device 578 * @nelem: the number of descriptors 579 * @elem_size: the size of each descriptor 580 * @sw_size: the size of the SW state associated with each ring element 581 * @phys: the physical address of the allocated ring 582 * @metadata: address of the array holding the SW state for the ring 583 * @stat_size: extra space in HW ring for status information 584 * @node: preferred node for memory allocations 585 * 586 * Allocates resources for an SGE descriptor ring, such as Tx queues, 587 * free buffer lists, or response queues. Each SGE ring requires 588 * space for its HW descriptors plus, optionally, space for the SW state 589 * associated with each HW entry (the metadata). The function returns 590 * three values: the virtual address for the HW ring (the return value 591 * of the function), the bus address of the HW ring, and the address 592 * of the SW ring. 593 */ 594 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size, 595 size_t sw_size, dma_addr_t *phys, void *metadata, 596 size_t stat_size, int node) 597 { 598 size_t len = nelem * elem_size + stat_size; 599 void *s = NULL; 600 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL); 601 602 if (!p) 603 return NULL; 604 if (sw_size) { 605 s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node); 606 607 if (!s) { 608 dma_free_coherent(dev, len, p, *phys); 609 return NULL; 610 } 611 } 612 if (metadata) 613 *(void **)metadata = s; 614 memset(p, 0, len); 615 return p; 616 } 617 618 /** 619 * sgl_len - calculates the size of an SGL of the given capacity 620 * @n: the number of SGL entries 621 * 622 * Calculates the number of flits needed for a scatter/gather list that 623 * can hold the given number of entries. 624 */ 625 static inline unsigned int sgl_len(unsigned int n) 626 { 627 n--; 628 return (3 * n) / 2 + (n & 1) + 2; 629 } 630 631 /** 632 * flits_to_desc - returns the num of Tx descriptors for the given flits 633 * @n: the number of flits 634 * 635 * Returns the number of Tx descriptors needed for the supplied number 636 * of flits. 637 */ 638 static inline unsigned int flits_to_desc(unsigned int n) 639 { 640 BUG_ON(n > SGE_MAX_WR_LEN / 8); 641 return DIV_ROUND_UP(n, 8); 642 } 643 644 /** 645 * is_eth_imm - can an Ethernet packet be sent as immediate data? 646 * @skb: the packet 647 * 648 * Returns whether an Ethernet packet is small enough to fit as 649 * immediate data. 650 */ 651 static inline int is_eth_imm(const struct sk_buff *skb) 652 { 653 return skb->len <= MAX_IMM_TX_PKT_LEN - sizeof(struct cpl_tx_pkt); 654 } 655 656 /** 657 * calc_tx_flits - calculate the number of flits for a packet Tx WR 658 * @skb: the packet 659 * 660 * Returns the number of flits needed for a Tx WR for the given Ethernet 661 * packet, including the needed WR and CPL headers. 662 */ 663 static inline unsigned int calc_tx_flits(const struct sk_buff *skb) 664 { 665 unsigned int flits; 666 667 if (is_eth_imm(skb)) 668 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt), 8); 669 670 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 4; 671 if (skb_shinfo(skb)->gso_size) 672 flits += 2; 673 return flits; 674 } 675 676 /** 677 * calc_tx_descs - calculate the number of Tx descriptors for a packet 678 * @skb: the packet 679 * 680 * Returns the number of Tx descriptors needed for the given Ethernet 681 * packet, including the needed WR and CPL headers. 682 */ 683 static inline unsigned int calc_tx_descs(const struct sk_buff *skb) 684 { 685 return flits_to_desc(calc_tx_flits(skb)); 686 } 687 688 /** 689 * write_sgl - populate a scatter/gather list for a packet 690 * @skb: the packet 691 * @q: the Tx queue we are writing into 692 * @sgl: starting location for writing the SGL 693 * @end: points right after the end of the SGL 694 * @start: start offset into skb main-body data to include in the SGL 695 * @addr: the list of bus addresses for the SGL elements 696 * 697 * Generates a gather list for the buffers that make up a packet. 698 * The caller must provide adequate space for the SGL that will be written. 699 * The SGL includes all of the packet's page fragments and the data in its 700 * main body except for the first @start bytes. @sgl must be 16-byte 701 * aligned and within a Tx descriptor with available space. @end points 702 * right after the end of the SGL but does not account for any potential 703 * wrap around, i.e., @end > @sgl. 704 */ 705 static void write_sgl(const struct sk_buff *skb, struct sge_txq *q, 706 struct ulptx_sgl *sgl, u64 *end, unsigned int start, 707 const dma_addr_t *addr) 708 { 709 unsigned int i, len; 710 struct ulptx_sge_pair *to; 711 const struct skb_shared_info *si = skb_shinfo(skb); 712 unsigned int nfrags = si->nr_frags; 713 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1]; 714 715 len = skb_headlen(skb) - start; 716 if (likely(len)) { 717 sgl->len0 = htonl(len); 718 sgl->addr0 = cpu_to_be64(addr[0] + start); 719 nfrags++; 720 } else { 721 sgl->len0 = htonl(skb_frag_size(&si->frags[0])); 722 sgl->addr0 = cpu_to_be64(addr[1]); 723 } 724 725 sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) | ULPTX_NSGE(nfrags)); 726 if (likely(--nfrags == 0)) 727 return; 728 /* 729 * Most of the complexity below deals with the possibility we hit the 730 * end of the queue in the middle of writing the SGL. For this case 731 * only we create the SGL in a temporary buffer and then copy it. 732 */ 733 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; 734 735 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) { 736 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 737 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i])); 738 to->addr[0] = cpu_to_be64(addr[i]); 739 to->addr[1] = cpu_to_be64(addr[++i]); 740 } 741 if (nfrags) { 742 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 743 to->len[1] = cpu_to_be32(0); 744 to->addr[0] = cpu_to_be64(addr[i + 1]); 745 } 746 if (unlikely((u8 *)end > (u8 *)q->stat)) { 747 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1; 748 749 if (likely(part0)) 750 memcpy(sgl->sge, buf, part0); 751 part1 = (u8 *)end - (u8 *)q->stat; 752 memcpy(q->desc, (u8 *)buf + part0, part1); 753 end = (void *)q->desc + part1; 754 } 755 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ 756 *(u64 *)end = 0; 757 } 758 759 /** 760 * ring_tx_db - check and potentially ring a Tx queue's doorbell 761 * @adap: the adapter 762 * @q: the Tx queue 763 * @n: number of new descriptors to give to HW 764 * 765 * Ring the doorbel for a Tx queue. 766 */ 767 static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n) 768 { 769 wmb(); /* write descriptors before telling HW */ 770 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL), 771 QID(q->cntxt_id) | PIDX(n)); 772 } 773 774 /** 775 * inline_tx_skb - inline a packet's data into Tx descriptors 776 * @skb: the packet 777 * @q: the Tx queue where the packet will be inlined 778 * @pos: starting position in the Tx queue where to inline the packet 779 * 780 * Inline a packet's contents directly into Tx descriptors, starting at 781 * the given position within the Tx DMA ring. 782 * Most of the complexity of this operation is dealing with wrap arounds 783 * in the middle of the packet we want to inline. 