xref: /linux/drivers/net/ethernet/chelsio/cxgb4/sge.c (revision b9b77222d4ff6b5bb8f5d87fca20de0910618bb9)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/if_vlan.h>
39 #include <linux/ip.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/jiffies.h>
42 #include <linux/prefetch.h>
43 #include <linux/export.h>
44 #include <net/xfrm.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/busy_poll.h>
48 #ifdef CONFIG_CHELSIO_T4_FCOE
49 #include <scsi/fc/fc_fcoe.h>
50 #endif /* CONFIG_CHELSIO_T4_FCOE */
51 #include "cxgb4.h"
52 #include "t4_regs.h"
53 #include "t4_values.h"
54 #include "t4_msg.h"
55 #include "t4fw_api.h"
56 #include "cxgb4_ptp.h"
57 #include "cxgb4_uld.h"
58 
59 /*
60  * Rx buffer size.  We use largish buffers if possible but settle for single
61  * pages under memory shortage.
62  */
63 #if PAGE_SHIFT >= 16
64 # define FL_PG_ORDER 0
65 #else
66 # define FL_PG_ORDER (16 - PAGE_SHIFT)
67 #endif
68 
69 /* RX_PULL_LEN should be <= RX_COPY_THRES */
70 #define RX_COPY_THRES    256
71 #define RX_PULL_LEN      128
72 
73 /*
74  * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
75  * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
76  */
77 #define RX_PKT_SKB_LEN   512
78 
79 /*
80  * Max number of Tx descriptors we clean up at a time.  Should be modest as
81  * freeing skbs isn't cheap and it happens while holding locks.  We just need
82  * to free packets faster than they arrive, we eventually catch up and keep
83  * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES.
84  */
85 #define MAX_TX_RECLAIM 16
86 
87 /*
88  * Max number of Rx buffers we replenish at a time.  Again keep this modest,
89  * allocating buffers isn't cheap either.
90  */
91 #define MAX_RX_REFILL 16U
92 
93 /*
94  * Period of the Rx queue check timer.  This timer is infrequent as it has
95  * something to do only when the system experiences severe memory shortage.
96  */
97 #define RX_QCHECK_PERIOD (HZ / 2)
98 
99 /*
100  * Period of the Tx queue check timer.
101  */
102 #define TX_QCHECK_PERIOD (HZ / 2)
103 
104 /*
105  * Max number of Tx descriptors to be reclaimed by the Tx timer.
106  */
107 #define MAX_TIMER_TX_RECLAIM 100
108 
109 /*
110  * Timer index used when backing off due to memory shortage.
111  */
112 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
113 
114 /*
115  * Suspension threshold for non-Ethernet Tx queues.  We require enough room
116  * for a full sized WR.
117  */
118 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
119 
120 /*
121  * Max Tx descriptor space we allow for an Ethernet packet to be inlined
122  * into a WR.
123  */
124 #define MAX_IMM_TX_PKT_LEN 256
125 
126 /*
127  * Max size of a WR sent through a control Tx queue.
128  */
129 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
130 
131 struct rx_sw_desc {                /* SW state per Rx descriptor */
132 	struct page *page;
133 	dma_addr_t dma_addr;
134 };
135 
136 /*
137  * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
138  * buffer).  We currently only support two sizes for 1500- and 9000-byte MTUs.
139  * We could easily support more but there doesn't seem to be much need for
140  * that ...
141  */
142 #define FL_MTU_SMALL 1500
143 #define FL_MTU_LARGE 9000
144 
145 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
146 					  unsigned int mtu)
147 {
148 	struct sge *s = &adapter->sge;
149 
150 	return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
151 }
152 
153 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
154 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
155 
156 /*
157  * Bits 0..3 of rx_sw_desc.dma_addr have special meaning.  The hardware uses
158  * these to specify the buffer size as an index into the SGE Free List Buffer
159  * Size register array.  We also use bit 4, when the buffer has been unmapped
160  * for DMA, but this is of course never sent to the hardware and is only used
161  * to prevent double unmappings.  All of the above requires that the Free List
162  * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
163  * 32-byte or or a power of 2 greater in alignment.  Since the SGE's minimal
164  * Free List Buffer alignment is 32 bytes, this works out for us ...
165  */
166 enum {
167 	RX_BUF_FLAGS     = 0x1f,   /* bottom five bits are special */
168 	RX_BUF_SIZE      = 0x0f,   /* bottom three bits are for buf sizes */
169 	RX_UNMAPPED_BUF  = 0x10,   /* buffer is not mapped */
170 
171 	/*
172 	 * XXX We shouldn't depend on being able to use these indices.
173 	 * XXX Especially when some other Master PF has initialized the
174 	 * XXX adapter or we use the Firmware Configuration File.  We
175 	 * XXX should really search through the Host Buffer Size register
176 	 * XXX array for the appropriately sized buffer indices.
177 	 */
178 	RX_SMALL_PG_BUF  = 0x0,   /* small (PAGE_SIZE) page buffer */
179 	RX_LARGE_PG_BUF  = 0x1,   /* buffer large (FL_PG_ORDER) page buffer */
180 
181 	RX_SMALL_MTU_BUF = 0x2,   /* small MTU buffer */
182 	RX_LARGE_MTU_BUF = 0x3,   /* large MTU buffer */
183 };
184 
185 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
186 #define MIN_NAPI_WORK  1
187 
188 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
189 {
190 	return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
191 }
192 
193 static inline bool is_buf_mapped(const struct rx_sw_desc *d)
194 {
195 	return !(d->dma_addr & RX_UNMAPPED_BUF);
196 }
197 
198 /**
199  *	txq_avail - return the number of available slots in a Tx queue
200  *	@q: the Tx queue
201  *
202  *	Returns the number of descriptors in a Tx queue available to write new
203  *	packets.
204  */
205 static inline unsigned int txq_avail(const struct sge_txq *q)
206 {
207 	return q->size - 1 - q->in_use;
208 }
209 
210 /**
211  *	fl_cap - return the capacity of a free-buffer list
212  *	@fl: the FL
213  *
214  *	Returns the capacity of a free-buffer list.  The capacity is less than
215  *	the size because one descriptor needs to be left unpopulated, otherwise
216  *	HW will think the FL is empty.
217  */
218 static inline unsigned int fl_cap(const struct sge_fl *fl)
219 {
220 	return fl->size - 8;   /* 1 descriptor = 8 buffers */
221 }
222 
223 /**
224  *	fl_starving - return whether a Free List is starving.
225  *	@adapter: pointer to the adapter
226  *	@fl: the Free List
227  *
228  *	Tests specified Free List to see whether the number of buffers
229  *	available to the hardware has falled below our "starvation"
230  *	threshold.
231  */
232 static inline bool fl_starving(const struct adapter *adapter,
233 			       const struct sge_fl *fl)
234 {
235 	const struct sge *s = &adapter->sge;
236 
237 	return fl->avail - fl->pend_cred <= s->fl_starve_thres;
238 }
239 
240 int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb,
241 		  dma_addr_t *addr)
242 {
243 	const skb_frag_t *fp, *end;
244 	const struct skb_shared_info *si;
245 
246 	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
247 	if (dma_mapping_error(dev, *addr))
248 		goto out_err;
249 
250 	si = skb_shinfo(skb);
251 	end = &si->frags[si->nr_frags];
252 
253 	for (fp = si->frags; fp < end; fp++) {
254 		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
255 					   DMA_TO_DEVICE);
256 		if (dma_mapping_error(dev, *addr))
257 			goto unwind;
258 	}
259 	return 0;
260 
261 unwind:
262 	while (fp-- > si->frags)
263 		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
264 
265 	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
266 out_err:
267 	return -ENOMEM;
268 }
269 EXPORT_SYMBOL(cxgb4_map_skb);
270 
271 #ifdef CONFIG_NEED_DMA_MAP_STATE
272 static void unmap_skb(struct device *dev, const struct sk_buff *skb,
273 		      const dma_addr_t *addr)
274 {
275 	const skb_frag_t *fp, *end;
276 	const struct skb_shared_info *si;
277 
278 	dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
279 
280 	si = skb_shinfo(skb);
281 	end = &si->frags[si->nr_frags];
282 	for (fp = si->frags; fp < end; fp++)
283 		dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
284 }
285 
286 /**
287  *	deferred_unmap_destructor - unmap a packet when it is freed
288  *	@skb: the packet
289  *
290  *	This is the packet destructor used for Tx packets that need to remain
291  *	mapped until they are freed rather than until their Tx descriptors are
292  *	freed.
293  */
294 static void deferred_unmap_destructor(struct sk_buff *skb)
295 {
296 	unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
297 }
298 #endif
299 
300 static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
301 		      const struct ulptx_sgl *sgl, const struct sge_txq *q)
302 {
303 	const struct ulptx_sge_pair *p;
304 	unsigned int nfrags = skb_shinfo(skb)->nr_frags;
305 
306 	if (likely(skb_headlen(skb)))
307 		dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
308 				 DMA_TO_DEVICE);
309 	else {
310 		dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
311 			       DMA_TO_DEVICE);
312 		nfrags--;
313 	}
314 
315 	/*
316 	 * the complexity below is because of the possibility of a wrap-around
317 	 * in the middle of an SGL
318 	 */
319 	for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
320 		if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
321 unmap:			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
322 				       ntohl(p->len[0]), DMA_TO_DEVICE);
323 			dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
324 				       ntohl(p->len[1]), DMA_TO_DEVICE);
325 			p++;
326 		} else if ((u8 *)p == (u8 *)q->stat) {
327 			p = (const struct ulptx_sge_pair *)q->desc;
328 			goto unmap;
329 		} else if ((u8 *)p + 8 == (u8 *)q->stat) {
330 			const __be64 *addr = (const __be64 *)q->desc;
331 
332 			dma_unmap_page(dev, be64_to_cpu(addr[0]),
333 				       ntohl(p->len[0]), DMA_TO_DEVICE);
334 			dma_unmap_page(dev, be64_to_cpu(addr[1]),
335 				       ntohl(p->len[1]), DMA_TO_DEVICE);
336 			p = (const struct ulptx_sge_pair *)&addr[2];
337 		} else {
338 			const __be64 *addr = (const __be64 *)q->desc;
339 
340 			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
341 				       ntohl(p->len[0]), DMA_TO_DEVICE);
342 			dma_unmap_page(dev, be64_to_cpu(addr[0]),
343 				       ntohl(p->len[1]), DMA_TO_DEVICE);
344 			p = (const struct ulptx_sge_pair *)&addr[1];
345 		}
346 	}
347 	if (nfrags) {
348 		__be64 addr;
349 
350 		if ((u8 *)p == (u8 *)q->stat)
351 			p = (const struct ulptx_sge_pair *)q->desc;
352 		addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
353 						       *(const __be64 *)q->desc;
354 		dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
355 			       DMA_TO_DEVICE);
356 	}
357 }
358 
359 /**
360  *	free_tx_desc - reclaims Tx descriptors and their buffers
361  *	@adapter: the adapter
362  *	@q: the Tx queue to reclaim descriptors from
363  *	@n: the number of descriptors to reclaim
364  *	@unmap: whether the buffers should be unmapped for DMA
365  *
366  *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
367  *	Tx buffers.  Called with the Tx queue lock held.
368  */
369 void free_tx_desc(struct adapter *adap, struct sge_txq *q,
370 		  unsigned int n, bool unmap)
371 {
372 	struct tx_sw_desc *d;
373 	unsigned int cidx = q->cidx;
374 	struct device *dev = adap->pdev_dev;
375 
376 	d = &q->sdesc[cidx];
377 	while (n--) {
378 		if (d->skb) {                       /* an SGL is present */
379 			if (unmap)
380 				unmap_sgl(dev, d->skb, d->sgl, q);
381 			dev_consume_skb_any(d->skb);
382 			d->skb = NULL;
383 		}
384 		++d;
385 		if (++cidx == q->size) {
386 			cidx = 0;
387 			d = q->sdesc;
388 		}
389 	}
390 	q->cidx = cidx;
391 }
392 
393 /*
394  * Return the number of reclaimable descriptors in a Tx queue.
395  */
396 static inline int reclaimable(const struct sge_txq *q)
397 {
398 	int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
399 	hw_cidx -= q->cidx;
400 	return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
401 }
402 
403 /**
404  *	cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors
405  *	@adap: the adapter
406  *	@q: the Tx queue to reclaim completed descriptors from
407  *	@unmap: whether the buffers should be unmapped for DMA
408  *
409  *	Reclaims Tx descriptors that the SGE has indicated it has processed,
410  *	and frees the associated buffers if possible.  Called with the Tx
411  *	queue locked.
412  */
413 inline void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
414 					bool unmap)
415 {
416 	int avail = reclaimable(q);
417 
418 	if (avail) {
419 		/*
420 		 * Limit the amount of clean up work we do at a time to keep
421 		 * the Tx lock hold time O(1).
422 		 */
423 		if (avail > MAX_TX_RECLAIM)
424 			avail = MAX_TX_RECLAIM;
425 
426 		free_tx_desc(adap, q, avail, unmap);
427 		q->in_use -= avail;
428 	}
429 }
430 EXPORT_SYMBOL(cxgb4_reclaim_completed_tx);
431 
432 static inline int get_buf_size(struct adapter *adapter,
433 			       const struct rx_sw_desc *d)
434 {
435 	struct sge *s = &adapter->sge;
436 	unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
437 	int buf_size;
438 
439 	switch (rx_buf_size_idx) {
440 	case RX_SMALL_PG_BUF:
441 		buf_size = PAGE_SIZE;
442 		break;
443 
444 	case RX_LARGE_PG_BUF:
445 		buf_size = PAGE_SIZE << s->fl_pg_order;
446 		break;
447 
448 	case RX_SMALL_MTU_BUF:
449 		buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
450 		break;
451 
452 	case RX_LARGE_MTU_BUF:
453 		buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
454 		break;
455 
456 	default:
457 		BUG_ON(1);
458 	}
459 
460 	return buf_size;
461 }
462 
463 /**
464  *	free_rx_bufs - free the Rx buffers on an SGE free list
465  *	@adap: the adapter
466  *	@q: the SGE free list to free buffers from
467  *	@n: how many buffers to free
468  *
469  *	Release the next @n buffers on an SGE free-buffer Rx queue.   The
470  *	buffers must be made inaccessible to HW before calling this function.
471  */
472 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
473 {
474 	while (n--) {
475 		struct rx_sw_desc *d = &q->sdesc[q->cidx];
476 
477 		if (is_buf_mapped(d))
478 			dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
479 				       get_buf_size(adap, d),
480 				       PCI_DMA_FROMDEVICE);
481 		put_page(d->page);
482 		d->page = NULL;
483 		if (++q->cidx == q->size)
484 			q->cidx = 0;
485 		q->avail--;
486 	}
487 }
488 
489 /**
490  *	unmap_rx_buf - unmap the current Rx buffer on an SGE free list
491  *	@adap: the adapter
492  *	@q: the SGE free list
493  *
494  *	Unmap the current buffer on an SGE free-buffer Rx queue.   The
495  *	buffer must be made inaccessible to HW before calling this function.
496  *
497  *	This is similar to @free_rx_bufs above but does not free the buffer.
498  *	Do note that the FL still loses any further access to the buffer.
499  */
500 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
501 {
502 	struct rx_sw_desc *d = &q->sdesc[q->cidx];
503 
504 	if (is_buf_mapped(d))
505 		dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
506 			       get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
507 	d->page = NULL;
508 	if (++q->cidx == q->size)
509 		q->cidx = 0;
510 	q->avail--;
511 }
512 
513 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
514 {
515 	if (q->pend_cred >= 8) {
516 		u32 val = adap->params.arch.sge_fl_db;
517 
518 		if (is_t4(adap->params.chip))
519 			val |= PIDX_V(q->pend_cred / 8);
520 		else
521 			val |= PIDX_T5_V(q->pend_cred / 8);
522 
523 		/* Make sure all memory writes to the Free List queue are
524 		 * committed before we tell the hardware about them.
525 		 */
526 		wmb();
527 
528 		/* If we don't have access to the new User Doorbell (T5+), use
529 		 * the old doorbell mechanism; otherwise use the new BAR2
530 		 * mechanism.
531 		 */
532 		if (unlikely(q->bar2_addr == NULL)) {
533 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
534 				     val | QID_V(q->cntxt_id));
535 		} else {
536 			writel(val | QID_V(q->bar2_qid),
537 			       q->bar2_addr + SGE_UDB_KDOORBELL);
538 
539 			/* This Write memory Barrier will force the write to
540 			 * the User Doorbell area to be flushed.
