xref: /linux/drivers/net/ethernet/chelsio/cxgb4/sge.c (revision be969b7cfbcfa8a835a528f1dc467f0975c6d883)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/if_vlan.h>
39 #include <linux/ip.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/jiffies.h>
42 #include <linux/prefetch.h>
43 #include <linux/export.h>
44 #include <net/xfrm.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/busy_poll.h>
48 #ifdef CONFIG_CHELSIO_T4_FCOE
49 #include <scsi/fc/fc_fcoe.h>
50 #endif /* CONFIG_CHELSIO_T4_FCOE */
51 #include "cxgb4.h"
52 #include "t4_regs.h"
53 #include "t4_values.h"
54 #include "t4_msg.h"
55 #include "t4fw_api.h"
56 #include "cxgb4_ptp.h"
57 #include "cxgb4_uld.h"
58 #include "cxgb4_tc_mqprio.h"
59 #include "sched.h"
60 
61 /*
62  * Rx buffer size.  We use largish buffers if possible but settle for single
63  * pages under memory shortage.
64  */
65 #if PAGE_SHIFT >= 16
66 # define FL_PG_ORDER 0
67 #else
68 # define FL_PG_ORDER (16 - PAGE_SHIFT)
69 #endif
70 
71 /* RX_PULL_LEN should be <= RX_COPY_THRES */
72 #define RX_COPY_THRES    256
73 #define RX_PULL_LEN      128
74 
75 /*
76  * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
77  * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
78  */
79 #define RX_PKT_SKB_LEN   512
80 
81 /*
82  * Max number of Tx descriptors we clean up at a time.  Should be modest as
83  * freeing skbs isn't cheap and it happens while holding locks.  We just need
84  * to free packets faster than they arrive, we eventually catch up and keep
85  * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES.  It should
86  * also match the CIDX Flush Threshold.
87  */
88 #define MAX_TX_RECLAIM 32
89 
90 /*
91  * Max number of Rx buffers we replenish at a time.  Again keep this modest,
92  * allocating buffers isn't cheap either.
93  */
94 #define MAX_RX_REFILL 16U
95 
96 /*
97  * Period of the Rx queue check timer.  This timer is infrequent as it has
98  * something to do only when the system experiences severe memory shortage.
99  */
100 #define RX_QCHECK_PERIOD (HZ / 2)
101 
102 /*
103  * Period of the Tx queue check timer.
104  */
105 #define TX_QCHECK_PERIOD (HZ / 2)
106 
107 /*
108  * Max number of Tx descriptors to be reclaimed by the Tx timer.
109  */
110 #define MAX_TIMER_TX_RECLAIM 100
111 
112 /*
113  * Timer index used when backing off due to memory shortage.
114  */
115 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
116 
117 /*
118  * Suspension threshold for non-Ethernet Tx queues.  We require enough room
119  * for a full sized WR.
120  */
121 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
122 
123 /*
124  * Max Tx descriptor space we allow for an Ethernet packet to be inlined
125  * into a WR.
126  */
127 #define MAX_IMM_TX_PKT_LEN 256
128 
129 /*
130  * Max size of a WR sent through a control Tx queue.
131  */
132 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
133 
134 struct rx_sw_desc {                /* SW state per Rx descriptor */
135 	struct page *page;
136 	dma_addr_t dma_addr;
137 };
138 
139 /*
140  * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
141  * buffer).  We currently only support two sizes for 1500- and 9000-byte MTUs.
142  * We could easily support more but there doesn't seem to be much need for
143  * that ...
144  */
145 #define FL_MTU_SMALL 1500
146 #define FL_MTU_LARGE 9000
147 
148 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
149 					  unsigned int mtu)
150 {
151 	struct sge *s = &adapter->sge;
152 
153 	return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
154 }
155 
156 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
157 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
158 
159 /*
160  * Bits 0..3 of rx_sw_desc.dma_addr have special meaning.  The hardware uses
161  * these to specify the buffer size as an index into the SGE Free List Buffer
162  * Size register array.  We also use bit 4, when the buffer has been unmapped
163  * for DMA, but this is of course never sent to the hardware and is only used
164  * to prevent double unmappings.  All of the above requires that the Free List
165  * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
166  * 32-byte or or a power of 2 greater in alignment.  Since the SGE's minimal
167  * Free List Buffer alignment is 32 bytes, this works out for us ...
168  */
169 enum {
170 	RX_BUF_FLAGS     = 0x1f,   /* bottom five bits are special */
171 	RX_BUF_SIZE      = 0x0f,   /* bottom three bits are for buf sizes */
172 	RX_UNMAPPED_BUF  = 0x10,   /* buffer is not mapped */
173 
174 	/*
175 	 * XXX We shouldn't depend on being able to use these indices.
176 	 * XXX Especially when some other Master PF has initialized the
177 	 * XXX adapter or we use the Firmware Configuration File.  We
178 	 * XXX should really search through the Host Buffer Size register
179 	 * XXX array for the appropriately sized buffer indices.
180 	 */
181 	RX_SMALL_PG_BUF  = 0x0,   /* small (PAGE_SIZE) page buffer */
182 	RX_LARGE_PG_BUF  = 0x1,   /* buffer large (FL_PG_ORDER) page buffer */
183 
184 	RX_SMALL_MTU_BUF = 0x2,   /* small MTU buffer */
185 	RX_LARGE_MTU_BUF = 0x3,   /* large MTU buffer */
186 };
187 
188 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
189 #define MIN_NAPI_WORK  1
190 
191 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
192 {
193 	return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
194 }
195 
196 static inline bool is_buf_mapped(const struct rx_sw_desc *d)
197 {
198 	return !(d->dma_addr & RX_UNMAPPED_BUF);
199 }
200 
201 /**
202  *	txq_avail - return the number of available slots in a Tx queue
203  *	@q: the Tx queue
204  *
205  *	Returns the number of descriptors in a Tx queue available to write new
206  *	packets.
207  */
208 static inline unsigned int txq_avail(const struct sge_txq *q)
209 {
210 	return q->size - 1 - q->in_use;
211 }
212 
213 /**
214  *	fl_cap - return the capacity of a free-buffer list
215  *	@fl: the FL
216  *
217  *	Returns the capacity of a free-buffer list.  The capacity is less than
218  *	the size because one descriptor needs to be left unpopulated, otherwise
219  *	HW will think the FL is empty.
220  */
221 static inline unsigned int fl_cap(const struct sge_fl *fl)
222 {
223 	return fl->size - 8;   /* 1 descriptor = 8 buffers */
224 }
225 
226 /**
227  *	fl_starving - return whether a Free List is starving.
228  *	@adapter: pointer to the adapter
229  *	@fl: the Free List
230  *
231  *	Tests specified Free List to see whether the number of buffers
232  *	available to the hardware has falled below our "starvation"
233  *	threshold.
234  */
235 static inline bool fl_starving(const struct adapter *adapter,
236 			       const struct sge_fl *fl)
237 {
238 	const struct sge *s = &adapter->sge;
239 
240 	return fl->avail - fl->pend_cred <= s->fl_starve_thres;
241 }
242 
243 int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb,
244 		  dma_addr_t *addr)
245 {
246 	const skb_frag_t *fp, *end;
247 	const struct skb_shared_info *si;
248 
249 	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
250 	if (dma_mapping_error(dev, *addr))
251 		goto out_err;
252 
253 	si = skb_shinfo(skb);
254 	end = &si->frags[si->nr_frags];
255 
256 	for (fp = si->frags; fp < end; fp++) {
257 		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
258 					   DMA_TO_DEVICE);
259 		if (dma_mapping_error(dev, *addr))
260 			goto unwind;
261 	}
262 	return 0;
263 
264 unwind:
265 	while (fp-- > si->frags)
266 		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
267 
268 	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
269 out_err:
270 	return -ENOMEM;
271 }
272 EXPORT_SYMBOL(cxgb4_map_skb);
273 
274 static void unmap_skb(struct device *dev, const struct sk_buff *skb,
275 		      const dma_addr_t *addr)
276 {
277 	const skb_frag_t *fp, *end;
278 	const struct skb_shared_info *si;
279 
280 	dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
281 
282 	si = skb_shinfo(skb);
283 	end = &si->frags[si->nr_frags];
284 	for (fp = si->frags; fp < end; fp++)
285 		dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
286 }
287 
288 #ifdef CONFIG_NEED_DMA_MAP_STATE
289 /**
290  *	deferred_unmap_destructor - unmap a packet when it is freed
291  *	@skb: the packet
292  *
293  *	This is the packet destructor used for Tx packets that need to remain
294  *	mapped until they are freed rather than until their Tx descriptors are
295  *	freed.
296  */
297 static void deferred_unmap_destructor(struct sk_buff *skb)
298 {
299 	unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
300 }
301 #endif
302 
303 /**
304  *	free_tx_desc - reclaims Tx descriptors and their buffers
305  *	@adap: the adapter
306  *	@q: the Tx queue to reclaim descriptors from
307  *	@n: the number of descriptors to reclaim
308  *	@unmap: whether the buffers should be unmapped for DMA
309  *
310  *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
311  *	Tx buffers.  Called with the Tx queue lock held.
312  */
313 void free_tx_desc(struct adapter *adap, struct sge_txq *q,
314 		  unsigned int n, bool unmap)
315 {
316 	unsigned int cidx = q->cidx;
317 	struct tx_sw_desc *d;
318 
319 	d = &q->sdesc[cidx];
320 	while (n--) {
321 		if (d->skb) {                       /* an SGL is present */
322 			if (unmap && d->addr[0]) {
323 				unmap_skb(adap->pdev_dev, d->skb, d->addr);
324 				memset(d->addr, 0, sizeof(d->addr));
325 			}
326 			dev_consume_skb_any(d->skb);
327 			d->skb = NULL;
328 		}
329 		++d;
330 		if (++cidx == q->size) {
331 			cidx = 0;
332 			d = q->sdesc;
333 		}
334 	}
335 	q->cidx = cidx;
336 }
337 
338 /*
339  * Return the number of reclaimable descriptors in a Tx queue.
340  */
341 static inline int reclaimable(const struct sge_txq *q)
342 {
343 	int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
344 	hw_cidx -= q->cidx;
345 	return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
346 }
347 
348 /**
349  *	reclaim_completed_tx - reclaims completed TX Descriptors
350  *	@adap: the adapter
351  *	@q: the Tx queue to reclaim completed descriptors from
352  *	@maxreclaim: the maximum number of TX Descriptors to reclaim or -1
353  *	@unmap: whether the buffers should be unmapped for DMA
354  *
355  *	Reclaims Tx Descriptors that the SGE has indicated it has processed,
356  *	and frees the associated buffers if possible.  If @max == -1, then
357  *	we'll use a defaiult maximum.  Called with the TX Queue locked.
358  */
359 static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
360 				       int maxreclaim, bool unmap)
361 {
362 	int reclaim = reclaimable(q);
363 
364 	if (reclaim) {
365 		/*
366 		 * Limit the amount of clean up work we do at a time to keep
367 		 * the Tx lock hold time O(1).
368 		 */
369 		if (maxreclaim < 0)
370 			maxreclaim = MAX_TX_RECLAIM;
371 		if (reclaim > maxreclaim)
372 			reclaim = maxreclaim;
373 
374 		free_tx_desc(adap, q, reclaim, unmap);
375 		q->in_use -= reclaim;
376 	}
377 
378 	return reclaim;
379 }
380 
381 /**
382  *	cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors
383  *	@adap: the adapter
384  *	@q: the Tx queue to reclaim completed descriptors from
385  *	@unmap: whether the buffers should be unmapped for DMA
386  *
387  *	Reclaims Tx descriptors that the SGE has indicated it has processed,
388  *	and frees the associated buffers if possible.  Called with the Tx
389  *	queue locked.
390  */
391 void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
392 				bool unmap)
393 {
394 	(void)reclaim_completed_tx(adap, q, -1, unmap);
395 }
396 EXPORT_SYMBOL(cxgb4_reclaim_completed_tx);
397 
398 static inline int get_buf_size(struct adapter *adapter,
399 			       const struct rx_sw_desc *d)
400 {
401 	struct sge *s = &adapter->sge;
402 	unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
403 	int buf_size;
404 
405 	switch (rx_buf_size_idx) {
406 	case RX_SMALL_PG_BUF:
407 		buf_size = PAGE_SIZE;
408 		break;
409 
410 	case RX_LARGE_PG_BUF:
411 		buf_size = PAGE_SIZE << s->fl_pg_order;
412 		break;
413 
414 	case RX_SMALL_MTU_BUF:
415 		buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
416 		break;
417 
418 	case RX_LARGE_MTU_BUF:
419 		buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
420 		break;
421 
422 	default:
423 		BUG();
424 	}
425 
426 	return buf_size;
427 }
428 
429 /**
430  *	free_rx_bufs - free the Rx buffers on an SGE free list
431  *	@adap: the adapter
432  *	@q: the SGE free list to free buffers from
433  *	@n: how many buffers to free
434  *
435  *	Release the next @n buffers on an SGE free-buffer Rx queue.   The
436  *	buffers must be made inaccessible to HW before calling this function.
437  */
438 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
439 {
440 	while (n--) {
441 		struct rx_sw_desc *d = &q->sdesc[q->cidx];
442 
443 		if (is_buf_mapped(d))
444 			dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
445 				       get_buf_size(adap, d),
446 				       PCI_DMA_FROMDEVICE);
447 		put_page(d->page);
448 		d->page = NULL;
449 		if (++q->cidx == q->size)
450 			q->cidx = 0;
451 		q->avail--;
452 	}
453 }
454 
455 /**
456  *	unmap_rx_buf - unmap the current Rx buffer on an SGE free list
457  *	@adap: the adapter
458  *	@q: the SGE free list
459  *
460  *	Unmap the current buffer on an SGE free-buffer Rx queue.   The
461  *	buffer must be made inaccessible to HW before calling this function.
462  *
463  *	This is similar to @free_rx_bufs above but does not free the buffer.
464  *	Do note that the FL still loses any further access to the buffer.
465  */
466 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
467 {
468 	struct rx_sw_desc *d = &q->sdesc[q->cidx];
469 
470 	if (is_buf_mapped(d))
471 		dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
472 			       get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
473 	d->page = NULL;
474 	if (++q->cidx == q->size)
475 		q->cidx = 0;
476 	q->avail--;
477 }
478 
479 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
480 {
481 	if (q->pend_cred >= 8) {
482 		u32 val = adap->params.arch.sge_fl_db;
483 
484 		if (is_t4(adap->params.chip))
485 			val |= PIDX_V(q->pend_cred / 8);
486 		else
487 			val |= PIDX_T5_V(q->pend_cred / 8);
488 
489 		/* Make sure all memory writes to the Free List queue are
490 		 * committed before we tell the hardware about them.
491 		 */
492 		wmb();
493 
494 		/* If we don't have access to the new User Doorbell (T5+), use
495 		 * the old doorbell mechanism; otherwise use the new BAR2
496 		 * mechanism.
497 		 */
498 		if (unlikely(q->bar2_addr == NULL)) {
499 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
500 				     val | QID_V(q->cntxt_id));
501 		} else {
502 			writel(val | QID_V(q->bar2_qid),
503 			       q->bar2_addr + SGE_UDB_KDOORBELL);
504 
505 			/* This Write memory Barrier will force the write to
506 			 * the User Doorbell area to be flushed.
507 			 */
508 			wmb();
509 		}
510 		q->pend_cred &= 7;
511 	}
512 }
513 
514 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
515 				  dma_addr_t mapping)
516 {
517 	sd->page = pg;
518 	sd->dma_addr = mapping;      /* includes size low bits */
519 }
520 
521 /**
522  *	refill_fl - refill an SGE Rx buffer ring
523  *	@adap: the adapter
524  *	@q: the ring to refill
525  *	@n: the number of new buffers to allocate
526  *	@gfp: the gfp flags for the allocations
527  *
528  *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
529  *	allocated with the supplied gfp flags.  The caller must assure that
530  *	@n does not exceed the queue's capacity.  If afterwards the queue is
531  *	found critically low mark it as starving in the bitmap of starving FLs.
532  *
533  *	Returns the number of buffers allocated.
534  */
535 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
536 			      gfp_t gfp)
537 {
538 	struct sge *s = &adap->sge;
539 	struct page *pg;
540 	dma_addr_t mapping;
541 	unsigned int cred = q->avail;
542 	__be64 *d = &q->desc[q->pidx];
543 	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
544 	int node;
545 
546 #ifdef CONFIG_DEBUG_FS
547 	if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
548 		goto out;
549 #endif
550 
551 	gfp |= __GFP_NOWARN;
552 	node = dev_to_node(adap->pdev_dev);
553 
554 	if (s->fl_pg_order == 0)
555 		goto alloc_small_pages;
556 
557 	/*
558 	 * Prefer large buffers
559 	 */
560 	while (n) {
561 		pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
562 		if (unlikely(!pg)) {
563 			q->large_alloc_failed++;
564 			break;       /* fall back to single pages */
565 		}
566 
567 		mapping = dma_map_page(adap->pdev_dev, pg, 0,
568 				       PAGE_SIZE << s->fl_pg_order,
569 				       PCI_DMA_FROMDEVICE);
570 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
571 			__free_pages(pg, s->fl_pg_order);
572 			q->mapping_err++;
573 			goto out;   /* do not try small pages for this error */
574 		}
575 		mapping |= RX_LARGE_PG_BUF;
576 		*d++ = cpu_to_be64(mapping);
577 
578 		set_rx_sw_desc(sd, pg, mapping);
579 		sd++;
580 
581 		q->avail++;
582 		if (++q->pidx == q->size) {
583 			q->pidx = 0;
584 			sd = q->sdesc;
585 			d = q->desc;
586 		}
587 		n--;
588 	}
589 
590 alloc_small_pages:
591 	while (n--) {
592 		pg = alloc_pages_node(node, gfp, 0);
593 		if (unlikely(!pg)) {
594 			q->alloc_failed++;
595 			break;
596 		}
597 
598 		mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
599 				       PCI_DMA_FROMDEVICE);
600 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
601 			put_page(pg);
602 			q->mapping_err++;
603 			goto out;
604 		}
605 		*d++ = cpu_to_be64(mapping);
606 
607 		set_rx_sw_desc(sd, pg, mapping);
608 		sd++;
609 
610 		q->avail++;
611 		if (++q->pidx == q->size) {
612 			q->pidx = 0;
613 			sd = q->sdesc;
614 			d = q->desc;
615 		}
616 	}
617 
618 out:	cred = q->avail - cred;
619 	q->pend_cred += cred;
620 	ring_fl_db(adap, q);
621 
622 	if (unlikely(fl_starving(adap, q))) {
623 		smp_wmb();
624 		q->low++;
625 		set_bit(q->cntxt_id - adap->sge.egr_start,
626 			adap->sge.starving_fl);
627 	}
628 
629 	return cred;
630 }
631 
632 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
633 {
634 	refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
635 		  GFP_ATOMIC);
636 }
637 
638 /**
639  *	alloc_ring - allocate resources for an SGE descriptor ring
640  *	@dev: the PCI device's core device
641  *	@nelem: the number of descriptors
642  *	@elem_size: the size of each descriptor
643  *	@sw_size: the size of the SW state associated with each ring element
644  *	@phys: the physical address of the allocated ring
645  *	@metadata: address of the array holding the SW state for the ring
646  *	@stat_size: extra space in HW ring for status information
647  *	@node: preferred node for memory allocations
648  *
649  *	Allocates resources for an SGE descriptor ring, such as Tx queues,
650  *	free buffer lists, or response queues.  Each SGE ring requires
651  *	space for its HW descriptors plus, optionally, space for the SW state
652  *	associated with each HW entry (the metadata).  The function returns
653  *	three values: the virtual address for the HW ring (the return value
654  *	of the function), the bus address of the HW ring, and the address
655  *	of the SW ring.
656  */
657 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
658 			size_t sw_size, dma_addr_t *phys, void *metadata,
659 			size_t stat_size, int node)
660 {
661 	size_t len = nelem * elem_size + stat_size;
662 	void *s = NULL;
663 	void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
664 
665 	if (!p)
666 		return NULL;
667 	if (sw_size) {
668 		s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node);
669 
670 		if (!s) {
671 			dma_free_coherent(dev, len, p, *phys);
672 			return NULL;
673 		}
674 	}
675 	if (metadata)
676 		*(void **)metadata = s;
677 	return p;
678 }
679 
680 /**
681  *	sgl_len - calculates the size of an SGL of the given capacity
682  *	@n: the number of SGL entries
683  *
684  *	Calculates the number of flits needed for a scatter/gather list that
685  *	can hold the given number of entries.
686  */
687 static inline unsigned int sgl_len(unsigned int n)
688 {
689 	/* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
690 	 * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
691 	 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
692 	 * repeated sequences of { Length[i], Length[i+1], Address[i],
693 	 * Address[i+1] } (this ensures that all addresses are on 64-bit
694 	 * boundaries).  If N is even, then Length[N+1] should be set to 0 and
695 	 * Address[N+1] is omitted.
696 	 *
697 	 * The following calculation incorporates all of the above.  It's
698 	 * somewhat hard to follow but, briefly: the "+2" accounts for the
699 	 * first two flits which include the DSGL header, Length0 and
700 	 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
701 	 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
702 	 * finally the "+((n-1)&1)" adds the one remaining flit needed if
703 	 * (n-1) is odd ...
704 	 */
705 	n--;
706 	return (3 * n) / 2 + (n & 1) + 2;
707 }
708 
709 /**
710  *	flits_to_desc - returns the num of Tx descriptors for the given flits
711  *	@n: the number of flits
712  *
713  *	Returns the number of Tx descriptors needed for the supplied number
714  *	of flits.
715  */
716 static inline unsigned int flits_to_desc(unsigned int n)
717 {
718 	BUG_ON(n > SGE_MAX_WR_LEN / 8);
719 	return DIV_ROUND_UP(n, 8);
720 }
721 
722 /**
723  *	is_eth_imm - can an Ethernet packet be sent as immediate data?
724  *	@skb: the packet
725  *	@chip_ver: chip version
726  *
727  *	Returns whether an Ethernet packet is small enough to fit as
728  *	immediate data. Return value corresponds to headroom required.
729  */
730 static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver)
731 {
732 	int hdrlen = 0;
733 
734 	if (skb->encapsulation && skb_shinfo(skb)->gso_size &&
735 	    chip_ver > CHELSIO_T5) {
736 		hdrlen = sizeof(struct cpl_tx_tnl_lso);
737 		hdrlen += sizeof(struct cpl_tx_pkt_core);
738 	} else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
739 		return 0;
740 	} else {
741 		hdrlen = skb_shinfo(skb)->gso_size ?
742 			 sizeof(struct cpl_tx_pkt_lso_core) : 0;
743 		hdrlen += sizeof(struct cpl_tx_pkt);
744 	}
745 	if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
746 		return hdrlen;
747 	return 0;
748 }
749 
750 /**
751  *	calc_tx_flits - calculate the number of flits for a packet Tx WR
752  *	@skb: the packet
753  *	@chip_ver: chip version
754  *
755  *	Returns the number of flits needed for a Tx WR for the given Ethernet
756  *	packet, including the needed WR and CPL headers.
757  */
758 static inline unsigned int calc_tx_flits(const struct sk_buff *skb,
759 					 unsigned int chip_ver)
760 {
761 	unsigned int flits;
762 	int hdrlen = is_eth_imm(skb, chip_ver);
763 
764 	/* If the skb is small enough, we can pump it out as a work request
765 	 * with only immediate data.  In that case we just have to have the
766 	 * TX Packet header plus the skb data in the Work Request.
