xref: /linux/drivers/net/ethernet/chelsio/cxgb4/sge.c (revision 4b660dbd9ee2059850fd30e0df420ca7a38a1856)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/if_vlan.h>
39 #include <linux/ip.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/jiffies.h>
42 #include <linux/prefetch.h>
43 #include <linux/export.h>
44 #include <net/xfrm.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/busy_poll.h>
48 #ifdef CONFIG_CHELSIO_T4_FCOE
49 #include <scsi/fc/fc_fcoe.h>
50 #endif /* CONFIG_CHELSIO_T4_FCOE */
51 #include "cxgb4.h"
52 #include "t4_regs.h"
53 #include "t4_values.h"
54 #include "t4_msg.h"
55 #include "t4fw_api.h"
56 #include "cxgb4_ptp.h"
57 #include "cxgb4_uld.h"
58 #include "cxgb4_tc_mqprio.h"
59 #include "sched.h"
60 
61 /*
62  * Rx buffer size.  We use largish buffers if possible but settle for single
63  * pages under memory shortage.
64  */
65 #if PAGE_SHIFT >= 16
66 # define FL_PG_ORDER 0
67 #else
68 # define FL_PG_ORDER (16 - PAGE_SHIFT)
69 #endif
70 
71 /* RX_PULL_LEN should be <= RX_COPY_THRES */
72 #define RX_COPY_THRES    256
73 #define RX_PULL_LEN      128
74 
75 /*
76  * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
77  * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
78  */
79 #define RX_PKT_SKB_LEN   512
80 
81 /*
82  * Max number of Tx descriptors we clean up at a time.  Should be modest as
83  * freeing skbs isn't cheap and it happens while holding locks.  We just need
84  * to free packets faster than they arrive, we eventually catch up and keep
85  * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES.  It should
86  * also match the CIDX Flush Threshold.
87  */
88 #define MAX_TX_RECLAIM 32
89 
90 /*
91  * Max number of Rx buffers we replenish at a time.  Again keep this modest,
92  * allocating buffers isn't cheap either.
93  */
94 #define MAX_RX_REFILL 16U
95 
96 /*
97  * Period of the Rx queue check timer.  This timer is infrequent as it has
98  * something to do only when the system experiences severe memory shortage.
99  */
100 #define RX_QCHECK_PERIOD (HZ / 2)
101 
102 /*
103  * Period of the Tx queue check timer.
104  */
105 #define TX_QCHECK_PERIOD (HZ / 2)
106 
107 /*
108  * Max number of Tx descriptors to be reclaimed by the Tx timer.
109  */
110 #define MAX_TIMER_TX_RECLAIM 100
111 
112 /*
113  * Timer index used when backing off due to memory shortage.
114  */
115 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
116 
117 /*
118  * Suspension threshold for non-Ethernet Tx queues.  We require enough room
119  * for a full sized WR.
120  */
121 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
122 
123 /*
124  * Max Tx descriptor space we allow for an Ethernet packet to be inlined
125  * into a WR.
126  */
127 #define MAX_IMM_TX_PKT_LEN 256
128 
129 /*
130  * Max size of a WR sent through a control Tx queue.
131  */
132 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
133 
134 struct rx_sw_desc {                /* SW state per Rx descriptor */
135 	struct page *page;
136 	dma_addr_t dma_addr;
137 };
138 
139 /*
140  * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
141  * buffer).  We currently only support two sizes for 1500- and 9000-byte MTUs.
142  * We could easily support more but there doesn't seem to be much need for
143  * that ...
144  */
145 #define FL_MTU_SMALL 1500
146 #define FL_MTU_LARGE 9000
147 
148 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
149 					  unsigned int mtu)
150 {
151 	struct sge *s = &adapter->sge;
152 
153 	return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
154 }
155 
156 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
157 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
158 
159 /*
160  * Bits 0..3 of rx_sw_desc.dma_addr have special meaning.  The hardware uses
161  * these to specify the buffer size as an index into the SGE Free List Buffer
162  * Size register array.  We also use bit 4, when the buffer has been unmapped
163  * for DMA, but this is of course never sent to the hardware and is only used
164  * to prevent double unmappings.  All of the above requires that the Free List
165  * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
166  * 32-byte or or a power of 2 greater in alignment.  Since the SGE's minimal
167  * Free List Buffer alignment is 32 bytes, this works out for us ...
168  */
169 enum {
170 	RX_BUF_FLAGS     = 0x1f,   /* bottom five bits are special */
171 	RX_BUF_SIZE      = 0x0f,   /* bottom three bits are for buf sizes */
172 	RX_UNMAPPED_BUF  = 0x10,   /* buffer is not mapped */
173 
174 	/*
175 	 * XXX We shouldn't depend on being able to use these indices.
176 	 * XXX Especially when some other Master PF has initialized the
177 	 * XXX adapter or we use the Firmware Configuration File.  We
178 	 * XXX should really search through the Host Buffer Size register
179 	 * XXX array for the appropriately sized buffer indices.
180 	 */
181 	RX_SMALL_PG_BUF  = 0x0,   /* small (PAGE_SIZE) page buffer */
182 	RX_LARGE_PG_BUF  = 0x1,   /* buffer large (FL_PG_ORDER) page buffer */
183 
184 	RX_SMALL_MTU_BUF = 0x2,   /* small MTU buffer */
185 	RX_LARGE_MTU_BUF = 0x3,   /* large MTU buffer */
186 };
187 
188 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
189 #define MIN_NAPI_WORK  1
190 
191 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
192 {
193 	return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
194 }
195 
196 static inline bool is_buf_mapped(const struct rx_sw_desc *d)
197 {
198 	return !(d->dma_addr & RX_UNMAPPED_BUF);
199 }
200 
201 /**
202  *	txq_avail - return the number of available slots in a Tx queue
203  *	@q: the Tx queue
204  *
205  *	Returns the number of descriptors in a Tx queue available to write new
206  *	packets.
207  */
208 static inline unsigned int txq_avail(const struct sge_txq *q)
209 {
210 	return q->size - 1 - q->in_use;
211 }
212 
213 /**
214  *	fl_cap - return the capacity of a free-buffer list
215  *	@fl: the FL
216  *
217  *	Returns the capacity of a free-buffer list.  The capacity is less than
218  *	the size because one descriptor needs to be left unpopulated, otherwise
219  *	HW will think the FL is empty.
220  */
221 static inline unsigned int fl_cap(const struct sge_fl *fl)
222 {
223 	return fl->size - 8;   /* 1 descriptor = 8 buffers */
224 }
225 
226 /**
227  *	fl_starving - return whether a Free List is starving.
228  *	@adapter: pointer to the adapter
229  *	@fl: the Free List
230  *
231  *	Tests specified Free List to see whether the number of buffers
232  *	available to the hardware has falled below our "starvation"
233  *	threshold.
234  */
235 static inline bool fl_starving(const struct adapter *adapter,
236 			       const struct sge_fl *fl)
237 {
238 	const struct sge *s = &adapter->sge;
239 
240 	return fl->avail - fl->pend_cred <= s->fl_starve_thres;
241 }
242 
243 int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb,
244 		  dma_addr_t *addr)
245 {
246 	const skb_frag_t *fp, *end;
247 	const struct skb_shared_info *si;
248 
249 	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
250 	if (dma_mapping_error(dev, *addr))
251 		goto out_err;
252 
253 	si = skb_shinfo(skb);
254 	end = &si->frags[si->nr_frags];
255 
256 	for (fp = si->frags; fp < end; fp++) {
257 		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
258 					   DMA_TO_DEVICE);
259 		if (dma_mapping_error(dev, *addr))
260 			goto unwind;
261 	}
262 	return 0;
263 
264 unwind:
265 	while (fp-- > si->frags)
266 		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
267 
268 	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
269 out_err:
270 	return -ENOMEM;
271 }
272 EXPORT_SYMBOL(cxgb4_map_skb);
273 
274 static void unmap_skb(struct device *dev, const struct sk_buff *skb,
275 		      const dma_addr_t *addr)
276 {
277 	const skb_frag_t *fp, *end;
278 	const struct skb_shared_info *si;
279 
280 	dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
281 
282 	si = skb_shinfo(skb);
283 	end = &si->frags[si->nr_frags];
284 	for (fp = si->frags; fp < end; fp++)
285 		dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
286 }
287 
288 #ifdef CONFIG_NEED_DMA_MAP_STATE
289 /**
290  *	deferred_unmap_destructor - unmap a packet when it is freed
291  *	@skb: the packet
292  *
293  *	This is the packet destructor used for Tx packets that need to remain
294  *	mapped until they are freed rather than until their Tx descriptors are
295  *	freed.
296  */
297 static void deferred_unmap_destructor(struct sk_buff *skb)
298 {
299 	unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
300 }
301 #endif
302 
303 /**
304  *	free_tx_desc - reclaims Tx descriptors and their buffers
305  *	@adap: the adapter
306  *	@q: the Tx queue to reclaim descriptors from
307  *	@n: the number of descriptors to reclaim
308  *	@unmap: whether the buffers should be unmapped for DMA
309  *
310  *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
311  *	Tx buffers.  Called with the Tx queue lock held.
