1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/skbuff.h> 36 #include <linux/netdevice.h> 37 #include <linux/etherdevice.h> 38 #include <linux/if_vlan.h> 39 #include <linux/ip.h> 40 #include <linux/dma-mapping.h> 41 #include <linux/jiffies.h> 42 #include <linux/prefetch.h> 43 #include <linux/export.h> 44 #include <net/xfrm.h> 45 #include <net/ipv6.h> 46 #include <net/tcp.h> 47 #include <net/busy_poll.h> 48 #ifdef CONFIG_CHELSIO_T4_FCOE 49 #include <scsi/fc/fc_fcoe.h> 50 #endif /* CONFIG_CHELSIO_T4_FCOE */ 51 #include "cxgb4.h" 52 #include "t4_regs.h" 53 #include "t4_values.h" 54 #include "t4_msg.h" 55 #include "t4fw_api.h" 56 #include "cxgb4_ptp.h" 57 #include "cxgb4_uld.h" 58 #include "cxgb4_tc_mqprio.h" 59 #include "sched.h" 60 61 /* 62 * Rx buffer size. We use largish buffers if possible but settle for single 63 * pages under memory shortage. 64 */ 65 #if PAGE_SHIFT >= 16 66 # define FL_PG_ORDER 0 67 #else 68 # define FL_PG_ORDER (16 - PAGE_SHIFT) 69 #endif 70 71 /* RX_PULL_LEN should be <= RX_COPY_THRES */ 72 #define RX_COPY_THRES 256 73 #define RX_PULL_LEN 128 74 75 /* 76 * Main body length for sk_buffs used for Rx Ethernet packets with fragments. 77 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room. 78 */ 79 #define RX_PKT_SKB_LEN 512 80 81 /* 82 * Max number of Tx descriptors we clean up at a time. Should be modest as 83 * freeing skbs isn't cheap and it happens while holding locks. We just need 84 * to free packets faster than they arrive, we eventually catch up and keep 85 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. It should 86 * also match the CIDX Flush Threshold. 87 */ 88 #define MAX_TX_RECLAIM 32 89 90 /* 91 * Max number of Rx buffers we replenish at a time. Again keep this modest, 92 * allocating buffers isn't cheap either. 93 */ 94 #define MAX_RX_REFILL 16U 95 96 /* 97 * Period of the Rx queue check timer. This timer is infrequent as it has 98 * something to do only when the system experiences severe memory shortage. 99 */ 100 #define RX_QCHECK_PERIOD (HZ / 2) 101 102 /* 103 * Period of the Tx queue check timer. 104 */ 105 #define TX_QCHECK_PERIOD (HZ / 2) 106 107 /* 108 * Max number of Tx descriptors to be reclaimed by the Tx timer. 109 */ 110 #define MAX_TIMER_TX_RECLAIM 100 111 112 /* 113 * Timer index used when backing off due to memory shortage. 114 */ 115 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1) 116 117 /* 118 * Suspension threshold for non-Ethernet Tx queues. We require enough room 119 * for a full sized WR. 120 */ 121 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc)) 122 123 /* 124 * Max Tx descriptor space we allow for an Ethernet packet to be inlined 125 * into a WR. 126 */ 127 #define MAX_IMM_TX_PKT_LEN 256 128 129 /* 130 * Max size of a WR sent through a control Tx queue. 131 */ 132 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN 133 134 struct rx_sw_desc { /* SW state per Rx descriptor */ 135 struct page *page; 136 dma_addr_t dma_addr; 137 }; 138 139 /* 140 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb 141 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs. 142 * We could easily support more but there doesn't seem to be much need for 143 * that ... 144 */ 145 #define FL_MTU_SMALL 1500 146 #define FL_MTU_LARGE 9000 147 148 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter, 149 unsigned int mtu) 150 { 151 struct sge *s = &adapter->sge; 152 153 return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align); 154 } 155 156 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL) 157 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE) 158 159 /* 160 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses 161 * these to specify the buffer size as an index into the SGE Free List Buffer 162 * Size register array. We also use bit 4, when the buffer has been unmapped 163 * for DMA, but this is of course never sent to the hardware and is only used 164 * to prevent double unmappings. All of the above requires that the Free List 165 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are 166 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal 167 * Free List Buffer alignment is 32 bytes, this works out for us ... 168 */ 169 enum { 170 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */ 171 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */ 172 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */ 173 174 /* 175 * XXX We shouldn't depend on being able to use these indices. 176 * XXX Especially when some other Master PF has initialized the 177 * XXX adapter or we use the Firmware Configuration File. We 178 * XXX should really search through the Host Buffer Size register 179 * XXX array for the appropriately sized buffer indices. 180 */ 181 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */ 182 RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */ 183 184 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */ 185 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */ 186 }; 187 188 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5}; 189 #define MIN_NAPI_WORK 1 190 191 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d) 192 { 193 return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS; 194 } 195 196 static inline bool is_buf_mapped(const struct rx_sw_desc *d) 197 { 198 return !(d->dma_addr & RX_UNMAPPED_BUF); 199 } 200 201 /** 202 * txq_avail - return the number of available slots in a Tx queue 203 * @q: the Tx queue 204 * 205 * Returns the number of descriptors in a Tx queue available to write new 206 * packets. 207 */ 208 static inline unsigned int txq_avail(const struct sge_txq *q) 209 { 210 return q->size - 1 - q->in_use; 211 } 212 213 /** 214 * fl_cap - return the capacity of a free-buffer list 215 * @fl: the FL 216 * 217 * Returns the capacity of a free-buffer list. The capacity is less than 218 * the size because one descriptor needs to be left unpopulated, otherwise 219 * HW will think the FL is empty. 220 */ 221 static inline unsigned int fl_cap(const struct sge_fl *fl) 222 { 223 return fl->size - 8; /* 1 descriptor = 8 buffers */ 224 } 225 226 /** 227 * fl_starving - return whether a Free List is starving. 228 * @adapter: pointer to the adapter 229 * @fl: the Free List 230 * 231 * Tests specified Free List to see whether the number of buffers 232 * available to the hardware has falled below our "starvation" 233 * threshold. 234 */ 235 static inline bool fl_starving(const struct adapter *adapter, 236 const struct sge_fl *fl) 237 { 238 const struct sge *s = &adapter->sge; 239 240 return fl->avail - fl->pend_cred <= s->fl_starve_thres; 241 } 242 243 int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb, 244 dma_addr_t *addr) 245 { 246 const skb_frag_t *fp, *end; 247 const struct skb_shared_info *si; 248 249 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 250 if (dma_mapping_error(dev, *addr)) 251 goto out_err; 252 253 si = skb_shinfo(skb); 254 end = &si->frags[si->nr_frags]; 255 256 for (fp = si->frags; fp < end; fp++) { 257 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp), 258 DMA_TO_DEVICE); 259 if (dma_mapping_error(dev, *addr)) 260 goto unwind; 261 } 262 return 0; 263 264 unwind: 265 while (fp-- > si->frags) 266 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE); 267 268 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); 269 out_err: 270 return -ENOMEM; 271 } 272 EXPORT_SYMBOL(cxgb4_map_skb); 273 274 static void unmap_skb(struct device *dev, const struct sk_buff *skb, 275 const dma_addr_t *addr) 276 { 277 const skb_frag_t *fp, *end; 278 const struct skb_shared_info *si; 279 280 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE); 281 282 si = skb_shinfo(skb); 283 end = &si->frags[si->nr_frags]; 284 for (fp = si->frags; fp < end; fp++) 285 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE); 286 } 287 288 #ifdef CONFIG_NEED_DMA_MAP_STATE 289 /** 290 * deferred_unmap_destructor - unmap a packet when it is freed 291 * @skb: the packet 292 * 293 * This is the packet destructor used for Tx packets that need to remain 294 * mapped until they are freed rather than until their Tx descriptors are 295 * freed. 296 */ 297 static void deferred_unmap_destructor(struct sk_buff *skb) 298 { 299 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head); 300 } 301 #endif 302 303 static void unmap_sgl(struct device *dev, const struct sk_buff *skb, 304 const struct ulptx_sgl *sgl, const struct sge_txq *q) 305 { 306 const struct ulptx_sge_pair *p; 307 unsigned int nfrags = skb_shinfo(skb)->nr_frags; 308 309 if (likely(skb_headlen(skb))) 310 dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), 311 DMA_TO_DEVICE); 312 else { 313 dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), 314 DMA_TO_DEVICE); 315 nfrags--; 316 } 317 318 /* 319 * the complexity below is because of the possibility of a wrap-around 320 * in the middle of an SGL 321 */ 322 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) { 323 if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) { 324 unmap: dma_unmap_page(dev, be64_to_cpu(p->addr[0]), 325 ntohl(p->len[0]), DMA_TO_DEVICE); 326 dma_unmap_page(dev, be64_to_cpu(p->addr[1]), 327 ntohl(p->len[1]), DMA_TO_DEVICE); 328 p++; 329 } else if ((u8 *)p == (u8 *)q->stat) { 330 p = (const struct ulptx_sge_pair *)q->desc; 331 goto unmap; 332 } else if ((u8 *)p + 8 == (u8 *)q->stat) { 333 const __be64 *addr = (const __be64 *)q->desc; 334 335 dma_unmap_page(dev, be64_to_cpu(addr[0]), 336 ntohl(p->len[0]), DMA_TO_DEVICE); 337 dma_unmap_page(dev, be64_to_cpu(addr[1]), 338 ntohl(p->len[1]), DMA_TO_DEVICE); 339 p = (const struct ulptx_sge_pair *)&addr[2]; 340 } else { 341 const __be64 *addr = (const __be64 *)q->desc; 342 343 dma_unmap_page(dev, be64_to_cpu(p->addr[0]), 344 ntohl(p->len[0]), DMA_TO_DEVICE); 345 dma_unmap_page(dev, be64_to_cpu(addr[0]), 346 ntohl(p->len[1]), DMA_TO_DEVICE); 347 p = (const struct ulptx_sge_pair *)&addr[1]; 348 } 349 } 350 if (nfrags) { 351 __be64 addr; 352 353 if ((u8 *)p == (u8 *)q->stat) 354 p = (const struct ulptx_sge_pair *)q->desc; 355 addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] : 356 *(const __be64 *)q->desc; 357 dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]), 358 DMA_TO_DEVICE); 359 } 360 } 361 362 /** 363 * free_tx_desc - reclaims Tx descriptors and their buffers 364 * @adapter: the adapter 365 * @q: the Tx queue to reclaim descriptors from 366 * @n: the number of descriptors to reclaim 367 * @unmap: whether the buffers should be unmapped for DMA 368 * 369 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated 370 * Tx buffers. Called with the Tx queue lock held. 371 */ 372 void free_tx_desc(struct adapter *adap, struct sge_txq *q, 373 unsigned int n, bool unmap) 374 { 375 struct tx_sw_desc *d; 376 unsigned int cidx = q->cidx; 377 struct device *dev = adap->pdev_dev; 378 379 d = &q->sdesc[cidx]; 380 while (n--) { 381 if (d->skb) { /* an SGL is present */ 382 if (unmap) 383 unmap_sgl(dev, d->skb, d->sgl, q); 384 dev_consume_skb_any(d->skb); 385 d->skb = NULL; 386 } 387 ++d; 388 if (++cidx == q->size) { 389 cidx = 0; 390 d = q->sdesc; 391 } 392 } 393 q->cidx = cidx; 394 } 395 396 /* 397 * Return the number of reclaimable descriptors in a Tx queue. 398 */ 399 static inline int reclaimable(const struct sge_txq *q) 400 { 401 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 402 hw_cidx -= q->cidx; 403 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx; 404 } 405 406 /** 407 * reclaim_completed_tx - reclaims completed TX Descriptors 408 * @adap: the adapter 409 * @q: the Tx queue to reclaim completed descriptors from 410 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1 411 * @unmap: whether the buffers should be unmapped for DMA 412 * 413 * Reclaims Tx Descriptors that the SGE has indicated it has processed, 414 * and frees the associated buffers if possible. If @max == -1, then 415 * we'll use a defaiult maximum. Called with the TX Queue locked. 416 */ 417 static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, 418 int maxreclaim, bool unmap) 419 { 420 int reclaim = reclaimable(q); 421 422 if (reclaim) { 423 /* 424 * Limit the amount of clean up work we do at a time to keep 425 * the Tx lock hold time O(1). 426 */ 427 if (maxreclaim < 0) 428 maxreclaim = MAX_TX_RECLAIM; 429 if (reclaim > maxreclaim) 430 reclaim = maxreclaim; 431 432 free_tx_desc(adap, q, reclaim, unmap); 433 q->in_use -= reclaim; 434 } 435 436 return reclaim; 437 } 438 439 /** 440 * cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors 441 * @adap: the adapter 442 * @q: the Tx queue to reclaim completed descriptors from 443 * @unmap: whether the buffers should be unmapped for DMA 444 * 445 * Reclaims Tx descriptors that the SGE has indicated it has processed, 446 * and frees the associated buffers if possible. Called with the Tx 447 * queue locked. 448 */ 449 void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, 450 bool unmap) 451 { 452 (void)reclaim_completed_tx(adap, q, -1, unmap); 453 } 454 EXPORT_SYMBOL(cxgb4_reclaim_completed_tx); 455 456 static inline int get_buf_size(struct adapter *adapter, 457 const struct rx_sw_desc *d) 458 { 459 struct sge *s = &adapter->sge; 460 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE; 461 int buf_size; 462 463 switch (rx_buf_size_idx) { 464 case RX_SMALL_PG_BUF: 465 buf_size = PAGE_SIZE; 466 break; 467 468 case RX_LARGE_PG_BUF: 469 buf_size = PAGE_SIZE << s->fl_pg_order; 470 break; 471 472 case RX_SMALL_MTU_BUF: 473 buf_size = FL_MTU_SMALL_BUFSIZE(adapter); 474 break; 475 476 case RX_LARGE_MTU_BUF: 477 buf_size = FL_MTU_LARGE_BUFSIZE(adapter); 478 break; 479 480 default: 481 BUG(); 482 } 483 484 return buf_size; 485 } 486 487 /** 488 * free_rx_bufs - free the Rx buffers on an SGE free list 489 * @adap: the adapter 490 * @q: the SGE free list to free buffers from 491 * @n: how many buffers to free 492 * 493 * Release the next @n buffers on an SGE free-buffer Rx queue. The 494 * buffers must be made inaccessible to HW before calling this function. 495 */ 496 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n) 497 { 498 while (n--) { 499 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 500 501 if (is_buf_mapped(d)) 502 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 503 get_buf_size(adap, d), 504 PCI_DMA_FROMDEVICE); 505 put_page(d->page); 506 d->page = NULL; 507 if (++q->cidx == q->size) 508 q->cidx = 0; 509 q->avail--; 510 } 511 } 512 513 /** 514 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list 515 * @adap: the adapter 516 * @q: the SGE free list 517 * 518 * Unmap the current buffer on an SGE free-buffer Rx queue. The 519 * buffer must be made inaccessible to HW before calling this function. 520 * 521 * This is similar to @free_rx_bufs above but does not free the buffer. 522 * Do note that the FL still loses any further access to the buffer. 523 */ 524 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q) 525 { 526 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 527 528 if (is_buf_mapped(d)) 529 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 530 get_buf_size(adap, d), PCI_DMA_FROMDEVICE); 531 d->page = NULL; 532 if (++q->cidx == q->size) 533 q->cidx = 0; 534 q->avail--; 535 } 536 537 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) 538 { 539 if (q->pend_cred >= 8) { 540 u32 val = adap->params.arch.sge_fl_db; 541 542 if (is_t4(adap->params.chip)) 543 val |= PIDX_V(q->pend_cred / 8); 544 else 545 val |= PIDX_T5_V(q->pend_cred / 8); 546 547 /* Make sure all memory writes to the Free List queue are 548 * committed before we tell the hardware about them. 549 */ 550 wmb(); 551 552 /* If we don't have access to the new User Doorbell (T5+), use 553 * the old doorbell mechanism; otherwise use the new BAR2 554 * mechanism. 555 */ 556 if (unlikely(q->bar2_addr == NULL)) { 557 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 558 val | QID_V(q->cntxt_id)); 559 } else { 560 writel(val | QID_V(q->bar2_qid), 561 q->bar2_addr + SGE_UDB_KDOORBELL); 562 563 /* This Write memory Barrier will force the write to 564 * the User Doorbell area to be flushed. 565 */ 566 wmb(); 567 } 568 q->pend_cred &= 7; 569 } 570 } 571 572 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg, 573 dma_addr_t mapping) 574 { 575 sd->page = pg; 576 sd->dma_addr = mapping; /* includes size low bits */ 577 } 578 579 /** 580 * refill_fl - refill an SGE Rx buffer ring 581 * @adap: the adapter 582 * @q: the ring to refill 583 * @n: the number of new buffers to allocate 584 * @gfp: the gfp flags for the allocations 585 * 586 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, 587 * allocated with the supplied gfp flags. The caller must assure that 588 * @n does not exceed the queue's capacity. If afterwards the queue is 589 * found critically low mark it as starving in the bitmap of starving FLs. 590 * 591 * Returns the number of buffers allocated. 592 */ 593 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n, 594 gfp_t gfp) 595 { 596 struct sge *s = &adap->sge; 597 struct page *pg; 598 dma_addr_t mapping; 599 unsigned int cred = q->avail; 600 __be64 *d = &q->desc[q->pidx]; 601 struct rx_sw_desc *sd = &q->sdesc[q->pidx]; 602 int node; 603 604 #ifdef CONFIG_DEBUG_FS 605 if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl)) 606 goto out; 607 #endif 608 609 gfp |= __GFP_NOWARN; 610 node = dev_to_node(adap->pdev_dev); 611 612 if (s->fl_pg_order == 0) 613 goto alloc_small_pages; 614 615 /* 616 * Prefer large buffers 617 */ 618 while (n) { 619 pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order); 620 if (unlikely(!pg)) { 621 q->large_alloc_failed++; 622 break; /* fall back to single pages */ 623 } 624 625 mapping = dma_map_page(adap->pdev_dev, pg, 0, 626 PAGE_SIZE << s->fl_pg_order, 627 PCI_DMA_FROMDEVICE); 628 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 629 __free_pages(pg, s->fl_pg_order); 630 q->mapping_err++; 631 goto out; /* do not try small pages for this error */ 632 } 633 mapping |= RX_LARGE_PG_BUF; 634 *d++ = cpu_to_be64(mapping); 635 636 set_rx_sw_desc(sd, pg, mapping); 637 sd++; 638 639 q->avail++; 640 if (++q->pidx == q->size) { 641 q->pidx = 0; 642 sd = q->sdesc; 643 d = q->desc; 644 } 645 n--; 646 } 647 648 alloc_small_pages: 649 while (n--) { 650 pg = alloc_pages_node(node, gfp, 0); 651 if (unlikely(!pg)) { 652 q->alloc_failed++; 653 break; 654 } 655 656 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE, 657 PCI_DMA_FROMDEVICE); 658 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 659 put_page(pg); 660 q->mapping_err++; 661 goto out; 662 } 663 *d++ = cpu_to_be64(mapping); 664 665 set_rx_sw_desc(sd, pg, mapping); 666 sd++; 667 668 q->avail++; 669 if (++q->pidx == q->size) { 670 q->pidx = 0; 671 sd = q->sdesc; 672 d = q->desc; 673 } 674 } 675 676 out: cred = q->avail - cred; 677 q->pend_cred += cred; 678 ring_fl_db(adap, q); 679 680 if (unlikely(fl_starving(adap, q))) { 681 smp_wmb(); 682 q->low++; 683 set_bit(q->cntxt_id - adap->sge.egr_start, 684 adap->sge.starving_fl); 685 } 686 687 return cred; 688 } 689 690 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) 691 { 692 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail), 693 GFP_ATOMIC); 694 } 695 696 /** 697 * alloc_ring - allocate resources for an SGE descriptor ring 698 * @dev: the PCI device's core device 699 * @nelem: the number of descriptors 700 * @elem_size: the size of each descriptor 701 * @sw_size: the size of the SW state associated with each ring element 702 * @phys: the physical address of the allocated ring 703 * @metadata: address of the array holding the SW state for the ring 704 * @stat_size: extra space in HW ring for status information 705 * @node: preferred node for memory allocations 706 * 707 * Allocates resources for an SGE descriptor ring, such as Tx queues, 708 * free buffer lists, or response queues. Each SGE ring requires 709 * space for its HW descriptors plus, optionally, space for the SW state 710 * associated with each HW entry (the metadata). The function returns 711 * three values: the virtual address for the HW ring (the return value 712 * of the function), the bus address of the HW ring, and the address 713 * of the SW ring. 714 */ 715 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size, 716 size_t sw_size, dma_addr_t *phys, void *metadata, 717 size_t stat_size, int node) 718 { 719 size_t len = nelem * elem_size + stat_size; 720 void *s = NULL; 721 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL); 722 723 if (!p) 724 return NULL; 725 if (sw_size) { 726 s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node); 727 728 if (!s) { 729 dma_free_coherent(dev, len, p, *phys); 730 return NULL; 731 } 732 } 733 if (metadata) 734 *(void **)metadata = s; 735 return p; 736 } 737 738 /** 739 * sgl_len - calculates the size of an SGL of the given capacity 740 * @n: the number of SGL entries 741 * 742 * Calculates the number of flits needed for a scatter/gather list that 743 * can hold the given number of entries. 