xref: /linux/drivers/net/ethernet/chelsio/cxgb4/sge.c (revision 4d66c56f7efe122d09d06cd3ebfa52a43d51a9cb)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/if_vlan.h>
39 #include <linux/ip.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/jiffies.h>
42 #include <linux/prefetch.h>
43 #include <linux/export.h>
44 #include <net/xfrm.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/busy_poll.h>
48 #ifdef CONFIG_CHELSIO_T4_FCOE
49 #include <scsi/fc/fc_fcoe.h>
50 #endif /* CONFIG_CHELSIO_T4_FCOE */
51 #include "cxgb4.h"
52 #include "t4_regs.h"
53 #include "t4_values.h"
54 #include "t4_msg.h"
55 #include "t4fw_api.h"
56 #include "cxgb4_ptp.h"
57 #include "cxgb4_uld.h"
58 #include "cxgb4_tc_mqprio.h"
59 #include "sched.h"
60 
61 /*
62  * Rx buffer size.  We use largish buffers if possible but settle for single
63  * pages under memory shortage.
64  */
65 #if PAGE_SHIFT >= 16
66 # define FL_PG_ORDER 0
67 #else
68 # define FL_PG_ORDER (16 - PAGE_SHIFT)
69 #endif
70 
71 /* RX_PULL_LEN should be <= RX_COPY_THRES */
72 #define RX_COPY_THRES    256
73 #define RX_PULL_LEN      128
74 
75 /*
76  * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
77  * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
78  */
79 #define RX_PKT_SKB_LEN   512
80 
81 /*
82  * Max number of Tx descriptors we clean up at a time.  Should be modest as
83  * freeing skbs isn't cheap and it happens while holding locks.  We just need
84  * to free packets faster than they arrive, we eventually catch up and keep
85  * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES.  It should
86  * also match the CIDX Flush Threshold.
87  */
88 #define MAX_TX_RECLAIM 32
89 
90 /*
91  * Max number of Rx buffers we replenish at a time.  Again keep this modest,
92  * allocating buffers isn't cheap either.
93  */
94 #define MAX_RX_REFILL 16U
95 
96 /*
97  * Period of the Rx queue check timer.  This timer is infrequent as it has
98  * something to do only when the system experiences severe memory shortage.
99  */
100 #define RX_QCHECK_PERIOD (HZ / 2)
101 
102 /*
103  * Period of the Tx queue check timer.
104  */
105 #define TX_QCHECK_PERIOD (HZ / 2)
106 
107 /*
108  * Max number of Tx descriptors to be reclaimed by the Tx timer.
109  */
110 #define MAX_TIMER_TX_RECLAIM 100
111 
112 /*
113  * Timer index used when backing off due to memory shortage.
114  */
115 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
116 
117 /*
118  * Suspension threshold for non-Ethernet Tx queues.  We require enough room
119  * for a full sized WR.
120  */
121 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
122 
123 /*
124  * Max Tx descriptor space we allow for an Ethernet packet to be inlined
125  * into a WR.
126  */
127 #define MAX_IMM_TX_PKT_LEN 256
128 
129 /*
130  * Max size of a WR sent through a control Tx queue.
131  */
132 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
133 
134 struct rx_sw_desc {                /* SW state per Rx descriptor */
135 	struct page *page;
136 	dma_addr_t dma_addr;
137 };
138 
139 /*
140  * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
141  * buffer).  We currently only support two sizes for 1500- and 9000-byte MTUs.
142  * We could easily support more but there doesn't seem to be much need for
143  * that ...
144  */
145 #define FL_MTU_SMALL 1500
146 #define FL_MTU_LARGE 9000
147 
148 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
149 					  unsigned int mtu)
150 {
151 	struct sge *s = &adapter->sge;
152 
153 	return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
154 }
155 
156 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
157 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
158 
159 /*
160  * Bits 0..3 of rx_sw_desc.dma_addr have special meaning.  The hardware uses
161  * these to specify the buffer size as an index into the SGE Free List Buffer
162  * Size register array.  We also use bit 4, when the buffer has been unmapped
163  * for DMA, but this is of course never sent to the hardware and is only used
164  * to prevent double unmappings.  All of the above requires that the Free List
165  * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
166  * 32-byte or or a power of 2 greater in alignment.  Since the SGE's minimal
167  * Free List Buffer alignment is 32 bytes, this works out for us ...
168  */
169 enum {
170 	RX_BUF_FLAGS     = 0x1f,   /* bottom five bits are special */
171 	RX_BUF_SIZE      = 0x0f,   /* bottom three bits are for buf sizes */
172 	RX_UNMAPPED_BUF  = 0x10,   /* buffer is not mapped */
173 
174 	/*
175 	 * XXX We shouldn't depend on being able to use these indices.
176 	 * XXX Especially when some other Master PF has initialized the
177 	 * XXX adapter or we use the Firmware Configuration File.  We
178 	 * XXX should really search through the Host Buffer Size register
179 	 * XXX array for the appropriately sized buffer indices.
180 	 */
181 	RX_SMALL_PG_BUF  = 0x0,   /* small (PAGE_SIZE) page buffer */
182 	RX_LARGE_PG_BUF  = 0x1,   /* buffer large (FL_PG_ORDER) page buffer */
183 
184 	RX_SMALL_MTU_BUF = 0x2,   /* small MTU buffer */
185 	RX_LARGE_MTU_BUF = 0x3,   /* large MTU buffer */
186 };
187 
188 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
189 #define MIN_NAPI_WORK  1
190 
191 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
192 {
193 	return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
194 }
195 
196 static inline bool is_buf_mapped(const struct rx_sw_desc *d)
197 {
198 	return !(d->dma_addr & RX_UNMAPPED_BUF);
199 }
200 
201 /**
202  *	txq_avail - return the number of available slots in a Tx queue
203  *	@q: the Tx queue
204  *
205  *	Returns the number of descriptors in a Tx queue available to write new
206  *	packets.
207  */
208 static inline unsigned int txq_avail(const struct sge_txq *q)
209 {
210 	return q->size - 1 - q->in_use;
211 }
212 
213 /**
214  *	fl_cap - return the capacity of a free-buffer list
215  *	@fl: the FL
216  *
217  *	Returns the capacity of a free-buffer list.  The capacity is less than
218  *	the size because one descriptor needs to be left unpopulated, otherwise
219  *	HW will think the FL is empty.
220  */
221 static inline unsigned int fl_cap(const struct sge_fl *fl)
222 {
223 	return fl->size - 8;   /* 1 descriptor = 8 buffers */
224 }
225 
226 /**
227  *	fl_starving - return whether a Free List is starving.
228  *	@adapter: pointer to the adapter
229  *	@fl: the Free List
230  *
231  *	Tests specified Free List to see whether the number of buffers
232  *	available to the hardware has falled below our "starvation"
233  *	threshold.
234  */
235 static inline bool fl_starving(const struct adapter *adapter,
236 			       const struct sge_fl *fl)
237 {
238 	const struct sge *s = &adapter->sge;
239 
240 	return fl->avail - fl->pend_cred <= s->fl_starve_thres;
241 }
242 
243 int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb,
244 		  dma_addr_t *addr)
245 {
246 	const skb_frag_t *fp, *end;
247 	const struct skb_shared_info *si;
248 
249 	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
250 	if (dma_mapping_error(dev, *addr))
251 		goto out_err;
252 
253 	si = skb_shinfo(skb);
254 	end = &si->frags[si->nr_frags];
255 
256 	for (fp = si->frags; fp < end; fp++) {
257 		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
258 					   DMA_TO_DEVICE);
259 		if (dma_mapping_error(dev, *addr))
260 			goto unwind;
261 	}
262 	return 0;
263 
264 unwind:
265 	while (fp-- > si->frags)
266 		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
267 
268 	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
269 out_err:
270 	return -ENOMEM;
271 }
272 EXPORT_SYMBOL(cxgb4_map_skb);
273 
274 static void unmap_skb(struct device *dev, const struct sk_buff *skb,
275 		      const dma_addr_t *addr)
276 {
277 	const skb_frag_t *fp, *end;
278 	const struct skb_shared_info *si;
279 
280 	dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
281 
282 	si = skb_shinfo(skb);
283 	end = &si->frags[si->nr_frags];
284 	for (fp = si->frags; fp < end; fp++)
285 		dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
286 }
287 
288 #ifdef CONFIG_NEED_DMA_MAP_STATE
289 /**
290  *	deferred_unmap_destructor - unmap a packet when it is freed
291  *	@skb: the packet
292  *
293  *	This is the packet destructor used for Tx packets that need to remain
294  *	mapped until they are freed rather than until their Tx descriptors are
295  *	freed.
296  */
297 static void deferred_unmap_destructor(struct sk_buff *skb)
298 {
299 	unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
300 }
301 #endif
302 
303 static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
304 		      const struct ulptx_sgl *sgl, const struct sge_txq *q)
305 {
306 	const struct ulptx_sge_pair *p;
307 	unsigned int nfrags = skb_shinfo(skb)->nr_frags;
308 
309 	if (likely(skb_headlen(skb)))
310 		dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
311 				 DMA_TO_DEVICE);
312 	else {
313 		dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
314 			       DMA_TO_DEVICE);
315 		nfrags--;
316 	}
317 
318 	/*
319 	 * the complexity below is because of the possibility of a wrap-around
320 	 * in the middle of an SGL
321 	 */
322 	for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
323 		if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
324 unmap:			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
325 				       ntohl(p->len[0]), DMA_TO_DEVICE);
326 			dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
327 				       ntohl(p->len[1]), DMA_TO_DEVICE);
328 			p++;
329 		} else if ((u8 *)p == (u8 *)q->stat) {
330 			p = (const struct ulptx_sge_pair *)q->desc;
331 			goto unmap;
332 		} else if ((u8 *)p + 8 == (u8 *)q->stat) {
333 			const __be64 *addr = (const __be64 *)q->desc;
334 
335 			dma_unmap_page(dev, be64_to_cpu(addr[0]),
336 				       ntohl(p->len[0]), DMA_TO_DEVICE);
337 			dma_unmap_page(dev, be64_to_cpu(addr[1]),
338 				       ntohl(p->len[1]), DMA_TO_DEVICE);
339 			p = (const struct ulptx_sge_pair *)&addr[2];
340 		} else {
341 			const __be64 *addr = (const __be64 *)q->desc;
342 
343 			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
344 				       ntohl(p->len[0]), DMA_TO_DEVICE);
345 			dma_unmap_page(dev, be64_to_cpu(addr[0]),
346 				       ntohl(p->len[1]), DMA_TO_DEVICE);
347 			p = (const struct ulptx_sge_pair *)&addr[1];
348 		}
349 	}
350 	if (nfrags) {
351 		__be64 addr;
352 
353 		if ((u8 *)p == (u8 *)q->stat)
354 			p = (const struct ulptx_sge_pair *)q->desc;
355 		addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
356 						       *(const __be64 *)q->desc;
357 		dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
358 			       DMA_TO_DEVICE);
359 	}
360 }
361 
362 /**
363  *	free_tx_desc - reclaims Tx descriptors and their buffers
364  *	@adapter: the adapter
365  *	@q: the Tx queue to reclaim descriptors from
366  *	@n: the number of descriptors to reclaim
367  *	@unmap: whether the buffers should be unmapped for DMA
368  *
369  *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
370  *	Tx buffers.  Called with the Tx queue lock held.
371  */
372 void free_tx_desc(struct adapter *adap, struct sge_txq *q,
373 		  unsigned int n, bool unmap)
374 {
375 	struct tx_sw_desc *d;
376 	unsigned int cidx = q->cidx;
377 	struct device *dev = adap->pdev_dev;
378 
379 	d = &q->sdesc[cidx];
380 	while (n--) {
381 		if (d->skb) {                       /* an SGL is present */
382 			if (unmap)
383 				unmap_sgl(dev, d->skb, d->sgl, q);
384 			dev_consume_skb_any(d->skb);
385 			d->skb = NULL;
386 		}
387 		++d;
388 		if (++cidx == q->size) {
389 			cidx = 0;
390 			d = q->sdesc;
391 		}
392 	}
393 	q->cidx = cidx;
394 }
395 
396 /*
397  * Return the number of reclaimable descriptors in a Tx queue.
398  */
399 static inline int reclaimable(const struct sge_txq *q)
400 {
401 	int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
402 	hw_cidx -= q->cidx;
403 	return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
404 }
405 
406 /**
407  *	reclaim_completed_tx - reclaims completed TX Descriptors
408  *	@adap: the adapter
409  *	@q: the Tx queue to reclaim completed descriptors from
410  *	@maxreclaim: the maximum number of TX Descriptors to reclaim or -1
411  *	@unmap: whether the buffers should be unmapped for DMA
412  *
413  *	Reclaims Tx Descriptors that the SGE has indicated it has processed,
414  *	and frees the associated buffers if possible.  If @max == -1, then
415  *	we'll use a defaiult maximum.  Called with the TX Queue locked.
416  */
417 static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
418 				       int maxreclaim, bool unmap)
419 {
420 	int reclaim = reclaimable(q);
421 
422 	if (reclaim) {
423 		/*
424 		 * Limit the amount of clean up work we do at a time to keep
425 		 * the Tx lock hold time O(1).
426 		 */
427 		if (maxreclaim < 0)
428 			maxreclaim = MAX_TX_RECLAIM;
429 		if (reclaim > maxreclaim)
430 			reclaim = maxreclaim;
431 
432 		free_tx_desc(adap, q, reclaim, unmap);
433 		q->in_use -= reclaim;
434 	}
435 
436 	return reclaim;
437 }
438 
439 /**
440  *	cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors
441  *	@adap: the adapter
442  *	@q: the Tx queue to reclaim completed descriptors from
443  *	@unmap: whether the buffers should be unmapped for DMA
444  *
445  *	Reclaims Tx descriptors that the SGE has indicated it has processed,
446  *	and frees the associated buffers if possible.  Called with the Tx
447  *	queue locked.
448  */
449 void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
450 				bool unmap)
451 {
452 	(void)reclaim_completed_tx(adap, q, -1, unmap);
453 }
454 EXPORT_SYMBOL(cxgb4_reclaim_completed_tx);
455 
456 static inline int get_buf_size(struct adapter *adapter,
457 			       const struct rx_sw_desc *d)
458 {
459 	struct sge *s = &adapter->sge;
460 	unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
461 	int buf_size;
462 
463 	switch (rx_buf_size_idx) {
464 	case RX_SMALL_PG_BUF:
465 		buf_size = PAGE_SIZE;
466 		break;
467 
468 	case RX_LARGE_PG_BUF:
469 		buf_size = PAGE_SIZE << s->fl_pg_order;
470 		break;
471 
472 	case RX_SMALL_MTU_BUF:
473 		buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
474 		break;
475 
476 	case RX_LARGE_MTU_BUF:
477 		buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
478 		break;
479 
480 	default:
481 		BUG();
482 	}
483 
484 	return buf_size;
485 }
486 
487 /**
488  *	free_rx_bufs - free the Rx buffers on an SGE free list
489  *	@adap: the adapter
490  *	@q: the SGE free list to free buffers from
491  *	@n: how many buffers to free
492  *
493  *	Release the next @n buffers on an SGE free-buffer Rx queue.   The
494  *	buffers must be made inaccessible to HW before calling this function.
495  */
496 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
497 {
498 	while (n--) {
499 		struct rx_sw_desc *d = &q->sdesc[q->cidx];
500 
501 		if (is_buf_mapped(d))
502 			dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
503 				       get_buf_size(adap, d),
504 				       PCI_DMA_FROMDEVICE);
505 		put_page(d->page);
506 		d->page = NULL;
507 		if (++q->cidx == q->size)
508 			q->cidx = 0;
509 		q->avail--;
510 	}
511 }
512 
513 /**
514  *	unmap_rx_buf - unmap the current Rx buffer on an SGE free list
515  *	@adap: the adapter
516  *	@q: the SGE free list
517  *
518  *	Unmap the current buffer on an SGE free-buffer Rx queue.   The
519  *	buffer must be made inaccessible to HW before calling this function.
520  *
521  *	This is similar to @free_rx_bufs above but does not free the buffer.
522  *	Do note that the FL still loses any further access to the buffer.
523  */
524 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
525 {
526 	struct rx_sw_desc *d = &q->sdesc[q->cidx];
527 
528 	if (is_buf_mapped(d))
529 		dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
530 			       get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
531 	d->page = NULL;
532 	if (++q->cidx == q->size)
533 		q->cidx = 0;
534 	q->avail--;
535 }
536 
537 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
538 {
539 	if (q->pend_cred >= 8) {
540 		u32 val = adap->params.arch.sge_fl_db;
541 
542 		if (is_t4(adap->params.chip))
543 			val |= PIDX_V(q->pend_cred / 8);
544 		else
545 			val |= PIDX_T5_V(q->pend_cred / 8);
546 
547 		/* Make sure all memory writes to the Free List queue are
548 		 * committed before we tell the hardware about them.
549 		 */
550 		wmb();
551 
552 		/* If we don't have access to the new User Doorbell (T5+), use
553 		 * the old doorbell mechanism; otherwise use the new BAR2
554 		 * mechanism.
555 		 */
556 		if (unlikely(q->bar2_addr == NULL)) {
557 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
558 				     val | QID_V(q->cntxt_id));
559 		} else {
560 			writel(val | QID_V(q->bar2_qid),
561 			       q->bar2_addr + SGE_UDB_KDOORBELL);
562 
563 			/* This Write memory Barrier will force the write to
564 			 * the User Doorbell area to be flushed.
565 			 */
566 			wmb();
567 		}
568 		q->pend_cred &= 7;
569 	}
570 }
571 
572 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
573 				  dma_addr_t mapping)
574 {
575 	sd->page = pg;
576 	sd->dma_addr = mapping;      /* includes size low bits */
577 }
578 
579 /**
580  *	refill_fl - refill an SGE Rx buffer ring
581  *	@adap: the adapter
582  *	@q: the ring to refill
583  *	@n: the number of new buffers to allocate
584  *	@gfp: the gfp flags for the allocations
585  *
586  *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
587  *	allocated with the supplied gfp flags.  The caller must assure that
588  *	@n does not exceed the queue's capacity.  If afterwards the queue is
589  *	found critically low mark it as starving in the bitmap of starving FLs.
590  *
591  *	Returns the number of buffers allocated.
592  */
593 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
594 			      gfp_t gfp)
595 {
596 	struct sge *s = &adap->sge;
597 	struct page *pg;
598 	dma_addr_t mapping;
599 	unsigned int cred = q->avail;
600 	__be64 *d = &q->desc[q->pidx];
601 	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
602 	int node;
603 
604 #ifdef CONFIG_DEBUG_FS
605 	if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
606 		goto out;
607 #endif
608 
609 	gfp |= __GFP_NOWARN;
610 	node = dev_to_node(adap->pdev_dev);
611 
612 	if (s->fl_pg_order == 0)
613 		goto alloc_small_pages;
614 
615 	/*
616 	 * Prefer large buffers
617 	 */
618 	while (n) {
619 		pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
620 		if (unlikely(!pg)) {
621 			q->large_alloc_failed++;
622 			break;       /* fall back to single pages */
623 		}
624 
625 		mapping = dma_map_page(adap->pdev_dev, pg, 0,
626 				       PAGE_SIZE << s->fl_pg_order,
627 				       PCI_DMA_FROMDEVICE);
628 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
629 			__free_pages(pg, s->fl_pg_order);
630 			q->mapping_err++;
631 			goto out;   /* do not try small pages for this error */
632 		}
633 		mapping |= RX_LARGE_PG_BUF;
634 		*d++ = cpu_to_be64(mapping);
635 
636 		set_rx_sw_desc(sd, pg, mapping);
637 		sd++;
638 
639 		q->avail++;
640 		if (++q->pidx == q->size) {
641 			q->pidx = 0;
642 			sd = q->sdesc;
643 			d = q->desc;
644 		}
645 		n--;
646 	}
647 
648 alloc_small_pages:
649 	while (n--) {
650 		pg = alloc_pages_node(node, gfp, 0);
651 		if (unlikely(!pg)) {
652 			q->alloc_failed++;
653 			break;
654 		}
655 
656 		mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
657 				       PCI_DMA_FROMDEVICE);
658 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
659 			put_page(pg);
660 			q->mapping_err++;
661 			goto out;
662 		}
663 		*d++ = cpu_to_be64(mapping);
664 
665 		set_rx_sw_desc(sd, pg, mapping);
666 		sd++;
667 
668 		q->avail++;
669 		if (++q->pidx == q->size) {
670 			q->pidx = 0;
671 			sd = q->sdesc;
672 			d = q->desc;
673 		}
674 	}
675 
676 out:	cred = q->avail - cred;
677 	q->pend_cred += cred;
678 	ring_fl_db(adap, q);
679 
680 	if (unlikely(fl_starving(adap, q))) {
681 		smp_wmb();
682 		q->low++;
683 		set_bit(q->cntxt_id - adap->sge.egr_start,
684 			adap->sge.starving_fl);
685 	}
686 
687 	return cred;
688 }
689 
690 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
691 {
692 	refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
693 		  GFP_ATOMIC);
694 }
695 
696 /**
697  *	alloc_ring - allocate resources for an SGE descriptor ring
698  *	@dev: the PCI device's core device
699  *	@nelem: the number of descriptors
700  *	@elem_size: the size of each descriptor
701  *	@sw_size: the size of the SW state associated with each ring element
702  *	@phys: the physical address of the allocated ring
703  *	@metadata: address of the array holding the SW state for the ring
704  *	@stat_size: extra space in HW ring for status information
705  *	@node: preferred node for memory allocations
706  *
707  *	Allocates resources for an SGE descriptor ring, such as Tx queues,
708  *	free buffer lists, or response queues.  Each SGE ring requires
709  *	space for its HW descriptors plus, optionally, space for the SW state
710  *	associated with each HW entry (the metadata).  The function returns
711  *	three values: the virtual address for the HW ring (the return value
712  *	of the function), the bus address of the HW ring, and the address
713  *	of the SW ring.
714  */
715 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
716 			size_t sw_size, dma_addr_t *phys, void *metadata,
717 			size_t stat_size, int node)
718 {
719 	size_t len = nelem * elem_size + stat_size;
720 	void *s = NULL;
721 	void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
722 
723 	if (!p)
724 		return NULL;
725 	if (sw_size) {
726 		s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node);
727 
728 		if (!s) {
729 			dma_free_coherent(dev, len, p, *phys);
730 			return NULL;
731 		}
732 	}
733 	if (metadata)
734 		*(void **)metadata = s;
735 	return p;
736 }
737 
738 /**
739  *	sgl_len - calculates the size of an SGL of the given capacity
740  *	@n: the number of SGL entries
741  *
742  *	Calculates the number of flits needed for a scatter/gather list that
743  *	can hold the given number of entries.