767 	 */
768 
769 	if (hdrlen)
770 		return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
771 
772 	/* Otherwise, we're going to have to construct a Scatter gather list
773 	 * of the skb body and fragments.  We also include the flits necessary
774 	 * for the TX Packet Work Request and CPL.  We always have a firmware
775 	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
776 	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
777 	 * message or, if we're doing a Large Send Offload, an LSO CPL message
778 	 * with an embedded TX Packet Write CPL message.
779 	 */
780 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
781 	if (skb_shinfo(skb)->gso_size) {
782 		if (skb->encapsulation && chip_ver > CHELSIO_T5) {
783 			hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
784 				 sizeof(struct cpl_tx_tnl_lso);
785 		} else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
786 			u32 pkt_hdrlen;
787 
788 			pkt_hdrlen = eth_get_headlen(skb->dev, skb->data,
789 						     skb_headlen(skb));
790 			hdrlen = sizeof(struct fw_eth_tx_eo_wr) +
791 				 round_up(pkt_hdrlen, 16);
792 		} else {
793 			hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
794 				 sizeof(struct cpl_tx_pkt_lso_core);
795 		}
796 
797 		hdrlen += sizeof(struct cpl_tx_pkt_core);
798 		flits += (hdrlen / sizeof(__be64));
799 	} else {
800 		flits += (sizeof(struct fw_eth_tx_pkt_wr) +
801 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
802 	}
803 	return flits;
804 }
805 
806 /**
807  *	calc_tx_descs - calculate the number of Tx descriptors for a packet
808  *	@skb: the packet
809  *	@chip_ver: chip version
810  *
811  *	Returns the number of Tx descriptors needed for the given Ethernet
812  *	packet, including the needed WR and CPL headers.
813  */
814 static inline unsigned int calc_tx_descs(const struct sk_buff *skb,
815 					 unsigned int chip_ver)
816 {
817 	return flits_to_desc(calc_tx_flits(skb, chip_ver));
818 }
819 
820 /**
821  *	cxgb4_write_sgl - populate a scatter/gather list for a packet
822  *	@skb: the packet
823  *	@q: the Tx queue we are writing into
824  *	@sgl: starting location for writing the SGL
825  *	@end: points right after the end of the SGL
826  *	@start: start offset into skb main-body data to include in the SGL
827  *	@addr: the list of bus addresses for the SGL elements
828  *
829  *	Generates a gather list for the buffers that make up a packet.
830  *	The caller must provide adequate space for the SGL that will be written.
831  *	The SGL includes all of the packet's page fragments and the data in its
832  *	main body except for the first @start bytes.  @sgl must be 16-byte
833  *	aligned and within a Tx descriptor with available space.  @end points
834  *	right after the end of the SGL but does not account for any potential
835  *	wrap around, i.e., @end > @sgl.
836  */
837 void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q,
838 		     struct ulptx_sgl *sgl, u64 *end, unsigned int start,
839 		     const dma_addr_t *addr)
840 {
841 	unsigned int i, len;
842 	struct ulptx_sge_pair *to;
843 	const struct skb_shared_info *si = skb_shinfo(skb);
844 	unsigned int nfrags = si->nr_frags;
845 	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
846 
847 	len = skb_headlen(skb) - start;
848 	if (likely(len)) {
849 		sgl->len0 = htonl(len);
850 		sgl->addr0 = cpu_to_be64(addr[0] + start);
851 		nfrags++;
852 	} else {
853 		sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
854 		sgl->addr0 = cpu_to_be64(addr[1]);
855 	}
856 
857 	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
858 			      ULPTX_NSGE_V(nfrags));
859 	if (likely(--nfrags == 0))
860 		return;
861 	/*
862 	 * Most of the complexity below deals with the possibility we hit the
863 	 * end of the queue in the middle of writing the SGL.  For this case
864 	 * only we create the SGL in a temporary buffer and then copy it.
865 	 */
866 	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
867 
868 	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
869 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
870 		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
871 		to->addr[0] = cpu_to_be64(addr[i]);
872 		to->addr[1] = cpu_to_be64(addr[++i]);
873 	}
874 	if (nfrags) {
875 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
876 		to->len[1] = cpu_to_be32(0);
877 		to->addr[0] = cpu_to_be64(addr[i + 1]);
878 	}
879 	if (unlikely((u8 *)end > (u8 *)q->stat)) {
880 		unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
881 
882 		if (likely(part0))
883 			memcpy(sgl->sge, buf, part0);
884 		part1 = (u8 *)end - (u8 *)q->stat;
885 		memcpy(q->desc, (u8 *)buf + part0, part1);
886 		end = (void *)q->desc + part1;
887 	}
888 	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
889 		*end = 0;
890 }
891 EXPORT_SYMBOL(cxgb4_write_sgl);
892 
893 /*	cxgb4_write_partial_sgl - populate SGL for partial packet
894  *	@skb: the packet
895  *	@q: the Tx queue we are writing into
896  *	@sgl: starting location for writing the SGL
897  *	@end: points right after the end of the SGL
898  *	@addr: the list of bus addresses for the SGL elements
899  *	@start: start offset in the SKB where partial data starts
900  *	@len: length of data from @start to send out
901  *
902  *	This API will handle sending out partial data of a skb if required.
903  *	Unlike cxgb4_write_sgl, @start can be any offset into the skb data,
904  *	and @len will decide how much data after @start offset to send out.
905  */
906 void cxgb4_write_partial_sgl(const struct sk_buff *skb, struct sge_txq *q,
907 			     struct ulptx_sgl *sgl, u64 *end,
908 			     const dma_addr_t *addr, u32 start, u32 len)
909 {
910 	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1] = {0}, *to;
911 	u32 frag_size, skb_linear_data_len = skb_headlen(skb);
912 	struct skb_shared_info *si = skb_shinfo(skb);
913 	u8 i = 0, frag_idx = 0, nfrags = 0;
914 	skb_frag_t *frag;
915 
916 	/* Fill the first SGL either from linear data or from partial
917 	 * frag based on @start.
918 	 */
919 	if (unlikely(start < skb_linear_data_len)) {
920 		frag_size = min(len, skb_linear_data_len - start);
921 		sgl->len0 = htonl(frag_size);
922 		sgl->addr0 = cpu_to_be64(addr[0] + start);
923 		len -= frag_size;
924 		nfrags++;
925 	} else {
926 		start -= skb_linear_data_len;
927 		frag = &si->frags[frag_idx];
928 		frag_size = skb_frag_size(frag);
929 		/* find the first frag */
930 		while (start >= frag_size) {
931 			start -= frag_size;
932 			frag_idx++;
933 			frag = &si->frags[frag_idx];
934 			frag_size = skb_frag_size(frag);
935 		}
936 
937 		frag_size = min(len, skb_frag_size(frag) - start);
938 		sgl->len0 = cpu_to_be32(frag_size);
939 		sgl->addr0 = cpu_to_be64(addr[frag_idx + 1] + start);
940 		len -= frag_size;
941 		nfrags++;
942 		frag_idx++;
943 	}
944 
945 	/* If the entire partial data fit in one SGL, then send it out
946 	 * now.
947 	 */
948 	if (!len)
949 		goto done;
950 
951 	/* Most of the complexity below deals with the possibility we hit the
952 	 * end of the queue in the middle of writing the SGL.  For this case
953 	 * only we create the SGL in a temporary buffer and then copy it.
954 	 */
955 	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
956 
957 	/* If the skb couldn't fit in first SGL completely, fill the
958 	 * rest of the frags in subsequent SGLs. Note that each SGL
959 	 * pair can store 2 frags.
960 	 */
961 	while (len) {
962 		frag_size = min(len, skb_frag_size(&si->frags[frag_idx]));
963 		to->len[i & 1] = cpu_to_be32(frag_size);
964 		to->addr[i & 1] = cpu_to_be64(addr[frag_idx + 1]);
965 		if (i && (i & 1))
966 			to++;
967 		nfrags++;
968 		frag_idx++;
969 		i++;
970 		len -= frag_size;
971 	}
972 
973 	/* If we ended in an odd boundary, then set the second SGL's
974 	 * length in the pair to 0.
975 	 */
976 	if (i & 1)
977 		to->len[1] = cpu_to_be32(0);
978 
979 	/* Copy from temporary buffer to Tx ring, in case we hit the
980 	 * end of the queue in the middle of writing the SGL.
981 	 */
982 	if (unlikely((u8 *)end > (u8 *)q->stat)) {
983 		u32 part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
984 
985 		if (likely(part0))
986 			memcpy(sgl->sge, buf, part0);
987 		part1 = (u8 *)end - (u8 *)q->stat;
988 		memcpy(q->desc, (u8 *)buf + part0, part1);
989 		end = (void *)q->desc + part1;
990 	}
991 
992 	/* 0-pad to multiple of 16 */
993 	if ((uintptr_t)end & 8)
994 		*end = 0;
995 done:
996 	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
997 			ULPTX_NSGE_V(nfrags));
998 }
999 EXPORT_SYMBOL(cxgb4_write_partial_sgl);
1000 
1001 /* This function copies 64 byte coalesced work request to
1002  * memory mapped BAR2 space. For coalesced WR SGE fetches
1003  * data from the FIFO instead of from Host.
1004  */
1005 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
1006 {
1007 	int count = 8;
1008 
1009 	while (count) {
1010 		writeq(*src, dst);
1011 		src++;
1012 		dst++;
1013 		count--;
1014 	}
1015 }
1016 
1017 /**
1018  *	cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell
1019  *	@adap: the adapter
1020  *	@q: the Tx queue
1021  *	@n: number of new descriptors to give to HW
1022  *
1023  *	Ring the doorbel for a Tx queue.
1024  */
1025 inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
1026 {
1027 	/* Make sure that all writes to the TX Descriptors are committed
1028 	 * before we tell the hardware about them.
1029 	 */
1030 	wmb();
1031 
1032 	/* If we don't have access to the new User Doorbell (T5+), use the old
1033 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
1034 	 */
1035 	if (unlikely(q->bar2_addr == NULL)) {
1036 		u32 val = PIDX_V(n);
1037 		unsigned long flags;
1038 
1039 		/* For T4 we need to participate in the Doorbell Recovery
1040 		 * mechanism.
1041 		 */
1042 		spin_lock_irqsave(&q->db_lock, flags);
1043 		if (!q->db_disabled)
1044 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1045 				     QID_V(q->cntxt_id) | val);
1046 		else
1047 			q->db_pidx_inc += n;
1048 		q->db_pidx = q->pidx;
1049 		spin_unlock_irqrestore(&q->db_lock, flags);
1050 	} else {
1051 		u32 val = PIDX_T5_V(n);
1052 
1053 		/* T4 and later chips share the same PIDX field offset within
1054 		 * the doorbell, but T5 and later shrank the field in order to
1055 		 * gain a bit for Doorbell Priority.  The field was absurdly
1056 		 * large in the first place (14 bits) so we just use the T5
1057 		 * and later limits and warn if a Queue ID is too large.
1058 		 */
1059 		WARN_ON(val & DBPRIO_F);
1060 
1061 		/* If we're only writing a single TX Descriptor and we can use
1062 		 * Inferred QID registers, we can use the Write Combining
1063 		 * Gather Buffer; otherwise we use the simple doorbell.
1064 		 */
1065 		if (n == 1 && q->bar2_qid == 0) {
1066 			int index = (q->pidx
1067 				     ? (q->pidx - 1)
1068 				     : (q->size - 1));
1069 			u64 *wr = (u64 *)&q->desc[index];
1070 
1071 			cxgb_pio_copy((u64 __iomem *)
1072 				      (q->bar2_addr + SGE_UDB_WCDOORBELL),
1073 				      wr);
1074 		} else {
1075 			writel(val | QID_V(q->bar2_qid),
1076 			       q->bar2_addr + SGE_UDB_KDOORBELL);
1077 		}
1078 
1079 		/* This Write Memory Barrier will force the write to the User
1080 		 * Doorbell area to be flushed.  This is needed to prevent
1081 		 * writes on different CPUs for the same queue from hitting
1082 		 * the adapter out of order.  This is required when some Work
1083 		 * Requests take the Write Combine Gather Buffer path (user
1084 		 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
1085 		 * take the traditional path where we simply increment the
1086 		 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
1087 		 * hardware DMA read the actual Work Request.
1088 		 */
1089 		wmb();
1090 	}
1091 }
1092 EXPORT_SYMBOL(cxgb4_ring_tx_db);
1093 
1094 /**
1095  *	cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors
1096  *	@skb: the packet
1097  *	@q: the Tx queue where the packet will be inlined
1098  *	@pos: starting position in the Tx queue where to inline the packet
1099  *
1100  *	Inline a packet's contents directly into Tx descriptors, starting at
1101  *	the given position within the Tx DMA ring.
1102  *	Most of the complexity of this operation is dealing with wrap arounds
1103  *	in the middle of the packet we want to inline.
1104  */
1105 void cxgb4_inline_tx_skb(const struct sk_buff *skb,
1106 			 const struct sge_txq *q, void *pos)
1107 {
1108 	int left = (void *)q->stat - pos;
1109 	u64 *p;
1110 
1111 	if (likely(skb->len <= left)) {
1112 		if (likely(!skb->data_len))
1113 			skb_copy_from_linear_data(skb, pos, skb->len);
1114 		else
1115 			skb_copy_bits(skb, 0, pos, skb->len);
1116 		pos += skb->len;
1117 	} else {
1118 		skb_copy_bits(skb, 0, pos, left);
1119 		skb_copy_bits(skb, left, q->desc, skb->len - left);
1120 		pos = (void *)q->desc + (skb->len - left);
1121 	}
1122 
1123 	/* 0-pad to multiple of 16 */
1124 	p = PTR_ALIGN(pos, 8);
1125 	if ((uintptr_t)p & 8)
1126 		*p = 0;
1127 }
1128 EXPORT_SYMBOL(cxgb4_inline_tx_skb);
1129 
1130 static void *inline_tx_skb_header(const struct sk_buff *skb,
1131 				  const struct sge_txq *q,  void *pos,
1132 				  int length)
1133 {
1134 	u64 *p;
1135 	int left = (void *)q->stat - pos;
1136 
1137 	if (likely(length <= left)) {
1138 		memcpy(pos, skb->data, length);
1139 		pos += length;
1140 	} else {
1141 		memcpy(pos, skb->data, left);
1142 		memcpy(q->desc, skb->data + left, length - left);
1143 		pos = (void *)q->desc + (length - left);
1144 	}
1145 	/* 0-pad to multiple of 16 */
1146 	p = PTR_ALIGN(pos, 8);
1147 	if ((uintptr_t)p & 8) {
1148 		*p = 0;
1149 		return p + 1;
1150 	}
1151 	return p;
1152 }
1153 
1154 /*
1155  * Figure out what HW csum a packet wants and return the appropriate control
1156  * bits.
1157  */
1158 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1159 {
1160 	int csum_type;
1161 	bool inner_hdr_csum = false;
1162 	u16 proto, ver;
1163 
1164 	if (skb->encapsulation &&
1165 	    (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5))
1166 		inner_hdr_csum = true;
1167 
1168 	if (inner_hdr_csum) {
1169 		ver = inner_ip_hdr(skb)->version;
1170 		proto = (ver == 4) ? inner_ip_hdr(skb)->protocol :
1171 			inner_ipv6_hdr(skb)->nexthdr;
1172 	} else {
1173 		ver = ip_hdr(skb)->version;
1174 		proto = (ver == 4) ? ip_hdr(skb)->protocol :
1175 			ipv6_hdr(skb)->nexthdr;
1176 	}
1177 
1178 	if (ver == 4) {
1179 		if (proto == IPPROTO_TCP)
1180 			csum_type = TX_CSUM_TCPIP;
1181 		else if (proto == IPPROTO_UDP)
1182 			csum_type = TX_CSUM_UDPIP;
1183 		else {
1184 nocsum:			/*
1185 			 * unknown protocol, disable HW csum
1186 			 * and hope a bad packet is detected
1187 			 */
1188 			return TXPKT_L4CSUM_DIS_F;
1189 		}
1190 	} else {
1191 		/*
1192 		 * this doesn't work with extension headers
1193 		 */
1194 		if (proto == IPPROTO_TCP)
1195 			csum_type = TX_CSUM_TCPIP6;
1196 		else if (proto == IPPROTO_UDP)
1197 			csum_type = TX_CSUM_UDPIP6;
1198 		else
1199 			goto nocsum;
1200 	}
1201 
1202 	if (likely(csum_type >= TX_CSUM_TCPIP)) {
1203 		int eth_hdr_len, l4_len;
1204 		u64 hdr_len;
1205 
1206 		if (inner_hdr_csum) {
1207 			/* This allows checksum offload for all encapsulated
1208 			 * packets like GRE etc..
1209 			 */
1210 			l4_len = skb_inner_network_header_len(skb);
1211 			eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN;
1212 		} else {
1213 			l4_len = skb_network_header_len(skb);
1214 			eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
1215 		}
1216 		hdr_len = TXPKT_IPHDR_LEN_V(l4_len);
1217 
1218 		if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1219 			hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1220 		else
1221 			hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1222 		return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
1223 	} else {
1224 		int start = skb_transport_offset(skb);
1225 
1226 		return TXPKT_CSUM_TYPE_V(csum_type) |
1227 			TXPKT_CSUM_START_V(start) |
1228 			TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1229 	}
1230 }
1231 
1232 static void eth_txq_stop(struct sge_eth_txq *q)
1233 {
1234 	netif_tx_stop_queue(q->txq);
1235 	q->q.stops++;
1236 }
1237 
1238 static inline void txq_advance(struct sge_txq *q, unsigned int n)
1239 {
1240 	q->in_use += n;
1241 	q->pidx += n;
1242 	if (q->pidx >= q->size)
1243 		q->pidx -= q->size;
1244 }
1245 
1246 #ifdef CONFIG_CHELSIO_T4_FCOE
1247 static inline int
1248 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
1249 		  const struct port_info *pi, u64 *cntrl)
1250 {
1251 	const struct cxgb_fcoe *fcoe = &pi->fcoe;
1252 
1253 	if (!(fcoe->flags & CXGB_FCOE_ENABLED))
1254 		return 0;
1255 
1256 	if (skb->protocol != htons(ETH_P_FCOE))
1257 		return 0;
1258 
1259 	skb_reset_mac_header(skb);
1260 	skb->mac_len = sizeof(struct ethhdr);
1261 
1262 	skb_set_network_header(skb, skb->mac_len);
1263 	skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
1264 
1265 	if (!cxgb_fcoe_sof_eof_supported(adap, skb))
1266 		return -ENOTSUPP;
1267 
1268 	/* FC CRC offload */
1269 	*cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
1270 		     TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
1271 		     TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
1272 		     TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
1273 		     TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
1274 	return 0;
1275 }
1276 #endif /* CONFIG_CHELSIO_T4_FCOE */
1277 
1278 /* Returns tunnel type if hardware supports offloading of the same.
1279  * It is called only for T5 and onwards.
1280  */
1281 enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb)
1282 {
1283 	u8 l4_hdr = 0;
1284 	enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1285 	struct port_info *pi = netdev_priv(skb->dev);
1286 	struct adapter *adapter = pi->adapter;
1287 
1288 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
1289 	    skb->inner_protocol != htons(ETH_P_TEB))
1290 		return tnl_type;
1291 
1292 	switch (vlan_get_protocol(skb)) {
1293 	case htons(ETH_P_IP):
1294 		l4_hdr = ip_hdr(skb)->protocol;
1295 		break;
1296 	case htons(ETH_P_IPV6):
1297 		l4_hdr = ipv6_hdr(skb)->nexthdr;
1298 		break;
1299 	default:
1300 		return tnl_type;
1301 	}
1302 
1303 	switch (l4_hdr) {
1304 	case IPPROTO_UDP:
1305 		if (adapter->vxlan_port == udp_hdr(skb)->dest)
1306 			tnl_type = TX_TNL_TYPE_VXLAN;
1307 		else if (adapter->geneve_port == udp_hdr(skb)->dest)
1308 			tnl_type = TX_TNL_TYPE_GENEVE;
1309 		break;
1310 	default:
1311 		return tnl_type;
1312 	}
1313 
1314 	return tnl_type;
1315 }
1316 
1317 static inline void t6_fill_tnl_lso(struct sk_buff *skb,
1318 				   struct cpl_tx_tnl_lso *tnl_lso,
1319 				   enum cpl_tx_tnl_lso_type tnl_type)
1320 {
1321 	u32 val;
1322 	int in_eth_xtra_len;
1323 	int l3hdr_len = skb_network_header_len(skb);
1324 	int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1325 	const struct skb_shared_info *ssi = skb_shinfo(skb);
1326 	bool v6 = (ip_hdr(skb)->version == 6);
1327 
1328 	val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) |
1329 	      CPL_TX_TNL_LSO_FIRST_F |
1330 	      CPL_TX_TNL_LSO_LAST_F |
1331 	      (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) |
1332 	      CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) |
1333 	      CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) |
1334 	      (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) |
1335 	      CPL_TX_TNL_LSO_IPLENSETOUT_F |
1336 	      (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F);
1337 	tnl_lso->op_to_IpIdSplitOut = htonl(val);
1338 
1339 	tnl_lso->IpIdOffsetOut = 0;
1340 
1341 	/* Get the tunnel header length */
1342 	val = skb_inner_mac_header(skb) - skb_mac_header(skb);
1343 	in_eth_xtra_len = skb_inner_network_header(skb) -
1344 			  skb_inner_mac_header(skb) - ETH_HLEN;
1345 
1346 	switch (tnl_type) {
1347 	case TX_TNL_TYPE_VXLAN:
1348 	case TX_TNL_TYPE_GENEVE:
1349 		tnl_lso->UdpLenSetOut_to_TnlHdrLen =
1350 			htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F |
1351 			CPL_TX_TNL_LSO_UDPLENSETOUT_F);
1352 		break;
1353 	default:
1354 		tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0;
1355 		break;
1356 	}
1357 
1358 	tnl_lso->UdpLenSetOut_to_TnlHdrLen |=
1359 		 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) |
1360 		       CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type));
1361 
1362 	tnl_lso->r1 = 0;
1363 
1364 	val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) |
1365 	      CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) |
1366 	      CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) |
1367 	      CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4);
1368 	tnl_lso->Flow_to_TcpHdrLen = htonl(val);
1369 
1370 	tnl_lso->IpIdOffset = htons(0);
1371 
1372 	tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size));
1373 	tnl_lso->TCPSeqOffset = htonl(0);
1374 	tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len));
1375 }
1376 
1377 static inline void *write_tso_wr(struct adapter *adap, struct sk_buff *skb,
1378 				 struct cpl_tx_pkt_lso_core *lso)
1379 {
1380 	int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1381 	int l3hdr_len = skb_network_header_len(skb);
1382 	const struct skb_shared_info *ssi;
1383 	bool ipv6 = false;
1384 
1385 	ssi = skb_shinfo(skb);
1386 	if (ssi->gso_type & SKB_GSO_TCPV6)
1387 		ipv6 = true;
1388 
1389 	lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1390 			      LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
1391 			      LSO_IPV6_V(ipv6) |
1392 			      LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1393 			      LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1394 			      LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1395 	lso->ipid_ofst = htons(0);
1396 	lso->mss = htons(ssi->gso_size);
1397 	lso->seqno_offset = htonl(0);
1398 	if (is_t4(adap->params.chip))
1399 		lso->len = htonl(skb->len);
1400 	else
1401 		lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len));
1402 
1403 	return (void *)(lso + 1);
1404 }
1405 
1406 /**
1407  *	t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update
1408  *	@adap: the adapter
1409  *	@eq: the Ethernet TX Queue
1410  *	@maxreclaim: the maximum number of TX Descriptors to reclaim or -1
1411  *
1412  *	We're typically called here to update the state of an Ethernet TX
1413  *	Queue with respect to the hardware's progress in consuming the TX
1414  *	Work Requests that we've put on that Egress Queue.  This happens
1415  *	when we get Egress Queue Update messages and also prophylactically
1416  *	in regular timer-based Ethernet TX Queue maintenance.