784 */ 785 static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q, 786 void *pos) 787 { 788 u64 *p; 789 int left = (void *)q->stat - pos; 790 791 if (likely(skb->len <= left)) { 792 if (likely(!skb->data_len)) 793 skb_copy_from_linear_data(skb, pos, skb->len); 794 else 795 skb_copy_bits(skb, 0, pos, skb->len); 796 pos += skb->len; 797 } else { 798 skb_copy_bits(skb, 0, pos, left); 799 skb_copy_bits(skb, left, q->desc, skb->len - left); 800 pos = (void *)q->desc + (skb->len - left); 801 } 802 803 /* 0-pad to multiple of 16 */ 804 p = PTR_ALIGN(pos, 8); 805 if ((uintptr_t)p & 8) 806 *p = 0; 807 } 808 809 /* 810 * Figure out what HW csum a packet wants and return the appropriate control 811 * bits. 812 */ 813 static u64 hwcsum(const struct sk_buff *skb) 814 { 815 int csum_type; 816 const struct iphdr *iph = ip_hdr(skb); 817 818 if (iph->version == 4) { 819 if (iph->protocol == IPPROTO_TCP) 820 csum_type = TX_CSUM_TCPIP; 821 else if (iph->protocol == IPPROTO_UDP) 822 csum_type = TX_CSUM_UDPIP; 823 else { 824 nocsum: /* 825 * unknown protocol, disable HW csum 826 * and hope a bad packet is detected 827 */ 828 return TXPKT_L4CSUM_DIS; 829 } 830 } else { 831 /* 832 * this doesn't work with extension headers 833 */ 834 const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph; 835 836 if (ip6h->nexthdr == IPPROTO_TCP) 837 csum_type = TX_CSUM_TCPIP6; 838 else if (ip6h->nexthdr == IPPROTO_UDP) 839 csum_type = TX_CSUM_UDPIP6; 840 else 841 goto nocsum; 842 } 843 844 if (likely(csum_type >= TX_CSUM_TCPIP)) 845 return TXPKT_CSUM_TYPE(csum_type) | 846 TXPKT_IPHDR_LEN(skb_network_header_len(skb)) | 847 TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN); 848 else { 849 int start = skb_transport_offset(skb); 850 851 return TXPKT_CSUM_TYPE(csum_type) | TXPKT_CSUM_START(start) | 852 TXPKT_CSUM_LOC(start + skb->csum_offset); 853 } 854 } 855 856 static void eth_txq_stop(struct sge_eth_txq *q) 857 { 858 netif_tx_stop_queue(q->txq); 859 q->q.stops++; 860 } 861 862 static inline void txq_advance(struct sge_txq *q, unsigned int n) 863 { 864 q->in_use += n; 865 q->pidx += n; 866 if (q->pidx >= q->size) 867 q->pidx -= q->size; 868 } 869 870 /** 871 * t4_eth_xmit - add a packet to an Ethernet Tx queue 872 * @skb: the packet 873 * @dev: the egress net device 874 * 875 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled. 876 */ 877 netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev) 878 { 879 u32 wr_mid; 880 u64 cntrl, *end; 881 int qidx, credits; 882 unsigned int flits, ndesc; 883 struct adapter *adap; 884 struct sge_eth_txq *q; 885 const struct port_info *pi; 886 struct fw_eth_tx_pkt_wr *wr; 887 struct cpl_tx_pkt_core *cpl; 888 const struct skb_shared_info *ssi; 889 dma_addr_t addr[MAX_SKB_FRAGS + 1]; 890 891 /* 892 * The chip min packet length is 10 octets but play safe and reject 893 * anything shorter than an Ethernet header. 894 */ 895 if (unlikely(skb->len < ETH_HLEN)) { 896 out_free: dev_kfree_skb(skb); 897 return NETDEV_TX_OK; 898 } 899 900 pi = netdev_priv(dev); 901 adap = pi->adapter; 902 qidx = skb_get_queue_mapping(skb); 903 q = &adap->sge.ethtxq[qidx + pi->first_qset]; 904 905 reclaim_completed_tx(adap, &q->q, true); 906 907 flits = calc_tx_flits(skb); 908 ndesc = flits_to_desc(flits); 909 credits = txq_avail(&q->q) - ndesc; 910 911 if (unlikely(credits < 0)) { 912 eth_txq_stop(q); 913 dev_err(adap->pdev_dev, 914 "%s: Tx ring %u full while queue awake!\n", 915 dev->name, qidx); 916 return NETDEV_TX_BUSY; 917 } 918 919 if (!is_eth_imm(skb) && 920 unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) { 921 q->mapping_err++; 922 goto out_free; 923 } 924 925 wr_mid = FW_WR_LEN16(DIV_ROUND_UP(flits, 2)); 926 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 927 eth_txq_stop(q); 928 wr_mid |= FW_WR_EQUEQ | FW_WR_EQUIQ; 929 } 930 931 wr = (void *)&q->q.desc[q->q.pidx]; 932 wr->equiq_to_len16 = htonl(wr_mid); 933 wr->r3 = cpu_to_be64(0); 934 end = (u64 *)wr + flits; 935 936 ssi = skb_shinfo(skb); 937 if (ssi->gso_size) { 938 struct cpl_tx_pkt_lso *lso = (void *)wr; 939 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; 940 int l3hdr_len = skb_network_header_len(skb); 941 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 942 943 wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) | 944 FW_WR_IMMDLEN(sizeof(*lso))); 945 lso->c.lso_ctrl = htonl(LSO_OPCODE(CPL_TX_PKT_LSO) | 946 LSO_FIRST_SLICE | LSO_LAST_SLICE | 947 LSO_IPV6(v6) | 948 LSO_ETHHDR_LEN(eth_xtra_len / 4) | 949 LSO_IPHDR_LEN(l3hdr_len / 4) | 950 LSO_TCPHDR_LEN(tcp_hdr(skb)->doff)); 951 lso->c.ipid_ofst = htons(0); 952 lso->c.mss = htons(ssi->gso_size); 953 lso->c.seqno_offset = htonl(0); 954 lso->c.len = htonl(skb->len); 955 cpl = (void *)(lso + 1); 956 cntrl = TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | 957 TXPKT_IPHDR_LEN(l3hdr_len) | 958 TXPKT_ETHHDR_LEN(eth_xtra_len); 959 q->tso++; 960 q->tx_cso += ssi->gso_segs; 961 } else { 962 int len; 963 964 len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl); 965 wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) | 966 FW_WR_IMMDLEN(len)); 967 cpl = (void *)(wr + 1); 968 if (skb->ip_summed == CHECKSUM_PARTIAL) { 969 cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS; 970 q->tx_cso++; 971 } else 972 cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS; 973 } 974 975 if (vlan_tx_tag_present(skb)) { 976 q->vlan_ins++; 977 cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb)); 978 } 979 980 cpl->ctrl0 = htonl(TXPKT_OPCODE(CPL_TX_PKT_XT) | 981 TXPKT_INTF(pi->tx_chan) | TXPKT_PF(adap->fn)); 982 cpl->pack = htons(0); 983 cpl->len = htons(skb->len); 984 cpl->ctrl1 = cpu_to_be64(cntrl); 985 986 if (is_eth_imm(skb)) { 987 inline_tx_skb(skb, &q->q, cpl + 1); 988 dev_kfree_skb(skb); 989 } else { 990 int last_desc; 991 992 write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0, 993 addr); 994 skb_orphan(skb); 995 996 last_desc = q->q.pidx + ndesc - 1; 997 if (last_desc >= q->q.size) 998 last_desc -= q->q.size; 999 q->q.sdesc[last_desc].skb = skb; 1000 q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1); 1001 } 1002 1003 txq_advance(&q->q, ndesc); 1004 1005 ring_tx_db(adap, &q->q, ndesc); 1006 return NETDEV_TX_OK; 1007 } 1008 1009 /** 1010 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs 1011 * @q: the SGE control Tx queue 1012 * 1013 * This is a variant of reclaim_completed_tx() that is used for Tx queues 1014 * that send only immediate data (presently just the control queues) and 1015 * thus do not have any sk_buffs to release. 1016 */ 1017 static inline void reclaim_completed_tx_imm(struct sge_txq *q) 1018 { 1019 int hw_cidx = ntohs(q->stat->cidx); 1020 int reclaim = hw_cidx - q->cidx; 1021 1022 if (reclaim < 0) 1023 reclaim += q->size; 1024 1025 q->in_use -= reclaim; 1026 q->cidx = hw_cidx; 1027 } 1028 1029 /** 1030 * is_imm - check whether a packet can be sent as immediate data 1031 * @skb: the packet 1032 * 1033 * Returns true if a packet can be sent as a WR with immediate data. 1034 */ 1035 static inline int is_imm(const struct sk_buff *skb) 1036 { 1037 return skb->len <= MAX_CTRL_WR_LEN; 1038 } 1039 1040 /** 1041 * ctrlq_check_stop - check if a control queue is full and should stop 1042 * @q: the queue 1043 * @wr: most recent WR written to the queue 1044 * 1045 * Check if a control queue has become full and should be stopped. 