541 			 */
542 			wmb();
543 		}
544 		q->pend_cred &= 7;
545 	}
546 }
547 
548 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
549 				  dma_addr_t mapping)
550 {
551 	sd->page = pg;
552 	sd->dma_addr = mapping;      /* includes size low bits */
553 }
554 
555 /**
556  *	refill_fl - refill an SGE Rx buffer ring
557  *	@adap: the adapter
558  *	@q: the ring to refill
559  *	@n: the number of new buffers to allocate
560  *	@gfp: the gfp flags for the allocations
561  *
562  *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
563  *	allocated with the supplied gfp flags.  The caller must assure that
564  *	@n does not exceed the queue's capacity.  If afterwards the queue is
565  *	found critically low mark it as starving in the bitmap of starving FLs.
566  *
567  *	Returns the number of buffers allocated.
568  */
569 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
570 			      gfp_t gfp)
571 {
572 	struct sge *s = &adap->sge;
573 	struct page *pg;
574 	dma_addr_t mapping;
575 	unsigned int cred = q->avail;
576 	__be64 *d = &q->desc[q->pidx];
577 	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
578 	int node;
579 
580 #ifdef CONFIG_DEBUG_FS
581 	if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
582 		goto out;
583 #endif
584 
585 	gfp |= __GFP_NOWARN;
586 	node = dev_to_node(adap->pdev_dev);
587 
588 	if (s->fl_pg_order == 0)
589 		goto alloc_small_pages;
590 
591 	/*
592 	 * Prefer large buffers
593 	 */
594 	while (n) {
595 		pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
596 		if (unlikely(!pg)) {
597 			q->large_alloc_failed++;
598 			break;       /* fall back to single pages */
599 		}
600 
601 		mapping = dma_map_page(adap->pdev_dev, pg, 0,
602 				       PAGE_SIZE << s->fl_pg_order,
603 				       PCI_DMA_FROMDEVICE);
604 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
605 			__free_pages(pg, s->fl_pg_order);
606 			q->mapping_err++;
607 			goto out;   /* do not try small pages for this error */
608 		}
609 		mapping |= RX_LARGE_PG_BUF;
610 		*d++ = cpu_to_be64(mapping);
611 
612 		set_rx_sw_desc(sd, pg, mapping);
613 		sd++;
614 
615 		q->avail++;
616 		if (++q->pidx == q->size) {
617 			q->pidx = 0;
618 			sd = q->sdesc;
619 			d = q->desc;
620 		}
621 		n--;
622 	}
623 
624 alloc_small_pages:
625 	while (n--) {
626 		pg = alloc_pages_node(node, gfp, 0);
627 		if (unlikely(!pg)) {
628 			q->alloc_failed++;
629 			break;
630 		}
631 
632 		mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
633 				       PCI_DMA_FROMDEVICE);
634 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
635 			put_page(pg);
636 			q->mapping_err++;
637 			goto out;
638 		}
639 		*d++ = cpu_to_be64(mapping);
640 
641 		set_rx_sw_desc(sd, pg, mapping);
642 		sd++;
643 
644 		q->avail++;
645 		if (++q->pidx == q->size) {
646 			q->pidx = 0;
647 			sd = q->sdesc;
648 			d = q->desc;
649 		}
650 	}
651 
652 out:	cred = q->avail - cred;
653 	q->pend_cred += cred;
654 	ring_fl_db(adap, q);
655 
656 	if (unlikely(fl_starving(adap, q))) {
657 		smp_wmb();
658 		q->low++;
659 		set_bit(q->cntxt_id - adap->sge.egr_start,
660 			adap->sge.starving_fl);
661 	}
662 
663 	return cred;
664 }
665 
666 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
667 {
668 	refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
669 		  GFP_ATOMIC);
670 }
671 
672 /**
673  *	alloc_ring - allocate resources for an SGE descriptor ring
674  *	@dev: the PCI device's core device
675  *	@nelem: the number of descriptors
676  *	@elem_size: the size of each descriptor
677  *	@sw_size: the size of the SW state associated with each ring element
678  *	@phys: the physical address of the allocated ring
679  *	@metadata: address of the array holding the SW state for the ring
680  *	@stat_size: extra space in HW ring for status information
681  *	@node: preferred node for memory allocations
682  *
683  *	Allocates resources for an SGE descriptor ring, such as Tx queues,
684  *	free buffer lists, or response queues.  Each SGE ring requires
685  *	space for its HW descriptors plus, optionally, space for the SW state
686  *	associated with each HW entry (the metadata).  The function returns
687  *	three values: the virtual address for the HW ring (the return value
688  *	of the function), the bus address of the HW ring, and the address
689  *	of the SW ring.
690  */
691 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
692 			size_t sw_size, dma_addr_t *phys, void *metadata,
693 			size_t stat_size, int node)
694 {
695 	size_t len = nelem * elem_size + stat_size;
696 	void *s = NULL;
697 	void *p = dma_zalloc_coherent(dev, len, phys, GFP_KERNEL);
698 
699 	if (!p)
700 		return NULL;
701 	if (sw_size) {
702 		s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node);
703 
704 		if (!s) {
705 			dma_free_coherent(dev, len, p, *phys);
706 			return NULL;
707 		}
708 	}
709 	if (metadata)
710 		*(void **)metadata = s;
711 	return p;
712 }
713 
714 /**
715  *	sgl_len - calculates the size of an SGL of the given capacity
716  *	@n: the number of SGL entries
717  *
718  *	Calculates the number of flits needed for a scatter/gather list that
719  *	can hold the given number of entries.
720  */
721 static inline unsigned int sgl_len(unsigned int n)
722 {
723 	/* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
724 	 * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
725 	 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
726 	 * repeated sequences of { Length[i], Length[i+1], Address[i],
727 	 * Address[i+1] } (this ensures that all addresses are on 64-bit
728 	 * boundaries).  If N is even, then Length[N+1] should be set to 0 and
729 	 * Address[N+1] is omitted.
730 	 *
731 	 * The following calculation incorporates all of the above.  It's
732 	 * somewhat hard to follow but, briefly: the "+2" accounts for the
733 	 * first two flits which include the DSGL header, Length0 and
734 	 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
735 	 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
736 	 * finally the "+((n-1)&1)" adds the one remaining flit needed if
737 	 * (n-1) is odd ...
738 	 */
739 	n--;
740 	return (3 * n) / 2 + (n & 1) + 2;
741 }
742 
743 /**
744  *	flits_to_desc - returns the num of Tx descriptors for the given flits
745  *	@n: the number of flits
746  *
747  *	Returns the number of Tx descriptors needed for the supplied number
748  *	of flits.
749  */
750 static inline unsigned int flits_to_desc(unsigned int n)
751 {
752 	BUG_ON(n > SGE_MAX_WR_LEN / 8);
753 	return DIV_ROUND_UP(n, 8);
754 }
755 
756 /**
757  *	is_eth_imm - can an Ethernet packet be sent as immediate data?
758  *	@skb: the packet
759  *
760  *	Returns whether an Ethernet packet is small enough to fit as
761  *	immediate data. Return value corresponds to headroom required.
762  */
763 static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver)
764 {
765 	int hdrlen = 0;
766 
767 	if (skb->encapsulation && skb_shinfo(skb)->gso_size &&
768 	    chip_ver > CHELSIO_T5) {
769 		hdrlen = sizeof(struct cpl_tx_tnl_lso);
770 		hdrlen += sizeof(struct cpl_tx_pkt_core);
771 	} else {
772 		hdrlen = skb_shinfo(skb)->gso_size ?
773 			 sizeof(struct cpl_tx_pkt_lso_core) : 0;
774 		hdrlen += sizeof(struct cpl_tx_pkt);
775 	}
776 	if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
777 		return hdrlen;
778 	return 0;
779 }
780 
781 /**
782  *	calc_tx_flits - calculate the number of flits for a packet Tx WR
783  *	@skb: the packet
784  *
785  *	Returns the number of flits needed for a Tx WR for the given Ethernet
786  *	packet, including the needed WR and CPL headers.
787  */
788 static inline unsigned int calc_tx_flits(const struct sk_buff *skb,
789 					 unsigned int chip_ver)
790 {
791 	unsigned int flits;
792 	int hdrlen = is_eth_imm(skb, chip_ver);
793 
794 	/* If the skb is small enough, we can pump it out as a work request
795 	 * with only immediate data.  In that case we just have to have the
796 	 * TX Packet header plus the skb data in the Work Request.
797 	 */
798 
799 	if (hdrlen)
800 		return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
801 
802 	/* Otherwise, we're going to have to construct a Scatter gather list
803 	 * of the skb body and fragments.  We also include the flits necessary
804 	 * for the TX Packet Work Request and CPL.  We always have a firmware
805 	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
806 	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
807 	 * message or, if we're doing a Large Send Offload, an LSO CPL message
808 	 * with an embedded TX Packet Write CPL message.
809 	 */
810 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
811 	if (skb_shinfo(skb)->gso_size) {
812 		if (skb->encapsulation && chip_ver > CHELSIO_T5)
813 			hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
814 				 sizeof(struct cpl_tx_tnl_lso);
815 		else
816 			hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
817 				 sizeof(struct cpl_tx_pkt_lso_core);
818 
819 		hdrlen += sizeof(struct cpl_tx_pkt_core);
820 		flits += (hdrlen / sizeof(__be64));
821 	} else {
822 		flits += (sizeof(struct fw_eth_tx_pkt_wr) +
823 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
824 	}
825 	return flits;
826 }
827 
828 /**
829  *	calc_tx_descs - calculate the number of Tx descriptors for a packet
830  *	@skb: the packet
831  *
832  *	Returns the number of Tx descriptors needed for the given Ethernet
833  *	packet, including the needed WR and CPL headers.
834  */
835 static inline unsigned int calc_tx_descs(const struct sk_buff *skb,
836 					 unsigned int chip_ver)
837 {
838 	return flits_to_desc(calc_tx_flits(skb, chip_ver));
839 }
840 
841 /**
842  *	cxgb4_write_sgl - populate a scatter/gather list for a packet
843  *	@skb: the packet
844  *	@q: the Tx queue we are writing into
845  *	@sgl: starting location for writing the SGL
846  *	@end: points right after the end of the SGL
847  *	@start: start offset into skb main-body data to include in the SGL
848  *	@addr: the list of bus addresses for the SGL elements
849  *
850  *	Generates a gather list for the buffers that make up a packet.
851  *	The caller must provide adequate space for the SGL that will be written.
852  *	The SGL includes all of the packet's page fragments and the data in its
853  *	main body except for the first @start bytes.  @sgl must be 16-byte
854  *	aligned and within a Tx descriptor with available space.  @end points
855  *	right after the end of the SGL but does not account for any potential
856  *	wrap around, i.e., @end > @sgl.
857  */
858 void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q,
859 		     struct ulptx_sgl *sgl, u64 *end, unsigned int start,
860 		     const dma_addr_t *addr)
861 {
862 	unsigned int i, len;
863 	struct ulptx_sge_pair *to;
864 	const struct skb_shared_info *si = skb_shinfo(skb);
865 	unsigned int nfrags = si->nr_frags;
866 	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
867 
868 	len = skb_headlen(skb) - start;
869 	if (likely(len)) {
870 		sgl->len0 = htonl(len);
871 		sgl->addr0 = cpu_to_be64(addr[0] + start);
872 		nfrags++;
873 	} else {
874 		sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
875 		sgl->addr0 = cpu_to_be64(addr[1]);
876 	}
877 
878 	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
879 			      ULPTX_NSGE_V(nfrags));
880 	if (likely(--nfrags == 0))
881 		return;
882 	/*
883 	 * Most of the complexity below deals with the possibility we hit the
884 	 * end of the queue in the middle of writing the SGL.  For this case
885 	 * only we create the SGL in a temporary buffer and then copy it.
886 	 */
887 	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
888 
889 	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
890 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
891 		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
892 		to->addr[0] = cpu_to_be64(addr[i]);
893 		to->addr[1] = cpu_to_be64(addr[++i]);
894 	}
895 	if (nfrags) {
896 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
897 		to->len[1] = cpu_to_be32(0);
898 		to->addr[0] = cpu_to_be64(addr[i + 1]);
899 	}
900 	if (unlikely((u8 *)end > (u8 *)q->stat)) {
901 		unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
902 
903 		if (likely(part0))
904 			memcpy(sgl->sge, buf, part0);
905 		part1 = (u8 *)end - (u8 *)q->stat;
906 		memcpy(q->desc, (u8 *)buf + part0, part1);
907 		end = (void *)q->desc + part1;
908 	}
909 	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
910 		*end = 0;
911 }
912 EXPORT_SYMBOL(cxgb4_write_sgl);
913 
914 /* This function copies 64 byte coalesced work request to
915  * memory mapped BAR2 space. For coalesced WR SGE fetches
916  * data from the FIFO instead of from Host.
917  */
918 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
919 {
920 	int count = 8;
921 
922 	while (count) {
923 		writeq(*src, dst);
924 		src++;
925 		dst++;
926 		count--;
927 	}
928 }
929 
930 /**
931  *	cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell
932  *	@adap: the adapter
933  *	@q: the Tx queue
934  *	@n: number of new descriptors to give to HW
935  *
936  *	Ring the doorbel for a Tx queue.
937  */
938 inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
939 {
940 	/* Make sure that all writes to the TX Descriptors are committed
941 	 * before we tell the hardware about them.
942 	 */
943 	wmb();
944 
945 	/* If we don't have access to the new User Doorbell (T5+), use the old
946 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
947 	 */
948 	if (unlikely(q->bar2_addr == NULL)) {
949 		u32 val = PIDX_V(n);
950 		unsigned long flags;
951 
952 		/* For T4 we need to participate in the Doorbell Recovery
953 		 * mechanism.
954 		 */
955 		spin_lock_irqsave(&q->db_lock, flags);
956 		if (!q->db_disabled)
957 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
958 				     QID_V(q->cntxt_id) | val);
959 		else
960 			q->db_pidx_inc += n;
961 		q->db_pidx = q->pidx;
962 		spin_unlock_irqrestore(&q->db_lock, flags);
963 	} else {
964 		u32 val = PIDX_T5_V(n);
965 
966 		/* T4 and later chips share the same PIDX field offset within
967 		 * the doorbell, but T5 and later shrank the field in order to
968 		 * gain a bit for Doorbell Priority.  The field was absurdly
969 		 * large in the first place (14 bits) so we just use the T5
970 		 * and later limits and warn if a Queue ID is too large.
971 		 */
972 		WARN_ON(val & DBPRIO_F);
973 
974 		/* If we're only writing a single TX Descriptor and we can use
975 		 * Inferred QID registers, we can use the Write Combining
976 		 * Gather Buffer; otherwise we use the simple doorbell.
977 		 */
978 		if (n == 1 && q->bar2_qid == 0) {
979 			int index = (q->pidx
980 				     ? (q->pidx - 1)
981 				     : (q->size - 1));
982 			u64 *wr = (u64 *)&q->desc[index];
983 
984 			cxgb_pio_copy((u64 __iomem *)
985 				      (q->bar2_addr + SGE_UDB_WCDOORBELL),
986 				      wr);
987 		} else {
988 			writel(val | QID_V(q->bar2_qid),
989 			       q->bar2_addr + SGE_UDB_KDOORBELL);
990 		}
991 
992 		/* This Write Memory Barrier will force the write to the User
993 		 * Doorbell area to be flushed.  This is needed to prevent
994 		 * writes on different CPUs for the same queue from hitting
995 		 * the adapter out of order.  This is required when some Work
996 		 * Requests take the Write Combine Gather Buffer path (user
997 		 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
998 		 * take the traditional path where we simply increment the
999 		 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
1000 		 * hardware DMA read the actual Work Request.
1001 		 */
1002 		wmb();
1003 	}
1004 }
1005 EXPORT_SYMBOL(cxgb4_ring_tx_db);
1006 
1007 /**
1008  *	cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors
1009  *	@skb: the packet
1010  *	@q: the Tx queue where the packet will be inlined
1011  *	@pos: starting position in the Tx queue where to inline the packet
1012  *
1013  *	Inline a packet's contents directly into Tx descriptors, starting at
1014  *	the given position within the Tx DMA ring.
1015  *	Most of the complexity of this operation is dealing with wrap arounds
1016  *	in the middle of the packet we want to inline.