1417  */
1418 int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq,
1419 				 int maxreclaim)
1420 {
1421 	unsigned int reclaimed, hw_cidx;
1422 	struct sge_txq *q = &eq->q;
1423 	int hw_in_use;
1424 
1425 	if (!q->in_use || !__netif_tx_trylock(eq->txq))
1426 		return 0;
1427 
1428 	/* Reclaim pending completed TX Descriptors. */
1429 	reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true);
1430 
1431 	hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
1432 	hw_in_use = q->pidx - hw_cidx;
1433 	if (hw_in_use < 0)
1434 		hw_in_use += q->size;
1435 
1436 	/* If the TX Queue is currently stopped and there's now more than half
1437 	 * the queue available, restart it.  Otherwise bail out since the rest
1438 	 * of what we want do here is with the possibility of shipping any
1439 	 * currently buffered Coalesced TX Work Request.
1440 	 */
1441 	if (netif_tx_queue_stopped(eq->txq) && hw_in_use < (q->size / 2)) {
1442 		netif_tx_wake_queue(eq->txq);
1443 		eq->q.restarts++;
1444 	}
1445 
1446 	__netif_tx_unlock(eq->txq);
1447 	return reclaimed;
1448 }
1449 
1450 static inline int cxgb4_validate_skb(struct sk_buff *skb,
1451 				     struct net_device *dev,
1452 				     u32 min_pkt_len)
1453 {
1454 	u32 max_pkt_len;
1455 
1456 	/* The chip min packet length is 10 octets but some firmware
1457 	 * commands have a minimum packet length requirement. So, play
1458 	 * safe and reject anything shorter than @min_pkt_len.
1459 	 */
1460 	if (unlikely(skb->len < min_pkt_len))
1461 		return -EINVAL;
1462 
1463 	/* Discard the packet if the length is greater than mtu */
1464 	max_pkt_len = ETH_HLEN + dev->mtu;
1465 
1466 	if (skb_vlan_tagged(skb))
1467 		max_pkt_len += VLAN_HLEN;
1468 
1469 	if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1470 		return -EINVAL;
1471 
1472 	return 0;
1473 }
1474 
1475 static void *write_eo_udp_wr(struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
1476 			     u32 hdr_len)
1477 {
1478 	wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
1479 	wr->u.udpseg.ethlen = skb_network_offset(skb);
1480 	wr->u.udpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
1481 	wr->u.udpseg.udplen = sizeof(struct udphdr);
1482 	wr->u.udpseg.rtplen = 0;
1483 	wr->u.udpseg.r4 = 0;
1484 	if (skb_shinfo(skb)->gso_size)
1485 		wr->u.udpseg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size);
1486 	else
1487 		wr->u.udpseg.mss = cpu_to_be16(skb->len - hdr_len);
1488 	wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
1489 	wr->u.udpseg.plen = cpu_to_be32(skb->len - hdr_len);
1490 
1491 	return (void *)(wr + 1);
1492 }
1493 
1494 /**
1495  *	cxgb4_eth_xmit - add a packet to an Ethernet Tx queue
1496  *	@skb: the packet
1497  *	@dev: the egress net device
1498  *
1499  *	Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
1500  */
1501 static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1502 {
1503 	enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1504 	bool ptp_enabled = is_ptp_enabled(skb, dev);
1505 	unsigned int last_desc, flits, ndesc;
1506 	u32 wr_mid, ctrl0, op, sgl_off = 0;
1507 	const struct skb_shared_info *ssi;
1508 	int len, qidx, credits, ret, left;
1509 	struct tx_sw_desc *sgl_sdesc;
1510 	struct fw_eth_tx_eo_wr *eowr;
1511 	struct fw_eth_tx_pkt_wr *wr;
1512 	struct cpl_tx_pkt_core *cpl;
1513 	const struct port_info *pi;
1514 	bool immediate = false;
1515 	u64 cntrl, *end, *sgl;
1516 	struct sge_eth_txq *q;
1517 	unsigned int chip_ver;
1518 	struct adapter *adap;
1519 
1520 	ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
1521 	if (ret)
1522 		goto out_free;
1523 
1524 	pi = netdev_priv(dev);
1525 	adap = pi->adapter;
1526 	ssi = skb_shinfo(skb);
1527 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
1528 	if (xfrm_offload(skb) && !ssi->gso_size)
1529 		return adap->uld[CXGB4_ULD_IPSEC].tx_handler(skb, dev);
1530 #endif /* CHELSIO_IPSEC_INLINE */
1531 
1532 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
1533 	if (cxgb4_is_ktls_skb(skb) &&
1534 	    (skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb))))
1535 		return adap->uld[CXGB4_ULD_KTLS].tx_handler(skb, dev);
1536 #endif /* CHELSIO_TLS_DEVICE */
1537 
1538 	qidx = skb_get_queue_mapping(skb);
1539 	if (ptp_enabled) {
1540 		if (!(adap->ptp_tx_skb)) {
1541 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1542 			adap->ptp_tx_skb = skb_get(skb);
1543 		} else {
1544 			goto out_free;
1545 		}
1546 		q = &adap->sge.ptptxq;
1547 	} else {
1548 		q = &adap->sge.ethtxq[qidx + pi->first_qset];
1549 	}
1550 	skb_tx_timestamp(skb);
1551 
1552 	reclaim_completed_tx(adap, &q->q, -1, true);
1553 	cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1554 
1555 #ifdef CONFIG_CHELSIO_T4_FCOE
1556 	ret = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
1557 	if (unlikely(ret == -EOPNOTSUPP))
1558 		goto out_free;
1559 #endif /* CONFIG_CHELSIO_T4_FCOE */
1560 
1561 	chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
1562 	flits = calc_tx_flits(skb, chip_ver);
1563 	ndesc = flits_to_desc(flits);
1564 	credits = txq_avail(&q->q) - ndesc;
1565 
1566 	if (unlikely(credits < 0)) {
1567 		eth_txq_stop(q);
1568 		dev_err(adap->pdev_dev,
1569 			"%s: Tx ring %u full while queue awake!\n",
1570 			dev->name, qidx);
1571 		return NETDEV_TX_BUSY;
1572 	}
1573 
1574 	if (is_eth_imm(skb, chip_ver))
1575 		immediate = true;
1576 
1577 	if (skb->encapsulation && chip_ver > CHELSIO_T5)
1578 		tnl_type = cxgb_encap_offload_supported(skb);
1579 
1580 	last_desc = q->q.pidx + ndesc - 1;
1581 	if (last_desc >= q->q.size)
1582 		last_desc -= q->q.size;
1583 	sgl_sdesc = &q->q.sdesc[last_desc];
1584 
1585 	if (!immediate &&
1586 	    unlikely(cxgb4_map_skb(adap->pdev_dev, skb, sgl_sdesc->addr) < 0)) {
1587 		memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
1588 		q->mapping_err++;
1589 		goto out_free;
1590 	}
1591 
1592 	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1593 	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1594 		/* After we're done injecting the Work Request for this
1595 		 * packet, we'll be below our "stop threshold" so stop the TX
1596 		 * Queue now and schedule a request for an SGE Egress Queue
1597 		 * Update message. The queue will get started later on when
1598 		 * the firmware processes this Work Request and sends us an
1599 		 * Egress Queue Status Update message indicating that space
1600 		 * has opened up.
1601 		 */
1602 		eth_txq_stop(q);
1603 		wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1604 	}
1605 
1606 	wr = (void *)&q->q.desc[q->q.pidx];
1607 	eowr = (void *)&q->q.desc[q->q.pidx];
1608 	wr->equiq_to_len16 = htonl(wr_mid);
1609 	wr->r3 = cpu_to_be64(0);
1610 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
1611 		end = (u64 *)eowr + flits;
1612 	else
1613 		end = (u64 *)wr + flits;
1614 
1615 	len = immediate ? skb->len : 0;
1616 	len += sizeof(*cpl);
1617 	if (ssi->gso_size && !(ssi->gso_type & SKB_GSO_UDP_L4)) {
1618 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1619 		struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1);
1620 
1621 		if (tnl_type)
1622 			len += sizeof(*tnl_lso);
1623 		else
1624 			len += sizeof(*lso);
1625 
1626 		wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1627 				       FW_WR_IMMDLEN_V(len));
1628 		if (tnl_type) {
1629 			struct iphdr *iph = ip_hdr(skb);
1630 
1631 			t6_fill_tnl_lso(skb, tnl_lso, tnl_type);
1632 			cpl = (void *)(tnl_lso + 1);
1633 			/* Driver is expected to compute partial checksum that
1634 			 * does not include the IP Total Length.
1635 			 */
1636 			if (iph->version == 4) {
1637 				iph->check = 0;
1638 				iph->tot_len = 0;
1639 				iph->check = ~ip_fast_csum((u8 *)iph, iph->ihl);
1640 			}
1641 			if (skb->ip_summed == CHECKSUM_PARTIAL)
1642 				cntrl = hwcsum(adap->params.chip, skb);
1643 		} else {
1644 			cpl = write_tso_wr(adap, skb, lso);
1645 			cntrl = hwcsum(adap->params.chip, skb);
1646 		}
1647 		sgl = (u64 *)(cpl + 1); /* sgl start here */
1648 		q->tso++;
1649 		q->tx_cso += ssi->gso_segs;
1650 	} else if (ssi->gso_size) {
1651 		u64 *start;
1652 		u32 hdrlen;
1653 
1654 		hdrlen = eth_get_headlen(dev, skb->data, skb_headlen(skb));
1655 		len += hdrlen;
1656 		wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
1657 					     FW_ETH_TX_EO_WR_IMMDLEN_V(len));
1658 		cpl = write_eo_udp_wr(skb, eowr, hdrlen);
1659 		cntrl = hwcsum(adap->params.chip, skb);
1660 
1661 		start = (u64 *)(cpl + 1);
1662 		sgl = (u64 *)inline_tx_skb_header(skb, &q->q, (void *)start,
1663 						  hdrlen);
1664 		if (unlikely(start > sgl)) {
1665 			left = (u8 *)end - (u8 *)q->q.stat;
1666 			end = (void *)q->q.desc + left;
1667 		}
1668 		sgl_off = hdrlen;
1669 		q->uso++;
1670 		q->tx_cso += ssi->gso_segs;
1671 	} else {
1672 		if (ptp_enabled)
1673 			op = FW_PTP_TX_PKT_WR;
1674 		else
1675 			op = FW_ETH_TX_PKT_WR;
1676 		wr->op_immdlen = htonl(FW_WR_OP_V(op) |
1677 				       FW_WR_IMMDLEN_V(len));
1678 		cpl = (void *)(wr + 1);
1679 		sgl = (u64 *)(cpl + 1);
1680 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1681 			cntrl = hwcsum(adap->params.chip, skb) |
1682 				TXPKT_IPCSUM_DIS_F;
1683 			q->tx_cso++;
1684 		}
1685 	}
1686 
1687 	if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) {
1688 		/* If current position is already at the end of the
1689 		 * txq, reset the current to point to start of the queue
1690 		 * and update the end ptr as well.
1691 		 */
1692 		left = (u8 *)end - (u8 *)q->q.stat;
1693 		end = (void *)q->q.desc + left;
1694 		sgl = (void *)q->q.desc;
1695 	}
1696 
1697 	if (skb_vlan_tag_present(skb)) {
1698 		q->vlan_ins++;
1699 		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1700 #ifdef CONFIG_CHELSIO_T4_FCOE
1701 		if (skb->protocol == htons(ETH_P_FCOE))
1702 			cntrl |= TXPKT_VLAN_V(
1703 				 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
1704 #endif /* CONFIG_CHELSIO_T4_FCOE */
1705 	}
1706 
1707 	ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
1708 		TXPKT_PF_V(adap->pf);
1709 	if (ptp_enabled)
1710 		ctrl0 |= TXPKT_TSTAMP_F;
1711 #ifdef CONFIG_CHELSIO_T4_DCB
1712 	if (is_t4(adap->params.chip))
1713 		ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
1714 	else
1715 		ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
1716 #endif
1717 	cpl->ctrl0 = htonl(ctrl0);
1718 	cpl->pack = htons(0);
1719 	cpl->len = htons(skb->len);
1720 	cpl->ctrl1 = cpu_to_be64(cntrl);
1721 
1722 	if (immediate) {
1723 		cxgb4_inline_tx_skb(skb, &q->q, sgl);
1724 		dev_consume_skb_any(skb);
1725 	} else {
1726 		cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, sgl_off,
1727 				sgl_sdesc->addr);
1728 		skb_orphan(skb);
1729 		sgl_sdesc->skb = skb;
1730 	}
1731 
1732 	txq_advance(&q->q, ndesc);
1733 
1734 	cxgb4_ring_tx_db(adap, &q->q, ndesc);
1735 	return NETDEV_TX_OK;
1736 
1737 out_free:
1738 	dev_kfree_skb_any(skb);
1739 	return NETDEV_TX_OK;
1740 }
1741 
1742 /* Constants ... */
1743 enum {
1744 	/* Egress Queue sizes, producer and consumer indices are all in units
1745 	 * of Egress Context Units bytes.  Note that as far as the hardware is
1746 	 * concerned, the free list is an Egress Queue (the host produces free
1747 	 * buffers which the hardware consumes) and free list entries are
1748 	 * 64-bit PCI DMA addresses.
1749 	 */
1750 	EQ_UNIT = SGE_EQ_IDXSIZE,
1751 	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1752 	TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1753 
1754 	T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1755 			       sizeof(struct cpl_tx_pkt_lso_core) +
1756 			       sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
1757 };
1758 
1759 /**
1760  *	t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data?
1761  *	@skb: the packet
1762  *
1763  *	Returns whether an Ethernet packet is small enough to fit completely as
1764  *	immediate data.
1765  */
1766 static inline int t4vf_is_eth_imm(const struct sk_buff *skb)
1767 {
1768 	/* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
1769 	 * which does not accommodate immediate data.  We could dike out all
1770 	 * of the support code for immediate data but that would tie our hands
1771 	 * too much if we ever want to enhace the firmware.  It would also
1772 	 * create more differences between the PF and VF Drivers.
1773 	 */
1774 	return false;
1775 }
1776 
1777 /**
1778  *	t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR
1779  *	@skb: the packet
1780  *
1781  *	Returns the number of flits needed for a TX Work Request for the
1782  *	given Ethernet packet, including the needed WR and CPL headers.
1783  */
1784 static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb)
1785 {
1786 	unsigned int flits;
1787 
1788 	/* If the skb is small enough, we can pump it out as a work request
1789 	 * with only immediate data.  In that case we just have to have the
1790 	 * TX Packet header plus the skb data in the Work Request.
1791 	 */
1792 	if (t4vf_is_eth_imm(skb))
1793 		return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
1794 				    sizeof(__be64));
1795 
1796 	/* Otherwise, we're going to have to construct a Scatter gather list
1797 	 * of the skb body and fragments.  We also include the flits necessary
1798 	 * for the TX Packet Work Request and CPL.  We always have a firmware
1799 	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
1800 	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
1801 	 * message or, if we're doing a Large Send Offload, an LSO CPL message
1802 	 * with an embedded TX Packet Write CPL message.
1803 	 */
1804 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
1805 	if (skb_shinfo(skb)->gso_size)
1806 		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1807 			  sizeof(struct cpl_tx_pkt_lso_core) +
1808 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1809 	else
1810 		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1811 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1812 	return flits;
1813 }
1814 
1815 /**
1816  *	cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue
1817  *	@skb: the packet
1818  *	@dev: the egress net device
1819  *
1820  *	Add a packet to an SGE Ethernet TX queue.  Runs with softirqs disabled.
1821  */
1822 static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb,
1823 				     struct net_device *dev)
1824 {
1825 	unsigned int last_desc, flits, ndesc;
1826 	const struct skb_shared_info *ssi;
1827 	struct fw_eth_tx_pkt_vm_wr *wr;
1828 	struct tx_sw_desc *sgl_sdesc;
1829 	struct cpl_tx_pkt_core *cpl;
1830 	const struct port_info *pi;
1831 	struct sge_eth_txq *txq;
1832 	struct adapter *adapter;
1833 	int qidx, credits, ret;
1834 	size_t fw_hdr_copy_len;
1835 	u64 cntrl, *end;
1836 	u32 wr_mid;
1837 
1838 	/* The chip minimum packet length is 10 octets but the firmware
1839 	 * command that we are using requires that we copy the Ethernet header
1840 	 * (including the VLAN tag) into the header so we reject anything
1841 	 * smaller than that ...
1842 	 */
1843 	fw_hdr_copy_len = sizeof(wr->ethmacdst) + sizeof(wr->ethmacsrc) +
1844 			  sizeof(wr->ethtype) + sizeof(wr->vlantci);
1845 	ret = cxgb4_validate_skb(skb, dev, fw_hdr_copy_len);
1846 	if (ret)
1847 		goto out_free;
1848 
1849 	/* Figure out which TX Queue we're going to use. */
1850 	pi = netdev_priv(dev);
1851 	adapter = pi->adapter;
1852 	qidx = skb_get_queue_mapping(skb);
1853 	WARN_ON(qidx >= pi->nqsets);
1854 	txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1855 
1856 	/* Take this opportunity to reclaim any TX Descriptors whose DMA
1857 	 * transfers have completed.
1858 	 */
1859 	reclaim_completed_tx(adapter, &txq->q, -1, true);
1860 
1861 	/* Calculate the number of flits and TX Descriptors we're going to
1862 	 * need along with how many TX Descriptors will be left over after
1863 	 * we inject our Work Request.
1864 	 */
1865 	flits = t4vf_calc_tx_flits(skb);
1866 	ndesc = flits_to_desc(flits);
1867 	credits = txq_avail(&txq->q) - ndesc;
1868 
1869 	if (unlikely(credits < 0)) {
1870 		/* Not enough room for this packet's Work Request.  Stop the
1871 		 * TX Queue and return a "busy" condition.  The queue will get
1872 		 * started later on when the firmware informs us that space
1873 		 * has opened up.
1874 		 */
1875 		eth_txq_stop(txq);
1876 		dev_err(adapter->pdev_dev,
1877 			"%s: TX ring %u full while queue awake!\n",
1878 			dev->name, qidx);
1879 		return NETDEV_TX_BUSY;
1880 	}
1881 
1882 	last_desc = txq->q.pidx + ndesc - 1;
1883 	if (last_desc >= txq->q.size)
1884 		last_desc -= txq->q.size;
1885 	sgl_sdesc = &txq->q.sdesc[last_desc];
1886 
1887 	if (!t4vf_is_eth_imm(skb) &&
1888 	    unlikely(cxgb4_map_skb(adapter->pdev_dev, skb,
1889 				   sgl_sdesc->addr) < 0)) {
1890 		/* We need to map the skb into PCI DMA space (because it can't
1891 		 * be in-lined directly into the Work Request) and the mapping
1892 		 * operation failed.  Record the error and drop the packet.
1893 		 */
1894 		memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
1895 		txq->mapping_err++;
1896 		goto out_free;
1897 	}
1898 
1899 	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1900 	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1901 		/* After we're done injecting the Work Request for this
1902 		 * packet, we'll be below our "stop threshold" so stop the TX
1903 		 * Queue now and schedule a request for an SGE Egress Queue
1904 		 * Update message.  The queue will get started later on when
1905 		 * the firmware processes this Work Request and sends us an
1906 		 * Egress Queue Status Update message indicating that space
1907 		 * has opened up.
1908 		 */
1909 		eth_txq_stop(txq);
1910 		wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1911 	}
1912 
1913 	/* Start filling in our Work Request.  Note that we do _not_ handle
1914 	 * the WR Header wrapping around the TX Descriptor Ring.  If our
1915 	 * maximum header size ever exceeds one TX Descriptor, we'll need to
1916 	 * do something else here.
1917 	 */
1918 	WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1919 	wr = (void *)&txq->q.desc[txq->q.pidx];
1920 	wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1921 	wr->r3[0] = cpu_to_be32(0);
1922 	wr->r3[1] = cpu_to_be32(0);
1923 	skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
1924 	end = (u64 *)wr + flits;
1925 
1926 	/* If this is a Large Send Offload packet we'll put in an LSO CPL
1927 	 * message with an encapsulated TX Packet CPL message.  Otherwise we
1928 	 * just use a TX Packet CPL message.
1929 	 */
1930 	ssi = skb_shinfo(skb);
1931 	if (ssi->gso_size) {
1932 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1933 		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1934 		int l3hdr_len = skb_network_header_len(skb);
1935 		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1936 
1937 		wr->op_immdlen =
1938 			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1939 				    FW_WR_IMMDLEN_V(sizeof(*lso) +
1940 						    sizeof(*cpl)));
1941 		 /* Fill in the LSO CPL message. */
1942 		lso->lso_ctrl =
1943 			cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1944 				    LSO_FIRST_SLICE_F |
1945 				    LSO_LAST_SLICE_F |
1946 				    LSO_IPV6_V(v6) |
1947 				    LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1948 				    LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1949 				    LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1950 		lso->ipid_ofst = cpu_to_be16(0);
1951 		lso->mss = cpu_to_be16(ssi->gso_size);
1952 		lso->seqno_offset = cpu_to_be32(0);
1953 		if (is_t4(adapter->params.chip))
1954 			lso->len = cpu_to_be32(skb->len);
1955 		else
1956 			lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len));
1957 
1958 		/* Set up TX Packet CPL pointer, control word and perform
1959 		 * accounting.
1960 		 */
1961 		cpl = (void *)(lso + 1);
1962 
1963 		if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
1964 			cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1965 		else
1966 			cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1967 
1968 		cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1969 					   TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1970 			 TXPKT_IPHDR_LEN_V(l3hdr_len);
1971 		txq->tso++;
1972 		txq->tx_cso += ssi->gso_segs;
1973 	} else {
1974 		int len;
1975 
1976 		len = (t4vf_is_eth_imm(skb)
1977 		       ? skb->len + sizeof(*cpl)
1978 		       : sizeof(*cpl));
1979 		wr->op_immdlen =
1980 			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1981 				    FW_WR_IMMDLEN_V(len));
1982 
1983 		/* Set up TX Packet CPL pointer, control word and perform
1984 		 * accounting.
1985 		 */
1986 		cpl = (void *)(wr + 1);
1987 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1988 			cntrl = hwcsum(adapter->params.chip, skb) |
1989 				TXPKT_IPCSUM_DIS_F;
1990 			txq->tx_cso++;
1991 		} else {
1992 			cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1993 		}
1994 	}
1995 
1996 	/* If there's a VLAN tag present, add that to the list of things to
1997 	 * do in this Work Request.
1998 	 */
1999 	if (skb_vlan_tag_present(skb)) {
2000 		txq->vlan_ins++;
2001 		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
2002 	}
2003 
2004 	 /* Fill in the TX Packet CPL message header. */
2005 	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
2006 				 TXPKT_INTF_V(pi->port_id) |
2007 				 TXPKT_PF_V(0));
2008 	cpl->pack = cpu_to_be16(0);
2009 	cpl->len = cpu_to_be16(skb->len);
2010 	cpl->ctrl1 = cpu_to_be64(cntrl);
2011 
2012 	/* Fill in the body of the TX Packet CPL message with either in-lined
2013 	 * data or a Scatter/Gather List.
2014 	 */
2015 	if (t4vf_is_eth_imm(skb)) {
2016 		/* In-line the packet's data and free the skb since we don't
2017 		 * need it any longer.
2018 		 */
2019 		cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1);
2020 		dev_consume_skb_any(skb);
2021 	} else {
2022 		/* Write the skb's Scatter/Gather list into the TX Packet CPL
2023 		 * message and retain a pointer to the skb so we can free it
2024 		 * later when its DMA completes.  (We store the skb pointer
2025 		 * in the Software Descriptor corresponding to the last TX
2026 		 * Descriptor used by the Work Request.)