744  */
745 static inline unsigned int sgl_len(unsigned int n)
746 {
747 	/* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
748 	 * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
749 	 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
750 	 * repeated sequences of { Length[i], Length[i+1], Address[i],
751 	 * Address[i+1] } (this ensures that all addresses are on 64-bit
752 	 * boundaries).  If N is even, then Length[N+1] should be set to 0 and
753 	 * Address[N+1] is omitted.
754 	 *
755 	 * The following calculation incorporates all of the above.  It's
756 	 * somewhat hard to follow but, briefly: the "+2" accounts for the
757 	 * first two flits which include the DSGL header, Length0 and
758 	 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
759 	 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
760 	 * finally the "+((n-1)&1)" adds the one remaining flit needed if
761 	 * (n-1) is odd ...
762 	 */
763 	n--;
764 	return (3 * n) / 2 + (n & 1) + 2;
765 }
766 
767 /**
768  *	flits_to_desc - returns the num of Tx descriptors for the given flits
769  *	@n: the number of flits
770  *
771  *	Returns the number of Tx descriptors needed for the supplied number
772  *	of flits.
773  */
774 static inline unsigned int flits_to_desc(unsigned int n)
775 {
776 	BUG_ON(n > SGE_MAX_WR_LEN / 8);
777 	return DIV_ROUND_UP(n, 8);
778 }
779 
780 /**
781  *	is_eth_imm - can an Ethernet packet be sent as immediate data?
782  *	@skb: the packet
783  *
784  *	Returns whether an Ethernet packet is small enough to fit as
785  *	immediate data. Return value corresponds to headroom required.
786  */
787 static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver)
788 {
789 	int hdrlen = 0;
790 
791 	if (skb->encapsulation && skb_shinfo(skb)->gso_size &&
792 	    chip_ver > CHELSIO_T5) {
793 		hdrlen = sizeof(struct cpl_tx_tnl_lso);
794 		hdrlen += sizeof(struct cpl_tx_pkt_core);
795 	} else {
796 		hdrlen = skb_shinfo(skb)->gso_size ?
797 			 sizeof(struct cpl_tx_pkt_lso_core) : 0;
798 		hdrlen += sizeof(struct cpl_tx_pkt);
799 	}
800 	if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
801 		return hdrlen;
802 	return 0;
803 }
804 
805 /**
806  *	calc_tx_flits - calculate the number of flits for a packet Tx WR
807  *	@skb: the packet
808  *
809  *	Returns the number of flits needed for a Tx WR for the given Ethernet
810  *	packet, including the needed WR and CPL headers.
811  */
812 static inline unsigned int calc_tx_flits(const struct sk_buff *skb,
813 					 unsigned int chip_ver)
814 {
815 	unsigned int flits;
816 	int hdrlen = is_eth_imm(skb, chip_ver);
817 
818 	/* If the skb is small enough, we can pump it out as a work request
819 	 * with only immediate data.  In that case we just have to have the
820 	 * TX Packet header plus the skb data in the Work Request.
821 	 */
822 
823 	if (hdrlen)
824 		return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
825 
826 	/* Otherwise, we're going to have to construct a Scatter gather list
827 	 * of the skb body and fragments.  We also include the flits necessary
828 	 * for the TX Packet Work Request and CPL.  We always have a firmware
829 	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
830 	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
831 	 * message or, if we're doing a Large Send Offload, an LSO CPL message
832 	 * with an embedded TX Packet Write CPL message.
833 	 */
834 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
835 	if (skb_shinfo(skb)->gso_size) {
836 		if (skb->encapsulation && chip_ver > CHELSIO_T5)
837 			hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
838 				 sizeof(struct cpl_tx_tnl_lso);
839 		else
840 			hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
841 				 sizeof(struct cpl_tx_pkt_lso_core);
842 
843 		hdrlen += sizeof(struct cpl_tx_pkt_core);
844 		flits += (hdrlen / sizeof(__be64));
845 	} else {
846 		flits += (sizeof(struct fw_eth_tx_pkt_wr) +
847 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
848 	}
849 	return flits;
850 }
851 
852 /**
853  *	calc_tx_descs - calculate the number of Tx descriptors for a packet
854  *	@skb: the packet
855  *
856  *	Returns the number of Tx descriptors needed for the given Ethernet
857  *	packet, including the needed WR and CPL headers.
858  */
859 static inline unsigned int calc_tx_descs(const struct sk_buff *skb,
860 					 unsigned int chip_ver)
861 {
862 	return flits_to_desc(calc_tx_flits(skb, chip_ver));
863 }
864 
865 /**
866  *	cxgb4_write_sgl - populate a scatter/gather list for a packet
867  *	@skb: the packet
868  *	@q: the Tx queue we are writing into
869  *	@sgl: starting location for writing the SGL
870  *	@end: points right after the end of the SGL
871  *	@start: start offset into skb main-body data to include in the SGL
872  *	@addr: the list of bus addresses for the SGL elements
873  *
874  *	Generates a gather list for the buffers that make up a packet.
875  *	The caller must provide adequate space for the SGL that will be written.
876  *	The SGL includes all of the packet's page fragments and the data in its
877  *	main body except for the first @start bytes.  @sgl must be 16-byte
878  *	aligned and within a Tx descriptor with available space.  @end points
879  *	right after the end of the SGL but does not account for any potential
880  *	wrap around, i.e., @end > @sgl.
881  */
882 void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q,
883 		     struct ulptx_sgl *sgl, u64 *end, unsigned int start,
884 		     const dma_addr_t *addr)
885 {
886 	unsigned int i, len;
887 	struct ulptx_sge_pair *to;
888 	const struct skb_shared_info *si = skb_shinfo(skb);
889 	unsigned int nfrags = si->nr_frags;
890 	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
891 
892 	len = skb_headlen(skb) - start;
893 	if (likely(len)) {
894 		sgl->len0 = htonl(len);
895 		sgl->addr0 = cpu_to_be64(addr[0] + start);
896 		nfrags++;
897 	} else {
898 		sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
899 		sgl->addr0 = cpu_to_be64(addr[1]);
900 	}
901 
902 	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
903 			      ULPTX_NSGE_V(nfrags));
904 	if (likely(--nfrags == 0))
905 		return;
906 	/*
907 	 * Most of the complexity below deals with the possibility we hit the
908 	 * end of the queue in the middle of writing the SGL.  For this case
909 	 * only we create the SGL in a temporary buffer and then copy it.
910 	 */
911 	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
912 
913 	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
914 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
915 		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
916 		to->addr[0] = cpu_to_be64(addr[i]);
917 		to->addr[1] = cpu_to_be64(addr[++i]);
918 	}
919 	if (nfrags) {
920 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
921 		to->len[1] = cpu_to_be32(0);
922 		to->addr[0] = cpu_to_be64(addr[i + 1]);
923 	}
924 	if (unlikely((u8 *)end > (u8 *)q->stat)) {
925 		unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
926 
927 		if (likely(part0))
928 			memcpy(sgl->sge, buf, part0);
929 		part1 = (u8 *)end - (u8 *)q->stat;
930 		memcpy(q->desc, (u8 *)buf + part0, part1);
931 		end = (void *)q->desc + part1;
932 	}
933 	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
934 		*end = 0;
935 }
936 EXPORT_SYMBOL(cxgb4_write_sgl);
937 
938 /* This function copies 64 byte coalesced work request to
939  * memory mapped BAR2 space. For coalesced WR SGE fetches
940  * data from the FIFO instead of from Host.
941  */
942 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
943 {
944 	int count = 8;
945 
946 	while (count) {
947 		writeq(*src, dst);
948 		src++;
949 		dst++;
950 		count--;
951 	}
952 }
953 
954 /**
955  *	cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell
956  *	@adap: the adapter
957  *	@q: the Tx queue
958  *	@n: number of new descriptors to give to HW
959  *
960  *	Ring the doorbel for a Tx queue.
961  */
962 inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
963 {
964 	/* Make sure that all writes to the TX Descriptors are committed
965 	 * before we tell the hardware about them.
966 	 */
967 	wmb();
968 
969 	/* If we don't have access to the new User Doorbell (T5+), use the old
970 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
971 	 */
972 	if (unlikely(q->bar2_addr == NULL)) {
973 		u32 val = PIDX_V(n);
974 		unsigned long flags;
975 
976 		/* For T4 we need to participate in the Doorbell Recovery
977 		 * mechanism.
978 		 */
979 		spin_lock_irqsave(&q->db_lock, flags);
980 		if (!q->db_disabled)
981 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
982 				     QID_V(q->cntxt_id) | val);
983 		else
984 			q->db_pidx_inc += n;
985 		q->db_pidx = q->pidx;
986 		spin_unlock_irqrestore(&q->db_lock, flags);
987 	} else {
988 		u32 val = PIDX_T5_V(n);
989 
990 		/* T4 and later chips share the same PIDX field offset within
991 		 * the doorbell, but T5 and later shrank the field in order to
992 		 * gain a bit for Doorbell Priority.  The field was absurdly
993 		 * large in the first place (14 bits) so we just use the T5
994 		 * and later limits and warn if a Queue ID is too large.
995 		 */
996 		WARN_ON(val & DBPRIO_F);
997 
998 		/* If we're only writing a single TX Descriptor and we can use
999 		 * Inferred QID registers, we can use the Write Combining
1000 		 * Gather Buffer; otherwise we use the simple doorbell.
1001 		 */
1002 		if (n == 1 && q->bar2_qid == 0) {
1003 			int index = (q->pidx
1004 				     ? (q->pidx - 1)
1005 				     : (q->size - 1));
1006 			u64 *wr = (u64 *)&q->desc[index];
1007 
1008 			cxgb_pio_copy((u64 __iomem *)
1009 				      (q->bar2_addr + SGE_UDB_WCDOORBELL),
1010 				      wr);
1011 		} else {
1012 			writel(val | QID_V(q->bar2_qid),
1013 			       q->bar2_addr + SGE_UDB_KDOORBELL);
1014 		}
1015 
1016 		/* This Write Memory Barrier will force the write to the User
1017 		 * Doorbell area to be flushed.  This is needed to prevent
1018 		 * writes on different CPUs for the same queue from hitting
1019 		 * the adapter out of order.  This is required when some Work
1020 		 * Requests take the Write Combine Gather Buffer path (user
1021 		 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
1022 		 * take the traditional path where we simply increment the
1023 		 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
1024 		 * hardware DMA read the actual Work Request.
1025 		 */
1026 		wmb();
1027 	}
1028 }
1029 EXPORT_SYMBOL(cxgb4_ring_tx_db);
1030 
1031 /**
1032  *	cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors
1033  *	@skb: the packet
1034  *	@q: the Tx queue where the packet will be inlined
1035  *	@pos: starting position in the Tx queue where to inline the packet
1036  *
1037  *	Inline a packet's contents directly into Tx descriptors, starting at
1038  *	the given position within the Tx DMA ring.
1039  *	Most of the complexity of this operation is dealing with wrap arounds
1040  *	in the middle of the packet we want to inline.
1041  */
1042 void cxgb4_inline_tx_skb(const struct sk_buff *skb,
1043 			 const struct sge_txq *q, void *pos)
1044 {
1045 	int left = (void *)q->stat - pos;
1046 	u64 *p;
1047 
1048 	if (likely(skb->len <= left)) {
1049 		if (likely(!skb->data_len))
1050 			skb_copy_from_linear_data(skb, pos, skb->len);
1051 		else
1052 			skb_copy_bits(skb, 0, pos, skb->len);
1053 		pos += skb->len;
1054 	} else {
1055 		skb_copy_bits(skb, 0, pos, left);
1056 		skb_copy_bits(skb, left, q->desc, skb->len - left);
1057 		pos = (void *)q->desc + (skb->len - left);
1058 	}
1059 
1060 	/* 0-pad to multiple of 16 */
1061 	p = PTR_ALIGN(pos, 8);
1062 	if ((uintptr_t)p & 8)
1063 		*p = 0;
1064 }
1065 EXPORT_SYMBOL(cxgb4_inline_tx_skb);
1066 
1067 static void *inline_tx_skb_header(const struct sk_buff *skb,
1068 				  const struct sge_txq *q,  void *pos,
1069 				  int length)
1070 {
1071 	u64 *p;
1072 	int left = (void *)q->stat - pos;
1073 
1074 	if (likely(length <= left)) {
1075 		memcpy(pos, skb->data, length);
1076 		pos += length;
1077 	} else {
1078 		memcpy(pos, skb->data, left);
1079 		memcpy(q->desc, skb->data + left, length - left);
1080 		pos = (void *)q->desc + (length - left);
1081 	}
1082 	/* 0-pad to multiple of 16 */
1083 	p = PTR_ALIGN(pos, 8);
1084 	if ((uintptr_t)p & 8) {
1085 		*p = 0;
1086 		return p + 1;
1087 	}
1088 	return p;
1089 }
1090 
1091 /*
1092  * Figure out what HW csum a packet wants and return the appropriate control
1093  * bits.
1094  */
1095 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1096 {
1097 	int csum_type;
1098 	bool inner_hdr_csum = false;
1099 	u16 proto, ver;
1100 
1101 	if (skb->encapsulation &&
1102 	    (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5))
1103 		inner_hdr_csum = true;
1104 
1105 	if (inner_hdr_csum) {
1106 		ver = inner_ip_hdr(skb)->version;
1107 		proto = (ver == 4) ? inner_ip_hdr(skb)->protocol :
1108 			inner_ipv6_hdr(skb)->nexthdr;
1109 	} else {
1110 		ver = ip_hdr(skb)->version;
1111 		proto = (ver == 4) ? ip_hdr(skb)->protocol :
1112 			ipv6_hdr(skb)->nexthdr;
1113 	}
1114 
1115 	if (ver == 4) {
1116 		if (proto == IPPROTO_TCP)
1117 			csum_type = TX_CSUM_TCPIP;
1118 		else if (proto == IPPROTO_UDP)
1119 			csum_type = TX_CSUM_UDPIP;
1120 		else {
1121 nocsum:			/*
1122 			 * unknown protocol, disable HW csum
1123 			 * and hope a bad packet is detected
1124 			 */
1125 			return TXPKT_L4CSUM_DIS_F;
1126 		}
1127 	} else {
1128 		/*
1129 		 * this doesn't work with extension headers
1130 		 */
1131 		if (proto == IPPROTO_TCP)
1132 			csum_type = TX_CSUM_TCPIP6;
1133 		else if (proto == IPPROTO_UDP)
1134 			csum_type = TX_CSUM_UDPIP6;
1135 		else
1136 			goto nocsum;
1137 	}
1138 
1139 	if (likely(csum_type >= TX_CSUM_TCPIP)) {
1140 		int eth_hdr_len, l4_len;
1141 		u64 hdr_len;
1142 
1143 		if (inner_hdr_csum) {
1144 			/* This allows checksum offload for all encapsulated
1145 			 * packets like GRE etc..
1146 			 */
1147 			l4_len = skb_inner_network_header_len(skb);
1148 			eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN;
1149 		} else {
1150 			l4_len = skb_network_header_len(skb);
1151 			eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
1152 		}
1153 		hdr_len = TXPKT_IPHDR_LEN_V(l4_len);
1154 
1155 		if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1156 			hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1157 		else
1158 			hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1159 		return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
1160 	} else {
1161 		int start = skb_transport_offset(skb);
1162 
1163 		return TXPKT_CSUM_TYPE_V(csum_type) |
1164 			TXPKT_CSUM_START_V(start) |
1165 			TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1166 	}
1167 }
1168 
1169 static void eth_txq_stop(struct sge_eth_txq *q)
1170 {
1171 	netif_tx_stop_queue(q->txq);
1172 	q->q.stops++;
1173 }
1174 
1175 static inline void txq_advance(struct sge_txq *q, unsigned int n)
1176 {
1177 	q->in_use += n;
1178 	q->pidx += n;
1179 	if (q->pidx >= q->size)
1180 		q->pidx -= q->size;
1181 }
1182 
1183 #ifdef CONFIG_CHELSIO_T4_FCOE
1184 static inline int
1185 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
1186 		  const struct port_info *pi, u64 *cntrl)
1187 {
1188 	const struct cxgb_fcoe *fcoe = &pi->fcoe;
1189 
1190 	if (!(fcoe->flags & CXGB_FCOE_ENABLED))
1191 		return 0;
1192 
1193 	if (skb->protocol != htons(ETH_P_FCOE))
1194 		return 0;
1195 
1196 	skb_reset_mac_header(skb);
1197 	skb->mac_len = sizeof(struct ethhdr);
1198 
1199 	skb_set_network_header(skb, skb->mac_len);
1200 	skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
1201 
1202 	if (!cxgb_fcoe_sof_eof_supported(adap, skb))
1203 		return -ENOTSUPP;
1204 
1205 	/* FC CRC offload */
1206 	*cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
1207 		     TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
1208 		     TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
1209 		     TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
1210 		     TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
1211 	return 0;
1212 }
1213 #endif /* CONFIG_CHELSIO_T4_FCOE */
1214 
1215 /* Returns tunnel type if hardware supports offloading of the same.
1216  * It is called only for T5 and onwards.
1217  */
1218 enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb)
1219 {
1220 	u8 l4_hdr = 0;
1221 	enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1222 	struct port_info *pi = netdev_priv(skb->dev);
1223 	struct adapter *adapter = pi->adapter;
1224 
1225 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
1226 	    skb->inner_protocol != htons(ETH_P_TEB))
1227 		return tnl_type;
1228 
1229 	switch (vlan_get_protocol(skb)) {
1230 	case htons(ETH_P_IP):
1231 		l4_hdr = ip_hdr(skb)->protocol;
1232 		break;
1233 	case htons(ETH_P_IPV6):
1234 		l4_hdr = ipv6_hdr(skb)->nexthdr;
1235 		break;
1236 	default:
1237 		return tnl_type;
1238 	}
1239 
1240 	switch (l4_hdr) {
1241 	case IPPROTO_UDP:
1242 		if (adapter->vxlan_port == udp_hdr(skb)->dest)
1243 			tnl_type = TX_TNL_TYPE_VXLAN;
1244 		else if (adapter->geneve_port == udp_hdr(skb)->dest)
1245 			tnl_type = TX_TNL_TYPE_GENEVE;
1246 		break;
1247 	default:
1248 		return tnl_type;
1249 	}
1250 
1251 	return tnl_type;
1252 }
1253 
1254 static inline void t6_fill_tnl_lso(struct sk_buff *skb,
1255 				   struct cpl_tx_tnl_lso *tnl_lso,
1256 				   enum cpl_tx_tnl_lso_type tnl_type)
1257 {
1258 	u32 val;
1259 	int in_eth_xtra_len;
1260 	int l3hdr_len = skb_network_header_len(skb);
1261 	int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1262 	const struct skb_shared_info *ssi = skb_shinfo(skb);
1263 	bool v6 = (ip_hdr(skb)->version == 6);
1264 
1265 	val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) |
1266 	      CPL_TX_TNL_LSO_FIRST_F |
1267 	      CPL_TX_TNL_LSO_LAST_F |
1268 	      (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) |
1269 	      CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) |
1270 	      CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) |
1271 	      (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) |
1272 	      CPL_TX_TNL_LSO_IPLENSETOUT_F |
1273 	      (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F);
1274 	tnl_lso->op_to_IpIdSplitOut = htonl(val);
1275 
1276 	tnl_lso->IpIdOffsetOut = 0;
1277 
1278 	/* Get the tunnel header length */
1279 	val = skb_inner_mac_header(skb) - skb_mac_header(skb);
1280 	in_eth_xtra_len = skb_inner_network_header(skb) -
1281 			  skb_inner_mac_header(skb) - ETH_HLEN;
1282 
1283 	switch (tnl_type) {
1284 	case TX_TNL_TYPE_VXLAN:
1285 	case TX_TNL_TYPE_GENEVE:
1286 		tnl_lso->UdpLenSetOut_to_TnlHdrLen =
1287 			htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F |
1288 			CPL_TX_TNL_LSO_UDPLENSETOUT_F);
1289 		break;
1290 	default:
1291 		tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0;
1292 		break;
1293 	}
1294 
1295 	tnl_lso->UdpLenSetOut_to_TnlHdrLen |=
1296 		 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) |
1297 		       CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type));
1298 
1299 	tnl_lso->r1 = 0;
1300 
1301 	val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) |
1302 	      CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) |
1303 	      CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) |
1304 	      CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4);
1305 	tnl_lso->Flow_to_TcpHdrLen = htonl(val);
1306 
1307 	tnl_lso->IpIdOffset = htons(0);
1308 
1309 	tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size));
1310 	tnl_lso->TCPSeqOffset = htonl(0);
1311 	tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len));
1312 }
1313 
1314 static inline void *write_tso_wr(struct adapter *adap, struct sk_buff *skb,
1315 				 struct cpl_tx_pkt_lso_core *lso)
1316 {
1317 	int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1318 	int l3hdr_len = skb_network_header_len(skb);
1319 	const struct skb_shared_info *ssi;
1320 	bool ipv6 = false;
1321 
1322 	ssi = skb_shinfo(skb);
1323 	if (ssi->gso_type & SKB_GSO_TCPV6)
1324 		ipv6 = true;
1325 
1326 	lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1327 			      LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
1328 			      LSO_IPV6_V(ipv6) |
1329 			      LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1330 			      LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1331 			      LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1332 	lso->ipid_ofst = htons(0);
1333 	lso->mss = htons(ssi->gso_size);
1334 	lso->seqno_offset = htonl(0);
1335 	if (is_t4(adap->params.chip))
1336 		lso->len = htonl(skb->len);
1337 	else
1338 		lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len));
1339 
1340 	return (void *)(lso + 1);
1341 }
1342 
1343 /**
1344  *	t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update
1345  *	@adap: the adapter
1346  *	@eq: the Ethernet TX Queue
1347  *	@maxreclaim: the maximum number of TX Descriptors to reclaim or -1
1348  *
1349  *	We're typically called here to update the state of an Ethernet TX
1350  *	Queue with respect to the hardware's progress in consuming the TX
1351  *	Work Requests that we've put on that Egress Queue.  This happens
1352  *	when we get Egress Queue Update messages and also prophylactically
1353  *	in regular timer-based Ethernet TX Queue maintenance.