1046 * We clean up control queue descriptors very lazily, only when we are out. 1047 * If the queue is still full after reclaiming any completed descriptors 1048 * we suspend it and have the last WR wake it up. 1049 */ 1050 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr) 1051 { 1052 reclaim_completed_tx_imm(&q->q); 1053 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 1054 wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ); 1055 q->q.stops++; 1056 q->full = 1; 1057 } 1058 } 1059 1060 /** 1061 * ctrl_xmit - send a packet through an SGE control Tx queue 1062 * @q: the control queue 1063 * @skb: the packet 1064 * 1065 * Send a packet through an SGE control Tx queue. Packets sent through 1066 * a control queue must fit entirely as immediate data. 1067 */ 1068 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb) 1069 { 1070 unsigned int ndesc; 1071 struct fw_wr_hdr *wr; 1072 1073 if (unlikely(!is_imm(skb))) { 1074 WARN_ON(1); 1075 dev_kfree_skb(skb); 1076 return NET_XMIT_DROP; 1077 } 1078 1079 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc)); 1080 spin_lock(&q->sendq.lock); 1081 1082 if (unlikely(q->full)) { 1083 skb->priority = ndesc; /* save for restart */ 1084 __skb_queue_tail(&q->sendq, skb); 1085 spin_unlock(&q->sendq.lock); 1086 return NET_XMIT_CN; 1087 } 1088 1089 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 1090 inline_tx_skb(skb, &q->q, wr); 1091 1092 txq_advance(&q->q, ndesc); 1093 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) 1094 ctrlq_check_stop(q, wr); 1095 1096 ring_tx_db(q->adap, &q->q, ndesc); 1097 spin_unlock(&q->sendq.lock); 1098 1099 kfree_skb(skb); 1100 return NET_XMIT_SUCCESS; 1101 } 1102 1103 /** 1104 * restart_ctrlq - restart a suspended control queue 1105 * @data: the control queue to restart 1106 * 1107 * Resumes transmission on a suspended Tx control queue. 1108 */ 1109 static void restart_ctrlq(unsigned long data) 1110 { 1111 struct sk_buff *skb; 1112 unsigned int written = 0; 1113 struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data; 1114 1115 spin_lock(&q->sendq.lock); 1116 reclaim_completed_tx_imm(&q->q); 1117 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */ 1118 1119 while ((skb = __skb_dequeue(&q->sendq)) != NULL) { 1120 struct fw_wr_hdr *wr; 1121 unsigned int ndesc = skb->priority; /* previously saved */ 1122 1123 /* 1124 * Write descriptors and free skbs outside the lock to limit 1125 * wait times. q->full is still set so new skbs will be queued. 1126 */ 1127 spin_unlock(&q->sendq.lock); 1128 1129 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 1130 inline_tx_skb(skb, &q->q, wr); 1131 kfree_skb(skb); 1132 1133 written += ndesc; 1134 txq_advance(&q->q, ndesc); 1135 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 1136 unsigned long old = q->q.stops; 1137 1138 ctrlq_check_stop(q, wr); 1139 if (q->q.stops != old) { /* suspended anew */ 1140 spin_lock(&q->sendq.lock); 1141 goto ringdb; 1142 } 1143 } 1144 if (written > 16) { 1145 ring_tx_db(q->adap, &q->q, written); 1146 written = 0; 1147 } 1148 spin_lock(&q->sendq.lock); 1149 } 1150 q->full = 0; 1151 ringdb: if (written) 1152 ring_tx_db(q->adap, &q->q, written); 1153 spin_unlock(&q->sendq.lock); 1154 } 1155 1156 /** 1157 * t4_mgmt_tx - send a management message 1158 * @adap: the adapter 1159 * @skb: the packet containing the management message 1160 * 1161 * Send a management message through control queue 0. 1162 */ 1163 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb) 1164 { 1165 int ret; 1166 1167 local_bh_disable(); 1168 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb); 1169 local_bh_enable(); 1170 return ret; 1171 } 1172 1173 /** 1174 * is_ofld_imm - check whether a packet can be sent as immediate data 1175 * @skb: the packet 1176 * 1177 * Returns true if a packet can be sent as an offload WR with immediate 1178 * data. We currently use the same limit as for Ethernet packets. 1179 */ 1180 static inline int is_ofld_imm(const struct sk_buff *skb) 1181 { 1182 return skb->len <= MAX_IMM_TX_PKT_LEN; 1183 } 1184 1185 /** 1186 * calc_tx_flits_ofld - calculate # of flits for an offload packet 1187 * @skb: the packet 1188 * 1189 * Returns the number of flits needed for the given offload packet. 1190 * These packets are already fully constructed and no additional headers 1191 * will be added. 1192 */ 1193 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb) 1194 { 1195 unsigned int flits, cnt; 1196 1197 if (is_ofld_imm(skb)) 1198 return DIV_ROUND_UP(skb->len, 8); 1199 1200 flits = skb_transport_offset(skb) / 8U; /* headers */ 1201 cnt = skb_shinfo(skb)->nr_frags; 1202 if (skb->tail != skb->transport_header) 1203 cnt++; 1204 return flits + sgl_len(cnt); 1205 } 1206 1207 /** 1208 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion 1209 * @adap: the adapter 1210 * @q: the queue to stop 1211 * 1212 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting 1213 * inability to map packets. A periodic timer attempts to restart 1214 * queues so marked. 1215 */ 1216 static void txq_stop_maperr(struct sge_ofld_txq *q) 1217 { 1218 q->mapping_err++; 1219 q->q.stops++; 1220 set_bit(q->q.cntxt_id - q->adap->sge.egr_start, 1221 q->adap->sge.txq_maperr); 1222 } 1223 1224 /** 1225 * ofldtxq_stop - stop an offload Tx queue that has become full 1226 * @q: the queue to stop 1227 * @skb: the packet causing the queue to become full 1228 * 1229 * Stops an offload Tx queue that has become full and modifies the packet 1230 * being written to request a wakeup. 1231 */ 1232 static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb) 1233 { 1234 struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data; 1235 1236 wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ); 1237 q->q.stops++; 1238 q->full = 1; 1239 } 1240 1241 /** 1242 * service_ofldq - restart a suspended offload queue 1243 * @q: the offload queue 1244 * 1245 * Services an offload Tx queue by moving packets from its packet queue 1246 * to the HW Tx ring. The function starts and ends with the queue locked. 1247 */ 1248 static void service_ofldq(struct sge_ofld_txq *q) 1249 { 1250 u64 *pos; 1251 int credits; 1252 struct sk_buff *skb; 1253 unsigned int written = 0; 1254 unsigned int flits, ndesc; 1255 1256 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) { 1257 /* 1258 * We drop the lock but leave skb on sendq, thus retaining 1259 * exclusive access to the state of the queue. 1260 */ 1261 spin_unlock(&q->sendq.lock); 1262 1263 reclaim_completed_tx(q->adap, &q->q, false); 1264 1265 flits = skb->priority; /* previously saved */ 1266 ndesc = flits_to_desc(flits); 1267 credits = txq_avail(&q->q) - ndesc; 1268 BUG_ON(credits < 0); 1269 if (unlikely(credits < TXQ_STOP_THRES)) 1270 ofldtxq_stop(q, skb); 1271 1272 pos = (u64 *)&q->q.desc[q->q.pidx]; 1273 if (is_ofld_imm(skb)) 1274 inline_tx_skb(skb, &q->q, pos); 1275 else if (map_skb(q->adap->pdev_dev, skb, 1276 (dma_addr_t *)skb->head)) { 1277 txq_stop_maperr(q); 1278 spin_lock(&q->sendq.lock); 1279 break; 1280 } else { 1281 int last_desc, hdr_len = skb_transport_offset(skb); 1282 1283 memcpy(pos, skb->data, hdr_len); 1284 write_sgl(skb, &q->q, (void *)pos + hdr_len, 1285 pos + flits, hdr_len, 1286 (dma_addr_t *)skb->head); 1287 #ifdef CONFIG_NEED_DMA_MAP_STATE 1288 skb->dev = q->adap->port[0]; 1289 skb->destructor = deferred_unmap_destructor; 1290 #endif 1291 last_desc = q->q.pidx + ndesc - 1; 1292 if (last_desc >= q->q.size) 1293 last_desc -= q->q.size; 1294 q->q.sdesc[last_desc].skb = skb; 1295 } 1296 1297 txq_advance(&q->q, ndesc); 1298 written += ndesc; 1299 if (unlikely(written > 32)) { 1300 ring_tx_db(q->adap, &q->q, written); 1301 written = 0; 1302 } 1303 1304 spin_lock(&q->sendq.lock); 1305 __skb_unlink(skb, &q->sendq); 1306 if (is_ofld_imm(skb)) 1307 kfree_skb(skb); 1308 } 1309 if (likely(written)) 1310 ring_tx_db(q->adap, &q->q, written); 1311 } 1312 1313 /** 1314 * ofld_xmit - send a packet through an offload queue 1315 * @q: the Tx offload queue 1316 * @skb: the packet 1317 * 1318 * Send an offload packet through an SGE offload queue. 