312  */
313 void free_tx_desc(struct adapter *adap, struct sge_txq *q,
314 		  unsigned int n, bool unmap)
315 {
316 	unsigned int cidx = q->cidx;
317 	struct tx_sw_desc *d;
318 
319 	d = &q->sdesc[cidx];
320 	while (n--) {
321 		if (d->skb) {                       /* an SGL is present */
322 			if (unmap && d->addr[0]) {
323 				unmap_skb(adap->pdev_dev, d->skb, d->addr);
324 				memset(d->addr, 0, sizeof(d->addr));
325 			}
326 			dev_consume_skb_any(d->skb);
327 			d->skb = NULL;
328 		}
329 		++d;
330 		if (++cidx == q->size) {
331 			cidx = 0;
332 			d = q->sdesc;
333 		}
334 	}
335 	q->cidx = cidx;
336 }
337 
338 /*
339  * Return the number of reclaimable descriptors in a Tx queue.
340  */
341 static inline int reclaimable(const struct sge_txq *q)
342 {
343 	int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
344 	hw_cidx -= q->cidx;
345 	return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
346 }
347 
348 /**
349  *	reclaim_completed_tx - reclaims completed TX Descriptors
350  *	@adap: the adapter
351  *	@q: the Tx queue to reclaim completed descriptors from
352  *	@maxreclaim: the maximum number of TX Descriptors to reclaim or -1
353  *	@unmap: whether the buffers should be unmapped for DMA
354  *
355  *	Reclaims Tx Descriptors that the SGE has indicated it has processed,
356  *	and frees the associated buffers if possible.  If @max == -1, then
357  *	we'll use a defaiult maximum.  Called with the TX Queue locked.
358  */
359 static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
360 				       int maxreclaim, bool unmap)
361 {
362 	int reclaim = reclaimable(q);
363 
364 	if (reclaim) {
365 		/*
366 		 * Limit the amount of clean up work we do at a time to keep
367 		 * the Tx lock hold time O(1).
368 		 */
369 		if (maxreclaim < 0)
370 			maxreclaim = MAX_TX_RECLAIM;
371 		if (reclaim > maxreclaim)
372 			reclaim = maxreclaim;
373 
374 		free_tx_desc(adap, q, reclaim, unmap);
375 		q->in_use -= reclaim;
376 	}
377 
378 	return reclaim;
379 }
380 
381 /**
382  *	cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors
383  *	@adap: the adapter
384  *	@q: the Tx queue to reclaim completed descriptors from
385  *	@unmap: whether the buffers should be unmapped for DMA
386  *
387  *	Reclaims Tx descriptors that the SGE has indicated it has processed,
388  *	and frees the associated buffers if possible.  Called with the Tx
389  *	queue locked.
390  */
391 void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
392 				bool unmap)
393 {
394 	(void)reclaim_completed_tx(adap, q, -1, unmap);
395 }
396 EXPORT_SYMBOL(cxgb4_reclaim_completed_tx);
397 
398 static inline int get_buf_size(struct adapter *adapter,
399 			       const struct rx_sw_desc *d)
400 {
401 	struct sge *s = &adapter->sge;
402 	unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
403 	int buf_size;
404 
405 	switch (rx_buf_size_idx) {
406 	case RX_SMALL_PG_BUF:
407 		buf_size = PAGE_SIZE;
408 		break;
409 
410 	case RX_LARGE_PG_BUF:
411 		buf_size = PAGE_SIZE << s->fl_pg_order;
412 		break;
413 
414 	case RX_SMALL_MTU_BUF:
415 		buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
416 		break;
417 
418 	case RX_LARGE_MTU_BUF:
419 		buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
420 		break;
421 
422 	default:
423 		BUG();
424 	}
425 
426 	return buf_size;
427 }
428 
429 /**
430  *	free_rx_bufs - free the Rx buffers on an SGE free list
431  *	@adap: the adapter
432  *	@q: the SGE free list to free buffers from
433  *	@n: how many buffers to free
434  *
435  *	Release the next @n buffers on an SGE free-buffer Rx queue.   The
436  *	buffers must be made inaccessible to HW before calling this function.
437  */
438 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
439 {
440 	while (n--) {
441 		struct rx_sw_desc *d = &q->sdesc[q->cidx];
442 
443 		if (is_buf_mapped(d))
444 			dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
445 				       get_buf_size(adap, d),
446 				       DMA_FROM_DEVICE);
447 		put_page(d->page);
448 		d->page = NULL;
449 		if (++q->cidx == q->size)
450 			q->cidx = 0;
451 		q->avail--;
452 	}
453 }
454 
455 /**
456  *	unmap_rx_buf - unmap the current Rx buffer on an SGE free list
457  *	@adap: the adapter
458  *	@q: the SGE free list
459  *
460  *	Unmap the current buffer on an SGE free-buffer Rx queue.   The
461  *	buffer must be made inaccessible to HW before calling this function.
462  *
463  *	This is similar to @free_rx_bufs above but does not free the buffer.
464  *	Do note that the FL still loses any further access to the buffer.
465  */
466 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
467 {
468 	struct rx_sw_desc *d = &q->sdesc[q->cidx];
469 
470 	if (is_buf_mapped(d))
471 		dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
472 			       get_buf_size(adap, d), DMA_FROM_DEVICE);
473 	d->page = NULL;
474 	if (++q->cidx == q->size)
475 		q->cidx = 0;
476 	q->avail--;
477 }
478 
479 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
480 {
481 	if (q->pend_cred >= 8) {
482 		u32 val = adap->params.arch.sge_fl_db;
483 
484 		if (is_t4(adap->params.chip))
485 			val |= PIDX_V(q->pend_cred / 8);
486 		else
487 			val |= PIDX_T5_V(q->pend_cred / 8);
488 
489 		/* Make sure all memory writes to the Free List queue are
490 		 * committed before we tell the hardware about them.
491 		 */
492 		wmb();
493 
494 		/* If we don't have access to the new User Doorbell (T5+), use
495 		 * the old doorbell mechanism; otherwise use the new BAR2
496 		 * mechanism.
497 		 */
498 		if (unlikely(q->bar2_addr == NULL)) {
499 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
500 				     val | QID_V(q->cntxt_id));
501 		} else {
502 			writel(val | QID_V(q->bar2_qid),
503 			       q->bar2_addr + SGE_UDB_KDOORBELL);
504 
505 			/* This Write memory Barrier will force the write to
506 			 * the User Doorbell area to be flushed.
507 			 */
508 			wmb();
509 		}
510 		q->pend_cred &= 7;
511 	}
512 }
513 
514 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
515 				  dma_addr_t mapping)
516 {
517 	sd->page = pg;
518 	sd->dma_addr = mapping;      /* includes size low bits */
519 }
520 
521 /**
522  *	refill_fl - refill an SGE Rx buffer ring
523  *	@adap: the adapter
524  *	@q: the ring to refill
525  *	@n: the number of new buffers to allocate
526  *	@gfp: the gfp flags for the allocations
527  *
528  *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
529  *	allocated with the supplied gfp flags.  The caller must assure that
530  *	@n does not exceed the queue's capacity.  If afterwards the queue is
531  *	found critically low mark it as starving in the bitmap of starving FLs.
532  *
533  *	Returns the number of buffers allocated.
534  */
535 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
536 			      gfp_t gfp)
537 {
538 	struct sge *s = &adap->sge;
539 	struct page *pg;
540 	dma_addr_t mapping;
541 	unsigned int cred = q->avail;
542 	__be64 *d = &q->desc[q->pidx];
543 	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
544 	int node;
545 
546 #ifdef CONFIG_DEBUG_FS
547 	if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
548 		goto out;
549 #endif
550 
551 	gfp |= __GFP_NOWARN;
552 	node = dev_to_node(adap->pdev_dev);
553 
554 	if (s->fl_pg_order == 0)
555 		goto alloc_small_pages;
556 
557 	/*
558 	 * Prefer large buffers
559 	 */
560 	while (n) {
561 		pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
562 		if (unlikely(!pg)) {
563 			q->large_alloc_failed++;
564 			break;       /* fall back to single pages */
565 		}
566 
567 		mapping = dma_map_page(adap->pdev_dev, pg, 0,
568 				       PAGE_SIZE << s->fl_pg_order,
569 				       DMA_FROM_DEVICE);
570 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
571 			__free_pages(pg, s->fl_pg_order);
572 			q->mapping_err++;
573 			goto out;   /* do not try small pages for this error */
574 		}
575 		mapping |= RX_LARGE_PG_BUF;
576 		*d++ = cpu_to_be64(mapping);
577 
578 		set_rx_sw_desc(sd, pg, mapping);
579 		sd++;
580 
581 		q->avail++;
582 		if (++q->pidx == q->size) {
583 			q->pidx = 0;
584 			sd = q->sdesc;
585 			d = q->desc;
586 		}
587 		n--;
588 	}
589 
590 alloc_small_pages:
591 	while (n--) {
592 		pg = alloc_pages_node(node, gfp, 0);
593 		if (unlikely(!pg)) {
594 			q->alloc_failed++;
595 			break;
596 		}
597 
598 		mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
599 				       DMA_FROM_DEVICE);
600 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
601 			put_page(pg);
602 			q->mapping_err++;
603 			goto out;
604 		}
605 		*d++ = cpu_to_be64(mapping);
606 
607 		set_rx_sw_desc(sd, pg, mapping);
608 		sd++;
609 
610 		q->avail++;
611 		if (++q->pidx == q->size) {
612 			q->pidx = 0;
613 			sd = q->sdesc;
614 			d = q->desc;
615 		}
616 	}
617 
618 out:	cred = q->avail - cred;
619 	q->pend_cred += cred;
620 	ring_fl_db(adap, q);
621 
622 	if (unlikely(fl_starving(adap, q))) {
623 		smp_wmb();
624 		q->low++;
625 		set_bit(q->cntxt_id - adap->sge.egr_start,
626 			adap->sge.starving_fl);
627 	}
628 
629 	return cred;
630 }
631 
632 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
633 {
634 	refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
635 		  GFP_ATOMIC);
636 }
637 
638 /**
639  *	alloc_ring - allocate resources for an SGE descriptor ring
640  *	@dev: the PCI device's core device
641  *	@nelem: the number of descriptors
642  *	@elem_size: the size of each descriptor
643  *	@sw_size: the size of the SW state associated with each ring element
644  *	@phys: the physical address of the allocated ring
645  *	@metadata: address of the array holding the SW state for the ring
646  *	@stat_size: extra space in HW ring for status information
647  *	@node: preferred node for memory allocations
648  *
649  *	Allocates resources for an SGE descriptor ring, such as Tx queues,
650  *	free buffer lists, or response queues.  Each SGE ring requires
651  *	space for its HW descriptors plus, optionally, space for the SW state
652  *	associated with each HW entry (the metadata).  The function returns
653  *	three values: the virtual address for the HW ring (the return value
654  *	of the function), the bus address of the HW ring, and the address
655  *	of the SW ring.