1017  */
1018 void cxgb4_inline_tx_skb(const struct sk_buff *skb,
1019 			 const struct sge_txq *q, void *pos)
1020 {
1021 	int left = (void *)q->stat - pos;
1022 	u64 *p;
1023 
1024 	if (likely(skb->len <= left)) {
1025 		if (likely(!skb->data_len))
1026 			skb_copy_from_linear_data(skb, pos, skb->len);
1027 		else
1028 			skb_copy_bits(skb, 0, pos, skb->len);
1029 		pos += skb->len;
1030 	} else {
1031 		skb_copy_bits(skb, 0, pos, left);
1032 		skb_copy_bits(skb, left, q->desc, skb->len - left);
1033 		pos = (void *)q->desc + (skb->len - left);
1034 	}
1035 
1036 	/* 0-pad to multiple of 16 */
1037 	p = PTR_ALIGN(pos, 8);
1038 	if ((uintptr_t)p & 8)
1039 		*p = 0;
1040 }
1041 EXPORT_SYMBOL(cxgb4_inline_tx_skb);
1042 
1043 static void *inline_tx_skb_header(const struct sk_buff *skb,
1044 				  const struct sge_txq *q,  void *pos,
1045 				  int length)
1046 {
1047 	u64 *p;
1048 	int left = (void *)q->stat - pos;
1049 
1050 	if (likely(length <= left)) {
1051 		memcpy(pos, skb->data, length);
1052 		pos += length;
1053 	} else {
1054 		memcpy(pos, skb->data, left);
1055 		memcpy(q->desc, skb->data + left, length - left);
1056 		pos = (void *)q->desc + (length - left);
1057 	}
1058 	/* 0-pad to multiple of 16 */
1059 	p = PTR_ALIGN(pos, 8);
1060 	if ((uintptr_t)p & 8) {
1061 		*p = 0;
1062 		return p + 1;
1063 	}
1064 	return p;
1065 }
1066 
1067 /*
1068  * Figure out what HW csum a packet wants and return the appropriate control
1069  * bits.
1070  */
1071 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1072 {
1073 	int csum_type;
1074 	bool inner_hdr_csum = false;
1075 	u16 proto, ver;
1076 
1077 	if (skb->encapsulation &&
1078 	    (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5))
1079 		inner_hdr_csum = true;
1080 
1081 	if (inner_hdr_csum) {
1082 		ver = inner_ip_hdr(skb)->version;
1083 		proto = (ver == 4) ? inner_ip_hdr(skb)->protocol :
1084 			inner_ipv6_hdr(skb)->nexthdr;
1085 	} else {
1086 		ver = ip_hdr(skb)->version;
1087 		proto = (ver == 4) ? ip_hdr(skb)->protocol :
1088 			ipv6_hdr(skb)->nexthdr;
1089 	}
1090 
1091 	if (ver == 4) {
1092 		if (proto == IPPROTO_TCP)
1093 			csum_type = TX_CSUM_TCPIP;
1094 		else if (proto == IPPROTO_UDP)
1095 			csum_type = TX_CSUM_UDPIP;
1096 		else {
1097 nocsum:			/*
1098 			 * unknown protocol, disable HW csum
1099 			 * and hope a bad packet is detected
1100 			 */
1101 			return TXPKT_L4CSUM_DIS_F;
1102 		}
1103 	} else {
1104 		/*
1105 		 * this doesn't work with extension headers
1106 		 */
1107 		if (proto == IPPROTO_TCP)
1108 			csum_type = TX_CSUM_TCPIP6;
1109 		else if (proto == IPPROTO_UDP)
1110 			csum_type = TX_CSUM_UDPIP6;
1111 		else
1112 			goto nocsum;
1113 	}
1114 
1115 	if (likely(csum_type >= TX_CSUM_TCPIP)) {
1116 		int eth_hdr_len, l4_len;
1117 		u64 hdr_len;
1118 
1119 		if (inner_hdr_csum) {
1120 			/* This allows checksum offload for all encapsulated
1121 			 * packets like GRE etc..
1122 			 */
1123 			l4_len = skb_inner_network_header_len(skb);
1124 			eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN;
1125 		} else {
1126 			l4_len = skb_network_header_len(skb);
1127 			eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
1128 		}
1129 		hdr_len = TXPKT_IPHDR_LEN_V(l4_len);
1130 
1131 		if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1132 			hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1133 		else
1134 			hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1135 		return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
1136 	} else {
1137 		int start = skb_transport_offset(skb);
1138 
1139 		return TXPKT_CSUM_TYPE_V(csum_type) |
1140 			TXPKT_CSUM_START_V(start) |
1141 			TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1142 	}
1143 }
1144 
1145 static void eth_txq_stop(struct sge_eth_txq *q)
1146 {
1147 	netif_tx_stop_queue(q->txq);
1148 	q->q.stops++;
1149 }
1150 
1151 static inline void txq_advance(struct sge_txq *q, unsigned int n)
1152 {
1153 	q->in_use += n;
1154 	q->pidx += n;
1155 	if (q->pidx >= q->size)
1156 		q->pidx -= q->size;
1157 }
1158 
1159 #ifdef CONFIG_CHELSIO_T4_FCOE
1160 static inline int
1161 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
1162 		  const struct port_info *pi, u64 *cntrl)
1163 {
1164 	const struct cxgb_fcoe *fcoe = &pi->fcoe;
1165 
1166 	if (!(fcoe->flags & CXGB_FCOE_ENABLED))
1167 		return 0;
1168 
1169 	if (skb->protocol != htons(ETH_P_FCOE))
1170 		return 0;
1171 
1172 	skb_reset_mac_header(skb);
1173 	skb->mac_len = sizeof(struct ethhdr);
1174 
1175 	skb_set_network_header(skb, skb->mac_len);
1176 	skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
1177 
1178 	if (!cxgb_fcoe_sof_eof_supported(adap, skb))
1179 		return -ENOTSUPP;
1180 
1181 	/* FC CRC offload */
1182 	*cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
1183 		     TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
1184 		     TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
1185 		     TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
1186 		     TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
1187 	return 0;
1188 }
1189 #endif /* CONFIG_CHELSIO_T4_FCOE */
1190 
1191 /* Returns tunnel type if hardware supports offloading of the same.
1192  * It is called only for T5 and onwards.
1193  */
1194 enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb)
1195 {
1196 	u8 l4_hdr = 0;
1197 	enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1198 	struct port_info *pi = netdev_priv(skb->dev);
1199 	struct adapter *adapter = pi->adapter;
1200 
1201 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
1202 	    skb->inner_protocol != htons(ETH_P_TEB))
1203 		return tnl_type;
1204 
1205 	switch (vlan_get_protocol(skb)) {
1206 	case htons(ETH_P_IP):
1207 		l4_hdr = ip_hdr(skb)->protocol;
1208 		break;
1209 	case htons(ETH_P_IPV6):
1210 		l4_hdr = ipv6_hdr(skb)->nexthdr;
1211 		break;
1212 	default:
1213 		return tnl_type;
1214 	}
1215 
1216 	switch (l4_hdr) {
1217 	case IPPROTO_UDP:
1218 		if (adapter->vxlan_port == udp_hdr(skb)->dest)
1219 			tnl_type = TX_TNL_TYPE_VXLAN;
1220 		else if (adapter->geneve_port == udp_hdr(skb)->dest)
1221 			tnl_type = TX_TNL_TYPE_GENEVE;
1222 		break;
1223 	default:
1224 		return tnl_type;
1225 	}
1226 
1227 	return tnl_type;
1228 }
1229 
1230 static inline void t6_fill_tnl_lso(struct sk_buff *skb,
1231 				   struct cpl_tx_tnl_lso *tnl_lso,
1232 				   enum cpl_tx_tnl_lso_type tnl_type)
1233 {
1234 	u32 val;
1235 	int in_eth_xtra_len;
1236 	int l3hdr_len = skb_network_header_len(skb);
1237 	int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1238 	const struct skb_shared_info *ssi = skb_shinfo(skb);
1239 	bool v6 = (ip_hdr(skb)->version == 6);
1240 
1241 	val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) |
1242 	      CPL_TX_TNL_LSO_FIRST_F |
1243 	      CPL_TX_TNL_LSO_LAST_F |
1244 	      (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) |
1245 	      CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) |
1246 	      CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) |
1247 	      (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) |
1248 	      CPL_TX_TNL_LSO_IPLENSETOUT_F |
1249 	      (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F);
1250 	tnl_lso->op_to_IpIdSplitOut = htonl(val);
1251 
1252 	tnl_lso->IpIdOffsetOut = 0;
1253 
1254 	/* Get the tunnel header length */
1255 	val = skb_inner_mac_header(skb) - skb_mac_header(skb);
1256 	in_eth_xtra_len = skb_inner_network_header(skb) -
1257 			  skb_inner_mac_header(skb) - ETH_HLEN;
1258 
1259 	switch (tnl_type) {
1260 	case TX_TNL_TYPE_VXLAN:
1261 	case TX_TNL_TYPE_GENEVE:
1262 		tnl_lso->UdpLenSetOut_to_TnlHdrLen =
1263 			htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F |
1264 			CPL_TX_TNL_LSO_UDPLENSETOUT_F);
1265 		break;
1266 	default:
1267 		tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0;
1268 		break;
1269 	}
1270 
1271 	tnl_lso->UdpLenSetOut_to_TnlHdrLen |=
1272 		 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) |
1273 		       CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type));
1274 
1275 	tnl_lso->r1 = 0;
1276 
1277 	val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) |
1278 	      CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) |
1279 	      CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) |
1280 	      CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4);
1281 	tnl_lso->Flow_to_TcpHdrLen = htonl(val);
1282 
1283 	tnl_lso->IpIdOffset = htons(0);
1284 
1285 	tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size));
1286 	tnl_lso->TCPSeqOffset = htonl(0);
1287 	tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len));
1288 }
1289 
1290 /**
1291  *	t4_eth_xmit - add a packet to an Ethernet Tx queue
1292  *	@skb: the packet
1293  *	@dev: the egress net device
1294  *
1295  *	Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
1296  */
1297 netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1298 {
1299 	u32 wr_mid, ctrl0, op;
1300 	u64 cntrl, *end, *sgl;
1301 	int qidx, credits;
1302 	unsigned int flits, ndesc;
1303 	struct adapter *adap;
1304 	struct sge_eth_txq *q;
1305 	const struct port_info *pi;
1306 	struct fw_eth_tx_pkt_wr *wr;
1307 	struct cpl_tx_pkt_core *cpl;
1308 	const struct skb_shared_info *ssi;
1309 	dma_addr_t addr[MAX_SKB_FRAGS + 1];
1310 	bool immediate = false;
1311 	int len, max_pkt_len;
1312 	bool ptp_enabled = is_ptp_enabled(skb, dev);
1313 	unsigned int chip_ver;
1314 	enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1315 
1316 #ifdef CONFIG_CHELSIO_T4_FCOE
1317 	int err;
1318 #endif /* CONFIG_CHELSIO_T4_FCOE */
1319 
1320 	/*
1321 	 * The chip min packet length is 10 octets but play safe and reject
1322 	 * anything shorter than an Ethernet header.
1323 	 */
1324 	if (unlikely(skb->len < ETH_HLEN)) {
1325 out_free:	dev_kfree_skb_any(skb);
1326 		return NETDEV_TX_OK;
1327 	}
1328 
1329 	/* Discard the packet if the length is greater than mtu */
1330 	max_pkt_len = ETH_HLEN + dev->mtu;
1331 	if (skb_vlan_tagged(skb))
1332 		max_pkt_len += VLAN_HLEN;
1333 	if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1334 		goto out_free;
1335 
1336 	pi = netdev_priv(dev);
1337 	adap = pi->adapter;
1338 	ssi = skb_shinfo(skb);
1339 #ifdef CONFIG_CHELSIO_IPSEC_INLINE
1340 	if (xfrm_offload(skb) && !ssi->gso_size)
1341 		return adap->uld[CXGB4_ULD_CRYPTO].tx_handler(skb, dev);
1342 #endif /* CHELSIO_IPSEC_INLINE */
1343 
1344 	qidx = skb_get_queue_mapping(skb);
1345 	if (ptp_enabled) {
1346 		spin_lock(&adap->ptp_lock);
1347 		if (!(adap->ptp_tx_skb)) {
1348 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1349 			adap->ptp_tx_skb = skb_get(skb);
1350 		} else {
1351 			spin_unlock(&adap->ptp_lock);
1352 			goto out_free;
1353 		}
1354 		q = &adap->sge.ptptxq;
1355 	} else {
1356 		q = &adap->sge.ethtxq[qidx + pi->first_qset];
1357 	}
1358 	skb_tx_timestamp(skb);
1359 
1360 	cxgb4_reclaim_completed_tx(adap, &q->q, true);
1361 	cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1362 
1363 #ifdef CONFIG_CHELSIO_T4_FCOE
1364 	err = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
1365 	if (unlikely(err == -ENOTSUPP)) {
1366 		if (ptp_enabled)
1367 			spin_unlock(&adap->ptp_lock);
1368 		goto out_free;
1369 	}
1370 #endif /* CONFIG_CHELSIO_T4_FCOE */
1371 
1372 	chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
1373 	flits = calc_tx_flits(skb, chip_ver);
1374 	ndesc = flits_to_desc(flits);
1375 	credits = txq_avail(&q->q) - ndesc;
1376 
1377 	if (unlikely(credits < 0)) {
1378 		eth_txq_stop(q);
1379 		dev_err(adap->pdev_dev,
1380 			"%s: Tx ring %u full while queue awake!\n",
1381 			dev->name, qidx);
1382 		if (ptp_enabled)
1383 			spin_unlock(&adap->ptp_lock);
1384 		return NETDEV_TX_BUSY;
1385 	}
1386 
1387 	if (is_eth_imm(skb, chip_ver))
1388 		immediate = true;
1389 
1390 	if (skb->encapsulation && chip_ver > CHELSIO_T5)
1391 		tnl_type = cxgb_encap_offload_supported(skb);
1392 
1393 	if (!immediate &&
1394 	    unlikely(cxgb4_map_skb(adap->pdev_dev, skb, addr) < 0)) {
1395 		q->mapping_err++;
1396 		if (ptp_enabled)
1397 			spin_unlock(&adap->ptp_lock);
1398 		goto out_free;
1399 	}
1400 
1401 	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1402 	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1403 		eth_txq_stop(q);
1404 		wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1405 	}
1406 
1407 	wr = (void *)&q->q.desc[q->q.pidx];
1408 	wr->equiq_to_len16 = htonl(wr_mid);
1409 	wr->r3 = cpu_to_be64(0);
1410 	end = (u64 *)wr + flits;
1411 
1412 	len = immediate ? skb->len : 0;
1413 	len += sizeof(*cpl);
1414 	if (ssi->gso_size) {
1415 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1416 		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1417 		int l3hdr_len = skb_network_header_len(skb);
1418 		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1419 		struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1);
1420 
1421 		if (tnl_type)
1422 			len += sizeof(*tnl_lso);
1423 		else
1424 			len += sizeof(*lso);
1425 
1426 		wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1427 				       FW_WR_IMMDLEN_V(len));
1428 		if (tnl_type) {
1429 			struct iphdr *iph = ip_hdr(skb);
1430 
1431 			t6_fill_tnl_lso(skb, tnl_lso, tnl_type);
1432 			cpl = (void *)(tnl_lso + 1);
1433 			/* Driver is expected to compute partial checksum that
1434 			 * does not include the IP Total Length.
1435 			 */
1436 			if (iph->version == 4) {
1437 				iph->check = 0;
1438 				iph->tot_len = 0;
1439 				iph->check = (u16)(~ip_fast_csum((u8 *)iph,
1440 								 iph->ihl));
1441 			}
1442 			if (skb->ip_summed == CHECKSUM_PARTIAL)
1443 				cntrl = hwcsum(adap->params.chip, skb);
1444 		} else {
1445 			lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1446 					LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
1447 					LSO_IPV6_V(v6) |
1448 					LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1449 					LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1450 					LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1451 			lso->ipid_ofst = htons(0);
1452 			lso->mss = htons(ssi->gso_size);
1453 			lso->seqno_offset = htonl(0);
1454 			if (is_t4(adap->params.chip))
1455 				lso->len = htonl(skb->len);
1456 			else
1457 				lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len));
1458 			cpl = (void *)(lso + 1);
1459 
1460 			if (CHELSIO_CHIP_VERSION(adap->params.chip)
1461 			    <= CHELSIO_T5)
1462 				cntrl =	TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1463 			else
1464 				cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1465 
1466 			cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1467 				 TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1468 				 TXPKT_IPHDR_LEN_V(l3hdr_len);
1469 		}
1470 		sgl = (u64 *)(cpl + 1); /* sgl start here */
1471 		if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) {
1472 			/* If current position is already at the end of the
1473 			 * txq, reset the current to point to start of the queue
1474 			 * and update the end ptr as well.