744 */ 745 static inline unsigned int sgl_len(unsigned int n) 746 { 747 /* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA 748 * addresses. The DSGL Work Request starts off with a 32-bit DSGL 749 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N, 750 * repeated sequences of { Length[i], Length[i+1], Address[i], 751 * Address[i+1] } (this ensures that all addresses are on 64-bit 752 * boundaries). If N is even, then Length[N+1] should be set to 0 and 753 * Address[N+1] is omitted. 754 * 755 * The following calculation incorporates all of the above. It's 756 * somewhat hard to follow but, briefly: the "+2" accounts for the 757 * first two flits which include the DSGL header, Length0 and 758 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3 759 * flits for every pair of the remaining N) +1 if (n-1) is odd; and 760 * finally the "+((n-1)&1)" adds the one remaining flit needed if 761 * (n-1) is odd ... 762 */ 763 n--; 764 return (3 * n) / 2 + (n & 1) + 2; 765 } 766 767 /** 768 * flits_to_desc - returns the num of Tx descriptors for the given flits 769 * @n: the number of flits 770 * 771 * Returns the number of Tx descriptors needed for the supplied number 772 * of flits. 773 */ 774 static inline unsigned int flits_to_desc(unsigned int n) 775 { 776 BUG_ON(n > SGE_MAX_WR_LEN / 8); 777 return DIV_ROUND_UP(n, 8); 778 } 779 780 /** 781 * is_eth_imm - can an Ethernet packet be sent as immediate data? 782 * @skb: the packet 783 * 784 * Returns whether an Ethernet packet is small enough to fit as 785 * immediate data. Return value corresponds to headroom required. 786 */ 787 static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver) 788 { 789 int hdrlen = 0; 790 791 if (skb->encapsulation && skb_shinfo(skb)->gso_size && 792 chip_ver > CHELSIO_T5) { 793 hdrlen = sizeof(struct cpl_tx_tnl_lso); 794 hdrlen += sizeof(struct cpl_tx_pkt_core); 795 } else { 796 hdrlen = skb_shinfo(skb)->gso_size ? 797 sizeof(struct cpl_tx_pkt_lso_core) : 0; 798 hdrlen += sizeof(struct cpl_tx_pkt); 799 } 800 if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen) 801 return hdrlen; 802 return 0; 803 } 804 805 /** 806 * calc_tx_flits - calculate the number of flits for a packet Tx WR 807 * @skb: the packet 808 * 809 * Returns the number of flits needed for a Tx WR for the given Ethernet 810 * packet, including the needed WR and CPL headers. 811 */ 812 static inline unsigned int calc_tx_flits(const struct sk_buff *skb, 813 unsigned int chip_ver) 814 { 815 unsigned int flits; 816 int hdrlen = is_eth_imm(skb, chip_ver); 817 818 /* If the skb is small enough, we can pump it out as a work request 819 * with only immediate data. In that case we just have to have the 820 * TX Packet header plus the skb data in the Work Request. 821 */ 822 823 if (hdrlen) 824 return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64)); 825 826 /* Otherwise, we're going to have to construct a Scatter gather list 827 * of the skb body and fragments. We also include the flits necessary 828 * for the TX Packet Work Request and CPL. We always have a firmware 829 * Write Header (incorporated as part of the cpl_tx_pkt_lso and 830 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 831 * message or, if we're doing a Large Send Offload, an LSO CPL message 832 * with an embedded TX Packet Write CPL message. 833 */ 834 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); 835 if (skb_shinfo(skb)->gso_size) { 836 if (skb->encapsulation && chip_ver > CHELSIO_T5) 837 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) + 838 sizeof(struct cpl_tx_tnl_lso); 839 else 840 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) + 841 sizeof(struct cpl_tx_pkt_lso_core); 842 843 hdrlen += sizeof(struct cpl_tx_pkt_core); 844 flits += (hdrlen / sizeof(__be64)); 845 } else { 846 flits += (sizeof(struct fw_eth_tx_pkt_wr) + 847 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 848 } 849 return flits; 850 } 851 852 /** 853 * calc_tx_descs - calculate the number of Tx descriptors for a packet 854 * @skb: the packet 855 * 856 * Returns the number of Tx descriptors needed for the given Ethernet 857 * packet, including the needed WR and CPL headers. 858 */ 859 static inline unsigned int calc_tx_descs(const struct sk_buff *skb, 860 unsigned int chip_ver) 861 { 862 return flits_to_desc(calc_tx_flits(skb, chip_ver)); 863 } 864 865 /** 866 * cxgb4_write_sgl - populate a scatter/gather list for a packet 867 * @skb: the packet 868 * @q: the Tx queue we are writing into 869 * @sgl: starting location for writing the SGL 870 * @end: points right after the end of the SGL 871 * @start: start offset into skb main-body data to include in the SGL 872 * @addr: the list of bus addresses for the SGL elements 873 * 874 * Generates a gather list for the buffers that make up a packet. 875 * The caller must provide adequate space for the SGL that will be written. 876 * The SGL includes all of the packet's page fragments and the data in its 877 * main body except for the first @start bytes. @sgl must be 16-byte 878 * aligned and within a Tx descriptor with available space. @end points 879 * right after the end of the SGL but does not account for any potential 880 * wrap around, i.e., @end > @sgl. 881 */ 882 void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q, 883 struct ulptx_sgl *sgl, u64 *end, unsigned int start, 884 const dma_addr_t *addr) 885 { 886 unsigned int i, len; 887 struct ulptx_sge_pair *to; 888 const struct skb_shared_info *si = skb_shinfo(skb); 889 unsigned int nfrags = si->nr_frags; 890 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1]; 891 892 len = skb_headlen(skb) - start; 893 if (likely(len)) { 894 sgl->len0 = htonl(len); 895 sgl->addr0 = cpu_to_be64(addr[0] + start); 896 nfrags++; 897 } else { 898 sgl->len0 = htonl(skb_frag_size(&si->frags[0])); 899 sgl->addr0 = cpu_to_be64(addr[1]); 900 } 901 902 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | 903 ULPTX_NSGE_V(nfrags)); 904 if (likely(--nfrags == 0)) 905 return; 906 /* 907 * Most of the complexity below deals with the possibility we hit the 908 * end of the queue in the middle of writing the SGL. For this case 909 * only we create the SGL in a temporary buffer and then copy it. 910 */ 911 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; 912 913 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) { 914 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 915 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i])); 916 to->addr[0] = cpu_to_be64(addr[i]); 917 to->addr[1] = cpu_to_be64(addr[++i]); 918 } 919 if (nfrags) { 920 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 921 to->len[1] = cpu_to_be32(0); 922 to->addr[0] = cpu_to_be64(addr[i + 1]); 923 } 924 if (unlikely((u8 *)end > (u8 *)q->stat)) { 925 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1; 926 927 if (likely(part0)) 928 memcpy(sgl->sge, buf, part0); 929 part1 = (u8 *)end - (u8 *)q->stat; 930 memcpy(q->desc, (u8 *)buf + part0, part1); 931 end = (void *)q->desc + part1; 932 } 933 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ 934 *end = 0; 935 } 936 EXPORT_SYMBOL(cxgb4_write_sgl); 937 938 /* This function copies 64 byte coalesced work request to 939 * memory mapped BAR2 space. For coalesced WR SGE fetches 940 * data from the FIFO instead of from Host. 941 */ 942 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src) 943 { 944 int count = 8; 945 946 while (count) { 947 writeq(*src, dst); 948 src++; 949 dst++; 950 count--; 951 } 952 } 953 954 /** 955 * cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell 956 * @adap: the adapter 957 * @q: the Tx queue 958 * @n: number of new descriptors to give to HW 959 * 960 * Ring the doorbel for a Tx queue. 961 */ 962 inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n) 963 { 964 /* Make sure that all writes to the TX Descriptors are committed 965 * before we tell the hardware about them. 966 */ 967 wmb(); 968 969 /* If we don't have access to the new User Doorbell (T5+), use the old 970 * doorbell mechanism; otherwise use the new BAR2 mechanism. 971 */ 972 if (unlikely(q->bar2_addr == NULL)) { 973 u32 val = PIDX_V(n); 974 unsigned long flags; 975 976 /* For T4 we need to participate in the Doorbell Recovery 977 * mechanism. 978 */ 979 spin_lock_irqsave(&q->db_lock, flags); 980 if (!q->db_disabled) 981 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 982 QID_V(q->cntxt_id) | val); 983 else 984 q->db_pidx_inc += n; 985 q->db_pidx = q->pidx; 986 spin_unlock_irqrestore(&q->db_lock, flags); 987 } else { 988 u32 val = PIDX_T5_V(n); 989 990 /* T4 and later chips share the same PIDX field offset within 991 * the doorbell, but T5 and later shrank the field in order to 992 * gain a bit for Doorbell Priority. The field was absurdly 993 * large in the first place (14 bits) so we just use the T5 994 * and later limits and warn if a Queue ID is too large. 995 */ 996 WARN_ON(val & DBPRIO_F); 997 998 /* If we're only writing a single TX Descriptor and we can use 999 * Inferred QID registers, we can use the Write Combining 1000 * Gather Buffer; otherwise we use the simple doorbell. 1001 */ 1002 if (n == 1 && q->bar2_qid == 0) { 1003 int index = (q->pidx 1004 ? (q->pidx - 1) 1005 : (q->size - 1)); 1006 u64 *wr = (u64 *)&q->desc[index]; 1007 1008 cxgb_pio_copy((u64 __iomem *) 1009 (q->bar2_addr + SGE_UDB_WCDOORBELL), 1010 wr); 1011 } else { 1012 writel(val | QID_V(q->bar2_qid), 1013 q->bar2_addr + SGE_UDB_KDOORBELL); 1014 } 1015 1016 /* This Write Memory Barrier will force the write to the User 1017 * Doorbell area to be flushed. This is needed to prevent 1018 * writes on different CPUs for the same queue from hitting 1019 * the adapter out of order. This is required when some Work 1020 * Requests take the Write Combine Gather Buffer path (user 1021 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some 1022 * take the traditional path where we simply increment the 1023 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the 1024 * hardware DMA read the actual Work Request. 1025 */ 1026 wmb(); 1027 } 1028 } 1029 EXPORT_SYMBOL(cxgb4_ring_tx_db); 1030 1031 /** 1032 * cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors 1033 * @skb: the packet 1034 * @q: the Tx queue where the packet will be inlined 1035 * @pos: starting position in the Tx queue where to inline the packet 1036 * 1037 * Inline a packet's contents directly into Tx descriptors, starting at 1038 * the given position within the Tx DMA ring. 1039 * Most of the complexity of this operation is dealing with wrap arounds 1040 * in the middle of the packet we want to inline. 1041 */ 1042 void cxgb4_inline_tx_skb(const struct sk_buff *skb, 1043 const struct sge_txq *q, void *pos) 1044 { 1045 int left = (void *)q->stat - pos; 1046 u64 *p; 1047 1048 if (likely(skb->len <= left)) { 1049 if (likely(!skb->data_len)) 1050 skb_copy_from_linear_data(skb, pos, skb->len); 1051 else 1052 skb_copy_bits(skb, 0, pos, skb->len); 1053 pos += skb->len; 1054 } else { 1055 skb_copy_bits(skb, 0, pos, left); 1056 skb_copy_bits(skb, left, q->desc, skb->len - left); 1057 pos = (void *)q->desc + (skb->len - left); 1058 } 1059 1060 /* 0-pad to multiple of 16 */ 1061 p = PTR_ALIGN(pos, 8); 1062 if ((uintptr_t)p & 8) 1063 *p = 0; 1064 } 1065 EXPORT_SYMBOL(cxgb4_inline_tx_skb); 1066 1067 static void *inline_tx_skb_header(const struct sk_buff *skb, 1068 const struct sge_txq *q, void *pos, 1069 int length) 1070 { 1071 u64 *p; 1072 int left = (void *)q->stat - pos; 1073 1074 if (likely(length <= left)) { 1075 memcpy(pos, skb->data, length); 1076 pos += length; 1077 } else { 1078 memcpy(pos, skb->data, left); 1079 memcpy(q->desc, skb->data + left, length - left); 1080 pos = (void *)q->desc + (length - left); 1081 } 1082 /* 0-pad to multiple of 16 */ 1083 p = PTR_ALIGN(pos, 8); 1084 if ((uintptr_t)p & 8) { 1085 *p = 0; 1086 return p + 1; 1087 } 1088 return p; 1089 } 1090 1091 /* 1092 * Figure out what HW csum a packet wants and return the appropriate control 1093 * bits. 1094 */ 1095 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb) 1096 { 1097 int csum_type; 1098 bool inner_hdr_csum = false; 1099 u16 proto, ver; 1100 1101 if (skb->encapsulation && 1102 (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5)) 1103 inner_hdr_csum = true; 1104 1105 if (inner_hdr_csum) { 1106 ver = inner_ip_hdr(skb)->version; 1107 proto = (ver == 4) ? inner_ip_hdr(skb)->protocol : 1108 inner_ipv6_hdr(skb)->nexthdr; 1109 } else { 1110 ver = ip_hdr(skb)->version; 1111 proto = (ver == 4) ? ip_hdr(skb)->protocol : 1112 ipv6_hdr(skb)->nexthdr; 1113 } 1114 1115 if (ver == 4) { 1116 if (proto == IPPROTO_TCP) 1117 csum_type = TX_CSUM_TCPIP; 1118 else if (proto == IPPROTO_UDP) 1119 csum_type = TX_CSUM_UDPIP; 1120 else { 1121 nocsum: /* 1122 * unknown protocol, disable HW csum 1123 * and hope a bad packet is detected 1124 */ 1125 return TXPKT_L4CSUM_DIS_F; 1126 } 1127 } else { 1128 /* 1129 * this doesn't work with extension headers 1130 */ 1131 if (proto == IPPROTO_TCP) 1132 csum_type = TX_CSUM_TCPIP6; 1133 else if (proto == IPPROTO_UDP) 1134 csum_type = TX_CSUM_UDPIP6; 1135 else 1136 goto nocsum; 1137 } 1138 1139 if (likely(csum_type >= TX_CSUM_TCPIP)) { 1140 int eth_hdr_len, l4_len; 1141 u64 hdr_len; 1142 1143 if (inner_hdr_csum) { 1144 /* This allows checksum offload for all encapsulated 1145 * packets like GRE etc.. 1146 */ 1147 l4_len = skb_inner_network_header_len(skb); 1148 eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN; 1149 } else { 1150 l4_len = skb_network_header_len(skb); 1151 eth_hdr_len = skb_network_offset(skb) - ETH_HLEN; 1152 } 1153 hdr_len = TXPKT_IPHDR_LEN_V(l4_len); 1154 1155 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1156 hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1157 else 1158 hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1159 return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len; 1160 } else { 1161 int start = skb_transport_offset(skb); 1162 1163 return TXPKT_CSUM_TYPE_V(csum_type) | 1164 TXPKT_CSUM_START_V(start) | 1165 TXPKT_CSUM_LOC_V(start + skb->csum_offset); 1166 } 1167 } 1168 1169 static void eth_txq_stop(struct sge_eth_txq *q) 1170 { 1171 netif_tx_stop_queue(q->txq); 1172 q->q.stops++; 1173 } 1174 1175 static inline void txq_advance(struct sge_txq *q, unsigned int n) 1176 { 1177 q->in_use += n; 1178 q->pidx += n; 1179 if (q->pidx >= q->size) 1180 q->pidx -= q->size; 1181 } 1182 1183 #ifdef CONFIG_CHELSIO_T4_FCOE 1184 static inline int 1185 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap, 1186 const struct port_info *pi, u64 *cntrl) 1187 { 1188 const struct cxgb_fcoe *fcoe = &pi->fcoe; 1189 1190 if (!(fcoe->flags & CXGB_FCOE_ENABLED)) 1191 return 0; 1192 1193 if (skb->protocol != htons(ETH_P_FCOE)) 1194 return 0; 1195 1196 skb_reset_mac_header(skb); 1197 skb->mac_len = sizeof(struct ethhdr); 1198 1199 skb_set_network_header(skb, skb->mac_len); 1200 skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr)); 1201 1202 if (!cxgb_fcoe_sof_eof_supported(adap, skb)) 1203 return -ENOTSUPP; 1204 1205 /* FC CRC offload */ 1206 *cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) | 1207 TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F | 1208 TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) | 1209 TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) | 1210 TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END); 1211 return 0; 1212 } 1213 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1214 1215 /* Returns tunnel type if hardware supports offloading of the same. 1216 * It is called only for T5 and onwards. 1217 */ 1218 enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb) 1219 { 1220 u8 l4_hdr = 0; 1221 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE; 1222 struct port_info *pi = netdev_priv(skb->dev); 1223 struct adapter *adapter = pi->adapter; 1224 1225 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 1226 skb->inner_protocol != htons(ETH_P_TEB)) 1227 return tnl_type; 1228 1229 switch (vlan_get_protocol(skb)) { 1230 case htons(ETH_P_IP): 1231 l4_hdr = ip_hdr(skb)->protocol; 1232 break; 1233 case htons(ETH_P_IPV6): 1234 l4_hdr = ipv6_hdr(skb)->nexthdr; 1235 break; 1236 default: 1237 return tnl_type; 1238 } 1239 1240 switch (l4_hdr) { 1241 case IPPROTO_UDP: 1242 if (adapter->vxlan_port == udp_hdr(skb)->dest) 1243 tnl_type = TX_TNL_TYPE_VXLAN; 1244 else if (adapter->geneve_port == udp_hdr(skb)->dest) 1245 tnl_type = TX_TNL_TYPE_GENEVE; 1246 break; 1247 default: 1248 return tnl_type; 1249 } 1250 1251 return tnl_type; 1252 } 1253 1254 static inline void t6_fill_tnl_lso(struct sk_buff *skb, 1255 struct cpl_tx_tnl_lso *tnl_lso, 1256 enum cpl_tx_tnl_lso_type tnl_type) 1257 { 1258 u32 val; 1259 int in_eth_xtra_len; 1260 int l3hdr_len = skb_network_header_len(skb); 1261 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1262 const struct skb_shared_info *ssi = skb_shinfo(skb); 1263 bool v6 = (ip_hdr(skb)->version == 6); 1264 1265 val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) | 1266 CPL_TX_TNL_LSO_FIRST_F | 1267 CPL_TX_TNL_LSO_LAST_F | 1268 (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) | 1269 CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) | 1270 CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) | 1271 (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) | 1272 CPL_TX_TNL_LSO_IPLENSETOUT_F | 1273 (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F); 1274 tnl_lso->op_to_IpIdSplitOut = htonl(val); 1275 1276 tnl_lso->IpIdOffsetOut = 0; 1277 1278 /* Get the tunnel header length */ 1279 val = skb_inner_mac_header(skb) - skb_mac_header(skb); 1280 in_eth_xtra_len = skb_inner_network_header(skb) - 1281 skb_inner_mac_header(skb) - ETH_HLEN; 1282 1283 switch (tnl_type) { 1284 case TX_TNL_TYPE_VXLAN: 1285 case TX_TNL_TYPE_GENEVE: 1286 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 1287 htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F | 1288 CPL_TX_TNL_LSO_UDPLENSETOUT_F); 1289 break; 1290 default: 1291 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0; 1292 break; 1293 } 1294 1295 tnl_lso->UdpLenSetOut_to_TnlHdrLen |= 1296 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) | 1297 CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type)); 1298 1299 tnl_lso->r1 = 0; 1300 1301 val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) | 1302 CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) | 1303 CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) | 1304 CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4); 1305 tnl_lso->Flow_to_TcpHdrLen = htonl(val); 1306 1307 tnl_lso->IpIdOffset = htons(0); 1308 1309 tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size)); 1310 tnl_lso->TCPSeqOffset = htonl(0); 1311 tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len)); 1312 } 1313 1314 static inline void *write_tso_wr(struct adapter *adap, struct sk_buff *skb, 1315 struct cpl_tx_pkt_lso_core *lso) 1316 { 1317 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1318 int l3hdr_len = skb_network_header_len(skb); 1319 const struct skb_shared_info *ssi; 1320 bool ipv6 = false; 1321 1322 ssi = skb_shinfo(skb); 1323 if (ssi->gso_type & SKB_GSO_TCPV6) 1324 ipv6 = true; 1325 1326 lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) | 1327 LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F | 1328 LSO_IPV6_V(ipv6) | 1329 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) | 1330 LSO_IPHDR_LEN_V(l3hdr_len / 4) | 1331 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff)); 1332 lso->ipid_ofst = htons(0); 1333 lso->mss = htons(ssi->gso_size); 1334 lso->seqno_offset = htonl(0); 1335 if (is_t4(adap->params.chip)) 1336 lso->len = htonl(skb->len); 1337 else 1338 lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len)); 1339 1340 return (void *)(lso + 1); 1341 } 1342 1343 /** 1344 * t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update 1345 * @adap: the adapter 1346 * @eq: the Ethernet TX Queue 1347 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1 1348 * 1349 * We're typically called here to update the state of an Ethernet TX 1350 * Queue with respect to the hardware's progress in consuming the TX 1351 * Work Requests that we've put on that Egress Queue. This happens 1352 * when we get Egress Queue Update messages and also prophylactically 1353 * in regular timer-based Ethernet TX Queue maintenance. 