1354  */
1355 int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq,
1356 				 int maxreclaim)
1357 {
1358 	struct sge_txq *q = &eq->q;
1359 	unsigned int reclaimed;
1360 
1361 	if (!q->in_use || !__netif_tx_trylock(eq->txq))
1362 		return 0;
1363 
1364 	/* Reclaim pending completed TX Descriptors. */
1365 	reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true);
1366 
1367 	/* If the TX Queue is currently stopped and there's now more than half
1368 	 * the queue available, restart it.  Otherwise bail out since the rest
1369 	 * of what we want do here is with the possibility of shipping any
1370 	 * currently buffered Coalesced TX Work Request.
1371 	 */
1372 	if (netif_tx_queue_stopped(eq->txq) && txq_avail(q) > (q->size / 2)) {
1373 		netif_tx_wake_queue(eq->txq);
1374 		eq->q.restarts++;
1375 	}
1376 
1377 	__netif_tx_unlock(eq->txq);
1378 	return reclaimed;
1379 }
1380 
1381 static inline int cxgb4_validate_skb(struct sk_buff *skb,
1382 				     struct net_device *dev,
1383 				     u32 min_pkt_len)
1384 {
1385 	u32 max_pkt_len;
1386 
1387 	/* The chip min packet length is 10 octets but some firmware
1388 	 * commands have a minimum packet length requirement. So, play
1389 	 * safe and reject anything shorter than @min_pkt_len.
1390 	 */
1391 	if (unlikely(skb->len < min_pkt_len))
1392 		return -EINVAL;
1393 
1394 	/* Discard the packet if the length is greater than mtu */
1395 	max_pkt_len = ETH_HLEN + dev->mtu;
1396 
1397 	if (skb_vlan_tagged(skb))
1398 		max_pkt_len += VLAN_HLEN;
1399 
1400 	if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1401 		return -EINVAL;
1402 
1403 	return 0;
1404 }
1405 
1406 /**
1407  *	cxgb4_eth_xmit - add a packet to an Ethernet Tx queue
1408  *	@skb: the packet
1409  *	@dev: the egress net device
1410  *
1411  *	Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
1412  */
1413 static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1414 {
1415 	enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1416 	bool ptp_enabled = is_ptp_enabled(skb, dev);
1417 	dma_addr_t addr[MAX_SKB_FRAGS + 1];
1418 	const struct skb_shared_info *ssi;
1419 	struct fw_eth_tx_pkt_wr *wr;
1420 	struct cpl_tx_pkt_core *cpl;
1421 	int len, qidx, credits, ret;
1422 	const struct port_info *pi;
1423 	unsigned int flits, ndesc;
1424 	bool immediate = false;
1425 	u32 wr_mid, ctrl0, op;
1426 	u64 cntrl, *end, *sgl;
1427 	struct sge_eth_txq *q;
1428 	unsigned int chip_ver;
1429 	struct adapter *adap;
1430 
1431 	ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
1432 	if (ret)
1433 		goto out_free;
1434 
1435 	pi = netdev_priv(dev);
1436 	adap = pi->adapter;
1437 	ssi = skb_shinfo(skb);
1438 #ifdef CONFIG_CHELSIO_IPSEC_INLINE
1439 	if (xfrm_offload(skb) && !ssi->gso_size)
1440 		return adap->uld[CXGB4_ULD_CRYPTO].tx_handler(skb, dev);
1441 #endif /* CHELSIO_IPSEC_INLINE */
1442 
1443 	qidx = skb_get_queue_mapping(skb);
1444 	if (ptp_enabled) {
1445 		spin_lock(&adap->ptp_lock);
1446 		if (!(adap->ptp_tx_skb)) {
1447 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1448 			adap->ptp_tx_skb = skb_get(skb);
1449 		} else {
1450 			spin_unlock(&adap->ptp_lock);
1451 			goto out_free;
1452 		}
1453 		q = &adap->sge.ptptxq;
1454 	} else {
1455 		q = &adap->sge.ethtxq[qidx + pi->first_qset];
1456 	}
1457 	skb_tx_timestamp(skb);
1458 
1459 	reclaim_completed_tx(adap, &q->q, -1, true);
1460 	cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1461 
1462 #ifdef CONFIG_CHELSIO_T4_FCOE
1463 	ret = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
1464 	if (unlikely(ret == -ENOTSUPP)) {
1465 		if (ptp_enabled)
1466 			spin_unlock(&adap->ptp_lock);
1467 		goto out_free;
1468 	}
1469 #endif /* CONFIG_CHELSIO_T4_FCOE */
1470 
1471 	chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
1472 	flits = calc_tx_flits(skb, chip_ver);
1473 	ndesc = flits_to_desc(flits);
1474 	credits = txq_avail(&q->q) - ndesc;
1475 
1476 	if (unlikely(credits < 0)) {
1477 		eth_txq_stop(q);
1478 		dev_err(adap->pdev_dev,
1479 			"%s: Tx ring %u full while queue awake!\n",
1480 			dev->name, qidx);
1481 		if (ptp_enabled)
1482 			spin_unlock(&adap->ptp_lock);
1483 		return NETDEV_TX_BUSY;
1484 	}
1485 
1486 	if (is_eth_imm(skb, chip_ver))
1487 		immediate = true;
1488 
1489 	if (skb->encapsulation && chip_ver > CHELSIO_T5)
1490 		tnl_type = cxgb_encap_offload_supported(skb);
1491 
1492 	if (!immediate &&
1493 	    unlikely(cxgb4_map_skb(adap->pdev_dev, skb, addr) < 0)) {
1494 		q->mapping_err++;
1495 		if (ptp_enabled)
1496 			spin_unlock(&adap->ptp_lock);
1497 		goto out_free;
1498 	}
1499 
1500 	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1501 	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1502 		/* After we're done injecting the Work Request for this
1503 		 * packet, we'll be below our "stop threshold" so stop the TX
1504 		 * Queue now and schedule a request for an SGE Egress Queue
1505 		 * Update message. The queue will get started later on when
1506 		 * the firmware processes this Work Request and sends us an
1507 		 * Egress Queue Status Update message indicating that space
1508 		 * has opened up.
1509 		 */
1510 		eth_txq_stop(q);
1511 
1512 		/* If we're using the SGE Doorbell Queue Timer facility, we
1513 		 * don't need to ask the Firmware to send us Egress Queue CIDX
1514 		 * Updates: the Hardware will do this automatically.  And
1515 		 * since we send the Ingress Queue CIDX Updates to the
1516 		 * corresponding Ethernet Response Queue, we'll get them very
1517 		 * quickly.
1518 		 */
1519 		if (!q->dbqt)
1520 			wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1521 	}
1522 
1523 	wr = (void *)&q->q.desc[q->q.pidx];
1524 	wr->equiq_to_len16 = htonl(wr_mid);
1525 	wr->r3 = cpu_to_be64(0);
1526 	end = (u64 *)wr + flits;
1527 
1528 	len = immediate ? skb->len : 0;
1529 	len += sizeof(*cpl);
1530 	if (ssi->gso_size) {
1531 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1532 		struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1);
1533 
1534 		if (tnl_type)
1535 			len += sizeof(*tnl_lso);
1536 		else
1537 			len += sizeof(*lso);
1538 
1539 		wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1540 				       FW_WR_IMMDLEN_V(len));
1541 		if (tnl_type) {
1542 			struct iphdr *iph = ip_hdr(skb);
1543 
1544 			t6_fill_tnl_lso(skb, tnl_lso, tnl_type);
1545 			cpl = (void *)(tnl_lso + 1);
1546 			/* Driver is expected to compute partial checksum that
1547 			 * does not include the IP Total Length.
1548 			 */
1549 			if (iph->version == 4) {
1550 				iph->check = 0;
1551 				iph->tot_len = 0;
1552 				iph->check = (u16)(~ip_fast_csum((u8 *)iph,
1553 								 iph->ihl));
1554 			}
1555 			if (skb->ip_summed == CHECKSUM_PARTIAL)
1556 				cntrl = hwcsum(adap->params.chip, skb);
1557 		} else {
1558 			cpl = write_tso_wr(adap, skb, lso);
1559 			cntrl = hwcsum(adap->params.chip, skb);
1560 		}
1561 		sgl = (u64 *)(cpl + 1); /* sgl start here */
1562 		if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) {
1563 			/* If current position is already at the end of the
1564 			 * txq, reset the current to point to start of the queue
1565 			 * and update the end ptr as well.
1566 			 */
1567 			if (sgl == (u64 *)q->q.stat) {
1568 				int left = (u8 *)end - (u8 *)q->q.stat;
1569 
1570 				end = (void *)q->q.desc + left;
1571 				sgl = (void *)q->q.desc;
1572 			}
1573 		}
1574 		q->tso++;
1575 		q->tx_cso += ssi->gso_segs;
1576 	} else {
1577 		if (ptp_enabled)
1578 			op = FW_PTP_TX_PKT_WR;
1579 		else
1580 			op = FW_ETH_TX_PKT_WR;
1581 		wr->op_immdlen = htonl(FW_WR_OP_V(op) |
1582 				       FW_WR_IMMDLEN_V(len));
1583 		cpl = (void *)(wr + 1);
1584 		sgl = (u64 *)(cpl + 1);
1585 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1586 			cntrl = hwcsum(adap->params.chip, skb) |
1587 				TXPKT_IPCSUM_DIS_F;
1588 			q->tx_cso++;
1589 		}
1590 	}
1591 
1592 	if (skb_vlan_tag_present(skb)) {
1593 		q->vlan_ins++;
1594 		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1595 #ifdef CONFIG_CHELSIO_T4_FCOE
1596 		if (skb->protocol == htons(ETH_P_FCOE))
1597 			cntrl |= TXPKT_VLAN_V(
1598 				 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
1599 #endif /* CONFIG_CHELSIO_T4_FCOE */
1600 	}
1601 
1602 	ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
1603 		TXPKT_PF_V(adap->pf);
1604 	if (ptp_enabled)
1605 		ctrl0 |= TXPKT_TSTAMP_F;
1606 #ifdef CONFIG_CHELSIO_T4_DCB
1607 	if (is_t4(adap->params.chip))
1608 		ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
1609 	else
1610 		ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
1611 #endif
1612 	cpl->ctrl0 = htonl(ctrl0);
1613 	cpl->pack = htons(0);
1614 	cpl->len = htons(skb->len);
1615 	cpl->ctrl1 = cpu_to_be64(cntrl);
1616 
1617 	if (immediate) {
1618 		cxgb4_inline_tx_skb(skb, &q->q, sgl);
1619 		dev_consume_skb_any(skb);
1620 	} else {
1621 		int last_desc;
1622 
1623 		cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, 0, addr);
1624 		skb_orphan(skb);
1625 
1626 		last_desc = q->q.pidx + ndesc - 1;
1627 		if (last_desc >= q->q.size)
1628 			last_desc -= q->q.size;
1629 		q->q.sdesc[last_desc].skb = skb;
1630 		q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)sgl;
1631 	}
1632 
1633 	txq_advance(&q->q, ndesc);
1634 
1635 	cxgb4_ring_tx_db(adap, &q->q, ndesc);
1636 	if (ptp_enabled)
1637 		spin_unlock(&adap->ptp_lock);
1638 	return NETDEV_TX_OK;
1639 
1640 out_free:
1641 	dev_kfree_skb_any(skb);
1642 	return NETDEV_TX_OK;
1643 }
1644 
1645 /* Constants ... */
1646 enum {
1647 	/* Egress Queue sizes, producer and consumer indices are all in units
1648 	 * of Egress Context Units bytes.  Note that as far as the hardware is
1649 	 * concerned, the free list is an Egress Queue (the host produces free
1650 	 * buffers which the hardware consumes) and free list entries are
1651 	 * 64-bit PCI DMA addresses.
1652 	 */
1653 	EQ_UNIT = SGE_EQ_IDXSIZE,
1654 	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1655 	TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1656 
1657 	T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1658 			       sizeof(struct cpl_tx_pkt_lso_core) +
1659 			       sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
1660 };
1661 
1662 /**
1663  *	t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data?
1664  *	@skb: the packet
1665  *
1666  *	Returns whether an Ethernet packet is small enough to fit completely as
1667  *	immediate data.
1668  */
1669 static inline int t4vf_is_eth_imm(const struct sk_buff *skb)
1670 {
1671 	/* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
1672 	 * which does not accommodate immediate data.  We could dike out all
1673 	 * of the support code for immediate data but that would tie our hands
1674 	 * too much if we ever want to enhace the firmware.  It would also
1675 	 * create more differences between the PF and VF Drivers.
1676 	 */
1677 	return false;
1678 }
1679 
1680 /**
1681  *	t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR
1682  *	@skb: the packet
1683  *
1684  *	Returns the number of flits needed for a TX Work Request for the
1685  *	given Ethernet packet, including the needed WR and CPL headers.
1686  */
1687 static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb)
1688 {
1689 	unsigned int flits;
1690 
1691 	/* If the skb is small enough, we can pump it out as a work request
1692 	 * with only immediate data.  In that case we just have to have the
1693 	 * TX Packet header plus the skb data in the Work Request.
1694 	 */
1695 	if (t4vf_is_eth_imm(skb))
1696 		return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
1697 				    sizeof(__be64));
1698 
1699 	/* Otherwise, we're going to have to construct a Scatter gather list
1700 	 * of the skb body and fragments.  We also include the flits necessary
1701 	 * for the TX Packet Work Request and CPL.  We always have a firmware
1702 	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
1703 	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
1704 	 * message or, if we're doing a Large Send Offload, an LSO CPL message
1705 	 * with an embedded TX Packet Write CPL message.
1706 	 */
1707 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
1708 	if (skb_shinfo(skb)->gso_size)
1709 		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1710 			  sizeof(struct cpl_tx_pkt_lso_core) +
1711 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1712 	else
1713 		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1714 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1715 	return flits;
1716 }
1717 
1718 /**
1719  *	cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue
1720  *	@skb: the packet
1721  *	@dev: the egress net device
1722  *
1723  *	Add a packet to an SGE Ethernet TX queue.  Runs with softirqs disabled.
1724  */
1725 static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb,
1726 				     struct net_device *dev)
1727 {
1728 	dma_addr_t addr[MAX_SKB_FRAGS + 1];
1729 	const struct skb_shared_info *ssi;
1730 	struct fw_eth_tx_pkt_vm_wr *wr;
1731 	struct cpl_tx_pkt_core *cpl;
1732 	const struct port_info *pi;
1733 	unsigned int flits, ndesc;
1734 	struct sge_eth_txq *txq;
1735 	struct adapter *adapter;
1736 	int qidx, credits, ret;
1737 	size_t fw_hdr_copy_len;
1738 	u64 cntrl, *end;
1739 	u32 wr_mid;
1740 
1741 	/* The chip minimum packet length is 10 octets but the firmware
1742 	 * command that we are using requires that we copy the Ethernet header
1743 	 * (including the VLAN tag) into the header so we reject anything
1744 	 * smaller than that ...
1745 	 */
1746 	fw_hdr_copy_len = sizeof(wr->ethmacdst) + sizeof(wr->ethmacsrc) +
1747 			  sizeof(wr->ethtype) + sizeof(wr->vlantci);
1748 	ret = cxgb4_validate_skb(skb, dev, fw_hdr_copy_len);
1749 	if (ret)
1750 		goto out_free;
1751 
1752 	/* Figure out which TX Queue we're going to use. */
1753 	pi = netdev_priv(dev);
1754 	adapter = pi->adapter;
1755 	qidx = skb_get_queue_mapping(skb);
1756 	WARN_ON(qidx >= pi->nqsets);
1757 	txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1758 
1759 	/* Take this opportunity to reclaim any TX Descriptors whose DMA
1760 	 * transfers have completed.
1761 	 */
1762 	reclaim_completed_tx(adapter, &txq->q, -1, true);
1763 
1764 	/* Calculate the number of flits and TX Descriptors we're going to
1765 	 * need along with how many TX Descriptors will be left over after
1766 	 * we inject our Work Request.
1767 	 */
1768 	flits = t4vf_calc_tx_flits(skb);
1769 	ndesc = flits_to_desc(flits);
1770 	credits = txq_avail(&txq->q) - ndesc;
1771 
1772 	if (unlikely(credits < 0)) {
1773 		/* Not enough room for this packet's Work Request.  Stop the
1774 		 * TX Queue and return a "busy" condition.  The queue will get
1775 		 * started later on when the firmware informs us that space
1776 		 * has opened up.
1777 		 */
1778 		eth_txq_stop(txq);
1779 		dev_err(adapter->pdev_dev,
1780 			"%s: TX ring %u full while queue awake!\n",
1781 			dev->name, qidx);
1782 		return NETDEV_TX_BUSY;
1783 	}
1784 
1785 	if (!t4vf_is_eth_imm(skb) &&
1786 	    unlikely(cxgb4_map_skb(adapter->pdev_dev, skb, addr) < 0)) {
1787 		/* We need to map the skb into PCI DMA space (because it can't
1788 		 * be in-lined directly into the Work Request) and the mapping
1789 		 * operation failed.  Record the error and drop the packet.
1790 		 */
1791 		txq->mapping_err++;
1792 		goto out_free;
1793 	}
1794 
1795 	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1796 	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1797 		/* After we're done injecting the Work Request for this
1798 		 * packet, we'll be below our "stop threshold" so stop the TX
1799 		 * Queue now and schedule a request for an SGE Egress Queue
1800 		 * Update message.  The queue will get started later on when
1801 		 * the firmware processes this Work Request and sends us an
1802 		 * Egress Queue Status Update message indicating that space
1803 		 * has opened up.
1804 		 */
1805 		eth_txq_stop(txq);
1806 
1807 		/* If we're using the SGE Doorbell Queue Timer facility, we
1808 		 * don't need to ask the Firmware to send us Egress Queue CIDX
1809 		 * Updates: the Hardware will do this automatically.  And
1810 		 * since we send the Ingress Queue CIDX Updates to the
1811 		 * corresponding Ethernet Response Queue, we'll get them very
1812 		 * quickly.
1813 		 */
1814 		if (!txq->dbqt)
1815 			wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1816 	}
1817 
1818 	/* Start filling in our Work Request.  Note that we do _not_ handle
1819 	 * the WR Header wrapping around the TX Descriptor Ring.  If our
1820 	 * maximum header size ever exceeds one TX Descriptor, we'll need to
1821 	 * do something else here.
1822 	 */
1823 	WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1824 	wr = (void *)&txq->q.desc[txq->q.pidx];
1825 	wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1826 	wr->r3[0] = cpu_to_be32(0);
1827 	wr->r3[1] = cpu_to_be32(0);
1828 	skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
1829 	end = (u64 *)wr + flits;
1830 
1831 	/* If this is a Large Send Offload packet we'll put in an LSO CPL
1832 	 * message with an encapsulated TX Packet CPL message.  Otherwise we
1833 	 * just use a TX Packet CPL message.
1834 	 */
1835 	ssi = skb_shinfo(skb);
1836 	if (ssi->gso_size) {
1837 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1838 		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1839 		int l3hdr_len = skb_network_header_len(skb);
1840 		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1841 
1842 		wr->op_immdlen =
1843 			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1844 				    FW_WR_IMMDLEN_V(sizeof(*lso) +
1845 						    sizeof(*cpl)));
1846 		 /* Fill in the LSO CPL message. */
1847 		lso->lso_ctrl =
1848 			cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1849 				    LSO_FIRST_SLICE_F |
1850 				    LSO_LAST_SLICE_F |
1851 				    LSO_IPV6_V(v6) |
1852 				    LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1853 				    LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1854 				    LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1855 		lso->ipid_ofst = cpu_to_be16(0);
1856 		lso->mss = cpu_to_be16(ssi->gso_size);
1857 		lso->seqno_offset = cpu_to_be32(0);
1858 		if (is_t4(adapter->params.chip))
1859 			lso->len = cpu_to_be32(skb->len);
1860 		else
1861 			lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len));
1862 
1863 		/* Set up TX Packet CPL pointer, control word and perform
1864 		 * accounting.
1865 		 */
1866 		cpl = (void *)(lso + 1);
1867 
1868 		if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
1869 			cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1870 		else
1871 			cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1872 
1873 		cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1874 					   TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1875 			 TXPKT_IPHDR_LEN_V(l3hdr_len);
1876 		txq->tso++;
1877 		txq->tx_cso += ssi->gso_segs;
1878 	} else {
1879 		int len;
1880 
1881 		len = (t4vf_is_eth_imm(skb)
1882 		       ? skb->len + sizeof(*cpl)
1883 		       : sizeof(*cpl));
1884 		wr->op_immdlen =
1885 			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1886 				    FW_WR_IMMDLEN_V(len));
1887 
1888 		/* Set up TX Packet CPL pointer, control word and perform
1889 		 * accounting.
1890 		 */
1891 		cpl = (void *)(wr + 1);
1892 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1893 			cntrl = hwcsum(adapter->params.chip, skb) |
1894 				TXPKT_IPCSUM_DIS_F;
1895 			txq->tx_cso++;
1896 		} else {
1897 			cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1898 		}
1899 	}
1900 
1901 	/* If there's a VLAN tag present, add that to the list of things to
1902 	 * do in this Work Request.
1903 	 */
1904 	if (skb_vlan_tag_present(skb)) {
1905 		txq->vlan_ins++;
1906 		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1907 	}
1908 
1909 	 /* Fill in the TX Packet CPL message header. */
1910 	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
1911 				 TXPKT_INTF_V(pi->port_id) |
1912 				 TXPKT_PF_V(0));
1913 	cpl->pack = cpu_to_be16(0);
1914 	cpl->len = cpu_to_be16(skb->len);
1915 	cpl->ctrl1 = cpu_to_be64(cntrl);
1916 
1917 	/* Fill in the body of the TX Packet CPL message with either in-lined
1918 	 * data or a Scatter/Gather List.
1919 	 */
1920 	if (t4vf_is_eth_imm(skb)) {
1921 		/* In-line the packet's data and free the skb since we don't
1922 		 * need it any longer.
1923 		 */
1924 		cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1);
1925 		dev_consume_skb_any(skb);
1926 	} else {
1927 		/* Write the skb's Scatter/Gather list into the TX Packet CPL
1928 		 * message and retain a pointer to the skb so we can free it
1929 		 * later when its DMA completes.  (We store the skb pointer
1930 		 * in the Software Descriptor corresponding to the last TX
1931 		 * Descriptor used by the Work Request.)