1319 */ 1320 static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb) 1321 { 1322 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */ 1323 spin_lock(&q->sendq.lock); 1324 __skb_queue_tail(&q->sendq, skb); 1325 if (q->sendq.qlen == 1) 1326 service_ofldq(q); 1327 spin_unlock(&q->sendq.lock); 1328 return NET_XMIT_SUCCESS; 1329 } 1330 1331 /** 1332 * restart_ofldq - restart a suspended offload queue 1333 * @data: the offload queue to restart 1334 * 1335 * Resumes transmission on a suspended Tx offload queue. 1336 */ 1337 static void restart_ofldq(unsigned long data) 1338 { 1339 struct sge_ofld_txq *q = (struct sge_ofld_txq *)data; 1340 1341 spin_lock(&q->sendq.lock); 1342 q->full = 0; /* the queue actually is completely empty now */ 1343 service_ofldq(q); 1344 spin_unlock(&q->sendq.lock); 1345 } 1346 1347 /** 1348 * skb_txq - return the Tx queue an offload packet should use 1349 * @skb: the packet 1350 * 1351 * Returns the Tx queue an offload packet should use as indicated by bits 1352 * 1-15 in the packet's queue_mapping. 1353 */ 1354 static inline unsigned int skb_txq(const struct sk_buff *skb) 1355 { 1356 return skb->queue_mapping >> 1; 1357 } 1358 1359 /** 1360 * is_ctrl_pkt - return whether an offload packet is a control packet 1361 * @skb: the packet 1362 * 1363 * Returns whether an offload packet should use an OFLD or a CTRL 1364 * Tx queue as indicated by bit 0 in the packet's queue_mapping. 1365 */ 1366 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb) 1367 { 1368 return skb->queue_mapping & 1; 1369 } 1370 1371 static inline int ofld_send(struct adapter *adap, struct sk_buff *skb) 1372 { 1373 unsigned int idx = skb_txq(skb); 1374 1375 if (unlikely(is_ctrl_pkt(skb))) 1376 return ctrl_xmit(&adap->sge.ctrlq[idx], skb); 1377 return ofld_xmit(&adap->sge.ofldtxq[idx], skb); 1378 } 1379 1380 /** 1381 * t4_ofld_send - send an offload packet 1382 * @adap: the adapter 1383 * @skb: the packet 1384 * 1385 * Sends an offload packet. We use the packet queue_mapping to select the 1386 * appropriate Tx queue as follows: bit 0 indicates whether the packet 1387 * should be sent as regular or control, bits 1-15 select the queue. 1388 */ 1389 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb) 1390 { 1391 int ret; 1392 1393 local_bh_disable(); 1394 ret = ofld_send(adap, skb); 1395 local_bh_enable(); 1396 return ret; 1397 } 1398 1399 /** 1400 * cxgb4_ofld_send - send an offload packet 1401 * @dev: the net device 1402 * @skb: the packet 1403 * 1404 * Sends an offload packet. This is an exported version of @t4_ofld_send, 1405 * intended for ULDs. 1406 */ 1407 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb) 1408 { 1409 return t4_ofld_send(netdev2adap(dev), skb); 1410 } 1411 EXPORT_SYMBOL(cxgb4_ofld_send); 1412 1413 static inline void copy_frags(struct sk_buff *skb, 1414 const struct pkt_gl *gl, unsigned int offset) 1415 { 1416 int i; 1417 1418 /* usually there's just one frag */ 1419 __skb_fill_page_desc(skb, 0, gl->frags[0].page, 1420 gl->frags[0].offset + offset, 1421 gl->frags[0].size - offset); 1422 skb_shinfo(skb)->nr_frags = gl->nfrags; 1423 for (i = 1; i < gl->nfrags; i++) 1424 __skb_fill_page_desc(skb, i, gl->frags[i].page, 1425 gl->frags[i].offset, 1426 gl->frags[i].size); 1427 1428 /* get a reference to the last page, we don't own it */ 1429 get_page(gl->frags[gl->nfrags - 1].page); 1430 } 1431 1432 /** 1433 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list 1434 * @gl: the gather list 1435 * @skb_len: size of sk_buff main body if it carries fragments 1436 * @pull_len: amount of data to move to the sk_buff's main body 1437 * 1438 * Builds an sk_buff from the given packet gather list. Returns the 1439 * sk_buff or %NULL if sk_buff allocation failed. 1440 */ 1441 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl, 1442 unsigned int skb_len, unsigned int pull_len) 1443 { 1444 struct sk_buff *skb; 1445 1446 /* 1447 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer 1448 * size, which is expected since buffers are at least PAGE_SIZEd. 1449 * In this case packets up to RX_COPY_THRES have only one fragment. 1450 */ 1451 if (gl->tot_len <= RX_COPY_THRES) { 1452 skb = dev_alloc_skb(gl->tot_len); 1453 if (unlikely(!skb)) 1454 goto out; 1455 __skb_put(skb, gl->tot_len); 1456 skb_copy_to_linear_data(skb, gl->va, gl->tot_len); 1457 } else { 1458 skb = dev_alloc_skb(skb_len); 1459 if (unlikely(!skb)) 1460 goto out; 1461 __skb_put(skb, pull_len); 1462 skb_copy_to_linear_data(skb, gl->va, pull_len); 1463 1464 copy_frags(skb, gl, pull_len); 1465 skb->len = gl->tot_len; 1466 skb->data_len = skb->len - pull_len; 1467 skb->truesize += skb->data_len; 1468 } 1469 out: return skb; 1470 } 1471 EXPORT_SYMBOL(cxgb4_pktgl_to_skb); 1472 1473 /** 1474 * t4_pktgl_free - free a packet gather list 1475 * @gl: the gather list 1476 * 1477 * Releases the pages of a packet gather list. We do not own the last 1478 * page on the list and do not free it. 1479 */ 1480 static void t4_pktgl_free(const struct pkt_gl *gl) 1481 { 1482 int n; 1483 const struct page_frag *p; 1484 1485 for (p = gl->frags, n = gl->nfrags - 1; n--; p++) 1486 put_page(p->page); 1487 } 1488 1489 /* 1490 * Process an MPS trace packet. Give it an unused protocol number so it won't 1491 * be delivered to anyone and send it to the stack for capture. 1492 */ 1493 static noinline int handle_trace_pkt(struct adapter *adap, 1494 const struct pkt_gl *gl) 1495 { 1496 struct sk_buff *skb; 1497 struct cpl_trace_pkt *p; 1498 1499 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN); 1500 if (unlikely(!skb)) { 1501 t4_pktgl_free(gl); 1502 return 0; 1503 } 1504 1505 p = (struct cpl_trace_pkt *)skb->data; 1506 __skb_pull(skb, sizeof(*p)); 1507 skb_reset_mac_header(skb); 1508 skb->protocol = htons(0xffff); 1509 skb->dev = adap->port[0]; 1510 netif_receive_skb(skb); 1511 return 0; 1512 } 1513 1514 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl, 1515 const struct cpl_rx_pkt *pkt) 1516 { 1517 int ret; 1518 struct sk_buff *skb; 1519 1520 skb = napi_get_frags(&rxq->rspq.napi); 1521 if (unlikely(!skb)) { 1522 t4_pktgl_free(gl); 1523 rxq->stats.rx_drops++; 1524 return; 1525 } 1526 1527 copy_frags(skb, gl, RX_PKT_PAD); 1528 skb->len = gl->tot_len - RX_PKT_PAD; 1529 skb->data_len = skb->len; 1530 skb->truesize += skb->data_len; 1531 skb->ip_summed = CHECKSUM_UNNECESSARY; 1532 skb_record_rx_queue(skb, rxq->rspq.idx); 1533 if (rxq->rspq.netdev->features & NETIF_F_RXHASH) 1534 skb->rxhash = (__force u32)pkt->rsshdr.hash_val; 1535 1536 if (unlikely(pkt->vlan_ex)) { 1537 __vlan_hwaccel_put_tag(skb, ntohs(pkt->vlan)); 1538 rxq->stats.vlan_ex++; 1539 } 1540 ret = napi_gro_frags(&rxq->rspq.napi); 1541 if (ret == GRO_HELD) 1542 rxq->stats.lro_pkts++; 1543 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE) 1544 rxq->stats.lro_merged++; 1545 rxq->stats.pkts++; 1546 rxq->stats.rx_cso++; 1547 } 1548 1549 /** 1550 * t4_ethrx_handler - process an ingress ethernet packet 1551 * @q: the response queue that received the packet 1552 * @rsp: the response queue descriptor holding the RX_PKT message 1553 * @si: the gather list of packet fragments 1554 * 1555 * Process an ingress ethernet packet and deliver it to the stack. 