2027 		 *
2028 		 * The retained skb will be freed when the corresponding TX
2029 		 * Descriptors are reclaimed after their DMAs complete.
2030 		 * However, this could take quite a while since, in general,
2031 		 * the hardware is set up to be lazy about sending DMA
2032 		 * completion notifications to us and we mostly perform TX
2033 		 * reclaims in the transmit routine.
2034 		 *
2035 		 * This is good for performamce but means that we rely on new
2036 		 * TX packets arriving to run the destructors of completed
2037 		 * packets, which open up space in their sockets' send queues.
2038 		 * Sometimes we do not get such new packets causing TX to
2039 		 * stall.  A single UDP transmitter is a good example of this
2040 		 * situation.  We have a clean up timer that periodically
2041 		 * reclaims completed packets but it doesn't run often enough
2042 		 * (nor do we want it to) to prevent lengthy stalls.  A
2043 		 * solution to this problem is to run the destructor early,
2044 		 * after the packet is queued but before it's DMAd.  A con is
2045 		 * that we lie to socket memory accounting, but the amount of
2046 		 * extra memory is reasonable (limited by the number of TX
2047 		 * descriptors), the packets do actually get freed quickly by
2048 		 * new packets almost always, and for protocols like TCP that
2049 		 * wait for acks to really free up the data the extra memory
2050 		 * is even less.  On the positive side we run the destructors
2051 		 * on the sending CPU rather than on a potentially different
2052 		 * completing CPU, usually a good thing.
2053 		 *
2054 		 * Run the destructor before telling the DMA engine about the
2055 		 * packet to make sure it doesn't complete and get freed
2056 		 * prematurely.
2057 		 */
2058 		struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
2059 		struct sge_txq *tq = &txq->q;
2060 
2061 		/* If the Work Request header was an exact multiple of our TX
2062 		 * Descriptor length, then it's possible that the starting SGL
2063 		 * pointer lines up exactly with the end of our TX Descriptor
2064 		 * ring.  If that's the case, wrap around to the beginning
2065 		 * here ...
2066 		 */
2067 		if (unlikely((void *)sgl == (void *)tq->stat)) {
2068 			sgl = (void *)tq->desc;
2069 			end = (void *)((void *)tq->desc +
2070 				       ((void *)end - (void *)tq->stat));
2071 		}
2072 
2073 		cxgb4_write_sgl(skb, tq, sgl, end, 0, sgl_sdesc->addr);
2074 		skb_orphan(skb);
2075 		sgl_sdesc->skb = skb;
2076 	}
2077 
2078 	/* Advance our internal TX Queue state, tell the hardware about
2079 	 * the new TX descriptors and return success.
2080 	 */
2081 	txq_advance(&txq->q, ndesc);
2082 
2083 	cxgb4_ring_tx_db(adapter, &txq->q, ndesc);
2084 	return NETDEV_TX_OK;
2085 
2086 out_free:
2087 	/* An error of some sort happened.  Free the TX skb and tell the
2088 	 * OS that we've "dealt" with the packet ...
2089 	 */
2090 	dev_kfree_skb_any(skb);
2091 	return NETDEV_TX_OK;
2092 }
2093 
2094 /**
2095  * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
2096  * @q: the SGE control Tx queue
2097  *
2098  * This is a variant of cxgb4_reclaim_completed_tx() that is used
2099  * for Tx queues that send only immediate data (presently just
2100  * the control queues) and	thus do not have any sk_buffs to release.
2101  */
2102 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
2103 {
2104 	int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
2105 	int reclaim = hw_cidx - q->cidx;
2106 
2107 	if (reclaim < 0)
2108 		reclaim += q->size;
2109 
2110 	q->in_use -= reclaim;
2111 	q->cidx = hw_cidx;
2112 }
2113 
2114 static inline void eosw_txq_advance_index(u32 *idx, u32 n, u32 max)
2115 {
2116 	u32 val = *idx + n;
2117 
2118 	if (val >= max)
2119 		val -= max;
2120 
2121 	*idx = val;
2122 }
2123 
2124 void cxgb4_eosw_txq_free_desc(struct adapter *adap,
2125 			      struct sge_eosw_txq *eosw_txq, u32 ndesc)
2126 {
2127 	struct tx_sw_desc *d;
2128 
2129 	d = &eosw_txq->desc[eosw_txq->last_cidx];
2130 	while (ndesc--) {
2131 		if (d->skb) {
2132 			if (d->addr[0]) {
2133 				unmap_skb(adap->pdev_dev, d->skb, d->addr);
2134 				memset(d->addr, 0, sizeof(d->addr));
2135 			}
2136 			dev_consume_skb_any(d->skb);
2137 			d->skb = NULL;
2138 		}
2139 		eosw_txq_advance_index(&eosw_txq->last_cidx, 1,
2140 				       eosw_txq->ndesc);
2141 		d = &eosw_txq->desc[eosw_txq->last_cidx];
2142 	}
2143 }
2144 
2145 static inline void eosw_txq_advance(struct sge_eosw_txq *eosw_txq, u32 n)
2146 {
2147 	eosw_txq_advance_index(&eosw_txq->pidx, n, eosw_txq->ndesc);
2148 	eosw_txq->inuse += n;
2149 }
2150 
2151 static inline int eosw_txq_enqueue(struct sge_eosw_txq *eosw_txq,
2152 				   struct sk_buff *skb)
2153 {
2154 	if (eosw_txq->inuse == eosw_txq->ndesc)
2155 		return -ENOMEM;
2156 
2157 	eosw_txq->desc[eosw_txq->pidx].skb = skb;
2158 	return 0;
2159 }
2160 
2161 static inline struct sk_buff *eosw_txq_peek(struct sge_eosw_txq *eosw_txq)
2162 {
2163 	return eosw_txq->desc[eosw_txq->last_pidx].skb;
2164 }
2165 
2166 static inline u8 ethofld_calc_tx_flits(struct adapter *adap,
2167 				       struct sk_buff *skb, u32 hdr_len)
2168 {
2169 	u8 flits, nsgl = 0;
2170 	u32 wrlen;
2171 
2172 	wrlen = sizeof(struct fw_eth_tx_eo_wr) + sizeof(struct cpl_tx_pkt_core);
2173 	if (skb_shinfo(skb)->gso_size &&
2174 	    !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
2175 		wrlen += sizeof(struct cpl_tx_pkt_lso_core);
2176 
2177 	wrlen += roundup(hdr_len, 16);
2178 
2179 	/* Packet headers + WR + CPLs */
2180 	flits = DIV_ROUND_UP(wrlen, 8);
2181 
2182 	if (skb_shinfo(skb)->nr_frags > 0) {
2183 		if (skb_headlen(skb) - hdr_len)
2184 			nsgl = sgl_len(skb_shinfo(skb)->nr_frags + 1);
2185 		else
2186 			nsgl = sgl_len(skb_shinfo(skb)->nr_frags);
2187 	} else if (skb->len - hdr_len) {
2188 		nsgl = sgl_len(1);
2189 	}
2190 
2191 	return flits + nsgl;
2192 }
2193 
2194 static void *write_eo_wr(struct adapter *adap, struct sge_eosw_txq *eosw_txq,
2195 			 struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
2196 			 u32 hdr_len, u32 wrlen)
2197 {
2198 	const struct skb_shared_info *ssi = skb_shinfo(skb);
2199 	struct cpl_tx_pkt_core *cpl;
2200 	u32 immd_len, wrlen16;
2201 	bool compl = false;
2202 	u8 ver, proto;
2203 
2204 	ver = ip_hdr(skb)->version;
2205 	proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : ip_hdr(skb)->protocol;
2206 
2207 	wrlen16 = DIV_ROUND_UP(wrlen, 16);
2208 	immd_len = sizeof(struct cpl_tx_pkt_core);
2209 	if (skb_shinfo(skb)->gso_size &&
2210 	    !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
2211 		immd_len += sizeof(struct cpl_tx_pkt_lso_core);
2212 	immd_len += hdr_len;
2213 
2214 	if (!eosw_txq->ncompl ||
2215 	    (eosw_txq->last_compl + wrlen16) >=
2216 	    (adap->params.ofldq_wr_cred / 2)) {
2217 		compl = true;
2218 		eosw_txq->ncompl++;
2219 		eosw_txq->last_compl = 0;
2220 	}
2221 
2222 	wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
2223 				     FW_ETH_TX_EO_WR_IMMDLEN_V(immd_len) |
2224 				     FW_WR_COMPL_V(compl));
2225 	wr->equiq_to_len16 = cpu_to_be32(FW_WR_LEN16_V(wrlen16) |
2226 					 FW_WR_FLOWID_V(eosw_txq->hwtid));
2227 	wr->r3 = 0;
2228 	if (proto == IPPROTO_UDP) {
2229 		cpl = write_eo_udp_wr(skb, wr, hdr_len);
2230 	} else {
2231 		wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
2232 		wr->u.tcpseg.ethlen = skb_network_offset(skb);
2233 		wr->u.tcpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
2234 		wr->u.tcpseg.tcplen = tcp_hdrlen(skb);
2235 		wr->u.tcpseg.tsclk_tsoff = 0;
2236 		wr->u.tcpseg.r4 = 0;
2237 		wr->u.tcpseg.r5 = 0;
2238 		wr->u.tcpseg.plen = cpu_to_be32(skb->len - hdr_len);
2239 
2240 		if (ssi->gso_size) {
2241 			struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
2242 
2243 			wr->u.tcpseg.mss = cpu_to_be16(ssi->gso_size);
2244 			cpl = write_tso_wr(adap, skb, lso);
2245 		} else {
2246 			wr->u.tcpseg.mss = cpu_to_be16(0xffff);
2247 			cpl = (void *)(wr + 1);
2248 		}
2249 	}
2250 
2251 	eosw_txq->cred -= wrlen16;
2252 	eosw_txq->last_compl += wrlen16;
2253 	return cpl;
2254 }
2255 
2256 static int ethofld_hard_xmit(struct net_device *dev,
2257 			     struct sge_eosw_txq *eosw_txq)
2258 {
2259 	struct port_info *pi = netdev2pinfo(dev);
2260 	struct adapter *adap = netdev2adap(dev);
2261 	u32 wrlen, wrlen16, hdr_len, data_len;
2262 	enum sge_eosw_state next_state;
2263 	u64 cntrl, *start, *end, *sgl;
2264 	struct sge_eohw_txq *eohw_txq;
2265 	struct cpl_tx_pkt_core *cpl;
2266 	struct fw_eth_tx_eo_wr *wr;
2267 	bool skip_eotx_wr = false;
2268 	struct tx_sw_desc *d;
2269 	struct sk_buff *skb;
2270 	int left, ret = 0;
2271 	u8 flits, ndesc;
2272 
2273 	eohw_txq = &adap->sge.eohw_txq[eosw_txq->hwqid];
2274 	spin_lock(&eohw_txq->lock);
2275 	reclaim_completed_tx_imm(&eohw_txq->q);
2276 
2277 	d = &eosw_txq->desc[eosw_txq->last_pidx];
2278 	skb = d->skb;
2279 	skb_tx_timestamp(skb);
2280 
2281 	wr = (struct fw_eth_tx_eo_wr *)&eohw_txq->q.desc[eohw_txq->q.pidx];
2282 	if (unlikely(eosw_txq->state != CXGB4_EO_STATE_ACTIVE &&
2283 		     eosw_txq->last_pidx == eosw_txq->flowc_idx)) {
2284 		hdr_len = skb->len;
2285 		data_len = 0;
2286 		flits = DIV_ROUND_UP(hdr_len, 8);
2287 		if (eosw_txq->state == CXGB4_EO_STATE_FLOWC_OPEN_SEND)
2288 			next_state = CXGB4_EO_STATE_FLOWC_OPEN_REPLY;
2289 		else
2290 			next_state = CXGB4_EO_STATE_FLOWC_CLOSE_REPLY;
2291 		skip_eotx_wr = true;
2292 	} else {
2293 		hdr_len = eth_get_headlen(dev, skb->data, skb_headlen(skb));
2294 		data_len = skb->len - hdr_len;
2295 		flits = ethofld_calc_tx_flits(adap, skb, hdr_len);
2296 	}
2297 	ndesc = flits_to_desc(flits);
2298 	wrlen = flits * 8;
2299 	wrlen16 = DIV_ROUND_UP(wrlen, 16);
2300 
2301 	left = txq_avail(&eohw_txq->q) - ndesc;
2302 
2303 	/* If there are no descriptors left in hardware queues or no
2304 	 * CPL credits left in software queues, then wait for them
2305 	 * to come back and retry again. Note that we always request
2306 	 * for credits update via interrupt for every half credits
2307 	 * consumed. So, the interrupt will eventually restore the
2308 	 * credits and invoke the Tx path again.
2309 	 */
2310 	if (unlikely(left < 0 || wrlen16 > eosw_txq->cred)) {
2311 		ret = -ENOMEM;
2312 		goto out_unlock;
2313 	}
2314 
2315 	if (unlikely(skip_eotx_wr)) {
2316 		start = (u64 *)wr;
2317 		eosw_txq->state = next_state;
2318 		eosw_txq->cred -= wrlen16;
2319 		eosw_txq->ncompl++;
2320 		eosw_txq->last_compl = 0;
2321 		goto write_wr_headers;
2322 	}
2323 
2324 	cpl = write_eo_wr(adap, eosw_txq, skb, wr, hdr_len, wrlen);
2325 	cntrl = hwcsum(adap->params.chip, skb);
2326 	if (skb_vlan_tag_present(skb))
2327 		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
2328 
2329 	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
2330 				 TXPKT_INTF_V(pi->tx_chan) |
2331 				 TXPKT_PF_V(adap->pf));
2332 	cpl->pack = 0;
2333 	cpl->len = cpu_to_be16(skb->len);
2334 	cpl->ctrl1 = cpu_to_be64(cntrl);
2335 
2336 	start = (u64 *)(cpl + 1);
2337 
2338 write_wr_headers:
2339 	sgl = (u64 *)inline_tx_skb_header(skb, &eohw_txq->q, (void *)start,
2340 					  hdr_len);
2341 	if (data_len) {
2342 		ret = cxgb4_map_skb(adap->pdev_dev, skb, d->addr);
2343 		if (unlikely(ret)) {
2344 			memset(d->addr, 0, sizeof(d->addr));
2345 			eohw_txq->mapping_err++;
2346 			goto out_unlock;
2347 		}
2348 
2349 		end = (u64 *)wr + flits;
2350 		if (unlikely(start > sgl)) {
2351 			left = (u8 *)end - (u8 *)eohw_txq->q.stat;
2352 			end = (void *)eohw_txq->q.desc + left;
2353 		}
2354 
2355 		if (unlikely((u8 *)sgl >= (u8 *)eohw_txq->q.stat)) {
2356 			/* If current position is already at the end of the
2357 			 * txq, reset the current to point to start of the queue
2358 			 * and update the end ptr as well.
2359 			 */
2360 			left = (u8 *)end - (u8 *)eohw_txq->q.stat;
2361 
2362 			end = (void *)eohw_txq->q.desc + left;
2363 			sgl = (void *)eohw_txq->q.desc;
2364 		}
2365 
2366 		cxgb4_write_sgl(skb, &eohw_txq->q, (void *)sgl, end, hdr_len,
2367 				d->addr);
2368 	}
2369 
2370 	if (skb_shinfo(skb)->gso_size) {
2371 		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
2372 			eohw_txq->uso++;
2373 		else
2374 			eohw_txq->tso++;
2375 		eohw_txq->tx_cso += skb_shinfo(skb)->gso_segs;
2376 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2377 		eohw_txq->tx_cso++;
2378 	}
2379 
2380 	if (skb_vlan_tag_present(skb))
2381 		eohw_txq->vlan_ins++;
2382 
2383 	txq_advance(&eohw_txq->q, ndesc);
2384 	cxgb4_ring_tx_db(adap, &eohw_txq->q, ndesc);
2385 	eosw_txq_advance_index(&eosw_txq->last_pidx, 1, eosw_txq->ndesc);
2386 
2387 out_unlock:
2388 	spin_unlock(&eohw_txq->lock);
2389 	return ret;
2390 }
2391 
2392 static void ethofld_xmit(struct net_device *dev, struct sge_eosw_txq *eosw_txq)
2393 {
2394 	struct sk_buff *skb;
2395 	int pktcount, ret;
2396 
2397 	switch (eosw_txq->state) {
2398 	case CXGB4_EO_STATE_ACTIVE:
2399 	case CXGB4_EO_STATE_FLOWC_OPEN_SEND:
2400 	case CXGB4_EO_STATE_FLOWC_CLOSE_SEND:
2401 		pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
2402 		if (pktcount < 0)
2403 			pktcount += eosw_txq->ndesc;
2404 		break;
2405 	case CXGB4_EO_STATE_FLOWC_OPEN_REPLY:
2406 	case CXGB4_EO_STATE_FLOWC_CLOSE_REPLY:
2407 	case CXGB4_EO_STATE_CLOSED:
2408 	default:
2409 		return;
2410 	}
2411 
2412 	while (pktcount--) {
2413 		skb = eosw_txq_peek(eosw_txq);
2414 		if (!skb) {
2415 			eosw_txq_advance_index(&eosw_txq->last_pidx, 1,
2416 					       eosw_txq->ndesc);
2417 			continue;
2418 		}
2419 
2420 		ret = ethofld_hard_xmit(dev, eosw_txq);
2421 		if (ret)
2422 			break;
2423 	}
2424 }
2425 
2426 static netdev_tx_t cxgb4_ethofld_xmit(struct sk_buff *skb,
2427 				      struct net_device *dev)
2428 {
2429 	struct cxgb4_tc_port_mqprio *tc_port_mqprio;
2430 	struct port_info *pi = netdev2pinfo(dev);
2431 	struct adapter *adap = netdev2adap(dev);
2432 	struct sge_eosw_txq *eosw_txq;
2433 	u32 qid;
2434 	int ret;
2435 
2436 	ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
2437 	if (ret)
2438 		goto out_free;
2439 
2440 	tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id];
2441 	qid = skb_get_queue_mapping(skb) - pi->nqsets;
2442 	eosw_txq = &tc_port_mqprio->eosw_txq[qid];
2443 	spin_lock_bh(&eosw_txq->lock);
2444 	if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
2445 		goto out_unlock;
2446 
2447 	ret = eosw_txq_enqueue(eosw_txq, skb);
2448 	if (ret)
2449 		goto out_unlock;
2450 
2451 	/* SKB is queued for processing until credits are available.
2452 	 * So, call the destructor now and we'll free the skb later
2453 	 * after it has been successfully transmitted.
2454 	 */
2455 	skb_orphan(skb);
2456 
2457 	eosw_txq_advance(eosw_txq, 1);
2458 	ethofld_xmit(dev, eosw_txq);
2459 	spin_unlock_bh(&eosw_txq->lock);
2460 	return NETDEV_TX_OK;
2461 
2462 out_unlock:
2463 	spin_unlock_bh(&eosw_txq->lock);
2464 out_free:
2465 	dev_kfree_skb_any(skb);
2466 	return NETDEV_TX_OK;
2467 }
2468 
2469 netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev)
2470 {
2471 	struct port_info *pi = netdev_priv(dev);
2472 	u16 qid = skb_get_queue_mapping(skb);
2473 
2474 	if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM))
2475 		return cxgb4_vf_eth_xmit(skb, dev);
2476 
2477 	if (unlikely(qid >= pi->nqsets))
2478 		return cxgb4_ethofld_xmit(skb, dev);
2479 
2480 	if (is_ptp_enabled(skb, dev)) {
2481 		struct adapter *adap = netdev2adap(dev);
2482 		netdev_tx_t ret;
2483 
2484 		spin_lock(&adap->ptp_lock);
2485 		ret = cxgb4_eth_xmit(skb, dev);
2486 		spin_unlock(&adap->ptp_lock);
2487 		return ret;
2488 	}
2489 
2490 	return cxgb4_eth_xmit(skb, dev);
2491 }
2492 
2493 static void eosw_txq_flush_pending_skbs(struct sge_eosw_txq *eosw_txq)
2494 {
2495 	int pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
2496 	int pidx = eosw_txq->pidx;
2497 	struct sk_buff *skb;
2498 
2499 	if (!pktcount)
2500 		return;
2501 
2502 	if (pktcount < 0)
2503 		pktcount += eosw_txq->ndesc;
2504 
2505 	while (pktcount--) {
2506 		pidx--;
2507 		if (pidx < 0)
2508 			pidx += eosw_txq->ndesc;
2509 
2510 		skb = eosw_txq->desc[pidx].skb;
2511 		if (skb) {
2512 			dev_consume_skb_any(skb);
2513 			eosw_txq->desc[pidx].skb = NULL;
2514 			eosw_txq->inuse--;
2515 		}
2516 	}
2517 
2518 	eosw_txq->pidx = eosw_txq->last_pidx + 1;
2519 }
2520 
2521 /**
2522  * cxgb4_ethofld_send_flowc - Send ETHOFLD flowc request to bind eotid to tc.
2523  * @dev: netdevice
2524  * @eotid: ETHOFLD tid to bind/unbind
2525  * @tc: traffic class. If set to FW_SCHED_CLS_NONE, then unbinds the @eotid
2526  *
2527  * Send a FLOWC work request to bind an ETHOFLD TID to a traffic class.
2528  * If @tc is set to FW_SCHED_CLS_NONE, then the @eotid is unbound from
2529  * a traffic class.
2530  */
2531 int cxgb4_ethofld_send_flowc(struct net_device *dev, u32 eotid, u32 tc)
2532 {
2533 	struct port_info *pi = netdev2pinfo(dev);
2534 	struct adapter *adap = netdev2adap(dev);
2535 	enum sge_eosw_state next_state;
2536 	struct sge_eosw_txq *eosw_txq;
2537 	u32 len, len16, nparams = 6;
2538 	struct fw_flowc_wr *flowc;
2539 	struct eotid_entry *entry;
2540 	struct sge_ofld_rxq *rxq;
2541 	struct sk_buff *skb;
2542 	int ret = 0;
2543 
2544 	len = struct_size(flowc, mnemval, nparams);
2545 	len16 = DIV_ROUND_UP(len, 16);
2546 
2547 	entry = cxgb4_lookup_eotid(&adap->tids, eotid);
2548 	if (!entry)
2549 		return -ENOMEM;
2550 
2551 	eosw_txq = (struct sge_eosw_txq *)entry->data;
2552 	if (!eosw_txq)
2553 		return -ENOMEM;
2554 
2555 	skb = alloc_skb(len, GFP_KERNEL);
2556 	if (!skb)
2557 		return -ENOMEM;
2558 
2559 	spin_lock_bh(&eosw_txq->lock);
2560 	if (tc != FW_SCHED_CLS_NONE) {
2561 		if (eosw_txq->state != CXGB4_EO_STATE_CLOSED)
2562 			goto out_unlock;
2563 
2564 		next_state = CXGB4_EO_STATE_FLOWC_OPEN_SEND;
2565 	} else {
2566 		if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
2567 			goto out_unlock;
2568 
2569 		next_state = CXGB4_EO_STATE_FLOWC_CLOSE_SEND;
2570 	}
2571 
2572 	flowc = __skb_put(skb, len);
2573 	memset(flowc, 0, len);
2574 
2575 	rxq = &adap->sge.eohw_rxq[eosw_txq->hwqid];
2576 	flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(len16) |
2577 					  FW_WR_FLOWID_V(eosw_txq->hwtid));
2578 	flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
2579 					   FW_FLOWC_WR_NPARAMS_V(nparams) |
2580 					   FW_WR_COMPL_V(1));
2581 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
2582 	flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V(adap->pf));
2583 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
2584 	flowc->mnemval[1].val = cpu_to_be32(pi->tx_chan);
2585 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
2586 	flowc->mnemval[2].val = cpu_to_be32(pi->tx_chan);
2587 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
2588 	flowc->mnemval[3].val = cpu_to_be32(rxq->rspq.abs_id);
2589 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
2590 	flowc->mnemval[4].val = cpu_to_be32(tc);
2591 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_EOSTATE;
2592 	flowc->mnemval[5].val = cpu_to_be32(tc == FW_SCHED_CLS_NONE ?