1932 		 *
1933 		 * The retained skb will be freed when the corresponding TX
1934 		 * Descriptors are reclaimed after their DMAs complete.
1935 		 * However, this could take quite a while since, in general,
1936 		 * the hardware is set up to be lazy about sending DMA
1937 		 * completion notifications to us and we mostly perform TX
1938 		 * reclaims in the transmit routine.
1939 		 *
1940 		 * This is good for performamce but means that we rely on new
1941 		 * TX packets arriving to run the destructors of completed
1942 		 * packets, which open up space in their sockets' send queues.
1943 		 * Sometimes we do not get such new packets causing TX to
1944 		 * stall.  A single UDP transmitter is a good example of this
1945 		 * situation.  We have a clean up timer that periodically
1946 		 * reclaims completed packets but it doesn't run often enough
1947 		 * (nor do we want it to) to prevent lengthy stalls.  A
1948 		 * solution to this problem is to run the destructor early,
1949 		 * after the packet is queued but before it's DMAd.  A con is
1950 		 * that we lie to socket memory accounting, but the amount of
1951 		 * extra memory is reasonable (limited by the number of TX
1952 		 * descriptors), the packets do actually get freed quickly by
1953 		 * new packets almost always, and for protocols like TCP that
1954 		 * wait for acks to really free up the data the extra memory
1955 		 * is even less.  On the positive side we run the destructors
1956 		 * on the sending CPU rather than on a potentially different
1957 		 * completing CPU, usually a good thing.
1958 		 *
1959 		 * Run the destructor before telling the DMA engine about the
1960 		 * packet to make sure it doesn't complete and get freed
1961 		 * prematurely.
1962 		 */
1963 		struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
1964 		struct sge_txq *tq = &txq->q;
1965 		int last_desc;
1966 
1967 		/* If the Work Request header was an exact multiple of our TX
1968 		 * Descriptor length, then it's possible that the starting SGL
1969 		 * pointer lines up exactly with the end of our TX Descriptor
1970 		 * ring.  If that's the case, wrap around to the beginning
1971 		 * here ...
1972 		 */
1973 		if (unlikely((void *)sgl == (void *)tq->stat)) {
1974 			sgl = (void *)tq->desc;
1975 			end = (void *)((void *)tq->desc +
1976 				       ((void *)end - (void *)tq->stat));
1977 		}
1978 
1979 		cxgb4_write_sgl(skb, tq, sgl, end, 0, addr);
1980 		skb_orphan(skb);
1981 
1982 		last_desc = tq->pidx + ndesc - 1;
1983 		if (last_desc >= tq->size)
1984 			last_desc -= tq->size;
1985 		tq->sdesc[last_desc].skb = skb;
1986 		tq->sdesc[last_desc].sgl = sgl;
1987 	}
1988 
1989 	/* Advance our internal TX Queue state, tell the hardware about
1990 	 * the new TX descriptors and return success.
1991 	 */
1992 	txq_advance(&txq->q, ndesc);
1993 
1994 	cxgb4_ring_tx_db(adapter, &txq->q, ndesc);
1995 	return NETDEV_TX_OK;
1996 
1997 out_free:
1998 	/* An error of some sort happened.  Free the TX skb and tell the
1999 	 * OS that we've "dealt" with the packet ...
2000 	 */
2001 	dev_kfree_skb_any(skb);
2002 	return NETDEV_TX_OK;
2003 }
2004 
2005 /**
2006  * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
2007  * @q: the SGE control Tx queue
2008  *
2009  * This is a variant of cxgb4_reclaim_completed_tx() that is used
2010  * for Tx queues that send only immediate data (presently just
2011  * the control queues) and	thus do not have any sk_buffs to release.
2012  */
2013 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
2014 {
2015 	int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
2016 	int reclaim = hw_cidx - q->cidx;
2017 
2018 	if (reclaim < 0)
2019 		reclaim += q->size;
2020 
2021 	q->in_use -= reclaim;
2022 	q->cidx = hw_cidx;
2023 }
2024 
2025 static inline void eosw_txq_advance_index(u32 *idx, u32 n, u32 max)
2026 {
2027 	u32 val = *idx + n;
2028 
2029 	if (val >= max)
2030 		val -= max;
2031 
2032 	*idx = val;
2033 }
2034 
2035 void cxgb4_eosw_txq_free_desc(struct adapter *adap,
2036 			      struct sge_eosw_txq *eosw_txq, u32 ndesc)
2037 {
2038 	struct sge_eosw_desc *d;
2039 
2040 	d = &eosw_txq->desc[eosw_txq->last_cidx];
2041 	while (ndesc--) {
2042 		if (d->skb) {
2043 			if (d->addr[0]) {
2044 				unmap_skb(adap->pdev_dev, d->skb, d->addr);
2045 				memset(d->addr, 0, sizeof(d->addr));
2046 			}
2047 			dev_consume_skb_any(d->skb);
2048 			d->skb = NULL;
2049 		}
2050 		eosw_txq_advance_index(&eosw_txq->last_cidx, 1,
2051 				       eosw_txq->ndesc);
2052 		d = &eosw_txq->desc[eosw_txq->last_cidx];
2053 	}
2054 }
2055 
2056 static inline void eosw_txq_advance(struct sge_eosw_txq *eosw_txq, u32 n)
2057 {
2058 	eosw_txq_advance_index(&eosw_txq->pidx, n, eosw_txq->ndesc);
2059 	eosw_txq->inuse += n;
2060 }
2061 
2062 static inline int eosw_txq_enqueue(struct sge_eosw_txq *eosw_txq,
2063 				   struct sk_buff *skb)
2064 {
2065 	if (eosw_txq->inuse == eosw_txq->ndesc)
2066 		return -ENOMEM;
2067 
2068 	eosw_txq->desc[eosw_txq->pidx].skb = skb;
2069 	return 0;
2070 }
2071 
2072 static inline struct sk_buff *eosw_txq_peek(struct sge_eosw_txq *eosw_txq)
2073 {
2074 	return eosw_txq->desc[eosw_txq->last_pidx].skb;
2075 }
2076 
2077 static inline u8 ethofld_calc_tx_flits(struct adapter *adap,
2078 				       struct sk_buff *skb, u32 hdr_len)
2079 {
2080 	u8 flits, nsgl = 0;
2081 	u32 wrlen;
2082 
2083 	wrlen = sizeof(struct fw_eth_tx_eo_wr) + sizeof(struct cpl_tx_pkt_core);
2084 	if (skb_shinfo(skb)->gso_size)
2085 		wrlen += sizeof(struct cpl_tx_pkt_lso_core);
2086 
2087 	wrlen += roundup(hdr_len, 16);
2088 
2089 	/* Packet headers + WR + CPLs */
2090 	flits = DIV_ROUND_UP(wrlen, 8);
2091 
2092 	if (skb_shinfo(skb)->nr_frags > 0)
2093 		nsgl = sgl_len(skb_shinfo(skb)->nr_frags);
2094 	else if (skb->len - hdr_len)
2095 		nsgl = sgl_len(1);
2096 
2097 	return flits + nsgl;
2098 }
2099 
2100 static inline void *write_eo_wr(struct adapter *adap,
2101 				struct sge_eosw_txq *eosw_txq,
2102 				struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
2103 				u32 hdr_len, u32 wrlen)
2104 {
2105 	const struct skb_shared_info *ssi = skb_shinfo(skb);
2106 	struct cpl_tx_pkt_core *cpl;
2107 	u32 immd_len, wrlen16;
2108 	bool compl = false;
2109 
2110 	wrlen16 = DIV_ROUND_UP(wrlen, 16);
2111 	immd_len = sizeof(struct cpl_tx_pkt_core);
2112 	if (skb_shinfo(skb)->gso_size) {
2113 		if (skb->encapsulation &&
2114 		    CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5)
2115 			immd_len += sizeof(struct cpl_tx_tnl_lso);
2116 		else
2117 			immd_len += sizeof(struct cpl_tx_pkt_lso_core);
2118 	}
2119 	immd_len += hdr_len;
2120 
2121 	if (!eosw_txq->ncompl ||
2122 	    eosw_txq->last_compl >= adap->params.ofldq_wr_cred / 2) {
2123 		compl = true;
2124 		eosw_txq->ncompl++;
2125 		eosw_txq->last_compl = 0;
2126 	}
2127 
2128 	wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
2129 				     FW_ETH_TX_EO_WR_IMMDLEN_V(immd_len) |
2130 				     FW_WR_COMPL_V(compl));
2131 	wr->equiq_to_len16 = cpu_to_be32(FW_WR_LEN16_V(wrlen16) |
2132 					 FW_WR_FLOWID_V(eosw_txq->hwtid));
2133 	wr->r3 = 0;
2134 	wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
2135 	wr->u.tcpseg.ethlen = skb_network_offset(skb);
2136 	wr->u.tcpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
2137 	wr->u.tcpseg.tcplen = tcp_hdrlen(skb);
2138 	wr->u.tcpseg.tsclk_tsoff = 0;
2139 	wr->u.tcpseg.r4 = 0;
2140 	wr->u.tcpseg.r5 = 0;
2141 	wr->u.tcpseg.plen = cpu_to_be32(skb->len - hdr_len);
2142 
2143 	if (ssi->gso_size) {
2144 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
2145 
2146 		wr->u.tcpseg.mss = cpu_to_be16(ssi->gso_size);
2147 		cpl = write_tso_wr(adap, skb, lso);
2148 	} else {
2149 		wr->u.tcpseg.mss = cpu_to_be16(0xffff);
2150 		cpl = (void *)(wr + 1);
2151 	}
2152 
2153 	eosw_txq->cred -= wrlen16;
2154 	eosw_txq->last_compl += wrlen16;
2155 	return cpl;
2156 }
2157 
2158 static void ethofld_hard_xmit(struct net_device *dev,
2159 			      struct sge_eosw_txq *eosw_txq)
2160 {
2161 	struct port_info *pi = netdev2pinfo(dev);
2162 	struct adapter *adap = netdev2adap(dev);
2163 	u32 wrlen, wrlen16, hdr_len, data_len;
2164 	enum sge_eosw_state next_state;
2165 	u64 cntrl, *start, *end, *sgl;
2166 	struct sge_eohw_txq *eohw_txq;
2167 	struct cpl_tx_pkt_core *cpl;
2168 	struct fw_eth_tx_eo_wr *wr;
2169 	bool skip_eotx_wr = false;
2170 	struct sge_eosw_desc *d;
2171 	struct sk_buff *skb;
2172 	u8 flits, ndesc;
2173 	int left;
2174 
2175 	eohw_txq = &adap->sge.eohw_txq[eosw_txq->hwqid];
2176 	spin_lock(&eohw_txq->lock);
2177 	reclaim_completed_tx_imm(&eohw_txq->q);
2178 
2179 	d = &eosw_txq->desc[eosw_txq->last_pidx];
2180 	skb = d->skb;
2181 	skb_tx_timestamp(skb);
2182 
2183 	wr = (struct fw_eth_tx_eo_wr *)&eohw_txq->q.desc[eohw_txq->q.pidx];
2184 	if (unlikely(eosw_txq->state != CXGB4_EO_STATE_ACTIVE &&
2185 		     eosw_txq->last_pidx == eosw_txq->flowc_idx)) {
2186 		hdr_len = skb->len;
2187 		data_len = 0;
2188 		flits = DIV_ROUND_UP(hdr_len, 8);
2189 		if (eosw_txq->state == CXGB4_EO_STATE_FLOWC_OPEN_SEND)
2190 			next_state = CXGB4_EO_STATE_FLOWC_OPEN_REPLY;
2191 		else
2192 			next_state = CXGB4_EO_STATE_FLOWC_CLOSE_REPLY;
2193 		skip_eotx_wr = true;
2194 	} else {
2195 		hdr_len = eth_get_headlen(dev, skb->data, skb_headlen(skb));
2196 		data_len = skb->len - hdr_len;
2197 		flits = ethofld_calc_tx_flits(adap, skb, hdr_len);
2198 	}
2199 	ndesc = flits_to_desc(flits);
2200 	wrlen = flits * 8;
2201 	wrlen16 = DIV_ROUND_UP(wrlen, 16);
2202 
2203 	/* If there are no CPL credits, then wait for credits
2204 	 * to come back and retry again
2205 	 */
2206 	if (unlikely(wrlen16 > eosw_txq->cred))
2207 		goto out_unlock;
2208 
2209 	if (unlikely(skip_eotx_wr)) {
2210 		start = (u64 *)wr;
2211 		eosw_txq->state = next_state;
2212 		goto write_wr_headers;
2213 	}
2214 
2215 	cpl = write_eo_wr(adap, eosw_txq, skb, wr, hdr_len, wrlen);
2216 	cntrl = hwcsum(adap->params.chip, skb);
2217 	if (skb_vlan_tag_present(skb))
2218 		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
2219 
2220 	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
2221 				 TXPKT_INTF_V(pi->tx_chan) |
2222 				 TXPKT_PF_V(adap->pf));
2223 	cpl->pack = 0;
2224 	cpl->len = cpu_to_be16(skb->len);
2225 	cpl->ctrl1 = cpu_to_be64(cntrl);
2226 
2227 	start = (u64 *)(cpl + 1);
2228 
2229 write_wr_headers:
2230 	sgl = (u64 *)inline_tx_skb_header(skb, &eohw_txq->q, (void *)start,
2231 					  hdr_len);
2232 	if (data_len) {
2233 		if (unlikely(cxgb4_map_skb(adap->pdev_dev, skb, d->addr))) {
2234 			memset(d->addr, 0, sizeof(d->addr));
2235 			eohw_txq->mapping_err++;
2236 			goto out_unlock;
2237 		}
2238 
2239 		end = (u64 *)wr + flits;
2240 		if (unlikely(start > sgl)) {
2241 			left = (u8 *)end - (u8 *)eohw_txq->q.stat;
2242 			end = (void *)eohw_txq->q.desc + left;
2243 		}
2244 
2245 		if (unlikely((u8 *)sgl >= (u8 *)eohw_txq->q.stat)) {
2246 			/* If current position is already at the end of the
2247 			 * txq, reset the current to point to start of the queue
2248 			 * and update the end ptr as well.
2249 			 */
2250 			left = (u8 *)end - (u8 *)eohw_txq->q.stat;
2251 
2252 			end = (void *)eohw_txq->q.desc + left;
2253 			sgl = (void *)eohw_txq->q.desc;
2254 		}
2255 
2256 		cxgb4_write_sgl(skb, &eohw_txq->q, (void *)sgl, end, hdr_len,
2257 				d->addr);
2258 	}
2259 
2260 	txq_advance(&eohw_txq->q, ndesc);
2261 	cxgb4_ring_tx_db(adap, &eohw_txq->q, ndesc);
2262 	eosw_txq_advance_index(&eosw_txq->last_pidx, 1, eosw_txq->ndesc);
2263 
2264 out_unlock:
2265 	spin_unlock(&eohw_txq->lock);
2266 }
2267 
2268 static void ethofld_xmit(struct net_device *dev, struct sge_eosw_txq *eosw_txq)
2269 {
2270 	struct sk_buff *skb;
2271 	int pktcount;
2272 
2273 	switch (eosw_txq->state) {
2274 	case CXGB4_EO_STATE_ACTIVE:
2275 	case CXGB4_EO_STATE_FLOWC_OPEN_SEND:
2276 	case CXGB4_EO_STATE_FLOWC_CLOSE_SEND:
2277 		pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
2278 		if (pktcount < 0)
2279 			pktcount += eosw_txq->ndesc;
2280 		break;
2281 	case CXGB4_EO_STATE_FLOWC_OPEN_REPLY:
2282 	case CXGB4_EO_STATE_FLOWC_CLOSE_REPLY:
2283 	case CXGB4_EO_STATE_CLOSED:
2284 	default:
2285 		return;
2286 	};
2287 
2288 	while (pktcount--) {
2289 		skb = eosw_txq_peek(eosw_txq);
2290 		if (!skb) {
2291 			eosw_txq_advance_index(&eosw_txq->last_pidx, 1,
2292 					       eosw_txq->ndesc);
2293 			continue;
2294 		}
2295 
2296 		ethofld_hard_xmit(dev, eosw_txq);
2297 	}
2298 }
2299 
2300 static netdev_tx_t cxgb4_ethofld_xmit(struct sk_buff *skb,
2301 				      struct net_device *dev)
2302 {
2303 	struct cxgb4_tc_port_mqprio *tc_port_mqprio;
2304 	struct port_info *pi = netdev2pinfo(dev);
2305 	struct adapter *adap = netdev2adap(dev);
2306 	struct sge_eosw_txq *eosw_txq;
2307 	u32 qid;
2308 	int ret;
2309 
2310 	ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
2311 	if (ret)
2312 		goto out_free;
2313 
2314 	tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id];
2315 	qid = skb_get_queue_mapping(skb) - pi->nqsets;
2316 	eosw_txq = &tc_port_mqprio->eosw_txq[qid];
2317 	spin_lock_bh(&eosw_txq->lock);
2318 	if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
2319 		goto out_unlock;
2320 
2321 	ret = eosw_txq_enqueue(eosw_txq, skb);
2322 	if (ret)
2323 		goto out_unlock;
2324 
2325 	/* SKB is queued for processing until credits are available.
2326 	 * So, call the destructor now and we'll free the skb later
2327 	 * after it has been successfully transmitted.
2328 	 */
2329 	skb_orphan(skb);
2330 
2331 	eosw_txq_advance(eosw_txq, 1);
2332 	ethofld_xmit(dev, eosw_txq);
2333 	spin_unlock_bh(&eosw_txq->lock);
2334 	return NETDEV_TX_OK;
2335 
2336 out_unlock:
2337 	spin_unlock_bh(&eosw_txq->lock);
2338 out_free:
2339 	dev_kfree_skb_any(skb);
2340 	return NETDEV_TX_OK;
2341 }
2342 
2343 netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev)
2344 {
2345 	struct port_info *pi = netdev_priv(dev);
2346 	u16 qid = skb_get_queue_mapping(skb);
2347 
2348 	if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM))
2349 		return cxgb4_vf_eth_xmit(skb, dev);
2350 
2351 	if (unlikely(qid >= pi->nqsets))
2352 		return cxgb4_ethofld_xmit(skb, dev);
2353 
2354 	return cxgb4_eth_xmit(skb, dev);
2355 }
2356 
2357 /**
2358  * cxgb4_ethofld_send_flowc - Send ETHOFLD flowc request to bind eotid to tc.
2359  * @dev - netdevice
2360  * @eotid - ETHOFLD tid to bind/unbind
2361  * @tc - traffic class. If set to FW_SCHED_CLS_NONE, then unbinds the @eotid
2362  *
2363  * Send a FLOWC work request to bind an ETHOFLD TID to a traffic class.
2364  * If @tc is set to FW_SCHED_CLS_NONE, then the @eotid is unbound from
2365  * a traffic class.
2366  */
2367 int cxgb4_ethofld_send_flowc(struct net_device *dev, u32 eotid, u32 tc)
2368 {
2369 	struct port_info *pi = netdev2pinfo(dev);
2370 	struct adapter *adap = netdev2adap(dev);
2371 	enum sge_eosw_state next_state;
2372 	struct sge_eosw_txq *eosw_txq;
2373 	u32 len, len16, nparams = 6;
2374 	struct fw_flowc_wr *flowc;
2375 	struct eotid_entry *entry;
2376 	struct sge_ofld_rxq *rxq;
2377 	struct sk_buff *skb;
2378 	int ret = 0;
2379 
2380 	len = sizeof(*flowc) + sizeof(struct fw_flowc_mnemval) * nparams;
2381 	len16 = DIV_ROUND_UP(len, 16);
2382 
2383 	entry = cxgb4_lookup_eotid(&adap->tids, eotid);
2384 	if (!entry)
2385 		return -ENOMEM;
2386 
2387 	eosw_txq = (struct sge_eosw_txq *)entry->data;
2388 	if (!eosw_txq)
2389 		return -ENOMEM;
2390 
2391 	skb = alloc_skb(len, GFP_KERNEL);
2392 	if (!skb)
2393 		return -ENOMEM;
2394 
2395 	spin_lock_bh(&eosw_txq->lock);
2396 	if (tc != FW_SCHED_CLS_NONE) {
2397 		if (eosw_txq->state != CXGB4_EO_STATE_CLOSED)
2398 			goto out_unlock;
2399 
2400 		next_state = CXGB4_EO_STATE_FLOWC_OPEN_SEND;
2401 	} else {
2402 		if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
2403 			goto out_unlock;
2404 
2405 		next_state = CXGB4_EO_STATE_FLOWC_CLOSE_SEND;
2406 	}
2407 
2408 	flowc = __skb_put(skb, len);
2409 	memset(flowc, 0, len);
2410 
2411 	rxq = &adap->sge.eohw_rxq[eosw_txq->hwqid];
2412 	flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(len16) |
2413 					  FW_WR_FLOWID_V(eosw_txq->hwtid));
2414 	flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
2415 					   FW_FLOWC_WR_NPARAMS_V(nparams) |
2416 					   FW_WR_COMPL_V(1));
2417 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
2418 	flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V(adap->pf));
2419 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
2420 	flowc->mnemval[1].val = cpu_to_be32(pi->tx_chan);
2421 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
2422 	flowc->mnemval[2].val = cpu_to_be32(pi->tx_chan);
2423 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
2424 	flowc->mnemval[3].val = cpu_to_be32(rxq->rspq.abs_id);
2425 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
2426 	flowc->mnemval[4].val = cpu_to_be32(tc);
2427 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_EOSTATE;
2428 	flowc->mnemval[5].val = cpu_to_be32(tc == FW_SCHED_CLS_NONE ?
2429 					    FW_FLOWC_MNEM_EOSTATE_CLOSING :
2430 					    FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
2431 
2432 	eosw_txq->cred -= len16;
2433 	eosw_txq->ncompl++;
2434 	eosw_txq->last_compl = 0;
2435 
2436 	ret = eosw_txq_enqueue(eosw_txq, skb);
2437 	if (ret) {
2438 		dev_consume_skb_any(skb);
2439 		goto out_unlock;
2440 	}
2441 
2442 	eosw_txq->state = next_state;
2443 	eosw_txq->flowc_idx = eosw_txq->pidx;
2444 	eosw_txq_advance(eosw_txq, 1);
2445 	ethofld_xmit(dev, eosw_txq);
2446 
2447 out_unlock:
2448 	spin_unlock_bh(&eosw_txq->lock);
2449 	return ret;
2450 }
2451 
2452 /**
2453  *	is_imm - check whether a packet can be sent as immediate data
2454  *	@skb: the packet
2455  *
2456  *	Returns true if a packet can be sent as a WR with immediate data.