1556 */ 1557 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp, 1558 const struct pkt_gl *si) 1559 { 1560 bool csum_ok; 1561 struct sk_buff *skb; 1562 const struct cpl_rx_pkt *pkt; 1563 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 1564 1565 if (unlikely(*(u8 *)rsp == CPL_TRACE_PKT)) 1566 return handle_trace_pkt(q->adap, si); 1567 1568 pkt = (const struct cpl_rx_pkt *)rsp; 1569 csum_ok = pkt->csum_calc && !pkt->err_vec; 1570 if ((pkt->l2info & htonl(RXF_TCP)) && 1571 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) { 1572 do_gro(rxq, si, pkt); 1573 return 0; 1574 } 1575 1576 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN); 1577 if (unlikely(!skb)) { 1578 t4_pktgl_free(si); 1579 rxq->stats.rx_drops++; 1580 return 0; 1581 } 1582 1583 __skb_pull(skb, RX_PKT_PAD); /* remove ethernet header padding */ 1584 skb->protocol = eth_type_trans(skb, q->netdev); 1585 skb_record_rx_queue(skb, q->idx); 1586 if (skb->dev->features & NETIF_F_RXHASH) 1587 skb->rxhash = (__force u32)pkt->rsshdr.hash_val; 1588 1589 rxq->stats.pkts++; 1590 1591 if (csum_ok && (q->netdev->features & NETIF_F_RXCSUM) && 1592 (pkt->l2info & htonl(RXF_UDP | RXF_TCP))) { 1593 if (!pkt->ip_frag) { 1594 skb->ip_summed = CHECKSUM_UNNECESSARY; 1595 rxq->stats.rx_cso++; 1596 } else if (pkt->l2info & htonl(RXF_IP)) { 1597 __sum16 c = (__force __sum16)pkt->csum; 1598 skb->csum = csum_unfold(c); 1599 skb->ip_summed = CHECKSUM_COMPLETE; 1600 rxq->stats.rx_cso++; 1601 } 1602 } else 1603 skb_checksum_none_assert(skb); 1604 1605 if (unlikely(pkt->vlan_ex)) { 1606 __vlan_hwaccel_put_tag(skb, ntohs(pkt->vlan)); 1607 rxq->stats.vlan_ex++; 1608 } 1609 netif_receive_skb(skb); 1610 return 0; 1611 } 1612 1613 /** 1614 * restore_rx_bufs - put back a packet's Rx buffers 1615 * @si: the packet gather list 1616 * @q: the SGE free list 1617 * @frags: number of FL buffers to restore 1618 * 1619 * Puts back on an FL the Rx buffers associated with @si. The buffers 1620 * have already been unmapped and are left unmapped, we mark them so to 1621 * prevent further unmapping attempts. 1622 * 1623 * This function undoes a series of @unmap_rx_buf calls when we find out 1624 * that the current packet can't be processed right away afterall and we 1625 * need to come back to it later. This is a very rare event and there's 1626 * no effort to make this particularly efficient. 1627 */ 1628 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q, 1629 int frags) 1630 { 1631 struct rx_sw_desc *d; 1632 1633 while (frags--) { 1634 if (q->cidx == 0) 1635 q->cidx = q->size - 1; 1636 else 1637 q->cidx--; 1638 d = &q->sdesc[q->cidx]; 1639 d->page = si->frags[frags].page; 1640 d->dma_addr |= RX_UNMAPPED_BUF; 1641 q->avail++; 1642 } 1643 } 1644 1645 /** 1646 * is_new_response - check if a response is newly written 1647 * @r: the response descriptor 1648 * @q: the response queue 1649 * 1650 * Returns true if a response descriptor contains a yet unprocessed 1651 * response. 1652 */ 1653 static inline bool is_new_response(const struct rsp_ctrl *r, 1654 const struct sge_rspq *q) 1655 { 1656 return RSPD_GEN(r->type_gen) == q->gen; 1657 } 1658 1659 /** 1660 * rspq_next - advance to the next entry in a response queue 1661 * @q: the queue 1662 * 1663 * Updates the state of a response queue to advance it to the next entry. 1664 */ 1665 static inline void rspq_next(struct sge_rspq *q) 1666 { 1667 q->cur_desc = (void *)q->cur_desc + q->iqe_len; 1668 if (unlikely(++q->cidx == q->size)) { 1669 q->cidx = 0; 1670 q->gen ^= 1; 1671 q->cur_desc = q->desc; 1672 } 1673 } 1674 1675 /** 1676 * process_responses - process responses from an SGE response queue 1677 * @q: the ingress queue to process 1678 * @budget: how many responses can be processed in this round 1679 * 1680 * Process responses from an SGE response queue up to the supplied budget. 1681 * Responses include received packets as well as control messages from FW 1682 * or HW. 1683 * 1684 * Additionally choose the interrupt holdoff time for the next interrupt 1685 * on this queue. If the system is under memory shortage use a fairly 1686 * long delay to help recovery. 1687 */ 1688 static int process_responses(struct sge_rspq *q, int budget) 1689 { 1690 int ret, rsp_type; 1691 int budget_left = budget; 1692 const struct rsp_ctrl *rc; 1693 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 1694 1695 while (likely(budget_left)) { 1696 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 1697 if (!is_new_response(rc, q)) 1698 break; 1699 1700 rmb(); 1701 rsp_type = RSPD_TYPE(rc->type_gen); 1702 if (likely(rsp_type == RSP_TYPE_FLBUF)) { 1703 struct page_frag *fp; 1704 struct pkt_gl si; 1705 const struct rx_sw_desc *rsd; 1706 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags; 1707 1708 if (len & RSPD_NEWBUF) { 1709 if (likely(q->offset > 0)) { 1710 free_rx_bufs(q->adap, &rxq->fl, 1); 1711 q->offset = 0; 1712 } 1713 len = RSPD_LEN(len); 1714 } 1715 si.tot_len = len; 1716 1717 /* gather packet fragments */ 1718 for (frags = 0, fp = si.frags; ; frags++, fp++) { 1719 rsd = &rxq->fl.sdesc[rxq->fl.cidx]; 1720 bufsz = get_buf_size(rsd); 1721 fp->page = rsd->page; 1722 fp->offset = q->offset; 1723 fp->size = min(bufsz, len); 1724 len -= fp->size; 1725 if (!len) 1726 break; 1727 unmap_rx_buf(q->adap, &rxq->fl); 1728 } 1729 1730 /* 1731 * Last buffer remains mapped so explicitly make it 1732 * coherent for CPU access. 1733 */ 1734 dma_sync_single_for_cpu(q->adap->pdev_dev, 1735 get_buf_addr(rsd), 1736 fp->size, DMA_FROM_DEVICE); 1737 1738 si.va = page_address(si.frags[0].page) + 1739 si.frags[0].offset; 1740 prefetch(si.va); 1741 1742 si.nfrags = frags + 1; 1743 ret = q->handler(q, q->cur_desc, &si); 1744 if (likely(ret == 0)) 1745 q->offset += ALIGN(fp->size, FL_ALIGN); 1746 else 1747 restore_rx_bufs(&si, &rxq->fl, frags); 1748 } else if (likely(rsp_type == RSP_TYPE_CPL)) { 1749 ret = q->handler(q, q->cur_desc, NULL); 1750 } else { 1751 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN); 1752 } 1753 1754 if (unlikely(ret)) { 1755 /* couldn't process descriptor, back off for recovery */ 1756 q->next_intr_params = QINTR_TIMER_IDX(NOMEM_TMR_IDX); 1757 break; 1758 } 1759 1760 rspq_next(q); 1761 budget_left--; 1762 } 1763 1764 if (q->offset >= 0 && rxq->fl.size - rxq->fl.avail >= 16) 1765 __refill_fl(q->adap, &rxq->fl); 1766 return budget - budget_left; 1767 } 1768 1769 /** 1770 * napi_rx_handler - the NAPI handler for Rx processing 1771 * @napi: the napi instance 1772 * @budget: how many packets we can process in this round 1773 * 1774 * Handler for new data events when using NAPI. This does not need any 1775 * locking or protection from interrupts as data interrupts are off at 1776 * this point and other adapter interrupts do not interfere (the latter 1777 * in not a concern at all with MSI-X as non-data interrupts then have 1778 * a separate handler). 