1475 			 */
1476 			if (sgl == (u64 *)q->q.stat) {
1477 				int left = (u8 *)end - (u8 *)q->q.stat;
1478 
1479 				end = (void *)q->q.desc + left;
1480 				sgl = (void *)q->q.desc;
1481 			}
1482 		}
1483 		q->tso++;
1484 		q->tx_cso += ssi->gso_segs;
1485 	} else {
1486 		if (ptp_enabled)
1487 			op = FW_PTP_TX_PKT_WR;
1488 		else
1489 			op = FW_ETH_TX_PKT_WR;
1490 		wr->op_immdlen = htonl(FW_WR_OP_V(op) |
1491 				       FW_WR_IMMDLEN_V(len));
1492 		cpl = (void *)(wr + 1);
1493 		sgl = (u64 *)(cpl + 1);
1494 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1495 			cntrl = hwcsum(adap->params.chip, skb) |
1496 				TXPKT_IPCSUM_DIS_F;
1497 			q->tx_cso++;
1498 		}
1499 	}
1500 
1501 	if (skb_vlan_tag_present(skb)) {
1502 		q->vlan_ins++;
1503 		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1504 #ifdef CONFIG_CHELSIO_T4_FCOE
1505 		if (skb->protocol == htons(ETH_P_FCOE))
1506 			cntrl |= TXPKT_VLAN_V(
1507 				 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
1508 #endif /* CONFIG_CHELSIO_T4_FCOE */
1509 	}
1510 
1511 	ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
1512 		TXPKT_PF_V(adap->pf);
1513 	if (ptp_enabled)
1514 		ctrl0 |= TXPKT_TSTAMP_F;
1515 #ifdef CONFIG_CHELSIO_T4_DCB
1516 	if (is_t4(adap->params.chip))
1517 		ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
1518 	else
1519 		ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
1520 #endif
1521 	cpl->ctrl0 = htonl(ctrl0);
1522 	cpl->pack = htons(0);
1523 	cpl->len = htons(skb->len);
1524 	cpl->ctrl1 = cpu_to_be64(cntrl);
1525 
1526 	if (immediate) {
1527 		cxgb4_inline_tx_skb(skb, &q->q, sgl);
1528 		dev_consume_skb_any(skb);
1529 	} else {
1530 		int last_desc;
1531 
1532 		cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, 0, addr);
1533 		skb_orphan(skb);
1534 
1535 		last_desc = q->q.pidx + ndesc - 1;
1536 		if (last_desc >= q->q.size)
1537 			last_desc -= q->q.size;
1538 		q->q.sdesc[last_desc].skb = skb;
1539 		q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)sgl;
1540 	}
1541 
1542 	txq_advance(&q->q, ndesc);
1543 
1544 	cxgb4_ring_tx_db(adap, &q->q, ndesc);
1545 	if (ptp_enabled)
1546 		spin_unlock(&adap->ptp_lock);
1547 	return NETDEV_TX_OK;
1548 }
1549 
1550 /**
1551  *	reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1552  *	@q: the SGE control Tx queue
1553  *
1554  *	This is a variant of cxgb4_reclaim_completed_tx() that is used
1555  *	for Tx queues that send only immediate data (presently just
1556  *	the control queues) and	thus do not have any sk_buffs to release.
1557  */
1558 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1559 {
1560 	int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
1561 	int reclaim = hw_cidx - q->cidx;
1562 
1563 	if (reclaim < 0)
1564 		reclaim += q->size;
1565 
1566 	q->in_use -= reclaim;
1567 	q->cidx = hw_cidx;
1568 }
1569 
1570 /**
1571  *	is_imm - check whether a packet can be sent as immediate data
1572  *	@skb: the packet
1573  *
1574  *	Returns true if a packet can be sent as a WR with immediate data.
1575  */
1576 static inline int is_imm(const struct sk_buff *skb)
1577 {
1578 	return skb->len <= MAX_CTRL_WR_LEN;
1579 }
1580 
1581 /**
1582  *	ctrlq_check_stop - check if a control queue is full and should stop
1583  *	@q: the queue
1584  *	@wr: most recent WR written to the queue
1585  *
1586  *	Check if a control queue has become full and should be stopped.
1587  *	We clean up control queue descriptors very lazily, only when we are out.
1588  *	If the queue is still full after reclaiming any completed descriptors
1589  *	we suspend it and have the last WR wake it up.
1590  */
1591 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
1592 {
1593 	reclaim_completed_tx_imm(&q->q);
1594 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1595 		wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
1596 		q->q.stops++;
1597 		q->full = 1;
1598 	}
1599 }
1600 
1601 /**
1602  *	ctrl_xmit - send a packet through an SGE control Tx queue
1603  *	@q: the control queue
1604  *	@skb: the packet
1605  *
1606  *	Send a packet through an SGE control Tx queue.  Packets sent through
1607  *	a control queue must fit entirely as immediate data.
1608  */
1609 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
1610 {
1611 	unsigned int ndesc;
1612 	struct fw_wr_hdr *wr;
1613 
1614 	if (unlikely(!is_imm(skb))) {
1615 		WARN_ON(1);
1616 		dev_kfree_skb(skb);
1617 		return NET_XMIT_DROP;
1618 	}
1619 
1620 	ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
1621 	spin_lock(&q->sendq.lock);
1622 
1623 	if (unlikely(q->full)) {
1624 		skb->priority = ndesc;                  /* save for restart */
1625 		__skb_queue_tail(&q->sendq, skb);
1626 		spin_unlock(&q->sendq.lock);
1627 		return NET_XMIT_CN;
1628 	}
1629 
1630 	wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1631 	cxgb4_inline_tx_skb(skb, &q->q, wr);
1632 
1633 	txq_advance(&q->q, ndesc);
1634 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
1635 		ctrlq_check_stop(q, wr);
1636 
1637 	cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
1638 	spin_unlock(&q->sendq.lock);
1639 
1640 	kfree_skb(skb);
1641 	return NET_XMIT_SUCCESS;
1642 }
1643 
1644 /**
1645  *	restart_ctrlq - restart a suspended control queue
1646  *	@data: the control queue to restart
1647  *
1648  *	Resumes transmission on a suspended Tx control queue.
1649  */
1650 static void restart_ctrlq(unsigned long data)
1651 {
1652 	struct sk_buff *skb;
1653 	unsigned int written = 0;
1654 	struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
1655 
1656 	spin_lock(&q->sendq.lock);
1657 	reclaim_completed_tx_imm(&q->q);
1658 	BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */
1659 
1660 	while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
1661 		struct fw_wr_hdr *wr;
1662 		unsigned int ndesc = skb->priority;     /* previously saved */
1663 
1664 		written += ndesc;
1665 		/* Write descriptors and free skbs outside the lock to limit
1666 		 * wait times.  q->full is still set so new skbs will be queued.
1667 		 */
1668 		wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1669 		txq_advance(&q->q, ndesc);
1670 		spin_unlock(&q->sendq.lock);
1671 
1672 		cxgb4_inline_tx_skb(skb, &q->q, wr);
1673 		kfree_skb(skb);
1674 
1675 		if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1676 			unsigned long old = q->q.stops;
1677 
1678 			ctrlq_check_stop(q, wr);
1679 			if (q->q.stops != old) {          /* suspended anew */
1680 				spin_lock(&q->sendq.lock);
1681 				goto ringdb;
1682 			}
1683 		}
1684 		if (written > 16) {
1685 			cxgb4_ring_tx_db(q->adap, &q->q, written);
1686 			written = 0;
1687 		}
1688 		spin_lock(&q->sendq.lock);
1689 	}
1690 	q->full = 0;
1691 ringdb:
1692 	if (written)
1693 		cxgb4_ring_tx_db(q->adap, &q->q, written);
1694 	spin_unlock(&q->sendq.lock);
1695 }
1696 
1697 /**
1698  *	t4_mgmt_tx - send a management message
1699  *	@adap: the adapter
1700  *	@skb: the packet containing the management message
1701  *
1702  *	Send a management message through control queue 0.
1703  */
1704 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1705 {
1706 	int ret;
1707 
1708 	local_bh_disable();
1709 	ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
1710 	local_bh_enable();
1711 	return ret;
1712 }
1713 
1714 /**
1715  *	is_ofld_imm - check whether a packet can be sent as immediate data
1716  *	@skb: the packet
1717  *
1718  *	Returns true if a packet can be sent as an offload WR with immediate
1719  *	data.  We currently use the same limit as for Ethernet packets.
1720  */
1721 static inline int is_ofld_imm(const struct sk_buff *skb)
1722 {
1723 	struct work_request_hdr *req = (struct work_request_hdr *)skb->data;
1724 	unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi));
1725 
1726 	if (opcode == FW_CRYPTO_LOOKASIDE_WR)
1727 		return skb->len <= SGE_MAX_WR_LEN;
1728 	else
1729 		return skb->len <= MAX_IMM_TX_PKT_LEN;
1730 }
1731 
1732 /**
1733  *	calc_tx_flits_ofld - calculate # of flits for an offload packet
1734  *	@skb: the packet
1735  *
1736  *	Returns the number of flits needed for the given offload packet.
1737  *	These packets are already fully constructed and no additional headers
1738  *	will be added.
1739  */
1740 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
1741 {
1742 	unsigned int flits, cnt;
1743 
1744 	if (is_ofld_imm(skb))
1745 		return DIV_ROUND_UP(skb->len, 8);
1746 
1747 	flits = skb_transport_offset(skb) / 8U;   /* headers */
1748 	cnt = skb_shinfo(skb)->nr_frags;
1749 	if (skb_tail_pointer(skb) != skb_transport_header(skb))
1750 		cnt++;
1751 	return flits + sgl_len(cnt);
1752 }
1753 
1754 /**
1755  *	txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
1756  *	@adap: the adapter
1757  *	@q: the queue to stop
1758  *
1759  *	Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
1760  *	inability to map packets.  A periodic timer attempts to restart
1761  *	queues so marked.
1762  */
1763 static void txq_stop_maperr(struct sge_uld_txq *q)
1764 {
1765 	q->mapping_err++;
1766 	q->q.stops++;
1767 	set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
1768 		q->adap->sge.txq_maperr);
1769 }
1770 
1771 /**
1772  *	ofldtxq_stop - stop an offload Tx queue that has become full
1773  *	@q: the queue to stop
1774  *	@wr: the Work Request causing the queue to become full
1775  *
1776  *	Stops an offload Tx queue that has become full and modifies the packet
1777  *	being written to request a wakeup.
1778  */
1779 static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr)
1780 {
1781 	wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
1782 	q->q.stops++;
1783 	q->full = 1;
1784 }
1785 
1786 /**
1787  *	service_ofldq - service/restart a suspended offload queue
1788  *	@q: the offload queue
1789  *
1790  *	Services an offload Tx queue by moving packets from its Pending Send
1791  *	Queue to the Hardware TX ring.  The function starts and ends with the
1792  *	Send Queue locked, but drops the lock while putting the skb at the
1793  *	head of the Send Queue onto the Hardware TX Ring.  Dropping the lock
1794  *	allows more skbs to be added to the Send Queue by other threads.
1795  *	The packet being processed at the head of the Pending Send Queue is
1796  *	left on the queue in case we experience DMA Mapping errors, etc.
1797  *	and need to give up and restart later.
1798  *
1799  *	service_ofldq() can be thought of as a task which opportunistically
1800  *	uses other threads execution contexts.  We use the Offload Queue
1801  *	boolean "service_ofldq_running" to make sure that only one instance
1802  *	is ever running at a time ...
1803  */
1804 static void service_ofldq(struct sge_uld_txq *q)
1805 {
1806 	u64 *pos, *before, *end;
1807 	int credits;
1808 	struct sk_buff *skb;
1809 	struct sge_txq *txq;
1810 	unsigned int left;
1811 	unsigned int written = 0;
1812 	unsigned int flits, ndesc;
1813 
1814 	/* If another thread is currently in service_ofldq() processing the
1815 	 * Pending Send Queue then there's nothing to do. Otherwise, flag
1816 	 * that we're doing the work and continue.  Examining/modifying
1817 	 * the Offload Queue boolean "service_ofldq_running" must be done
1818 	 * while holding the Pending Send Queue Lock.
1819 	 */
1820 	if (q->service_ofldq_running)
1821 		return;
1822 	q->service_ofldq_running = true;
1823 
1824 	while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
1825 		/* We drop the lock while we're working with the skb at the
1826 		 * head of the Pending Send Queue.  This allows more skbs to
1827 		 * be added to the Pending Send Queue while we're working on
1828 		 * this one.  We don't need to lock to guard the TX Ring
1829 		 * updates because only one thread of execution is ever
1830 		 * allowed into service_ofldq() at a time.
1831 		 */
1832 		spin_unlock(&q->sendq.lock);
1833 
1834 		cxgb4_reclaim_completed_tx(q->adap, &q->q, false);
1835 
1836 		flits = skb->priority;                /* previously saved */
1837 		ndesc = flits_to_desc(flits);
1838 		credits = txq_avail(&q->q) - ndesc;
1839 		BUG_ON(credits < 0);
1840 		if (unlikely(credits < TXQ_STOP_THRES))
1841 			ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data);
1842 
1843 		pos = (u64 *)&q->q.desc[q->q.pidx];
1844 		if (is_ofld_imm(skb))
1845 			cxgb4_inline_tx_skb(skb, &q->q, pos);
1846 		else if (cxgb4_map_skb(q->adap->pdev_dev, skb,
1847 				       (dma_addr_t *)skb->head)) {
1848 			txq_stop_maperr(q);
1849 			spin_lock(&q->sendq.lock);
1850 			break;
1851 		} else {
1852 			int last_desc, hdr_len = skb_transport_offset(skb);
1853 
1854 			/* The WR headers  may not fit within one descriptor.
1855 			 * So we need to deal with wrap-around here.
1856 			 */
1857 			before = (u64 *)pos;
1858 			end = (u64 *)pos + flits;
1859 			txq = &q->q;
1860 			pos = (void *)inline_tx_skb_header(skb, &q->q,
1861 							   (void *)pos,
1862 							   hdr_len);
1863 			if (before > (u64 *)pos) {
1864 				left = (u8 *)end - (u8 *)txq->stat;
1865 				end = (void *)txq->desc + left;
1866 			}
1867 
1868 			/* If current position is already at the end of the
1869 			 * ofld queue, reset the current to point to
1870 			 * start of the queue and update the end ptr as well.
1871 			 */
1872 			if (pos == (u64 *)txq->stat) {
1873 				left = (u8 *)end - (u8 *)txq->stat;
1874 				end = (void *)txq->desc + left;
1875 				pos = (void *)txq->desc;
1876 			}
1877 
1878 			cxgb4_write_sgl(skb, &q->q, (void *)pos,
1879 					end, hdr_len,
1880 					(dma_addr_t *)skb->head);
1881 #ifdef CONFIG_NEED_DMA_MAP_STATE
1882 			skb->dev = q->adap->port[0];
1883 			skb->destructor = deferred_unmap_destructor;
1884 #endif
1885 			last_desc = q->q.pidx + ndesc - 1;
1886 			if (last_desc >= q->q.size)
1887 				last_desc -= q->q.size;
1888 			q->q.sdesc[last_desc].skb = skb;
1889 		}
1890 
1891 		txq_advance(&q->q, ndesc);
1892 		written += ndesc;
1893 		if (unlikely(written > 32)) {
1894 			cxgb4_ring_tx_db(q->adap, &q->q, written);
1895 			written = 0;
1896 		}
1897 
1898 		/* Reacquire the Pending Send Queue Lock so we can unlink the
1899 		 * skb we've just successfully transferred to the TX Ring and
1900 		 * loop for the next skb which may be at the head of the
1901 		 * Pending Send Queue.