2457  */
2458 static inline int is_imm(const struct sk_buff *skb)
2459 {
2460 	return skb->len <= MAX_CTRL_WR_LEN;
2461 }
2462 
2463 /**
2464  *	ctrlq_check_stop - check if a control queue is full and should stop
2465  *	@q: the queue
2466  *	@wr: most recent WR written to the queue
2467  *
2468  *	Check if a control queue has become full and should be stopped.
2469  *	We clean up control queue descriptors very lazily, only when we are out.
2470  *	If the queue is still full after reclaiming any completed descriptors
2471  *	we suspend it and have the last WR wake it up.
2472  */
2473 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
2474 {
2475 	reclaim_completed_tx_imm(&q->q);
2476 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2477 		wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2478 		q->q.stops++;
2479 		q->full = 1;
2480 	}
2481 }
2482 
2483 /**
2484  *	ctrl_xmit - send a packet through an SGE control Tx queue
2485  *	@q: the control queue
2486  *	@skb: the packet
2487  *
2488  *	Send a packet through an SGE control Tx queue.  Packets sent through
2489  *	a control queue must fit entirely as immediate data.
2490  */
2491 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
2492 {
2493 	unsigned int ndesc;
2494 	struct fw_wr_hdr *wr;
2495 
2496 	if (unlikely(!is_imm(skb))) {
2497 		WARN_ON(1);
2498 		dev_kfree_skb(skb);
2499 		return NET_XMIT_DROP;
2500 	}
2501 
2502 	ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
2503 	spin_lock(&q->sendq.lock);
2504 
2505 	if (unlikely(q->full)) {
2506 		skb->priority = ndesc;                  /* save for restart */
2507 		__skb_queue_tail(&q->sendq, skb);
2508 		spin_unlock(&q->sendq.lock);
2509 		return NET_XMIT_CN;
2510 	}
2511 
2512 	wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2513 	cxgb4_inline_tx_skb(skb, &q->q, wr);
2514 
2515 	txq_advance(&q->q, ndesc);
2516 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
2517 		ctrlq_check_stop(q, wr);
2518 
2519 	cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
2520 	spin_unlock(&q->sendq.lock);
2521 
2522 	kfree_skb(skb);
2523 	return NET_XMIT_SUCCESS;
2524 }
2525 
2526 /**
2527  *	restart_ctrlq - restart a suspended control queue
2528  *	@data: the control queue to restart
2529  *
2530  *	Resumes transmission on a suspended Tx control queue.
2531  */
2532 static void restart_ctrlq(unsigned long data)
2533 {
2534 	struct sk_buff *skb;
2535 	unsigned int written = 0;
2536 	struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
2537 
2538 	spin_lock(&q->sendq.lock);
2539 	reclaim_completed_tx_imm(&q->q);
2540 	BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */
2541 
2542 	while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
2543 		struct fw_wr_hdr *wr;
2544 		unsigned int ndesc = skb->priority;     /* previously saved */
2545 
2546 		written += ndesc;
2547 		/* Write descriptors and free skbs outside the lock to limit
2548 		 * wait times.  q->full is still set so new skbs will be queued.
2549 		 */
2550 		wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2551 		txq_advance(&q->q, ndesc);
2552 		spin_unlock(&q->sendq.lock);
2553 
2554 		cxgb4_inline_tx_skb(skb, &q->q, wr);
2555 		kfree_skb(skb);
2556 
2557 		if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2558 			unsigned long old = q->q.stops;
2559 
2560 			ctrlq_check_stop(q, wr);
2561 			if (q->q.stops != old) {          /* suspended anew */
2562 				spin_lock(&q->sendq.lock);
2563 				goto ringdb;
2564 			}
2565 		}
2566 		if (written > 16) {
2567 			cxgb4_ring_tx_db(q->adap, &q->q, written);
2568 			written = 0;
2569 		}
2570 		spin_lock(&q->sendq.lock);
2571 	}
2572 	q->full = 0;
2573 ringdb:
2574 	if (written)
2575 		cxgb4_ring_tx_db(q->adap, &q->q, written);
2576 	spin_unlock(&q->sendq.lock);
2577 }
2578 
2579 /**
2580  *	t4_mgmt_tx - send a management message
2581  *	@adap: the adapter
2582  *	@skb: the packet containing the management message
2583  *
2584  *	Send a management message through control queue 0.
2585  */
2586 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
2587 {
2588 	int ret;
2589 
2590 	local_bh_disable();
2591 	ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
2592 	local_bh_enable();
2593 	return ret;
2594 }
2595 
2596 /**
2597  *	is_ofld_imm - check whether a packet can be sent as immediate data
2598  *	@skb: the packet
2599  *
2600  *	Returns true if a packet can be sent as an offload WR with immediate
2601  *	data.  We currently use the same limit as for Ethernet packets.
2602  */
2603 static inline int is_ofld_imm(const struct sk_buff *skb)
2604 {
2605 	struct work_request_hdr *req = (struct work_request_hdr *)skb->data;
2606 	unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi));
2607 
2608 	if (opcode == FW_CRYPTO_LOOKASIDE_WR)
2609 		return skb->len <= SGE_MAX_WR_LEN;
2610 	else
2611 		return skb->len <= MAX_IMM_TX_PKT_LEN;
2612 }
2613 
2614 /**
2615  *	calc_tx_flits_ofld - calculate # of flits for an offload packet
2616  *	@skb: the packet
2617  *
2618  *	Returns the number of flits needed for the given offload packet.
2619  *	These packets are already fully constructed and no additional headers
2620  *	will be added.
2621  */
2622 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
2623 {
2624 	unsigned int flits, cnt;
2625 
2626 	if (is_ofld_imm(skb))
2627 		return DIV_ROUND_UP(skb->len, 8);
2628 
2629 	flits = skb_transport_offset(skb) / 8U;   /* headers */
2630 	cnt = skb_shinfo(skb)->nr_frags;
2631 	if (skb_tail_pointer(skb) != skb_transport_header(skb))
2632 		cnt++;
2633 	return flits + sgl_len(cnt);
2634 }
2635 
2636 /**
2637  *	txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
2638  *	@adap: the adapter
2639  *	@q: the queue to stop
2640  *
2641  *	Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
2642  *	inability to map packets.  A periodic timer attempts to restart
2643  *	queues so marked.
2644  */
2645 static void txq_stop_maperr(struct sge_uld_txq *q)
2646 {
2647 	q->mapping_err++;
2648 	q->q.stops++;
2649 	set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
2650 		q->adap->sge.txq_maperr);
2651 }
2652 
2653 /**
2654  *	ofldtxq_stop - stop an offload Tx queue that has become full
2655  *	@q: the queue to stop
2656  *	@wr: the Work Request causing the queue to become full
2657  *
2658  *	Stops an offload Tx queue that has become full and modifies the packet
2659  *	being written to request a wakeup.
2660  */
2661 static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr)
2662 {
2663 	wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2664 	q->q.stops++;
2665 	q->full = 1;
2666 }
2667 
2668 /**
2669  *	service_ofldq - service/restart a suspended offload queue
2670  *	@q: the offload queue
2671  *
2672  *	Services an offload Tx queue by moving packets from its Pending Send
2673  *	Queue to the Hardware TX ring.  The function starts and ends with the
2674  *	Send Queue locked, but drops the lock while putting the skb at the
2675  *	head of the Send Queue onto the Hardware TX Ring.  Dropping the lock
2676  *	allows more skbs to be added to the Send Queue by other threads.
2677  *	The packet being processed at the head of the Pending Send Queue is
2678  *	left on the queue in case we experience DMA Mapping errors, etc.
2679  *	and need to give up and restart later.
2680  *
2681  *	service_ofldq() can be thought of as a task which opportunistically
2682  *	uses other threads execution contexts.  We use the Offload Queue
2683  *	boolean "service_ofldq_running" to make sure that only one instance
2684  *	is ever running at a time ...
2685  */
2686 static void service_ofldq(struct sge_uld_txq *q)
2687 {
2688 	u64 *pos, *before, *end;
2689 	int credits;
2690 	struct sk_buff *skb;
2691 	struct sge_txq *txq;
2692 	unsigned int left;
2693 	unsigned int written = 0;
2694 	unsigned int flits, ndesc;
2695 
2696 	/* If another thread is currently in service_ofldq() processing the
2697 	 * Pending Send Queue then there's nothing to do. Otherwise, flag
2698 	 * that we're doing the work and continue.  Examining/modifying
2699 	 * the Offload Queue boolean "service_ofldq_running" must be done
2700 	 * while holding the Pending Send Queue Lock.
2701 	 */
2702 	if (q->service_ofldq_running)
2703 		return;
2704 	q->service_ofldq_running = true;
2705 
2706 	while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
2707 		/* We drop the lock while we're working with the skb at the
2708 		 * head of the Pending Send Queue.  This allows more skbs to
2709 		 * be added to the Pending Send Queue while we're working on
2710 		 * this one.  We don't need to lock to guard the TX Ring
2711 		 * updates because only one thread of execution is ever
2712 		 * allowed into service_ofldq() at a time.
2713 		 */
2714 		spin_unlock(&q->sendq.lock);
2715 
2716 		cxgb4_reclaim_completed_tx(q->adap, &q->q, false);
2717 
2718 		flits = skb->priority;                /* previously saved */
2719 		ndesc = flits_to_desc(flits);
2720 		credits = txq_avail(&q->q) - ndesc;
2721 		BUG_ON(credits < 0);
2722 		if (unlikely(credits < TXQ_STOP_THRES))
2723 			ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data);
2724 
2725 		pos = (u64 *)&q->q.desc[q->q.pidx];
2726 		if (is_ofld_imm(skb))
2727 			cxgb4_inline_tx_skb(skb, &q->q, pos);
2728 		else if (cxgb4_map_skb(q->adap->pdev_dev, skb,
2729 				       (dma_addr_t *)skb->head)) {
2730 			txq_stop_maperr(q);
2731 			spin_lock(&q->sendq.lock);
2732 			break;
2733 		} else {
2734 			int last_desc, hdr_len = skb_transport_offset(skb);
2735 
2736 			/* The WR headers  may not fit within one descriptor.
2737 			 * So we need to deal with wrap-around here.
2738 			 */
2739 			before = (u64 *)pos;
2740 			end = (u64 *)pos + flits;
2741 			txq = &q->q;
2742 			pos = (void *)inline_tx_skb_header(skb, &q->q,
2743 							   (void *)pos,
2744 							   hdr_len);
2745 			if (before > (u64 *)pos) {
2746 				left = (u8 *)end - (u8 *)txq->stat;
2747 				end = (void *)txq->desc + left;
2748 			}
2749 
2750 			/* If current position is already at the end of the
2751 			 * ofld queue, reset the current to point to
2752 			 * start of the queue and update the end ptr as well.
2753 			 */
2754 			if (pos == (u64 *)txq->stat) {
2755 				left = (u8 *)end - (u8 *)txq->stat;
2756 				end = (void *)txq->desc + left;
2757 				pos = (void *)txq->desc;
2758 			}
2759 
2760 			cxgb4_write_sgl(skb, &q->q, (void *)pos,
2761 					end, hdr_len,
2762 					(dma_addr_t *)skb->head);
2763 #ifdef CONFIG_NEED_DMA_MAP_STATE
2764 			skb->dev = q->adap->port[0];
2765 			skb->destructor = deferred_unmap_destructor;
2766 #endif
2767 			last_desc = q->q.pidx + ndesc - 1;
2768 			if (last_desc >= q->q.size)
2769 				last_desc -= q->q.size;
2770 			q->q.sdesc[last_desc].skb = skb;
2771 		}
2772 
2773 		txq_advance(&q->q, ndesc);
2774 		written += ndesc;
2775 		if (unlikely(written > 32)) {
2776 			cxgb4_ring_tx_db(q->adap, &q->q, written);
2777 			written = 0;
2778 		}
2779 
2780 		/* Reacquire the Pending Send Queue Lock so we can unlink the
2781 		 * skb we've just successfully transferred to the TX Ring and
2782 		 * loop for the next skb which may be at the head of the
2783 		 * Pending Send Queue.
2784 		 */
2785 		spin_lock(&q->sendq.lock);
2786 		__skb_unlink(skb, &q->sendq);
2787 		if (is_ofld_imm(skb))
2788 			kfree_skb(skb);
2789 	}
2790 	if (likely(written))
2791 		cxgb4_ring_tx_db(q->adap, &q->q, written);
2792 
2793 	/*Indicate that no thread is processing the Pending Send Queue
2794 	 * currently.
2795 	 */
2796 	q->service_ofldq_running = false;
2797 }
2798 
2799 /**
2800  *	ofld_xmit - send a packet through an offload queue
2801  *	@q: the Tx offload queue
2802  *	@skb: the packet
2803  *
2804  *	Send an offload packet through an SGE offload queue.
2805  */
2806 static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb)
2807 {
2808 	skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */
2809 	spin_lock(&q->sendq.lock);
2810 
2811 	/* Queue the new skb onto the Offload Queue's Pending Send Queue.  If
2812 	 * that results in this new skb being the only one on the queue, start
2813 	 * servicing it.  If there are other skbs already on the list, then
2814 	 * either the queue is currently being processed or it's been stopped
2815 	 * for some reason and it'll be restarted at a later time.  Restart
2816 	 * paths are triggered by events like experiencing a DMA Mapping Error
2817 	 * or filling the Hardware TX Ring.
2818 	 */
2819 	__skb_queue_tail(&q->sendq, skb);
2820 	if (q->sendq.qlen == 1)
2821 		service_ofldq(q);
2822 
2823 	spin_unlock(&q->sendq.lock);
2824 	return NET_XMIT_SUCCESS;
2825 }
2826 
2827 /**
2828  *	restart_ofldq - restart a suspended offload queue
2829  *	@data: the offload queue to restart
2830  *
2831  *	Resumes transmission on a suspended Tx offload queue.
2832  */
2833 static void restart_ofldq(unsigned long data)
2834 {
2835 	struct sge_uld_txq *q = (struct sge_uld_txq *)data;
2836 
2837 	spin_lock(&q->sendq.lock);
2838 	q->full = 0;            /* the queue actually is completely empty now */
2839 	service_ofldq(q);
2840 	spin_unlock(&q->sendq.lock);
2841 }
2842 
2843 /**
2844  *	skb_txq - return the Tx queue an offload packet should use
2845  *	@skb: the packet
2846  *
2847  *	Returns the Tx queue an offload packet should use as indicated by bits
2848  *	1-15 in the packet's queue_mapping.
2849  */
2850 static inline unsigned int skb_txq(const struct sk_buff *skb)
2851 {
2852 	return skb->queue_mapping >> 1;
2853 }
2854 
2855 /**
2856  *	is_ctrl_pkt - return whether an offload packet is a control packet
2857  *	@skb: the packet
2858  *
2859  *	Returns whether an offload packet should use an OFLD or a CTRL
2860  *	Tx queue as indicated by bit 0 in the packet's queue_mapping.
2861  */
2862 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
2863 {
2864 	return skb->queue_mapping & 1;
2865 }
2866 
2867 static inline int uld_send(struct adapter *adap, struct sk_buff *skb,
2868 			   unsigned int tx_uld_type)
2869 {
2870 	struct sge_uld_txq_info *txq_info;
2871 	struct sge_uld_txq *txq;
2872 	unsigned int idx = skb_txq(skb);
2873 
2874 	if (unlikely(is_ctrl_pkt(skb))) {
2875 		/* Single ctrl queue is a requirement for LE workaround path */
2876 		if (adap->tids.nsftids)
2877 			idx = 0;
2878 		return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
2879 	}
2880 
2881 	txq_info = adap->sge.uld_txq_info[tx_uld_type];
2882 	if (unlikely(!txq_info)) {
2883 		WARN_ON(true);
2884 		return NET_XMIT_DROP;
2885 	}
2886 
2887 	txq = &txq_info->uldtxq[idx];
2888 	return ofld_xmit(txq, skb);
2889 }
2890 
2891 /**
2892  *	t4_ofld_send - send an offload packet
2893  *	@adap: the adapter
2894  *	@skb: the packet
2895  *
2896  *	Sends an offload packet.  We use the packet queue_mapping to select the
2897  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
2898  *	should be sent as regular or control, bits 1-15 select the queue.
2899  */
2900 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
2901 {
2902 	int ret;
2903 
2904 	local_bh_disable();
2905 	ret = uld_send(adap, skb, CXGB4_TX_OFLD);
2906 	local_bh_enable();
2907 	return ret;
2908 }
2909 
2910 /**
2911  *	cxgb4_ofld_send - send an offload packet
2912  *	@dev: the net device
2913  *	@skb: the packet
2914  *
2915  *	Sends an offload packet.  This is an exported version of @t4_ofld_send,
2916  *	intended for ULDs.
2917  */
2918 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
2919 {
2920 	return t4_ofld_send(netdev2adap(dev), skb);
2921 }
2922 EXPORT_SYMBOL(cxgb4_ofld_send);
2923 
2924 static void *inline_tx_header(const void *src,
2925 			      const struct sge_txq *q,
2926 			      void *pos, int length)
2927 {
2928 	int left = (void *)q->stat - pos;
2929 	u64 *p;
2930 
2931 	if (likely(length <= left)) {
2932 		memcpy(pos, src, length);
2933 		pos += length;
2934 	} else {
2935 		memcpy(pos, src, left);
2936 		memcpy(q->desc, src + left, length - left);
2937 		pos = (void *)q->desc + (length - left);
2938 	}
2939 	/* 0-pad to multiple of 16 */
2940 	p = PTR_ALIGN(pos, 8);
2941 	if ((uintptr_t)p & 8) {
2942 		*p = 0;
2943 		return p + 1;
2944 	}
2945 	return p;
2946 }
2947 
2948 /**
2949  *      ofld_xmit_direct - copy a WR into offload queue
2950  *      @q: the Tx offload queue
2951  *      @src: location of WR
2952  *      @len: WR length
2953  *
2954  *      Copy an immediate WR into an uncontended SGE offload queue.
2955  */
2956 static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src,
2957 			    unsigned int len)
2958 {
2959 	unsigned int ndesc;
2960 	int credits;
2961 	u64 *pos;
2962 
2963 	/* Use the lower limit as the cut-off */
2964 	if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) {
2965 		WARN_ON(1);
2966 		return NET_XMIT_DROP;
2967 	}
2968 
2969 	/* Don't return NET_XMIT_CN here as the current
2970 	 * implementation doesn't queue the request
2971 	 * using an skb when the following conditions not met
2972 	 */
2973 	if (!spin_trylock(&q->sendq.lock))
2974 		return NET_XMIT_DROP;
2975 
2976 	if (q->full || !skb_queue_empty(&q->sendq) ||
2977 	    q->service_ofldq_running) {
2978 		spin_unlock(&q->sendq.lock);
2979 		return NET_XMIT_DROP;
2980 	}
2981 	ndesc = flits_to_desc(DIV_ROUND_UP(len, 8));
2982 	credits = txq_avail(&q->q) - ndesc;
2983 	pos = (u64 *)&q->q.desc[q->q.pidx];
2984 
2985 	/* ofldtxq_stop modifies WR header in-situ */
2986 	inline_tx_header(src, &q->q, pos, len);
2987 	if (unlikely(credits < TXQ_STOP_THRES))
2988 		ofldtxq_stop(q, (struct fw_wr_hdr *)pos);
2989 	txq_advance(&q->q, ndesc);
2990 	cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
2991 
2992 	spin_unlock(&q->sendq.lock);
2993 	return NET_XMIT_SUCCESS;
2994 }
2995 
2996 int cxgb4_immdata_send(struct net_device *dev, unsigned int idx,
2997 		       const void *src, unsigned int len)
2998 {
2999 	struct sge_uld_txq_info *txq_info;
3000 	struct sge_uld_txq *txq;
3001 	struct adapter *adap;
3002 	int ret;
3003 
3004 	adap = netdev2adap(dev);
3005 
3006 	local_bh_disable();
3007 	txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
3008 	if (unlikely(!txq_info)) {
3009 		WARN_ON(true);
3010 		local_bh_enable();
3011 		return NET_XMIT_DROP;
3012 	}
3013 	txq = &txq_info->uldtxq[idx];
3014 
3015 	ret = ofld_xmit_direct(txq, src, len);
3016 	local_bh_enable();
3017 	return net_xmit_eval(ret);
3018 }
3019 EXPORT_SYMBOL(cxgb4_immdata_send);
3020 
3021 /**
3022  *	t4_crypto_send - send crypto packet
3023  *	@adap: the adapter
3024  *	@skb: the packet
3025  *
3026  *	Sends crypto packet.  We use the packet queue_mapping to select the
3027  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
3028  *	should be sent as regular or control, bits 1-15 select the queue.
3029  */
3030 static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb)
3031 {
3032 	int ret;
3033 
3034 	local_bh_disable();
3035 	ret = uld_send(adap, skb, CXGB4_TX_CRYPTO);
3036 	local_bh_enable();
3037 	return ret;
3038 }
3039 
3040 /**
3041  *	cxgb4_crypto_send - send crypto packet
3042  *	@dev: the net device
3043  *	@skb: the packet
3044  *
3045  *	Sends crypto packet.  This is an exported version of @t4_crypto_send,
3046  *	intended for ULDs.
3047  */
3048 int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb)
3049 {
3050 	return t4_crypto_send(netdev2adap(dev), skb);
3051 }
3052 EXPORT_SYMBOL(cxgb4_crypto_send);
3053 
3054 static inline void copy_frags(struct sk_buff *skb,
3055 			      const struct pkt_gl *gl, unsigned int offset)
3056 {
3057 	int i;
3058 
3059 	/* usually there's just one frag */
3060 	__skb_fill_page_desc(skb, 0, gl->frags[0].page,
3061 			     gl->frags[0].offset + offset,
3062 			     gl->frags[0].size - offset);
3063 	skb_shinfo(skb)->nr_frags = gl->nfrags;
3064 	for (i = 1; i < gl->nfrags; i++)
3065 		__skb_fill_page_desc(skb, i, gl->frags[i].page,
3066 				     gl->frags[i].offset,
3067 				     gl->frags[i].size);
3068 
3069 	/* get a reference to the last page, we don't own it */
3070 	get_page(gl->frags[gl->nfrags - 1].page);
3071 }
3072 
3073 /**
3074  *	cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
3075  *	@gl: the gather list
3076  *	@skb_len: size of sk_buff main body if it carries fragments
3077  *	@pull_len: amount of data to move to the sk_buff's main body
3078  *
3079  *	Builds an sk_buff from the given packet gather list.  Returns the
3080  *	sk_buff or %NULL if sk_buff allocation failed.