1354 */ 1355 int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq, 1356 int maxreclaim) 1357 { 1358 struct sge_txq *q = &eq->q; 1359 unsigned int reclaimed; 1360 1361 if (!q->in_use || !__netif_tx_trylock(eq->txq)) 1362 return 0; 1363 1364 /* Reclaim pending completed TX Descriptors. */ 1365 reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true); 1366 1367 /* If the TX Queue is currently stopped and there's now more than half 1368 * the queue available, restart it. Otherwise bail out since the rest 1369 * of what we want do here is with the possibility of shipping any 1370 * currently buffered Coalesced TX Work Request. 1371 */ 1372 if (netif_tx_queue_stopped(eq->txq) && txq_avail(q) > (q->size / 2)) { 1373 netif_tx_wake_queue(eq->txq); 1374 eq->q.restarts++; 1375 } 1376 1377 __netif_tx_unlock(eq->txq); 1378 return reclaimed; 1379 } 1380 1381 static inline int cxgb4_validate_skb(struct sk_buff *skb, 1382 struct net_device *dev, 1383 u32 min_pkt_len) 1384 { 1385 u32 max_pkt_len; 1386 1387 /* The chip min packet length is 10 octets but some firmware 1388 * commands have a minimum packet length requirement. So, play 1389 * safe and reject anything shorter than @min_pkt_len. 1390 */ 1391 if (unlikely(skb->len < min_pkt_len)) 1392 return -EINVAL; 1393 1394 /* Discard the packet if the length is greater than mtu */ 1395 max_pkt_len = ETH_HLEN + dev->mtu; 1396 1397 if (skb_vlan_tagged(skb)) 1398 max_pkt_len += VLAN_HLEN; 1399 1400 if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len))) 1401 return -EINVAL; 1402 1403 return 0; 1404 } 1405 1406 /** 1407 * cxgb4_eth_xmit - add a packet to an Ethernet Tx queue 1408 * @skb: the packet 1409 * @dev: the egress net device 1410 * 1411 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled. 1412 */ 1413 static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev) 1414 { 1415 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE; 1416 bool ptp_enabled = is_ptp_enabled(skb, dev); 1417 dma_addr_t addr[MAX_SKB_FRAGS + 1]; 1418 const struct skb_shared_info *ssi; 1419 struct fw_eth_tx_pkt_wr *wr; 1420 struct cpl_tx_pkt_core *cpl; 1421 int len, qidx, credits, ret; 1422 const struct port_info *pi; 1423 unsigned int flits, ndesc; 1424 bool immediate = false; 1425 u32 wr_mid, ctrl0, op; 1426 u64 cntrl, *end, *sgl; 1427 struct sge_eth_txq *q; 1428 unsigned int chip_ver; 1429 struct adapter *adap; 1430 1431 ret = cxgb4_validate_skb(skb, dev, ETH_HLEN); 1432 if (ret) 1433 goto out_free; 1434 1435 pi = netdev_priv(dev); 1436 adap = pi->adapter; 1437 ssi = skb_shinfo(skb); 1438 #ifdef CONFIG_CHELSIO_IPSEC_INLINE 1439 if (xfrm_offload(skb) && !ssi->gso_size) 1440 return adap->uld[CXGB4_ULD_CRYPTO].tx_handler(skb, dev); 1441 #endif /* CHELSIO_IPSEC_INLINE */ 1442 1443 qidx = skb_get_queue_mapping(skb); 1444 if (ptp_enabled) { 1445 spin_lock(&adap->ptp_lock); 1446 if (!(adap->ptp_tx_skb)) { 1447 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1448 adap->ptp_tx_skb = skb_get(skb); 1449 } else { 1450 spin_unlock(&adap->ptp_lock); 1451 goto out_free; 1452 } 1453 q = &adap->sge.ptptxq; 1454 } else { 1455 q = &adap->sge.ethtxq[qidx + pi->first_qset]; 1456 } 1457 skb_tx_timestamp(skb); 1458 1459 reclaim_completed_tx(adap, &q->q, -1, true); 1460 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; 1461 1462 #ifdef CONFIG_CHELSIO_T4_FCOE 1463 ret = cxgb_fcoe_offload(skb, adap, pi, &cntrl); 1464 if (unlikely(ret == -ENOTSUPP)) { 1465 if (ptp_enabled) 1466 spin_unlock(&adap->ptp_lock); 1467 goto out_free; 1468 } 1469 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1470 1471 chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 1472 flits = calc_tx_flits(skb, chip_ver); 1473 ndesc = flits_to_desc(flits); 1474 credits = txq_avail(&q->q) - ndesc; 1475 1476 if (unlikely(credits < 0)) { 1477 eth_txq_stop(q); 1478 dev_err(adap->pdev_dev, 1479 "%s: Tx ring %u full while queue awake!\n", 1480 dev->name, qidx); 1481 if (ptp_enabled) 1482 spin_unlock(&adap->ptp_lock); 1483 return NETDEV_TX_BUSY; 1484 } 1485 1486 if (is_eth_imm(skb, chip_ver)) 1487 immediate = true; 1488 1489 if (skb->encapsulation && chip_ver > CHELSIO_T5) 1490 tnl_type = cxgb_encap_offload_supported(skb); 1491 1492 if (!immediate && 1493 unlikely(cxgb4_map_skb(adap->pdev_dev, skb, addr) < 0)) { 1494 q->mapping_err++; 1495 if (ptp_enabled) 1496 spin_unlock(&adap->ptp_lock); 1497 goto out_free; 1498 } 1499 1500 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); 1501 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 1502 /* After we're done injecting the Work Request for this 1503 * packet, we'll be below our "stop threshold" so stop the TX 1504 * Queue now and schedule a request for an SGE Egress Queue 1505 * Update message. The queue will get started later on when 1506 * the firmware processes this Work Request and sends us an 1507 * Egress Queue Status Update message indicating that space 1508 * has opened up. 1509 */ 1510 eth_txq_stop(q); 1511 1512 /* If we're using the SGE Doorbell Queue Timer facility, we 1513 * don't need to ask the Firmware to send us Egress Queue CIDX 1514 * Updates: the Hardware will do this automatically. And 1515 * since we send the Ingress Queue CIDX Updates to the 1516 * corresponding Ethernet Response Queue, we'll get them very 1517 * quickly. 1518 */ 1519 if (!q->dbqt) 1520 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; 1521 } 1522 1523 wr = (void *)&q->q.desc[q->q.pidx]; 1524 wr->equiq_to_len16 = htonl(wr_mid); 1525 wr->r3 = cpu_to_be64(0); 1526 end = (u64 *)wr + flits; 1527 1528 len = immediate ? skb->len : 0; 1529 len += sizeof(*cpl); 1530 if (ssi->gso_size) { 1531 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 1532 struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1); 1533 1534 if (tnl_type) 1535 len += sizeof(*tnl_lso); 1536 else 1537 len += sizeof(*lso); 1538 1539 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | 1540 FW_WR_IMMDLEN_V(len)); 1541 if (tnl_type) { 1542 struct iphdr *iph = ip_hdr(skb); 1543 1544 t6_fill_tnl_lso(skb, tnl_lso, tnl_type); 1545 cpl = (void *)(tnl_lso + 1); 1546 /* Driver is expected to compute partial checksum that 1547 * does not include the IP Total Length. 1548 */ 1549 if (iph->version == 4) { 1550 iph->check = 0; 1551 iph->tot_len = 0; 1552 iph->check = (u16)(~ip_fast_csum((u8 *)iph, 1553 iph->ihl)); 1554 } 1555 if (skb->ip_summed == CHECKSUM_PARTIAL) 1556 cntrl = hwcsum(adap->params.chip, skb); 1557 } else { 1558 cpl = write_tso_wr(adap, skb, lso); 1559 cntrl = hwcsum(adap->params.chip, skb); 1560 } 1561 sgl = (u64 *)(cpl + 1); /* sgl start here */ 1562 if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) { 1563 /* If current position is already at the end of the 1564 * txq, reset the current to point to start of the queue 1565 * and update the end ptr as well. 1566 */ 1567 if (sgl == (u64 *)q->q.stat) { 1568 int left = (u8 *)end - (u8 *)q->q.stat; 1569 1570 end = (void *)q->q.desc + left; 1571 sgl = (void *)q->q.desc; 1572 } 1573 } 1574 q->tso++; 1575 q->tx_cso += ssi->gso_segs; 1576 } else { 1577 if (ptp_enabled) 1578 op = FW_PTP_TX_PKT_WR; 1579 else 1580 op = FW_ETH_TX_PKT_WR; 1581 wr->op_immdlen = htonl(FW_WR_OP_V(op) | 1582 FW_WR_IMMDLEN_V(len)); 1583 cpl = (void *)(wr + 1); 1584 sgl = (u64 *)(cpl + 1); 1585 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1586 cntrl = hwcsum(adap->params.chip, skb) | 1587 TXPKT_IPCSUM_DIS_F; 1588 q->tx_cso++; 1589 } 1590 } 1591 1592 if (skb_vlan_tag_present(skb)) { 1593 q->vlan_ins++; 1594 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 1595 #ifdef CONFIG_CHELSIO_T4_FCOE 1596 if (skb->protocol == htons(ETH_P_FCOE)) 1597 cntrl |= TXPKT_VLAN_V( 1598 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT)); 1599 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1600 } 1601 1602 ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) | 1603 TXPKT_PF_V(adap->pf); 1604 if (ptp_enabled) 1605 ctrl0 |= TXPKT_TSTAMP_F; 1606 #ifdef CONFIG_CHELSIO_T4_DCB 1607 if (is_t4(adap->params.chip)) 1608 ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio); 1609 else 1610 ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio); 1611 #endif 1612 cpl->ctrl0 = htonl(ctrl0); 1613 cpl->pack = htons(0); 1614 cpl->len = htons(skb->len); 1615 cpl->ctrl1 = cpu_to_be64(cntrl); 1616 1617 if (immediate) { 1618 cxgb4_inline_tx_skb(skb, &q->q, sgl); 1619 dev_consume_skb_any(skb); 1620 } else { 1621 int last_desc; 1622 1623 cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, 0, addr); 1624 skb_orphan(skb); 1625 1626 last_desc = q->q.pidx + ndesc - 1; 1627 if (last_desc >= q->q.size) 1628 last_desc -= q->q.size; 1629 q->q.sdesc[last_desc].skb = skb; 1630 q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)sgl; 1631 } 1632 1633 txq_advance(&q->q, ndesc); 1634 1635 cxgb4_ring_tx_db(adap, &q->q, ndesc); 1636 if (ptp_enabled) 1637 spin_unlock(&adap->ptp_lock); 1638 return NETDEV_TX_OK; 1639 1640 out_free: 1641 dev_kfree_skb_any(skb); 1642 return NETDEV_TX_OK; 1643 } 1644 1645 /* Constants ... */ 1646 enum { 1647 /* Egress Queue sizes, producer and consumer indices are all in units 1648 * of Egress Context Units bytes. Note that as far as the hardware is 1649 * concerned, the free list is an Egress Queue (the host produces free 1650 * buffers which the hardware consumes) and free list entries are 1651 * 64-bit PCI DMA addresses. 1652 */ 1653 EQ_UNIT = SGE_EQ_IDXSIZE, 1654 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 1655 TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 1656 1657 T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) + 1658 sizeof(struct cpl_tx_pkt_lso_core) + 1659 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64), 1660 }; 1661 1662 /** 1663 * t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data? 1664 * @skb: the packet 1665 * 1666 * Returns whether an Ethernet packet is small enough to fit completely as 1667 * immediate data. 1668 */ 1669 static inline int t4vf_is_eth_imm(const struct sk_buff *skb) 1670 { 1671 /* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request 1672 * which does not accommodate immediate data. We could dike out all 1673 * of the support code for immediate data but that would tie our hands 1674 * too much if we ever want to enhace the firmware. It would also 1675 * create more differences between the PF and VF Drivers. 1676 */ 1677 return false; 1678 } 1679 1680 /** 1681 * t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR 1682 * @skb: the packet 1683 * 1684 * Returns the number of flits needed for a TX Work Request for the 1685 * given Ethernet packet, including the needed WR and CPL headers. 1686 */ 1687 static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb) 1688 { 1689 unsigned int flits; 1690 1691 /* If the skb is small enough, we can pump it out as a work request 1692 * with only immediate data. In that case we just have to have the 1693 * TX Packet header plus the skb data in the Work Request. 1694 */ 1695 if (t4vf_is_eth_imm(skb)) 1696 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt), 1697 sizeof(__be64)); 1698 1699 /* Otherwise, we're going to have to construct a Scatter gather list 1700 * of the skb body and fragments. We also include the flits necessary 1701 * for the TX Packet Work Request and CPL. We always have a firmware 1702 * Write Header (incorporated as part of the cpl_tx_pkt_lso and 1703 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 1704 * message or, if we're doing a Large Send Offload, an LSO CPL message 1705 * with an embedded TX Packet Write CPL message. 1706 */ 1707 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); 1708 if (skb_shinfo(skb)->gso_size) 1709 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + 1710 sizeof(struct cpl_tx_pkt_lso_core) + 1711 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 1712 else 1713 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + 1714 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 1715 return flits; 1716 } 1717 1718 /** 1719 * cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue 1720 * @skb: the packet 1721 * @dev: the egress net device 1722 * 1723 * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled. 1724 */ 1725 static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb, 1726 struct net_device *dev) 1727 { 1728 dma_addr_t addr[MAX_SKB_FRAGS + 1]; 1729 const struct skb_shared_info *ssi; 1730 struct fw_eth_tx_pkt_vm_wr *wr; 1731 struct cpl_tx_pkt_core *cpl; 1732 const struct port_info *pi; 1733 unsigned int flits, ndesc; 1734 struct sge_eth_txq *txq; 1735 struct adapter *adapter; 1736 int qidx, credits, ret; 1737 size_t fw_hdr_copy_len; 1738 u64 cntrl, *end; 1739 u32 wr_mid; 1740 1741 /* The chip minimum packet length is 10 octets but the firmware 1742 * command that we are using requires that we copy the Ethernet header 1743 * (including the VLAN tag) into the header so we reject anything 1744 * smaller than that ... 1745 */ 1746 fw_hdr_copy_len = sizeof(wr->ethmacdst) + sizeof(wr->ethmacsrc) + 1747 sizeof(wr->ethtype) + sizeof(wr->vlantci); 1748 ret = cxgb4_validate_skb(skb, dev, fw_hdr_copy_len); 1749 if (ret) 1750 goto out_free; 1751 1752 /* Figure out which TX Queue we're going to use. */ 1753 pi = netdev_priv(dev); 1754 adapter = pi->adapter; 1755 qidx = skb_get_queue_mapping(skb); 1756 WARN_ON(qidx >= pi->nqsets); 1757 txq = &adapter->sge.ethtxq[pi->first_qset + qidx]; 1758 1759 /* Take this opportunity to reclaim any TX Descriptors whose DMA 1760 * transfers have completed. 1761 */ 1762 reclaim_completed_tx(adapter, &txq->q, -1, true); 1763 1764 /* Calculate the number of flits and TX Descriptors we're going to 1765 * need along with how many TX Descriptors will be left over after 1766 * we inject our Work Request. 1767 */ 1768 flits = t4vf_calc_tx_flits(skb); 1769 ndesc = flits_to_desc(flits); 1770 credits = txq_avail(&txq->q) - ndesc; 1771 1772 if (unlikely(credits < 0)) { 1773 /* Not enough room for this packet's Work Request. Stop the 1774 * TX Queue and return a "busy" condition. The queue will get 1775 * started later on when the firmware informs us that space 1776 * has opened up. 1777 */ 1778 eth_txq_stop(txq); 1779 dev_err(adapter->pdev_dev, 1780 "%s: TX ring %u full while queue awake!\n", 1781 dev->name, qidx); 1782 return NETDEV_TX_BUSY; 1783 } 1784 1785 if (!t4vf_is_eth_imm(skb) && 1786 unlikely(cxgb4_map_skb(adapter->pdev_dev, skb, addr) < 0)) { 1787 /* We need to map the skb into PCI DMA space (because it can't 1788 * be in-lined directly into the Work Request) and the mapping 1789 * operation failed. Record the error and drop the packet. 1790 */ 1791 txq->mapping_err++; 1792 goto out_free; 1793 } 1794 1795 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); 1796 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 1797 /* After we're done injecting the Work Request for this 1798 * packet, we'll be below our "stop threshold" so stop the TX 1799 * Queue now and schedule a request for an SGE Egress Queue 1800 * Update message. The queue will get started later on when 1801 * the firmware processes this Work Request and sends us an 1802 * Egress Queue Status Update message indicating that space 1803 * has opened up. 1804 */ 1805 eth_txq_stop(txq); 1806 1807 /* If we're using the SGE Doorbell Queue Timer facility, we 1808 * don't need to ask the Firmware to send us Egress Queue CIDX 1809 * Updates: the Hardware will do this automatically. And 1810 * since we send the Ingress Queue CIDX Updates to the 1811 * corresponding Ethernet Response Queue, we'll get them very 1812 * quickly. 1813 */ 1814 if (!txq->dbqt) 1815 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; 1816 } 1817 1818 /* Start filling in our Work Request. Note that we do _not_ handle 1819 * the WR Header wrapping around the TX Descriptor Ring. If our 1820 * maximum header size ever exceeds one TX Descriptor, we'll need to 1821 * do something else here. 1822 */ 1823 WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1); 1824 wr = (void *)&txq->q.desc[txq->q.pidx]; 1825 wr->equiq_to_len16 = cpu_to_be32(wr_mid); 1826 wr->r3[0] = cpu_to_be32(0); 1827 wr->r3[1] = cpu_to_be32(0); 1828 skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len); 1829 end = (u64 *)wr + flits; 1830 1831 /* If this is a Large Send Offload packet we'll put in an LSO CPL 1832 * message with an encapsulated TX Packet CPL message. Otherwise we 1833 * just use a TX Packet CPL message. 1834 */ 1835 ssi = skb_shinfo(skb); 1836 if (ssi->gso_size) { 1837 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 1838 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; 1839 int l3hdr_len = skb_network_header_len(skb); 1840 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1841 1842 wr->op_immdlen = 1843 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) | 1844 FW_WR_IMMDLEN_V(sizeof(*lso) + 1845 sizeof(*cpl))); 1846 /* Fill in the LSO CPL message. */ 1847 lso->lso_ctrl = 1848 cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) | 1849 LSO_FIRST_SLICE_F | 1850 LSO_LAST_SLICE_F | 1851 LSO_IPV6_V(v6) | 1852 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) | 1853 LSO_IPHDR_LEN_V(l3hdr_len / 4) | 1854 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff)); 1855 lso->ipid_ofst = cpu_to_be16(0); 1856 lso->mss = cpu_to_be16(ssi->gso_size); 1857 lso->seqno_offset = cpu_to_be32(0); 1858 if (is_t4(adapter->params.chip)) 1859 lso->len = cpu_to_be32(skb->len); 1860 else 1861 lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len)); 1862 1863 /* Set up TX Packet CPL pointer, control word and perform 1864 * accounting. 