1779 */ 1780 static int napi_rx_handler(struct napi_struct *napi, int budget) 1781 { 1782 unsigned int params; 1783 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi); 1784 int work_done = process_responses(q, budget); 1785 1786 if (likely(work_done < budget)) { 1787 napi_complete(napi); 1788 params = q->next_intr_params; 1789 q->next_intr_params = q->intr_params; 1790 } else 1791 params = QINTR_TIMER_IDX(7); 1792 1793 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS), CIDXINC(work_done) | 1794 INGRESSQID((u32)q->cntxt_id) | SEINTARM(params)); 1795 return work_done; 1796 } 1797 1798 /* 1799 * The MSI-X interrupt handler for an SGE response queue. 1800 */ 1801 irqreturn_t t4_sge_intr_msix(int irq, void *cookie) 1802 { 1803 struct sge_rspq *q = cookie; 1804 1805 napi_schedule(&q->napi); 1806 return IRQ_HANDLED; 1807 } 1808 1809 /* 1810 * Process the indirect interrupt entries in the interrupt queue and kick off 1811 * NAPI for each queue that has generated an entry. 1812 */ 1813 static unsigned int process_intrq(struct adapter *adap) 1814 { 1815 unsigned int credits; 1816 const struct rsp_ctrl *rc; 1817 struct sge_rspq *q = &adap->sge.intrq; 1818 1819 spin_lock(&adap->sge.intrq_lock); 1820 for (credits = 0; ; credits++) { 1821 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 1822 if (!is_new_response(rc, q)) 1823 break; 1824 1825 rmb(); 1826 if (RSPD_TYPE(rc->type_gen) == RSP_TYPE_INTR) { 1827 unsigned int qid = ntohl(rc->pldbuflen_qid); 1828 1829 qid -= adap->sge.ingr_start; 1830 napi_schedule(&adap->sge.ingr_map[qid]->napi); 1831 } 1832 1833 rspq_next(q); 1834 } 1835 1836 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS), CIDXINC(credits) | 1837 INGRESSQID(q->cntxt_id) | SEINTARM(q->intr_params)); 1838 spin_unlock(&adap->sge.intrq_lock); 1839 return credits; 1840 } 1841 1842 /* 1843 * The MSI interrupt handler, which handles data events from SGE response queues 1844 * as well as error and other async events as they all use the same MSI vector. 1845 */ 1846 static irqreturn_t t4_intr_msi(int irq, void *cookie) 1847 { 1848 struct adapter *adap = cookie; 1849 1850 t4_slow_intr_handler(adap); 1851 process_intrq(adap); 1852 return IRQ_HANDLED; 1853 } 1854 1855 /* 1856 * Interrupt handler for legacy INTx interrupts. 1857 * Handles data events from SGE response queues as well as error and other 1858 * async events as they all use the same interrupt line. 1859 */ 1860 static irqreturn_t t4_intr_intx(int irq, void *cookie) 1861 { 1862 struct adapter *adap = cookie; 1863 1864 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI), 0); 1865 if (t4_slow_intr_handler(adap) | process_intrq(adap)) 1866 return IRQ_HANDLED; 1867 return IRQ_NONE; /* probably shared interrupt */ 1868 } 1869 1870 /** 1871 * t4_intr_handler - select the top-level interrupt handler 1872 * @adap: the adapter 1873 * 1874 * Selects the top-level interrupt handler based on the type of interrupts 1875 * (MSI-X, MSI, or INTx). 1876 */ 1877 irq_handler_t t4_intr_handler(struct adapter *adap) 1878 { 1879 if (adap->flags & USING_MSIX) 1880 return t4_sge_intr_msix; 1881 if (adap->flags & USING_MSI) 1882 return t4_intr_msi; 1883 return t4_intr_intx; 1884 } 1885 1886 static void sge_rx_timer_cb(unsigned long data) 1887 { 1888 unsigned long m; 1889 unsigned int i, cnt[2]; 1890 struct adapter *adap = (struct adapter *)data; 1891 struct sge *s = &adap->sge; 1892 1893 for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) 1894 for (m = s->starving_fl[i]; m; m &= m - 1) { 1895 struct sge_eth_rxq *rxq; 1896 unsigned int id = __ffs(m) + i * BITS_PER_LONG; 1897 struct sge_fl *fl = s->egr_map[id]; 1898 1899 clear_bit(id, s->starving_fl); 1900 smp_mb__after_clear_bit(); 1901 1902 if (fl_starving(fl)) { 1903 rxq = container_of(fl, struct sge_eth_rxq, fl); 1904 if (napi_reschedule(&rxq->rspq.napi)) 1905 fl->starving++; 1906 else 1907 set_bit(id, s->starving_fl); 1908 } 1909 } 1910 1911 t4_write_reg(adap, SGE_DEBUG_INDEX, 13); 1912 cnt[0] = t4_read_reg(adap, SGE_DEBUG_DATA_HIGH); 1913 cnt[1] = t4_read_reg(adap, SGE_DEBUG_DATA_LOW); 1914 1915 for (i = 0; i < 2; i++) 1916 if (cnt[i] >= s->starve_thres) { 1917 if (s->idma_state[i] || cnt[i] == 0xffffffff) 1918 continue; 1919 s->idma_state[i] = 1; 1920 t4_write_reg(adap, SGE_DEBUG_INDEX, 11); 1921 m = t4_read_reg(adap, SGE_DEBUG_DATA_LOW) >> (i * 16); 1922 dev_warn(adap->pdev_dev, 1923 "SGE idma%u starvation detected for " 1924 "queue %lu\n", i, m & 0xffff); 1925 } else if (s->idma_state[i]) 1926 s->idma_state[i] = 0; 1927 1928 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD); 1929 } 1930 1931 static void sge_tx_timer_cb(unsigned long data) 1932 { 1933 unsigned long m; 1934 unsigned int i, budget; 1935 struct adapter *adap = (struct adapter *)data; 1936 struct sge *s = &adap->sge; 1937 1938 for (i = 0; i < ARRAY_SIZE(s->txq_maperr); i++) 1939 for (m = s->txq_maperr[i]; m; m &= m - 1) { 1940 unsigned long id = __ffs(m) + i * BITS_PER_LONG; 1941 struct sge_ofld_txq *txq = s->egr_map[id]; 1942 1943 clear_bit(id, s->txq_maperr); 1944 tasklet_schedule(&txq->qresume_tsk); 1945 } 1946 1947 budget = MAX_TIMER_TX_RECLAIM; 1948 i = s->ethtxq_rover; 1949 do { 1950 struct sge_eth_txq *q = &s->ethtxq[i]; 1951 1952 if (q->q.in_use && 1953 time_after_eq(jiffies, q->txq->trans_start + HZ / 100) && 1954 __netif_tx_trylock(q->txq)) { 1955 int avail = reclaimable(&q->q); 1956 1957 if (avail) { 1958 if (avail > budget) 1959 avail = budget; 1960 1961 free_tx_desc(adap, &q->q, avail, true); 1962 q->q.in_use -= avail; 1963 budget -= avail; 1964 } 1965 __netif_tx_unlock(q->txq); 1966 } 1967 1968 if (++i >= s->ethqsets) 1969 i = 0; 1970 } while (budget && i != s->ethtxq_rover); 1971 s->ethtxq_rover = i; 1972 mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2)); 1973 } 1974 1975 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq, 1976 struct net_device *dev, int intr_idx, 1977 struct sge_fl *fl, rspq_handler_t hnd) 1978 { 1979 int ret, flsz = 0; 1980 struct fw_iq_cmd c; 1981 struct port_info *pi = netdev_priv(dev); 1982 1983 /* Size needs to be multiple of 16, including status entry. */ 1984 iq->size = roundup(iq->size, 16); 1985 1986 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0, 1987 &iq->phys_addr, NULL, 0, NUMA_NO_NODE); 1988 if (!iq->desc) 1989 return -ENOMEM; 1990 1991 memset(&c, 0, sizeof(c)); 1992 c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST | 1993 FW_CMD_WRITE | FW_CMD_EXEC | 1994 FW_IQ_CMD_PFN(adap->fn) | FW_IQ_CMD_VFN(0)); 1995 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC | FW_IQ_CMD_IQSTART(1) | 1996 FW_LEN16(c)); 1997 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) | 1998 FW_IQ_CMD_IQASYNCH(fwevtq) | FW_IQ_CMD_VIID(pi->viid) | 1999 FW_IQ_CMD_IQANDST(intr_idx < 0) | FW_IQ_CMD_IQANUD(1) | 2000 FW_IQ_CMD_IQANDSTINDEX(intr_idx >= 0 ? intr_idx : 2001 -intr_idx - 1)); 2002 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH(pi->tx_chan) | 2003 FW_IQ_CMD_IQGTSMODE | 2004 FW_IQ_CMD_IQINTCNTTHRESH(iq->pktcnt_idx) | 