2593 					    FW_FLOWC_MNEM_EOSTATE_CLOSING :
2594 					    FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
2595 
2596 	/* Free up any pending skbs to ensure there's room for
2597 	 * termination FLOWC.
2598 	 */
2599 	if (tc == FW_SCHED_CLS_NONE)
2600 		eosw_txq_flush_pending_skbs(eosw_txq);
2601 
2602 	ret = eosw_txq_enqueue(eosw_txq, skb);
2603 	if (ret) {
2604 		dev_consume_skb_any(skb);
2605 		goto out_unlock;
2606 	}
2607 
2608 	eosw_txq->state = next_state;
2609 	eosw_txq->flowc_idx = eosw_txq->pidx;
2610 	eosw_txq_advance(eosw_txq, 1);
2611 	ethofld_xmit(dev, eosw_txq);
2612 
2613 out_unlock:
2614 	spin_unlock_bh(&eosw_txq->lock);
2615 	return ret;
2616 }
2617 
2618 /**
2619  *	is_imm - check whether a packet can be sent as immediate data
2620  *	@skb: the packet
2621  *
2622  *	Returns true if a packet can be sent as a WR with immediate data.
2623  */
2624 static inline int is_imm(const struct sk_buff *skb)
2625 {
2626 	return skb->len <= MAX_CTRL_WR_LEN;
2627 }
2628 
2629 /**
2630  *	ctrlq_check_stop - check if a control queue is full and should stop
2631  *	@q: the queue
2632  *	@wr: most recent WR written to the queue
2633  *
2634  *	Check if a control queue has become full and should be stopped.
2635  *	We clean up control queue descriptors very lazily, only when we are out.
2636  *	If the queue is still full after reclaiming any completed descriptors
2637  *	we suspend it and have the last WR wake it up.
2638  */
2639 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
2640 {
2641 	reclaim_completed_tx_imm(&q->q);
2642 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2643 		wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2644 		q->q.stops++;
2645 		q->full = 1;
2646 	}
2647 }
2648 
2649 #define CXGB4_SELFTEST_LB_STR "CHELSIO_SELFTEST"
2650 
2651 int cxgb4_selftest_lb_pkt(struct net_device *netdev)
2652 {
2653 	struct port_info *pi = netdev_priv(netdev);
2654 	struct adapter *adap = pi->adapter;
2655 	struct cxgb4_ethtool_lb_test *lb;
2656 	int ret, i = 0, pkt_len, credits;
2657 	struct fw_eth_tx_pkt_wr *wr;
2658 	struct cpl_tx_pkt_core *cpl;
2659 	u32 ctrl0, ndesc, flits;
2660 	struct sge_eth_txq *q;
2661 	u8 *sgl;
2662 
2663 	pkt_len = ETH_HLEN + sizeof(CXGB4_SELFTEST_LB_STR);
2664 
2665 	flits = DIV_ROUND_UP(pkt_len + sizeof(*cpl) + sizeof(*wr),
2666 			     sizeof(__be64));
2667 	ndesc = flits_to_desc(flits);
2668 
2669 	lb = &pi->ethtool_lb;
2670 	lb->loopback = 1;
2671 
2672 	q = &adap->sge.ethtxq[pi->first_qset];
2673 	__netif_tx_lock(q->txq, smp_processor_id());
2674 
2675 	reclaim_completed_tx(adap, &q->q, -1, true);
2676 	credits = txq_avail(&q->q) - ndesc;
2677 	if (unlikely(credits < 0)) {
2678 		__netif_tx_unlock(q->txq);
2679 		return -ENOMEM;
2680 	}
2681 
2682 	wr = (void *)&q->q.desc[q->q.pidx];
2683 	memset(wr, 0, sizeof(struct tx_desc));
2684 
2685 	wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
2686 			       FW_WR_IMMDLEN_V(pkt_len +
2687 			       sizeof(*cpl)));
2688 	wr->equiq_to_len16 = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)));
2689 	wr->r3 = cpu_to_be64(0);
2690 
2691 	cpl = (void *)(wr + 1);
2692 	sgl = (u8 *)(cpl + 1);
2693 
2694 	ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_PF_V(adap->pf) |
2695 		TXPKT_INTF_V(pi->tx_chan + 4);
2696 
2697 	cpl->ctrl0 = htonl(ctrl0);
2698 	cpl->pack = htons(0);
2699 	cpl->len = htons(pkt_len);
2700 	cpl->ctrl1 = cpu_to_be64(TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F);
2701 
2702 	eth_broadcast_addr(sgl);
2703 	i += ETH_ALEN;
2704 	ether_addr_copy(&sgl[i], netdev->dev_addr);
2705 	i += ETH_ALEN;
2706 
2707 	snprintf(&sgl[i], sizeof(CXGB4_SELFTEST_LB_STR), "%s",
2708 		 CXGB4_SELFTEST_LB_STR);
2709 
2710 	init_completion(&lb->completion);
2711 	txq_advance(&q->q, ndesc);
2712 	cxgb4_ring_tx_db(adap, &q->q, ndesc);
2713 	__netif_tx_unlock(q->txq);
2714 
2715 	/* wait for the pkt to return */
2716 	ret = wait_for_completion_timeout(&lb->completion, 10 * HZ);
2717 	if (!ret)
2718 		ret = -ETIMEDOUT;
2719 	else
2720 		ret = lb->result;
2721 
2722 	lb->loopback = 0;
2723 
2724 	return ret;
2725 }
2726 
2727 /**
2728  *	ctrl_xmit - send a packet through an SGE control Tx queue
2729  *	@q: the control queue
2730  *	@skb: the packet
2731  *
2732  *	Send a packet through an SGE control Tx queue.  Packets sent through
2733  *	a control queue must fit entirely as immediate data.
2734  */
2735 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
2736 {
2737 	unsigned int ndesc;
2738 	struct fw_wr_hdr *wr;
2739 
2740 	if (unlikely(!is_imm(skb))) {
2741 		WARN_ON(1);
2742 		dev_kfree_skb(skb);
2743 		return NET_XMIT_DROP;
2744 	}
2745 
2746 	ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
2747 	spin_lock(&q->sendq.lock);
2748 
2749 	if (unlikely(q->full)) {
2750 		skb->priority = ndesc;                  /* save for restart */
2751 		__skb_queue_tail(&q->sendq, skb);
2752 		spin_unlock(&q->sendq.lock);
2753 		return NET_XMIT_CN;
2754 	}
2755 
2756 	wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2757 	cxgb4_inline_tx_skb(skb, &q->q, wr);
2758 
2759 	txq_advance(&q->q, ndesc);
2760 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
2761 		ctrlq_check_stop(q, wr);
2762 
2763 	cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
2764 	spin_unlock(&q->sendq.lock);
2765 
2766 	kfree_skb(skb);
2767 	return NET_XMIT_SUCCESS;
2768 }
2769 
2770 /**
2771  *	restart_ctrlq - restart a suspended control queue
2772  *	@t: pointer to the tasklet associated with this handler
2773  *
2774  *	Resumes transmission on a suspended Tx control queue.
2775  */
2776 static void restart_ctrlq(struct tasklet_struct *t)
2777 {
2778 	struct sk_buff *skb;
2779 	unsigned int written = 0;
2780 	struct sge_ctrl_txq *q = from_tasklet(q, t, qresume_tsk);
2781 
2782 	spin_lock(&q->sendq.lock);
2783 	reclaim_completed_tx_imm(&q->q);
2784 	BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */
2785 
2786 	while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
2787 		struct fw_wr_hdr *wr;
2788 		unsigned int ndesc = skb->priority;     /* previously saved */
2789 
2790 		written += ndesc;
2791 		/* Write descriptors and free skbs outside the lock to limit
2792 		 * wait times.  q->full is still set so new skbs will be queued.
2793 		 */
2794 		wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2795 		txq_advance(&q->q, ndesc);
2796 		spin_unlock(&q->sendq.lock);
2797 
2798 		cxgb4_inline_tx_skb(skb, &q->q, wr);
2799 		kfree_skb(skb);
2800 
2801 		if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2802 			unsigned long old = q->q.stops;
2803 
2804 			ctrlq_check_stop(q, wr);
2805 			if (q->q.stops != old) {          /* suspended anew */
2806 				spin_lock(&q->sendq.lock);
2807 				goto ringdb;
2808 			}
2809 		}
2810 		if (written > 16) {
2811 			cxgb4_ring_tx_db(q->adap, &q->q, written);
2812 			written = 0;
2813 		}
2814 		spin_lock(&q->sendq.lock);
2815 	}
2816 	q->full = 0;
2817 ringdb:
2818 	if (written)
2819 		cxgb4_ring_tx_db(q->adap, &q->q, written);
2820 	spin_unlock(&q->sendq.lock);
2821 }
2822 
2823 /**
2824  *	t4_mgmt_tx - send a management message
2825  *	@adap: the adapter
2826  *	@skb: the packet containing the management message
2827  *
2828  *	Send a management message through control queue 0.
2829  */
2830 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
2831 {
2832 	int ret;
2833 
2834 	local_bh_disable();
2835 	ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
2836 	local_bh_enable();
2837 	return ret;
2838 }
2839 
2840 /**
2841  *	is_ofld_imm - check whether a packet can be sent as immediate data
2842  *	@skb: the packet
2843  *
2844  *	Returns true if a packet can be sent as an offload WR with immediate
2845  *	data.  We currently use the same limit as for Ethernet packets.
2846  */
2847 static inline int is_ofld_imm(const struct sk_buff *skb)
2848 {
2849 	struct work_request_hdr *req = (struct work_request_hdr *)skb->data;
2850 	unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi));
2851 
2852 	if (opcode == FW_CRYPTO_LOOKASIDE_WR)
2853 		return skb->len <= SGE_MAX_WR_LEN;
2854 	else
2855 		return skb->len <= MAX_IMM_TX_PKT_LEN;
2856 }
2857 
2858 /**
2859  *	calc_tx_flits_ofld - calculate # of flits for an offload packet
2860  *	@skb: the packet
2861  *
2862  *	Returns the number of flits needed for the given offload packet.
2863  *	These packets are already fully constructed and no additional headers
2864  *	will be added.
2865  */
2866 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
2867 {
2868 	unsigned int flits, cnt;
2869 
2870 	if (is_ofld_imm(skb))
2871 		return DIV_ROUND_UP(skb->len, 8);
2872 
2873 	flits = skb_transport_offset(skb) / 8U;   /* headers */
2874 	cnt = skb_shinfo(skb)->nr_frags;
2875 	if (skb_tail_pointer(skb) != skb_transport_header(skb))
2876 		cnt++;
2877 	return flits + sgl_len(cnt);
2878 }
2879 
2880 /**
2881  *	txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
2882  *	@q: the queue to stop
2883  *
2884  *	Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
2885  *	inability to map packets.  A periodic timer attempts to restart
2886  *	queues so marked.
2887  */
2888 static void txq_stop_maperr(struct sge_uld_txq *q)
2889 {
2890 	q->mapping_err++;
2891 	q->q.stops++;
2892 	set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
2893 		q->adap->sge.txq_maperr);
2894 }
2895 
2896 /**
2897  *	ofldtxq_stop - stop an offload Tx queue that has become full
2898  *	@q: the queue to stop
2899  *	@wr: the Work Request causing the queue to become full
2900  *
2901  *	Stops an offload Tx queue that has become full and modifies the packet
2902  *	being written to request a wakeup.
2903  */
2904 static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr)
2905 {
2906 	wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2907 	q->q.stops++;
2908 	q->full = 1;
2909 }
2910 
2911 /**
2912  *	service_ofldq - service/restart a suspended offload queue
2913  *	@q: the offload queue
2914  *
2915  *	Services an offload Tx queue by moving packets from its Pending Send
2916  *	Queue to the Hardware TX ring.  The function starts and ends with the
2917  *	Send Queue locked, but drops the lock while putting the skb at the
2918  *	head of the Send Queue onto the Hardware TX Ring.  Dropping the lock
2919  *	allows more skbs to be added to the Send Queue by other threads.
2920  *	The packet being processed at the head of the Pending Send Queue is
2921  *	left on the queue in case we experience DMA Mapping errors, etc.
2922  *	and need to give up and restart later.
2923  *
2924  *	service_ofldq() can be thought of as a task which opportunistically
2925  *	uses other threads execution contexts.  We use the Offload Queue
2926  *	boolean "service_ofldq_running" to make sure that only one instance
2927  *	is ever running at a time ...
2928  */
2929 static void service_ofldq(struct sge_uld_txq *q)
2930 	__must_hold(&q->sendq.lock)
2931 {
2932 	u64 *pos, *before, *end;
2933 	int credits;
2934 	struct sk_buff *skb;
2935 	struct sge_txq *txq;
2936 	unsigned int left;
2937 	unsigned int written = 0;
2938 	unsigned int flits, ndesc;
2939 
2940 	/* If another thread is currently in service_ofldq() processing the
2941 	 * Pending Send Queue then there's nothing to do. Otherwise, flag
2942 	 * that we're doing the work and continue.  Examining/modifying
2943 	 * the Offload Queue boolean "service_ofldq_running" must be done
2944 	 * while holding the Pending Send Queue Lock.
2945 	 */
2946 	if (q->service_ofldq_running)
2947 		return;
2948 	q->service_ofldq_running = true;
2949 
2950 	while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
2951 		/* We drop the lock while we're working with the skb at the
2952 		 * head of the Pending Send Queue.  This allows more skbs to
2953 		 * be added to the Pending Send Queue while we're working on
2954 		 * this one.  We don't need to lock to guard the TX Ring
2955 		 * updates because only one thread of execution is ever
2956 		 * allowed into service_ofldq() at a time.
2957 		 */
2958 		spin_unlock(&q->sendq.lock);
2959 
2960 		cxgb4_reclaim_completed_tx(q->adap, &q->q, false);
2961 
2962 		flits = skb->priority;                /* previously saved */
2963 		ndesc = flits_to_desc(flits);
2964 		credits = txq_avail(&q->q) - ndesc;
2965 		BUG_ON(credits < 0);
2966 		if (unlikely(credits < TXQ_STOP_THRES))
2967 			ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data);
2968 
2969 		pos = (u64 *)&q->q.desc[q->q.pidx];
2970 		if (is_ofld_imm(skb))
2971 			cxgb4_inline_tx_skb(skb, &q->q, pos);
2972 		else if (cxgb4_map_skb(q->adap->pdev_dev, skb,
2973 				       (dma_addr_t *)skb->head)) {
2974 			txq_stop_maperr(q);
2975 			spin_lock(&q->sendq.lock);
2976 			break;
2977 		} else {
2978 			int last_desc, hdr_len = skb_transport_offset(skb);
2979 
2980 			/* The WR headers  may not fit within one descriptor.
2981 			 * So we need to deal with wrap-around here.
2982 			 */
2983 			before = (u64 *)pos;
2984 			end = (u64 *)pos + flits;
2985 			txq = &q->q;
2986 			pos = (void *)inline_tx_skb_header(skb, &q->q,
2987 							   (void *)pos,
2988 							   hdr_len);
2989 			if (before > (u64 *)pos) {
2990 				left = (u8 *)end - (u8 *)txq->stat;
2991 				end = (void *)txq->desc + left;
2992 			}
2993 
2994 			/* If current position is already at the end of the
2995 			 * ofld queue, reset the current to point to
2996 			 * start of the queue and update the end ptr as well.
2997 			 */
2998 			if (pos == (u64 *)txq->stat) {
2999 				left = (u8 *)end - (u8 *)txq->stat;
3000 				end = (void *)txq->desc + left;
3001 				pos = (void *)txq->desc;
3002 			}
3003 
3004 			cxgb4_write_sgl(skb, &q->q, (void *)pos,
3005 					end, hdr_len,
3006 					(dma_addr_t *)skb->head);
3007 #ifdef CONFIG_NEED_DMA_MAP_STATE
3008 			skb->dev = q->adap->port[0];
3009 			skb->destructor = deferred_unmap_destructor;
3010 #endif
3011 			last_desc = q->q.pidx + ndesc - 1;
3012 			if (last_desc >= q->q.size)
3013 				last_desc -= q->q.size;
3014 			q->q.sdesc[last_desc].skb = skb;
3015 		}
3016 
3017 		txq_advance(&q->q, ndesc);
3018 		written += ndesc;
3019 		if (unlikely(written > 32)) {
3020 			cxgb4_ring_tx_db(q->adap, &q->q, written);
3021 			written = 0;
3022 		}
3023 
3024 		/* Reacquire the Pending Send Queue Lock so we can unlink the
3025 		 * skb we've just successfully transferred to the TX Ring and
3026 		 * loop for the next skb which may be at the head of the
3027 		 * Pending Send Queue.
3028 		 */
3029 		spin_lock(&q->sendq.lock);
3030 		__skb_unlink(skb, &q->sendq);
3031 		if (is_ofld_imm(skb))
3032 			kfree_skb(skb);
3033 	}
3034 	if (likely(written))
3035 		cxgb4_ring_tx_db(q->adap, &q->q, written);
3036 
3037 	/*Indicate that no thread is processing the Pending Send Queue
3038 	 * currently.
3039 	 */
3040 	q->service_ofldq_running = false;
3041 }
3042 
3043 /**
3044  *	ofld_xmit - send a packet through an offload queue
3045  *	@q: the Tx offload queue
3046  *	@skb: the packet
3047  *
3048  *	Send an offload packet through an SGE offload queue.
3049  */
3050 static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb)
3051 {
3052 	skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */
3053 	spin_lock(&q->sendq.lock);
3054 
3055 	/* Queue the new skb onto the Offload Queue's Pending Send Queue.  If
3056 	 * that results in this new skb being the only one on the queue, start
3057 	 * servicing it.  If there are other skbs already on the list, then
3058 	 * either the queue is currently being processed or it's been stopped
3059 	 * for some reason and it'll be restarted at a later time.  Restart
3060 	 * paths are triggered by events like experiencing a DMA Mapping Error
3061 	 * or filling the Hardware TX Ring.
3062 	 */
3063 	__skb_queue_tail(&q->sendq, skb);
3064 	if (q->sendq.qlen == 1)
3065 		service_ofldq(q);
3066 
3067 	spin_unlock(&q->sendq.lock);
3068 	return NET_XMIT_SUCCESS;
3069 }
3070 
3071 /**
3072  *	restart_ofldq - restart a suspended offload queue
3073  *	@t: pointer to the tasklet associated with this handler
3074  *
3075  *	Resumes transmission on a suspended Tx offload queue.
3076  */
3077 static void restart_ofldq(struct tasklet_struct *t)
3078 {
3079 	struct sge_uld_txq *q = from_tasklet(q, t, qresume_tsk);
3080 
3081 	spin_lock(&q->sendq.lock);
3082 	q->full = 0;            /* the queue actually is completely empty now */
3083 	service_ofldq(q);
3084 	spin_unlock(&q->sendq.lock);
3085 }
3086 
3087 /**
3088  *	skb_txq - return the Tx queue an offload packet should use
3089  *	@skb: the packet
3090  *
3091  *	Returns the Tx queue an offload packet should use as indicated by bits
3092  *	1-15 in the packet's queue_mapping.
3093  */
3094 static inline unsigned int skb_txq(const struct sk_buff *skb)
3095 {
3096 	return skb->queue_mapping >> 1;
3097 }
3098 
3099 /**
3100  *	is_ctrl_pkt - return whether an offload packet is a control packet
3101  *	@skb: the packet
3102  *
3103  *	Returns whether an offload packet should use an OFLD or a CTRL
3104  *	Tx queue as indicated by bit 0 in the packet's queue_mapping.
3105  */
3106 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
3107 {
3108 	return skb->queue_mapping & 1;
3109 }
3110 
3111 static inline int uld_send(struct adapter *adap, struct sk_buff *skb,
3112 			   unsigned int tx_uld_type)
3113 {
3114 	struct sge_uld_txq_info *txq_info;
3115 	struct sge_uld_txq *txq;
3116 	unsigned int idx = skb_txq(skb);
3117 
3118 	if (unlikely(is_ctrl_pkt(skb))) {
3119 		/* Single ctrl queue is a requirement for LE workaround path */
3120 		if (adap->tids.nsftids)
3121 			idx = 0;
3122 		return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
3123 	}
3124 
3125 	txq_info = adap->sge.uld_txq_info[tx_uld_type];
3126 	if (unlikely(!txq_info)) {
3127 		WARN_ON(true);
3128 		kfree_skb(skb);
3129 		return NET_XMIT_DROP;
3130 	}
3131 
3132 	txq = &txq_info->uldtxq[idx];
3133 	return ofld_xmit(txq, skb);
3134 }
3135 
3136 /**
3137  *	t4_ofld_send - send an offload packet
3138  *	@adap: the adapter
3139  *	@skb: the packet
3140  *
3141  *	Sends an offload packet.  We use the packet queue_mapping to select the
3142  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
3143  *	should be sent as regular or control, bits 1-15 select the queue.
3144  */
3145 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
3146 {
3147 	int ret;
3148 
3149 	local_bh_disable();
3150 	ret = uld_send(adap, skb, CXGB4_TX_OFLD);
3151 	local_bh_enable();
3152 	return ret;
3153 }
3154 
3155 /**
3156  *	cxgb4_ofld_send - send an offload packet
3157  *	@dev: the net device
3158  *	@skb: the packet
3159  *
3160  *	Sends an offload packet.  This is an exported version of @t4_ofld_send,
3161  *	intended for ULDs.
3162  */
3163 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
3164 {
3165 	return t4_ofld_send(netdev2adap(dev), skb);
3166 }
3167 EXPORT_SYMBOL(cxgb4_ofld_send);
3168 
3169 static void *inline_tx_header(const void *src,
3170 			      const struct sge_txq *q,
3171 			      void *pos, int length)
3172 {
3173 	int left = (void *)q->stat - pos;
3174 	u64 *p;
3175 
3176 	if (likely(length <= left)) {
3177 		memcpy(pos, src, length);
3178 		pos += length;
3179 	} else {
3180 		memcpy(pos, src, left);
3181 		memcpy(q->desc, src + left, length - left);
3182 		pos = (void *)q->desc + (length - left);
3183 	}
3184 	/* 0-pad to multiple of 16 */
3185 	p = PTR_ALIGN(pos, 8);
3186 	if ((uintptr_t)p & 8) {
3187 		*p = 0;
3188 		return p + 1;
3189 	}
3190 	return p;
3191 }
3192 
3193 /**
3194  *      ofld_xmit_direct - copy a WR into offload queue
3195  *      @q: the Tx offload queue
3196  *      @src: location of WR
3197  *      @len: WR length
3198  *
3199  *      Copy an immediate WR into an uncontended SGE offload queue.