3081  */
3082 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
3083 				   unsigned int skb_len, unsigned int pull_len)
3084 {
3085 	struct sk_buff *skb;
3086 
3087 	/*
3088 	 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
3089 	 * size, which is expected since buffers are at least PAGE_SIZEd.
3090 	 * In this case packets up to RX_COPY_THRES have only one fragment.
3091 	 */
3092 	if (gl->tot_len <= RX_COPY_THRES) {
3093 		skb = dev_alloc_skb(gl->tot_len);
3094 		if (unlikely(!skb))
3095 			goto out;
3096 		__skb_put(skb, gl->tot_len);
3097 		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
3098 	} else {
3099 		skb = dev_alloc_skb(skb_len);
3100 		if (unlikely(!skb))
3101 			goto out;
3102 		__skb_put(skb, pull_len);
3103 		skb_copy_to_linear_data(skb, gl->va, pull_len);
3104 
3105 		copy_frags(skb, gl, pull_len);
3106 		skb->len = gl->tot_len;
3107 		skb->data_len = skb->len - pull_len;
3108 		skb->truesize += skb->data_len;
3109 	}
3110 out:	return skb;
3111 }
3112 EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
3113 
3114 /**
3115  *	t4_pktgl_free - free a packet gather list
3116  *	@gl: the gather list
3117  *
3118  *	Releases the pages of a packet gather list.  We do not own the last
3119  *	page on the list and do not free it.
3120  */
3121 static void t4_pktgl_free(const struct pkt_gl *gl)
3122 {
3123 	int n;
3124 	const struct page_frag *p;
3125 
3126 	for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
3127 		put_page(p->page);
3128 }
3129 
3130 /*
3131  * Process an MPS trace packet.  Give it an unused protocol number so it won't
3132  * be delivered to anyone and send it to the stack for capture.
3133  */
3134 static noinline int handle_trace_pkt(struct adapter *adap,
3135 				     const struct pkt_gl *gl)
3136 {
3137 	struct sk_buff *skb;
3138 
3139 	skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
3140 	if (unlikely(!skb)) {
3141 		t4_pktgl_free(gl);
3142 		return 0;
3143 	}
3144 
3145 	if (is_t4(adap->params.chip))
3146 		__skb_pull(skb, sizeof(struct cpl_trace_pkt));
3147 	else
3148 		__skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
3149 
3150 	skb_reset_mac_header(skb);
3151 	skb->protocol = htons(0xffff);
3152 	skb->dev = adap->port[0];
3153 	netif_receive_skb(skb);
3154 	return 0;
3155 }
3156 
3157 /**
3158  * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp
3159  * @adap: the adapter
3160  * @hwtstamps: time stamp structure to update
3161  * @sgetstamp: 60bit iqe timestamp
3162  *
3163  * Every ingress queue entry has the 60-bit timestamp, convert that timestamp
3164  * which is in Core Clock ticks into ktime_t and assign it
3165  **/
3166 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap,
3167 				     struct skb_shared_hwtstamps *hwtstamps,
3168 				     u64 sgetstamp)
3169 {
3170 	u64 ns;
3171 	u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2);
3172 
3173 	ns = div_u64(tmp, adap->params.vpd.cclk);
3174 
3175 	memset(hwtstamps, 0, sizeof(*hwtstamps));
3176 	hwtstamps->hwtstamp = ns_to_ktime(ns);
3177 }
3178 
3179 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
3180 		   const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len)
3181 {
3182 	struct adapter *adapter = rxq->rspq.adap;
3183 	struct sge *s = &adapter->sge;
3184 	struct port_info *pi;
3185 	int ret;
3186 	struct sk_buff *skb;
3187 
3188 	skb = napi_get_frags(&rxq->rspq.napi);
3189 	if (unlikely(!skb)) {
3190 		t4_pktgl_free(gl);
3191 		rxq->stats.rx_drops++;
3192 		return;
3193 	}
3194 
3195 	copy_frags(skb, gl, s->pktshift);
3196 	if (tnl_hdr_len)
3197 		skb->csum_level = 1;
3198 	skb->len = gl->tot_len - s->pktshift;
3199 	skb->data_len = skb->len;
3200 	skb->truesize += skb->data_len;
3201 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3202 	skb_record_rx_queue(skb, rxq->rspq.idx);
3203 	pi = netdev_priv(skb->dev);
3204 	if (pi->rxtstamp)
3205 		cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb),
3206 					 gl->sgetstamp);
3207 	if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
3208 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3209 			     PKT_HASH_TYPE_L3);
3210 
3211 	if (unlikely(pkt->vlan_ex)) {
3212 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3213 		rxq->stats.vlan_ex++;
3214 	}
3215 	ret = napi_gro_frags(&rxq->rspq.napi);
3216 	if (ret == GRO_HELD)
3217 		rxq->stats.lro_pkts++;
3218 	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
3219 		rxq->stats.lro_merged++;
3220 	rxq->stats.pkts++;
3221 	rxq->stats.rx_cso++;
3222 }
3223 
3224 enum {
3225 	RX_NON_PTP_PKT = 0,
3226 	RX_PTP_PKT_SUC = 1,
3227 	RX_PTP_PKT_ERR = 2
3228 };
3229 
3230 /**
3231  *     t4_systim_to_hwstamp - read hardware time stamp
3232  *     @adap: the adapter
3233  *     @skb: the packet
3234  *
3235  *     Read Time Stamp from MPS packet and insert in skb which
3236  *     is forwarded to PTP application
3237  */
3238 static noinline int t4_systim_to_hwstamp(struct adapter *adapter,
3239 					 struct sk_buff *skb)
3240 {
3241 	struct skb_shared_hwtstamps *hwtstamps;
3242 	struct cpl_rx_mps_pkt *cpl = NULL;
3243 	unsigned char *data;
3244 	int offset;
3245 
3246 	cpl = (struct cpl_rx_mps_pkt *)skb->data;
3247 	if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) &
3248 	     X_CPL_RX_MPS_PKT_TYPE_PTP))
3249 		return RX_PTP_PKT_ERR;
3250 
3251 	data = skb->data + sizeof(*cpl);
3252 	skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt));
3253 	offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN;
3254 	if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short))
3255 		return RX_PTP_PKT_ERR;
3256 
3257 	hwtstamps = skb_hwtstamps(skb);
3258 	memset(hwtstamps, 0, sizeof(*hwtstamps));
3259 	hwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*((u64 *)data)));
3260 
3261 	return RX_PTP_PKT_SUC;
3262 }
3263 
3264 /**
3265  *     t4_rx_hststamp - Recv PTP Event Message
3266  *     @adap: the adapter
3267  *     @rsp: the response queue descriptor holding the RX_PKT message
3268  *     @skb: the packet
3269  *
3270  *     PTP enabled and MPS packet, read HW timestamp
3271  */
3272 static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp,
3273 			  struct sge_eth_rxq *rxq, struct sk_buff *skb)
3274 {
3275 	int ret;
3276 
3277 	if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) &&
3278 		     !is_t4(adapter->params.chip))) {
3279 		ret = t4_systim_to_hwstamp(adapter, skb);
3280 		if (ret == RX_PTP_PKT_ERR) {
3281 			kfree_skb(skb);
3282 			rxq->stats.rx_drops++;
3283 		}
3284 		return ret;
3285 	}
3286 	return RX_NON_PTP_PKT;
3287 }
3288 
3289 /**
3290  *      t4_tx_hststamp - Loopback PTP Transmit Event Message
3291  *      @adap: the adapter
3292  *      @skb: the packet
3293  *      @dev: the ingress net device
3294  *
3295  *      Read hardware timestamp for the loopback PTP Tx event message
3296  */
3297 static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb,
3298 			  struct net_device *dev)
3299 {
3300 	struct port_info *pi = netdev_priv(dev);
3301 
3302 	if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) {
3303 		cxgb4_ptp_read_hwstamp(adapter, pi);
3304 		kfree_skb(skb);
3305 		return 0;
3306 	}
3307 	return 1;
3308 }
3309 
3310 /**
3311  *	t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages
3312  *	@rspq: Ethernet RX Response Queue associated with Ethernet TX Queue
3313  *	@rsp: Response Entry pointer into Response Queue
3314  *	@gl: Gather List pointer
3315  *
3316  *	For adapters which support the SGE Doorbell Queue Timer facility,
3317  *	we configure the Ethernet TX Queues to send CIDX Updates to the
3318  *	Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE
3319  *	messages.  This adds a small load to PCIe Link RX bandwidth and,
3320  *	potentially, higher CPU Interrupt load, but allows us to respond
3321  *	much more quickly to the CIDX Updates.  This is important for
3322  *	Upper Layer Software which isn't willing to have a large amount
3323  *	of TX Data outstanding before receiving DMA Completions.
3324  */
3325 static void t4_tx_completion_handler(struct sge_rspq *rspq,
3326 				     const __be64 *rsp,
3327 				     const struct pkt_gl *gl)
3328 {
3329 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
3330 	struct port_info *pi = netdev_priv(rspq->netdev);
3331 	struct adapter *adapter = rspq->adap;
3332 	struct sge *s = &adapter->sge;
3333 	struct sge_eth_txq *txq;
3334 
3335 	/* skip RSS header */
3336 	rsp++;
3337 
3338 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
3339 	 */
3340 	if (unlikely(opcode == CPL_FW4_MSG &&
3341 		     ((const struct cpl_fw4_msg *)rsp)->type ==
3342 							FW_TYPE_RSSCPL)) {
3343 		rsp++;
3344 		opcode = ((const struct rss_header *)rsp)->opcode;
3345 		rsp++;
3346 	}
3347 
3348 	if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) {
3349 		pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n",
3350 			__func__, opcode);
3351 		return;
3352 	}
3353 
3354 	txq = &s->ethtxq[pi->first_qset + rspq->idx];
3355 
3356 	/* We've got the Hardware Consumer Index Update in the Egress Update
3357 	 * message.  If we're using the SGE Doorbell Queue Timer mechanism,
3358 	 * these Egress Update messages will be our sole CIDX Updates we get
3359 	 * since we don't want to chew up PCIe bandwidth for both Ingress
3360 	 * Messages and Status Page writes.  However, The code which manages
3361 	 * reclaiming successfully DMA'ed TX Work Requests uses the CIDX value
3362 	 * stored in the Status Page at the end of the TX Queue.  It's easiest
3363 	 * to simply copy the CIDX Update value from the Egress Update message
3364 	 * to the Status Page.  Also note that no Endian issues need to be
3365 	 * considered here since both are Big Endian and we're just copying
3366 	 * bytes consistently ...
3367 	 */
3368 	if (txq->dbqt) {
3369 		struct cpl_sge_egr_update *egr;
3370 
3371 		egr = (struct cpl_sge_egr_update *)rsp;
3372 		WRITE_ONCE(txq->q.stat->cidx, egr->cidx);
3373 	}
3374 
3375 	t4_sge_eth_txq_egress_update(adapter, txq, -1);
3376 }
3377 
3378 /**
3379  *	t4_ethrx_handler - process an ingress ethernet packet
3380  *	@q: the response queue that received the packet
3381  *	@rsp: the response queue descriptor holding the RX_PKT message
3382  *	@si: the gather list of packet fragments
3383  *
3384  *	Process an ingress ethernet packet and deliver it to the stack.
3385  */
3386 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
3387 		     const struct pkt_gl *si)
3388 {
3389 	bool csum_ok;
3390 	struct sk_buff *skb;
3391 	const struct cpl_rx_pkt *pkt;
3392 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3393 	struct adapter *adapter = q->adap;
3394 	struct sge *s = &q->adap->sge;
3395 	int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
3396 			    CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
3397 	u16 err_vec, tnl_hdr_len = 0;
3398 	struct port_info *pi;
3399 	int ret = 0;
3400 
3401 	/* If we're looking at TX Queue CIDX Update, handle that separately
3402 	 * and return.
3403 	 */
3404 	if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) ||
3405 		     (*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) {
3406 		t4_tx_completion_handler(q, rsp, si);
3407 		return 0;
3408 	}
3409 
3410 	if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
3411 		return handle_trace_pkt(q->adap, si);
3412 
3413 	pkt = (const struct cpl_rx_pkt *)rsp;
3414 	/* Compressed error vector is enabled for T6 only */
3415 	if (q->adap->params.tp.rx_pkt_encap) {
3416 		err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec));
3417 		tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec));
3418 	} else {
3419 		err_vec = be16_to_cpu(pkt->err_vec);
3420 	}
3421 
3422 	csum_ok = pkt->csum_calc && !err_vec &&
3423 		  (q->netdev->features & NETIF_F_RXCSUM);
3424 
3425 	if (err_vec)
3426 		rxq->stats.bad_rx_pkts++;
3427 
3428 	if (((pkt->l2info & htonl(RXF_TCP_F)) ||
3429 	     tnl_hdr_len) &&
3430 	    (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
3431 		do_gro(rxq, si, pkt, tnl_hdr_len);
3432 		return 0;
3433 	}
3434 
3435 	skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
3436 	if (unlikely(!skb)) {
3437 		t4_pktgl_free(si);
3438 		rxq->stats.rx_drops++;
3439 		return 0;
3440 	}
3441 	pi = netdev_priv(q->netdev);
3442 
3443 	/* Handle PTP Event Rx packet */
3444 	if (unlikely(pi->ptp_enable)) {
3445 		ret = t4_rx_hststamp(adapter, rsp, rxq, skb);
3446 		if (ret == RX_PTP_PKT_ERR)
3447 			return 0;
3448 	}
3449 	if (likely(!ret))
3450 		__skb_pull(skb, s->pktshift); /* remove ethernet header pad */
3451 
3452 	/* Handle the PTP Event Tx Loopback packet */
3453 	if (unlikely(pi->ptp_enable && !ret &&
3454 		     (pkt->l2info & htonl(RXF_UDP_F)) &&
3455 		     cxgb4_ptp_is_ptp_rx(skb))) {
3456 		if (!t4_tx_hststamp(adapter, skb, q->netdev))
3457 			return 0;
3458 	}
3459 
3460 	skb->protocol = eth_type_trans(skb, q->netdev);
3461 	skb_record_rx_queue(skb, q->idx);
3462 	if (skb->dev->features & NETIF_F_RXHASH)
3463 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3464 			     PKT_HASH_TYPE_L3);
3465 
3466 	rxq->stats.pkts++;
3467 
3468 	if (pi->rxtstamp)
3469 		cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb),
3470 					 si->sgetstamp);
3471 	if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
3472 		if (!pkt->ip_frag) {
3473 			skb->ip_summed = CHECKSUM_UNNECESSARY;
3474 			rxq->stats.rx_cso++;
3475 		} else if (pkt->l2info & htonl(RXF_IP_F)) {
3476 			__sum16 c = (__force __sum16)pkt->csum;
3477 			skb->csum = csum_unfold(c);
3478 
3479 			if (tnl_hdr_len) {
3480 				skb->ip_summed = CHECKSUM_UNNECESSARY;
3481 				skb->csum_level = 1;
3482 			} else {
3483 				skb->ip_summed = CHECKSUM_COMPLETE;
3484 			}
3485 			rxq->stats.rx_cso++;
3486 		}
3487 	} else {
3488 		skb_checksum_none_assert(skb);
3489 #ifdef CONFIG_CHELSIO_T4_FCOE
3490 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
3491 			  RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
3492 
3493 		if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
3494 			if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
3495 			    (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
3496 				if (q->adap->params.tp.rx_pkt_encap)
3497 					csum_ok = err_vec &
3498 						  T6_COMPR_RXERR_SUM_F;
3499 				else
3500 					csum_ok = err_vec & RXERR_CSUM_F;
3501 				if (!csum_ok)
3502 					skb->ip_summed = CHECKSUM_UNNECESSARY;
3503 			}
3504 		}
3505 
3506 #undef CPL_RX_PKT_FLAGS
3507 #endif /* CONFIG_CHELSIO_T4_FCOE */
3508 	}
3509 
3510 	if (unlikely(pkt->vlan_ex)) {
3511 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3512 		rxq->stats.vlan_ex++;
3513 	}
3514 	skb_mark_napi_id(skb, &q->napi);
3515 	netif_receive_skb(skb);
3516 	return 0;
3517 }
3518 
3519 /**
3520  *	restore_rx_bufs - put back a packet's Rx buffers
3521  *	@si: the packet gather list
3522  *	@q: the SGE free list
3523  *	@frags: number of FL buffers to restore
3524  *
3525  *	Puts back on an FL the Rx buffers associated with @si.  The buffers
3526  *	have already been unmapped and are left unmapped, we mark them so to
3527  *	prevent further unmapping attempts.
3528  *
3529  *	This function undoes a series of @unmap_rx_buf calls when we find out
3530  *	that the current packet can't be processed right away afterall and we
3531  *	need to come back to it later.  This is a very rare event and there's
3532  *	no effort to make this particularly efficient.
3533  */
3534 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
3535 			    int frags)
3536 {
3537 	struct rx_sw_desc *d;
3538 
3539 	while (frags--) {
3540 		if (q->cidx == 0)
3541 			q->cidx = q->size - 1;
3542 		else
3543 			q->cidx--;
3544 		d = &q->sdesc[q->cidx];
3545 		d->page = si->frags[frags].page;
3546 		d->dma_addr |= RX_UNMAPPED_BUF;
3547 		q->avail++;
3548 	}
3549 }
3550 
3551 /**
3552  *	is_new_response - check if a response is newly written
3553  *	@r: the response descriptor
3554  *	@q: the response queue
3555  *
3556  *	Returns true if a response descriptor contains a yet unprocessed
3557  *	response.
3558  */
3559 static inline bool is_new_response(const struct rsp_ctrl *r,
3560 				   const struct sge_rspq *q)
3561 {
3562 	return (r->type_gen >> RSPD_GEN_S) == q->gen;
3563 }
3564 
3565 /**
3566  *	rspq_next - advance to the next entry in a response queue
3567  *	@q: the queue
3568  *
3569  *	Updates the state of a response queue to advance it to the next entry.
3570  */
3571 static inline void rspq_next(struct sge_rspq *q)
3572 {
3573 	q->cur_desc = (void *)q->cur_desc + q->iqe_len;
3574 	if (unlikely(++q->cidx == q->size)) {
3575 		q->cidx = 0;
3576 		q->gen ^= 1;
3577 		q->cur_desc = q->desc;
3578 	}
3579 }
3580 
3581 /**
3582  *	process_responses - process responses from an SGE response queue
3583  *	@q: the ingress queue to process
3584  *	@budget: how many responses can be processed in this round
3585  *
3586  *	Process responses from an SGE response queue up to the supplied budget.
3587  *	Responses include received packets as well as control messages from FW
3588  *	or HW.
3589  *
3590  *	Additionally choose the interrupt holdoff time for the next interrupt
3591  *	on this queue.  If the system is under memory shortage use a fairly
3592  *	long delay to help recovery.
3593  */
3594 static int process_responses(struct sge_rspq *q, int budget)
3595 {
3596 	int ret, rsp_type;
3597 	int budget_left = budget;
3598 	const struct rsp_ctrl *rc;
3599 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3600 	struct adapter *adapter = q->adap;
3601 	struct sge *s = &adapter->sge;
3602 
3603 	while (likely(budget_left)) {
3604 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
3605 		if (!is_new_response(rc, q)) {
3606 			if (q->flush_handler)
3607 				q->flush_handler(q);
3608 			break;
3609 		}
3610 
3611 		dma_rmb();
3612 		rsp_type = RSPD_TYPE_G(rc->type_gen);
3613 		if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
3614 			struct page_frag *fp;
3615 			struct pkt_gl si;
3616 			const struct rx_sw_desc *rsd;
3617 			u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
3618 
3619 			if (len & RSPD_NEWBUF_F) {
3620 				if (likely(q->offset > 0)) {
3621 					free_rx_bufs(q->adap, &rxq->fl, 1);
3622 					q->offset = 0;
3623 				}
3624 				len = RSPD_LEN_G(len);
3625 			}
3626 			si.tot_len = len;
3627 
3628 			/* gather packet fragments */
3629 			for (frags = 0, fp = si.frags; ; frags++, fp++) {
3630 				rsd = &rxq->fl.sdesc[rxq->fl.cidx];
3631 				bufsz = get_buf_size(adapter, rsd);
3632 				fp->page = rsd->page;
3633 				fp->offset = q->offset;
3634 				fp->size = min(bufsz, len);
3635 				len -= fp->size;
3636 				if (!len)
3637 					break;
3638 				unmap_rx_buf(q->adap, &rxq->fl);
3639 			}
3640 
3641 			si.sgetstamp = SGE_TIMESTAMP_G(
3642 					be64_to_cpu(rc->last_flit));
3643 			/*
3644 			 * Last buffer remains mapped so explicitly make it
3645 			 * coherent for CPU access.
3646 			 */
3647 			dma_sync_single_for_cpu(q->adap->pdev_dev,
3648 						get_buf_addr(rsd),
3649 						fp->size, DMA_FROM_DEVICE);
3650 
3651 			si.va = page_address(si.frags[0].page) +
3652 				si.frags[0].offset;
3653 			prefetch(si.va);
3654 
3655 			si.nfrags = frags + 1;
3656 			ret = q->handler(q, q->cur_desc, &si);
3657 			if (likely(ret == 0))
3658 				q->offset += ALIGN(fp->size, s->fl_align);
3659 			else
3660 				restore_rx_bufs(&si, &rxq->fl, frags);
3661 		} else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
3662 			ret = q->handler(q, q->cur_desc, NULL);
3663 		} else {
3664 			ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
3665 		}
3666 
3667 		if (unlikely(ret)) {
3668 			/* couldn't process descriptor, back off for recovery */
3669 			q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
3670 			break;
3671 		}
3672 
3673 		rspq_next(q);
3674 		budget_left--;
3675 	}
3676 
3677 	if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16)
3678 		__refill_fl(q->adap, &rxq->fl);
3679 	return budget - budget_left;
3680 }
3681 
3682 /**
3683  *	napi_rx_handler - the NAPI handler for Rx processing
3684  *	@napi: the napi instance
3685  *	@budget: how many packets we can process in this round
3686  *
3687  *	Handler for new data events when using NAPI.  This does not need any
3688  *	locking or protection from interrupts as data interrupts are off at
3689  *	this point and other adapter interrupts do not interfere (the latter
3690  *	in not a concern at all with MSI-X as non-data interrupts then have
3691  *	a separate handler).