656  */
657 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
658 			size_t sw_size, dma_addr_t *phys, void *metadata,
659 			size_t stat_size, int node)
660 {
661 	size_t len = nelem * elem_size + stat_size;
662 	void *s = NULL;
663 	void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
664 
665 	if (!p)
666 		return NULL;
667 	if (sw_size) {
668 		s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node);
669 
670 		if (!s) {
671 			dma_free_coherent(dev, len, p, *phys);
672 			return NULL;
673 		}
674 	}
675 	if (metadata)
676 		*(void **)metadata = s;
677 	return p;
678 }
679 
680 /**
681  *	sgl_len - calculates the size of an SGL of the given capacity
682  *	@n: the number of SGL entries
683  *
684  *	Calculates the number of flits needed for a scatter/gather list that
685  *	can hold the given number of entries.
686  */
687 static inline unsigned int sgl_len(unsigned int n)
688 {
689 	/* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
690 	 * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
691 	 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
692 	 * repeated sequences of { Length[i], Length[i+1], Address[i],
693 	 * Address[i+1] } (this ensures that all addresses are on 64-bit
694 	 * boundaries).  If N is even, then Length[N+1] should be set to 0 and
695 	 * Address[N+1] is omitted.
696 	 *
697 	 * The following calculation incorporates all of the above.  It's
698 	 * somewhat hard to follow but, briefly: the "+2" accounts for the
699 	 * first two flits which include the DSGL header, Length0 and
700 	 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
701 	 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
702 	 * finally the "+((n-1)&1)" adds the one remaining flit needed if
703 	 * (n-1) is odd ...
704 	 */
705 	n--;
706 	return (3 * n) / 2 + (n & 1) + 2;
707 }
708 
709 /**
710  *	flits_to_desc - returns the num of Tx descriptors for the given flits
711  *	@n: the number of flits
712  *
713  *	Returns the number of Tx descriptors needed for the supplied number
714  *	of flits.
715  */
716 static inline unsigned int flits_to_desc(unsigned int n)
717 {
718 	BUG_ON(n > SGE_MAX_WR_LEN / 8);
719 	return DIV_ROUND_UP(n, 8);
720 }
721 
722 /**
723  *	is_eth_imm - can an Ethernet packet be sent as immediate data?
724  *	@skb: the packet
725  *	@chip_ver: chip version
726  *
727  *	Returns whether an Ethernet packet is small enough to fit as
728  *	immediate data. Return value corresponds to headroom required.
729  */
730 static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver)
731 {
732 	int hdrlen = 0;
733 
734 	if (skb->encapsulation && skb_shinfo(skb)->gso_size &&
735 	    chip_ver > CHELSIO_T5) {
736 		hdrlen = sizeof(struct cpl_tx_tnl_lso);
737 		hdrlen += sizeof(struct cpl_tx_pkt_core);
738 	} else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
739 		return 0;
740 	} else {
741 		hdrlen = skb_shinfo(skb)->gso_size ?
742 			 sizeof(struct cpl_tx_pkt_lso_core) : 0;
743 		hdrlen += sizeof(struct cpl_tx_pkt);
744 	}
745 	if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
746 		return hdrlen;
747 	return 0;
748 }
749 
750 /**
751  *	calc_tx_flits - calculate the number of flits for a packet Tx WR
752  *	@skb: the packet
753  *	@chip_ver: chip version
754  *
755  *	Returns the number of flits needed for a Tx WR for the given Ethernet
756  *	packet, including the needed WR and CPL headers.
757  */
758 static inline unsigned int calc_tx_flits(const struct sk_buff *skb,
759 					 unsigned int chip_ver)
760 {
761 	unsigned int flits;
762 	int hdrlen = is_eth_imm(skb, chip_ver);
763 
764 	/* If the skb is small enough, we can pump it out as a work request
765 	 * with only immediate data.  In that case we just have to have the
766 	 * TX Packet header plus the skb data in the Work Request.
767 	 */
768 
769 	if (hdrlen)
770 		return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
771 
772 	/* Otherwise, we're going to have to construct a Scatter gather list
773 	 * of the skb body and fragments.  We also include the flits necessary
774 	 * for the TX Packet Work Request and CPL.  We always have a firmware
775 	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
776 	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
777 	 * message or, if we're doing a Large Send Offload, an LSO CPL message
778 	 * with an embedded TX Packet Write CPL message.
779 	 */
780 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
781 	if (skb_shinfo(skb)->gso_size) {
782 		if (skb->encapsulation && chip_ver > CHELSIO_T5) {
783 			hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
784 				 sizeof(struct cpl_tx_tnl_lso);
785 		} else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
786 			u32 pkt_hdrlen;
787 
788 			pkt_hdrlen = eth_get_headlen(skb->dev, skb->data,
789 						     skb_headlen(skb));
790 			hdrlen = sizeof(struct fw_eth_tx_eo_wr) +
791 				 round_up(pkt_hdrlen, 16);
792 		} else {
793 			hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
794 				 sizeof(struct cpl_tx_pkt_lso_core);
795 		}
796 
797 		hdrlen += sizeof(struct cpl_tx_pkt_core);
798 		flits += (hdrlen / sizeof(__be64));
799 	} else {
800 		flits += (sizeof(struct fw_eth_tx_pkt_wr) +
801 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
802 	}
803 	return flits;
804 }
805 
806 /**
807  *	cxgb4_write_sgl - populate a scatter/gather list for a packet
808  *	@skb: the packet
809  *	@q: the Tx queue we are writing into
810  *	@sgl: starting location for writing the SGL
811  *	@end: points right after the end of the SGL
812  *	@start: start offset into skb main-body data to include in the SGL
813  *	@addr: the list of bus addresses for the SGL elements
814  *
815  *	Generates a gather list for the buffers that make up a packet.
816  *	The caller must provide adequate space for the SGL that will be written.
817  *	The SGL includes all of the packet's page fragments and the data in its
818  *	main body except for the first @start bytes.  @sgl must be 16-byte
819  *	aligned and within a Tx descriptor with available space.  @end points
820  *	right after the end of the SGL but does not account for any potential
821  *	wrap around, i.e., @end > @sgl.
822  */
823 void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q,
824 		     struct ulptx_sgl *sgl, u64 *end, unsigned int start,
825 		     const dma_addr_t *addr)
826 {
827 	unsigned int i, len;
828 	struct ulptx_sge_pair *to;
829 	const struct skb_shared_info *si = skb_shinfo(skb);
830 	unsigned int nfrags = si->nr_frags;
831 	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
832 
833 	len = skb_headlen(skb) - start;
834 	if (likely(len)) {
835 		sgl->len0 = htonl(len);
836 		sgl->addr0 = cpu_to_be64(addr[0] + start);
837 		nfrags++;
838 	} else {
839 		sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
840 		sgl->addr0 = cpu_to_be64(addr[1]);
841 	}
842 
843 	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
844 			      ULPTX_NSGE_V(nfrags));
845 	if (likely(--nfrags == 0))
846 		return;
847 	/*
848 	 * Most of the complexity below deals with the possibility we hit the
849 	 * end of the queue in the middle of writing the SGL.  For this case
850 	 * only we create the SGL in a temporary buffer and then copy it.