3200  */
3201 static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src,
3202 			    unsigned int len)
3203 {
3204 	unsigned int ndesc;
3205 	int credits;
3206 	u64 *pos;
3207 
3208 	/* Use the lower limit as the cut-off */
3209 	if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) {
3210 		WARN_ON(1);
3211 		return NET_XMIT_DROP;
3212 	}
3213 
3214 	/* Don't return NET_XMIT_CN here as the current
3215 	 * implementation doesn't queue the request
3216 	 * using an skb when the following conditions not met
3217 	 */
3218 	if (!spin_trylock(&q->sendq.lock))
3219 		return NET_XMIT_DROP;
3220 
3221 	if (q->full || !skb_queue_empty(&q->sendq) ||
3222 	    q->service_ofldq_running) {
3223 		spin_unlock(&q->sendq.lock);
3224 		return NET_XMIT_DROP;
3225 	}
3226 	ndesc = flits_to_desc(DIV_ROUND_UP(len, 8));
3227 	credits = txq_avail(&q->q) - ndesc;
3228 	pos = (u64 *)&q->q.desc[q->q.pidx];
3229 
3230 	/* ofldtxq_stop modifies WR header in-situ */
3231 	inline_tx_header(src, &q->q, pos, len);
3232 	if (unlikely(credits < TXQ_STOP_THRES))
3233 		ofldtxq_stop(q, (struct fw_wr_hdr *)pos);
3234 	txq_advance(&q->q, ndesc);
3235 	cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
3236 
3237 	spin_unlock(&q->sendq.lock);
3238 	return NET_XMIT_SUCCESS;
3239 }
3240 
3241 int cxgb4_immdata_send(struct net_device *dev, unsigned int idx,
3242 		       const void *src, unsigned int len)
3243 {
3244 	struct sge_uld_txq_info *txq_info;
3245 	struct sge_uld_txq *txq;
3246 	struct adapter *adap;
3247 	int ret;
3248 
3249 	adap = netdev2adap(dev);
3250 
3251 	local_bh_disable();
3252 	txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
3253 	if (unlikely(!txq_info)) {
3254 		WARN_ON(true);
3255 		local_bh_enable();
3256 		return NET_XMIT_DROP;
3257 	}
3258 	txq = &txq_info->uldtxq[idx];
3259 
3260 	ret = ofld_xmit_direct(txq, src, len);
3261 	local_bh_enable();
3262 	return net_xmit_eval(ret);
3263 }
3264 EXPORT_SYMBOL(cxgb4_immdata_send);
3265 
3266 /**
3267  *	t4_crypto_send - send crypto packet
3268  *	@adap: the adapter
3269  *	@skb: the packet
3270  *
3271  *	Sends crypto packet.  We use the packet queue_mapping to select the
3272  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
3273  *	should be sent as regular or control, bits 1-15 select the queue.
3274  */
3275 static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb)
3276 {
3277 	int ret;
3278 
3279 	local_bh_disable();
3280 	ret = uld_send(adap, skb, CXGB4_TX_CRYPTO);
3281 	local_bh_enable();
3282 	return ret;
3283 }
3284 
3285 /**
3286  *	cxgb4_crypto_send - send crypto packet
3287  *	@dev: the net device
3288  *	@skb: the packet
3289  *
3290  *	Sends crypto packet.  This is an exported version of @t4_crypto_send,
3291  *	intended for ULDs.
3292  */
3293 int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb)
3294 {
3295 	return t4_crypto_send(netdev2adap(dev), skb);
3296 }
3297 EXPORT_SYMBOL(cxgb4_crypto_send);
3298 
3299 static inline void copy_frags(struct sk_buff *skb,
3300 			      const struct pkt_gl *gl, unsigned int offset)
3301 {
3302 	int i;
3303 
3304 	/* usually there's just one frag */
3305 	__skb_fill_page_desc(skb, 0, gl->frags[0].page,
3306 			     gl->frags[0].offset + offset,
3307 			     gl->frags[0].size - offset);
3308 	skb_shinfo(skb)->nr_frags = gl->nfrags;
3309 	for (i = 1; i < gl->nfrags; i++)
3310 		__skb_fill_page_desc(skb, i, gl->frags[i].page,
3311 				     gl->frags[i].offset,
3312 				     gl->frags[i].size);
3313 
3314 	/* get a reference to the last page, we don't own it */
3315 	get_page(gl->frags[gl->nfrags - 1].page);
3316 }
3317 
3318 /**
3319  *	cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
3320  *	@gl: the gather list
3321  *	@skb_len: size of sk_buff main body if it carries fragments
3322  *	@pull_len: amount of data to move to the sk_buff's main body
3323  *
3324  *	Builds an sk_buff from the given packet gather list.  Returns the
3325  *	sk_buff or %NULL if sk_buff allocation failed.
3326  */
3327 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
3328 				   unsigned int skb_len, unsigned int pull_len)
3329 {
3330 	struct sk_buff *skb;
3331 
3332 	/*
3333 	 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
3334 	 * size, which is expected since buffers are at least PAGE_SIZEd.
3335 	 * In this case packets up to RX_COPY_THRES have only one fragment.
3336 	 */
3337 	if (gl->tot_len <= RX_COPY_THRES) {
3338 		skb = dev_alloc_skb(gl->tot_len);
3339 		if (unlikely(!skb))
3340 			goto out;
3341 		__skb_put(skb, gl->tot_len);
3342 		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
3343 	} else {
3344 		skb = dev_alloc_skb(skb_len);
3345 		if (unlikely(!skb))
3346 			goto out;
3347 		__skb_put(skb, pull_len);
3348 		skb_copy_to_linear_data(skb, gl->va, pull_len);
3349 
3350 		copy_frags(skb, gl, pull_len);
3351 		skb->len = gl->tot_len;
3352 		skb->data_len = skb->len - pull_len;
3353 		skb->truesize += skb->data_len;
3354 	}
3355 out:	return skb;
3356 }
3357 EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
3358 
3359 /**
3360  *	t4_pktgl_free - free a packet gather list
3361  *	@gl: the gather list
3362  *
3363  *	Releases the pages of a packet gather list.  We do not own the last
3364  *	page on the list and do not free it.
3365  */
3366 static void t4_pktgl_free(const struct pkt_gl *gl)
3367 {
3368 	int n;
3369 	const struct page_frag *p;
3370 
3371 	for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
3372 		put_page(p->page);
3373 }
3374 
3375 /*
3376  * Process an MPS trace packet.  Give it an unused protocol number so it won't
3377  * be delivered to anyone and send it to the stack for capture.
3378  */
3379 static noinline int handle_trace_pkt(struct adapter *adap,
3380 				     const struct pkt_gl *gl)
3381 {
3382 	struct sk_buff *skb;
3383 
3384 	skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
3385 	if (unlikely(!skb)) {
3386 		t4_pktgl_free(gl);
3387 		return 0;
3388 	}
3389 
3390 	if (is_t4(adap->params.chip))
3391 		__skb_pull(skb, sizeof(struct cpl_trace_pkt));
3392 	else
3393 		__skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
3394 
3395 	skb_reset_mac_header(skb);
3396 	skb->protocol = htons(0xffff);
3397 	skb->dev = adap->port[0];
3398 	netif_receive_skb(skb);
3399 	return 0;
3400 }
3401 
3402 /**
3403  * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp
3404  * @adap: the adapter
3405  * @hwtstamps: time stamp structure to update
3406  * @sgetstamp: 60bit iqe timestamp
3407  *
3408  * Every ingress queue entry has the 60-bit timestamp, convert that timestamp
3409  * which is in Core Clock ticks into ktime_t and assign it
3410  **/
3411 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap,
3412 				     struct skb_shared_hwtstamps *hwtstamps,
3413 				     u64 sgetstamp)
3414 {
3415 	u64 ns;
3416 	u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2);
3417 
3418 	ns = div_u64(tmp, adap->params.vpd.cclk);
3419 
3420 	memset(hwtstamps, 0, sizeof(*hwtstamps));
3421 	hwtstamps->hwtstamp = ns_to_ktime(ns);
3422 }
3423 
3424 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
3425 		   const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len)
3426 {
3427 	struct adapter *adapter = rxq->rspq.adap;
3428 	struct sge *s = &adapter->sge;
3429 	struct port_info *pi;
3430 	int ret;
3431 	struct sk_buff *skb;
3432 
3433 	skb = napi_get_frags(&rxq->rspq.napi);
3434 	if (unlikely(!skb)) {
3435 		t4_pktgl_free(gl);
3436 		rxq->stats.rx_drops++;
3437 		return;
3438 	}
3439 
3440 	copy_frags(skb, gl, s->pktshift);
3441 	if (tnl_hdr_len)
3442 		skb->csum_level = 1;
3443 	skb->len = gl->tot_len - s->pktshift;
3444 	skb->data_len = skb->len;
3445 	skb->truesize += skb->data_len;
3446 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3447 	skb_record_rx_queue(skb, rxq->rspq.idx);
3448 	pi = netdev_priv(skb->dev);
3449 	if (pi->rxtstamp)
3450 		cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb),
3451 					 gl->sgetstamp);
3452 	if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
3453 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3454 			     PKT_HASH_TYPE_L3);
3455 
3456 	if (unlikely(pkt->vlan_ex)) {
3457 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3458 		rxq->stats.vlan_ex++;
3459 	}
3460 	ret = napi_gro_frags(&rxq->rspq.napi);
3461 	if (ret == GRO_HELD)
3462 		rxq->stats.lro_pkts++;
3463 	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
3464 		rxq->stats.lro_merged++;
3465 	rxq->stats.pkts++;
3466 	rxq->stats.rx_cso++;
3467 }
3468 
3469 enum {
3470 	RX_NON_PTP_PKT = 0,
3471 	RX_PTP_PKT_SUC = 1,
3472 	RX_PTP_PKT_ERR = 2
3473 };
3474 
3475 /**
3476  *     t4_systim_to_hwstamp - read hardware time stamp
3477  *     @adapter: the adapter
3478  *     @skb: the packet
3479  *
3480  *     Read Time Stamp from MPS packet and insert in skb which
3481  *     is forwarded to PTP application
3482  */
3483 static noinline int t4_systim_to_hwstamp(struct adapter *adapter,
3484 					 struct sk_buff *skb)
3485 {
3486 	struct skb_shared_hwtstamps *hwtstamps;
3487 	struct cpl_rx_mps_pkt *cpl = NULL;
3488 	unsigned char *data;
3489 	int offset;
3490 
3491 	cpl = (struct cpl_rx_mps_pkt *)skb->data;
3492 	if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) &
3493 	     X_CPL_RX_MPS_PKT_TYPE_PTP))
3494 		return RX_PTP_PKT_ERR;
3495 
3496 	data = skb->data + sizeof(*cpl);
3497 	skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt));
3498 	offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN;
3499 	if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short))
3500 		return RX_PTP_PKT_ERR;
3501 
3502 	hwtstamps = skb_hwtstamps(skb);
3503 	memset(hwtstamps, 0, sizeof(*hwtstamps));
3504 	hwtstamps->hwtstamp = ns_to_ktime(get_unaligned_be64(data));
3505 
3506 	return RX_PTP_PKT_SUC;
3507 }
3508 
3509 /**
3510  *     t4_rx_hststamp - Recv PTP Event Message
3511  *     @adapter: the adapter
3512  *     @rsp: the response queue descriptor holding the RX_PKT message
3513  *     @rxq: the response queue holding the RX_PKT message
3514  *     @skb: the packet
3515  *
3516  *     PTP enabled and MPS packet, read HW timestamp
3517  */
3518 static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp,
3519 			  struct sge_eth_rxq *rxq, struct sk_buff *skb)
3520 {
3521 	int ret;
3522 
3523 	if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) &&
3524 		     !is_t4(adapter->params.chip))) {
3525 		ret = t4_systim_to_hwstamp(adapter, skb);
3526 		if (ret == RX_PTP_PKT_ERR) {
3527 			kfree_skb(skb);
3528 			rxq->stats.rx_drops++;
3529 		}
3530 		return ret;
3531 	}
3532 	return RX_NON_PTP_PKT;
3533 }
3534 
3535 /**
3536  *      t4_tx_hststamp - Loopback PTP Transmit Event Message
3537  *      @adapter: the adapter
3538  *      @skb: the packet
3539  *      @dev: the ingress net device
3540  *
3541  *      Read hardware timestamp for the loopback PTP Tx event message
3542  */
3543 static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb,
3544 			  struct net_device *dev)
3545 {
3546 	struct port_info *pi = netdev_priv(dev);
3547 
3548 	if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) {
3549 		cxgb4_ptp_read_hwstamp(adapter, pi);
3550 		kfree_skb(skb);
3551 		return 0;
3552 	}
3553 	return 1;
3554 }
3555 
3556 /**
3557  *	t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages
3558  *	@rspq: Ethernet RX Response Queue associated with Ethernet TX Queue
3559  *	@rsp: Response Entry pointer into Response Queue
3560  *	@gl: Gather List pointer
3561  *
3562  *	For adapters which support the SGE Doorbell Queue Timer facility,
3563  *	we configure the Ethernet TX Queues to send CIDX Updates to the
3564  *	Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE
3565  *	messages.  This adds a small load to PCIe Link RX bandwidth and,
3566  *	potentially, higher CPU Interrupt load, but allows us to respond
3567  *	much more quickly to the CIDX Updates.  This is important for
3568  *	Upper Layer Software which isn't willing to have a large amount
3569  *	of TX Data outstanding before receiving DMA Completions.
3570  */
3571 static void t4_tx_completion_handler(struct sge_rspq *rspq,
3572 				     const __be64 *rsp,
3573 				     const struct pkt_gl *gl)
3574 {
3575 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
3576 	struct port_info *pi = netdev_priv(rspq->netdev);
3577 	struct adapter *adapter = rspq->adap;
3578 	struct sge *s = &adapter->sge;
3579 	struct sge_eth_txq *txq;
3580 
3581 	/* skip RSS header */
3582 	rsp++;
3583 
3584 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
3585 	 */
3586 	if (unlikely(opcode == CPL_FW4_MSG &&
3587 		     ((const struct cpl_fw4_msg *)rsp)->type ==
3588 							FW_TYPE_RSSCPL)) {
3589 		rsp++;
3590 		opcode = ((const struct rss_header *)rsp)->opcode;
3591 		rsp++;
3592 	}
3593 
3594 	if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) {
3595 		pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n",
3596 			__func__, opcode);
3597 		return;
3598 	}
3599 
3600 	txq = &s->ethtxq[pi->first_qset + rspq->idx];
3601 	t4_sge_eth_txq_egress_update(adapter, txq, -1);
3602 }
3603 
3604 static int cxgb4_validate_lb_pkt(struct port_info *pi, const struct pkt_gl *si)
3605 {
3606 	struct adapter *adap = pi->adapter;
3607 	struct cxgb4_ethtool_lb_test *lb;
3608 	struct sge *s = &adap->sge;
3609 	struct net_device *netdev;
3610 	u8 *data;
3611 	int i;
3612 
3613 	netdev = adap->port[pi->port_id];
3614 	lb = &pi->ethtool_lb;
3615 	data = si->va + s->pktshift;
3616 
3617 	i = ETH_ALEN;
3618 	if (!ether_addr_equal(data + i, netdev->dev_addr))
3619 		return -1;
3620 
3621 	i += ETH_ALEN;
3622 	if (strcmp(&data[i], CXGB4_SELFTEST_LB_STR))
3623 		lb->result = -EIO;
3624 
3625 	complete(&lb->completion);
3626 	return 0;
3627 }
3628 
3629 /**
3630  *	t4_ethrx_handler - process an ingress ethernet packet
3631  *	@q: the response queue that received the packet
3632  *	@rsp: the response queue descriptor holding the RX_PKT message
3633  *	@si: the gather list of packet fragments
3634  *
3635  *	Process an ingress ethernet packet and deliver it to the stack.
3636  */
3637 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
3638 		     const struct pkt_gl *si)
3639 {
3640 	bool csum_ok;
3641 	struct sk_buff *skb;
3642 	const struct cpl_rx_pkt *pkt;
3643 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3644 	struct adapter *adapter = q->adap;
3645 	struct sge *s = &q->adap->sge;
3646 	int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
3647 			    CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
3648 	u16 err_vec, tnl_hdr_len = 0;
3649 	struct port_info *pi;
3650 	int ret = 0;
3651 
3652 	pi = netdev_priv(q->netdev);
3653 	/* If we're looking at TX Queue CIDX Update, handle that separately
3654 	 * and return.
3655 	 */
3656 	if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) ||
3657 		     (*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) {
3658 		t4_tx_completion_handler(q, rsp, si);
3659 		return 0;
3660 	}
3661 
3662 	if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
3663 		return handle_trace_pkt(q->adap, si);
3664 
3665 	pkt = (const struct cpl_rx_pkt *)rsp;
3666 	/* Compressed error vector is enabled for T6 only */
3667 	if (q->adap->params.tp.rx_pkt_encap) {
3668 		err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec));
3669 		tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec));
3670 	} else {
3671 		err_vec = be16_to_cpu(pkt->err_vec);
3672 	}
3673 
3674 	csum_ok = pkt->csum_calc && !err_vec &&
3675 		  (q->netdev->features & NETIF_F_RXCSUM);
3676 
3677 	if (err_vec)
3678 		rxq->stats.bad_rx_pkts++;
3679 
3680 	if (unlikely(pi->ethtool_lb.loopback && pkt->iff >= NCHAN)) {
3681 		ret = cxgb4_validate_lb_pkt(pi, si);
3682 		if (!ret)
3683 			return 0;
3684 	}
3685 
3686 	if (((pkt->l2info & htonl(RXF_TCP_F)) ||
3687 	     tnl_hdr_len) &&
3688 	    (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
3689 		do_gro(rxq, si, pkt, tnl_hdr_len);
3690 		return 0;
3691 	}
3692 
3693 	skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
3694 	if (unlikely(!skb)) {
3695 		t4_pktgl_free(si);
3696 		rxq->stats.rx_drops++;
3697 		return 0;
3698 	}
3699 
3700 	/* Handle PTP Event Rx packet */
3701 	if (unlikely(pi->ptp_enable)) {
3702 		ret = t4_rx_hststamp(adapter, rsp, rxq, skb);
3703 		if (ret == RX_PTP_PKT_ERR)
3704 			return 0;
3705 	}
3706 	if (likely(!ret))
3707 		__skb_pull(skb, s->pktshift); /* remove ethernet header pad */
3708 
3709 	/* Handle the PTP Event Tx Loopback packet */
3710 	if (unlikely(pi->ptp_enable && !ret &&
3711 		     (pkt->l2info & htonl(RXF_UDP_F)) &&
3712 		     cxgb4_ptp_is_ptp_rx(skb))) {
3713 		if (!t4_tx_hststamp(adapter, skb, q->netdev))
3714 			return 0;
3715 	}
3716 
3717 	skb->protocol = eth_type_trans(skb, q->netdev);
3718 	skb_record_rx_queue(skb, q->idx);
3719 	if (skb->dev->features & NETIF_F_RXHASH)
3720 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3721 			     PKT_HASH_TYPE_L3);
3722 
3723 	rxq->stats.pkts++;
3724 
3725 	if (pi->rxtstamp)
3726 		cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb),
3727 					 si->sgetstamp);
3728 	if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
3729 		if (!pkt->ip_frag) {
3730 			skb->ip_summed = CHECKSUM_UNNECESSARY;
3731 			rxq->stats.rx_cso++;
3732 		} else if (pkt->l2info & htonl(RXF_IP_F)) {
3733 			__sum16 c = (__force __sum16)pkt->csum;
3734 			skb->csum = csum_unfold(c);
3735 
3736 			if (tnl_hdr_len) {
3737 				skb->ip_summed = CHECKSUM_UNNECESSARY;
3738 				skb->csum_level = 1;
3739 			} else {
3740 				skb->ip_summed = CHECKSUM_COMPLETE;
3741 			}
3742 			rxq->stats.rx_cso++;
3743 		}
3744 	} else {
3745 		skb_checksum_none_assert(skb);
3746 #ifdef CONFIG_CHELSIO_T4_FCOE
3747 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
3748 			  RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
3749 
3750 		if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
3751 			if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
3752 			    (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
3753 				if (q->adap->params.tp.rx_pkt_encap)
3754 					csum_ok = err_vec &
3755 						  T6_COMPR_RXERR_SUM_F;
3756 				else
3757 					csum_ok = err_vec & RXERR_CSUM_F;
3758 				if (!csum_ok)
3759 					skb->ip_summed = CHECKSUM_UNNECESSARY;
3760 			}
3761 		}
3762 
3763 #undef CPL_RX_PKT_FLAGS
3764 #endif /* CONFIG_CHELSIO_T4_FCOE */
3765 	}
3766 
3767 	if (unlikely(pkt->vlan_ex)) {
3768 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3769 		rxq->stats.vlan_ex++;
3770 	}
3771 	skb_mark_napi_id(skb, &q->napi);
3772 	netif_receive_skb(skb);
3773 	return 0;
3774 }
3775 
3776 /**
3777  *	restore_rx_bufs - put back a packet's Rx buffers
3778  *	@si: the packet gather list
3779  *	@q: the SGE free list
3780  *	@frags: number of FL buffers to restore
3781  *
3782  *	Puts back on an FL the Rx buffers associated with @si.  The buffers
3783  *	have already been unmapped and are left unmapped, we mark them so to
3784  *	prevent further unmapping attempts.
3785  *
3786  *	This function undoes a series of @unmap_rx_buf calls when we find out
3787  *	that the current packet can't be processed right away afterall and we
3788  *	need to come back to it later.  This is a very rare event and there's
3789  *	no effort to make this particularly efficient.
3790  */
3791 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
3792 			    int frags)
3793 {
3794 	struct rx_sw_desc *d;
3795 
3796 	while (frags--) {
3797 		if (q->cidx == 0)
3798 			q->cidx = q->size - 1;
3799 		else
3800 			q->cidx--;
3801 		d = &q->sdesc[q->cidx];
3802 		d->page = si->frags[frags].page;
3803 		d->dma_addr |= RX_UNMAPPED_BUF;
3804 		q->avail++;
3805 	}
3806 }
3807 
3808 /**
3809  *	is_new_response - check if a response is newly written
3810  *	@r: the response descriptor
3811  *	@q: the response queue
3812  *
3813  *	Returns true if a response descriptor contains a yet unprocessed
3814  *	response.
3815  */
3816 static inline bool is_new_response(const struct rsp_ctrl *r,
3817 				   const struct sge_rspq *q)
3818 {
3819 	return (r->type_gen >> RSPD_GEN_S) == q->gen;
3820 }
3821 
3822 /**
3823  *	rspq_next - advance to the next entry in a response queue
3824  *	@q: the queue
3825  *
3826  *	Updates the state of a response queue to advance it to the next entry.
3827  */
3828 static inline void rspq_next(struct sge_rspq *q)
3829 {
3830 	q->cur_desc = (void *)q->cur_desc + q->iqe_len;
3831 	if (unlikely(++q->cidx == q->size)) {
3832 		q->cidx = 0;
3833 		q->gen ^= 1;
3834 		q->cur_desc = q->desc;
3835 	}
3836 }
3837 
3838 /**
3839  *	process_responses - process responses from an SGE response queue
3840  *	@q: the ingress queue to process
3841  *	@budget: how many responses can be processed in this round
3842  *
3843  *	Process responses from an SGE response queue up to the supplied budget.
3844  *	Responses include received packets as well as control messages from FW
3845  *	or HW.
3846  *
3847  *	Additionally choose the interrupt holdoff time for the next interrupt
3848  *	on this queue.  If the system is under memory shortage use a fairly
3849  *	long delay to help recovery.