3692  */
3693 static int napi_rx_handler(struct napi_struct *napi, int budget)
3694 {
3695 	unsigned int params;
3696 	struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
3697 	int work_done;
3698 	u32 val;
3699 
3700 	work_done = process_responses(q, budget);
3701 	if (likely(work_done < budget)) {
3702 		int timer_index;
3703 
3704 		napi_complete_done(napi, work_done);
3705 		timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
3706 
3707 		if (q->adaptive_rx) {
3708 			if (work_done > max(timer_pkt_quota[timer_index],
3709 					    MIN_NAPI_WORK))
3710 				timer_index = (timer_index + 1);
3711 			else
3712 				timer_index = timer_index - 1;
3713 
3714 			timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
3715 			q->next_intr_params =
3716 					QINTR_TIMER_IDX_V(timer_index) |
3717 					QINTR_CNT_EN_V(0);
3718 			params = q->next_intr_params;
3719 		} else {
3720 			params = q->next_intr_params;
3721 			q->next_intr_params = q->intr_params;
3722 		}
3723 	} else
3724 		params = QINTR_TIMER_IDX_V(7);
3725 
3726 	val = CIDXINC_V(work_done) | SEINTARM_V(params);
3727 
3728 	/* If we don't have access to the new User GTS (T5+), use the old
3729 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
3730 	 */
3731 	if (unlikely(q->bar2_addr == NULL)) {
3732 		t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
3733 			     val | INGRESSQID_V((u32)q->cntxt_id));
3734 	} else {
3735 		writel(val | INGRESSQID_V(q->bar2_qid),
3736 		       q->bar2_addr + SGE_UDB_GTS);
3737 		wmb();
3738 	}
3739 	return work_done;
3740 }
3741 
3742 void cxgb4_ethofld_restart(unsigned long data)
3743 {
3744 	struct sge_eosw_txq *eosw_txq = (struct sge_eosw_txq *)data;
3745 	int pktcount;
3746 
3747 	spin_lock(&eosw_txq->lock);
3748 	pktcount = eosw_txq->cidx - eosw_txq->last_cidx;
3749 	if (pktcount < 0)
3750 		pktcount += eosw_txq->ndesc;
3751 
3752 	if (pktcount) {
3753 		cxgb4_eosw_txq_free_desc(netdev2adap(eosw_txq->netdev),
3754 					 eosw_txq, pktcount);
3755 		eosw_txq->inuse -= pktcount;
3756 	}
3757 
3758 	/* There may be some packets waiting for completions. So,
3759 	 * attempt to send these packets now.
3760 	 */
3761 	ethofld_xmit(eosw_txq->netdev, eosw_txq);
3762 	spin_unlock(&eosw_txq->lock);
3763 }
3764 
3765 /* cxgb4_ethofld_rx_handler - Process ETHOFLD Tx completions
3766  * @q: the response queue that received the packet
3767  * @rsp: the response queue descriptor holding the CPL message
3768  * @si: the gather list of packet fragments
3769  *
3770  * Process a ETHOFLD Tx completion. Increment the cidx here, but
3771  * free up the descriptors in a tasklet later.
3772  */
3773 int cxgb4_ethofld_rx_handler(struct sge_rspq *q, const __be64 *rsp,
3774 			     const struct pkt_gl *si)
3775 {
3776 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
3777 
3778 	/* skip RSS header */
3779 	rsp++;
3780 
3781 	if (opcode == CPL_FW4_ACK) {
3782 		const struct cpl_fw4_ack *cpl;
3783 		struct sge_eosw_txq *eosw_txq;
3784 		struct eotid_entry *entry;
3785 		struct sk_buff *skb;
3786 		u32 hdr_len, eotid;
3787 		u8 flits, wrlen16;
3788 		int credits;
3789 
3790 		cpl = (const struct cpl_fw4_ack *)rsp;
3791 		eotid = CPL_FW4_ACK_FLOWID_G(ntohl(OPCODE_TID(cpl))) -
3792 			q->adap->tids.eotid_base;
3793 		entry = cxgb4_lookup_eotid(&q->adap->tids, eotid);
3794 		if (!entry)
3795 			goto out_done;
3796 
3797 		eosw_txq = (struct sge_eosw_txq *)entry->data;
3798 		if (!eosw_txq)
3799 			goto out_done;
3800 
3801 		spin_lock(&eosw_txq->lock);
3802 		credits = cpl->credits;
3803 		while (credits > 0) {
3804 			skb = eosw_txq->desc[eosw_txq->cidx].skb;
3805 			if (!skb)
3806 				break;
3807 
3808 			if (unlikely((eosw_txq->state ==
3809 				      CXGB4_EO_STATE_FLOWC_OPEN_REPLY ||
3810 				      eosw_txq->state ==
3811 				      CXGB4_EO_STATE_FLOWC_CLOSE_REPLY) &&
3812 				     eosw_txq->cidx == eosw_txq->flowc_idx)) {
3813 				flits = DIV_ROUND_UP(skb->len, 8);
3814 				if (eosw_txq->state ==
3815 				    CXGB4_EO_STATE_FLOWC_OPEN_REPLY)
3816 					eosw_txq->state = CXGB4_EO_STATE_ACTIVE;
3817 				else
3818 					eosw_txq->state = CXGB4_EO_STATE_CLOSED;
3819 				complete(&eosw_txq->completion);
3820 			} else {
3821 				hdr_len = eth_get_headlen(eosw_txq->netdev,
3822 							  skb->data,
3823 							  skb_headlen(skb));
3824 				flits = ethofld_calc_tx_flits(q->adap, skb,
3825 							      hdr_len);
3826 			}
3827 			eosw_txq_advance_index(&eosw_txq->cidx, 1,
3828 					       eosw_txq->ndesc);
3829 			wrlen16 = DIV_ROUND_UP(flits * 8, 16);
3830 			credits -= wrlen16;
3831 		}
3832 
3833 		eosw_txq->cred += cpl->credits;
3834 		eosw_txq->ncompl--;
3835 
3836 		spin_unlock(&eosw_txq->lock);
3837 
3838 		/* Schedule a tasklet to reclaim SKBs and restart ETHOFLD Tx,
3839 		 * if there were packets waiting for completion.
3840 		 */
3841 		tasklet_schedule(&eosw_txq->qresume_tsk);
3842 	}
3843 
3844 out_done:
3845 	return 0;
3846 }
3847 
3848 /*
3849  * The MSI-X interrupt handler for an SGE response queue.
3850  */
3851 irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
3852 {
3853 	struct sge_rspq *q = cookie;
3854 
3855 	napi_schedule(&q->napi);
3856 	return IRQ_HANDLED;
3857 }
3858 
3859 /*
3860  * Process the indirect interrupt entries in the interrupt queue and kick off
3861  * NAPI for each queue that has generated an entry.
3862  */
3863 static unsigned int process_intrq(struct adapter *adap)
3864 {
3865 	unsigned int credits;
3866 	const struct rsp_ctrl *rc;
3867 	struct sge_rspq *q = &adap->sge.intrq;
3868 	u32 val;
3869 
3870 	spin_lock(&adap->sge.intrq_lock);
3871 	for (credits = 0; ; credits++) {
3872 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
3873 		if (!is_new_response(rc, q))
3874 			break;
3875 
3876 		dma_rmb();
3877 		if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
3878 			unsigned int qid = ntohl(rc->pldbuflen_qid);
3879 
3880 			qid -= adap->sge.ingr_start;
3881 			napi_schedule(&adap->sge.ingr_map[qid]->napi);
3882 		}
3883 
3884 		rspq_next(q);
3885 	}
3886 
3887 	val =  CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
3888 
3889 	/* If we don't have access to the new User GTS (T5+), use the old
3890 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
3891 	 */
3892 	if (unlikely(q->bar2_addr == NULL)) {
3893 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
3894 			     val | INGRESSQID_V(q->cntxt_id));
3895 	} else {
3896 		writel(val | INGRESSQID_V(q->bar2_qid),
3897 		       q->bar2_addr + SGE_UDB_GTS);
3898 		wmb();
3899 	}
3900 	spin_unlock(&adap->sge.intrq_lock);
3901 	return credits;
3902 }
3903 
3904 /*
3905  * The MSI interrupt handler, which handles data events from SGE response queues
3906  * as well as error and other async events as they all use the same MSI vector.
3907  */
3908 static irqreturn_t t4_intr_msi(int irq, void *cookie)
3909 {
3910 	struct adapter *adap = cookie;
3911 
3912 	if (adap->flags & CXGB4_MASTER_PF)
3913 		t4_slow_intr_handler(adap);
3914 	process_intrq(adap);
3915 	return IRQ_HANDLED;
3916 }
3917 
3918 /*
3919  * Interrupt handler for legacy INTx interrupts.
3920  * Handles data events from SGE response queues as well as error and other
3921  * async events as they all use the same interrupt line.
3922  */
3923 static irqreturn_t t4_intr_intx(int irq, void *cookie)
3924 {
3925 	struct adapter *adap = cookie;
3926 
3927 	t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
3928 	if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) |
3929 	    process_intrq(adap))
3930 		return IRQ_HANDLED;
3931 	return IRQ_NONE;             /* probably shared interrupt */
3932 }
3933 
3934 /**
3935  *	t4_intr_handler - select the top-level interrupt handler
3936  *	@adap: the adapter
3937  *
3938  *	Selects the top-level interrupt handler based on the type of interrupts
3939  *	(MSI-X, MSI, or INTx).
3940  */
3941 irq_handler_t t4_intr_handler(struct adapter *adap)
3942 {
3943 	if (adap->flags & CXGB4_USING_MSIX)
3944 		return t4_sge_intr_msix;
3945 	if (adap->flags & CXGB4_USING_MSI)
3946 		return t4_intr_msi;
3947 	return t4_intr_intx;
3948 }
3949 
3950 static void sge_rx_timer_cb(struct timer_list *t)
3951 {
3952 	unsigned long m;
3953 	unsigned int i;
3954 	struct adapter *adap = from_timer(adap, t, sge.rx_timer);
3955 	struct sge *s = &adap->sge;
3956 
3957 	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
3958 		for (m = s->starving_fl[i]; m; m &= m - 1) {
3959 			struct sge_eth_rxq *rxq;
3960 			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
3961 			struct sge_fl *fl = s->egr_map[id];
3962 
3963 			clear_bit(id, s->starving_fl);
3964 			smp_mb__after_atomic();
3965 
3966 			if (fl_starving(adap, fl)) {
3967 				rxq = container_of(fl, struct sge_eth_rxq, fl);
3968 				if (napi_reschedule(&rxq->rspq.napi))
3969 					fl->starving++;
3970 				else
3971 					set_bit(id, s->starving_fl);
3972 			}
3973 		}
3974 	/* The remainder of the SGE RX Timer Callback routine is dedicated to
3975 	 * global Master PF activities like checking for chip ingress stalls,
3976 	 * etc.
3977 	 */
3978 	if (!(adap->flags & CXGB4_MASTER_PF))
3979 		goto done;
3980 
3981 	t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
3982 
3983 done:
3984 	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
3985 }
3986 
3987 static void sge_tx_timer_cb(struct timer_list *t)
3988 {
3989 	struct adapter *adap = from_timer(adap, t, sge.tx_timer);
3990 	struct sge *s = &adap->sge;
3991 	unsigned long m, period;
3992 	unsigned int i, budget;
3993 
3994 	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
3995 		for (m = s->txq_maperr[i]; m; m &= m - 1) {
3996 			unsigned long id = __ffs(m) + i * BITS_PER_LONG;
3997 			struct sge_uld_txq *txq = s->egr_map[id];
3998 
3999 			clear_bit(id, s->txq_maperr);
4000 			tasklet_schedule(&txq->qresume_tsk);
4001 		}
4002 
4003 	if (!is_t4(adap->params.chip)) {
4004 		struct sge_eth_txq *q = &s->ptptxq;
4005 		int avail;
4006 
4007 		spin_lock(&adap->ptp_lock);
4008 		avail = reclaimable(&q->q);
4009 
4010 		if (avail) {
4011 			free_tx_desc(adap, &q->q, avail, false);
4012 			q->q.in_use -= avail;
4013 		}
4014 		spin_unlock(&adap->ptp_lock);
4015 	}
4016 
4017 	budget = MAX_TIMER_TX_RECLAIM;
4018 	i = s->ethtxq_rover;
4019 	do {
4020 		budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i],
4021 						       budget);
4022 		if (!budget)
4023 			break;
4024 
4025 		if (++i >= s->ethqsets)
4026 			i = 0;
4027 	} while (i != s->ethtxq_rover);
4028 	s->ethtxq_rover = i;
4029 
4030 	if (budget == 0) {
4031 		/* If we found too many reclaimable packets schedule a timer
4032 		 * in the near future to continue where we left off.
4033 		 */
4034 		period = 2;
4035 	} else {
4036 		/* We reclaimed all reclaimable TX Descriptors, so reschedule
4037 		 * at the normal period.
4038 		 */
4039 		period = TX_QCHECK_PERIOD;
4040 	}
4041 
4042 	mod_timer(&s->tx_timer, jiffies + period);
4043 }
4044 
4045 /**
4046  *	bar2_address - return the BAR2 address for an SGE Queue's Registers
4047  *	@adapter: the adapter
4048  *	@qid: the SGE Queue ID
4049  *	@qtype: the SGE Queue Type (Egress or Ingress)
4050  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
4051  *
4052  *	Returns the BAR2 address for the SGE Queue Registers associated with
4053  *	@qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
4054  *	returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
4055  *	Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
4056  *	Registers are supported (e.g. the Write Combining Doorbell Buffer).
4057  */
4058 static void __iomem *bar2_address(struct adapter *adapter,
4059 				  unsigned int qid,
4060 				  enum t4_bar2_qtype qtype,
4061 				  unsigned int *pbar2_qid)
4062 {
4063 	u64 bar2_qoffset;
4064 	int ret;
4065 
4066 	ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
4067 				&bar2_qoffset, pbar2_qid);
4068 	if (ret)
4069 		return NULL;
4070 
4071 	return adapter->bar2 + bar2_qoffset;
4072 }
4073 
4074 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
4075  * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
4076  */
4077 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
4078 		     struct net_device *dev, int intr_idx,
4079 		     struct sge_fl *fl, rspq_handler_t hnd,
4080 		     rspq_flush_handler_t flush_hnd, int cong)
4081 {
4082 	int ret, flsz = 0;
4083 	struct fw_iq_cmd c;
4084 	struct sge *s = &adap->sge;
4085 	struct port_info *pi = netdev_priv(dev);
4086 	int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING);
4087 
4088 	/* Size needs to be multiple of 16, including status entry. */
4089 	iq->size = roundup(iq->size, 16);
4090 
4091 	iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
4092 			      &iq->phys_addr, NULL, 0,
4093 			      dev_to_node(adap->pdev_dev));
4094 	if (!iq->desc)
4095 		return -ENOMEM;
4096 
4097 	memset(&c, 0, sizeof(c));
4098 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
4099 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4100 			    FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
4101 	c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
4102 				 FW_LEN16(c));
4103 	c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
4104 		FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
4105 		FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
4106 		FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
4107 		FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
4108 							-intr_idx - 1));
4109 	c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
4110 		FW_IQ_CMD_IQGTSMODE_F |
4111 		FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
4112 		FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
4113 	c.iqsize = htons(iq->size);
4114 	c.iqaddr = cpu_to_be64(iq->phys_addr);
4115 	if (cong >= 0)
4116 		c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F |
4117 				FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC
4118 							:  FW_IQ_IQTYPE_OFLD));
4119 
4120 	if (fl) {
4121 		unsigned int chip_ver =
4122 			CHELSIO_CHIP_VERSION(adap->params.chip);
4123 
4124 		/* Allocate the ring for the hardware free list (with space
4125 		 * for its status page) along with the associated software
4126 		 * descriptor ring.  The free list size needs to be a multiple
4127 		 * of the Egress Queue Unit and at least 2 Egress Units larger
4128 		 * than the SGE's Egress Congrestion Threshold
4129 		 * (fl_starve_thres - 1).
4130 		 */
4131 		if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
4132 			fl->size = s->fl_starve_thres - 1 + 2 * 8;
4133 		fl->size = roundup(fl->size, 8);
4134 		fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
4135 				      sizeof(struct rx_sw_desc), &fl->addr,
4136 				      &fl->sdesc, s->stat_len,
4137 				      dev_to_node(adap->pdev_dev));
4138 		if (!fl->desc)
4139 			goto fl_nomem;
4140 
4141 		flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
4142 		c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
4143 					     FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
4144 					     FW_IQ_CMD_FL0DATARO_V(relaxed) |
4145 					     FW_IQ_CMD_FL0PADEN_F);
4146 		if (cong >= 0)
4147 			c.iqns_to_fl0congen |=
4148 				htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
4149 				      FW_IQ_CMD_FL0CONGCIF_F |
4150 				      FW_IQ_CMD_FL0CONGEN_F);
4151 		/* In T6, for egress queue type FL there is internal overhead
4152 		 * of 16B for header going into FLM module.  Hence the maximum
4153 		 * allowed burst size is 448 bytes.  For T4/T5, the hardware
4154 		 * doesn't coalesce fetch requests if more than 64 bytes of
4155 		 * Free List pointers are provided, so we use a 128-byte Fetch
4156 		 * Burst Minimum there (T6 implements coalescing so we can use
4157 		 * the smaller 64-byte value there).
4158 		 */
4159 		c.fl0dcaen_to_fl0cidxfthresh =
4160 			htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ?
4161 						   FETCHBURSTMIN_128B_X :
4162 						   FETCHBURSTMIN_64B_T6_X) |
4163 			      FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ?
4164 						   FETCHBURSTMAX_512B_X :
4165 						   FETCHBURSTMAX_256B_X));
4166 		c.fl0size = htons(flsz);
4167 		c.fl0addr = cpu_to_be64(fl->addr);
4168 	}
4169 
4170 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4171 	if (ret)
4172 		goto err;
4173 
4174 	netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
4175 	iq->cur_desc = iq->desc;
4176 	iq->cidx = 0;
4177 	iq->gen = 1;
4178 	iq->next_intr_params = iq->intr_params;
4179 	iq->cntxt_id = ntohs(c.iqid);
4180 	iq->abs_id = ntohs(c.physiqid);
4181 	iq->bar2_addr = bar2_address(adap,
4182 				     iq->cntxt_id,
4183 				     T4_BAR2_QTYPE_INGRESS,
4184 				     &iq->bar2_qid);
4185 	iq->size--;                           /* subtract status entry */
4186 	iq->netdev = dev;
4187 	iq->handler = hnd;
4188 	iq->flush_handler = flush_hnd;
4189 
4190 	memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr));
4191 	skb_queue_head_init(&iq->lro_mgr.lroq);
4192 
4193 	/* set offset to -1 to distinguish ingress queues without FL */
4194 	iq->offset = fl ? 0 : -1;
4195 
4196 	adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
4197 
4198 	if (fl) {
4199 		fl->cntxt_id = ntohs(c.fl0id);
4200 		fl->avail = fl->pend_cred = 0;
4201 		fl->pidx = fl->cidx = 0;
4202 		fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
4203 		adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
4204 
4205 		/* Note, we must initialize the BAR2 Free List User Doorbell
4206 		 * information before refilling the Free List!
4207 		 */
4208 		fl->bar2_addr = bar2_address(adap,
4209 					     fl->cntxt_id,
4210 					     T4_BAR2_QTYPE_EGRESS,
4211 					     &fl->bar2_qid);
4212 		refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
4213 	}
4214 
4215 	/* For T5 and later we attempt to set up the Congestion Manager values
4216 	 * of the new RX Ethernet Queue.  This should really be handled by
4217 	 * firmware because it's more complex than any host driver wants to
4218 	 * get involved with and it's different per chip and this is almost
4219 	 * certainly wrong.  Firmware would be wrong as well, but it would be
4220 	 * a lot easier to fix in one place ...  For now we do something very
4221 	 * simple (and hopefully less wrong).
4222 	 */
4223 	if (!is_t4(adap->params.chip) && cong >= 0) {
4224 		u32 param, val, ch_map = 0;
4225 		int i;
4226 		u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log;
4227 
4228 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
4229 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
4230 			 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
4231 		if (cong == 0) {
4232 			val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
4233 		} else {
4234 			val =
4235 			    CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
4236 			for (i = 0; i < 4; i++) {
4237 				if (cong & (1 << i))
4238 					ch_map |= 1 << (i << cng_ch_bits_log);
4239 			}
4240 			val |= CONMCTXT_CNGCHMAP_V(ch_map);
4241 		}
4242 		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
4243 				    &param, &val);
4244 		if (ret)
4245 			dev_warn(adap->pdev_dev, "Failed to set Congestion"
4246 				 " Manager Context for Ingress Queue %d: %d\n",
4247 				 iq->cntxt_id, -ret);
4248 	}
4249 
4250 	return 0;
4251 
4252 fl_nomem:
4253 	ret = -ENOMEM;
4254 err:
4255 	if (iq->desc) {
4256 		dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
4257 				  iq->desc, iq->phys_addr);
4258 		iq->desc = NULL;
4259 	}
4260 	if (fl && fl->desc) {
4261 		kfree(fl->sdesc);
4262 		fl->sdesc = NULL;
4263 		dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
4264 				  fl->desc, fl->addr);
4265 		fl->desc = NULL;
4266 	}
4267 	return ret;
4268 }
4269 
4270 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
4271 {
4272 	q->cntxt_id = id;
4273 	q->bar2_addr = bar2_address(adap,
4274 				    q->cntxt_id,
4275 				    T4_BAR2_QTYPE_EGRESS,
4276 				    &q->bar2_qid);
4277 	q->in_use = 0;
4278 	q->cidx = q->pidx = 0;
4279 	q->stops = q->restarts = 0;
4280 	q->stat = (void *)&q->desc[q->size];
4281 	spin_lock_init(&q->db_lock);
4282 	adap->sge.egr_map[id - adap->sge.egr_start] = q;
4283 }
4284 
4285 /**
4286  *	t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue
4287  *	@adap: the adapter
4288  *	@txq: the SGE Ethernet TX Queue to initialize
4289  *	@dev: the Linux Network Device
4290  *	@netdevq: the corresponding Linux TX Queue
4291  *	@iqid: the Ingress Queue to which to deliver CIDX Update messages
4292  *	@dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers
4293  */
4294 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
4295 			 struct net_device *dev, struct netdev_queue *netdevq,
4296 			 unsigned int iqid, u8 dbqt)
4297 {
4298 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4299 	struct port_info *pi = netdev_priv(dev);
4300 	struct sge *s = &adap->sge;
4301 	struct fw_eq_eth_cmd c;
4302 	int ret, nentries;
4303 
4304 	/* Add status entries */
4305 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
4306 
4307 	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
4308 			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
4309 			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
4310 			netdev_queue_numa_node_read(netdevq));
4311 	if (!txq->q.desc)
4312 		return -ENOMEM;
4313 
4314 	memset(&c, 0, sizeof(c));
4315 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
4316 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4317 			    FW_EQ_ETH_CMD_PFN_V(adap->pf) |
4318 			    FW_EQ_ETH_CMD_VFN_V(0));
4319 	c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
4320 				 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
4321 
4322 	/* For TX Ethernet Queues using the SGE Doorbell Queue Timer
4323 	 * mechanism, we use Ingress Queue messages for Hardware Consumer
4324 	 * Index Updates on the TX Queue.  Otherwise we have the Hardware
4325 	 * write the CIDX Updates into the Status Page at the end of the
4326 	 * TX Queue.