1902 		 */
1903 		spin_lock(&q->sendq.lock);
1904 		__skb_unlink(skb, &q->sendq);
1905 		if (is_ofld_imm(skb))
1906 			kfree_skb(skb);
1907 	}
1908 	if (likely(written))
1909 		cxgb4_ring_tx_db(q->adap, &q->q, written);
1910 
1911 	/*Indicate that no thread is processing the Pending Send Queue
1912 	 * currently.
1913 	 */
1914 	q->service_ofldq_running = false;
1915 }
1916 
1917 /**
1918  *	ofld_xmit - send a packet through an offload queue
1919  *	@q: the Tx offload queue
1920  *	@skb: the packet
1921  *
1922  *	Send an offload packet through an SGE offload queue.
1923  */
1924 static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb)
1925 {
1926 	skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */
1927 	spin_lock(&q->sendq.lock);
1928 
1929 	/* Queue the new skb onto the Offload Queue's Pending Send Queue.  If
1930 	 * that results in this new skb being the only one on the queue, start
1931 	 * servicing it.  If there are other skbs already on the list, then
1932 	 * either the queue is currently being processed or it's been stopped
1933 	 * for some reason and it'll be restarted at a later time.  Restart
1934 	 * paths are triggered by events like experiencing a DMA Mapping Error
1935 	 * or filling the Hardware TX Ring.
1936 	 */
1937 	__skb_queue_tail(&q->sendq, skb);
1938 	if (q->sendq.qlen == 1)
1939 		service_ofldq(q);
1940 
1941 	spin_unlock(&q->sendq.lock);
1942 	return NET_XMIT_SUCCESS;
1943 }
1944 
1945 /**
1946  *	restart_ofldq - restart a suspended offload queue
1947  *	@data: the offload queue to restart
1948  *
1949  *	Resumes transmission on a suspended Tx offload queue.
1950  */
1951 static void restart_ofldq(unsigned long data)
1952 {
1953 	struct sge_uld_txq *q = (struct sge_uld_txq *)data;
1954 
1955 	spin_lock(&q->sendq.lock);
1956 	q->full = 0;            /* the queue actually is completely empty now */
1957 	service_ofldq(q);
1958 	spin_unlock(&q->sendq.lock);
1959 }
1960 
1961 /**
1962  *	skb_txq - return the Tx queue an offload packet should use
1963  *	@skb: the packet
1964  *
1965  *	Returns the Tx queue an offload packet should use as indicated by bits
1966  *	1-15 in the packet's queue_mapping.
1967  */
1968 static inline unsigned int skb_txq(const struct sk_buff *skb)
1969 {
1970 	return skb->queue_mapping >> 1;
1971 }
1972 
1973 /**
1974  *	is_ctrl_pkt - return whether an offload packet is a control packet
1975  *	@skb: the packet
1976  *
1977  *	Returns whether an offload packet should use an OFLD or a CTRL
1978  *	Tx queue as indicated by bit 0 in the packet's queue_mapping.
1979  */
1980 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
1981 {
1982 	return skb->queue_mapping & 1;
1983 }
1984 
1985 static inline int uld_send(struct adapter *adap, struct sk_buff *skb,
1986 			   unsigned int tx_uld_type)
1987 {
1988 	struct sge_uld_txq_info *txq_info;
1989 	struct sge_uld_txq *txq;
1990 	unsigned int idx = skb_txq(skb);
1991 
1992 	if (unlikely(is_ctrl_pkt(skb))) {
1993 		/* Single ctrl queue is a requirement for LE workaround path */
1994 		if (adap->tids.nsftids)
1995 			idx = 0;
1996 		return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
1997 	}
1998 
1999 	txq_info = adap->sge.uld_txq_info[tx_uld_type];
2000 	if (unlikely(!txq_info)) {
2001 		WARN_ON(true);
2002 		return NET_XMIT_DROP;
2003 	}
2004 
2005 	txq = &txq_info->uldtxq[idx];
2006 	return ofld_xmit(txq, skb);
2007 }
2008 
2009 /**
2010  *	t4_ofld_send - send an offload packet
2011  *	@adap: the adapter
2012  *	@skb: the packet
2013  *
2014  *	Sends an offload packet.  We use the packet queue_mapping to select the
2015  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
2016  *	should be sent as regular or control, bits 1-15 select the queue.
2017  */
2018 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
2019 {
2020 	int ret;
2021 
2022 	local_bh_disable();
2023 	ret = uld_send(adap, skb, CXGB4_TX_OFLD);
2024 	local_bh_enable();
2025 	return ret;
2026 }
2027 
2028 /**
2029  *	cxgb4_ofld_send - send an offload packet
2030  *	@dev: the net device
2031  *	@skb: the packet
2032  *
2033  *	Sends an offload packet.  This is an exported version of @t4_ofld_send,
2034  *	intended for ULDs.
2035  */
2036 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
2037 {
2038 	return t4_ofld_send(netdev2adap(dev), skb);
2039 }
2040 EXPORT_SYMBOL(cxgb4_ofld_send);
2041 
2042 static void *inline_tx_header(const void *src,
2043 			      const struct sge_txq *q,
2044 			      void *pos, int length)
2045 {
2046 	int left = (void *)q->stat - pos;
2047 	u64 *p;
2048 
2049 	if (likely(length <= left)) {
2050 		memcpy(pos, src, length);
2051 		pos += length;
2052 	} else {
2053 		memcpy(pos, src, left);
2054 		memcpy(q->desc, src + left, length - left);
2055 		pos = (void *)q->desc + (length - left);
2056 	}
2057 	/* 0-pad to multiple of 16 */
2058 	p = PTR_ALIGN(pos, 8);
2059 	if ((uintptr_t)p & 8) {
2060 		*p = 0;
2061 		return p + 1;
2062 	}
2063 	return p;
2064 }
2065 
2066 /**
2067  *      ofld_xmit_direct - copy a WR into offload queue
2068  *      @q: the Tx offload queue
2069  *      @src: location of WR
2070  *      @len: WR length
2071  *
2072  *      Copy an immediate WR into an uncontended SGE offload queue.
2073  */
2074 static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src,
2075 			    unsigned int len)
2076 {
2077 	unsigned int ndesc;
2078 	int credits;
2079 	u64 *pos;
2080 
2081 	/* Use the lower limit as the cut-off */
2082 	if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) {
2083 		WARN_ON(1);
2084 		return NET_XMIT_DROP;
2085 	}
2086 
2087 	/* Don't return NET_XMIT_CN here as the current
2088 	 * implementation doesn't queue the request
2089 	 * using an skb when the following conditions not met
2090 	 */
2091 	if (!spin_trylock(&q->sendq.lock))
2092 		return NET_XMIT_DROP;
2093 
2094 	if (q->full || !skb_queue_empty(&q->sendq) ||
2095 	    q->service_ofldq_running) {
2096 		spin_unlock(&q->sendq.lock);
2097 		return NET_XMIT_DROP;
2098 	}
2099 	ndesc = flits_to_desc(DIV_ROUND_UP(len, 8));
2100 	credits = txq_avail(&q->q) - ndesc;
2101 	pos = (u64 *)&q->q.desc[q->q.pidx];
2102 
2103 	/* ofldtxq_stop modifies WR header in-situ */
2104 	inline_tx_header(src, &q->q, pos, len);
2105 	if (unlikely(credits < TXQ_STOP_THRES))
2106 		ofldtxq_stop(q, (struct fw_wr_hdr *)pos);
2107 	txq_advance(&q->q, ndesc);
2108 	cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
2109 
2110 	spin_unlock(&q->sendq.lock);
2111 	return NET_XMIT_SUCCESS;
2112 }
2113 
2114 int cxgb4_immdata_send(struct net_device *dev, unsigned int idx,
2115 		       const void *src, unsigned int len)
2116 {
2117 	struct sge_uld_txq_info *txq_info;
2118 	struct sge_uld_txq *txq;
2119 	struct adapter *adap;
2120 	int ret;
2121 
2122 	adap = netdev2adap(dev);
2123 
2124 	local_bh_disable();
2125 	txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2126 	if (unlikely(!txq_info)) {
2127 		WARN_ON(true);
2128 		local_bh_enable();
2129 		return NET_XMIT_DROP;
2130 	}
2131 	txq = &txq_info->uldtxq[idx];
2132 
2133 	ret = ofld_xmit_direct(txq, src, len);
2134 	local_bh_enable();
2135 	return net_xmit_eval(ret);
2136 }
2137 EXPORT_SYMBOL(cxgb4_immdata_send);
2138 
2139 /**
2140  *	t4_crypto_send - send crypto packet
2141  *	@adap: the adapter
2142  *	@skb: the packet
2143  *
2144  *	Sends crypto packet.  We use the packet queue_mapping to select the
2145  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
2146  *	should be sent as regular or control, bits 1-15 select the queue.
2147  */
2148 static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb)
2149 {
2150 	int ret;
2151 
2152 	local_bh_disable();
2153 	ret = uld_send(adap, skb, CXGB4_TX_CRYPTO);
2154 	local_bh_enable();
2155 	return ret;
2156 }
2157 
2158 /**
2159  *	cxgb4_crypto_send - send crypto packet
2160  *	@dev: the net device
2161  *	@skb: the packet
2162  *
2163  *	Sends crypto packet.  This is an exported version of @t4_crypto_send,
2164  *	intended for ULDs.
2165  */
2166 int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb)
2167 {
2168 	return t4_crypto_send(netdev2adap(dev), skb);
2169 }
2170 EXPORT_SYMBOL(cxgb4_crypto_send);
2171 
2172 static inline void copy_frags(struct sk_buff *skb,
2173 			      const struct pkt_gl *gl, unsigned int offset)
2174 {
2175 	int i;
2176 
2177 	/* usually there's just one frag */
2178 	__skb_fill_page_desc(skb, 0, gl->frags[0].page,
2179 			     gl->frags[0].offset + offset,
2180 			     gl->frags[0].size - offset);
2181 	skb_shinfo(skb)->nr_frags = gl->nfrags;
2182 	for (i = 1; i < gl->nfrags; i++)
2183 		__skb_fill_page_desc(skb, i, gl->frags[i].page,
2184 				     gl->frags[i].offset,
2185 				     gl->frags[i].size);
2186 
2187 	/* get a reference to the last page, we don't own it */
2188 	get_page(gl->frags[gl->nfrags - 1].page);
2189 }
2190 
2191 /**
2192  *	cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
2193  *	@gl: the gather list
2194  *	@skb_len: size of sk_buff main body if it carries fragments
2195  *	@pull_len: amount of data to move to the sk_buff's main body
2196  *
2197  *	Builds an sk_buff from the given packet gather list.  Returns the
2198  *	sk_buff or %NULL if sk_buff allocation failed.
2199  */
2200 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
2201 				   unsigned int skb_len, unsigned int pull_len)
2202 {
2203 	struct sk_buff *skb;
2204 
2205 	/*
2206 	 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
2207 	 * size, which is expected since buffers are at least PAGE_SIZEd.
2208 	 * In this case packets up to RX_COPY_THRES have only one fragment.
2209 	 */
2210 	if (gl->tot_len <= RX_COPY_THRES) {
2211 		skb = dev_alloc_skb(gl->tot_len);
2212 		if (unlikely(!skb))
2213 			goto out;
2214 		__skb_put(skb, gl->tot_len);
2215 		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
2216 	} else {
2217 		skb = dev_alloc_skb(skb_len);
2218 		if (unlikely(!skb))
2219 			goto out;
2220 		__skb_put(skb, pull_len);
2221 		skb_copy_to_linear_data(skb, gl->va, pull_len);
2222 
2223 		copy_frags(skb, gl, pull_len);
2224 		skb->len = gl->tot_len;
2225 		skb->data_len = skb->len - pull_len;
2226 		skb->truesize += skb->data_len;
2227 	}
2228 out:	return skb;
2229 }
2230 EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
2231 
2232 /**
2233  *	t4_pktgl_free - free a packet gather list
2234  *	@gl: the gather list
2235  *
2236  *	Releases the pages of a packet gather list.  We do not own the last
2237  *	page on the list and do not free it.
2238  */
2239 static void t4_pktgl_free(const struct pkt_gl *gl)
2240 {
2241 	int n;
2242 	const struct page_frag *p;
2243 
2244 	for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
2245 		put_page(p->page);
2246 }
2247 
2248 /*
2249  * Process an MPS trace packet.  Give it an unused protocol number so it won't
2250  * be delivered to anyone and send it to the stack for capture.
2251  */
2252 static noinline int handle_trace_pkt(struct adapter *adap,
2253 				     const struct pkt_gl *gl)
2254 {
2255 	struct sk_buff *skb;
2256 
2257 	skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
2258 	if (unlikely(!skb)) {
2259 		t4_pktgl_free(gl);
2260 		return 0;
2261 	}
2262 
2263 	if (is_t4(adap->params.chip))
2264 		__skb_pull(skb, sizeof(struct cpl_trace_pkt));
2265 	else
2266 		__skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
2267 
2268 	skb_reset_mac_header(skb);
2269 	skb->protocol = htons(0xffff);
2270 	skb->dev = adap->port[0];
2271 	netif_receive_skb(skb);
2272 	return 0;
2273 }
2274 
2275 /**
2276  * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp
2277  * @adap: the adapter
2278  * @hwtstamps: time stamp structure to update
2279  * @sgetstamp: 60bit iqe timestamp
2280  *
2281  * Every ingress queue entry has the 60-bit timestamp, convert that timestamp
2282  * which is in Core Clock ticks into ktime_t and assign it
2283  **/
2284 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap,
2285 				     struct skb_shared_hwtstamps *hwtstamps,
2286 				     u64 sgetstamp)
2287 {
2288 	u64 ns;
2289 	u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2);
2290 
2291 	ns = div_u64(tmp, adap->params.vpd.cclk);
2292 
2293 	memset(hwtstamps, 0, sizeof(*hwtstamps));
2294 	hwtstamps->hwtstamp = ns_to_ktime(ns);
2295 }
2296 
2297 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
2298 		   const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len)
2299 {
2300 	struct adapter *adapter = rxq->rspq.adap;
2301 	struct sge *s = &adapter->sge;
2302 	struct port_info *pi;
2303 	int ret;
2304 	struct sk_buff *skb;
2305 
2306 	skb = napi_get_frags(&rxq->rspq.napi);
2307 	if (unlikely(!skb)) {
2308 		t4_pktgl_free(gl);
2309 		rxq->stats.rx_drops++;
2310 		return;
2311 	}
2312 
2313 	copy_frags(skb, gl, s->pktshift);
2314 	if (tnl_hdr_len)
2315 		skb->csum_level = 1;
2316 	skb->len = gl->tot_len - s->pktshift;
2317 	skb->data_len = skb->len;
2318 	skb->truesize += skb->data_len;
2319 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2320 	skb_record_rx_queue(skb, rxq->rspq.idx);
2321 	pi = netdev_priv(skb->dev);
2322 	if (pi->rxtstamp)
2323 		cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb),
2324 					 gl->sgetstamp);
2325 	if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
2326 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
2327 			     PKT_HASH_TYPE_L3);
2328 
2329 	if (unlikely(pkt->vlan_ex)) {
2330 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
2331 		rxq->stats.vlan_ex++;
2332 	}
2333 	ret = napi_gro_frags(&rxq->rspq.napi);
2334 	if (ret == GRO_HELD)
2335 		rxq->stats.lro_pkts++;
2336 	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
2337 		rxq->stats.lro_merged++;
2338 	rxq->stats.pkts++;
2339 	rxq->stats.rx_cso++;
2340 }
2341 
2342 enum {
2343 	RX_NON_PTP_PKT = 0,
2344 	RX_PTP_PKT_SUC = 1,
2345 	RX_PTP_PKT_ERR = 2
2346 };
2347 
2348 /**
2349  *     t4_systim_to_hwstamp - read hardware time stamp
2350  *     @adap: the adapter
2351  *     @skb: the packet
2352  *
2353  *     Read Time Stamp from MPS packet and insert in skb which
2354  *     is forwarded to PTP application
2355  */
2356 static noinline int t4_systim_to_hwstamp(struct adapter *adapter,
2357 					 struct sk_buff *skb)
2358 {
2359 	struct skb_shared_hwtstamps *hwtstamps;
2360 	struct cpl_rx_mps_pkt *cpl = NULL;
2361 	unsigned char *data;
2362 	int offset;
2363 
2364 	cpl = (struct cpl_rx_mps_pkt *)skb->data;
2365 	if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) &
2366 	     X_CPL_RX_MPS_PKT_TYPE_PTP))
2367 		return RX_PTP_PKT_ERR;
2368 
2369 	data = skb->data + sizeof(*cpl);
2370 	skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt));
2371 	offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN;
2372 	if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short))
2373 		return RX_PTP_PKT_ERR;
2374 
2375 	hwtstamps = skb_hwtstamps(skb);
2376 	memset(hwtstamps, 0, sizeof(*hwtstamps));
2377 	hwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*((u64 *)data)));
2378 
2379 	return RX_PTP_PKT_SUC;
2380 }
2381 
2382 /**
2383  *     t4_rx_hststamp - Recv PTP Event Message
2384  *     @adap: the adapter
2385  *     @rsp: the response queue descriptor holding the RX_PKT message
2386  *     @skb: the packet
2387  *
2388  *     PTP enabled and MPS packet, read HW timestamp
2389  */
2390 static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp,
2391 			  struct sge_eth_rxq *rxq, struct sk_buff *skb)
2392 {
2393 	int ret;
2394 
2395 	if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) &&
2396 		     !is_t4(adapter->params.chip))) {
2397 		ret = t4_systim_to_hwstamp(adapter, skb);
2398 		if (ret == RX_PTP_PKT_ERR) {
2399 			kfree_skb(skb);
2400 			rxq->stats.rx_drops++;
2401 		}
2402 		return ret;
2403 	}
2404 	return RX_NON_PTP_PKT;
2405 }
2406 
2407 /**
2408  *      t4_tx_hststamp - Loopback PTP Transmit Event Message
2409  *      @adap: the adapter
2410  *      @skb: the packet
2411  *      @dev: the ingress net device
2412  *
2413  *      Read hardware timestamp for the loopback PTP Tx event message
2414  */
2415 static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb,
2416 			  struct net_device *dev)
2417 {
2418 	struct port_info *pi = netdev_priv(dev);
2419 
2420 	if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) {
2421 		cxgb4_ptp_read_hwstamp(adapter, pi);
2422 		kfree_skb(skb);
2423 		return 0;
2424 	}
2425 	return 1;
2426 }
2427 
2428 /**
2429  *	t4_ethrx_handler - process an ingress ethernet packet
2430  *	@q: the response queue that received the packet
2431  *	@rsp: the response queue descriptor holding the RX_PKT message
2432  *	@si: the gather list of packet fragments
2433  *
2434  *	Process an ingress ethernet packet and deliver it to the stack.