1865 */ 1866 cpl = (void *)(lso + 1); 1867 1868 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 1869 cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1870 else 1871 cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1872 1873 cntrl |= TXPKT_CSUM_TYPE_V(v6 ? 1874 TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | 1875 TXPKT_IPHDR_LEN_V(l3hdr_len); 1876 txq->tso++; 1877 txq->tx_cso += ssi->gso_segs; 1878 } else { 1879 int len; 1880 1881 len = (t4vf_is_eth_imm(skb) 1882 ? skb->len + sizeof(*cpl) 1883 : sizeof(*cpl)); 1884 wr->op_immdlen = 1885 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) | 1886 FW_WR_IMMDLEN_V(len)); 1887 1888 /* Set up TX Packet CPL pointer, control word and perform 1889 * accounting. 1890 */ 1891 cpl = (void *)(wr + 1); 1892 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1893 cntrl = hwcsum(adapter->params.chip, skb) | 1894 TXPKT_IPCSUM_DIS_F; 1895 txq->tx_cso++; 1896 } else { 1897 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; 1898 } 1899 } 1900 1901 /* If there's a VLAN tag present, add that to the list of things to 1902 * do in this Work Request. 1903 */ 1904 if (skb_vlan_tag_present(skb)) { 1905 txq->vlan_ins++; 1906 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 1907 } 1908 1909 /* Fill in the TX Packet CPL message header. */ 1910 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) | 1911 TXPKT_INTF_V(pi->port_id) | 1912 TXPKT_PF_V(0)); 1913 cpl->pack = cpu_to_be16(0); 1914 cpl->len = cpu_to_be16(skb->len); 1915 cpl->ctrl1 = cpu_to_be64(cntrl); 1916 1917 /* Fill in the body of the TX Packet CPL message with either in-lined 1918 * data or a Scatter/Gather List. 1919 */ 1920 if (t4vf_is_eth_imm(skb)) { 1921 /* In-line the packet's data and free the skb since we don't 1922 * need it any longer. 1923 */ 1924 cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1); 1925 dev_consume_skb_any(skb); 1926 } else { 1927 /* Write the skb's Scatter/Gather list into the TX Packet CPL 1928 * message and retain a pointer to the skb so we can free it 1929 * later when its DMA completes. (We store the skb pointer 1930 * in the Software Descriptor corresponding to the last TX 1931 * Descriptor used by the Work Request.) 1932 * 1933 * The retained skb will be freed when the corresponding TX 1934 * Descriptors are reclaimed after their DMAs complete. 1935 * However, this could take quite a while since, in general, 1936 * the hardware is set up to be lazy about sending DMA 1937 * completion notifications to us and we mostly perform TX 1938 * reclaims in the transmit routine. 1939 * 1940 * This is good for performamce but means that we rely on new 1941 * TX packets arriving to run the destructors of completed 1942 * packets, which open up space in their sockets' send queues. 1943 * Sometimes we do not get such new packets causing TX to 1944 * stall. A single UDP transmitter is a good example of this 1945 * situation. We have a clean up timer that periodically 1946 * reclaims completed packets but it doesn't run often enough 1947 * (nor do we want it to) to prevent lengthy stalls. A 1948 * solution to this problem is to run the destructor early, 1949 * after the packet is queued but before it's DMAd. A con is 1950 * that we lie to socket memory accounting, but the amount of 1951 * extra memory is reasonable (limited by the number of TX 1952 * descriptors), the packets do actually get freed quickly by 1953 * new packets almost always, and for protocols like TCP that 1954 * wait for acks to really free up the data the extra memory 1955 * is even less. On the positive side we run the destructors 1956 * on the sending CPU rather than on a potentially different 1957 * completing CPU, usually a good thing. 1958 * 1959 * Run the destructor before telling the DMA engine about the 1960 * packet to make sure it doesn't complete and get freed 1961 * prematurely. 1962 */ 1963 struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1); 1964 struct sge_txq *tq = &txq->q; 1965 int last_desc; 1966 1967 /* If the Work Request header was an exact multiple of our TX 1968 * Descriptor length, then it's possible that the starting SGL 1969 * pointer lines up exactly with the end of our TX Descriptor 1970 * ring. If that's the case, wrap around to the beginning 1971 * here ... 1972 */ 1973 if (unlikely((void *)sgl == (void *)tq->stat)) { 1974 sgl = (void *)tq->desc; 1975 end = (void *)((void *)tq->desc + 1976 ((void *)end - (void *)tq->stat)); 1977 } 1978 1979 cxgb4_write_sgl(skb, tq, sgl, end, 0, addr); 1980 skb_orphan(skb); 1981 1982 last_desc = tq->pidx + ndesc - 1; 1983 if (last_desc >= tq->size) 1984 last_desc -= tq->size; 1985 tq->sdesc[last_desc].skb = skb; 1986 tq->sdesc[last_desc].sgl = sgl; 1987 } 1988 1989 /* Advance our internal TX Queue state, tell the hardware about 1990 * the new TX descriptors and return success. 1991 */ 1992 txq_advance(&txq->q, ndesc); 1993 1994 cxgb4_ring_tx_db(adapter, &txq->q, ndesc); 1995 return NETDEV_TX_OK; 1996 1997 out_free: 1998 /* An error of some sort happened. Free the TX skb and tell the 1999 * OS that we've "dealt" with the packet ... 2000 */ 2001 dev_kfree_skb_any(skb); 2002 return NETDEV_TX_OK; 2003 } 2004 2005 /** 2006 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs 2007 * @q: the SGE control Tx queue 2008 * 2009 * This is a variant of cxgb4_reclaim_completed_tx() that is used 2010 * for Tx queues that send only immediate data (presently just 2011 * the control queues) and thus do not have any sk_buffs to release. 2012 */ 2013 static inline void reclaim_completed_tx_imm(struct sge_txq *q) 2014 { 2015 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 2016 int reclaim = hw_cidx - q->cidx; 2017 2018 if (reclaim < 0) 2019 reclaim += q->size; 2020 2021 q->in_use -= reclaim; 2022 q->cidx = hw_cidx; 2023 } 2024 2025 static inline void eosw_txq_advance_index(u32 *idx, u32 n, u32 max) 2026 { 2027 u32 val = *idx + n; 2028 2029 if (val >= max) 2030 val -= max; 2031 2032 *idx = val; 2033 } 2034 2035 void cxgb4_eosw_txq_free_desc(struct adapter *adap, 2036 struct sge_eosw_txq *eosw_txq, u32 ndesc) 2037 { 2038 struct sge_eosw_desc *d; 2039 2040 d = &eosw_txq->desc[eosw_txq->last_cidx]; 2041 while (ndesc--) { 2042 if (d->skb) { 2043 if (d->addr[0]) { 2044 unmap_skb(adap->pdev_dev, d->skb, d->addr); 2045 memset(d->addr, 0, sizeof(d->addr)); 2046 } 2047 dev_consume_skb_any(d->skb); 2048 d->skb = NULL; 2049 } 2050 eosw_txq_advance_index(&eosw_txq->last_cidx, 1, 2051 eosw_txq->ndesc); 2052 d = &eosw_txq->desc[eosw_txq->last_cidx]; 2053 } 2054 } 2055 2056 static inline void eosw_txq_advance(struct sge_eosw_txq *eosw_txq, u32 n) 2057 { 2058 eosw_txq_advance_index(&eosw_txq->pidx, n, eosw_txq->ndesc); 2059 eosw_txq->inuse += n; 2060 } 2061 2062 static inline int eosw_txq_enqueue(struct sge_eosw_txq *eosw_txq, 2063 struct sk_buff *skb) 2064 { 2065 if (eosw_txq->inuse == eosw_txq->ndesc) 2066 return -ENOMEM; 2067 2068 eosw_txq->desc[eosw_txq->pidx].skb = skb; 2069 return 0; 2070 } 2071 2072 static inline struct sk_buff *eosw_txq_peek(struct sge_eosw_txq *eosw_txq) 2073 { 2074 return eosw_txq->desc[eosw_txq->last_pidx].skb; 2075 } 2076 2077 static inline u8 ethofld_calc_tx_flits(struct adapter *adap, 2078 struct sk_buff *skb, u32 hdr_len) 2079 { 2080 u8 flits, nsgl = 0; 2081 u32 wrlen; 2082 2083 wrlen = sizeof(struct fw_eth_tx_eo_wr) + sizeof(struct cpl_tx_pkt_core); 2084 if (skb_shinfo(skb)->gso_size) 2085 wrlen += sizeof(struct cpl_tx_pkt_lso_core); 2086 2087 wrlen += roundup(hdr_len, 16); 2088 2089 /* Packet headers + WR + CPLs */ 2090 flits = DIV_ROUND_UP(wrlen, 8); 2091 2092 if (skb_shinfo(skb)->nr_frags > 0) 2093 nsgl = sgl_len(skb_shinfo(skb)->nr_frags); 2094 else if (skb->len - hdr_len) 2095 nsgl = sgl_len(1); 2096 2097 return flits + nsgl; 2098 } 2099 2100 static inline void *write_eo_wr(struct adapter *adap, 2101 struct sge_eosw_txq *eosw_txq, 2102 struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr, 2103 u32 hdr_len, u32 wrlen) 2104 { 2105 const struct skb_shared_info *ssi = skb_shinfo(skb); 2106 struct cpl_tx_pkt_core *cpl; 2107 u32 immd_len, wrlen16; 2108 bool compl = false; 2109 2110 wrlen16 = DIV_ROUND_UP(wrlen, 16); 2111 immd_len = sizeof(struct cpl_tx_pkt_core); 2112 if (skb_shinfo(skb)->gso_size) { 2113 if (skb->encapsulation && 2114 CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) 2115 immd_len += sizeof(struct cpl_tx_tnl_lso); 2116 else 2117 immd_len += sizeof(struct cpl_tx_pkt_lso_core); 2118 } 2119 immd_len += hdr_len; 2120 2121 if (!eosw_txq->ncompl || 2122 eosw_txq->last_compl >= adap->params.ofldq_wr_cred / 2) { 2123 compl = true; 2124 eosw_txq->ncompl++; 2125 eosw_txq->last_compl = 0; 2126 } 2127 2128 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) | 2129 FW_ETH_TX_EO_WR_IMMDLEN_V(immd_len) | 2130 FW_WR_COMPL_V(compl)); 2131 wr->equiq_to_len16 = cpu_to_be32(FW_WR_LEN16_V(wrlen16) | 2132 FW_WR_FLOWID_V(eosw_txq->hwtid)); 2133 wr->r3 = 0; 2134 wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG; 2135 wr->u.tcpseg.ethlen = skb_network_offset(skb); 2136 wr->u.tcpseg.iplen = cpu_to_be16(skb_network_header_len(skb)); 2137 wr->u.tcpseg.tcplen = tcp_hdrlen(skb); 2138 wr->u.tcpseg.tsclk_tsoff = 0; 2139 wr->u.tcpseg.r4 = 0; 2140 wr->u.tcpseg.r5 = 0; 2141 wr->u.tcpseg.plen = cpu_to_be32(skb->len - hdr_len); 2142 2143 if (ssi->gso_size) { 2144 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 2145 2146 wr->u.tcpseg.mss = cpu_to_be16(ssi->gso_size); 2147 cpl = write_tso_wr(adap, skb, lso); 2148 } else { 2149 wr->u.tcpseg.mss = cpu_to_be16(0xffff); 2150 cpl = (void *)(wr + 1); 2151 } 2152 2153 eosw_txq->cred -= wrlen16; 2154 eosw_txq->last_compl += wrlen16; 2155 return cpl; 2156 } 2157 2158 static void ethofld_hard_xmit(struct net_device *dev, 2159 struct sge_eosw_txq *eosw_txq) 2160 { 2161 struct port_info *pi = netdev2pinfo(dev); 2162 struct adapter *adap = netdev2adap(dev); 2163 u32 wrlen, wrlen16, hdr_len, data_len; 2164 enum sge_eosw_state next_state; 2165 u64 cntrl, *start, *end, *sgl; 2166 struct sge_eohw_txq *eohw_txq; 2167 struct cpl_tx_pkt_core *cpl; 2168 struct fw_eth_tx_eo_wr *wr; 2169 bool skip_eotx_wr = false; 2170 struct sge_eosw_desc *d; 2171 struct sk_buff *skb; 2172 u8 flits, ndesc; 2173 int left; 2174 2175 eohw_txq = &adap->sge.eohw_txq[eosw_txq->hwqid]; 2176 spin_lock(&eohw_txq->lock); 2177 reclaim_completed_tx_imm(&eohw_txq->q); 2178 2179 d = &eosw_txq->desc[eosw_txq->last_pidx]; 2180 skb = d->skb; 2181 skb_tx_timestamp(skb); 2182 2183 wr = (struct fw_eth_tx_eo_wr *)&eohw_txq->q.desc[eohw_txq->q.pidx]; 2184 if (unlikely(eosw_txq->state != CXGB4_EO_STATE_ACTIVE && 2185 eosw_txq->last_pidx == eosw_txq->flowc_idx)) { 2186 hdr_len = skb->len; 2187 data_len = 0; 2188 flits = DIV_ROUND_UP(hdr_len, 8); 2189 if (eosw_txq->state == CXGB4_EO_STATE_FLOWC_OPEN_SEND) 2190 next_state = CXGB4_EO_STATE_FLOWC_OPEN_REPLY; 2191 else 2192 next_state = CXGB4_EO_STATE_FLOWC_CLOSE_REPLY; 2193 skip_eotx_wr = true; 2194 } else { 2195 hdr_len = eth_get_headlen(dev, skb->data, skb_headlen(skb)); 2196 data_len = skb->len - hdr_len; 2197 flits = ethofld_calc_tx_flits(adap, skb, hdr_len); 2198 } 2199 ndesc = flits_to_desc(flits); 2200 wrlen = flits * 8; 2201 wrlen16 = DIV_ROUND_UP(wrlen, 16); 2202 2203 /* If there are no CPL credits, then wait for credits 2204 * to come back and retry again 2205 */ 2206 if (unlikely(wrlen16 > eosw_txq->cred)) 2207 goto out_unlock; 2208 2209 if (unlikely(skip_eotx_wr)) { 2210 start = (u64 *)wr; 2211 eosw_txq->state = next_state; 2212 goto write_wr_headers; 2213 } 2214 2215 cpl = write_eo_wr(adap, eosw_txq, skb, wr, hdr_len, wrlen); 2216 cntrl = hwcsum(adap->params.chip, skb); 2217 if (skb_vlan_tag_present(skb)) 2218 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 2219 2220 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) | 2221 TXPKT_INTF_V(pi->tx_chan) | 2222 TXPKT_PF_V(adap->pf)); 2223 cpl->pack = 0; 2224 cpl->len = cpu_to_be16(skb->len); 2225 cpl->ctrl1 = cpu_to_be64(cntrl); 2226 2227 start = (u64 *)(cpl + 1); 2228 2229 write_wr_headers: 2230 sgl = (u64 *)inline_tx_skb_header(skb, &eohw_txq->q, (void *)start, 2231 hdr_len); 2232 if (data_len) { 2233 if (unlikely(cxgb4_map_skb(adap->pdev_dev, skb, d->addr))) { 2234 memset(d->addr, 0, sizeof(d->addr)); 2235 eohw_txq->mapping_err++; 2236 goto out_unlock; 2237 } 2238 2239 end = (u64 *)wr + flits; 2240 if (unlikely(start > sgl)) { 2241 left = (u8 *)end - (u8 *)eohw_txq->q.stat; 2242 end = (void *)eohw_txq->q.desc + left; 2243 } 2244 2245 if (unlikely((u8 *)sgl >= (u8 *)eohw_txq->q.stat)) { 2246 /* If current position is already at the end of the 2247 * txq, reset the current to point to start of the queue 2248 * and update the end ptr as well. 2249 */ 2250 left = (u8 *)end - (u8 *)eohw_txq->q.stat; 2251 2252 end = (void *)eohw_txq->q.desc + left; 2253 sgl = (void *)eohw_txq->q.desc; 2254 } 2255 2256 cxgb4_write_sgl(skb, &eohw_txq->q, (void *)sgl, end, hdr_len, 2257 d->addr); 2258 } 2259 2260 txq_advance(&eohw_txq->q, ndesc); 2261 cxgb4_ring_tx_db(adap, &eohw_txq->q, ndesc); 2262 eosw_txq_advance_index(&eosw_txq->last_pidx, 1, eosw_txq->ndesc); 2263 2264 out_unlock: 2265 spin_unlock(&eohw_txq->lock); 2266 } 2267 2268 static void ethofld_xmit(struct net_device *dev, struct sge_eosw_txq *eosw_txq) 2269 { 2270 struct sk_buff *skb; 2271 int pktcount; 2272 2273 switch (eosw_txq->state) { 2274 case CXGB4_EO_STATE_ACTIVE: 2275 case CXGB4_EO_STATE_FLOWC_OPEN_SEND: 2276 case CXGB4_EO_STATE_FLOWC_CLOSE_SEND: 2277 pktcount = eosw_txq->pidx - eosw_txq->last_pidx; 2278 if (pktcount < 0) 2279 pktcount += eosw_txq->ndesc; 2280 break; 2281 case CXGB4_EO_STATE_FLOWC_OPEN_REPLY: 2282 case CXGB4_EO_STATE_FLOWC_CLOSE_REPLY: 2283 case CXGB4_EO_STATE_CLOSED: 2284 default: 2285 return; 2286 }; 2287 2288 while (pktcount--) { 2289 skb = eosw_txq_peek(eosw_txq); 2290 if (!skb) { 2291 eosw_txq_advance_index(&eosw_txq->last_pidx, 1, 2292 eosw_txq->ndesc); 2293 continue; 2294 } 2295 2296 ethofld_hard_xmit(dev, eosw_txq); 2297 } 2298 } 2299 2300 static netdev_tx_t cxgb4_ethofld_xmit(struct sk_buff *skb, 2301 struct net_device *dev) 2302 { 2303 struct cxgb4_tc_port_mqprio *tc_port_mqprio; 2304 struct port_info *pi = netdev2pinfo(dev); 2305 struct adapter *adap = netdev2adap(dev); 2306 struct sge_eosw_txq *eosw_txq; 2307 u32 qid; 2308 int ret; 2309 2310 ret = cxgb4_validate_skb(skb, dev, ETH_HLEN); 2311 if (ret) 2312 goto out_free; 2313 2314 tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id]; 2315 qid = skb_get_queue_mapping(skb) - pi->nqsets; 2316 eosw_txq = &tc_port_mqprio->eosw_txq[qid]; 2317 spin_lock_bh(&eosw_txq->lock); 2318 if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE) 2319 goto out_unlock; 2320 2321 ret = eosw_txq_enqueue(eosw_txq, skb); 2322 if (ret) 2323 goto out_unlock; 2324 2325 /* SKB is queued for processing until credits are available. 2326 * So, call the destructor now and we'll free the skb later 2327 * after it has been successfully transmitted. 2328 */ 2329 skb_orphan(skb); 2330 2331 eosw_txq_advance(eosw_txq, 1); 2332 ethofld_xmit(dev, eosw_txq); 2333 spin_unlock_bh(&eosw_txq->lock); 2334 return NETDEV_TX_OK; 2335 2336 out_unlock: 2337 spin_unlock_bh(&eosw_txq->lock); 2338 out_free: 2339 dev_kfree_skb_any(skb); 2340 return NETDEV_TX_OK; 2341 } 2342 2343 netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev) 2344 { 2345 struct port_info *pi = netdev_priv(dev); 2346 u16 qid = skb_get_queue_mapping(skb); 2347 2348 if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM)) 2349 return cxgb4_vf_eth_xmit(skb, dev); 2350 2351 if (unlikely(qid >= pi->nqsets)) 2352 return cxgb4_ethofld_xmit(skb, dev); 2353 2354 return cxgb4_eth_xmit(skb, dev); 2355 } 2356 2357 /** 2358 * cxgb4_ethofld_send_flowc - Send ETHOFLD flowc request to bind eotid to tc. 2359 * @dev - netdevice 2360 * @eotid - ETHOFLD tid to bind/unbind 2361 * @tc - traffic class. If set to FW_SCHED_CLS_NONE, then unbinds the @eotid 2362 * 2363 * Send a FLOWC work request to bind an ETHOFLD TID to a traffic class. 2364 * If @tc is set to FW_SCHED_CLS_NONE, then the @eotid is unbound from 2365 * a traffic class. 2366 */ 2367 int cxgb4_ethofld_send_flowc(struct net_device *dev, u32 eotid, u32 tc) 2368 { 2369 struct port_info *pi = netdev2pinfo(dev); 2370 struct adapter *adap = netdev2adap(dev); 2371 enum sge_eosw_state next_state; 2372 struct sge_eosw_txq *eosw_txq; 2373 u32 len, len16, nparams = 6; 2374 struct fw_flowc_wr *flowc; 2375 struct eotid_entry *entry; 2376 struct sge_ofld_rxq *rxq; 2377 struct sk_buff *skb; 2378 int ret = 0; 2379 2380 len = sizeof(*flowc) + sizeof(struct fw_flowc_mnemval) * nparams; 2381 len16 = DIV_ROUND_UP(len, 16); 2382 2383 entry = cxgb4_lookup_eotid(&adap->tids, eotid); 2384 if (!entry) 2385 return -ENOMEM; 2386 2387 eosw_txq = (struct sge_eosw_txq *)entry->data; 2388 if (!eosw_txq) 2389 return -ENOMEM; 2390 2391 skb = alloc_skb(len, GFP_KERNEL); 2392 if (!skb) 2393 return -ENOMEM; 2394 2395 spin_lock_bh(&eosw_txq->lock); 2396 if (tc != FW_SCHED_CLS_NONE) { 2397 if (eosw_txq->state != CXGB4_EO_STATE_CLOSED) 2398 goto out_unlock; 2399 2400 next_state = CXGB4_EO_STATE_FLOWC_OPEN_SEND; 2401 } else { 2402 if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE) 2403 goto out_unlock; 2404 2405 next_state = CXGB4_EO_STATE_FLOWC_CLOSE_SEND; 2406 } 2407 2408 flowc = __skb_put(skb, len); 2409 memset(flowc, 0, len); 2410 2411 rxq = &adap->sge.eohw_rxq[eosw_txq->hwqid]; 2412 flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(len16) | 2413 FW_WR_FLOWID_V(eosw_txq->hwtid)); 2414 flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) | 2415 FW_FLOWC_WR_NPARAMS_V(nparams) | 2416 FW_WR_COMPL_V(1)); 2417 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN; 2418 flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V(adap->pf)); 2419 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH; 2420 flowc->mnemval[1].val = cpu_to_be32(pi->tx_chan); 2421 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT; 2422 flowc->mnemval[2].val = cpu_to_be32(pi->tx_chan); 2423 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID; 2424 flowc->mnemval[3].val = cpu_to_be32(rxq->rspq.abs_id); 2425 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS; 2426 flowc->mnemval[4].val = cpu_to_be32(tc); 2427 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_EOSTATE; 2428 flowc->mnemval[5].val = cpu_to_be32(tc == FW_SCHED_CLS_NONE ? 2429 FW_FLOWC_MNEM_EOSTATE_CLOSING : 2430 FW_FLOWC_MNEM_EOSTATE_ESTABLISHED); 2431 2432 eosw_txq->cred -= len16; 2433 eosw_txq->ncompl++; 2434 eosw_txq->last_compl = 0; 2435 2436 ret = eosw_txq_enqueue(eosw_txq, skb); 2437 if (ret) { 2438 dev_consume_skb_any(skb); 2439 goto out_unlock; 2440 } 2441 2442 eosw_txq->state = next_state; 2443 eosw_txq->flowc_idx = eosw_txq->pidx; 2444 eosw_txq_advance(eosw_txq, 1); 2445 ethofld_xmit(dev, eosw_txq); 2446 2447 out_unlock: 2448 spin_unlock_bh(&eosw_txq->lock); 2449 return ret; 2450 } 2451 2452 /** 2453 * is_imm - check whether a packet can be sent as immediate data 2454 * @skb: the packet 2455 * 2456 * Returns true if a packet can be sent as a WR with immediate data. 2457 */ 2458 static inline int is_imm(const struct sk_buff *skb) 2459 { 2460 return skb->len <= MAX_CTRL_WR_LEN; 2461 } 2462 2463 /** 2464 * ctrlq_check_stop - check if a control queue is full and should stop 2465 * @q: the queue 2466 * @wr: most recent WR written to the queue 2467 * 2468 * Check if a control queue has become full and should be stopped. 