4327 	 */
4328 	c.autoequiqe_to_viid = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
4329 				     FW_EQ_ETH_CMD_VIID_V(pi->viid));
4330 
4331 	c.fetchszm_to_iqid =
4332 		htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4333 		      FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
4334 		      FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
4335 
4336 	/* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */
4337 	c.dcaen_to_eqsize =
4338 		htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
4339 					    ? FETCHBURSTMIN_64B_X
4340 					    : FETCHBURSTMIN_64B_T6_X) |
4341 		      FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4342 		      FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4343 		      FW_EQ_ETH_CMD_EQSIZE_V(nentries));
4344 
4345 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
4346 
4347 	/* If we're using the SGE Doorbell Queue Timer mechanism, pass in the
4348 	 * currently configured Timer Index.  THis can be changed later via an
4349 	 * ethtool -C tx-usecs {Timer Val} command.  Note that the SGE
4350 	 * Doorbell Queue mode is currently automatically enabled in the
4351 	 * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ...
4352 	 */
4353 	if (dbqt)
4354 		c.timeren_timerix =
4355 			cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F |
4356 				    FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix));
4357 
4358 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4359 	if (ret) {
4360 		kfree(txq->q.sdesc);
4361 		txq->q.sdesc = NULL;
4362 		dma_free_coherent(adap->pdev_dev,
4363 				  nentries * sizeof(struct tx_desc),
4364 				  txq->q.desc, txq->q.phys_addr);
4365 		txq->q.desc = NULL;
4366 		return ret;
4367 	}
4368 
4369 	txq->q.q_type = CXGB4_TXQ_ETH;
4370 	init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
4371 	txq->txq = netdevq;
4372 	txq->tso = txq->tx_cso = txq->vlan_ins = 0;
4373 	txq->mapping_err = 0;
4374 	txq->dbqt = dbqt;
4375 
4376 	return 0;
4377 }
4378 
4379 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
4380 			  struct net_device *dev, unsigned int iqid,
4381 			  unsigned int cmplqid)
4382 {
4383 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4384 	struct port_info *pi = netdev_priv(dev);
4385 	struct sge *s = &adap->sge;
4386 	struct fw_eq_ctrl_cmd c;
4387 	int ret, nentries;
4388 
4389 	/* Add status entries */
4390 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
4391 
4392 	txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
4393 				 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
4394 				 NULL, 0, dev_to_node(adap->pdev_dev));
4395 	if (!txq->q.desc)
4396 		return -ENOMEM;
4397 
4398 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
4399 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4400 			    FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
4401 			    FW_EQ_CTRL_CMD_VFN_V(0));
4402 	c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
4403 				 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
4404 	c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
4405 	c.physeqid_pkd = htonl(0);
4406 	c.fetchszm_to_iqid =
4407 		htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4408 		      FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
4409 		      FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
4410 	c.dcaen_to_eqsize =
4411 		htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
4412 					     ? FETCHBURSTMIN_64B_X
4413 					     : FETCHBURSTMIN_64B_T6_X) |
4414 		      FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4415 		      FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4416 		      FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
4417 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
4418 
4419 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4420 	if (ret) {
4421 		dma_free_coherent(adap->pdev_dev,
4422 				  nentries * sizeof(struct tx_desc),
4423 				  txq->q.desc, txq->q.phys_addr);
4424 		txq->q.desc = NULL;
4425 		return ret;
4426 	}
4427 
4428 	txq->q.q_type = CXGB4_TXQ_CTRL;
4429 	init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
4430 	txq->adap = adap;
4431 	skb_queue_head_init(&txq->sendq);
4432 	tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
4433 	txq->full = 0;
4434 	return 0;
4435 }
4436 
4437 int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid,
4438 			unsigned int cmplqid)
4439 {
4440 	u32 param, val;
4441 
4442 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
4443 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) |
4444 		 FW_PARAMS_PARAM_YZ_V(eqid));
4445 	val = cmplqid;
4446 	return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
4447 }
4448 
4449 static int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_txq *q,
4450 				 struct net_device *dev, u32 cmd, u32 iqid)
4451 {
4452 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4453 	struct port_info *pi = netdev_priv(dev);
4454 	struct sge *s = &adap->sge;
4455 	struct fw_eq_ofld_cmd c;
4456 	u32 fb_min, nentries;
4457 	int ret;
4458 
4459 	/* Add status entries */
4460 	nentries = q->size + s->stat_len / sizeof(struct tx_desc);
4461 	q->desc = alloc_ring(adap->pdev_dev, q->size, sizeof(struct tx_desc),
4462 			     sizeof(struct tx_sw_desc), &q->phys_addr,
4463 			     &q->sdesc, s->stat_len, NUMA_NO_NODE);
4464 	if (!q->desc)
4465 		return -ENOMEM;
4466 
4467 	if (chip_ver <= CHELSIO_T5)
4468 		fb_min = FETCHBURSTMIN_64B_X;
4469 	else
4470 		fb_min = FETCHBURSTMIN_64B_T6_X;
4471 
4472 	memset(&c, 0, sizeof(c));
4473 	c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F |
4474 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4475 			    FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
4476 			    FW_EQ_OFLD_CMD_VFN_V(0));
4477 	c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
4478 				 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
4479 	c.fetchszm_to_iqid =
4480 		htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4481 		      FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
4482 		      FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
4483 	c.dcaen_to_eqsize =
4484 		htonl(FW_EQ_OFLD_CMD_FBMIN_V(fb_min) |
4485 		      FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4486 		      FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4487 		      FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
4488 	c.eqaddr = cpu_to_be64(q->phys_addr);
4489 
4490 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4491 	if (ret) {
4492 		kfree(q->sdesc);
4493 		q->sdesc = NULL;
4494 		dma_free_coherent(adap->pdev_dev,
4495 				  nentries * sizeof(struct tx_desc),
4496 				  q->desc, q->phys_addr);
4497 		q->desc = NULL;
4498 		return ret;
4499 	}
4500 
4501 	init_txq(adap, q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
4502 	return 0;
4503 }
4504 
4505 int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq,
4506 			 struct net_device *dev, unsigned int iqid,
4507 			 unsigned int uld_type)
4508 {
4509 	u32 cmd = FW_EQ_OFLD_CMD;
4510 	int ret;
4511 
4512 	if (unlikely(uld_type == CXGB4_TX_CRYPTO))
4513 		cmd = FW_EQ_CTRL_CMD;
4514 
4515 	ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, cmd, iqid);
4516 	if (ret)
4517 		return ret;
4518 
4519 	txq->q.q_type = CXGB4_TXQ_ULD;
4520 	txq->adap = adap;
4521 	skb_queue_head_init(&txq->sendq);
4522 	tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
4523 	txq->full = 0;
4524 	txq->mapping_err = 0;
4525 	return 0;
4526 }
4527 
4528 int t4_sge_alloc_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq,
4529 			     struct net_device *dev, u32 iqid)
4530 {
4531 	int ret;
4532 
4533 	ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, FW_EQ_OFLD_CMD, iqid);
4534 	if (ret)
4535 		return ret;
4536 
4537 	txq->q.q_type = CXGB4_TXQ_ULD;
4538 	spin_lock_init(&txq->lock);
4539 	txq->adap = adap;
4540 	txq->tso = 0;
4541 	txq->tx_cso = 0;
4542 	txq->vlan_ins = 0;
4543 	txq->mapping_err = 0;
4544 	return 0;
4545 }
4546 
4547 void free_txq(struct adapter *adap, struct sge_txq *q)
4548 {
4549 	struct sge *s = &adap->sge;
4550 
4551 	dma_free_coherent(adap->pdev_dev,
4552 			  q->size * sizeof(struct tx_desc) + s->stat_len,
4553 			  q->desc, q->phys_addr);
4554 	q->cntxt_id = 0;
4555 	q->sdesc = NULL;
4556 	q->desc = NULL;
4557 }
4558 
4559 void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
4560 		  struct sge_fl *fl)
4561 {
4562 	struct sge *s = &adap->sge;
4563 	unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
4564 
4565 	adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
4566 	t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
4567 		   rq->cntxt_id, fl_id, 0xffff);
4568 	dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
4569 			  rq->desc, rq->phys_addr);
4570 	netif_napi_del(&rq->napi);
4571 	rq->netdev = NULL;
4572 	rq->cntxt_id = rq->abs_id = 0;
4573 	rq->desc = NULL;
4574 
4575 	if (fl) {
4576 		free_rx_bufs(adap, fl, fl->avail);
4577 		dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
4578 				  fl->desc, fl->addr);
4579 		kfree(fl->sdesc);
4580 		fl->sdesc = NULL;
4581 		fl->cntxt_id = 0;
4582 		fl->desc = NULL;
4583 	}
4584 }
4585 
4586 /**
4587  *      t4_free_ofld_rxqs - free a block of consecutive Rx queues
4588  *      @adap: the adapter
4589  *      @n: number of queues
4590  *      @q: pointer to first queue
4591  *
4592  *      Release the resources of a consecutive block of offload Rx queues.
4593  */
4594 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
4595 {
4596 	for ( ; n; n--, q++)
4597 		if (q->rspq.desc)
4598 			free_rspq_fl(adap, &q->rspq,
4599 				     q->fl.size ? &q->fl : NULL);
4600 }
4601 
4602 void t4_sge_free_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq)
4603 {
4604 	if (txq->q.desc) {
4605 		t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0,
4606 				txq->q.cntxt_id);
4607 		free_tx_desc(adap, &txq->q, txq->q.in_use, false);
4608 		kfree(txq->q.sdesc);
4609 		free_txq(adap, &txq->q);
4610 	}
4611 }
4612 
4613 /**
4614  *	t4_free_sge_resources - free SGE resources
4615  *	@adap: the adapter
4616  *
4617  *	Frees resources used by the SGE queue sets.
4618  */
4619 void t4_free_sge_resources(struct adapter *adap)
4620 {
4621 	int i;
4622 	struct sge_eth_rxq *eq;
4623 	struct sge_eth_txq *etq;
4624 
4625 	/* stop all Rx queues in order to start them draining */
4626 	for (i = 0; i < adap->sge.ethqsets; i++) {
4627 		eq = &adap->sge.ethrxq[i];
4628 		if (eq->rspq.desc)
4629 			t4_iq_stop(adap, adap->mbox, adap->pf, 0,
4630 				   FW_IQ_TYPE_FL_INT_CAP,
4631 				   eq->rspq.cntxt_id,
4632 				   eq->fl.size ? eq->fl.cntxt_id : 0xffff,
4633 				   0xffff);
4634 	}
4635 
4636 	/* clean up Ethernet Tx/Rx queues */
4637 	for (i = 0; i < adap->sge.ethqsets; i++) {
4638 		eq = &adap->sge.ethrxq[i];
4639 		if (eq->rspq.desc)
4640 			free_rspq_fl(adap, &eq->rspq,
4641 				     eq->fl.size ? &eq->fl : NULL);
4642 		if (eq->msix) {
4643 			cxgb4_free_msix_idx_in_bmap(adap, eq->msix->idx);
4644 			eq->msix = NULL;
4645 		}
4646 
4647 		etq = &adap->sge.ethtxq[i];
4648 		if (etq->q.desc) {
4649 			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4650 				       etq->q.cntxt_id);
4651 			__netif_tx_lock_bh(etq->txq);
4652 			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4653 			__netif_tx_unlock_bh(etq->txq);
4654 			kfree(etq->q.sdesc);
4655 			free_txq(adap, &etq->q);
4656 		}
4657 	}
4658 
4659 	/* clean up control Tx queues */
4660 	for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
4661 		struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
4662 
4663 		if (cq->q.desc) {
4664 			tasklet_kill(&cq->qresume_tsk);
4665 			t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
4666 					cq->q.cntxt_id);
4667 			__skb_queue_purge(&cq->sendq);
4668 			free_txq(adap, &cq->q);
4669 		}
4670 	}
4671 
4672 	if (adap->sge.fw_evtq.desc) {
4673 		free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
4674 		if (adap->sge.fwevtq_msix_idx >= 0)
4675 			cxgb4_free_msix_idx_in_bmap(adap,
4676 						    adap->sge.fwevtq_msix_idx);
4677 	}
4678 
4679 	if (adap->sge.nd_msix_idx >= 0)
4680 		cxgb4_free_msix_idx_in_bmap(adap, adap->sge.nd_msix_idx);
4681 
4682 	if (adap->sge.intrq.desc)
4683 		free_rspq_fl(adap, &adap->sge.intrq, NULL);
4684 
4685 	if (!is_t4(adap->params.chip)) {
4686 		etq = &adap->sge.ptptxq;
4687 		if (etq->q.desc) {
4688 			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4689 				       etq->q.cntxt_id);
4690 			spin_lock_bh(&adap->ptp_lock);
4691 			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4692 			spin_unlock_bh(&adap->ptp_lock);
4693 			kfree(etq->q.sdesc);
4694 			free_txq(adap, &etq->q);
4695 		}
4696 	}
4697 
4698 	/* clear the reverse egress queue map */
4699 	memset(adap->sge.egr_map, 0,
4700 	       adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
4701 }
4702 
4703 void t4_sge_start(struct adapter *adap)
4704 {
4705 	adap->sge.ethtxq_rover = 0;
4706 	mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
4707 	mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
4708 }
4709 
4710 /**
4711  *	t4_sge_stop - disable SGE operation
4712  *	@adap: the adapter
4713  *
4714  *	Stop tasklets and timers associated with the DMA engine.  Note that
4715  *	this is effective only if measures have been taken to disable any HW
4716  *	events that may restart them.
4717  */
4718 void t4_sge_stop(struct adapter *adap)
4719 {
4720 	int i;
4721 	struct sge *s = &adap->sge;
4722 
4723 	if (in_interrupt())  /* actions below require waiting */
4724 		return;
4725 
4726 	if (s->rx_timer.function)
4727 		del_timer_sync(&s->rx_timer);
4728 	if (s->tx_timer.function)
4729 		del_timer_sync(&s->tx_timer);
4730 
4731 	if (is_offload(adap)) {
4732 		struct sge_uld_txq_info *txq_info;
4733 
4734 		txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
4735 		if (txq_info) {
4736 			struct sge_uld_txq *txq = txq_info->uldtxq;
4737 
4738 			for_each_ofldtxq(&adap->sge, i) {
4739 				if (txq->q.desc)
4740 					tasklet_kill(&txq->qresume_tsk);
4741 			}
4742 		}
4743 	}
4744 
4745 	if (is_pci_uld(adap)) {
4746 		struct sge_uld_txq_info *txq_info;
4747 
4748 		txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO];
4749 		if (txq_info) {
4750 			struct sge_uld_txq *txq = txq_info->uldtxq;
4751 
4752 			for_each_ofldtxq(&adap->sge, i) {
4753 				if (txq->q.desc)
4754 					tasklet_kill(&txq->qresume_tsk);
4755 			}
4756 		}
4757 	}
4758 
4759 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
4760 		struct sge_ctrl_txq *cq = &s->ctrlq[i];
4761 
4762 		if (cq->q.desc)
4763 			tasklet_kill(&cq->qresume_tsk);
4764 	}
4765 }
4766 
4767 /**
4768  *	t4_sge_init_soft - grab core SGE values needed by SGE code
4769  *	@adap: the adapter
4770  *
4771  *	We need to grab the SGE operating parameters that we need to have
4772  *	in order to do our job and make sure we can live with them.
4773  */
4774 
4775 static int t4_sge_init_soft(struct adapter *adap)
4776 {
4777 	struct sge *s = &adap->sge;
4778 	u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
4779 	u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
4780 	u32 ingress_rx_threshold;
4781 
4782 	/*
4783 	 * Verify that CPL messages are going to the Ingress Queue for
4784 	 * process_responses() and that only packet data is going to the
4785 	 * Free Lists.
4786 	 */
4787 	if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
4788 	    RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
4789 		dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
4790 		return -EINVAL;
4791 	}
4792 
4793 	/*
4794 	 * Validate the Host Buffer Register Array indices that we want to
4795 	 * use ...
4796 	 *
4797 	 * XXX Note that we should really read through the Host Buffer Size
4798 	 * XXX register array and find the indices of the Buffer Sizes which
4799 	 * XXX meet our needs!
4800 	 */
4801 	#define READ_FL_BUF(x) \
4802 		t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
4803 
4804 	fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
4805 	fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
4806 	fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
4807 	fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
4808 
4809 	/* We only bother using the Large Page logic if the Large Page Buffer
4810 	 * is larger than our Page Size Buffer.
4811 	 */
4812 	if (fl_large_pg <= fl_small_pg)
4813 		fl_large_pg = 0;
4814 
4815 	#undef READ_FL_BUF
4816 
4817 	/* The Page Size Buffer must be exactly equal to our Page Size and the
4818 	 * Large Page Size Buffer should be 0 (per above) or a power of 2.
4819 	 */
4820 	if (fl_small_pg != PAGE_SIZE ||
4821 	    (fl_large_pg & (fl_large_pg-1)) != 0) {
4822 		dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
4823 			fl_small_pg, fl_large_pg);
4824 		return -EINVAL;
4825 	}
4826 	if (fl_large_pg)
4827 		s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
4828 
4829 	if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
4830 	    fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
4831 		dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
4832 			fl_small_mtu, fl_large_mtu);
4833 		return -EINVAL;
4834 	}
4835 
4836 	/*
4837 	 * Retrieve our RX interrupt holdoff timer values and counter
4838 	 * threshold values from the SGE parameters.
4839 	 */
4840 	timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
4841 	timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
4842 	timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
4843 	s->timer_val[0] = core_ticks_to_us(adap,
4844 		TIMERVALUE0_G(timer_value_0_and_1));
4845 	s->timer_val[1] = core_ticks_to_us(adap,
4846 		TIMERVALUE1_G(timer_value_0_and_1));
4847 	s->timer_val[2] = core_ticks_to_us(adap,
4848 		TIMERVALUE2_G(timer_value_2_and_3));
4849 	s->timer_val[3] = core_ticks_to_us(adap,
4850 		TIMERVALUE3_G(timer_value_2_and_3));
4851 	s->timer_val[4] = core_ticks_to_us(adap,
4852 		TIMERVALUE4_G(timer_value_4_and_5));
4853 	s->timer_val[5] = core_ticks_to_us(adap,
4854 		TIMERVALUE5_G(timer_value_4_and_5));
4855 
4856 	ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
4857 	s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
4858 	s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
4859 	s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
4860 	s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
4861 
4862 	return 0;
4863 }
4864 
4865 /**
4866  *     t4_sge_init - initialize SGE
4867  *     @adap: the adapter
4868  *
4869  *     Perform low-level SGE code initialization needed every time after a
4870  *     chip reset.
4871  */
4872 int t4_sge_init(struct adapter *adap)
4873 {
4874 	struct sge *s = &adap->sge;
4875 	u32 sge_control, sge_conm_ctrl;
4876 	int ret, egress_threshold;
4877 
4878 	/*
4879 	 * Ingress Padding Boundary and Egress Status Page Size are set up by
4880 	 * t4_fixup_host_params().
4881 	 */
4882 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
4883 	s->pktshift = PKTSHIFT_G(sge_control);
4884 	s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
4885 
4886 	s->fl_align = t4_fl_pkt_align(adap);
4887 	ret = t4_sge_init_soft(adap);
4888 	if (ret < 0)
4889 		return ret;
4890 
4891 	/*
4892 	 * A FL with <= fl_starve_thres buffers is starving and a periodic
4893 	 * timer will attempt to refill it.  This needs to be larger than the
4894 	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
4895 	 * stuck waiting for new packets while the SGE is waiting for us to
4896 	 * give it more Free List entries.  (Note that the SGE's Egress
4897 	 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
4898 	 * there was only a single field to control this.  For T5 there's the
4899 	 * original field which now only applies to Unpacked Mode Free List
4900 	 * buffers and a new field which only applies to Packed Mode Free List
4901 	 * buffers.
4902 	 */
4903 	sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
4904 	switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
4905 	case CHELSIO_T4:
4906 		egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
4907 		break;
4908 	case CHELSIO_T5:
4909 		egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
4910 		break;
4911 	case CHELSIO_T6:
4912 		egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
4913 		break;
4914 	default:
4915 		dev_err(adap->pdev_dev, "Unsupported Chip version %d\n",
4916 			CHELSIO_CHIP_VERSION(adap->params.chip));
4917 		return -EINVAL;
4918 	}
4919 	s->fl_starve_thres = 2*egress_threshold + 1;
4920 
4921 	t4_idma_monitor_init(adap, &s->idma_monitor);
4922 
4923 	/* Set up timers used for recuring callbacks to process RX and TX
4924 	 * administrative tasks.
4925 	 */
4926 	timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
4927 	timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
4928 
4929 	spin_lock_init(&s->intrq_lock);
4930 
4931 	return 0;
4932 }
4933