2435  */
2436 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
2437 		     const struct pkt_gl *si)
2438 {
2439 	bool csum_ok;
2440 	struct sk_buff *skb;
2441 	const struct cpl_rx_pkt *pkt;
2442 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
2443 	struct adapter *adapter = q->adap;
2444 	struct sge *s = &q->adap->sge;
2445 	int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
2446 			    CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
2447 	u16 err_vec, tnl_hdr_len = 0;
2448 	struct port_info *pi;
2449 	int ret = 0;
2450 
2451 	if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
2452 		return handle_trace_pkt(q->adap, si);
2453 
2454 	pkt = (const struct cpl_rx_pkt *)rsp;
2455 	/* Compressed error vector is enabled for T6 only */
2456 	if (q->adap->params.tp.rx_pkt_encap) {
2457 		err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec));
2458 		tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec));
2459 	} else {
2460 		err_vec = be16_to_cpu(pkt->err_vec);
2461 	}
2462 
2463 	csum_ok = pkt->csum_calc && !err_vec &&
2464 		  (q->netdev->features & NETIF_F_RXCSUM);
2465 	if (((pkt->l2info & htonl(RXF_TCP_F)) ||
2466 	     tnl_hdr_len) &&
2467 	    (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
2468 		do_gro(rxq, si, pkt, tnl_hdr_len);
2469 		return 0;
2470 	}
2471 
2472 	skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
2473 	if (unlikely(!skb)) {
2474 		t4_pktgl_free(si);
2475 		rxq->stats.rx_drops++;
2476 		return 0;
2477 	}
2478 	pi = netdev_priv(q->netdev);
2479 
2480 	/* Handle PTP Event Rx packet */
2481 	if (unlikely(pi->ptp_enable)) {
2482 		ret = t4_rx_hststamp(adapter, rsp, rxq, skb);
2483 		if (ret == RX_PTP_PKT_ERR)
2484 			return 0;
2485 	}
2486 	if (likely(!ret))
2487 		__skb_pull(skb, s->pktshift); /* remove ethernet header pad */
2488 
2489 	/* Handle the PTP Event Tx Loopback packet */
2490 	if (unlikely(pi->ptp_enable && !ret &&
2491 		     (pkt->l2info & htonl(RXF_UDP_F)) &&
2492 		     cxgb4_ptp_is_ptp_rx(skb))) {
2493 		if (!t4_tx_hststamp(adapter, skb, q->netdev))
2494 			return 0;
2495 	}
2496 
2497 	skb->protocol = eth_type_trans(skb, q->netdev);
2498 	skb_record_rx_queue(skb, q->idx);
2499 	if (skb->dev->features & NETIF_F_RXHASH)
2500 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
2501 			     PKT_HASH_TYPE_L3);
2502 
2503 	rxq->stats.pkts++;
2504 
2505 	if (pi->rxtstamp)
2506 		cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb),
2507 					 si->sgetstamp);
2508 	if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
2509 		if (!pkt->ip_frag) {
2510 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2511 			rxq->stats.rx_cso++;
2512 		} else if (pkt->l2info & htonl(RXF_IP_F)) {
2513 			__sum16 c = (__force __sum16)pkt->csum;
2514 			skb->csum = csum_unfold(c);
2515 
2516 			if (tnl_hdr_len) {
2517 				skb->ip_summed = CHECKSUM_UNNECESSARY;
2518 				skb->csum_level = 1;
2519 			} else {
2520 				skb->ip_summed = CHECKSUM_COMPLETE;
2521 			}
2522 			rxq->stats.rx_cso++;
2523 		}
2524 	} else {
2525 		skb_checksum_none_assert(skb);
2526 #ifdef CONFIG_CHELSIO_T4_FCOE
2527 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
2528 			  RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
2529 
2530 		if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
2531 			if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
2532 			    (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
2533 				if (q->adap->params.tp.rx_pkt_encap)
2534 					csum_ok = err_vec &
2535 						  T6_COMPR_RXERR_SUM_F;
2536 				else
2537 					csum_ok = err_vec & RXERR_CSUM_F;
2538 				if (!csum_ok)
2539 					skb->ip_summed = CHECKSUM_UNNECESSARY;
2540 			}
2541 		}
2542 
2543 #undef CPL_RX_PKT_FLAGS
2544 #endif /* CONFIG_CHELSIO_T4_FCOE */
2545 	}
2546 
2547 	if (unlikely(pkt->vlan_ex)) {
2548 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
2549 		rxq->stats.vlan_ex++;
2550 	}
2551 	skb_mark_napi_id(skb, &q->napi);
2552 	netif_receive_skb(skb);
2553 	return 0;
2554 }
2555 
2556 /**
2557  *	restore_rx_bufs - put back a packet's Rx buffers
2558  *	@si: the packet gather list
2559  *	@q: the SGE free list
2560  *	@frags: number of FL buffers to restore
2561  *
2562  *	Puts back on an FL the Rx buffers associated with @si.  The buffers
2563  *	have already been unmapped and are left unmapped, we mark them so to
2564  *	prevent further unmapping attempts.
2565  *
2566  *	This function undoes a series of @unmap_rx_buf calls when we find out
2567  *	that the current packet can't be processed right away afterall and we
2568  *	need to come back to it later.  This is a very rare event and there's
2569  *	no effort to make this particularly efficient.
2570  */
2571 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
2572 			    int frags)
2573 {
2574 	struct rx_sw_desc *d;
2575 
2576 	while (frags--) {
2577 		if (q->cidx == 0)
2578 			q->cidx = q->size - 1;
2579 		else
2580 			q->cidx--;
2581 		d = &q->sdesc[q->cidx];
2582 		d->page = si->frags[frags].page;
2583 		d->dma_addr |= RX_UNMAPPED_BUF;
2584 		q->avail++;
2585 	}
2586 }
2587 
2588 /**
2589  *	is_new_response - check if a response is newly written
2590  *	@r: the response descriptor
2591  *	@q: the response queue
2592  *
2593  *	Returns true if a response descriptor contains a yet unprocessed
2594  *	response.
2595  */
2596 static inline bool is_new_response(const struct rsp_ctrl *r,
2597 				   const struct sge_rspq *q)
2598 {
2599 	return (r->type_gen >> RSPD_GEN_S) == q->gen;
2600 }
2601 
2602 /**
2603  *	rspq_next - advance to the next entry in a response queue
2604  *	@q: the queue
2605  *
2606  *	Updates the state of a response queue to advance it to the next entry.
2607  */
2608 static inline void rspq_next(struct sge_rspq *q)
2609 {
2610 	q->cur_desc = (void *)q->cur_desc + q->iqe_len;
2611 	if (unlikely(++q->cidx == q->size)) {
2612 		q->cidx = 0;
2613 		q->gen ^= 1;
2614 		q->cur_desc = q->desc;
2615 	}
2616 }
2617 
2618 /**
2619  *	process_responses - process responses from an SGE response queue
2620  *	@q: the ingress queue to process
2621  *	@budget: how many responses can be processed in this round
2622  *
2623  *	Process responses from an SGE response queue up to the supplied budget.
2624  *	Responses include received packets as well as control messages from FW
2625  *	or HW.
2626  *
2627  *	Additionally choose the interrupt holdoff time for the next interrupt
2628  *	on this queue.  If the system is under memory shortage use a fairly
2629  *	long delay to help recovery.
2630  */
2631 static int process_responses(struct sge_rspq *q, int budget)
2632 {
2633 	int ret, rsp_type;
2634 	int budget_left = budget;
2635 	const struct rsp_ctrl *rc;
2636 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
2637 	struct adapter *adapter = q->adap;
2638 	struct sge *s = &adapter->sge;
2639 
2640 	while (likely(budget_left)) {
2641 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
2642 		if (!is_new_response(rc, q)) {
2643 			if (q->flush_handler)
2644 				q->flush_handler(q);
2645 			break;
2646 		}
2647 
2648 		dma_rmb();
2649 		rsp_type = RSPD_TYPE_G(rc->type_gen);
2650 		if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
2651 			struct page_frag *fp;
2652 			struct pkt_gl si;
2653 			const struct rx_sw_desc *rsd;
2654 			u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
2655 
2656 			if (len & RSPD_NEWBUF_F) {
2657 				if (likely(q->offset > 0)) {
2658 					free_rx_bufs(q->adap, &rxq->fl, 1);
2659 					q->offset = 0;
2660 				}
2661 				len = RSPD_LEN_G(len);
2662 			}
2663 			si.tot_len = len;
2664 
2665 			/* gather packet fragments */
2666 			for (frags = 0, fp = si.frags; ; frags++, fp++) {
2667 				rsd = &rxq->fl.sdesc[rxq->fl.cidx];
2668 				bufsz = get_buf_size(adapter, rsd);
2669 				fp->page = rsd->page;
2670 				fp->offset = q->offset;
2671 				fp->size = min(bufsz, len);
2672 				len -= fp->size;
2673 				if (!len)
2674 					break;
2675 				unmap_rx_buf(q->adap, &rxq->fl);
2676 			}
2677 
2678 			si.sgetstamp = SGE_TIMESTAMP_G(
2679 					be64_to_cpu(rc->last_flit));
2680 			/*
2681 			 * Last buffer remains mapped so explicitly make it
2682 			 * coherent for CPU access.
2683 			 */
2684 			dma_sync_single_for_cpu(q->adap->pdev_dev,
2685 						get_buf_addr(rsd),
2686 						fp->size, DMA_FROM_DEVICE);
2687 
2688 			si.va = page_address(si.frags[0].page) +
2689 				si.frags[0].offset;
2690 			prefetch(si.va);
2691 
2692 			si.nfrags = frags + 1;
2693 			ret = q->handler(q, q->cur_desc, &si);
2694 			if (likely(ret == 0))
2695 				q->offset += ALIGN(fp->size, s->fl_align);
2696 			else
2697 				restore_rx_bufs(&si, &rxq->fl, frags);
2698 		} else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
2699 			ret = q->handler(q, q->cur_desc, NULL);
2700 		} else {
2701 			ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
2702 		}
2703 
2704 		if (unlikely(ret)) {
2705 			/* couldn't process descriptor, back off for recovery */
2706 			q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
2707 			break;
2708 		}
2709 
2710 		rspq_next(q);
2711 		budget_left--;
2712 	}
2713 
2714 	if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16)
2715 		__refill_fl(q->adap, &rxq->fl);
2716 	return budget - budget_left;
2717 }
2718 
2719 /**
2720  *	napi_rx_handler - the NAPI handler for Rx processing
2721  *	@napi: the napi instance
2722  *	@budget: how many packets we can process in this round
2723  *
2724  *	Handler for new data events when using NAPI.  This does not need any
2725  *	locking or protection from interrupts as data interrupts are off at
2726  *	this point and other adapter interrupts do not interfere (the latter
2727  *	in not a concern at all with MSI-X as non-data interrupts then have
2728  *	a separate handler).
2729  */
2730 static int napi_rx_handler(struct napi_struct *napi, int budget)
2731 {
2732 	unsigned int params;
2733 	struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
2734 	int work_done;
2735 	u32 val;
2736 
2737 	work_done = process_responses(q, budget);
2738 	if (likely(work_done < budget)) {
2739 		int timer_index;
2740 
2741 		napi_complete_done(napi, work_done);
2742 		timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
2743 
2744 		if (q->adaptive_rx) {
2745 			if (work_done > max(timer_pkt_quota[timer_index],
2746 					    MIN_NAPI_WORK))
2747 				timer_index = (timer_index + 1);
2748 			else
2749 				timer_index = timer_index - 1;
2750 
2751 			timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
2752 			q->next_intr_params =
2753 					QINTR_TIMER_IDX_V(timer_index) |
2754 					QINTR_CNT_EN_V(0);
2755 			params = q->next_intr_params;
2756 		} else {
2757 			params = q->next_intr_params;
2758 			q->next_intr_params = q->intr_params;
2759 		}
2760 	} else
2761 		params = QINTR_TIMER_IDX_V(7);
2762 
2763 	val = CIDXINC_V(work_done) | SEINTARM_V(params);
2764 
2765 	/* If we don't have access to the new User GTS (T5+), use the old
2766 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
2767 	 */
2768 	if (unlikely(q->bar2_addr == NULL)) {
2769 		t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
2770 			     val | INGRESSQID_V((u32)q->cntxt_id));
2771 	} else {
2772 		writel(val | INGRESSQID_V(q->bar2_qid),
2773 		       q->bar2_addr + SGE_UDB_GTS);
2774 		wmb();
2775 	}
2776 	return work_done;
2777 }
2778 
2779 /*
2780  * The MSI-X interrupt handler for an SGE response queue.
2781  */
2782 irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
2783 {
2784 	struct sge_rspq *q = cookie;
2785 
2786 	napi_schedule(&q->napi);
2787 	return IRQ_HANDLED;
2788 }
2789 
2790 /*
2791  * Process the indirect interrupt entries in the interrupt queue and kick off
2792  * NAPI for each queue that has generated an entry.
2793  */
2794 static unsigned int process_intrq(struct adapter *adap)
2795 {
2796 	unsigned int credits;
2797 	const struct rsp_ctrl *rc;
2798 	struct sge_rspq *q = &adap->sge.intrq;
2799 	u32 val;
2800 
2801 	spin_lock(&adap->sge.intrq_lock);
2802 	for (credits = 0; ; credits++) {
2803 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
2804 		if (!is_new_response(rc, q))
2805 			break;
2806 
2807 		dma_rmb();
2808 		if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
2809 			unsigned int qid = ntohl(rc->pldbuflen_qid);
2810 
2811 			qid -= adap->sge.ingr_start;
2812 			napi_schedule(&adap->sge.ingr_map[qid]->napi);
2813 		}
2814 
2815 		rspq_next(q);
2816 	}
2817 
2818 	val =  CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
2819 
2820 	/* If we don't have access to the new User GTS (T5+), use the old
2821 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
2822 	 */
2823 	if (unlikely(q->bar2_addr == NULL)) {
2824 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
2825 			     val | INGRESSQID_V(q->cntxt_id));
2826 	} else {
2827 		writel(val | INGRESSQID_V(q->bar2_qid),
2828 		       q->bar2_addr + SGE_UDB_GTS);
2829 		wmb();
2830 	}
2831 	spin_unlock(&adap->sge.intrq_lock);
2832 	return credits;
2833 }
2834 
2835 /*
2836  * The MSI interrupt handler, which handles data events from SGE response queues
2837  * as well as error and other async events as they all use the same MSI vector.