851 	 */
852 	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
853 
854 	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
855 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
856 		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
857 		to->addr[0] = cpu_to_be64(addr[i]);
858 		to->addr[1] = cpu_to_be64(addr[++i]);
859 	}
860 	if (nfrags) {
861 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
862 		to->len[1] = cpu_to_be32(0);
863 		to->addr[0] = cpu_to_be64(addr[i + 1]);
864 	}
865 	if (unlikely((u8 *)end > (u8 *)q->stat)) {
866 		unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
867 
868 		if (likely(part0))
869 			memcpy(sgl->sge, buf, part0);
870 		part1 = (u8 *)end - (u8 *)q->stat;
871 		memcpy(q->desc, (u8 *)buf + part0, part1);
872 		end = (void *)q->desc + part1;
873 	}
874 	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
875 		*end = 0;
876 }
877 EXPORT_SYMBOL(cxgb4_write_sgl);
878 
879 /*	cxgb4_write_partial_sgl - populate SGL for partial packet
880  *	@skb: the packet
881  *	@q: the Tx queue we are writing into
882  *	@sgl: starting location for writing the SGL
883  *	@end: points right after the end of the SGL
884  *	@addr: the list of bus addresses for the SGL elements
885  *	@start: start offset in the SKB where partial data starts
886  *	@len: length of data from @start to send out
887  *
888  *	This API will handle sending out partial data of a skb if required.
889  *	Unlike cxgb4_write_sgl, @start can be any offset into the skb data,
890  *	and @len will decide how much data after @start offset to send out.
891  */
892 void cxgb4_write_partial_sgl(const struct sk_buff *skb, struct sge_txq *q,
893 			     struct ulptx_sgl *sgl, u64 *end,
894 			     const dma_addr_t *addr, u32 start, u32 len)
895 {
896 	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1] = {0}, *to;
897 	u32 frag_size, skb_linear_data_len = skb_headlen(skb);
898 	struct skb_shared_info *si = skb_shinfo(skb);
899 	u8 i = 0, frag_idx = 0, nfrags = 0;
900 	skb_frag_t *frag;
901 
902 	/* Fill the first SGL either from linear data or from partial
903 	 * frag based on @start.
904 	 */
905 	if (unlikely(start < skb_linear_data_len)) {
906 		frag_size = min(len, skb_linear_data_len - start);
907 		sgl->len0 = htonl(frag_size);
908 		sgl->addr0 = cpu_to_be64(addr[0] + start);
909 		len -= frag_size;
910 		nfrags++;
911 	} else {
912 		start -= skb_linear_data_len;
913 		frag = &si->frags[frag_idx];
914 		frag_size = skb_frag_size(frag);
915 		/* find the first frag */
916 		while (start >= frag_size) {
917 			start -= frag_size;
918 			frag_idx++;
919 			frag = &si->frags[frag_idx];
920 			frag_size = skb_frag_size(frag);
921 		}
922 
923 		frag_size = min(len, skb_frag_size(frag) - start);
924 		sgl->len0 = cpu_to_be32(frag_size);
925 		sgl->addr0 = cpu_to_be64(addr[frag_idx + 1] + start);
926 		len -= frag_size;
927 		nfrags++;
928 		frag_idx++;
929 	}
930 
931 	/* If the entire partial data fit in one SGL, then send it out
932 	 * now.
933 	 */
934 	if (!len)
935 		goto done;
936 
937 	/* Most of the complexity below deals with the possibility we hit the
938 	 * end of the queue in the middle of writing the SGL.  For this case
939 	 * only we create the SGL in a temporary buffer and then copy it.
940 	 */
941 	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
942 
943 	/* If the skb couldn't fit in first SGL completely, fill the
944 	 * rest of the frags in subsequent SGLs. Note that each SGL
945 	 * pair can store 2 frags.
946 	 */
947 	while (len) {
948 		frag_size = min(len, skb_frag_size(&si->frags[frag_idx]));
949 		to->len[i & 1] = cpu_to_be32(frag_size);
950 		to->addr[i & 1] = cpu_to_be64(addr[frag_idx + 1]);
951 		if (i && (i & 1))
952 			to++;
953 		nfrags++;
954 		frag_idx++;
955 		i++;
956 		len -= frag_size;
957 	}
958 
959 	/* If we ended in an odd boundary, then set the second SGL's
960 	 * length in the pair to 0.
961 	 */
962 	if (i & 1)
963 		to->len[1] = cpu_to_be32(0);
964 
965 	/* Copy from temporary buffer to Tx ring, in case we hit the
966 	 * end of the queue in the middle of writing the SGL.
967 	 */
968 	if (unlikely((u8 *)end > (u8 *)q->stat)) {
969 		u32 part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
970 
971 		if (likely(part0))
972 			memcpy(sgl->sge, buf, part0);
973 		part1 = (u8 *)end - (u8 *)q->stat;
974 		memcpy(q->desc, (u8 *)buf + part0, part1);
975 		end = (void *)q->desc + part1;
976 	}
977 
978 	/* 0-pad to multiple of 16 */
979 	if ((uintptr_t)end & 8)
980 		*end = 0;
981 done:
982 	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
983 			ULPTX_NSGE_V(nfrags));
984 }
985 EXPORT_SYMBOL(cxgb4_write_partial_sgl);
986 
987 /* This function copies 64 byte coalesced work request to
988  * memory mapped BAR2 space. For coalesced WR SGE fetches
989  * data from the FIFO instead of from Host.
990  */
991 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
992 {
993 	int count = 8;
994 
995 	while (count) {
996 		writeq(*src, dst);
997 		src++;
998 		dst++;
999 		count--;
1000 	}
1001 }
1002 
1003 /**
1004  *	cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell
1005  *	@adap: the adapter
1006  *	@q: the Tx queue
1007  *	@n: number of new descriptors to give to HW
1008  *
1009  *	Ring the doorbel for a Tx queue.
1010  */
1011 inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
1012 {
1013 	/* Make sure that all writes to the TX Descriptors are committed
1014 	 * before we tell the hardware about them.
1015 	 */
1016 	wmb();
1017 
1018 	/* If we don't have access to the new User Doorbell (T5+), use the old
1019 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
1020 	 */
1021 	if (unlikely(q->bar2_addr == NULL)) {
1022 		u32 val = PIDX_V(n);
1023 		unsigned long flags;
1024 
1025 		/* For T4 we need to participate in the Doorbell Recovery
1026 		 * mechanism.
1027 		 */
1028 		spin_lock_irqsave(&q->db_lock, flags);
1029 		if (!q->db_disabled)
1030 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1031 				     QID_V(q->cntxt_id) | val);
1032 		else
1033 			q->db_pidx_inc += n;
1034 		q->db_pidx = q->pidx;
1035 		spin_unlock_irqrestore(&q->db_lock, flags);
1036 	} else {
1037 		u32 val = PIDX_T5_V(n);
1038 
1039 		/* T4 and later chips share the same PIDX field offset within
1040 		 * the doorbell, but T5 and later shrank the field in order to
1041 		 * gain a bit for Doorbell Priority.  The field was absurdly
1042 		 * large in the first place (14 bits) so we just use the T5
1043 		 * and later limits and warn if a Queue ID is too large.
1044 		 */
1045 		WARN_ON(val & DBPRIO_F);
1046 
1047 		/* If we're only writing a single TX Descriptor and we can use
1048 		 * Inferred QID registers, we can use the Write Combining
1049 		 * Gather Buffer; otherwise we use the simple doorbell.
1050 		 */
1051 		if (n == 1 && q->bar2_qid == 0) {
1052 			int index = (q->pidx
1053 				     ? (q->pidx - 1)
1054 				     : (q->size - 1));
1055 			u64 *wr = (u64 *)&q->desc[index];
1056 
1057 			cxgb_pio_copy((u64 __iomem *)
1058 				      (q->bar2_addr + SGE_UDB_WCDOORBELL),
1059 				      wr);
1060 		} else {
1061 			writel(val | QID_V(q->bar2_qid),
1062 			       q->bar2_addr + SGE_UDB_KDOORBELL);
1063 		}
1064 
1065 		/* This Write Memory Barrier will force the write to the User
1066 		 * Doorbell area to be flushed.  This is needed to prevent
1067 		 * writes on different CPUs for the same queue from hitting
1068 		 * the adapter out of order.  This is required when some Work
1069 		 * Requests take the Write Combine Gather Buffer path (user
1070 		 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
1071 		 * take the traditional path where we simply increment the
1072 		 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
1073 		 * hardware DMA read the actual Work Request.
1074 		 */
1075 		wmb();
1076 	}
1077 }
1078 EXPORT_SYMBOL(cxgb4_ring_tx_db);
1079 
1080 /**
1081  *	cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors
1082  *	@skb: the packet
1083  *	@q: the Tx queue where the packet will be inlined
1084  *	@pos: starting position in the Tx queue where to inline the packet
1085  *
1086  *	Inline a packet's contents directly into Tx descriptors, starting at
1087  *	the given position within the Tx DMA ring.
1088  *	Most of the complexity of this operation is dealing with wrap arounds
1089  *	in the middle of the packet we want to inline.