3850  */
3851 static int process_responses(struct sge_rspq *q, int budget)
3852 {
3853 	int ret, rsp_type;
3854 	int budget_left = budget;
3855 	const struct rsp_ctrl *rc;
3856 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3857 	struct adapter *adapter = q->adap;
3858 	struct sge *s = &adapter->sge;
3859 
3860 	while (likely(budget_left)) {
3861 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
3862 		if (!is_new_response(rc, q)) {
3863 			if (q->flush_handler)
3864 				q->flush_handler(q);
3865 			break;
3866 		}
3867 
3868 		dma_rmb();
3869 		rsp_type = RSPD_TYPE_G(rc->type_gen);
3870 		if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
3871 			struct page_frag *fp;
3872 			struct pkt_gl si;
3873 			const struct rx_sw_desc *rsd;
3874 			u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
3875 
3876 			if (len & RSPD_NEWBUF_F) {
3877 				if (likely(q->offset > 0)) {
3878 					free_rx_bufs(q->adap, &rxq->fl, 1);
3879 					q->offset = 0;
3880 				}
3881 				len = RSPD_LEN_G(len);
3882 			}
3883 			si.tot_len = len;
3884 
3885 			/* gather packet fragments */
3886 			for (frags = 0, fp = si.frags; ; frags++, fp++) {
3887 				rsd = &rxq->fl.sdesc[rxq->fl.cidx];
3888 				bufsz = get_buf_size(adapter, rsd);
3889 				fp->page = rsd->page;
3890 				fp->offset = q->offset;
3891 				fp->size = min(bufsz, len);
3892 				len -= fp->size;
3893 				if (!len)
3894 					break;
3895 				unmap_rx_buf(q->adap, &rxq->fl);
3896 			}
3897 
3898 			si.sgetstamp = SGE_TIMESTAMP_G(
3899 					be64_to_cpu(rc->last_flit));
3900 			/*
3901 			 * Last buffer remains mapped so explicitly make it
3902 			 * coherent for CPU access.
3903 			 */
3904 			dma_sync_single_for_cpu(q->adap->pdev_dev,
3905 						get_buf_addr(rsd),
3906 						fp->size, DMA_FROM_DEVICE);
3907 
3908 			si.va = page_address(si.frags[0].page) +
3909 				si.frags[0].offset;
3910 			prefetch(si.va);
3911 
3912 			si.nfrags = frags + 1;
3913 			ret = q->handler(q, q->cur_desc, &si);
3914 			if (likely(ret == 0))
3915 				q->offset += ALIGN(fp->size, s->fl_align);
3916 			else
3917 				restore_rx_bufs(&si, &rxq->fl, frags);
3918 		} else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
3919 			ret = q->handler(q, q->cur_desc, NULL);
3920 		} else {
3921 			ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
3922 		}
3923 
3924 		if (unlikely(ret)) {
3925 			/* couldn't process descriptor, back off for recovery */
3926 			q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
3927 			break;
3928 		}
3929 
3930 		rspq_next(q);
3931 		budget_left--;
3932 	}
3933 
3934 	if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16)
3935 		__refill_fl(q->adap, &rxq->fl);
3936 	return budget - budget_left;
3937 }
3938 
3939 /**
3940  *	napi_rx_handler - the NAPI handler for Rx processing
3941  *	@napi: the napi instance
3942  *	@budget: how many packets we can process in this round
3943  *
3944  *	Handler for new data events when using NAPI.  This does not need any
3945  *	locking or protection from interrupts as data interrupts are off at
3946  *	this point and other adapter interrupts do not interfere (the latter
3947  *	in not a concern at all with MSI-X as non-data interrupts then have
3948  *	a separate handler).
3949  */
3950 static int napi_rx_handler(struct napi_struct *napi, int budget)
3951 {
3952 	unsigned int params;
3953 	struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
3954 	int work_done;
3955 	u32 val;
3956 
3957 	work_done = process_responses(q, budget);
3958 	if (likely(work_done < budget)) {
3959 		int timer_index;
3960 
3961 		napi_complete_done(napi, work_done);
3962 		timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
3963 
3964 		if (q->adaptive_rx) {
3965 			if (work_done > max(timer_pkt_quota[timer_index],
3966 					    MIN_NAPI_WORK))
3967 				timer_index = (timer_index + 1);
3968 			else
3969 				timer_index = timer_index - 1;
3970 
3971 			timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
3972 			q->next_intr_params =
3973 					QINTR_TIMER_IDX_V(timer_index) |
3974 					QINTR_CNT_EN_V(0);
3975 			params = q->next_intr_params;
3976 		} else {
3977 			params = q->next_intr_params;
3978 			q->next_intr_params = q->intr_params;
3979 		}
3980 	} else
3981 		params = QINTR_TIMER_IDX_V(7);
3982 
3983 	val = CIDXINC_V(work_done) | SEINTARM_V(params);
3984 
3985 	/* If we don't have access to the new User GTS (T5+), use the old
3986 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
3987 	 */
3988 	if (unlikely(q->bar2_addr == NULL)) {
3989 		t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
3990 			     val | INGRESSQID_V((u32)q->cntxt_id));
3991 	} else {
3992 		writel(val | INGRESSQID_V(q->bar2_qid),
3993 		       q->bar2_addr + SGE_UDB_GTS);
3994 		wmb();
3995 	}
3996 	return work_done;
3997 }
3998 
3999 void cxgb4_ethofld_restart(struct tasklet_struct *t)
4000 {
4001 	struct sge_eosw_txq *eosw_txq = from_tasklet(eosw_txq, t,
4002 						     qresume_tsk);
4003 	int pktcount;
4004 
4005 	spin_lock(&eosw_txq->lock);
4006 	pktcount = eosw_txq->cidx - eosw_txq->last_cidx;
4007 	if (pktcount < 0)
4008 		pktcount += eosw_txq->ndesc;
4009 
4010 	if (pktcount) {
4011 		cxgb4_eosw_txq_free_desc(netdev2adap(eosw_txq->netdev),
4012 					 eosw_txq, pktcount);
4013 		eosw_txq->inuse -= pktcount;
4014 	}
4015 
4016 	/* There may be some packets waiting for completions. So,
4017 	 * attempt to send these packets now.
4018 	 */
4019 	ethofld_xmit(eosw_txq->netdev, eosw_txq);
4020 	spin_unlock(&eosw_txq->lock);
4021 }
4022 
4023 /* cxgb4_ethofld_rx_handler - Process ETHOFLD Tx completions
4024  * @q: the response queue that received the packet
4025  * @rsp: the response queue descriptor holding the CPL message
4026  * @si: the gather list of packet fragments
4027  *
4028  * Process a ETHOFLD Tx completion. Increment the cidx here, but
4029  * free up the descriptors in a tasklet later.
4030  */
4031 int cxgb4_ethofld_rx_handler(struct sge_rspq *q, const __be64 *rsp,
4032 			     const struct pkt_gl *si)
4033 {
4034 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
4035 
4036 	/* skip RSS header */
4037 	rsp++;
4038 
4039 	if (opcode == CPL_FW4_ACK) {
4040 		const struct cpl_fw4_ack *cpl;
4041 		struct sge_eosw_txq *eosw_txq;
4042 		struct eotid_entry *entry;
4043 		struct sk_buff *skb;
4044 		u32 hdr_len, eotid;
4045 		u8 flits, wrlen16;
4046 		int credits;
4047 
4048 		cpl = (const struct cpl_fw4_ack *)rsp;
4049 		eotid = CPL_FW4_ACK_FLOWID_G(ntohl(OPCODE_TID(cpl))) -
4050 			q->adap->tids.eotid_base;
4051 		entry = cxgb4_lookup_eotid(&q->adap->tids, eotid);
4052 		if (!entry)
4053 			goto out_done;
4054 
4055 		eosw_txq = (struct sge_eosw_txq *)entry->data;
4056 		if (!eosw_txq)
4057 			goto out_done;
4058 
4059 		spin_lock(&eosw_txq->lock);
4060 		credits = cpl->credits;
4061 		while (credits > 0) {
4062 			skb = eosw_txq->desc[eosw_txq->cidx].skb;
4063 			if (!skb)
4064 				break;
4065 
4066 			if (unlikely((eosw_txq->state ==
4067 				      CXGB4_EO_STATE_FLOWC_OPEN_REPLY ||
4068 				      eosw_txq->state ==
4069 				      CXGB4_EO_STATE_FLOWC_CLOSE_REPLY) &&
4070 				     eosw_txq->cidx == eosw_txq->flowc_idx)) {
4071 				flits = DIV_ROUND_UP(skb->len, 8);
4072 				if (eosw_txq->state ==
4073 				    CXGB4_EO_STATE_FLOWC_OPEN_REPLY)
4074 					eosw_txq->state = CXGB4_EO_STATE_ACTIVE;
4075 				else
4076 					eosw_txq->state = CXGB4_EO_STATE_CLOSED;
4077 				complete(&eosw_txq->completion);
4078 			} else {
4079 				hdr_len = eth_get_headlen(eosw_txq->netdev,
4080 							  skb->data,
4081 							  skb_headlen(skb));
4082 				flits = ethofld_calc_tx_flits(q->adap, skb,
4083 							      hdr_len);
4084 			}
4085 			eosw_txq_advance_index(&eosw_txq->cidx, 1,
4086 					       eosw_txq->ndesc);
4087 			wrlen16 = DIV_ROUND_UP(flits * 8, 16);
4088 			credits -= wrlen16;
4089 		}
4090 
4091 		eosw_txq->cred += cpl->credits;
4092 		eosw_txq->ncompl--;
4093 
4094 		spin_unlock(&eosw_txq->lock);
4095 
4096 		/* Schedule a tasklet to reclaim SKBs and restart ETHOFLD Tx,
4097 		 * if there were packets waiting for completion.
4098 		 */
4099 		tasklet_schedule(&eosw_txq->qresume_tsk);
4100 	}
4101 
4102 out_done:
4103 	return 0;
4104 }
4105 
4106 /*
4107  * The MSI-X interrupt handler for an SGE response queue.
4108  */
4109 irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
4110 {
4111 	struct sge_rspq *q = cookie;
4112 
4113 	napi_schedule(&q->napi);
4114 	return IRQ_HANDLED;
4115 }
4116 
4117 /*
4118  * Process the indirect interrupt entries in the interrupt queue and kick off
4119  * NAPI for each queue that has generated an entry.
4120  */
4121 static unsigned int process_intrq(struct adapter *adap)
4122 {
4123 	unsigned int credits;
4124 	const struct rsp_ctrl *rc;
4125 	struct sge_rspq *q = &adap->sge.intrq;
4126 	u32 val;
4127 
4128 	spin_lock(&adap->sge.intrq_lock);
4129 	for (credits = 0; ; credits++) {
4130 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
4131 		if (!is_new_response(rc, q))
4132 			break;
4133 
4134 		dma_rmb();
4135 		if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
4136 			unsigned int qid = ntohl(rc->pldbuflen_qid);
4137 
4138 			qid -= adap->sge.ingr_start;
4139 			napi_schedule(&adap->sge.ingr_map[qid]->napi);
4140 		}
4141 
4142 		rspq_next(q);
4143 	}
4144 
4145 	val =  CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
4146 
4147 	/* If we don't have access to the new User GTS (T5+), use the old
4148 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
4149 	 */
4150 	if (unlikely(q->bar2_addr == NULL)) {
4151 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
4152 			     val | INGRESSQID_V(q->cntxt_id));
4153 	} else {
4154 		writel(val | INGRESSQID_V(q->bar2_qid),
4155 		       q->bar2_addr + SGE_UDB_GTS);
4156 		wmb();
4157 	}
4158 	spin_unlock(&adap->sge.intrq_lock);
4159 	return credits;
4160 }
4161 
4162 /*
4163  * The MSI interrupt handler, which handles data events from SGE response queues
4164  * as well as error and other async events as they all use the same MSI vector.
4165  */
4166 static irqreturn_t t4_intr_msi(int irq, void *cookie)
4167 {
4168 	struct adapter *adap = cookie;
4169 
4170 	if (adap->flags & CXGB4_MASTER_PF)
4171 		t4_slow_intr_handler(adap);
4172 	process_intrq(adap);
4173 	return IRQ_HANDLED;
4174 }
4175 
4176 /*
4177  * Interrupt handler for legacy INTx interrupts.
4178  * Handles data events from SGE response queues as well as error and other
4179  * async events as they all use the same interrupt line.
4180  */
4181 static irqreturn_t t4_intr_intx(int irq, void *cookie)
4182 {
4183 	struct adapter *adap = cookie;
4184 
4185 	t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
4186 	if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) |
4187 	    process_intrq(adap))
4188 		return IRQ_HANDLED;
4189 	return IRQ_NONE;             /* probably shared interrupt */
4190 }
4191 
4192 /**
4193  *	t4_intr_handler - select the top-level interrupt handler
4194  *	@adap: the adapter
4195  *
4196  *	Selects the top-level interrupt handler based on the type of interrupts
4197  *	(MSI-X, MSI, or INTx).
4198  */
4199 irq_handler_t t4_intr_handler(struct adapter *adap)
4200 {
4201 	if (adap->flags & CXGB4_USING_MSIX)
4202 		return t4_sge_intr_msix;
4203 	if (adap->flags & CXGB4_USING_MSI)
4204 		return t4_intr_msi;
4205 	return t4_intr_intx;
4206 }
4207 
4208 static void sge_rx_timer_cb(struct timer_list *t)
4209 {
4210 	unsigned long m;
4211 	unsigned int i;
4212 	struct adapter *adap = from_timer(adap, t, sge.rx_timer);
4213 	struct sge *s = &adap->sge;
4214 
4215 	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
4216 		for (m = s->starving_fl[i]; m; m &= m - 1) {
4217 			struct sge_eth_rxq *rxq;
4218 			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
4219 			struct sge_fl *fl = s->egr_map[id];
4220 
4221 			clear_bit(id, s->starving_fl);
4222 			smp_mb__after_atomic();
4223 
4224 			if (fl_starving(adap, fl)) {
4225 				rxq = container_of(fl, struct sge_eth_rxq, fl);
4226 				if (napi_reschedule(&rxq->rspq.napi))
4227 					fl->starving++;
4228 				else
4229 					set_bit(id, s->starving_fl);
4230 			}
4231 		}
4232 	/* The remainder of the SGE RX Timer Callback routine is dedicated to
4233 	 * global Master PF activities like checking for chip ingress stalls,
4234 	 * etc.
4235 	 */
4236 	if (!(adap->flags & CXGB4_MASTER_PF))
4237 		goto done;
4238 
4239 	t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
4240 
4241 done:
4242 	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
4243 }
4244 
4245 static void sge_tx_timer_cb(struct timer_list *t)
4246 {
4247 	struct adapter *adap = from_timer(adap, t, sge.tx_timer);
4248 	struct sge *s = &adap->sge;
4249 	unsigned long m, period;
4250 	unsigned int i, budget;
4251 
4252 	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
4253 		for (m = s->txq_maperr[i]; m; m &= m - 1) {
4254 			unsigned long id = __ffs(m) + i * BITS_PER_LONG;
4255 			struct sge_uld_txq *txq = s->egr_map[id];
4256 
4257 			clear_bit(id, s->txq_maperr);
4258 			tasklet_schedule(&txq->qresume_tsk);
4259 		}
4260 
4261 	if (!is_t4(adap->params.chip)) {
4262 		struct sge_eth_txq *q = &s->ptptxq;
4263 		int avail;
4264 
4265 		spin_lock(&adap->ptp_lock);
4266 		avail = reclaimable(&q->q);
4267 
4268 		if (avail) {
4269 			free_tx_desc(adap, &q->q, avail, false);
4270 			q->q.in_use -= avail;
4271 		}
4272 		spin_unlock(&adap->ptp_lock);
4273 	}
4274 
4275 	budget = MAX_TIMER_TX_RECLAIM;
4276 	i = s->ethtxq_rover;
4277 	do {
4278 		budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i],
4279 						       budget);
4280 		if (!budget)
4281 			break;
4282 
4283 		if (++i >= s->ethqsets)
4284 			i = 0;
4285 	} while (i != s->ethtxq_rover);
4286 	s->ethtxq_rover = i;
4287 
4288 	if (budget == 0) {
4289 		/* If we found too many reclaimable packets schedule a timer
4290 		 * in the near future to continue where we left off.
4291 		 */
4292 		period = 2;
4293 	} else {
4294 		/* We reclaimed all reclaimable TX Descriptors, so reschedule
4295 		 * at the normal period.
4296 		 */
4297 		period = TX_QCHECK_PERIOD;
4298 	}
4299 
4300 	mod_timer(&s->tx_timer, jiffies + period);
4301 }
4302 
4303 /**
4304  *	bar2_address - return the BAR2 address for an SGE Queue's Registers
4305  *	@adapter: the adapter
4306  *	@qid: the SGE Queue ID
4307  *	@qtype: the SGE Queue Type (Egress or Ingress)
4308  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
4309  *
4310  *	Returns the BAR2 address for the SGE Queue Registers associated with
4311  *	@qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
4312  *	returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
4313  *	Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
4314  *	Registers are supported (e.g. the Write Combining Doorbell Buffer).
4315  */
4316 static void __iomem *bar2_address(struct adapter *adapter,
4317 				  unsigned int qid,
4318 				  enum t4_bar2_qtype qtype,
4319 				  unsigned int *pbar2_qid)
4320 {
4321 	u64 bar2_qoffset;
4322 	int ret;
4323 
4324 	ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
4325 				&bar2_qoffset, pbar2_qid);
4326 	if (ret)
4327 		return NULL;
4328 
4329 	return adapter->bar2 + bar2_qoffset;
4330 }
4331 
4332 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
4333  * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
4334  */
4335 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
4336 		     struct net_device *dev, int intr_idx,
4337 		     struct sge_fl *fl, rspq_handler_t hnd,
4338 		     rspq_flush_handler_t flush_hnd, int cong)
4339 {
4340 	int ret, flsz = 0;
4341 	struct fw_iq_cmd c;
4342 	struct sge *s = &adap->sge;
4343 	struct port_info *pi = netdev_priv(dev);
4344 	int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING);
4345 
4346 	/* Size needs to be multiple of 16, including status entry. */
4347 	iq->size = roundup(iq->size, 16);
4348 
4349 	iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
4350 			      &iq->phys_addr, NULL, 0,
4351 			      dev_to_node(adap->pdev_dev));
4352 	if (!iq->desc)
4353 		return -ENOMEM;
4354 
4355 	memset(&c, 0, sizeof(c));
4356 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
4357 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4358 			    FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
4359 	c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
4360 				 FW_LEN16(c));
4361 	c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
4362 		FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
4363 		FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
4364 		FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
4365 		FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
4366 							-intr_idx - 1));
4367 	c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
4368 		FW_IQ_CMD_IQGTSMODE_F |
4369 		FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
4370 		FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
4371 	c.iqsize = htons(iq->size);
4372 	c.iqaddr = cpu_to_be64(iq->phys_addr);
4373 	if (cong >= 0)
4374 		c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F |
4375 				FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC
4376 							:  FW_IQ_IQTYPE_OFLD));
4377 
4378 	if (fl) {
4379 		unsigned int chip_ver =
4380 			CHELSIO_CHIP_VERSION(adap->params.chip);
4381 
4382 		/* Allocate the ring for the hardware free list (with space
4383 		 * for its status page) along with the associated software
4384 		 * descriptor ring.  The free list size needs to be a multiple
4385 		 * of the Egress Queue Unit and at least 2 Egress Units larger
4386 		 * than the SGE's Egress Congrestion Threshold
4387 		 * (fl_starve_thres - 1).
4388 		 */
4389 		if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
4390 			fl->size = s->fl_starve_thres - 1 + 2 * 8;
4391 		fl->size = roundup(fl->size, 8);
4392 		fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
4393 				      sizeof(struct rx_sw_desc), &fl->addr,
4394 				      &fl->sdesc, s->stat_len,
4395 				      dev_to_node(adap->pdev_dev));
4396 		if (!fl->desc)
4397 			goto fl_nomem;
4398 
4399 		flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
4400 		c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
4401 					     FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
4402 					     FW_IQ_CMD_FL0DATARO_V(relaxed) |
4403 					     FW_IQ_CMD_FL0PADEN_F);
4404 		if (cong >= 0)
4405 			c.iqns_to_fl0congen |=
4406 				htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
4407 				      FW_IQ_CMD_FL0CONGCIF_F |
4408 				      FW_IQ_CMD_FL0CONGEN_F);
4409 		/* In T6, for egress queue type FL there is internal overhead
4410 		 * of 16B for header going into FLM module.  Hence the maximum
4411 		 * allowed burst size is 448 bytes.  For T4/T5, the hardware
4412 		 * doesn't coalesce fetch requests if more than 64 bytes of
4413 		 * Free List pointers are provided, so we use a 128-byte Fetch
4414 		 * Burst Minimum there (T6 implements coalescing so we can use
4415 		 * the smaller 64-byte value there).
4416 		 */
4417 		c.fl0dcaen_to_fl0cidxfthresh =
4418 			htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ?
4419 						   FETCHBURSTMIN_128B_X :
4420 						   FETCHBURSTMIN_64B_T6_X) |
4421 			      FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ?
4422 						   FETCHBURSTMAX_512B_X :
4423 						   FETCHBURSTMAX_256B_X));
4424 		c.fl0size = htons(flsz);
4425 		c.fl0addr = cpu_to_be64(fl->addr);
4426 	}
4427 
4428 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4429 	if (ret)
4430 		goto err;
4431 
4432 	netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
4433 	iq->cur_desc = iq->desc;
4434 	iq->cidx = 0;
4435 	iq->gen = 1;
4436 	iq->next_intr_params = iq->intr_params;
4437 	iq->cntxt_id = ntohs(c.iqid);
4438 	iq->abs_id = ntohs(c.physiqid);
4439 	iq->bar2_addr = bar2_address(adap,
4440 				     iq->cntxt_id,
4441 				     T4_BAR2_QTYPE_INGRESS,
4442 				     &iq->bar2_qid);
4443 	iq->size--;                           /* subtract status entry */
4444 	iq->netdev = dev;
4445 	iq->handler = hnd;
4446 	iq->flush_handler = flush_hnd;
4447 
4448 	memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr));
4449 	skb_queue_head_init(&iq->lro_mgr.lroq);
4450 
4451 	/* set offset to -1 to distinguish ingress queues without FL */
4452 	iq->offset = fl ? 0 : -1;
4453 
4454 	adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
4455 
4456 	if (fl) {
4457 		fl->cntxt_id = ntohs(c.fl0id);
4458 		fl->avail = fl->pend_cred = 0;
4459 		fl->pidx = fl->cidx = 0;
4460 		fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
4461 		adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
4462 
4463 		/* Note, we must initialize the BAR2 Free List User Doorbell
4464 		 * information before refilling the Free List!
4465 		 */
4466 		fl->bar2_addr = bar2_address(adap,
4467 					     fl->cntxt_id,
4468 					     T4_BAR2_QTYPE_EGRESS,
4469 					     &fl->bar2_qid);
4470 		refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
4471 	}
4472 
4473 	/* For T5 and later we attempt to set up the Congestion Manager values
4474 	 * of the new RX Ethernet Queue.  This should really be handled by
4475 	 * firmware because it's more complex than any host driver wants to
4476 	 * get involved with and it's different per chip and this is almost
4477 	 * certainly wrong.  Firmware would be wrong as well, but it would be
4478 	 * a lot easier to fix in one place ...  For now we do something very
4479 	 * simple (and hopefully less wrong).