2838  */
2839 static irqreturn_t t4_intr_msi(int irq, void *cookie)
2840 {
2841 	struct adapter *adap = cookie;
2842 
2843 	if (adap->flags & MASTER_PF)
2844 		t4_slow_intr_handler(adap);
2845 	process_intrq(adap);
2846 	return IRQ_HANDLED;
2847 }
2848 
2849 /*
2850  * Interrupt handler for legacy INTx interrupts.
2851  * Handles data events from SGE response queues as well as error and other
2852  * async events as they all use the same interrupt line.
2853  */
2854 static irqreturn_t t4_intr_intx(int irq, void *cookie)
2855 {
2856 	struct adapter *adap = cookie;
2857 
2858 	t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
2859 	if (((adap->flags & MASTER_PF) && t4_slow_intr_handler(adap)) |
2860 	    process_intrq(adap))
2861 		return IRQ_HANDLED;
2862 	return IRQ_NONE;             /* probably shared interrupt */
2863 }
2864 
2865 /**
2866  *	t4_intr_handler - select the top-level interrupt handler
2867  *	@adap: the adapter
2868  *
2869  *	Selects the top-level interrupt handler based on the type of interrupts
2870  *	(MSI-X, MSI, or INTx).
2871  */
2872 irq_handler_t t4_intr_handler(struct adapter *adap)
2873 {
2874 	if (adap->flags & USING_MSIX)
2875 		return t4_sge_intr_msix;
2876 	if (adap->flags & USING_MSI)
2877 		return t4_intr_msi;
2878 	return t4_intr_intx;
2879 }
2880 
2881 static void sge_rx_timer_cb(struct timer_list *t)
2882 {
2883 	unsigned long m;
2884 	unsigned int i;
2885 	struct adapter *adap = from_timer(adap, t, sge.rx_timer);
2886 	struct sge *s = &adap->sge;
2887 
2888 	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
2889 		for (m = s->starving_fl[i]; m; m &= m - 1) {
2890 			struct sge_eth_rxq *rxq;
2891 			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
2892 			struct sge_fl *fl = s->egr_map[id];
2893 
2894 			clear_bit(id, s->starving_fl);
2895 			smp_mb__after_atomic();
2896 
2897 			if (fl_starving(adap, fl)) {
2898 				rxq = container_of(fl, struct sge_eth_rxq, fl);
2899 				if (napi_reschedule(&rxq->rspq.napi))
2900 					fl->starving++;
2901 				else
2902 					set_bit(id, s->starving_fl);
2903 			}
2904 		}
2905 	/* The remainder of the SGE RX Timer Callback routine is dedicated to
2906 	 * global Master PF activities like checking for chip ingress stalls,
2907 	 * etc.
2908 	 */
2909 	if (!(adap->flags & MASTER_PF))
2910 		goto done;
2911 
2912 	t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
2913 
2914 done:
2915 	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
2916 }
2917 
2918 static void sge_tx_timer_cb(struct timer_list *t)
2919 {
2920 	unsigned long m;
2921 	unsigned int i, budget;
2922 	struct adapter *adap = from_timer(adap, t, sge.tx_timer);
2923 	struct sge *s = &adap->sge;
2924 
2925 	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
2926 		for (m = s->txq_maperr[i]; m; m &= m - 1) {
2927 			unsigned long id = __ffs(m) + i * BITS_PER_LONG;
2928 			struct sge_uld_txq *txq = s->egr_map[id];
2929 
2930 			clear_bit(id, s->txq_maperr);
2931 			tasklet_schedule(&txq->qresume_tsk);
2932 		}
2933 
2934 	if (!is_t4(adap->params.chip)) {
2935 		struct sge_eth_txq *q = &s->ptptxq;
2936 		int avail;
2937 
2938 		spin_lock(&adap->ptp_lock);
2939 		avail = reclaimable(&q->q);
2940 
2941 		if (avail) {
2942 			free_tx_desc(adap, &q->q, avail, false);
2943 			q->q.in_use -= avail;
2944 		}
2945 		spin_unlock(&adap->ptp_lock);
2946 	}
2947 
2948 	budget = MAX_TIMER_TX_RECLAIM;
2949 	i = s->ethtxq_rover;
2950 	do {
2951 		struct sge_eth_txq *q = &s->ethtxq[i];
2952 
2953 		if (q->q.in_use &&
2954 		    time_after_eq(jiffies, q->txq->trans_start + HZ / 100) &&
2955 		    __netif_tx_trylock(q->txq)) {
2956 			int avail = reclaimable(&q->q);
2957 
2958 			if (avail) {
2959 				if (avail > budget)
2960 					avail = budget;
2961 
2962 				free_tx_desc(adap, &q->q, avail, true);
2963 				q->q.in_use -= avail;
2964 				budget -= avail;
2965 			}
2966 			__netif_tx_unlock(q->txq);
2967 		}
2968 
2969 		if (++i >= s->ethqsets)
2970 			i = 0;
2971 	} while (budget && i != s->ethtxq_rover);
2972 	s->ethtxq_rover = i;
2973 	mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2974 }
2975 
2976 /**
2977  *	bar2_address - return the BAR2 address for an SGE Queue's Registers
2978  *	@adapter: the adapter
2979  *	@qid: the SGE Queue ID
2980  *	@qtype: the SGE Queue Type (Egress or Ingress)
2981  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
2982  *
2983  *	Returns the BAR2 address for the SGE Queue Registers associated with
2984  *	@qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
2985  *	returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
2986  *	Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
2987  *	Registers are supported (e.g. the Write Combining Doorbell Buffer).
2988  */
2989 static void __iomem *bar2_address(struct adapter *adapter,
2990 				  unsigned int qid,
2991 				  enum t4_bar2_qtype qtype,
2992 				  unsigned int *pbar2_qid)
2993 {
2994 	u64 bar2_qoffset;
2995 	int ret;
2996 
2997 	ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
2998 				&bar2_qoffset, pbar2_qid);
2999 	if (ret)
3000 		return NULL;
3001 
3002 	return adapter->bar2 + bar2_qoffset;
3003 }
3004 
3005 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
3006  * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
3007  */
3008 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
3009 		     struct net_device *dev, int intr_idx,
3010 		     struct sge_fl *fl, rspq_handler_t hnd,
3011 		     rspq_flush_handler_t flush_hnd, int cong)
3012 {
3013 	int ret, flsz = 0;
3014 	struct fw_iq_cmd c;
3015 	struct sge *s = &adap->sge;
3016 	struct port_info *pi = netdev_priv(dev);
3017 	int relaxed = !(adap->flags & ROOT_NO_RELAXED_ORDERING);
3018 
3019 	/* Size needs to be multiple of 16, including status entry. */
3020 	iq->size = roundup(iq->size, 16);
3021 
3022 	iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
3023 			      &iq->phys_addr, NULL, 0,
3024 			      dev_to_node(adap->pdev_dev));
3025 	if (!iq->desc)
3026 		return -ENOMEM;
3027 
3028 	memset(&c, 0, sizeof(c));
3029 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
3030 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
3031 			    FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
3032 	c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
3033 				 FW_LEN16(c));
3034 	c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
3035 		FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
3036 		FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
3037 		FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
3038 		FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
3039 							-intr_idx - 1));
3040 	c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
3041 		FW_IQ_CMD_IQGTSMODE_F |
3042 		FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
3043 		FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
3044 	c.iqsize = htons(iq->size);
3045 	c.iqaddr = cpu_to_be64(iq->phys_addr);
3046 	if (cong >= 0)
3047 		c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F);
3048 
3049 	if (fl) {
3050 		enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
3051 
3052 		/* Allocate the ring for the hardware free list (with space
3053 		 * for its status page) along with the associated software
3054 		 * descriptor ring.  The free list size needs to be a multiple
3055 		 * of the Egress Queue Unit and at least 2 Egress Units larger
3056 		 * than the SGE's Egress Congrestion Threshold
3057 		 * (fl_starve_thres - 1).
3058 		 */
3059 		if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
3060 			fl->size = s->fl_starve_thres - 1 + 2 * 8;
3061 		fl->size = roundup(fl->size, 8);
3062 		fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
3063 				      sizeof(struct rx_sw_desc), &fl->addr,
3064 				      &fl->sdesc, s->stat_len,
3065 				      dev_to_node(adap->pdev_dev));
3066 		if (!fl->desc)
3067 			goto fl_nomem;
3068 
3069 		flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
3070 		c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
3071 					     FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
3072 					     FW_IQ_CMD_FL0DATARO_V(relaxed) |
3073 					     FW_IQ_CMD_FL0PADEN_F);
3074 		if (cong >= 0)
3075 			c.iqns_to_fl0congen |=
3076 				htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
3077 				      FW_IQ_CMD_FL0CONGCIF_F |
3078 				      FW_IQ_CMD_FL0CONGEN_F);
3079 		/* In T6, for egress queue type FL there is internal overhead
3080 		 * of 16B for header going into FLM module.  Hence the maximum
3081 		 * allowed burst size is 448 bytes.  For T4/T5, the hardware
3082 		 * doesn't coalesce fetch requests if more than 64 bytes of
3083 		 * Free List pointers are provided, so we use a 128-byte Fetch
3084 		 * Burst Minimum there (T6 implements coalescing so we can use
3085 		 * the smaller 64-byte value there).
3086 		 */
3087 		c.fl0dcaen_to_fl0cidxfthresh =
3088 			htons(FW_IQ_CMD_FL0FBMIN_V(chip <= CHELSIO_T5 ?
3089 						   FETCHBURSTMIN_128B_X :
3090 						   FETCHBURSTMIN_64B_X) |
3091 			      FW_IQ_CMD_FL0FBMAX_V((chip <= CHELSIO_T5) ?
3092 						   FETCHBURSTMAX_512B_X :
3093 						   FETCHBURSTMAX_256B_X));
3094 		c.fl0size = htons(flsz);
3095 		c.fl0addr = cpu_to_be64(fl->addr);
3096 	}
3097 
3098 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
3099 	if (ret)
3100 		goto err;
3101 
3102 	netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
3103 	iq->cur_desc = iq->desc;
3104 	iq->cidx = 0;
3105 	iq->gen = 1;
3106 	iq->next_intr_params = iq->intr_params;
3107 	iq->cntxt_id = ntohs(c.iqid);
3108 	iq->abs_id = ntohs(c.physiqid);
3109 	iq->bar2_addr = bar2_address(adap,
3110 				     iq->cntxt_id,
3111 				     T4_BAR2_QTYPE_INGRESS,
3112 				     &iq->bar2_qid);
3113 	iq->size--;                           /* subtract status entry */
3114 	iq->netdev = dev;
3115 	iq->handler = hnd;
3116 	iq->flush_handler = flush_hnd;
3117 
3118 	memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr));
3119 	skb_queue_head_init(&iq->lro_mgr.lroq);
3120 
3121 	/* set offset to -1 to distinguish ingress queues without FL */
3122 	iq->offset = fl ? 0 : -1;
3123 
3124 	adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
3125 
3126 	if (fl) {
3127 		fl->cntxt_id = ntohs(c.fl0id);
3128 		fl->avail = fl->pend_cred = 0;
3129 		fl->pidx = fl->cidx = 0;
3130 		fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
3131 		adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
3132 
3133 		/* Note, we must initialize the BAR2 Free List User Doorbell
3134 		 * information before refilling the Free List!
3135 		 */
3136 		fl->bar2_addr = bar2_address(adap,
3137 					     fl->cntxt_id,
3138 					     T4_BAR2_QTYPE_EGRESS,
3139 					     &fl->bar2_qid);
3140 		refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
3141 	}
3142 
3143 	/* For T5 and later we attempt to set up the Congestion Manager values
3144 	 * of the new RX Ethernet Queue.  This should really be handled by
3145 	 * firmware because it's more complex than any host driver wants to
3146 	 * get involved with and it's different per chip and this is almost
3147 	 * certainly wrong.  Firmware would be wrong as well, but it would be
3148 	 * a lot easier to fix in one place ...  For now we do something very
3149 	 * simple (and hopefully less wrong).