2005 FW_IQ_CMD_IQESIZE(ilog2(iq->iqe_len) - 4)); 2006 c.iqsize = htons(iq->size); 2007 c.iqaddr = cpu_to_be64(iq->phys_addr); 2008 2009 if (fl) { 2010 fl->size = roundup(fl->size, 8); 2011 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64), 2012 sizeof(struct rx_sw_desc), &fl->addr, 2013 &fl->sdesc, STAT_LEN, NUMA_NO_NODE); 2014 if (!fl->desc) 2015 goto fl_nomem; 2016 2017 flsz = fl->size / 8 + STAT_LEN / sizeof(struct tx_desc); 2018 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_FL0PACKEN | 2019 FW_IQ_CMD_FL0FETCHRO(1) | 2020 FW_IQ_CMD_FL0DATARO(1) | 2021 FW_IQ_CMD_FL0PADEN); 2022 c.fl0dcaen_to_fl0cidxfthresh = htons(FW_IQ_CMD_FL0FBMIN(2) | 2023 FW_IQ_CMD_FL0FBMAX(3)); 2024 c.fl0size = htons(flsz); 2025 c.fl0addr = cpu_to_be64(fl->addr); 2026 } 2027 2028 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c); 2029 if (ret) 2030 goto err; 2031 2032 netif_napi_add(dev, &iq->napi, napi_rx_handler, 64); 2033 iq->cur_desc = iq->desc; 2034 iq->cidx = 0; 2035 iq->gen = 1; 2036 iq->next_intr_params = iq->intr_params; 2037 iq->cntxt_id = ntohs(c.iqid); 2038 iq->abs_id = ntohs(c.physiqid); 2039 iq->size--; /* subtract status entry */ 2040 iq->adap = adap; 2041 iq->netdev = dev; 2042 iq->handler = hnd; 2043 2044 /* set offset to -1 to distinguish ingress queues without FL */ 2045 iq->offset = fl ? 0 : -1; 2046 2047 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq; 2048 2049 if (fl) { 2050 fl->cntxt_id = ntohs(c.fl0id); 2051 fl->avail = fl->pend_cred = 0; 2052 fl->pidx = fl->cidx = 0; 2053 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0; 2054 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl; 2055 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL); 2056 } 2057 return 0; 2058 2059 fl_nomem: 2060 ret = -ENOMEM; 2061 err: 2062 if (iq->desc) { 2063 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len, 2064 iq->desc, iq->phys_addr); 2065 iq->desc = NULL; 2066 } 2067 if (fl && fl->desc) { 2068 kfree(fl->sdesc); 2069 fl->sdesc = NULL; 2070 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc), 2071 fl->desc, fl->addr); 2072 fl->desc = NULL; 2073 } 2074 return ret; 2075 } 2076 2077 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id) 2078 { 2079 q->in_use = 0; 2080 q->cidx = q->pidx = 0; 2081 q->stops = q->restarts = 0; 2082 q->stat = (void *)&q->desc[q->size]; 2083 q->cntxt_id = id; 2084 adap->sge.egr_map[id - adap->sge.egr_start] = q; 2085 } 2086 2087 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq, 2088 struct net_device *dev, struct netdev_queue *netdevq, 2089 unsigned int iqid) 2090 { 2091 int ret, nentries; 2092 struct fw_eq_eth_cmd c; 2093 struct port_info *pi = netdev_priv(dev); 2094 2095 /* Add status entries */ 2096 nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc); 2097 2098 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, 2099 sizeof(struct tx_desc), sizeof(struct tx_sw_desc), 2100 &txq->q.phys_addr, &txq->q.sdesc, STAT_LEN, 2101 netdev_queue_numa_node_read(netdevq)); 2102 if (!txq->q.desc) 2103 return -ENOMEM; 2104 2105 memset(&c, 0, sizeof(c)); 2106 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST | 2107 FW_CMD_WRITE | FW_CMD_EXEC | 2108 FW_EQ_ETH_CMD_PFN(adap->fn) | FW_EQ_ETH_CMD_VFN(0)); 2109 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC | 2110 FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c)); 2111 c.viid_pkd = htonl(FW_EQ_ETH_CMD_VIID(pi->viid)); 2112 c.fetchszm_to_iqid = htonl(FW_EQ_ETH_CMD_HOSTFCMODE(2) | 2113 FW_EQ_ETH_CMD_PCIECHN(pi->tx_chan) | 2114 FW_EQ_ETH_CMD_FETCHRO(1) | 2115 FW_EQ_ETH_CMD_IQID(iqid)); 2116 c.dcaen_to_eqsize = htonl(FW_EQ_ETH_CMD_FBMIN(2) | 2117 FW_EQ_ETH_CMD_FBMAX(3) | 2118 FW_EQ_ETH_CMD_CIDXFTHRESH(5) | 2119 FW_EQ_ETH_CMD_EQSIZE(nentries)); 2120 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 2121 2122 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c); 2123 if (ret) { 2124 kfree(txq->q.sdesc); 2125 txq->q.sdesc = NULL; 2126 dma_free_coherent(adap->pdev_dev, 2127 nentries * sizeof(struct tx_desc), 2128 txq->q.desc, txq->q.phys_addr); 2129 txq->q.desc = NULL; 2130 return ret; 2131 } 2132 2133 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_GET(ntohl(c.eqid_pkd))); 2134 txq->txq = netdevq; 2135 txq->tso = txq->tx_cso = txq->vlan_ins = 0; 2136 txq->mapping_err = 0; 2137 return 0; 2138 } 2139 2140 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq, 2141 struct net_device *dev, unsigned int iqid, 2142 unsigned int cmplqid) 2143 { 2144 int ret, nentries; 2145 struct fw_eq_ctrl_cmd c; 2146 struct port_info *pi = netdev_priv(dev); 2147 2148 /* Add status entries */ 2149 nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc); 2150 2151 txq->q.desc = alloc_ring(adap->pdev_dev, nentries, 2152 sizeof(struct tx_desc), 0, &txq->q.phys_addr, 2153 NULL, 0, NUMA_NO_NODE); 2154 if (!txq->q.desc) 2155 return -ENOMEM; 2156 2157 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST | 2158 FW_CMD_WRITE | FW_CMD_EXEC | 2159 FW_EQ_CTRL_CMD_PFN(adap->fn) | 2160 FW_EQ_CTRL_CMD_VFN(0)); 2161 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC | 2162 FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c)); 2163 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID(cmplqid)); 2164 c.physeqid_pkd = htonl(0); 2165 c.fetchszm_to_iqid = htonl(FW_EQ_CTRL_CMD_HOSTFCMODE(2) | 2166 FW_EQ_CTRL_CMD_PCIECHN(pi->tx_chan) | 2167 FW_EQ_CTRL_CMD_FETCHRO | 2168 FW_EQ_CTRL_CMD_IQID(iqid)); 2169 c.dcaen_to_eqsize = htonl(FW_EQ_CTRL_CMD_FBMIN(2) | 2170 FW_EQ_CTRL_CMD_FBMAX(3) | 2171 FW_EQ_CTRL_CMD_CIDXFTHRESH(5) | 2172 FW_EQ_CTRL_CMD_EQSIZE(nentries)); 2173 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 2174 2175 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c); 2176 if (ret) { 2177 dma_free_coherent(adap->pdev_dev, 2178 nentries * sizeof(struct tx_desc), 2179 txq->q.desc, txq->q.phys_addr); 2180 txq->q.desc = NULL; 2181 return ret; 2182 } 2183 2184 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_GET(ntohl(c.cmpliqid_eqid))); 2185 txq->adap = adap; 2186 skb_queue_head_init(&txq->sendq); 2187 tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq); 2188 txq->full = 0; 2189 return 0; 2190 } 2191 2192 int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq, 2193 struct net_device *dev, unsigned int iqid) 2194 { 2195 int ret, nentries; 2196 struct fw_eq_ofld_cmd c; 2197 struct port_info *pi = netdev_priv(dev); 2198 2199 /* Add status entries */ 2200 nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc); 2201 2202 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, 2203 sizeof(struct tx_desc), sizeof(struct tx_sw_desc), 2204 &txq->q.phys_addr, &txq->q.sdesc, STAT_LEN, 2205 NUMA_NO_NODE); 2206 if (!txq->q.desc) 2207 return -ENOMEM; 2208 2209 memset(&c, 0, sizeof(c)); 2210 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST | 2211 FW_CMD_WRITE | FW_CMD_EXEC | 2212 FW_EQ_OFLD_CMD_PFN(adap->fn) | 2213 FW_EQ_OFLD_CMD_VFN(0)); 2214 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC | 2215 FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c)); 2216 c.fetchszm_to_iqid = htonl(FW_EQ_OFLD_CMD_HOSTFCMODE(2) | 2217 FW_EQ_OFLD_CMD_PCIECHN(pi->tx_chan) | 2218 FW_EQ_OFLD_CMD_FETCHRO(1) | 2219 FW_EQ_OFLD_CMD_IQID(iqid)); 2220 c.dcaen_to_eqsize = htonl(FW_EQ_OFLD_CMD_FBMIN(2) | 2221 