2469 * We clean up control queue descriptors very lazily, only when we are out. 2470 * If the queue is still full after reclaiming any completed descriptors 2471 * we suspend it and have the last WR wake it up. 2472 */ 2473 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr) 2474 { 2475 reclaim_completed_tx_imm(&q->q); 2476 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 2477 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 2478 q->q.stops++; 2479 q->full = 1; 2480 } 2481 } 2482 2483 /** 2484 * ctrl_xmit - send a packet through an SGE control Tx queue 2485 * @q: the control queue 2486 * @skb: the packet 2487 * 2488 * Send a packet through an SGE control Tx queue. Packets sent through 2489 * a control queue must fit entirely as immediate data. 2490 */ 2491 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb) 2492 { 2493 unsigned int ndesc; 2494 struct fw_wr_hdr *wr; 2495 2496 if (unlikely(!is_imm(skb))) { 2497 WARN_ON(1); 2498 dev_kfree_skb(skb); 2499 return NET_XMIT_DROP; 2500 } 2501 2502 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc)); 2503 spin_lock(&q->sendq.lock); 2504 2505 if (unlikely(q->full)) { 2506 skb->priority = ndesc; /* save for restart */ 2507 __skb_queue_tail(&q->sendq, skb); 2508 spin_unlock(&q->sendq.lock); 2509 return NET_XMIT_CN; 2510 } 2511 2512 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 2513 cxgb4_inline_tx_skb(skb, &q->q, wr); 2514 2515 txq_advance(&q->q, ndesc); 2516 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) 2517 ctrlq_check_stop(q, wr); 2518 2519 cxgb4_ring_tx_db(q->adap, &q->q, ndesc); 2520 spin_unlock(&q->sendq.lock); 2521 2522 kfree_skb(skb); 2523 return NET_XMIT_SUCCESS; 2524 } 2525 2526 /** 2527 * restart_ctrlq - restart a suspended control queue 2528 * @data: the control queue to restart 2529 * 2530 * Resumes transmission on a suspended Tx control queue. 2531 */ 2532 static void restart_ctrlq(unsigned long data) 2533 { 2534 struct sk_buff *skb; 2535 unsigned int written = 0; 2536 struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data; 2537 2538 spin_lock(&q->sendq.lock); 2539 reclaim_completed_tx_imm(&q->q); 2540 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */ 2541 2542 while ((skb = __skb_dequeue(&q->sendq)) != NULL) { 2543 struct fw_wr_hdr *wr; 2544 unsigned int ndesc = skb->priority; /* previously saved */ 2545 2546 written += ndesc; 2547 /* Write descriptors and free skbs outside the lock to limit 2548 * wait times. q->full is still set so new skbs will be queued. 2549 */ 2550 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 2551 txq_advance(&q->q, ndesc); 2552 spin_unlock(&q->sendq.lock); 2553 2554 cxgb4_inline_tx_skb(skb, &q->q, wr); 2555 kfree_skb(skb); 2556 2557 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 2558 unsigned long old = q->q.stops; 2559 2560 ctrlq_check_stop(q, wr); 2561 if (q->q.stops != old) { /* suspended anew */ 2562 spin_lock(&q->sendq.lock); 2563 goto ringdb; 2564 } 2565 } 2566 if (written > 16) { 2567 cxgb4_ring_tx_db(q->adap, &q->q, written); 2568 written = 0; 2569 } 2570 spin_lock(&q->sendq.lock); 2571 } 2572 q->full = 0; 2573 ringdb: 2574 if (written) 2575 cxgb4_ring_tx_db(q->adap, &q->q, written); 2576 spin_unlock(&q->sendq.lock); 2577 } 2578 2579 /** 2580 * t4_mgmt_tx - send a management message 2581 * @adap: the adapter 2582 * @skb: the packet containing the management message 2583 * 2584 * Send a management message through control queue 0. 2585 */ 2586 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb) 2587 { 2588 int ret; 2589 2590 local_bh_disable(); 2591 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb); 2592 local_bh_enable(); 2593 return ret; 2594 } 2595 2596 /** 2597 * is_ofld_imm - check whether a packet can be sent as immediate data 2598 * @skb: the packet 2599 * 2600 * Returns true if a packet can be sent as an offload WR with immediate 2601 * data. We currently use the same limit as for Ethernet packets. 2602 */ 2603 static inline int is_ofld_imm(const struct sk_buff *skb) 2604 { 2605 struct work_request_hdr *req = (struct work_request_hdr *)skb->data; 2606 unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi)); 2607 2608 if (opcode == FW_CRYPTO_LOOKASIDE_WR) 2609 return skb->len <= SGE_MAX_WR_LEN; 2610 else 2611 return skb->len <= MAX_IMM_TX_PKT_LEN; 2612 } 2613 2614 /** 2615 * calc_tx_flits_ofld - calculate # of flits for an offload packet 2616 * @skb: the packet 2617 * 2618 * Returns the number of flits needed for the given offload packet. 2619 * These packets are already fully constructed and no additional headers 2620 * will be added. 2621 */ 2622 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb) 2623 { 2624 unsigned int flits, cnt; 2625 2626 if (is_ofld_imm(skb)) 2627 return DIV_ROUND_UP(skb->len, 8); 2628 2629 flits = skb_transport_offset(skb) / 8U; /* headers */ 2630 cnt = skb_shinfo(skb)->nr_frags; 2631 if (skb_tail_pointer(skb) != skb_transport_header(skb)) 2632 cnt++; 2633 return flits + sgl_len(cnt); 2634 } 2635 2636 /** 2637 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion 2638 * @adap: the adapter 2639 * @q: the queue to stop 2640 * 2641 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting 2642 * inability to map packets. A periodic timer attempts to restart 2643 * queues so marked. 2644 */ 2645 static void txq_stop_maperr(struct sge_uld_txq *q) 2646 { 2647 q->mapping_err++; 2648 q->q.stops++; 2649 set_bit(q->q.cntxt_id - q->adap->sge.egr_start, 2650 q->adap->sge.txq_maperr); 2651 } 2652 2653 /** 2654 * ofldtxq_stop - stop an offload Tx queue that has become full 2655 * @q: the queue to stop 2656 * @wr: the Work Request causing the queue to become full 2657 * 2658 * Stops an offload Tx queue that has become full and modifies the packet 2659 * being written to request a wakeup. 2660 */ 2661 static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr) 2662 { 2663 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 2664 q->q.stops++; 2665 q->full = 1; 2666 } 2667 2668 /** 2669 * service_ofldq - service/restart a suspended offload queue 2670 * @q: the offload queue 2671 * 2672 * Services an offload Tx queue by moving packets from its Pending Send 2673 * Queue to the Hardware TX ring. The function starts and ends with the 2674 * Send Queue locked, but drops the lock while putting the skb at the 2675 * head of the Send Queue onto the Hardware TX Ring. Dropping the lock 2676 * allows more skbs to be added to the Send Queue by other threads. 2677 * The packet being processed at the head of the Pending Send Queue is 2678 * left on the queue in case we experience DMA Mapping errors, etc. 2679 * and need to give up and restart later. 2680 * 2681 * service_ofldq() can be thought of as a task which opportunistically 2682 * uses other threads execution contexts. We use the Offload Queue 2683 * boolean "service_ofldq_running" to make sure that only one instance 2684 * is ever running at a time ... 2685 */ 2686 static void service_ofldq(struct sge_uld_txq *q) 2687 { 2688 u64 *pos, *before, *end; 2689 int credits; 2690 struct sk_buff *skb; 2691 struct sge_txq *txq; 2692 unsigned int left; 2693 unsigned int written = 0; 2694 unsigned int flits, ndesc; 2695 2696 /* If another thread is currently in service_ofldq() processing the 2697 * Pending Send Queue then there's nothing to do. Otherwise, flag 2698 * that we're doing the work and continue. Examining/modifying 2699 * the Offload Queue boolean "service_ofldq_running" must be done 2700 * while holding the Pending Send Queue Lock. 2701 */ 2702 if (q->service_ofldq_running) 2703 return; 2704 q->service_ofldq_running = true; 2705 2706 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) { 2707 /* We drop the lock while we're working with the skb at the 2708 * head of the Pending Send Queue. This allows more skbs to 2709 * be added to the Pending Send Queue while we're working on 2710 * this one. We don't need to lock to guard the TX Ring 2711 * updates because only one thread of execution is ever 2712 * allowed into service_ofldq() at a time. 2713 */ 2714 spin_unlock(&q->sendq.lock); 2715 2716 cxgb4_reclaim_completed_tx(q->adap, &q->q, false); 2717 2718 flits = skb->priority; /* previously saved */ 2719 ndesc = flits_to_desc(flits); 2720 credits = txq_avail(&q->q) - ndesc; 2721 BUG_ON(credits < 0); 2722 if (unlikely(credits < TXQ_STOP_THRES)) 2723 ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data); 2724 2725 pos = (u64 *)&q->q.desc[q->q.pidx]; 2726 if (is_ofld_imm(skb)) 2727 cxgb4_inline_tx_skb(skb, &q->q, pos); 2728 else if (cxgb4_map_skb(q->adap->pdev_dev, skb, 2729 (dma_addr_t *)skb->head)) { 2730 txq_stop_maperr(q); 2731 spin_lock(&q->sendq.lock); 2732 break; 2733 } else { 2734 int last_desc, hdr_len = skb_transport_offset(skb); 2735 2736 /* The WR headers may not fit within one descriptor. 2737 * So we need to deal with wrap-around here. 2738 */ 2739 before = (u64 *)pos; 2740 end = (u64 *)pos + flits; 2741 txq = &q->q; 2742 pos = (void *)inline_tx_skb_header(skb, &q->q, 2743 (void *)pos, 2744 hdr_len); 2745 if (before > (u64 *)pos) { 2746 left = (u8 *)end - (u8 *)txq->stat; 2747 end = (void *)txq->desc + left; 2748 } 2749 2750 /* If current position is already at the end of the 2751 * ofld queue, reset the current to point to 2752 * start of the queue and update the end ptr as well. 2753 */ 2754 if (pos == (u64 *)txq->stat) { 2755 left = (u8 *)end - (u8 *)txq->stat; 2756 end = (void *)txq->desc + left; 2757 pos = (void *)txq->desc; 2758 } 2759 2760 cxgb4_write_sgl(skb, &q->q, (void *)pos, 2761 end, hdr_len, 2762 (dma_addr_t *)skb->head); 2763 #ifdef CONFIG_NEED_DMA_MAP_STATE 2764 skb->dev = q->adap->port[0]; 2765 skb->destructor = deferred_unmap_destructor; 2766 #endif 2767 last_desc = q->q.pidx + ndesc - 1; 2768 if (last_desc >= q->q.size) 2769 last_desc -= q->q.size; 2770 q->q.sdesc[last_desc].skb = skb; 2771 } 2772 2773 txq_advance(&q->q, ndesc); 2774 written += ndesc; 2775 if (unlikely(written > 32)) { 2776 cxgb4_ring_tx_db(q->adap, &q->q, written); 2777 written = 0; 2778 } 2779 2780 /* Reacquire the Pending Send Queue Lock so we can unlink the 2781 * skb we've just successfully transferred to the TX Ring and 2782 * loop for the next skb which may be at the head of the 2783 * Pending Send Queue. 2784 */ 2785 spin_lock(&q->sendq.lock); 2786 __skb_unlink(skb, &q->sendq); 2787 if (is_ofld_imm(skb)) 2788 kfree_skb(skb); 2789 } 2790 if (likely(written)) 2791 cxgb4_ring_tx_db(q->adap, &q->q, written); 2792 2793 /*Indicate that no thread is processing the Pending Send Queue 2794 * currently. 2795 */ 2796 q->service_ofldq_running = false; 2797 } 2798 2799 /** 2800 * ofld_xmit - send a packet through an offload queue 2801 * @q: the Tx offload queue 2802 * @skb: the packet 2803 * 2804 * Send an offload packet through an SGE offload queue. 2805 */ 2806 static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb) 2807 { 2808 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */ 2809 spin_lock(&q->sendq.lock); 2810 2811 /* Queue the new skb onto the Offload Queue's Pending Send Queue. If 2812 * that results in this new skb being the only one on the queue, start 2813 * servicing it. If there are other skbs already on the list, then 2814 * either the queue is currently being processed or it's been stopped 2815 * for some reason and it'll be restarted at a later time. Restart 2816 * paths are triggered by events like experiencing a DMA Mapping Error 2817 * or filling the Hardware TX Ring. 2818 */ 2819 __skb_queue_tail(&q->sendq, skb); 2820 if (q->sendq.qlen == 1) 2821 service_ofldq(q); 2822 2823 spin_unlock(&q->sendq.lock); 2824 return NET_XMIT_SUCCESS; 2825 } 2826 2827 /** 2828 * restart_ofldq - restart a suspended offload queue 2829 * @data: the offload queue to restart 2830 * 2831 * Resumes transmission on a suspended Tx offload queue. 2832 */ 2833 static void restart_ofldq(unsigned long data) 2834 { 2835 struct sge_uld_txq *q = (struct sge_uld_txq *)data; 2836 2837 spin_lock(&q->sendq.lock); 2838 q->full = 0; /* the queue actually is completely empty now */ 2839 service_ofldq(q); 2840 spin_unlock(&q->sendq.lock); 2841 } 2842 2843 /** 2844 * skb_txq - return the Tx queue an offload packet should use 2845 * @skb: the packet 2846 * 2847 * Returns the Tx queue an offload packet should use as indicated by bits 2848 * 1-15 in the packet's queue_mapping. 2849 */ 2850 static inline unsigned int skb_txq(const struct sk_buff *skb) 2851 { 2852 return skb->queue_mapping >> 1; 2853 } 2854 2855 /** 2856 * is_ctrl_pkt - return whether an offload packet is a control packet 2857 * @skb: the packet 2858 * 2859 * Returns whether an offload packet should use an OFLD or a CTRL 2860 * Tx queue as indicated by bit 0 in the packet's queue_mapping. 2861 */ 2862 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb) 2863 { 2864 return skb->queue_mapping & 1; 2865 } 2866 2867 static inline int uld_send(struct adapter *adap, struct sk_buff *skb, 2868 unsigned int tx_uld_type) 2869 { 2870 struct sge_uld_txq_info *txq_info; 2871 struct sge_uld_txq *txq; 2872 unsigned int idx = skb_txq(skb); 2873 2874 if (unlikely(is_ctrl_pkt(skb))) { 2875 /* Single ctrl queue is a requirement for LE workaround path */ 2876 if (adap->tids.nsftids) 2877 idx = 0; 2878 return ctrl_xmit(&adap->sge.ctrlq[idx], skb); 2879 } 2880 2881 txq_info = adap->sge.uld_txq_info[tx_uld_type]; 2882 if (unlikely(!txq_info)) { 2883 WARN_ON(true); 2884 return NET_XMIT_DROP; 2885 } 2886 2887 txq = &txq_info->uldtxq[idx]; 2888 return ofld_xmit(txq, skb); 2889 } 2890 2891 /** 2892 * t4_ofld_send - send an offload packet 2893 * @adap: the adapter 2894 * @skb: the packet 2895 * 2896 * Sends an offload packet. We use the packet queue_mapping to select the 2897 * appropriate Tx queue as follows: bit 0 indicates whether the packet 2898 * should be sent as regular or control, bits 1-15 select the queue. 2899 */ 2900 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb) 2901 { 2902 int ret; 2903 2904 local_bh_disable(); 2905 ret = uld_send(adap, skb, CXGB4_TX_OFLD); 2906 local_bh_enable(); 2907 return ret; 2908 } 2909 2910 /** 2911 * cxgb4_ofld_send - send an offload packet 2912 * @dev: the net device 2913 * @skb: the packet 2914 * 2915 * Sends an offload packet. This is an exported version of @t4_ofld_send, 2916 * intended for ULDs. 2917 */ 2918 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb) 2919 { 2920 return t4_ofld_send(netdev2adap(dev), skb); 2921 } 2922 EXPORT_SYMBOL(cxgb4_ofld_send); 2923 2924 static void *inline_tx_header(const void *src, 2925 const struct sge_txq *q, 2926 void *pos, int length) 2927 { 2928 int left = (void *)q->stat - pos; 2929 u64 *p; 2930 2931 if (likely(length <= left)) { 2932 memcpy(pos, src, length); 2933 pos += length; 2934 } else { 2935 memcpy(pos, src, left); 2936 memcpy(q->desc, src + left, length - left); 2937 pos = (void *)q->desc + (length - left); 2938 } 2939 /* 0-pad to multiple of 16 */ 2940 p = PTR_ALIGN(pos, 8); 2941 if ((uintptr_t)p & 8) { 2942 *p = 0; 2943 return p + 1; 2944 } 2945 return p; 2946 } 2947 2948 /** 2949 * ofld_xmit_direct - copy a WR into offload queue 2950 * @q: the Tx offload queue 2951 * @src: location of WR 2952 * @len: WR length 2953 * 2954 * Copy an immediate WR into an uncontended SGE offload queue. 2955 */ 2956 static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src, 2957 unsigned int len) 2958 { 2959 unsigned int ndesc; 2960 int credits; 2961 u64 *pos; 2962 2963 /* Use the lower limit as the cut-off */ 2964 if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) { 2965 WARN_ON(1); 2966 return NET_XMIT_DROP; 2967 } 2968 2969 /* Don't return NET_XMIT_CN here as the current 2970 * implementation doesn't queue the request 2971 * using an skb when the following conditions not met 2972 */ 2973 if (!spin_trylock(&q->sendq.lock)) 2974 return NET_XMIT_DROP; 2975 2976 if (q->full || !skb_queue_empty(&q->sendq) || 2977 q->service_ofldq_running) { 2978 spin_unlock(&q->sendq.lock); 2979 return NET_XMIT_DROP; 2980 } 2981 ndesc = flits_to_desc(DIV_ROUND_UP(len, 8)); 2982 credits = txq_avail(&q->q) - ndesc; 2983 pos = (u64 *)&q->q.desc[q->q.pidx]; 2984 2985 /* ofldtxq_stop modifies WR header in-situ */ 2986 inline_tx_header(src, &q->q, pos, len); 2987 if (unlikely(credits < TXQ_STOP_THRES)) 2988 ofldtxq_stop(q, (struct fw_wr_hdr *)pos); 2989 txq_advance(&q->q, ndesc); 2990 cxgb4_ring_tx_db(q->adap, &q->q, ndesc); 2991 2992 spin_unlock(&q->sendq.lock); 2993 return NET_XMIT_SUCCESS; 2994 } 2995 2996 int cxgb4_immdata_send(struct net_device *dev, unsigned int idx, 2997 const void *src, unsigned int len) 2998 { 2999 struct sge_uld_txq_info *txq_info; 3000 struct sge_uld_txq *txq; 3001 struct adapter *adap; 3002 int ret; 3003 3004 adap = netdev2adap(dev); 3005 3006 local_bh_disable(); 3007 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 3008 if (unlikely(!txq_info)) { 3009 WARN_ON(true); 3010 local_bh_enable(); 3011 return NET_XMIT_DROP; 3012 } 3013 txq = &txq_info->uldtxq[idx]; 3014 3015 ret = ofld_xmit_direct(txq, src, len); 3016 local_bh_enable(); 3017 return net_xmit_eval(ret); 3018 } 3019 EXPORT_SYMBOL(cxgb4_immdata_send); 3020 3021 /** 3022 * t4_crypto_send - send crypto packet 3023 * @adap: the adapter 3024 * @skb: the packet 3025 * 3026 * Sends crypto packet. We use the packet queue_mapping to select the 3027 * appropriate Tx queue as follows: bit 0 indicates whether the packet 3028 * should be sent as regular or control, bits 1-15 select the queue. 3029 */ 3030 static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb) 3031 { 3032 int ret; 3033 3034 local_bh_disable(); 3035 ret = uld_send(adap, skb, CXGB4_TX_CRYPTO); 3036 local_bh_enable(); 3037 return ret; 3038 } 3039 3040 /** 3041 * cxgb4_crypto_send - send crypto packet 3042 * @dev: the net device 3043 * @skb: the packet 3044 * 3045 * Sends crypto packet. This is an exported version of @t4_crypto_send, 3046 * intended for ULDs. 3047 */ 3048 int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb) 3049 { 3050 return t4_crypto_send(netdev2adap(dev), skb); 3051 } 3052 EXPORT_SYMBOL(cxgb4_crypto_send); 3053 3054 static inline void copy_frags(struct sk_buff *skb, 3055 const struct pkt_gl *gl, unsigned int offset) 3056 { 3057 int i; 3058 3059 /* usually there's just one frag */ 3060 __skb_fill_page_desc(skb, 0, gl->frags[0].page, 3061 gl->frags[0].offset + offset, 3062 gl->frags[0].size - offset); 3063 skb_shinfo(skb)->nr_frags = gl->nfrags; 3064 for (i = 1; i < gl->nfrags; i++) 3065 __skb_fill_page_desc(skb, i, gl->frags[i].page, 3066 gl->frags[i].offset, 3067 gl->frags[i].size); 3068 3069 /* get a reference to the last page, we don't own it */ 3070 get_page(gl->frags[gl->nfrags - 1].page); 3071 } 3072 3073 /** 3074 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list 3075 * @gl: the gather list 3076 * @skb_len: size of sk_buff main body if it carries fragments 3077 * @pull_len: amount of data to move to the sk_buff's main body 3078 * 3079 * Builds an sk_buff from the given packet gather list. Returns the 3080 * sk_buff or %NULL if sk_buff allocation failed. 3081 */ 3082 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl, 3083 unsigned int skb_len, unsigned int pull_len) 3084 { 3085 struct sk_buff *skb; 3086 3087 /* 3088 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer 3089 * size, which is expected since buffers are at least PAGE_SIZEd. 3090 * In this case packets up to RX_COPY_THRES have only one fragment. 