3150 	 */
3151 	if (!is_t4(adap->params.chip) && cong >= 0) {
3152 		u32 param, val, ch_map = 0;
3153 		int i;
3154 		u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log;
3155 
3156 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
3157 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
3158 			 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
3159 		if (cong == 0) {
3160 			val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
3161 		} else {
3162 			val =
3163 			    CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
3164 			for (i = 0; i < 4; i++) {
3165 				if (cong & (1 << i))
3166 					ch_map |= 1 << (i << cng_ch_bits_log);
3167 			}
3168 			val |= CONMCTXT_CNGCHMAP_V(ch_map);
3169 		}
3170 		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
3171 				    &param, &val);
3172 		if (ret)
3173 			dev_warn(adap->pdev_dev, "Failed to set Congestion"
3174 				 " Manager Context for Ingress Queue %d: %d\n",
3175 				 iq->cntxt_id, -ret);
3176 	}
3177 
3178 	return 0;
3179 
3180 fl_nomem:
3181 	ret = -ENOMEM;
3182 err:
3183 	if (iq->desc) {
3184 		dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
3185 				  iq->desc, iq->phys_addr);
3186 		iq->desc = NULL;
3187 	}
3188 	if (fl && fl->desc) {
3189 		kfree(fl->sdesc);
3190 		fl->sdesc = NULL;
3191 		dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
3192 				  fl->desc, fl->addr);
3193 		fl->desc = NULL;
3194 	}
3195 	return ret;
3196 }
3197 
3198 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
3199 {
3200 	q->cntxt_id = id;
3201 	q->bar2_addr = bar2_address(adap,
3202 				    q->cntxt_id,
3203 				    T4_BAR2_QTYPE_EGRESS,
3204 				    &q->bar2_qid);
3205 	q->in_use = 0;
3206 	q->cidx = q->pidx = 0;
3207 	q->stops = q->restarts = 0;
3208 	q->stat = (void *)&q->desc[q->size];
3209 	spin_lock_init(&q->db_lock);
3210 	adap->sge.egr_map[id - adap->sge.egr_start] = q;
3211 }
3212 
3213 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
3214 			 struct net_device *dev, struct netdev_queue *netdevq,
3215 			 unsigned int iqid)
3216 {
3217 	int ret, nentries;
3218 	struct fw_eq_eth_cmd c;
3219 	struct sge *s = &adap->sge;
3220 	struct port_info *pi = netdev_priv(dev);
3221 
3222 	/* Add status entries */
3223 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
3224 
3225 	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
3226 			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
3227 			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
3228 			netdev_queue_numa_node_read(netdevq));
3229 	if (!txq->q.desc)
3230 		return -ENOMEM;
3231 
3232 	memset(&c, 0, sizeof(c));
3233 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
3234 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
3235 			    FW_EQ_ETH_CMD_PFN_V(adap->pf) |
3236 			    FW_EQ_ETH_CMD_VFN_V(0));
3237 	c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
3238 				 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
3239 	c.viid_pkd = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
3240 			   FW_EQ_ETH_CMD_VIID_V(pi->viid));
3241 	c.fetchszm_to_iqid =
3242 		htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
3243 		      FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
3244 		      FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
3245 	c.dcaen_to_eqsize =
3246 		htonl(FW_EQ_ETH_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
3247 		      FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
3248 		      FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
3249 		      FW_EQ_ETH_CMD_EQSIZE_V(nentries));
3250 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
3251 
3252 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
3253 	if (ret) {
3254 		kfree(txq->q.sdesc);
3255 		txq->q.sdesc = NULL;
3256 		dma_free_coherent(adap->pdev_dev,
3257 				  nentries * sizeof(struct tx_desc),
3258 				  txq->q.desc, txq->q.phys_addr);
3259 		txq->q.desc = NULL;
3260 		return ret;
3261 	}
3262 
3263 	txq->q.q_type = CXGB4_TXQ_ETH;
3264 	init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
3265 	txq->txq = netdevq;
3266 	txq->tso = txq->tx_cso = txq->vlan_ins = 0;
3267 	txq->mapping_err = 0;
3268 	return 0;
3269 }
3270 
3271 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
3272 			  struct net_device *dev, unsigned int iqid,
3273 			  unsigned int cmplqid)
3274 {
3275 	int ret, nentries;
3276 	struct fw_eq_ctrl_cmd c;
3277 	struct sge *s = &adap->sge;
3278 	struct port_info *pi = netdev_priv(dev);
3279 
3280 	/* Add status entries */
3281 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
3282 
3283 	txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
3284 				 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
3285 				 NULL, 0, dev_to_node(adap->pdev_dev));
3286 	if (!txq->q.desc)
3287 		return -ENOMEM;
3288 
3289 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
3290 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
3291 			    FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
3292 			    FW_EQ_CTRL_CMD_VFN_V(0));
3293 	c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
3294 				 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
3295 	c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
3296 	c.physeqid_pkd = htonl(0);
3297 	c.fetchszm_to_iqid =
3298 		htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
3299 		      FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
3300 		      FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
3301 	c.dcaen_to_eqsize =
3302 		htonl(FW_EQ_CTRL_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
3303 		      FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
3304 		      FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
3305 		      FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
3306 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
3307 
3308 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
3309 	if (ret) {
3310 		dma_free_coherent(adap->pdev_dev,
3311 				  nentries * sizeof(struct tx_desc),
3312 				  txq->q.desc, txq->q.phys_addr);
3313 		txq->q.desc = NULL;
3314 		return ret;
3315 	}
3316 
3317 	txq->q.q_type = CXGB4_TXQ_CTRL;
3318 	init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
3319 	txq->adap = adap;
3320 	skb_queue_head_init(&txq->sendq);
3321 	tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
3322 	txq->full = 0;
3323 	return 0;
3324 }
3325 
3326 int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid,
3327 			unsigned int cmplqid)
3328 {
3329 	u32 param, val;
3330 
3331 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
3332 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) |
3333 		 FW_PARAMS_PARAM_YZ_V(eqid));
3334 	val = cmplqid;
3335 	return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
3336 }
3337 
3338 int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq,
3339 			 struct net_device *dev, unsigned int iqid,
3340 			 unsigned int uld_type)
3341 {
3342 	int ret, nentries;
3343 	struct fw_eq_ofld_cmd c;
3344 	struct sge *s = &adap->sge;
3345 	struct port_info *pi = netdev_priv(dev);
3346 	int cmd = FW_EQ_OFLD_CMD;
3347 
3348 	/* Add status entries */
3349 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
3350 
3351 	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
3352 			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
3353 			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
3354 			NUMA_NO_NODE);
3355 	if (!txq->q.desc)
3356 		return -ENOMEM;
3357 
3358 	memset(&c, 0, sizeof(c));
3359 	if (unlikely(uld_type == CXGB4_TX_CRYPTO))
3360 		cmd = FW_EQ_CTRL_CMD;
3361 	c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F |
3362 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
3363 			    FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
3364 			    FW_EQ_OFLD_CMD_VFN_V(0));
3365 	c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
3366 				 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
3367 	c.fetchszm_to_iqid =
3368 		htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
3369 		      FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
3370 		      FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
3371 	c.dcaen_to_eqsize =
3372 		htonl(FW_EQ_OFLD_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
3373 		      FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
3374 		      FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
3375 		      FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
3376 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
3377 
3378 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
3379 	if (ret) {
3380 		kfree(txq->q.sdesc);
3381 		txq->q.sdesc = NULL;
3382 		dma_free_coherent(adap->pdev_dev,
3383 				  nentries * sizeof(struct tx_desc),
3384 				  txq->q.desc, txq->q.phys_addr);
3385 		txq->q.desc = NULL;
3386 		return ret;
3387 	}
3388 
3389 	txq->q.q_type = CXGB4_TXQ_ULD;
3390 	init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
3391 	txq->adap = adap;
3392 	skb_queue_head_init(&txq->sendq);
3393 	tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
3394 	txq->full = 0;
3395 	txq->mapping_err = 0;
3396 	return 0;
3397 }
3398 
3399 void free_txq(struct adapter *adap, struct sge_txq *q)
3400 {
3401 	struct sge *s = &adap->sge;
3402 
3403 	dma_free_coherent(adap->pdev_dev,
3404 			  q->size * sizeof(struct tx_desc) + s->stat_len,
3405 			  q->desc, q->phys_addr);
3406 	q->cntxt_id = 0;
3407 	q->sdesc = NULL;
3408 	q->desc = NULL;
3409 }
3410 
3411 void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
3412 		  struct sge_fl *fl)
3413 {
3414 	struct sge *s = &adap->sge;
3415 	unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
3416 
3417 	adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
3418 	t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
3419 		   rq->cntxt_id, fl_id, 0xffff);
3420 	dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
3421 			  rq->desc, rq->phys_addr);
3422 	netif_napi_del(&rq->napi);
3423 	rq->netdev = NULL;
3424 	rq->cntxt_id = rq->abs_id = 0;
3425 	rq->desc = NULL;
3426 
3427 	if (fl) {
3428 		free_rx_bufs(adap, fl, fl->avail);
3429 		dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
3430 				  fl->desc, fl->addr);
3431 		kfree(fl->sdesc);
3432 		fl->sdesc = NULL;
3433 		fl->cntxt_id = 0;
3434 		fl->desc = NULL;
3435 	}
3436 }
3437 
3438 /**
3439  *      t4_free_ofld_rxqs - free a block of consecutive Rx queues
3440  *      @adap: the adapter
3441  *      @n: number of queues
3442  *      @q: pointer to first queue
3443  *
3444  *      Release the resources of a consecutive block of offload Rx queues.
3445  */
3446 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
3447 {
3448 	for ( ; n; n--, q++)
3449 		if (q->rspq.desc)
3450 			free_rspq_fl(adap, &q->rspq,
3451 				     q->fl.size ? &q->fl : NULL);
3452 }
3453 
3454 /**
3455  *	t4_free_sge_resources - free SGE resources
3456  *	@adap: the adapter
3457  *
3458  *	Frees resources used by the SGE queue sets.
3459  */
3460 void t4_free_sge_resources(struct adapter *adap)
3461 {
3462 	int i;
3463 	struct sge_eth_rxq *eq;
3464 	struct sge_eth_txq *etq;
3465 
3466 	/* stop all Rx queues in order to start them draining */
3467 	for (i = 0; i < adap->sge.ethqsets; i++) {
3468 		eq = &adap->sge.ethrxq[i];
3469 		if (eq->rspq.desc)
3470 			t4_iq_stop(adap, adap->mbox, adap->pf, 0,
3471 				   FW_IQ_TYPE_FL_INT_CAP,
3472 				   eq->rspq.cntxt_id,
3473 				   eq->fl.size ? eq->fl.cntxt_id : 0xffff,
3474 				   0xffff);
3475 	}
3476 
3477 	/* clean up Ethernet Tx/Rx queues */
3478 	for (i = 0; i < adap->sge.ethqsets; i++) {
3479 		eq = &adap->sge.ethrxq[i];
3480 		if (eq->rspq.desc)
3481 			free_rspq_fl(adap, &eq->rspq,
3482 				     eq->fl.size ? &eq->fl : NULL);
3483 
3484 		etq = &adap->sge.ethtxq[i];
3485 		if (etq->q.desc) {
3486 			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
3487 				       etq->q.cntxt_id);
3488 			__netif_tx_lock_bh(etq->txq);
3489 			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
3490 			__netif_tx_unlock_bh(etq->txq);
3491 			kfree(etq->q.sdesc);
3492 			free_txq(adap, &etq->q);
3493 		}
3494 	}
3495 
3496 	/* clean up control Tx queues */
3497 	for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
3498 		struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
3499 
3500 		if (cq->q.desc) {
3501 			tasklet_kill(&cq->qresume_tsk);
3502 			t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
3503 					cq->q.cntxt_id);
3504 			__skb_queue_purge(&cq->sendq);
3505 			free_txq(adap, &cq->q);
3506 		}
3507 	}
3508 
3509 	if (adap->sge.fw_evtq.desc)
3510 		free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
3511 
3512 	if (adap->sge.intrq.desc)
3513 		free_rspq_fl(adap, &adap->sge.intrq, NULL);
3514 
3515 	if (!is_t4(adap->params.chip)) {
3516 		etq = &adap->sge.ptptxq;
3517 		if (etq->q.desc) {
3518 			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
3519 				       etq->q.cntxt_id);
3520 			spin_lock_bh(&adap->ptp_lock);
3521 			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
3522 			spin_unlock_bh(&adap->ptp_lock);
3523 			kfree(etq->q.sdesc);
3524 			free_txq(adap, &etq->q);
3525 		}
3526 	}
3527 
3528 	/* clear the reverse egress queue map */
3529 	memset(adap->sge.egr_map, 0,
3530 	       adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
3531 }
3532 
3533 void t4_sge_start(struct adapter *adap)
3534 {
3535 	adap->sge.ethtxq_rover = 0;
3536 	mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
3537 	mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
3538 }
3539 
3540 /**
3541  *	t4_sge_stop - disable SGE operation
3542  *	@adap: the adapter
3543  *
3544  *	Stop tasklets and timers associated with the DMA engine.  Note that
3545  *	this is effective only if measures have been taken to disable any HW
3546  *	events that may restart them.
3547  */
3548 void t4_sge_stop(struct adapter *adap)
3549 {
3550 	int i;
3551 	struct sge *s = &adap->sge;
3552 
3553 	if (in_interrupt())  /* actions below require waiting */
3554 		return;
3555 
3556 	if (s->rx_timer.function)
3557 		del_timer_sync(&s->rx_timer);
3558 	if (s->tx_timer.function)
3559 		del_timer_sync(&s->tx_timer);
3560 
3561 	if (is_offload(adap)) {
3562 		struct sge_uld_txq_info *txq_info;
3563 
3564 		txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
3565 		if (txq_info) {
3566 			struct sge_uld_txq *txq = txq_info->uldtxq;
3567 
3568 			for_each_ofldtxq(&adap->sge, i) {
3569 				if (txq->q.desc)
3570 					tasklet_kill(&txq->qresume_tsk);
3571 			}
3572 		}
3573 	}
3574 
3575 	if (is_pci_uld(adap)) {
3576 		struct sge_uld_txq_info *txq_info;
3577 
3578 		txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO];
3579 		if (txq_info) {
3580 			struct sge_uld_txq *txq = txq_info->uldtxq;
3581 
3582 			for_each_ofldtxq(&adap->sge, i) {
3583 				if (txq->q.desc)
3584 					tasklet_kill(&txq->qresume_tsk);
3585 			}
3586 		}
3587 	}
3588 
3589 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
3590 		struct sge_ctrl_txq *cq = &s->ctrlq[i];
3591 
3592 		if (cq->q.desc)
3593 			tasklet_kill(&cq->qresume_tsk);
3594 	}
3595 }
3596 
3597 /**
3598  *	t4_sge_init_soft - grab core SGE values needed by SGE code
3599  *	@adap: the adapter
3600  *
3601  *	We need to grab the SGE operating parameters that we need to have
3602  *	in order to do our job and make sure we can live with them.
3603  */
3604 
3605 static int t4_sge_init_soft(struct adapter *adap)
3606 {
3607 	struct sge *s = &adap->sge;
3608 	u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
3609 	u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
3610 	u32 ingress_rx_threshold;
3611 
3612 	/*
3613 	 * Verify that CPL messages are going to the Ingress Queue for
3614 	 * process_responses() and that only packet data is going to the
3615 	 * Free Lists.
3616 	 */
3617 	if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
3618 	    RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
3619 		dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
3620 		return -EINVAL;
3621 	}
3622 
3623 	/*
3624 	 * Validate the Host Buffer Register Array indices that we want to
3625 	 * use ...
3626 	 *
3627 	 * XXX Note that we should really read through the Host Buffer Size
3628 	 * XXX register array and find the indices of the Buffer Sizes which
3629 	 * XXX meet our needs!
3630 	 */
3631 	#define READ_FL_BUF(x) \
3632 		t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
3633 
3634 	fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
3635 	fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
3636 	fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
3637 	fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
3638 
3639 	/* We only bother using the Large Page logic if the Large Page Buffer
3640 	 * is larger than our Page Size Buffer.
3641 	 */
3642 	if (fl_large_pg <= fl_small_pg)
3643 		fl_large_pg = 0;
3644 
3645 	#undef READ_FL_BUF
3646 
3647 	/* The Page Size Buffer must be exactly equal to our Page Size and the
3648 	 * Large Page Size Buffer should be 0 (per above) or a power of 2.
3649 	 */
3650 	if (fl_small_pg != PAGE_SIZE ||
3651 	    (fl_large_pg & (fl_large_pg-1)) != 0) {
3652 		dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
3653 			fl_small_pg, fl_large_pg);
3654 		return -EINVAL;
3655 	}
3656 	if (fl_large_pg)
3657 		s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
3658 
3659 	if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
3660 	    fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
3661 		dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
3662 			fl_small_mtu, fl_large_mtu);
3663 		return -EINVAL;
3664 	}
3665 
3666 	/*
3667 	 * Retrieve our RX interrupt holdoff timer values and counter
3668 	 * threshold values from the SGE parameters.
3669 	 */
3670 	timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
3671 	timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
3672 	timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
3673 	s->timer_val[0] = core_ticks_to_us(adap,
3674 		TIMERVALUE0_G(timer_value_0_and_1));
3675 	s->timer_val[1] = core_ticks_to_us(adap,
3676 		TIMERVALUE1_G(timer_value_0_and_1));
3677 	s->timer_val[2] = core_ticks_to_us(adap,
3678 		TIMERVALUE2_G(timer_value_2_and_3));
3679 	s->timer_val[3] = core_ticks_to_us(adap,
3680 		TIMERVALUE3_G(timer_value_2_and_3));
3681 	s->timer_val[4] = core_ticks_to_us(adap,
3682 		TIMERVALUE4_G(timer_value_4_and_5));
3683 	s->timer_val[5] = core_ticks_to_us(adap,
3684 		TIMERVALUE5_G(timer_value_4_and_5));
3685 
3686 	ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
3687 	s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
3688 	s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
3689 	s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
3690 	s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
3691 
3692 	return 0;
3693 }
3694 
3695 /**
3696  *     t4_sge_init - initialize SGE
3697  *     @adap: the adapter
3698  *
3699  *     Perform low-level SGE code initialization needed every time after a
3700  *     chip reset.
3701  */
3702 int t4_sge_init(struct adapter *adap)
3703 {
3704 	struct sge *s = &adap->sge;
3705 	u32 sge_control, sge_conm_ctrl;
3706 	int ret, egress_threshold;
3707 
3708 	/*
3709 	 * Ingress Padding Boundary and Egress Status Page Size are set up by
3710 	 * t4_fixup_host_params().
3711 	 */
3712 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
3713 	s->pktshift = PKTSHIFT_G(sge_control);
3714 	s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
3715 
3716 	s->fl_align = t4_fl_pkt_align(adap);
3717 	ret = t4_sge_init_soft(adap);
3718 	if (ret < 0)
3719 		return ret;
3720 
3721 	/*
3722 	 * A FL with <= fl_starve_thres buffers is starving and a periodic
3723 	 * timer will attempt to refill it.  This needs to be larger than the
3724 	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
3725 	 * stuck waiting for new packets while the SGE is waiting for us to
3726 	 * give it more Free List entries.  (Note that the SGE's Egress
3727 	 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
3728 	 * there was only a single field to control this.  For T5 there's the
3729 	 * original field which now only applies to Unpacked Mode Free List
3730 	 * buffers and a new field which only applies to Packed Mode Free List
3731 	 * buffers.
3732 	 */
3733 	sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
3734 	switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
3735 	case CHELSIO_T4:
3736 		egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
3737 		break;
3738 	case CHELSIO_T5:
3739 		egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
3740 		break;
3741 	case CHELSIO_T6:
3742 		egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
3743 		break;
3744 	default:
3745 		dev_err(adap->pdev_dev, "Unsupported Chip version %d\n",
3746 			CHELSIO_CHIP_VERSION(adap->params.chip));
3747 		return -EINVAL;
3748 	}
3749 	s->fl_starve_thres = 2*egress_threshold + 1;
3750 
3751 	t4_idma_monitor_init(adap, &s->idma_monitor);
3752 
3753 	/* Set up timers used for recuring callbacks to process RX and TX
3754 	 * administrative tasks.
3755 	 */
3756 	timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
3757 	timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
3758 
3759 	spin_lock_init(&s->intrq_lock);
3760 
3761 	return 0;
3762 }
3763