1090  */
1091 void cxgb4_inline_tx_skb(const struct sk_buff *skb,
1092 			 const struct sge_txq *q, void *pos)
1093 {
1094 	int left = (void *)q->stat - pos;
1095 	u64 *p;
1096 
1097 	if (likely(skb->len <= left)) {
1098 		if (likely(!skb->data_len))
1099 			skb_copy_from_linear_data(skb, pos, skb->len);
1100 		else
1101 			skb_copy_bits(skb, 0, pos, skb->len);
1102 		pos += skb->len;
1103 	} else {
1104 		skb_copy_bits(skb, 0, pos, left);
1105 		skb_copy_bits(skb, left, q->desc, skb->len - left);
1106 		pos = (void *)q->desc + (skb->len - left);
1107 	}
1108 
1109 	/* 0-pad to multiple of 16 */
1110 	p = PTR_ALIGN(pos, 8);
1111 	if ((uintptr_t)p & 8)
1112 		*p = 0;
1113 }
1114 EXPORT_SYMBOL(cxgb4_inline_tx_skb);
1115 
1116 static void *inline_tx_skb_header(const struct sk_buff *skb,
1117 				  const struct sge_txq *q,  void *pos,
1118 				  int length)
1119 {
1120 	u64 *p;
1121 	int left = (void *)q->stat - pos;
1122 
1123 	if (likely(length <= left)) {
1124 		memcpy(pos, skb->data, length);
1125 		pos += length;
1126 	} else {
1127 		memcpy(pos, skb->data, left);
1128 		memcpy(q->desc, skb->data + left, length - left);
1129 		pos = (void *)q->desc + (length - left);
1130 	}
1131 	/* 0-pad to multiple of 16 */
1132 	p = PTR_ALIGN(pos, 8);
1133 	if ((uintptr_t)p & 8) {
1134 		*p = 0;
1135 		return p + 1;
1136 	}
1137 	return p;
1138 }
1139 
1140 /*
1141  * Figure out what HW csum a packet wants and return the appropriate control
1142  * bits.
1143  */
1144 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1145 {
1146 	int csum_type;
1147 	bool inner_hdr_csum = false;
1148 	u16 proto, ver;
1149 
1150 	if (skb->encapsulation &&
1151 	    (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5))
1152 		inner_hdr_csum = true;
1153 
1154 	if (inner_hdr_csum) {
1155 		ver = inner_ip_hdr(skb)->version;
1156 		proto = (ver == 4) ? inner_ip_hdr(skb)->protocol :
1157 			inner_ipv6_hdr(skb)->nexthdr;
1158 	} else {
1159 		ver = ip_hdr(skb)->version;
1160 		proto = (ver == 4) ? ip_hdr(skb)->protocol :
1161 			ipv6_hdr(skb)->nexthdr;
1162 	}
1163 
1164 	if (ver == 4) {
1165 		if (proto == IPPROTO_TCP)
1166 			csum_type = TX_CSUM_TCPIP;
1167 		else if (proto == IPPROTO_UDP)
1168 			csum_type = TX_CSUM_UDPIP;
1169 		else {
1170 nocsum:			/*
1171 			 * unknown protocol, disable HW csum
1172 			 * and hope a bad packet is detected
1173 			 */
1174 			return TXPKT_L4CSUM_DIS_F;
1175 		}
1176 	} else {
1177 		/*
1178 		 * this doesn't work with extension headers
1179 		 */
1180 		if (proto == IPPROTO_TCP)
1181 			csum_type = TX_CSUM_TCPIP6;
1182 		else if (proto == IPPROTO_UDP)
1183 			csum_type = TX_CSUM_UDPIP6;
1184 		else
1185 			goto nocsum;
1186 	}
1187 
1188 	if (likely(csum_type >= TX_CSUM_TCPIP)) {
1189 		int eth_hdr_len, l4_len;
1190 		u64 hdr_len;
1191 
1192 		if (inner_hdr_csum) {
1193 			/* This allows checksum offload for all encapsulated
1194 			 * packets like GRE etc..
1195 			 */
1196 			l4_len = skb_inner_network_header_len(skb);
1197 			eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN;
1198 		} else {
1199 			l4_len = skb_network_header_len(skb);
1200 			eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
1201 		}
1202 		hdr_len = TXPKT_IPHDR_LEN_V(l4_len);
1203 
1204 		if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1205 			hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1206 		else
1207 			hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1208 		return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
1209 	} else {
1210 		int start = skb_transport_offset(skb);
1211 
1212 		return TXPKT_CSUM_TYPE_V(csum_type) |
1213 			TXPKT_CSUM_START_V(start) |
1214 			TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1215 	}
1216 }
1217 
1218 static void eth_txq_stop(struct sge_eth_txq *q)
1219 {
1220 	netif_tx_stop_queue(q->txq);
1221 	q->q.stops++;
1222 }
1223 
1224 static inline void txq_advance(struct sge_txq *q, unsigned int n)
1225 {
1226 	q->in_use += n;
1227 	q->pidx += n;
1228 	if (q->pidx >= q->size)
1229 		q->pidx -= q->size;
1230 }
1231 
1232 #ifdef CONFIG_CHELSIO_T4_FCOE
1233 static inline int
1234 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
1235 		  const struct port_info *pi, u64 *cntrl)
1236 {
1237 	const struct cxgb_fcoe *fcoe = &pi->fcoe;
1238 
1239 	if (!(fcoe->flags & CXGB_FCOE_ENABLED))
1240 		return 0;
1241 
1242 	if (skb->protocol != htons(ETH_P_FCOE))
1243 		return 0;
1244 
1245 	skb_reset_mac_header(skb);
1246 	skb->mac_len = sizeof(struct ethhdr);
1247 
1248 	skb_set_network_header(skb, skb->mac_len);
1249 	skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
1250 
1251 	if (!cxgb_fcoe_sof_eof_supported(adap, skb))
1252 		return -ENOTSUPP;
1253 
1254 	/* FC CRC offload */
1255 	*cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
1256 		     TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
1257 		     TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
1258 		     TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
1259 		     TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
1260 	return 0;
1261 }
1262 #endif /* CONFIG_CHELSIO_T4_FCOE */
1263 
1264 /* Returns tunnel type if hardware supports offloading of the same.
1265  * It is called only for T5 and onwards.
1266  */
1267 enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb)
1268 {
1269 	u8 l4_hdr = 0;
1270 	enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1271 	struct port_info *pi = netdev_priv(skb->dev);
1272 	struct adapter *adapter = pi->adapter;
1273 
1274 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
1275 	    skb->inner_protocol != htons(ETH_P_TEB))
1276 		return tnl_type;
1277 
1278 	switch (vlan_get_protocol(skb)) {
1279 	case htons(ETH_P_IP):
1280 		l4_hdr = ip_hdr(skb)->protocol;
1281 		break;
1282 	case htons(ETH_P_IPV6):
1283 		l4_hdr = ipv6_hdr(skb)->nexthdr;
1284 		break;
1285 	default:
1286 		return tnl_type;
1287 	}
1288 
1289 	switch (l4_hdr) {
1290 	case IPPROTO_UDP:
1291 		if (adapter->vxlan_port == udp_hdr(skb)->dest)
1292 			tnl_type = TX_TNL_TYPE_VXLAN;
1293 		else if (adapter->geneve_port == udp_hdr(skb)->dest)
1294 			tnl_type = TX_TNL_TYPE_GENEVE;
1295 		break;
1296 	default:
1297 		return tnl_type;
1298 	}
1299 
1300 	return tnl_type;
1301 }
1302 
1303 static inline void t6_fill_tnl_lso(struct sk_buff *skb,
1304 				   struct cpl_tx_tnl_lso *tnl_lso,
1305 				   enum cpl_tx_tnl_lso_type tnl_type)
1306 {
1307 	u32 val;
1308 	int in_eth_xtra_len;
1309 	int l3hdr_len = skb_network_header_len(skb);
1310 	int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1311 	const struct skb_shared_info *ssi = skb_shinfo(skb);
1312 	bool v6 = (ip_hdr(skb)->version == 6);
1313 
1314 	val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) |
1315 	      CPL_TX_TNL_LSO_FIRST_F |
1316 	      CPL_TX_TNL_LSO_LAST_F |
1317 	      (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) |
1318 	      CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) |
1319 	      CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) |
1320 	      (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) |
1321 	      CPL_TX_TNL_LSO_IPLENSETOUT_F |
1322 	      (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F);
1323 	tnl_lso->op_to_IpIdSplitOut = htonl(val);
1324 
1325 	tnl_lso->IpIdOffsetOut = 0;
1326 
1327 	/* Get the tunnel header length */
1328 	val = skb_inner_mac_header(skb) - skb_mac_header(skb);
1329 	in_eth_xtra_len = skb_inner_network_header(skb) -
1330 			  skb_inner_mac_header(skb) - ETH_HLEN;
1331 
1332 	switch (tnl_type) {
1333 	case TX_TNL_TYPE_VXLAN:
1334 	case TX_TNL_TYPE_GENEVE:
1335 		tnl_lso->UdpLenSetOut_to_TnlHdrLen =
1336 			htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F |
1337 			CPL_TX_TNL_LSO_UDPLENSETOUT_F);
1338 		break;
1339 	default:
1340 		tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0;
1341 		break;
1342 	}
1343 
1344 	tnl_lso->UdpLenSetOut_to_TnlHdrLen |=
1345 		 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) |
1346 		       CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type));
1347 
1348 	tnl_lso->r1 = 0;
1349 
1350 	val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) |
1351 	      CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) |
1352 	      CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) |
1353 	      CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4);
1354 	tnl_lso->Flow_to_TcpHdrLen = htonl(val);
1355 
1356 	tnl_lso->IpIdOffset = htons(0);
1357 
1358 	tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size));
1359 	tnl_lso->TCPSeqOffset = htonl(0);
1360 	tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len));
1361 }
1362 
1363 static inline void *write_tso_wr(struct adapter *adap, struct sk_buff *skb,
1364 				 struct cpl_tx_pkt_lso_core *lso)
1365 {
1366 	int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1367 	int l3hdr_len = skb_network_header_len(skb);
1368 	const struct skb_shared_info *ssi;
1369 	bool ipv6 = false;
1370 
1371 	ssi = skb_shinfo(skb);
1372 	if (ssi->gso_type & SKB_GSO_TCPV6)
1373 		ipv6 = true;
1374 
1375 	lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1376 			      LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
1377 			      LSO_IPV6_V(ipv6) |
1378 			      LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1379 			      LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1380 			      LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1381 	lso->ipid_ofst = htons(0);
1382 	lso->mss = htons(ssi->gso_size);
1383 	lso->seqno_offset = htonl(0);
1384 	if (is_t4(adap->params.chip))
1385 		lso->len = htonl(skb->len);
1386 	else
1387 		lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len));
1388 
1389 	return (void *)(lso + 1);
1390 }
1391 
1392 /**
1393  *	t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update
1394  *	@adap: the adapter
1395  *	@eq: the Ethernet TX Queue
1396  *	@maxreclaim: the maximum number of TX Descriptors to reclaim or -1
1397  *
1398  *	We're typically called here to update the state of an Ethernet TX
1399  *	Queue with respect to the hardware's progress in consuming the TX
1400  *	Work Requests that we've put on that Egress Queue.  This happens
1401  *	when we get Egress Queue Update messages and also prophylactically
1402  *	in regular timer-based Ethernet TX Queue maintenance.