3091 */ 3092 if (gl->tot_len <= RX_COPY_THRES) { 3093 skb = dev_alloc_skb(gl->tot_len); 3094 if (unlikely(!skb)) 3095 goto out; 3096 __skb_put(skb, gl->tot_len); 3097 skb_copy_to_linear_data(skb, gl->va, gl->tot_len); 3098 } else { 3099 skb = dev_alloc_skb(skb_len); 3100 if (unlikely(!skb)) 3101 goto out; 3102 __skb_put(skb, pull_len); 3103 skb_copy_to_linear_data(skb, gl->va, pull_len); 3104 3105 copy_frags(skb, gl, pull_len); 3106 skb->len = gl->tot_len; 3107 skb->data_len = skb->len - pull_len; 3108 skb->truesize += skb->data_len; 3109 } 3110 out: return skb; 3111 } 3112 EXPORT_SYMBOL(cxgb4_pktgl_to_skb); 3113 3114 /** 3115 * t4_pktgl_free - free a packet gather list 3116 * @gl: the gather list 3117 * 3118 * Releases the pages of a packet gather list. We do not own the last 3119 * page on the list and do not free it. 3120 */ 3121 static void t4_pktgl_free(const struct pkt_gl *gl) 3122 { 3123 int n; 3124 const struct page_frag *p; 3125 3126 for (p = gl->frags, n = gl->nfrags - 1; n--; p++) 3127 put_page(p->page); 3128 } 3129 3130 /* 3131 * Process an MPS trace packet. Give it an unused protocol number so it won't 3132 * be delivered to anyone and send it to the stack for capture. 3133 */ 3134 static noinline int handle_trace_pkt(struct adapter *adap, 3135 const struct pkt_gl *gl) 3136 { 3137 struct sk_buff *skb; 3138 3139 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN); 3140 if (unlikely(!skb)) { 3141 t4_pktgl_free(gl); 3142 return 0; 3143 } 3144 3145 if (is_t4(adap->params.chip)) 3146 __skb_pull(skb, sizeof(struct cpl_trace_pkt)); 3147 else 3148 __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt)); 3149 3150 skb_reset_mac_header(skb); 3151 skb->protocol = htons(0xffff); 3152 skb->dev = adap->port[0]; 3153 netif_receive_skb(skb); 3154 return 0; 3155 } 3156 3157 /** 3158 * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp 3159 * @adap: the adapter 3160 * @hwtstamps: time stamp structure to update 3161 * @sgetstamp: 60bit iqe timestamp 3162 * 3163 * Every ingress queue entry has the 60-bit timestamp, convert that timestamp 3164 * which is in Core Clock ticks into ktime_t and assign it 3165 **/ 3166 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap, 3167 struct skb_shared_hwtstamps *hwtstamps, 3168 u64 sgetstamp) 3169 { 3170 u64 ns; 3171 u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2); 3172 3173 ns = div_u64(tmp, adap->params.vpd.cclk); 3174 3175 memset(hwtstamps, 0, sizeof(*hwtstamps)); 3176 hwtstamps->hwtstamp = ns_to_ktime(ns); 3177 } 3178 3179 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl, 3180 const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len) 3181 { 3182 struct adapter *adapter = rxq->rspq.adap; 3183 struct sge *s = &adapter->sge; 3184 struct port_info *pi; 3185 int ret; 3186 struct sk_buff *skb; 3187 3188 skb = napi_get_frags(&rxq->rspq.napi); 3189 if (unlikely(!skb)) { 3190 t4_pktgl_free(gl); 3191 rxq->stats.rx_drops++; 3192 return; 3193 } 3194 3195 copy_frags(skb, gl, s->pktshift); 3196 if (tnl_hdr_len) 3197 skb->csum_level = 1; 3198 skb->len = gl->tot_len - s->pktshift; 3199 skb->data_len = skb->len; 3200 skb->truesize += skb->data_len; 3201 skb->ip_summed = CHECKSUM_UNNECESSARY; 3202 skb_record_rx_queue(skb, rxq->rspq.idx); 3203 pi = netdev_priv(skb->dev); 3204 if (pi->rxtstamp) 3205 cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb), 3206 gl->sgetstamp); 3207 if (rxq->rspq.netdev->features & NETIF_F_RXHASH) 3208 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 3209 PKT_HASH_TYPE_L3); 3210 3211 if (unlikely(pkt->vlan_ex)) { 3212 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 3213 rxq->stats.vlan_ex++; 3214 } 3215 ret = napi_gro_frags(&rxq->rspq.napi); 3216 if (ret == GRO_HELD) 3217 rxq->stats.lro_pkts++; 3218 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE) 3219 rxq->stats.lro_merged++; 3220 rxq->stats.pkts++; 3221 rxq->stats.rx_cso++; 3222 } 3223 3224 enum { 3225 RX_NON_PTP_PKT = 0, 3226 RX_PTP_PKT_SUC = 1, 3227 RX_PTP_PKT_ERR = 2 3228 }; 3229 3230 /** 3231 * t4_systim_to_hwstamp - read hardware time stamp 3232 * @adap: the adapter 3233 * @skb: the packet 3234 * 3235 * Read Time Stamp from MPS packet and insert in skb which 3236 * is forwarded to PTP application 3237 */ 3238 static noinline int t4_systim_to_hwstamp(struct adapter *adapter, 3239 struct sk_buff *skb) 3240 { 3241 struct skb_shared_hwtstamps *hwtstamps; 3242 struct cpl_rx_mps_pkt *cpl = NULL; 3243 unsigned char *data; 3244 int offset; 3245 3246 cpl = (struct cpl_rx_mps_pkt *)skb->data; 3247 if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) & 3248 X_CPL_RX_MPS_PKT_TYPE_PTP)) 3249 return RX_PTP_PKT_ERR; 3250 3251 data = skb->data + sizeof(*cpl); 3252 skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt)); 3253 offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN; 3254 if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short)) 3255 return RX_PTP_PKT_ERR; 3256 3257 hwtstamps = skb_hwtstamps(skb); 3258 memset(hwtstamps, 0, sizeof(*hwtstamps)); 3259 hwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*((u64 *)data))); 3260 3261 return RX_PTP_PKT_SUC; 3262 } 3263 3264 /** 3265 * t4_rx_hststamp - Recv PTP Event Message 3266 * @adap: the adapter 3267 * @rsp: the response queue descriptor holding the RX_PKT message 3268 * @skb: the packet 3269 * 3270 * PTP enabled and MPS packet, read HW timestamp 3271 */ 3272 static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp, 3273 struct sge_eth_rxq *rxq, struct sk_buff *skb) 3274 { 3275 int ret; 3276 3277 if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) && 3278 !is_t4(adapter->params.chip))) { 3279 ret = t4_systim_to_hwstamp(adapter, skb); 3280 if (ret == RX_PTP_PKT_ERR) { 3281 kfree_skb(skb); 3282 rxq->stats.rx_drops++; 3283 } 3284 return ret; 3285 } 3286 return RX_NON_PTP_PKT; 3287 } 3288 3289 /** 3290 * t4_tx_hststamp - Loopback PTP Transmit Event Message 3291 * @adap: the adapter 3292 * @skb: the packet 3293 * @dev: the ingress net device 3294 * 3295 * Read hardware timestamp for the loopback PTP Tx event message 3296 */ 3297 static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb, 3298 struct net_device *dev) 3299 { 3300 struct port_info *pi = netdev_priv(dev); 3301 3302 if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) { 3303 cxgb4_ptp_read_hwstamp(adapter, pi); 3304 kfree_skb(skb); 3305 return 0; 3306 } 3307 return 1; 3308 } 3309 3310 /** 3311 * t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages 3312 * @rspq: Ethernet RX Response Queue associated with Ethernet TX Queue 3313 * @rsp: Response Entry pointer into Response Queue 3314 * @gl: Gather List pointer 3315 * 3316 * For adapters which support the SGE Doorbell Queue Timer facility, 3317 * we configure the Ethernet TX Queues to send CIDX Updates to the 3318 * Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE 3319 * messages. This adds a small load to PCIe Link RX bandwidth and, 3320 * potentially, higher CPU Interrupt load, but allows us to respond 3321 * much more quickly to the CIDX Updates. This is important for 3322 * Upper Layer Software which isn't willing to have a large amount 3323 * of TX Data outstanding before receiving DMA Completions. 3324 */ 3325 static void t4_tx_completion_handler(struct sge_rspq *rspq, 3326 const __be64 *rsp, 3327 const struct pkt_gl *gl) 3328 { 3329 u8 opcode = ((const struct rss_header *)rsp)->opcode; 3330 struct port_info *pi = netdev_priv(rspq->netdev); 3331 struct adapter *adapter = rspq->adap; 3332 struct sge *s = &adapter->sge; 3333 struct sge_eth_txq *txq; 3334 3335 /* skip RSS header */ 3336 rsp++; 3337 3338 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 3339 */ 3340 if (unlikely(opcode == CPL_FW4_MSG && 3341 ((const struct cpl_fw4_msg *)rsp)->type == 3342 FW_TYPE_RSSCPL)) { 3343 rsp++; 3344 opcode = ((const struct rss_header *)rsp)->opcode; 3345 rsp++; 3346 } 3347 3348 if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) { 3349 pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n", 3350 __func__, opcode); 3351 return; 3352 } 3353 3354 txq = &s->ethtxq[pi->first_qset + rspq->idx]; 3355 3356 /* We've got the Hardware Consumer Index Update in the Egress Update 3357 * message. If we're using the SGE Doorbell Queue Timer mechanism, 3358 * these Egress Update messages will be our sole CIDX Updates we get 3359 * since we don't want to chew up PCIe bandwidth for both Ingress 3360 * Messages and Status Page writes. However, The code which manages 3361 * reclaiming successfully DMA'ed TX Work Requests uses the CIDX value 3362 * stored in the Status Page at the end of the TX Queue. It's easiest 3363 * to simply copy the CIDX Update value from the Egress Update message 3364 * to the Status Page. Also note that no Endian issues need to be 3365 * considered here since both are Big Endian and we're just copying 3366 * bytes consistently ... 3367 */ 3368 if (txq->dbqt) { 3369 struct cpl_sge_egr_update *egr; 3370 3371 egr = (struct cpl_sge_egr_update *)rsp; 3372 WRITE_ONCE(txq->q.stat->cidx, egr->cidx); 3373 } 3374 3375 t4_sge_eth_txq_egress_update(adapter, txq, -1); 3376 } 3377 3378 /** 3379 * t4_ethrx_handler - process an ingress ethernet packet 3380 * @q: the response queue that received the packet 3381 * @rsp: the response queue descriptor holding the RX_PKT message 3382 * @si: the gather list of packet fragments 3383 * 3384 * Process an ingress ethernet packet and deliver it to the stack. 3385 */ 3386 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp, 3387 const struct pkt_gl *si) 3388 { 3389 bool csum_ok; 3390 struct sk_buff *skb; 3391 const struct cpl_rx_pkt *pkt; 3392 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 3393 struct adapter *adapter = q->adap; 3394 struct sge *s = &q->adap->sge; 3395 int cpl_trace_pkt = is_t4(q->adap->params.chip) ? 3396 CPL_TRACE_PKT : CPL_TRACE_PKT_T5; 3397 u16 err_vec, tnl_hdr_len = 0; 3398 struct port_info *pi; 3399 int ret = 0; 3400 3401 /* If we're looking at TX Queue CIDX Update, handle that separately 3402 * and return. 3403 */ 3404 if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) || 3405 (*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) { 3406 t4_tx_completion_handler(q, rsp, si); 3407 return 0; 3408 } 3409 3410 if (unlikely(*(u8 *)rsp == cpl_trace_pkt)) 3411 return handle_trace_pkt(q->adap, si); 3412 3413 pkt = (const struct cpl_rx_pkt *)rsp; 3414 /* Compressed error vector is enabled for T6 only */ 3415 if (q->adap->params.tp.rx_pkt_encap) { 3416 err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec)); 3417 tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec)); 3418 } else { 3419 err_vec = be16_to_cpu(pkt->err_vec); 3420 } 3421 3422 csum_ok = pkt->csum_calc && !err_vec && 3423 (q->netdev->features & NETIF_F_RXCSUM); 3424 3425 if (err_vec) 3426 rxq->stats.bad_rx_pkts++; 3427 3428 if (((pkt->l2info & htonl(RXF_TCP_F)) || 3429 tnl_hdr_len) && 3430 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) { 3431 do_gro(rxq, si, pkt, tnl_hdr_len); 3432 return 0; 3433 } 3434 3435 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN); 3436 if (unlikely(!skb)) { 3437 t4_pktgl_free(si); 3438 rxq->stats.rx_drops++; 3439 return 0; 3440 } 3441 pi = netdev_priv(q->netdev); 3442 3443 /* Handle PTP Event Rx packet */ 3444 if (unlikely(pi->ptp_enable)) { 3445 ret = t4_rx_hststamp(adapter, rsp, rxq, skb); 3446 if (ret == RX_PTP_PKT_ERR) 3447 return 0; 3448 } 3449 if (likely(!ret)) 3450 __skb_pull(skb, s->pktshift); /* remove ethernet header pad */ 3451 3452 /* Handle the PTP Event Tx Loopback packet */ 3453 if (unlikely(pi->ptp_enable && !ret && 3454 (pkt->l2info & htonl(RXF_UDP_F)) && 3455 cxgb4_ptp_is_ptp_rx(skb))) { 3456 if (!t4_tx_hststamp(adapter, skb, q->netdev)) 3457 return 0; 3458 } 3459 3460 skb->protocol = eth_type_trans(skb, q->netdev); 3461 skb_record_rx_queue(skb, q->idx); 3462 if (skb->dev->features & NETIF_F_RXHASH) 3463 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 3464 PKT_HASH_TYPE_L3); 3465 3466 rxq->stats.pkts++; 3467 3468 if (pi->rxtstamp) 3469 cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb), 3470 si->sgetstamp); 3471 if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) { 3472 if (!pkt->ip_frag) { 3473 skb->ip_summed = CHECKSUM_UNNECESSARY; 3474 rxq->stats.rx_cso++; 3475 } else if (pkt->l2info & htonl(RXF_IP_F)) { 3476 __sum16 c = (__force __sum16)pkt->csum; 3477 skb->csum = csum_unfold(c); 3478 3479 if (tnl_hdr_len) { 3480 skb->ip_summed = CHECKSUM_UNNECESSARY; 3481 skb->csum_level = 1; 3482 } else { 3483 skb->ip_summed = CHECKSUM_COMPLETE; 3484 } 3485 rxq->stats.rx_cso++; 3486 } 3487 } else { 3488 skb_checksum_none_assert(skb); 3489 #ifdef CONFIG_CHELSIO_T4_FCOE 3490 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \ 3491 RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F) 3492 3493 if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) { 3494 if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) && 3495 (pi->fcoe.flags & CXGB_FCOE_ENABLED)) { 3496 if (q->adap->params.tp.rx_pkt_encap) 3497 csum_ok = err_vec & 3498 T6_COMPR_RXERR_SUM_F; 3499 else 3500 csum_ok = err_vec & RXERR_CSUM_F; 3501 if (!csum_ok) 3502 skb->ip_summed = CHECKSUM_UNNECESSARY; 3503 } 3504 } 3505 3506 #undef CPL_RX_PKT_FLAGS 3507 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3508 } 3509 3510 if (unlikely(pkt->vlan_ex)) { 3511 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 3512 rxq->stats.vlan_ex++; 3513 } 3514 skb_mark_napi_id(skb, &q->napi); 3515 netif_receive_skb(skb); 3516 return 0; 3517 } 3518 3519 /** 3520 * restore_rx_bufs - put back a packet's Rx buffers 3521 * @si: the packet gather list 3522 * @q: the SGE free list 3523 * @frags: number of FL buffers to restore 3524 * 3525 * Puts back on an FL the Rx buffers associated with @si. The buffers 3526 * have already been unmapped and are left unmapped, we mark them so to 3527 * prevent further unmapping attempts. 3528 * 3529 * This function undoes a series of @unmap_rx_buf calls when we find out 3530 * that the current packet can't be processed right away afterall and we 3531 * need to come back to it later. This is a very rare event and there's 3532 * no effort to make this particularly efficient. 3533 */ 3534 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q, 3535 int frags) 3536 { 3537 struct rx_sw_desc *d; 3538 3539 while (frags--) { 3540 if (q->cidx == 0) 3541 q->cidx = q->size - 1; 3542 else 3543 q->cidx--; 3544 d = &q->sdesc[q->cidx]; 3545 d->page = si->frags[frags].page; 3546 d->dma_addr |= RX_UNMAPPED_BUF; 3547 q->avail++; 3548 } 3549 } 3550 3551 /** 3552 * is_new_response - check if a response is newly written 3553 * @r: the response descriptor 3554 * @q: the response queue 3555 * 3556 * Returns true if a response descriptor contains a yet unprocessed 3557 * response. 3558 */ 3559 static inline bool is_new_response(const struct rsp_ctrl *r, 3560 const struct sge_rspq *q) 3561 { 3562 return (r->type_gen >> RSPD_GEN_S) == q->gen; 3563 } 3564 3565 /** 3566 * rspq_next - advance to the next entry in a response queue 3567 * @q: the queue 3568 * 3569 * Updates the state of a response queue to advance it to the next entry. 3570 */ 3571 static inline void rspq_next(struct sge_rspq *q) 3572 { 3573 q->cur_desc = (void *)q->cur_desc + q->iqe_len; 3574 if (unlikely(++q->cidx == q->size)) { 3575 q->cidx = 0; 3576 q->gen ^= 1; 3577 q->cur_desc = q->desc; 3578 } 3579 } 3580 3581 /** 3582 * process_responses - process responses from an SGE response queue 3583 * @q: the ingress queue to process 3584 * @budget: how many responses can be processed in this round 3585 * 3586 * Process responses from an SGE response queue up to the supplied budget. 3587 * Responses include received packets as well as control messages from FW 3588 * or HW. 3589 * 3590 * Additionally choose the interrupt holdoff time for the next interrupt 3591 * on this queue. If the system is under memory shortage use a fairly 3592 * long delay to help recovery. 3593 */ 3594 static int process_responses(struct sge_rspq *q, int budget) 3595 { 3596 int ret, rsp_type; 3597 int budget_left = budget; 3598 const struct rsp_ctrl *rc; 3599 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 3600 struct adapter *adapter = q->adap; 3601 struct sge *s = &adapter->sge; 3602 3603 while (likely(budget_left)) { 3604 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 3605 if (!is_new_response(rc, q)) { 3606 if (q->flush_handler) 3607 q->flush_handler(q); 3608 break; 3609 } 3610 3611 dma_rmb(); 3612 rsp_type = RSPD_TYPE_G(rc->type_gen); 3613 if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) { 3614 struct page_frag *fp; 3615 struct pkt_gl si; 3616 const struct rx_sw_desc *rsd; 3617 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags; 3618 3619 if (len & RSPD_NEWBUF_F) { 3620 if (likely(q->offset > 0)) { 3621 free_rx_bufs(q->adap, &rxq->fl, 1); 3622 q->offset = 0; 3623 } 3624 len = RSPD_LEN_G(len); 3625 } 3626 si.tot_len = len; 3627 3628 /* gather packet fragments */ 3629 for (frags = 0, fp = si.frags; ; frags++, fp++) { 3630 rsd = &rxq->fl.sdesc[rxq->fl.cidx]; 3631 bufsz = get_buf_size(adapter, rsd); 3632 fp->page = rsd->page; 3633 fp->offset = q->offset; 3634 fp->size = min(bufsz, len); 3635 len -= fp->size; 3636 if (!len) 3637 break; 3638 unmap_rx_buf(q->adap, &rxq->fl); 3639 } 3640 3641 si.sgetstamp = SGE_TIMESTAMP_G( 3642 be64_to_cpu(rc->last_flit)); 3643 /* 3644 * Last buffer remains mapped so explicitly make it 3645 * coherent for CPU access. 3646 */ 3647 dma_sync_single_for_cpu(q->adap->pdev_dev, 3648 get_buf_addr(rsd), 3649 fp->size, DMA_FROM_DEVICE); 3650 3651 si.va = page_address(si.frags[0].page) + 3652 si.frags[0].offset; 3653 prefetch(si.va); 3654 3655 si.nfrags = frags + 1; 3656 ret = q->handler(q, q->cur_desc, &si); 3657 if (likely(ret == 0)) 3658 q->offset += ALIGN(fp->size, s->fl_align); 3659 else 3660 restore_rx_bufs(&si, &rxq->fl, frags); 3661 } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) { 3662 ret = q->handler(q, q->cur_desc, NULL); 3663 } else { 3664 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN); 3665 } 3666 3667 if (unlikely(ret)) { 3668 /* couldn't process descriptor, back off for recovery */ 3669 q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX); 3670 break; 3671 } 3672 3673 rspq_next(q); 3674 budget_left--; 3675 } 3676 3677 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16) 3678 __refill_fl(q->adap, &rxq->fl); 3679 return budget - budget_left; 3680 } 3681 3682 /** 3683 * napi_rx_handler - the NAPI handler for Rx processing 3684 * @napi: the napi instance 3685 * @budget: how many packets we can process in this round 3686 * 3687 * Handler for new data events when using NAPI. This does not need any 3688 * locking or protection from interrupts as data interrupts are off at 3689 * this point and other adapter interrupts do not interfere (the latter 3690 * in not a concern at all with MSI-X as non-data interrupts then have 3691 * a separate handler). 3692 */ 3693 static int napi_rx_handler(struct napi_struct *napi, int budget) 3694 { 3695 unsigned int params; 3696 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi); 3697 int work_done; 3698 u32 val; 3699 3700 work_done = process_responses(q, budget); 3701 if (likely(work_done < budget)) { 3702 int timer_index; 3703 3704 napi_complete_done(napi, work_done); 3705 timer_index = QINTR_TIMER_IDX_G(q->next_intr_params); 3706 3707 if (q->adaptive_rx) { 3708 if (work_done > max(timer_pkt_quota[timer_index], 3709 MIN_NAPI_WORK)) 3710 timer_index = (timer_index + 1); 3711 else 3712 timer_index = timer_index - 1; 3713 3714 timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1); 3715 q->next_intr_params = 3716 QINTR_TIMER_IDX_V(timer_index) | 3717 QINTR_CNT_EN_V(0); 3718 params = q->next_intr_params; 3719 } else { 3720 params = q->next_intr_params; 3721 q->next_intr_params = q->intr_params; 3722 } 3723 } else 3724 params = QINTR_TIMER_IDX_V(7); 3725 3726 val = CIDXINC_V(work_done) | SEINTARM_V(params); 3727 3728 /* If we don't have access to the new User GTS (T5+), use the old 3729 * doorbell mechanism; otherwise use the new BAR2 mechanism. 