4480 	 */
4481 	if (!is_t4(adap->params.chip) && cong >= 0) {
4482 		u32 param, val, ch_map = 0;
4483 		int i;
4484 		u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log;
4485 
4486 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
4487 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
4488 			 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
4489 		if (cong == 0) {
4490 			val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
4491 		} else {
4492 			val =
4493 			    CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
4494 			for (i = 0; i < 4; i++) {
4495 				if (cong & (1 << i))
4496 					ch_map |= 1 << (i << cng_ch_bits_log);
4497 			}
4498 			val |= CONMCTXT_CNGCHMAP_V(ch_map);
4499 		}
4500 		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
4501 				    &param, &val);
4502 		if (ret)
4503 			dev_warn(adap->pdev_dev, "Failed to set Congestion"
4504 				 " Manager Context for Ingress Queue %d: %d\n",
4505 				 iq->cntxt_id, -ret);
4506 	}
4507 
4508 	return 0;
4509 
4510 fl_nomem:
4511 	ret = -ENOMEM;
4512 err:
4513 	if (iq->desc) {
4514 		dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
4515 				  iq->desc, iq->phys_addr);
4516 		iq->desc = NULL;
4517 	}
4518 	if (fl && fl->desc) {
4519 		kfree(fl->sdesc);
4520 		fl->sdesc = NULL;
4521 		dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
4522 				  fl->desc, fl->addr);
4523 		fl->desc = NULL;
4524 	}
4525 	return ret;
4526 }
4527 
4528 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
4529 {
4530 	q->cntxt_id = id;
4531 	q->bar2_addr = bar2_address(adap,
4532 				    q->cntxt_id,
4533 				    T4_BAR2_QTYPE_EGRESS,
4534 				    &q->bar2_qid);
4535 	q->in_use = 0;
4536 	q->cidx = q->pidx = 0;
4537 	q->stops = q->restarts = 0;
4538 	q->stat = (void *)&q->desc[q->size];
4539 	spin_lock_init(&q->db_lock);
4540 	adap->sge.egr_map[id - adap->sge.egr_start] = q;
4541 }
4542 
4543 /**
4544  *	t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue
4545  *	@adap: the adapter
4546  *	@txq: the SGE Ethernet TX Queue to initialize
4547  *	@dev: the Linux Network Device
4548  *	@netdevq: the corresponding Linux TX Queue
4549  *	@iqid: the Ingress Queue to which to deliver CIDX Update messages
4550  *	@dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers
4551  */
4552 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
4553 			 struct net_device *dev, struct netdev_queue *netdevq,
4554 			 unsigned int iqid, u8 dbqt)
4555 {
4556 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4557 	struct port_info *pi = netdev_priv(dev);
4558 	struct sge *s = &adap->sge;
4559 	struct fw_eq_eth_cmd c;
4560 	int ret, nentries;
4561 
4562 	/* Add status entries */
4563 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
4564 
4565 	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
4566 			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
4567 			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
4568 			netdev_queue_numa_node_read(netdevq));
4569 	if (!txq->q.desc)
4570 		return -ENOMEM;
4571 
4572 	memset(&c, 0, sizeof(c));
4573 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
4574 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4575 			    FW_EQ_ETH_CMD_PFN_V(adap->pf) |
4576 			    FW_EQ_ETH_CMD_VFN_V(0));
4577 	c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
4578 				 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
4579 
4580 	/* For TX Ethernet Queues using the SGE Doorbell Queue Timer
4581 	 * mechanism, we use Ingress Queue messages for Hardware Consumer
4582 	 * Index Updates on the TX Queue.  Otherwise we have the Hardware
4583 	 * write the CIDX Updates into the Status Page at the end of the
4584 	 * TX Queue.
4585 	 */
4586 	c.autoequiqe_to_viid = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
4587 				     FW_EQ_ETH_CMD_VIID_V(pi->viid));
4588 
4589 	c.fetchszm_to_iqid =
4590 		htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4591 		      FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
4592 		      FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
4593 
4594 	/* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */
4595 	c.dcaen_to_eqsize =
4596 		htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
4597 					    ? FETCHBURSTMIN_64B_X
4598 					    : FETCHBURSTMIN_64B_T6_X) |
4599 		      FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4600 		      FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4601 		      FW_EQ_ETH_CMD_EQSIZE_V(nentries));
4602 
4603 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
4604 
4605 	/* If we're using the SGE Doorbell Queue Timer mechanism, pass in the
4606 	 * currently configured Timer Index.  THis can be changed later via an
4607 	 * ethtool -C tx-usecs {Timer Val} command.  Note that the SGE
4608 	 * Doorbell Queue mode is currently automatically enabled in the
4609 	 * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ...
4610 	 */
4611 	if (dbqt)
4612 		c.timeren_timerix =
4613 			cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F |
4614 				    FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix));
4615 
4616 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4617 	if (ret) {
4618 		kfree(txq->q.sdesc);
4619 		txq->q.sdesc = NULL;
4620 		dma_free_coherent(adap->pdev_dev,
4621 				  nentries * sizeof(struct tx_desc),
4622 				  txq->q.desc, txq->q.phys_addr);
4623 		txq->q.desc = NULL;
4624 		return ret;
4625 	}
4626 
4627 	txq->q.q_type = CXGB4_TXQ_ETH;
4628 	init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
4629 	txq->txq = netdevq;
4630 	txq->tso = 0;
4631 	txq->uso = 0;
4632 	txq->tx_cso = 0;
4633 	txq->vlan_ins = 0;
4634 	txq->mapping_err = 0;
4635 	txq->dbqt = dbqt;
4636 
4637 	return 0;
4638 }
4639 
4640 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
4641 			  struct net_device *dev, unsigned int iqid,
4642 			  unsigned int cmplqid)
4643 {
4644 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4645 	struct port_info *pi = netdev_priv(dev);
4646 	struct sge *s = &adap->sge;
4647 	struct fw_eq_ctrl_cmd c;
4648 	int ret, nentries;
4649 
4650 	/* Add status entries */
4651 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
4652 
4653 	txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
4654 				 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
4655 				 NULL, 0, dev_to_node(adap->pdev_dev));
4656 	if (!txq->q.desc)
4657 		return -ENOMEM;
4658 
4659 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
4660 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4661 			    FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
4662 			    FW_EQ_CTRL_CMD_VFN_V(0));
4663 	c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
4664 				 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
4665 	c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
4666 	c.physeqid_pkd = htonl(0);
4667 	c.fetchszm_to_iqid =
4668 		htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4669 		      FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
4670 		      FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
4671 	c.dcaen_to_eqsize =
4672 		htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
4673 					     ? FETCHBURSTMIN_64B_X
4674 					     : FETCHBURSTMIN_64B_T6_X) |
4675 		      FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4676 		      FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4677 		      FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
4678 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
4679 
4680 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4681 	if (ret) {
4682 		dma_free_coherent(adap->pdev_dev,
4683 				  nentries * sizeof(struct tx_desc),
4684 				  txq->q.desc, txq->q.phys_addr);
4685 		txq->q.desc = NULL;
4686 		return ret;
4687 	}
4688 
4689 	txq->q.q_type = CXGB4_TXQ_CTRL;
4690 	init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
4691 	txq->adap = adap;
4692 	skb_queue_head_init(&txq->sendq);
4693 	tasklet_setup(&txq->qresume_tsk, restart_ctrlq);
4694 	txq->full = 0;
4695 	return 0;
4696 }
4697 
4698 int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid,
4699 			unsigned int cmplqid)
4700 {
4701 	u32 param, val;
4702 
4703 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
4704 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) |
4705 		 FW_PARAMS_PARAM_YZ_V(eqid));
4706 	val = cmplqid;
4707 	return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
4708 }
4709 
4710 static int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_txq *q,
4711 				 struct net_device *dev, u32 cmd, u32 iqid)
4712 {
4713 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4714 	struct port_info *pi = netdev_priv(dev);
4715 	struct sge *s = &adap->sge;
4716 	struct fw_eq_ofld_cmd c;
4717 	u32 fb_min, nentries;
4718 	int ret;
4719 
4720 	/* Add status entries */
4721 	nentries = q->size + s->stat_len / sizeof(struct tx_desc);
4722 	q->desc = alloc_ring(adap->pdev_dev, q->size, sizeof(struct tx_desc),
4723 			     sizeof(struct tx_sw_desc), &q->phys_addr,
4724 			     &q->sdesc, s->stat_len, NUMA_NO_NODE);
4725 	if (!q->desc)
4726 		return -ENOMEM;
4727 
4728 	if (chip_ver <= CHELSIO_T5)
4729 		fb_min = FETCHBURSTMIN_64B_X;
4730 	else
4731 		fb_min = FETCHBURSTMIN_64B_T6_X;
4732 
4733 	memset(&c, 0, sizeof(c));
4734 	c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F |
4735 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4736 			    FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
4737 			    FW_EQ_OFLD_CMD_VFN_V(0));
4738 	c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
4739 				 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
4740 	c.fetchszm_to_iqid =
4741 		htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4742 		      FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
4743 		      FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
4744 	c.dcaen_to_eqsize =
4745 		htonl(FW_EQ_OFLD_CMD_FBMIN_V(fb_min) |
4746 		      FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4747 		      FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4748 		      FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
4749 	c.eqaddr = cpu_to_be64(q->phys_addr);
4750 
4751 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4752 	if (ret) {
4753 		kfree(q->sdesc);
4754 		q->sdesc = NULL;
4755 		dma_free_coherent(adap->pdev_dev,
4756 				  nentries * sizeof(struct tx_desc),
4757 				  q->desc, q->phys_addr);
4758 		q->desc = NULL;
4759 		return ret;
4760 	}
4761 
4762 	init_txq(adap, q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
4763 	return 0;
4764 }
4765 
4766 int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq,
4767 			 struct net_device *dev, unsigned int iqid,
4768 			 unsigned int uld_type)
4769 {
4770 	u32 cmd = FW_EQ_OFLD_CMD;
4771 	int ret;
4772 
4773 	if (unlikely(uld_type == CXGB4_TX_CRYPTO))
4774 		cmd = FW_EQ_CTRL_CMD;
4775 
4776 	ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, cmd, iqid);
4777 	if (ret)
4778 		return ret;
4779 
4780 	txq->q.q_type = CXGB4_TXQ_ULD;
4781 	txq->adap = adap;
4782 	skb_queue_head_init(&txq->sendq);
4783 	tasklet_setup(&txq->qresume_tsk, restart_ofldq);
4784 	txq->full = 0;
4785 	txq->mapping_err = 0;
4786 	return 0;
4787 }
4788 
4789 int t4_sge_alloc_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq,
4790 			     struct net_device *dev, u32 iqid)
4791 {
4792 	int ret;
4793 
4794 	ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, FW_EQ_OFLD_CMD, iqid);
4795 	if (ret)
4796 		return ret;
4797 
4798 	txq->q.q_type = CXGB4_TXQ_ULD;
4799 	spin_lock_init(&txq->lock);
4800 	txq->adap = adap;
4801 	txq->tso = 0;
4802 	txq->uso = 0;
4803 	txq->tx_cso = 0;
4804 	txq->vlan_ins = 0;
4805 	txq->mapping_err = 0;
4806 	return 0;
4807 }
4808 
4809 void free_txq(struct adapter *adap, struct sge_txq *q)
4810 {
4811 	struct sge *s = &adap->sge;
4812 
4813 	dma_free_coherent(adap->pdev_dev,
4814 			  q->size * sizeof(struct tx_desc) + s->stat_len,
4815 			  q->desc, q->phys_addr);
4816 	q->cntxt_id = 0;
4817 	q->sdesc = NULL;
4818 	q->desc = NULL;
4819 }
4820 
4821 void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
4822 		  struct sge_fl *fl)
4823 {
4824 	struct sge *s = &adap->sge;
4825 	unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
4826 
4827 	adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
4828 	t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
4829 		   rq->cntxt_id, fl_id, 0xffff);
4830 	dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
4831 			  rq->desc, rq->phys_addr);
4832 	netif_napi_del(&rq->napi);
4833 	rq->netdev = NULL;
4834 	rq->cntxt_id = rq->abs_id = 0;
4835 	rq->desc = NULL;
4836 
4837 	if (fl) {
4838 		free_rx_bufs(adap, fl, fl->avail);
4839 		dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
4840 				  fl->desc, fl->addr);
4841 		kfree(fl->sdesc);
4842 		fl->sdesc = NULL;
4843 		fl->cntxt_id = 0;
4844 		fl->desc = NULL;
4845 	}
4846 }
4847 
4848 /**
4849  *      t4_free_ofld_rxqs - free a block of consecutive Rx queues
4850  *      @adap: the adapter
4851  *      @n: number of queues
4852  *      @q: pointer to first queue
4853  *
4854  *      Release the resources of a consecutive block of offload Rx queues.
4855  */
4856 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
4857 {
4858 	for ( ; n; n--, q++)
4859 		if (q->rspq.desc)
4860 			free_rspq_fl(adap, &q->rspq,
4861 				     q->fl.size ? &q->fl : NULL);
4862 }
4863 
4864 void t4_sge_free_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq)
4865 {
4866 	if (txq->q.desc) {
4867 		t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0,
4868 				txq->q.cntxt_id);
4869 		free_tx_desc(adap, &txq->q, txq->q.in_use, false);
4870 		kfree(txq->q.sdesc);
4871 		free_txq(adap, &txq->q);
4872 	}
4873 }
4874 
4875 /**
4876  *	t4_free_sge_resources - free SGE resources
4877  *	@adap: the adapter
4878  *
4879  *	Frees resources used by the SGE queue sets.
4880  */
4881 void t4_free_sge_resources(struct adapter *adap)
4882 {
4883 	int i;
4884 	struct sge_eth_rxq *eq;
4885 	struct sge_eth_txq *etq;
4886 
4887 	/* stop all Rx queues in order to start them draining */
4888 	for (i = 0; i < adap->sge.ethqsets; i++) {
4889 		eq = &adap->sge.ethrxq[i];
4890 		if (eq->rspq.desc)
4891 			t4_iq_stop(adap, adap->mbox, adap->pf, 0,
4892 				   FW_IQ_TYPE_FL_INT_CAP,
4893 				   eq->rspq.cntxt_id,
4894 				   eq->fl.size ? eq->fl.cntxt_id : 0xffff,
4895 				   0xffff);
4896 	}
4897 
4898 	/* clean up Ethernet Tx/Rx queues */
4899 	for (i = 0; i < adap->sge.ethqsets; i++) {
4900 		eq = &adap->sge.ethrxq[i];
4901 		if (eq->rspq.desc)
4902 			free_rspq_fl(adap, &eq->rspq,
4903 				     eq->fl.size ? &eq->fl : NULL);
4904 		if (eq->msix) {
4905 			cxgb4_free_msix_idx_in_bmap(adap, eq->msix->idx);
4906 			eq->msix = NULL;
4907 		}
4908 
4909 		etq = &adap->sge.ethtxq[i];
4910 		if (etq->q.desc) {
4911 			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4912 				       etq->q.cntxt_id);
4913 			__netif_tx_lock_bh(etq->txq);
4914 			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4915 			__netif_tx_unlock_bh(etq->txq);
4916 			kfree(etq->q.sdesc);
4917 			free_txq(adap, &etq->q);
4918 		}
4919 	}
4920 
4921 	/* clean up control Tx queues */
4922 	for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
4923 		struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
4924 
4925 		if (cq->q.desc) {
4926 			tasklet_kill(&cq->qresume_tsk);
4927 			t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
4928 					cq->q.cntxt_id);
4929 			__skb_queue_purge(&cq->sendq);
4930 			free_txq(adap, &cq->q);
4931 		}
4932 	}
4933 
4934 	if (adap->sge.fw_evtq.desc) {
4935 		free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
4936 		if (adap->sge.fwevtq_msix_idx >= 0)
4937 			cxgb4_free_msix_idx_in_bmap(adap,
4938 						    adap->sge.fwevtq_msix_idx);
4939 	}
4940 
4941 	if (adap->sge.nd_msix_idx >= 0)
4942 		cxgb4_free_msix_idx_in_bmap(adap, adap->sge.nd_msix_idx);
4943 
4944 	if (adap->sge.intrq.desc)
4945 		free_rspq_fl(adap, &adap->sge.intrq, NULL);
4946 
4947 	if (!is_t4(adap->params.chip)) {
4948 		etq = &adap->sge.ptptxq;
4949 		if (etq->q.desc) {
4950 			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4951 				       etq->q.cntxt_id);
4952 			spin_lock_bh(&adap->ptp_lock);
4953 			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4954 			spin_unlock_bh(&adap->ptp_lock);
4955 			kfree(etq->q.sdesc);
4956 			free_txq(adap, &etq->q);
4957 		}
4958 	}
4959 
4960 	/* clear the reverse egress queue map */
4961 	memset(adap->sge.egr_map, 0,
4962 	       adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
4963 }
4964 
4965 void t4_sge_start(struct adapter *adap)
4966 {
4967 	adap->sge.ethtxq_rover = 0;
4968 	mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
4969 	mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
4970 }
4971 
4972 /**
4973  *	t4_sge_stop - disable SGE operation
4974  *	@adap: the adapter
4975  *
4976  *	Stop tasklets and timers associated with the DMA engine.  Note that
4977  *	this is effective only if measures have been taken to disable any HW
4978  *	events that may restart them.
4979  */
4980 void t4_sge_stop(struct adapter *adap)
4981 {
4982 	int i;
4983 	struct sge *s = &adap->sge;
4984 
4985 	if (s->rx_timer.function)
4986 		del_timer_sync(&s->rx_timer);
4987 	if (s->tx_timer.function)
4988 		del_timer_sync(&s->tx_timer);
4989 
4990 	if (is_offload(adap)) {
4991 		struct sge_uld_txq_info *txq_info;
4992 
4993 		txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
4994 		if (txq_info) {
4995 			struct sge_uld_txq *txq = txq_info->uldtxq;
4996 
4997 			for_each_ofldtxq(&adap->sge, i) {
4998 				if (txq->q.desc)
4999 					tasklet_kill(&txq->qresume_tsk);
5000 			}
5001 		}
5002 	}
5003 
5004 	if (is_pci_uld(adap)) {
5005 		struct sge_uld_txq_info *txq_info;
5006 
5007 		txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO];
5008 		if (txq_info) {
5009 			struct sge_uld_txq *txq = txq_info->uldtxq;
5010 
5011 			for_each_ofldtxq(&adap->sge, i) {
5012 				if (txq->q.desc)
5013 					tasklet_kill(&txq->qresume_tsk);
5014 			}
5015 		}
5016 	}
5017 
5018 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
5019 		struct sge_ctrl_txq *cq = &s->ctrlq[i];
5020 
5021 		if (cq->q.desc)
5022 			tasklet_kill(&cq->qresume_tsk);
5023 	}
5024 }
5025 
5026 /**
5027  *	t4_sge_init_soft - grab core SGE values needed by SGE code
5028  *	@adap: the adapter
5029  *
5030  *	We need to grab the SGE operating parameters that we need to have
5031  *	in order to do our job and make sure we can live with them.
5032  */
5033 
5034 static int t4_sge_init_soft(struct adapter *adap)
5035 {
5036 	struct sge *s = &adap->sge;
5037 	u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
5038 	u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
5039 	u32 ingress_rx_threshold;
5040 
5041 	/*
5042 	 * Verify that CPL messages are going to the Ingress Queue for
5043 	 * process_responses() and that only packet data is going to the
5044 	 * Free Lists.
5045 	 */
5046 	if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
5047 	    RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
5048 		dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
5049 		return -EINVAL;
5050 	}
5051 
5052 	/*
5053 	 * Validate the Host Buffer Register Array indices that we want to
5054 	 * use ...
5055 	 *
5056 	 * XXX Note that we should really read through the Host Buffer Size
5057 	 * XXX register array and find the indices of the Buffer Sizes which
5058 	 * XXX meet our needs!
5059 	 */
5060 	#define READ_FL_BUF(x) \
5061 		t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
5062 
5063 	fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
5064 	fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
5065 	fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
5066 	fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
5067 
5068 	/* We only bother using the Large Page logic if the Large Page Buffer
5069 	 * is larger than our Page Size Buffer.
5070 	 */
5071 	if (fl_large_pg <= fl_small_pg)
5072 		fl_large_pg = 0;
5073 
5074 	#undef READ_FL_BUF
5075 
5076 	/* The Page Size Buffer must be exactly equal to our Page Size and the
5077 	 * Large Page Size Buffer should be 0 (per above) or a power of 2.
5078 	 */
5079 	if (fl_small_pg != PAGE_SIZE ||
5080 	    (fl_large_pg & (fl_large_pg-1)) != 0) {
5081 		dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
5082 			fl_small_pg, fl_large_pg);
5083 		return -EINVAL;
5084 	}
5085 	if (fl_large_pg)
5086 		s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
5087 
5088 	if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
5089 	    fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
5090 		dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
5091 			fl_small_mtu, fl_large_mtu);
5092 		return -EINVAL;
5093 	}
5094 
5095 	/*
5096 	 * Retrieve our RX interrupt holdoff timer values and counter
5097 	 * threshold values from the SGE parameters.
5098 	 */
5099 	timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
5100 	timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
5101 	timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
5102 	s->timer_val[0] = core_ticks_to_us(adap,
5103 		TIMERVALUE0_G(timer_value_0_and_1));
5104 	s->timer_val[1] = core_ticks_to_us(adap,
5105 		TIMERVALUE1_G(timer_value_0_and_1));
5106 	s->timer_val[2] = core_ticks_to_us(adap,
5107 		TIMERVALUE2_G(timer_value_2_and_3));
5108 	s->timer_val[3] = core_ticks_to_us(adap,
5109 		TIMERVALUE3_G(timer_value_2_and_3));
5110 	s->timer_val[4] = core_ticks_to_us(adap,
5111 		TIMERVALUE4_G(timer_value_4_and_5));
5112 	s->timer_val[5] = core_ticks_to_us(adap,
5113 		TIMERVALUE5_G(timer_value_4_and_5));
5114 
5115 	ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
5116 	s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
5117 	s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
5118 	s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
5119 	s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
5120 
5121 	return 0;
5122 }
5123 
5124 /**
5125  *     t4_sge_init - initialize SGE
5126  *     @adap: the adapter
5127  *
5128  *     Perform low-level SGE code initialization needed every time after a
5129  *     chip reset.
5130  */
5131 int t4_sge_init(struct adapter *adap)
5132 {
5133 	struct sge *s = &adap->sge;
5134 	u32 sge_control, sge_conm_ctrl;
5135 	int ret, egress_threshold;
5136 
5137 	/*
5138 	 * Ingress Padding Boundary and Egress Status Page Size are set up by
5139 	 * t4_fixup_host_params().
5140 	 */
5141 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
5142 	s->pktshift = PKTSHIFT_G(sge_control);
5143 	s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
5144 
5145 	s->fl_align = t4_fl_pkt_align(adap);
5146 	ret = t4_sge_init_soft(adap);
5147 	if (ret < 0)
5148 		return ret;
5149 
5150 	/*
5151 	 * A FL with <= fl_starve_thres buffers is starving and a periodic
5152 	 * timer will attempt to refill it.  This needs to be larger than the
5153 	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
5154 	 * stuck waiting for new packets while the SGE is waiting for us to
5155 	 * give it more Free List entries.  (Note that the SGE's Egress
5156 	 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
5157 	 * there was only a single field to control this.  For T5 there's the
5158 	 * original field which now only applies to Unpacked Mode Free List
5159 	 * buffers and a new field which only applies to Packed Mode Free List
5160 	 * buffers.
5161 	 */
5162 	sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
5163 	switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
5164 	case CHELSIO_T4:
5165 		egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
5166 		break;
5167 	case CHELSIO_T5:
5168 		egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
5169 		break;
5170 	case CHELSIO_T6:
5171 		egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
5172 		break;
5173 	default:
5174 		dev_err(adap->pdev_dev, "Unsupported Chip version %d\n",
5175 			CHELSIO_CHIP_VERSION(adap->params.chip));
5176 		return -EINVAL;
5177 	}
5178 	s->fl_starve_thres = 2*egress_threshold + 1;
5179 
5180 	t4_idma_monitor_init(adap, &s->idma_monitor);
5181 
5182 	/* Set up timers used for recuring callbacks to process RX and TX
5183 	 * administrative tasks.
5184 	 */
5185 	timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
5186 	timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
5187 
5188 	spin_lock_init(&s->intrq_lock);
5189 
5190 	return 0;
5191 }
5192