1403  */
1404 int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq,
1405 				 int maxreclaim)
1406 {
1407 	unsigned int reclaimed, hw_cidx;
1408 	struct sge_txq *q = &eq->q;
1409 	int hw_in_use;
1410 
1411 	if (!q->in_use || !__netif_tx_trylock(eq->txq))
1412 		return 0;
1413 
1414 	/* Reclaim pending completed TX Descriptors. */
1415 	reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true);
1416 
1417 	hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
1418 	hw_in_use = q->pidx - hw_cidx;
1419 	if (hw_in_use < 0)
1420 		hw_in_use += q->size;
1421 
1422 	/* If the TX Queue is currently stopped and there's now more than half
1423 	 * the queue available, restart it.  Otherwise bail out since the rest
1424 	 * of what we want do here is with the possibility of shipping any
1425 	 * currently buffered Coalesced TX Work Request.
1426 	 */
1427 	if (netif_tx_queue_stopped(eq->txq) && hw_in_use < (q->size / 2)) {
1428 		netif_tx_wake_queue(eq->txq);
1429 		eq->q.restarts++;
1430 	}
1431 
1432 	__netif_tx_unlock(eq->txq);
1433 	return reclaimed;
1434 }
1435 
1436 static inline int cxgb4_validate_skb(struct sk_buff *skb,
1437 				     struct net_device *dev,
1438 				     u32 min_pkt_len)
1439 {
1440 	u32 max_pkt_len;
1441 
1442 	/* The chip min packet length is 10 octets but some firmware
1443 	 * commands have a minimum packet length requirement. So, play
1444 	 * safe and reject anything shorter than @min_pkt_len.
1445 	 */
1446 	if (unlikely(skb->len < min_pkt_len))
1447 		return -EINVAL;
1448 
1449 	/* Discard the packet if the length is greater than mtu */
1450 	max_pkt_len = ETH_HLEN + dev->mtu;
1451 
1452 	if (skb_vlan_tagged(skb))
1453 		max_pkt_len += VLAN_HLEN;
1454 
1455 	if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1456 		return -EINVAL;
1457 
1458 	return 0;
1459 }
1460 
1461 static void *write_eo_udp_wr(struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
1462 			     u32 hdr_len)
1463 {
1464 	wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
1465 	wr->u.udpseg.ethlen = skb_network_offset(skb);
1466 	wr->u.udpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
1467 	wr->u.udpseg.udplen = sizeof(struct udphdr);
1468 	wr->u.udpseg.rtplen = 0;
1469 	wr->u.udpseg.r4 = 0;
1470 	if (skb_shinfo(skb)->gso_size)
1471 		wr->u.udpseg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size);
1472 	else
1473 		wr->u.udpseg.mss = cpu_to_be16(skb->len - hdr_len);
1474 	wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
1475 	wr->u.udpseg.plen = cpu_to_be32(skb->len - hdr_len);
1476 
1477 	return (void *)(wr + 1);
1478 }
1479 
1480 /**
1481  *	cxgb4_eth_xmit - add a packet to an Ethernet Tx queue
1482  *	@skb: the packet
1483  *	@dev: the egress net device
1484  *
1485  *	Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
1486  */
1487 static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1488 {
1489 	enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1490 	bool ptp_enabled = is_ptp_enabled(skb, dev);
1491 	unsigned int last_desc, flits, ndesc;
1492 	u32 wr_mid, ctrl0, op, sgl_off = 0;
1493 	const struct skb_shared_info *ssi;
1494 	int len, qidx, credits, ret, left;
1495 	struct tx_sw_desc *sgl_sdesc;
1496 	struct fw_eth_tx_eo_wr *eowr;
1497 	struct fw_eth_tx_pkt_wr *wr;
1498 	struct cpl_tx_pkt_core *cpl;
1499 	const struct port_info *pi;
1500 	bool immediate = false;
1501 	u64 cntrl, *end, *sgl;
1502 	struct sge_eth_txq *q;
1503 	unsigned int chip_ver;
1504 	struct adapter *adap;
1505 
1506 	ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
1507 	if (ret)
1508 		goto out_free;
1509 
1510 	pi = netdev_priv(dev);
1511 	adap = pi->adapter;
1512 	ssi = skb_shinfo(skb);
1513 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
1514 	if (xfrm_offload(skb) && !ssi->gso_size)
1515 		return adap->uld[CXGB4_ULD_IPSEC].tx_handler(skb, dev);
1516 #endif /* CHELSIO_IPSEC_INLINE */
1517 
1518 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
1519 	if (tls_is_skb_tx_device_offloaded(skb) &&
1520 	    (skb->len - skb_tcp_all_headers(skb)))
1521 		return adap->uld[CXGB4_ULD_KTLS].tx_handler(skb, dev);
1522 #endif /* CHELSIO_TLS_DEVICE */
1523 
1524 	qidx = skb_get_queue_mapping(skb);
1525 	if (ptp_enabled) {
1526 		if (!(adap->ptp_tx_skb)) {
1527 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1528 			adap->ptp_tx_skb = skb_get(skb);
1529 		} else {
1530 			goto out_free;
1531 		}
1532 		q = &adap->sge.ptptxq;
1533 	} else {
1534 		q = &adap->sge.ethtxq[qidx + pi->first_qset];
1535 	}
1536 	skb_tx_timestamp(skb);
1537 
1538 	reclaim_completed_tx(adap, &q->q, -1, true);
1539 	cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1540 
1541 #ifdef CONFIG_CHELSIO_T4_FCOE
1542 	ret = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
1543 	if (unlikely(ret == -EOPNOTSUPP))
1544 		goto out_free;
1545 #endif /* CONFIG_CHELSIO_T4_FCOE */
1546 
1547 	chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
1548 	flits = calc_tx_flits(skb, chip_ver);
1549 	ndesc = flits_to_desc(flits);
1550 	credits = txq_avail(&q->q) - ndesc;
1551 
1552 	if (unlikely(credits < 0)) {
1553 		eth_txq_stop(q);
1554 		dev_err(adap->pdev_dev,
1555 			"%s: Tx ring %u full while queue awake!\n",
1556 			dev->name, qidx);
1557 		return NETDEV_TX_BUSY;
1558 	}
1559 
1560 	if (is_eth_imm(skb, chip_ver))
1561 		immediate = true;
1562 
1563 	if (skb->encapsulation && chip_ver > CHELSIO_T5)
1564 		tnl_type = cxgb_encap_offload_supported(skb);
1565 
1566 	last_desc = q->q.pidx + ndesc - 1;
1567 	if (last_desc >= q->q.size)
1568 		last_desc -= q->q.size;
1569 	sgl_sdesc = &q->q.sdesc[last_desc];
1570 
1571 	if (!immediate &&
1572 	    unlikely(cxgb4_map_skb(adap->pdev_dev, skb, sgl_sdesc->addr) < 0)) {
1573 		memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
1574 		q->mapping_err++;
1575 		goto out_free;
1576 	}
1577 
1578 	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1579 	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1580 		/* After we're done injecting the Work Request for this
1581 		 * packet, we'll be below our "stop threshold" so stop the TX
1582 		 * Queue now and schedule a request for an SGE Egress Queue
1583 		 * Update message. The queue will get started later on when
1584 		 * the firmware processes this Work Request and sends us an
1585 		 * Egress Queue Status Update message indicating that space
1586 		 * has opened up.