3730 */ 3731 if (unlikely(q->bar2_addr == NULL)) { 3732 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A), 3733 val | INGRESSQID_V((u32)q->cntxt_id)); 3734 } else { 3735 writel(val | INGRESSQID_V(q->bar2_qid), 3736 q->bar2_addr + SGE_UDB_GTS); 3737 wmb(); 3738 } 3739 return work_done; 3740 } 3741 3742 void cxgb4_ethofld_restart(unsigned long data) 3743 { 3744 struct sge_eosw_txq *eosw_txq = (struct sge_eosw_txq *)data; 3745 int pktcount; 3746 3747 spin_lock(&eosw_txq->lock); 3748 pktcount = eosw_txq->cidx - eosw_txq->last_cidx; 3749 if (pktcount < 0) 3750 pktcount += eosw_txq->ndesc; 3751 3752 if (pktcount) { 3753 cxgb4_eosw_txq_free_desc(netdev2adap(eosw_txq->netdev), 3754 eosw_txq, pktcount); 3755 eosw_txq->inuse -= pktcount; 3756 } 3757 3758 /* There may be some packets waiting for completions. So, 3759 * attempt to send these packets now. 3760 */ 3761 ethofld_xmit(eosw_txq->netdev, eosw_txq); 3762 spin_unlock(&eosw_txq->lock); 3763 } 3764 3765 /* cxgb4_ethofld_rx_handler - Process ETHOFLD Tx completions 3766 * @q: the response queue that received the packet 3767 * @rsp: the response queue descriptor holding the CPL message 3768 * @si: the gather list of packet fragments 3769 * 3770 * Process a ETHOFLD Tx completion. Increment the cidx here, but 3771 * free up the descriptors in a tasklet later. 3772 */ 3773 int cxgb4_ethofld_rx_handler(struct sge_rspq *q, const __be64 *rsp, 3774 const struct pkt_gl *si) 3775 { 3776 u8 opcode = ((const struct rss_header *)rsp)->opcode; 3777 3778 /* skip RSS header */ 3779 rsp++; 3780 3781 if (opcode == CPL_FW4_ACK) { 3782 const struct cpl_fw4_ack *cpl; 3783 struct sge_eosw_txq *eosw_txq; 3784 struct eotid_entry *entry; 3785 struct sk_buff *skb; 3786 u32 hdr_len, eotid; 3787 u8 flits, wrlen16; 3788 int credits; 3789 3790 cpl = (const struct cpl_fw4_ack *)rsp; 3791 eotid = CPL_FW4_ACK_FLOWID_G(ntohl(OPCODE_TID(cpl))) - 3792 q->adap->tids.eotid_base; 3793 entry = cxgb4_lookup_eotid(&q->adap->tids, eotid); 3794 if (!entry) 3795 goto out_done; 3796 3797 eosw_txq = (struct sge_eosw_txq *)entry->data; 3798 if (!eosw_txq) 3799 goto out_done; 3800 3801 spin_lock(&eosw_txq->lock); 3802 credits = cpl->credits; 3803 while (credits > 0) { 3804 skb = eosw_txq->desc[eosw_txq->cidx].skb; 3805 if (!skb) 3806 break; 3807 3808 if (unlikely((eosw_txq->state == 3809 CXGB4_EO_STATE_FLOWC_OPEN_REPLY || 3810 eosw_txq->state == 3811 CXGB4_EO_STATE_FLOWC_CLOSE_REPLY) && 3812 eosw_txq->cidx == eosw_txq->flowc_idx)) { 3813 flits = DIV_ROUND_UP(skb->len, 8); 3814 if (eosw_txq->state == 3815 CXGB4_EO_STATE_FLOWC_OPEN_REPLY) 3816 eosw_txq->state = CXGB4_EO_STATE_ACTIVE; 3817 else 3818 eosw_txq->state = CXGB4_EO_STATE_CLOSED; 3819 complete(&eosw_txq->completion); 3820 } else { 3821 hdr_len = eth_get_headlen(eosw_txq->netdev, 3822 skb->data, 3823 skb_headlen(skb)); 3824 flits = ethofld_calc_tx_flits(q->adap, skb, 3825 hdr_len); 3826 } 3827 eosw_txq_advance_index(&eosw_txq->cidx, 1, 3828 eosw_txq->ndesc); 3829 wrlen16 = DIV_ROUND_UP(flits * 8, 16); 3830 credits -= wrlen16; 3831 } 3832 3833 eosw_txq->cred += cpl->credits; 3834 eosw_txq->ncompl--; 3835 3836 spin_unlock(&eosw_txq->lock); 3837 3838 /* Schedule a tasklet to reclaim SKBs and restart ETHOFLD Tx, 3839 * if there were packets waiting for completion. 3840 */ 3841 tasklet_schedule(&eosw_txq->qresume_tsk); 3842 } 3843 3844 out_done: 3845 return 0; 3846 } 3847 3848 /* 3849 * The MSI-X interrupt handler for an SGE response queue. 3850 */ 3851 irqreturn_t t4_sge_intr_msix(int irq, void *cookie) 3852 { 3853 struct sge_rspq *q = cookie; 3854 3855 napi_schedule(&q->napi); 3856 return IRQ_HANDLED; 3857 } 3858 3859 /* 3860 * Process the indirect interrupt entries in the interrupt queue and kick off 3861 * NAPI for each queue that has generated an entry. 3862 */ 3863 static unsigned int process_intrq(struct adapter *adap) 3864 { 3865 unsigned int credits; 3866 const struct rsp_ctrl *rc; 3867 struct sge_rspq *q = &adap->sge.intrq; 3868 u32 val; 3869 3870 spin_lock(&adap->sge.intrq_lock); 3871 for (credits = 0; ; credits++) { 3872 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 3873 if (!is_new_response(rc, q)) 3874 break; 3875 3876 dma_rmb(); 3877 if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) { 3878 unsigned int qid = ntohl(rc->pldbuflen_qid); 3879 3880 qid -= adap->sge.ingr_start; 3881 napi_schedule(&adap->sge.ingr_map[qid]->napi); 3882 } 3883 3884 rspq_next(q); 3885 } 3886 3887 val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params); 3888 3889 /* If we don't have access to the new User GTS (T5+), use the old 3890 * doorbell mechanism; otherwise use the new BAR2 mechanism. 3891 */ 3892 if (unlikely(q->bar2_addr == NULL)) { 3893 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 3894 val | INGRESSQID_V(q->cntxt_id)); 3895 } else { 3896 writel(val | INGRESSQID_V(q->bar2_qid), 3897 q->bar2_addr + SGE_UDB_GTS); 3898 wmb(); 3899 } 3900 spin_unlock(&adap->sge.intrq_lock); 3901 return credits; 3902 } 3903 3904 /* 3905 * The MSI interrupt handler, which handles data events from SGE response queues 3906 * as well as error and other async events as they all use the same MSI vector. 3907 */ 3908 static irqreturn_t t4_intr_msi(int irq, void *cookie) 3909 { 3910 struct adapter *adap = cookie; 3911 3912 if (adap->flags & CXGB4_MASTER_PF) 3913 t4_slow_intr_handler(adap); 3914 process_intrq(adap); 3915 return IRQ_HANDLED; 3916 } 3917 3918 /* 3919 * Interrupt handler for legacy INTx interrupts. 3920 * Handles data events from SGE response queues as well as error and other 3921 * async events as they all use the same interrupt line. 3922 */ 3923 static irqreturn_t t4_intr_intx(int irq, void *cookie) 3924 { 3925 struct adapter *adap = cookie; 3926 3927 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0); 3928 if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) | 3929 process_intrq(adap)) 3930 return IRQ_HANDLED; 3931 return IRQ_NONE; /* probably shared interrupt */ 3932 } 3933 3934 /** 3935 * t4_intr_handler - select the top-level interrupt handler 3936 * @adap: the adapter 3937 * 3938 * Selects the top-level interrupt handler based on the type of interrupts 3939 * (MSI-X, MSI, or INTx). 3940 */ 3941 irq_handler_t t4_intr_handler(struct adapter *adap) 3942 { 3943 if (adap->flags & CXGB4_USING_MSIX) 3944 return t4_sge_intr_msix; 3945 if (adap->flags & CXGB4_USING_MSI) 3946 return t4_intr_msi; 3947 return t4_intr_intx; 3948 } 3949 3950 static void sge_rx_timer_cb(struct timer_list *t) 3951 { 3952 unsigned long m; 3953 unsigned int i; 3954 struct adapter *adap = from_timer(adap, t, sge.rx_timer); 3955 struct sge *s = &adap->sge; 3956 3957 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) 3958 for (m = s->starving_fl[i]; m; m &= m - 1) { 3959 struct sge_eth_rxq *rxq; 3960 unsigned int id = __ffs(m) + i * BITS_PER_LONG; 3961 struct sge_fl *fl = s->egr_map[id]; 3962 3963 clear_bit(id, s->starving_fl); 3964 smp_mb__after_atomic(); 3965 3966 if (fl_starving(adap, fl)) { 3967 rxq = container_of(fl, struct sge_eth_rxq, fl); 3968 if (napi_reschedule(&rxq->rspq.napi)) 3969 fl->starving++; 3970 else 3971 set_bit(id, s->starving_fl); 3972 } 3973 } 3974 /* The remainder of the SGE RX Timer Callback routine is dedicated to 3975 * global Master PF activities like checking for chip ingress stalls, 3976 * etc. 3977 */ 3978 if (!(adap->flags & CXGB4_MASTER_PF)) 3979 goto done; 3980 3981 t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD); 3982 3983 done: 3984 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD); 3985 } 3986 3987 static void sge_tx_timer_cb(struct timer_list *t) 3988 { 3989 struct adapter *adap = from_timer(adap, t, sge.tx_timer); 3990 struct sge *s = &adap->sge; 3991 unsigned long m, period; 3992 unsigned int i, budget; 3993 3994 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) 3995 for (m = s->txq_maperr[i]; m; m &= m - 1) { 3996 unsigned long id = __ffs(m) + i * BITS_PER_LONG; 3997 struct sge_uld_txq *txq = s->egr_map[id]; 3998 3999 clear_bit(id, s->txq_maperr); 4000 tasklet_schedule(&txq->qresume_tsk); 4001 } 4002 4003 if (!is_t4(adap->params.chip)) { 4004 struct sge_eth_txq *q = &s->ptptxq; 4005 int avail; 4006 4007 spin_lock(&adap->ptp_lock); 4008 avail = reclaimable(&q->q); 4009 4010 if (avail) { 4011 free_tx_desc(adap, &q->q, avail, false); 4012 q->q.in_use -= avail; 4013 } 4014 spin_unlock(&adap->ptp_lock); 4015 } 4016 4017 budget = MAX_TIMER_TX_RECLAIM; 4018 i = s->ethtxq_rover; 4019 do { 4020 budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i], 4021 budget); 4022 if (!budget) 4023 break; 4024 4025 if (++i >= s->ethqsets) 4026 i = 0; 4027 } while (i != s->ethtxq_rover); 4028 s->ethtxq_rover = i; 4029 4030 if (budget == 0) { 4031 /* If we found too many reclaimable packets schedule a timer 4032 * in the near future to continue where we left off. 4033 */ 4034 period = 2; 4035 } else { 4036 /* We reclaimed all reclaimable TX Descriptors, so reschedule 4037 * at the normal period. 4038 */ 4039 period = TX_QCHECK_PERIOD; 4040 } 4041 4042 mod_timer(&s->tx_timer, jiffies + period); 4043 } 4044 4045 /** 4046 * bar2_address - return the BAR2 address for an SGE Queue's Registers 4047 * @adapter: the adapter 4048 * @qid: the SGE Queue ID 4049 * @qtype: the SGE Queue Type (Egress or Ingress) 4050 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 4051 * 4052 * Returns the BAR2 address for the SGE Queue Registers associated with 4053 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also 4054 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE 4055 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID" 4056 * Registers are supported (e.g. the Write Combining Doorbell Buffer). 4057 */ 4058 static void __iomem *bar2_address(struct adapter *adapter, 4059 unsigned int qid, 4060 enum t4_bar2_qtype qtype, 4061 unsigned int *pbar2_qid) 4062 { 4063 u64 bar2_qoffset; 4064 int ret; 4065 4066 ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0, 4067 &bar2_qoffset, pbar2_qid); 4068 if (ret) 4069 return NULL; 4070 4071 return adapter->bar2 + bar2_qoffset; 4072 } 4073 4074 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0 4075 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map 4076 */ 4077 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq, 4078 struct net_device *dev, int intr_idx, 4079 struct sge_fl *fl, rspq_handler_t hnd, 4080 rspq_flush_handler_t flush_hnd, int cong) 4081 { 4082 int ret, flsz = 0; 4083 struct fw_iq_cmd c; 4084 struct sge *s = &adap->sge; 4085 struct port_info *pi = netdev_priv(dev); 4086 int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING); 4087 4088 /* Size needs to be multiple of 16, including status entry. */ 4089 iq->size = roundup(iq->size, 16); 4090 4091 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0, 4092 &iq->phys_addr, NULL, 0, 4093 dev_to_node(adap->pdev_dev)); 4094 if (!iq->desc) 4095 return -ENOMEM; 4096 4097 memset(&c, 0, sizeof(c)); 4098 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 4099 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4100 FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0)); 4101 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F | 4102 FW_LEN16(c)); 4103 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) | 4104 FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) | 4105 FW_IQ_CMD_IQANDST_V(intr_idx < 0) | 4106 FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) | 4107 FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx : 4108 -intr_idx - 1)); 4109 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) | 4110 FW_IQ_CMD_IQGTSMODE_F | 4111 FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) | 4112 FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4)); 4113 c.iqsize = htons(iq->size); 4114 c.iqaddr = cpu_to_be64(iq->phys_addr); 4115 if (cong >= 0) 4116 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F | 4117 FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC 4118 : FW_IQ_IQTYPE_OFLD)); 4119 4120 if (fl) { 4121 unsigned int chip_ver = 4122 CHELSIO_CHIP_VERSION(adap->params.chip); 4123 4124 /* Allocate the ring for the hardware free list (with space 4125 * for its status page) along with the associated software 4126 * descriptor ring. The free list size needs to be a multiple 4127 * of the Egress Queue Unit and at least 2 Egress Units larger 4128 * than the SGE's Egress Congrestion Threshold 4129 * (fl_starve_thres - 1). 4130 */ 4131 if (fl->size < s->fl_starve_thres - 1 + 2 * 8) 4132 fl->size = s->fl_starve_thres - 1 + 2 * 8; 4133 fl->size = roundup(fl->size, 8); 4134 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64), 4135 sizeof(struct rx_sw_desc), &fl->addr, 4136 &fl->sdesc, s->stat_len, 4137 dev_to_node(adap->pdev_dev)); 4138 if (!fl->desc) 4139 goto fl_nomem; 4140 4141 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc); 4142 c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F | 4143 FW_IQ_CMD_FL0FETCHRO_V(relaxed) | 4144 FW_IQ_CMD_FL0DATARO_V(relaxed) | 4145 FW_IQ_CMD_FL0PADEN_F); 4146 if (cong >= 0) 4147 c.iqns_to_fl0congen |= 4148 htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) | 4149 FW_IQ_CMD_FL0CONGCIF_F | 4150 FW_IQ_CMD_FL0CONGEN_F); 4151 /* In T6, for egress queue type FL there is internal overhead 4152 * of 16B for header going into FLM module. Hence the maximum 4153 * allowed burst size is 448 bytes. For T4/T5, the hardware 4154 * doesn't coalesce fetch requests if more than 64 bytes of 4155 * Free List pointers are provided, so we use a 128-byte Fetch 4156 * Burst Minimum there (T6 implements coalescing so we can use 4157 * the smaller 64-byte value there). 4158 */ 4159 c.fl0dcaen_to_fl0cidxfthresh = 4160 htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ? 4161 FETCHBURSTMIN_128B_X : 4162 FETCHBURSTMIN_64B_T6_X) | 4163 FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ? 4164 FETCHBURSTMAX_512B_X : 4165 FETCHBURSTMAX_256B_X)); 4166 c.fl0size = htons(flsz); 4167 c.fl0addr = cpu_to_be64(fl->addr); 4168 } 4169 4170 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4171 if (ret) 4172 goto err; 4173 4174 netif_napi_add(dev, &iq->napi, napi_rx_handler, 64); 4175 iq->cur_desc = iq->desc; 4176 iq->cidx = 0; 4177 iq->gen = 1; 4178 iq->next_intr_params = iq->intr_params; 4179 iq->cntxt_id = ntohs(c.iqid); 4180 iq->abs_id = ntohs(c.physiqid); 4181 iq->bar2_addr = bar2_address(adap, 4182 iq->cntxt_id, 4183 T4_BAR2_QTYPE_INGRESS, 4184 &iq->bar2_qid); 4185 iq->size--; /* subtract status entry */ 4186 iq->netdev = dev; 4187 iq->handler = hnd; 4188 iq->flush_handler = flush_hnd; 4189 4190 memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr)); 4191 skb_queue_head_init(&iq->lro_mgr.lroq); 4192 4193 /* set offset to -1 to distinguish ingress queues without FL */ 4194 iq->offset = fl ? 0 : -1; 4195 4196 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq; 4197 4198 if (fl) { 4199 fl->cntxt_id = ntohs(c.fl0id); 4200 fl->avail = fl->pend_cred = 0; 4201 fl->pidx = fl->cidx = 0; 4202 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0; 4203 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl; 4204 4205 /* Note, we must initialize the BAR2 Free List User Doorbell 4206 * information before refilling the Free List! 4207 */ 4208 fl->bar2_addr = bar2_address(adap, 4209 fl->cntxt_id, 4210 T4_BAR2_QTYPE_EGRESS, 4211 &fl->bar2_qid); 4212 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL); 4213 } 4214 4215 /* For T5 and later we attempt to set up the Congestion Manager values 4216 * of the new RX Ethernet Queue. This should really be handled by 4217 * firmware because it's more complex than any host driver wants to 4218 * get involved with and it's different per chip and this is almost 4219 * certainly wrong. Firmware would be wrong as well, but it would be 4220 * a lot easier to fix in one place ... For now we do something very 4221 * simple (and hopefully less wrong). 4222 */ 4223 if (!is_t4(adap->params.chip) && cong >= 0) { 4224 u32 param, val, ch_map = 0; 4225 int i; 4226 u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log; 4227 4228 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 4229 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | 4230 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id)); 4231 if (cong == 0) { 4232 val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X); 4233 } else { 4234 val = 4235 CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X); 4236 for (i = 0; i < 4; i++) { 4237 if (cong & (1 << i)) 4238 ch_map |= 1 << (i << cng_ch_bits_log); 4239 } 4240 val |= CONMCTXT_CNGCHMAP_V(ch_map); 4241 } 4242 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 4243 ¶m, &val); 4244 if (ret) 4245 dev_warn(adap->pdev_dev, "Failed to set Congestion" 4246 " Manager Context for Ingress Queue %d: %d\n", 4247 iq->cntxt_id, -ret); 4248 } 4249 4250 return 0; 4251 4252 fl_nomem: 4253 ret = -ENOMEM; 4254 err: 4255 if (iq->desc) { 4256 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len, 4257 iq->desc, iq->phys_addr); 4258 iq->desc = NULL; 4259 } 4260 if (fl && fl->desc) { 4261 kfree(fl->sdesc); 4262 fl->sdesc = NULL; 4263 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc), 4264 fl->desc, fl->addr); 4265 fl->desc = NULL; 4266 } 4267 return ret; 4268 } 4269 4270 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id) 4271 { 4272 q->cntxt_id = id; 4273 q->bar2_addr = bar2_address(adap, 4274 q->cntxt_id, 4275 T4_BAR2_QTYPE_EGRESS, 4276 &q->bar2_qid); 4277 q->in_use = 0; 4278 q->cidx = q->pidx = 0; 4279 q->stops = q->restarts = 0; 4280 q->stat = (void *)&q->desc[q->size]; 4281 spin_lock_init(&q->db_lock); 4282 adap->sge.egr_map[id - adap->sge.egr_start] = q; 4283 } 4284 4285 /** 4286 * t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue 4287 * @adap: the adapter 4288 * @txq: the SGE Ethernet TX Queue to initialize 4289 * @dev: the Linux Network Device 4290 * @netdevq: the corresponding Linux TX Queue 4291 * @iqid: the Ingress Queue to which to deliver CIDX Update messages 4292 * @dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers 4293 */ 4294 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq, 4295 struct net_device *dev, struct netdev_queue *netdevq, 4296 unsigned int iqid, u8 dbqt) 4297 { 4298 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 4299 struct port_info *pi = netdev_priv(dev); 4300 struct sge *s = &adap->sge; 4301 struct fw_eq_eth_cmd c; 4302 int ret, nentries; 4303 4304 /* Add status entries */ 4305 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 4306 4307 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, 4308 sizeof(struct tx_desc), sizeof(struct tx_sw_desc), 4309 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, 4310 netdev_queue_numa_node_read(netdevq)); 4311 if (!txq->q.desc) 4312 return -ENOMEM; 4313 4314 memset(&c, 0, sizeof(c)); 4315 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F | 4316 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4317 FW_EQ_ETH_CMD_PFN_V(adap->pf) | 4318 FW_EQ_ETH_CMD_VFN_V(0)); 4319 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F | 4320 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c)); 4321 4322 /* For TX Ethernet Queues using the SGE Doorbell Queue Timer 4323 * mechanism, we use Ingress Queue messages for Hardware Consumer 4324 * Index Updates on the TX Queue. Otherwise we have the Hardware 4325 * write the CIDX Updates into the Status Page at the end of the 4326 * TX Queue. 