FW_EQ_OFLD_CMD_FBMAX(3) | 2222 FW_EQ_OFLD_CMD_CIDXFTHRESH(5) | 2223 FW_EQ_OFLD_CMD_EQSIZE(nentries)); 2224 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 2225 2226 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c); 2227 if (ret) { 2228 kfree(txq->q.sdesc); 2229 txq->q.sdesc = NULL; 2230 dma_free_coherent(adap->pdev_dev, 2231 nentries * sizeof(struct tx_desc), 2232 txq->q.desc, txq->q.phys_addr); 2233 txq->q.desc = NULL; 2234 return ret; 2235 } 2236 2237 init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_GET(ntohl(c.eqid_pkd))); 2238 txq->adap = adap; 2239 skb_queue_head_init(&txq->sendq); 2240 tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq); 2241 txq->full = 0; 2242 txq->mapping_err = 0; 2243 return 0; 2244 } 2245 2246 static void free_txq(struct adapter *adap, struct sge_txq *q) 2247 { 2248 dma_free_coherent(adap->pdev_dev, 2249 q->size * sizeof(struct tx_desc) + STAT_LEN, 2250 q->desc, q->phys_addr); 2251 q->cntxt_id = 0; 2252 q->sdesc = NULL; 2253 q->desc = NULL; 2254 } 2255 2256 static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq, 2257 struct sge_fl *fl) 2258 { 2259 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff; 2260 2261 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL; 2262 t4_iq_free(adap, adap->fn, adap->fn, 0, FW_IQ_TYPE_FL_INT_CAP, 2263 rq->cntxt_id, fl_id, 0xffff); 2264 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len, 2265 rq->desc, rq->phys_addr); 2266 netif_napi_del(&rq->napi); 2267 rq->netdev = NULL; 2268 rq->cntxt_id = rq->abs_id = 0; 2269 rq->desc = NULL; 2270 2271 if (fl) { 2272 free_rx_bufs(adap, fl, fl->avail); 2273 dma_free_coherent(adap->pdev_dev, fl->size * 8 + STAT_LEN, 2274 fl->desc, fl->addr); 2275 kfree(fl->sdesc); 2276 fl->sdesc = NULL; 2277 fl->cntxt_id = 0; 2278 fl->desc = NULL; 2279 } 2280 } 2281 2282 /** 2283 * t4_free_sge_resources - free SGE resources 2284 * @adap: the adapter 2285 * 2286 * Frees resources used by the SGE queue sets. 2287 */ 2288 void t4_free_sge_resources(struct adapter *adap) 2289 { 2290 int i; 2291 struct sge_eth_rxq *eq = adap->sge.ethrxq; 2292 struct sge_eth_txq *etq = adap->sge.ethtxq; 2293 struct sge_ofld_rxq *oq = adap->sge.ofldrxq; 2294 2295 /* clean up Ethernet Tx/Rx queues */ 2296 for (i = 0; i < adap->sge.ethqsets; i++, eq++, etq++) { 2297 if (eq->rspq.desc) 2298 free_rspq_fl(adap, &eq->rspq, &eq->fl); 2299 if (etq->q.desc) { 2300 t4_eth_eq_free(adap, adap->fn, adap->fn, 0, 2301 etq->q.cntxt_id); 2302 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 2303 kfree(etq->q.sdesc); 2304 free_txq(adap, &etq->q); 2305 } 2306 } 2307 2308 /* clean up RDMA and iSCSI Rx queues */ 2309 for (i = 0; i < adap->sge.ofldqsets; i++, oq++) { 2310 if (oq->rspq.desc) 2311 free_rspq_fl(adap, &oq->rspq, &oq->fl); 2312 } 2313 for (i = 0, oq = adap->sge.rdmarxq; i < adap->sge.rdmaqs; i++, oq++) { 2314 if (oq->rspq.desc) 2315 free_rspq_fl(adap, &oq->rspq, &oq->fl); 2316 } 2317 2318 /* clean up offload Tx queues */ 2319 for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) { 2320 struct sge_ofld_txq *q = &adap->sge.ofldtxq[i]; 2321 2322 if (q->q.desc) { 2323 tasklet_kill(&q->qresume_tsk); 2324 t4_ofld_eq_free(adap, adap->fn, adap->fn, 0, 2325 q->q.cntxt_id); 2326 free_tx_desc(adap, &q->q, q->q.in_use, false); 2327 kfree(q->q.sdesc); 2328 __skb_queue_purge(&q->sendq); 2329 free_txq(adap, &q->q); 2330 } 2331 } 2332 2333 /* clean up control Tx queues */ 2334 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) { 2335 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i]; 2336 2337 if (cq->q.desc) { 2338 tasklet_kill(&cq->qresume_tsk); 2339 t4_ctrl_eq_free(adap, adap->fn, adap->fn, 0, 2340 cq->q.cntxt_id); 2341 __skb_queue_purge(&cq->sendq); 2342 free_txq(adap, &cq->q); 2343 } 2344 } 2345 2346 if (adap->sge.fw_evtq.desc) 2347 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL); 2348 2349 if (adap->sge.intrq.desc) 2350 free_rspq_fl(adap, &adap->sge.intrq, NULL); 2351 2352 /* clear the reverse egress queue map */ 2353 memset(adap->sge.egr_map, 0, sizeof(adap->sge.egr_map)); 2354 } 2355 2356 void t4_sge_start(struct adapter *adap) 2357 { 2358 adap->sge.ethtxq_rover = 0; 2359 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD); 2360 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD); 2361 } 2362 2363 /** 2364 * t4_sge_stop - disable SGE operation 2365 * @adap: the adapter 2366 * 2367 * Stop tasklets and timers associated with the DMA engine. Note that 2368 * this is effective only if measures have been taken to disable any HW 2369 * events that may restart them. 2370 */ 2371 void t4_sge_stop(struct adapter *adap) 2372 { 2373 int i; 2374 struct sge *s = &adap->sge; 2375 2376 if (in_interrupt()) /* actions below require waiting */ 2377 return; 2378 2379 if (s->rx_timer.function) 2380 del_timer_sync(&s->rx_timer); 2381 if (s->tx_timer.function) 2382 del_timer_sync(&s->tx_timer); 2383 2384 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) { 2385 struct sge_ofld_txq *q = &s->ofldtxq[i]; 2386 2387 if (q->q.desc) 2388 tasklet_kill(&q->qresume_tsk); 2389 } 2390 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) { 2391 struct sge_ctrl_txq *cq = &s->ctrlq[i]; 2392 2393 if (cq->q.desc) 2394 tasklet_kill(&cq->qresume_tsk); 2395 } 2396 } 2397 2398 /** 2399 * t4_sge_init - initialize SGE 2400 * @adap: the adapter 2401 * 2402 * Performs SGE initialization needed every time after a chip reset. 2403 * We do not initialize any of the queues here, instead the driver 2404 * top-level must request them individually. 2405 */ 2406 void t4_sge_init(struct adapter *adap) 2407 { 2408 unsigned int i, v; 2409 struct sge *s = &adap->sge; 2410 unsigned int fl_align_log = ilog2(FL_ALIGN); 2411 2412 t4_set_reg_field(adap, SGE_CONTROL, PKTSHIFT_MASK | 2413 INGPADBOUNDARY_MASK | EGRSTATUSPAGESIZE, 2414 INGPADBOUNDARY(fl_align_log - 5) | PKTSHIFT(2) | 2415 RXPKTCPLMODE | 2416 (STAT_LEN == 128 ? EGRSTATUSPAGESIZE : 0)); 2417 2418 for (i = v = 0; i < 32; i += 4) 2419 v |= (PAGE_SHIFT - 10) << i; 2420 t4_write_reg(adap, SGE_HOST_PAGE_SIZE, v); 2421 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0, PAGE_SIZE); 2422 #if FL_PG_ORDER > 0 2423 t4_write_reg(adap, SGE_FL_BUFFER_SIZE1, PAGE_SIZE << FL_PG_ORDER); 2424 #endif 2425 t4_write_reg(adap, SGE_INGRESS_RX_THRESHOLD, 2426 THRESHOLD_0(s->counter_val[0]) | 2427 THRESHOLD_1(s->counter_val[1]) | 2428 THRESHOLD_2(s->counter_val[2]) | 2429 THRESHOLD_3(s->counter_val[3])); 2430 t4_write_reg(adap, SGE_TIMER_VALUE_0_AND_1, 2431 TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[0])) | 2432 TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[1]))); 2433 t4_write_reg(adap, SGE_TIMER_VALUE_2_AND_3, 2434 TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[2])) | 2435 TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[3]))); 2436 t4_write_reg(adap, SGE_TIMER_VALUE_4_AND_5, 2437 TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[4])) | 2438 TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[5]))); 2439 setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap); 2440 setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap); 2441 s->starve_thres = core_ticks_per_usec(adap) * 1000000; /* 1 s */ 2442 s->idma_state[0] = s->idma_state[1] = 0; 2443 spin_lock_init(&s->intrq_lock); 2444 } 2445