1587 		 */
1588 		eth_txq_stop(q);
1589 		if (chip_ver > CHELSIO_T5)
1590 			wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1591 	}
1592 
1593 	wr = (void *)&q->q.desc[q->q.pidx];
1594 	eowr = (void *)&q->q.desc[q->q.pidx];
1595 	wr->equiq_to_len16 = htonl(wr_mid);
1596 	wr->r3 = cpu_to_be64(0);
1597 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
1598 		end = (u64 *)eowr + flits;
1599 	else
1600 		end = (u64 *)wr + flits;
1601 
1602 	len = immediate ? skb->len : 0;
1603 	len += sizeof(*cpl);
1604 	if (ssi->gso_size && !(ssi->gso_type & SKB_GSO_UDP_L4)) {
1605 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1606 		struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1);
1607 
1608 		if (tnl_type)
1609 			len += sizeof(*tnl_lso);
1610 		else
1611 			len += sizeof(*lso);
1612 
1613 		wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1614 				       FW_WR_IMMDLEN_V(len));
1615 		if (tnl_type) {
1616 			struct iphdr *iph = ip_hdr(skb);
1617 
1618 			t6_fill_tnl_lso(skb, tnl_lso, tnl_type);
1619 			cpl = (void *)(tnl_lso + 1);
1620 			/* Driver is expected to compute partial checksum that
1621 			 * does not include the IP Total Length.
1622 			 */
1623 			if (iph->version == 4) {
1624 				iph->check = 0;
1625 				iph->tot_len = 0;
1626 				iph->check = ~ip_fast_csum((u8 *)iph, iph->ihl);
1627 			}
1628 			if (skb->ip_summed == CHECKSUM_PARTIAL)
1629 				cntrl = hwcsum(adap->params.chip, skb);
1630 		} else {
1631 			cpl = write_tso_wr(adap, skb, lso);
1632 			cntrl = hwcsum(adap->params.chip, skb);
1633 		}
1634 		sgl = (u64 *)(cpl + 1); /* sgl start here */
1635 		q->tso++;
1636 		q->tx_cso += ssi->gso_segs;
1637 	} else if (ssi->gso_size) {
1638 		u64 *start;
1639 		u32 hdrlen;
1640 
1641 		hdrlen = eth_get_headlen(dev, skb->data, skb_headlen(skb));
1642 		len += hdrlen;
1643 		wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
1644 					     FW_ETH_TX_EO_WR_IMMDLEN_V(len));
1645 		cpl = write_eo_udp_wr(skb, eowr, hdrlen);
1646 		cntrl = hwcsum(adap->params.chip, skb);
1647 
1648 		start = (u64 *)(cpl + 1);
1649 		sgl = (u64 *)inline_tx_skb_header(skb, &q->q, (void *)start,
1650 						  hdrlen);
1651 		if (unlikely(start > sgl)) {
1652 			left = (u8 *)end - (u8 *)q->q.stat;
1653 			end = (void *)q->q.desc + left;
1654 		}
1655 		sgl_off = hdrlen;
1656 		q->uso++;
1657 		q->tx_cso += ssi->gso_segs;
1658 	} else {
1659 		if (ptp_enabled)
1660 			op = FW_PTP_TX_PKT_WR;
1661 		else
1662 			op = FW_ETH_TX_PKT_WR;
1663 		wr->op_immdlen = htonl(FW_WR_OP_V(op) |
1664 				       FW_WR_IMMDLEN_V(len));
1665 		cpl = (void *)(wr + 1);
1666 		sgl = (u64 *)(cpl + 1);
1667 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1668 			cntrl = hwcsum(adap->params.chip, skb) |
1669 				TXPKT_IPCSUM_DIS_F;
1670 			q->tx_cso++;
1671 		}
1672 	}
1673 
1674 	if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) {
1675 		/* If current position is already at the end of the
1676 		 * txq, reset the current to point to start of the queue
1677 		 * and update the end ptr as well.
1678 		 */
1679 		left = (u8 *)end - (u8 *)q->q.stat;
1680 		end = (void *)q->q.desc + left;
1681 		sgl = (void *)q->q.desc;
1682 	}
1683 
1684 	if (skb_vlan_tag_present(skb)) {
1685 		q->vlan_ins++;
1686 		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1687 #ifdef CONFIG_CHELSIO_T4_FCOE
1688 		if (skb->protocol == htons(ETH_P_FCOE))
1689 			cntrl |= TXPKT_VLAN_V(
1690 				 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
1691 #endif /* CONFIG_CHELSIO_T4_FCOE */
1692 	}
1693 
1694 	ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
1695 		TXPKT_PF_V(adap->pf);
1696 	if (ptp_enabled)
1697 		ctrl0 |= TXPKT_TSTAMP_F;
1698 #ifdef CONFIG_CHELSIO_T4_DCB
1699 	if (is_t4(adap->params.chip))
1700 		ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
1701 	else
1702 		ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
1703 #endif
1704 	cpl->ctrl0 = htonl(ctrl0);
1705 	cpl->pack = htons(0);
1706 	cpl->len = htons(skb->len);
1707 	cpl->ctrl1 = cpu_to_be64(cntrl);
1708 
1709 	if (immediate) {
1710 		cxgb4_inline_tx_skb(skb, &q->q, sgl);
1711 		dev_consume_skb_any(skb);
1712 	} else {
1713 		cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, sgl_off,
1714 				sgl_sdesc->addr);
1715 		skb_orphan(skb);
1716 		sgl_sdesc->skb = skb;
1717 	}
1718 
1719 	txq_advance(&q->q, ndesc);
1720 
1721 	cxgb4_ring_tx_db(adap, &q->q, ndesc);
1722 	return NETDEV_TX_OK;
1723 
1724 out_free:
1725 	dev_kfree_skb_any(skb);
1726 	return NETDEV_TX_OK;
1727 }
1728 
1729 /* Constants ... */
1730 enum {
1731 	/* Egress Queue sizes, producer and consumer indices are all in units
1732 	 * of Egress Context Units bytes.  Note that as far as the hardware is
1733 	 * concerned, the free list is an Egress Queue (the host produces free
1734 	 * buffers which the hardware consumes) and free list entries are
1735 	 * 64-bit PCI DMA addresses.
1736 	 */
1737 	EQ_UNIT = SGE_EQ_IDXSIZE,
1738 	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1739 	TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1740 
1741 	T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1742 			       sizeof(struct cpl_tx_pkt_lso_core) +
1743 			       sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
1744 };
1745 
1746 /**
1747  *	t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data?
1748  *	@skb: the packet
1749  *
1750  *	Returns whether an Ethernet packet is small enough to fit completely as
1751  *	immediate data.
1752  */
1753 static inline int t4vf_is_eth_imm(const struct sk_buff *skb)
1754 {
1755 	/* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
1756 	 * which does not accommodate immediate data.  We could dike out all
1757 	 * of the support code for immediate data but that would tie our hands
1758 	 * too much if we ever want to enhace the firmware.  It would also
1759 	 * create more differences between the PF and VF Drivers.
1760 	 */
1761 	return false;
1762 }
1763 
1764 /**
1765  *	t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR
1766  *	@skb: the packet
1767  *
1768  *	Returns the number of flits needed for a TX Work Request for the
1769  *	given Ethernet packet, including the needed WR and CPL headers.
1770  */
1771 static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb)
1772 {
1773 	unsigned int flits;
1774 
1775 	/* If the skb is small enough, we can pump it out as a work request
1776 	 * with only immediate data.  In that case we just have to have the
1777 	 * TX Packet header plus the skb data in the Work Request.
1778 	 */
1779 	if (t4vf_is_eth_imm(skb))
1780 		return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
1781 				    sizeof(__be64));
1782 
1783 	/* Otherwise, we're going to have to construct a Scatter gather list
1784 	 * of the skb body and fragments.  We also include the flits necessary
1785 	 * for the TX Packet Work Request and CPL.  We always have a firmware
1786 	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
1787 	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
1788 	 * message or, if we're doing a Large Send Offload, an LSO CPL message
1789 	 * with an embedded TX Packet Write CPL message.
1790 	 */
1791 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
1792 	if (skb_shinfo(skb)->gso_size)
1793 		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1794 			  sizeof(struct cpl_tx_pkt_lso_core) +
1795 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1796 	else
1797 		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1798 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1799 	return flits;
1800 }
1801 
1802 /**
1803  *	cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue
1804  *	@skb: the packet
1805  *	@dev: the egress net device
1806  *
1807  *	Add a packet to an SGE Ethernet TX queue.  Runs with softirqs disabled.