4327 */ 4328 c.autoequiqe_to_viid = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F | 4329 FW_EQ_ETH_CMD_VIID_V(pi->viid)); 4330 4331 c.fetchszm_to_iqid = 4332 htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 4333 FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) | 4334 FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid)); 4335 4336 /* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */ 4337 c.dcaen_to_eqsize = 4338 htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5 4339 ? FETCHBURSTMIN_64B_X 4340 : FETCHBURSTMIN_64B_T6_X) | 4341 FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 4342 FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 4343 FW_EQ_ETH_CMD_EQSIZE_V(nentries)); 4344 4345 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 4346 4347 /* If we're using the SGE Doorbell Queue Timer mechanism, pass in the 4348 * currently configured Timer Index. THis can be changed later via an 4349 * ethtool -C tx-usecs {Timer Val} command. Note that the SGE 4350 * Doorbell Queue mode is currently automatically enabled in the 4351 * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ... 4352 */ 4353 if (dbqt) 4354 c.timeren_timerix = 4355 cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F | 4356 FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix)); 4357 4358 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4359 if (ret) { 4360 kfree(txq->q.sdesc); 4361 txq->q.sdesc = NULL; 4362 dma_free_coherent(adap->pdev_dev, 4363 nentries * sizeof(struct tx_desc), 4364 txq->q.desc, txq->q.phys_addr); 4365 txq->q.desc = NULL; 4366 return ret; 4367 } 4368 4369 txq->q.q_type = CXGB4_TXQ_ETH; 4370 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd))); 4371 txq->txq = netdevq; 4372 txq->tso = txq->tx_cso = txq->vlan_ins = 0; 4373 txq->mapping_err = 0; 4374 txq->dbqt = dbqt; 4375 4376 return 0; 4377 } 4378 4379 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq, 4380 struct net_device *dev, unsigned int iqid, 4381 unsigned int cmplqid) 4382 { 4383 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 4384 struct port_info *pi = netdev_priv(dev); 4385 struct sge *s = &adap->sge; 4386 struct fw_eq_ctrl_cmd c; 4387 int ret, nentries; 4388 4389 /* Add status entries */ 4390 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 4391 4392 txq->q.desc = alloc_ring(adap->pdev_dev, nentries, 4393 sizeof(struct tx_desc), 0, &txq->q.phys_addr, 4394 NULL, 0, dev_to_node(adap->pdev_dev)); 4395 if (!txq->q.desc) 4396 return -ENOMEM; 4397 4398 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F | 4399 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4400 FW_EQ_CTRL_CMD_PFN_V(adap->pf) | 4401 FW_EQ_CTRL_CMD_VFN_V(0)); 4402 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F | 4403 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c)); 4404 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid)); 4405 c.physeqid_pkd = htonl(0); 4406 c.fetchszm_to_iqid = 4407 htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 4408 FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) | 4409 FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid)); 4410 c.dcaen_to_eqsize = 4411 htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5 4412 ? FETCHBURSTMIN_64B_X 4413 : FETCHBURSTMIN_64B_T6_X) | 4414 FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 4415 FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 4416 FW_EQ_CTRL_CMD_EQSIZE_V(nentries)); 4417 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 4418 4419 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4420 if (ret) { 4421 dma_free_coherent(adap->pdev_dev, 4422 nentries * sizeof(struct tx_desc), 4423 txq->q.desc, txq->q.phys_addr); 4424 txq->q.desc = NULL; 4425 return ret; 4426 } 4427 4428 txq->q.q_type = CXGB4_TXQ_CTRL; 4429 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid))); 4430 txq->adap = adap; 4431 skb_queue_head_init(&txq->sendq); 4432 tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq); 4433 txq->full = 0; 4434 return 0; 4435 } 4436 4437 int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid, 4438 unsigned int cmplqid) 4439 { 4440 u32 param, val; 4441 4442 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 4443 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) | 4444 FW_PARAMS_PARAM_YZ_V(eqid)); 4445 val = cmplqid; 4446 return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 4447 } 4448 4449 static int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_txq *q, 4450 struct net_device *dev, u32 cmd, u32 iqid) 4451 { 4452 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 4453 struct port_info *pi = netdev_priv(dev); 4454 struct sge *s = &adap->sge; 4455 struct fw_eq_ofld_cmd c; 4456 u32 fb_min, nentries; 4457 int ret; 4458 4459 /* Add status entries */ 4460 nentries = q->size + s->stat_len / sizeof(struct tx_desc); 4461 q->desc = alloc_ring(adap->pdev_dev, q->size, sizeof(struct tx_desc), 4462 sizeof(struct tx_sw_desc), &q->phys_addr, 4463 &q->sdesc, s->stat_len, NUMA_NO_NODE); 4464 if (!q->desc) 4465 return -ENOMEM; 4466 4467 if (chip_ver <= CHELSIO_T5) 4468 fb_min = FETCHBURSTMIN_64B_X; 4469 else 4470 fb_min = FETCHBURSTMIN_64B_T6_X; 4471 4472 memset(&c, 0, sizeof(c)); 4473 c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F | 4474 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4475 FW_EQ_OFLD_CMD_PFN_V(adap->pf) | 4476 FW_EQ_OFLD_CMD_VFN_V(0)); 4477 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F | 4478 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c)); 4479 c.fetchszm_to_iqid = 4480 htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 4481 FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) | 4482 FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid)); 4483 c.dcaen_to_eqsize = 4484 htonl(FW_EQ_OFLD_CMD_FBMIN_V(fb_min) | 4485 FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 4486 FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 4487 FW_EQ_OFLD_CMD_EQSIZE_V(nentries)); 4488 c.eqaddr = cpu_to_be64(q->phys_addr); 4489 4490 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4491 if (ret) { 4492 kfree(q->sdesc); 4493 q->sdesc = NULL; 4494 dma_free_coherent(adap->pdev_dev, 4495 nentries * sizeof(struct tx_desc), 4496 q->desc, q->phys_addr); 4497 q->desc = NULL; 4498 return ret; 4499 } 4500 4501 init_txq(adap, q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd))); 4502 return 0; 4503 } 4504 4505 int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq, 4506 struct net_device *dev, unsigned int iqid, 4507 unsigned int uld_type) 4508 { 4509 u32 cmd = FW_EQ_OFLD_CMD; 4510 int ret; 4511 4512 if (unlikely(uld_type == CXGB4_TX_CRYPTO)) 4513 cmd = FW_EQ_CTRL_CMD; 4514 4515 ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, cmd, iqid); 4516 if (ret) 4517 return ret; 4518 4519 txq->q.q_type = CXGB4_TXQ_ULD; 4520 txq->adap = adap; 4521 skb_queue_head_init(&txq->sendq); 4522 tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq); 4523 txq->full = 0; 4524 txq->mapping_err = 0; 4525 return 0; 4526 } 4527 4528 int t4_sge_alloc_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq, 4529 struct net_device *dev, u32 iqid) 4530 { 4531 int ret; 4532 4533 ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, FW_EQ_OFLD_CMD, iqid); 4534 if (ret) 4535 return ret; 4536 4537 txq->q.q_type = CXGB4_TXQ_ULD; 4538 spin_lock_init(&txq->lock); 4539 txq->adap = adap; 4540 txq->tso = 0; 4541 txq->tx_cso = 0; 4542 txq->vlan_ins = 0; 4543 txq->mapping_err = 0; 4544 return 0; 4545 } 4546 4547 void free_txq(struct adapter *adap, struct sge_txq *q) 4548 { 4549 struct sge *s = &adap->sge; 4550 4551 dma_free_coherent(adap->pdev_dev, 4552 q->size * sizeof(struct tx_desc) + s->stat_len, 4553 q->desc, q->phys_addr); 4554 q->cntxt_id = 0; 4555 q->sdesc = NULL; 4556 q->desc = NULL; 4557 } 4558 4559 void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq, 4560 struct sge_fl *fl) 4561 { 4562 struct sge *s = &adap->sge; 4563 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff; 4564 4565 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL; 4566 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP, 4567 rq->cntxt_id, fl_id, 0xffff); 4568 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len, 4569 rq->desc, rq->phys_addr); 4570 netif_napi_del(&rq->napi); 4571 rq->netdev = NULL; 4572 rq->cntxt_id = rq->abs_id = 0; 4573 rq->desc = NULL; 4574 4575 if (fl) { 4576 free_rx_bufs(adap, fl, fl->avail); 4577 dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len, 4578 fl->desc, fl->addr); 4579 kfree(fl->sdesc); 4580 fl->sdesc = NULL; 4581 fl->cntxt_id = 0; 4582 fl->desc = NULL; 4583 } 4584 } 4585 4586 /** 4587 * t4_free_ofld_rxqs - free a block of consecutive Rx queues 4588 * @adap: the adapter 4589 * @n: number of queues 4590 * @q: pointer to first queue 4591 * 4592 * Release the resources of a consecutive block of offload Rx queues. 4593 */ 4594 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q) 4595 { 4596 for ( ; n; n--, q++) 4597 if (q->rspq.desc) 4598 free_rspq_fl(adap, &q->rspq, 4599 q->fl.size ? &q->fl : NULL); 4600 } 4601 4602 void t4_sge_free_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq) 4603 { 4604 if (txq->q.desc) { 4605 t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0, 4606 txq->q.cntxt_id); 4607 free_tx_desc(adap, &txq->q, txq->q.in_use, false); 4608 kfree(txq->q.sdesc); 4609 free_txq(adap, &txq->q); 4610 } 4611 } 4612 4613 /** 4614 * t4_free_sge_resources - free SGE resources 4615 * @adap: the adapter 4616 * 4617 * Frees resources used by the SGE queue sets. 4618 */ 4619 void t4_free_sge_resources(struct adapter *adap) 4620 { 4621 int i; 4622 struct sge_eth_rxq *eq; 4623 struct sge_eth_txq *etq; 4624 4625 /* stop all Rx queues in order to start them draining */ 4626 for (i = 0; i < adap->sge.ethqsets; i++) { 4627 eq = &adap->sge.ethrxq[i]; 4628 if (eq->rspq.desc) 4629 t4_iq_stop(adap, adap->mbox, adap->pf, 0, 4630 FW_IQ_TYPE_FL_INT_CAP, 4631 eq->rspq.cntxt_id, 4632 eq->fl.size ? eq->fl.cntxt_id : 0xffff, 4633 0xffff); 4634 } 4635 4636 /* clean up Ethernet Tx/Rx queues */ 4637 for (i = 0; i < adap->sge.ethqsets; i++) { 4638 eq = &adap->sge.ethrxq[i]; 4639 if (eq->rspq.desc) 4640 free_rspq_fl(adap, &eq->rspq, 4641 eq->fl.size ? &eq->fl : NULL); 4642 if (eq->msix) { 4643 cxgb4_free_msix_idx_in_bmap(adap, eq->msix->idx); 4644 eq->msix = NULL; 4645 } 4646 4647 etq = &adap->sge.ethtxq[i]; 4648 if (etq->q.desc) { 4649 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, 4650 etq->q.cntxt_id); 4651 __netif_tx_lock_bh(etq->txq); 4652 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 4653 __netif_tx_unlock_bh(etq->txq); 4654 kfree(etq->q.sdesc); 4655 free_txq(adap, &etq->q); 4656 } 4657 } 4658 4659 /* clean up control Tx queues */ 4660 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) { 4661 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i]; 4662 4663 if (cq->q.desc) { 4664 tasklet_kill(&cq->qresume_tsk); 4665 t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0, 4666 cq->q.cntxt_id); 4667 __skb_queue_purge(&cq->sendq); 4668 free_txq(adap, &cq->q); 4669 } 4670 } 4671 4672 if (adap->sge.fw_evtq.desc) { 4673 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL); 4674 if (adap->sge.fwevtq_msix_idx >= 0) 4675 cxgb4_free_msix_idx_in_bmap(adap, 4676 adap->sge.fwevtq_msix_idx); 4677 } 4678 4679 if (adap->sge.nd_msix_idx >= 0) 4680 cxgb4_free_msix_idx_in_bmap(adap, adap->sge.nd_msix_idx); 4681 4682 if (adap->sge.intrq.desc) 4683 free_rspq_fl(adap, &adap->sge.intrq, NULL); 4684 4685 if (!is_t4(adap->params.chip)) { 4686 etq = &adap->sge.ptptxq; 4687 if (etq->q.desc) { 4688 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, 4689 etq->q.cntxt_id); 4690 spin_lock_bh(&adap->ptp_lock); 4691 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 4692 spin_unlock_bh(&adap->ptp_lock); 4693 kfree(etq->q.sdesc); 4694 free_txq(adap, &etq->q); 4695 } 4696 } 4697 4698 /* clear the reverse egress queue map */ 4699 memset(adap->sge.egr_map, 0, 4700 adap->sge.egr_sz * sizeof(*adap->sge.egr_map)); 4701 } 4702 4703 void t4_sge_start(struct adapter *adap) 4704 { 4705 adap->sge.ethtxq_rover = 0; 4706 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD); 4707 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD); 4708 } 4709 4710 /** 4711 * t4_sge_stop - disable SGE operation 4712 * @adap: the adapter 4713 * 4714 * Stop tasklets and timers associated with the DMA engine. Note that 4715 * this is effective only if measures have been taken to disable any HW 4716 * events that may restart them. 4717 */ 4718 void t4_sge_stop(struct adapter *adap) 4719 { 4720 int i; 4721 struct sge *s = &adap->sge; 4722 4723 if (in_interrupt()) /* actions below require waiting */ 4724 return; 4725 4726 if (s->rx_timer.function) 4727 del_timer_sync(&s->rx_timer); 4728 if (s->tx_timer.function) 4729 del_timer_sync(&s->tx_timer); 4730 4731 if (is_offload(adap)) { 4732 struct sge_uld_txq_info *txq_info; 4733 4734 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 4735 if (txq_info) { 4736 struct sge_uld_txq *txq = txq_info->uldtxq; 4737 4738 for_each_ofldtxq(&adap->sge, i) { 4739 if (txq->q.desc) 4740 tasklet_kill(&txq->qresume_tsk); 4741 } 4742 } 4743 } 4744 4745 if (is_pci_uld(adap)) { 4746 struct sge_uld_txq_info *txq_info; 4747 4748 txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO]; 4749 if (txq_info) { 4750 struct sge_uld_txq *txq = txq_info->uldtxq; 4751 4752 for_each_ofldtxq(&adap->sge, i) { 4753 if (txq->q.desc) 4754 tasklet_kill(&txq->qresume_tsk); 4755 } 4756 } 4757 } 4758 4759 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) { 4760 struct sge_ctrl_txq *cq = &s->ctrlq[i]; 4761 4762 if (cq->q.desc) 4763 tasklet_kill(&cq->qresume_tsk); 4764 } 4765 } 4766 4767 /** 4768 * t4_sge_init_soft - grab core SGE values needed by SGE code 4769 * @adap: the adapter 4770 * 4771 * We need to grab the SGE operating parameters that we need to have 4772 * in order to do our job and make sure we can live with them. 4773 */ 4774 4775 static int t4_sge_init_soft(struct adapter *adap) 4776 { 4777 struct sge *s = &adap->sge; 4778 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu; 4779 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5; 4780 u32 ingress_rx_threshold; 4781 4782 /* 4783 * Verify that CPL messages are going to the Ingress Queue for 4784 * process_responses() and that only packet data is going to the 4785 * Free Lists. 4786 */ 4787 if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) != 4788 RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) { 4789 dev_err(adap->pdev_dev, "bad SGE CPL MODE\n"); 4790 return -EINVAL; 4791 } 4792 4793 /* 4794 * Validate the Host Buffer Register Array indices that we want to 4795 * use ... 4796 * 4797 * XXX Note that we should really read through the Host Buffer Size 4798 * XXX register array and find the indices of the Buffer Sizes which 4799 * XXX meet our needs! 4800 */ 4801 #define READ_FL_BUF(x) \ 4802 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32)) 4803 4804 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF); 4805 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF); 4806 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF); 4807 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF); 4808 4809 /* We only bother using the Large Page logic if the Large Page Buffer 4810 * is larger than our Page Size Buffer. 4811 */ 4812 if (fl_large_pg <= fl_small_pg) 4813 fl_large_pg = 0; 4814 4815 #undef READ_FL_BUF 4816 4817 /* The Page Size Buffer must be exactly equal to our Page Size and the 4818 * Large Page Size Buffer should be 0 (per above) or a power of 2. 4819 */ 4820 if (fl_small_pg != PAGE_SIZE || 4821 (fl_large_pg & (fl_large_pg-1)) != 0) { 4822 dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n", 4823 fl_small_pg, fl_large_pg); 4824 return -EINVAL; 4825 } 4826 if (fl_large_pg) 4827 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT; 4828 4829 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) || 4830 fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) { 4831 dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n", 4832 fl_small_mtu, fl_large_mtu); 4833 return -EINVAL; 4834 } 4835 4836 /* 4837 * Retrieve our RX interrupt holdoff timer values and counter 4838 * threshold values from the SGE parameters. 4839 */ 4840 timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A); 4841 timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A); 4842 timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A); 4843 s->timer_val[0] = core_ticks_to_us(adap, 4844 TIMERVALUE0_G(timer_value_0_and_1)); 4845 s->timer_val[1] = core_ticks_to_us(adap, 4846 TIMERVALUE1_G(timer_value_0_and_1)); 4847 s->timer_val[2] = core_ticks_to_us(adap, 4848 TIMERVALUE2_G(timer_value_2_and_3)); 4849 s->timer_val[3] = core_ticks_to_us(adap, 4850 TIMERVALUE3_G(timer_value_2_and_3)); 4851 s->timer_val[4] = core_ticks_to_us(adap, 4852 TIMERVALUE4_G(timer_value_4_and_5)); 4853 s->timer_val[5] = core_ticks_to_us(adap, 4854 TIMERVALUE5_G(timer_value_4_and_5)); 4855 4856 ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A); 4857 s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold); 4858 s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold); 4859 s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold); 4860 s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold); 4861 4862 return 0; 4863 } 4864 4865 /** 4866 * t4_sge_init - initialize SGE 4867 * @adap: the adapter 4868 * 4869 * Perform low-level SGE code initialization needed every time after a 4870 * chip reset. 4871 */ 4872 int t4_sge_init(struct adapter *adap) 4873 { 4874 struct sge *s = &adap->sge; 4875 u32 sge_control, sge_conm_ctrl; 4876 int ret, egress_threshold; 4877 4878 /* 4879 * Ingress Padding Boundary and Egress Status Page Size are set up by 4880 * t4_fixup_host_params(). 4881 */ 4882 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 4883 s->pktshift = PKTSHIFT_G(sge_control); 4884 s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64; 4885 4886 s->fl_align = t4_fl_pkt_align(adap); 4887 ret = t4_sge_init_soft(adap); 4888 if (ret < 0) 4889 return ret; 4890 4891 /* 4892 * A FL with <= fl_starve_thres buffers is starving and a periodic 4893 * timer will attempt to refill it. This needs to be larger than the 4894 * SGE's Egress Congestion Threshold. If it isn't, then we can get 4895 * stuck waiting for new packets while the SGE is waiting for us to 4896 * give it more Free List entries. (Note that the SGE's Egress 4897 * Congestion Threshold is in units of 2 Free List pointers.) For T4, 4898 * there was only a single field to control this. For T5 there's the 4899 * original field which now only applies to Unpacked Mode Free List 4900 * buffers and a new field which only applies to Packed Mode Free List 4901 * buffers. 4902 */ 4903 sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A); 4904 switch (CHELSIO_CHIP_VERSION(adap->params.chip)) { 4905 case CHELSIO_T4: 4906 egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl); 4907 break; 4908 case CHELSIO_T5: 4909 egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl); 4910 break; 4911 case CHELSIO_T6: 4912 egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl); 4913 break; 4914 default: 4915 dev_err(adap->pdev_dev, "Unsupported Chip version %d\n", 4916 CHELSIO_CHIP_VERSION(adap->params.chip)); 4917 return -EINVAL; 4918 } 4919 s->fl_starve_thres = 2*egress_threshold + 1; 4920 4921 t4_idma_monitor_init(adap, &s->idma_monitor); 4922 4923 /* Set up timers used for recuring callbacks to process RX and TX 4924 * administrative tasks. 4925 */ 4926 timer_setup(&s->rx_timer, sge_rx_timer_cb, 0); 4927 timer_setup(&s->tx_timer, sge_tx_timer_cb, 0); 4928 4929 spin_lock_init(&s->intrq_lock); 4930 4931 return 0; 4932 } 4933