1808  */
1809 static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb,
1810 				     struct net_device *dev)
1811 {
1812 	unsigned int last_desc, flits, ndesc;
1813 	const struct skb_shared_info *ssi;
1814 	struct fw_eth_tx_pkt_vm_wr *wr;
1815 	struct tx_sw_desc *sgl_sdesc;
1816 	struct cpl_tx_pkt_core *cpl;
1817 	const struct port_info *pi;
1818 	struct sge_eth_txq *txq;
1819 	struct adapter *adapter;
1820 	int qidx, credits, ret;
1821 	size_t fw_hdr_copy_len;
1822 	unsigned int chip_ver;
1823 	u64 cntrl, *end;
1824 	u32 wr_mid;
1825 
1826 	/* The chip minimum packet length is 10 octets but the firmware
1827 	 * command that we are using requires that we copy the Ethernet header
1828 	 * (including the VLAN tag) into the header so we reject anything
1829 	 * smaller than that ...
1830 	 */
1831 	BUILD_BUG_ON(sizeof(wr->firmware) !=
1832 		     (sizeof(wr->ethmacdst) + sizeof(wr->ethmacsrc) +
1833 		      sizeof(wr->ethtype) + sizeof(wr->vlantci)));
1834 	fw_hdr_copy_len = sizeof(wr->firmware);
1835 	ret = cxgb4_validate_skb(skb, dev, fw_hdr_copy_len);
1836 	if (ret)
1837 		goto out_free;
1838 
1839 	/* Figure out which TX Queue we're going to use. */
1840 	pi = netdev_priv(dev);
1841 	adapter = pi->adapter;
1842 	qidx = skb_get_queue_mapping(skb);
1843 	WARN_ON(qidx >= pi->nqsets);
1844 	txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1845 
1846 	/* Take this opportunity to reclaim any TX Descriptors whose DMA
1847 	 * transfers have completed.
1848 	 */
1849 	reclaim_completed_tx(adapter, &txq->q, -1, true);
1850 
1851 	/* Calculate the number of flits and TX Descriptors we're going to
1852 	 * need along with how many TX Descriptors will be left over after
1853 	 * we inject our Work Request.
1854 	 */
1855 	flits = t4vf_calc_tx_flits(skb);
1856 	ndesc = flits_to_desc(flits);
1857 	credits = txq_avail(&txq->q) - ndesc;
1858 
1859 	if (unlikely(credits < 0)) {
1860 		/* Not enough room for this packet's Work Request.  Stop the
1861 		 * TX Queue and return a "busy" condition.  The queue will get
1862 		 * started later on when the firmware informs us that space
1863 		 * has opened up.
1864 		 */
1865 		eth_txq_stop(txq);
1866 		dev_err(adapter->pdev_dev,
1867 			"%s: TX ring %u full while queue awake!\n",
1868 			dev->name, qidx);
1869 		return NETDEV_TX_BUSY;
1870 	}
1871 
1872 	last_desc = txq->q.pidx + ndesc - 1;
1873 	if (last_desc >= txq->q.size)
1874 		last_desc -= txq->q.size;
1875 	sgl_sdesc = &txq->q.sdesc[last_desc];
1876 
1877 	if (!t4vf_is_eth_imm(skb) &&
1878 	    unlikely(cxgb4_map_skb(adapter->pdev_dev, skb,
1879 				   sgl_sdesc->addr) < 0)) {
1880 		/* We need to map the skb into PCI DMA space (because it can't
1881 		 * be in-lined directly into the Work Request) and the mapping
1882 		 * operation failed.  Record the error and drop the packet.
1883 		 */
1884 		memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
1885 		txq->mapping_err++;
1886 		goto out_free;
1887 	}
1888 
1889 	chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
1890 	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1891 	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1892 		/* After we're done injecting the Work Request for this
1893 		 * packet, we'll be below our "stop threshold" so stop the TX
1894 		 * Queue now and schedule a request for an SGE Egress Queue
1895 		 * Update message.  The queue will get started later on when
1896 		 * the firmware processes this Work Request and sends us an
1897 		 * Egress Queue Status Update message indicating that space
1898 		 * has opened up.
1899 		 */
1900 		eth_txq_stop(txq);
1901 		if (chip_ver > CHELSIO_T5)
1902 			wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1903 	}
1904 
1905 	/* Start filling in our Work Request.  Note that we do _not_ handle
1906 	 * the WR Header wrapping around the TX Descriptor Ring.  If our
1907 	 * maximum header size ever exceeds one TX Descriptor, we'll need to
1908 	 * do something else here.
1909 	 */
1910 	WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1911 	wr = (void *)&txq->q.desc[txq->q.pidx];
1912 	wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1913 	wr->r3[0] = cpu_to_be32(0);
1914 	wr->r3[1] = cpu_to_be32(0);
1915 	skb_copy_from_linear_data(skb, &wr->firmware, fw_hdr_copy_len);
1916 	end = (u64 *)wr + flits;
1917 
1918 	/* If this is a Large Send Offload packet we'll put in an LSO CPL
1919 	 * message with an encapsulated TX Packet CPL message.  Otherwise we
1920 	 * just use a TX Packet CPL message.
1921 	 */
1922 	ssi = skb_shinfo(skb);
1923 	if (ssi->gso_size) {
1924 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1925 		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1926 		int l3hdr_len = skb_network_header_len(skb);
1927 		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1928 
1929 		wr->op_immdlen =
1930 			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1931 				    FW_WR_IMMDLEN_V(sizeof(*lso) +
1932 						    sizeof(*cpl)));
1933 		 /* Fill in the LSO CPL message. */
1934 		lso->lso_ctrl =
1935 			cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1936 				    LSO_FIRST_SLICE_F |
1937 				    LSO_LAST_SLICE_F |
1938 				    LSO_IPV6_V(v6) |
1939 				    LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1940 				    LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1941 				    LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1942 		lso->ipid_ofst = cpu_to_be16(0);
1943 		lso->mss = cpu_to_be16(ssi->gso_size);
1944 		lso->seqno_offset = cpu_to_be32(0);
1945 		if (is_t4(adapter->params.chip))
1946 			lso->len = cpu_to_be32(skb->len);
1947 		else
1948 			lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len));
1949 
1950 		/* Set up TX Packet CPL pointer, control word and perform
1951 		 * accounting.
1952 		 */
1953 		cpl = (void *)(lso + 1);
1954 
1955 		if (chip_ver <= CHELSIO_T5)
1956 			cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1957 		else
1958 			cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1959 
1960 		cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1961 					   TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1962 			 TXPKT_IPHDR_LEN_V(l3hdr_len);
1963 		txq->tso++;
1964 		txq->tx_cso += ssi->gso_segs;
1965 	} else {
1966 		int len;
1967 
1968 		len = (t4vf_is_eth_imm(skb)
1969 		       ? skb->len + sizeof(*cpl)
1970 		       : sizeof(*cpl));
1971 		wr->op_immdlen =
1972 			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1973 				    FW_WR_IMMDLEN_V(len));
1974 
1975 		/* Set up TX Packet CPL pointer, control word and perform
1976 		 * accounting.
1977 		 */
1978 		cpl = (void *)(wr + 1);
1979 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1980 			cntrl = hwcsum(adapter->params.chip, skb) |
1981 				TXPKT_IPCSUM_DIS_F;
1982 			txq->tx_cso++;
1983 		} else {
1984 			cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1985 		}
1986 	}
1987 
1988 	/* If there's a VLAN tag present, add that to the list of things to
1989 	 * do in this Work Request.
1990 	 */
1991 	if (skb_vlan_tag_present(skb)) {
1992 		txq->vlan_ins++;
1993 		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1994 	}
1995 
1996 	 /* Fill in the TX Packet CPL message header. */
1997 	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
1998 				 TXPKT_INTF_V(pi->port_id) |
1999 				 TXPKT_PF_V(0));
2000 	cpl->pack = cpu_to_be16(0);
2001 	cpl->len = cpu_to_be16(skb->len);
2002 	cpl->ctrl1 = cpu_to_be64(cntrl);
2003 
2004 	/* Fill in the body of the TX Packet CPL message with either in-lined
2005 	 * data or a Scatter/Gather List.
2006 	 */
2007 	if (t4vf_is_eth_imm(skb)) {
2008 		/* In-line the packet's data and free the skb since we don't
2009 		 * need it any longer.
2010 		 */
2011 		cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1);
2012 		dev_consume_skb_any(skb);
2013 	} else {
2014 		/* Write the skb's Scatter/Gather list into the TX Packet CPL
2015 		 * message and retain a pointer to the skb so we can free it
2016 		 * later when its DMA completes.  (We store the skb pointer
2017 		 * in the Software Descriptor corresponding to the last TX
2018 		 * Descriptor used by the Work Request.)
2019 		 *
2020 		 * The retained skb will be freed when the corresponding TX
2021 		 * Descriptors are reclaimed after their DMAs complete.
2022 		 * However, this could take quite a while since, in general,
2023 		 * the hardware is set up to be lazy about sending DMA
2024 		 * completion notifications to us and we mostly perform TX
2025 		 * reclaims in the transmit routine.
2026 		 *
2027 		 * This is good for performamce but means that we rely on new
2028 		 * TX packets arriving to run the destructors of completed
2029 		 * packets, which open up space in their sockets' send queues.
2030 		 * Sometimes we do not get such new packets causing TX to
2031 		 * stall.  A single UDP transmitter is a good example of this
2032 		 * situation.  We have a clean up timer that periodically
2033 		 * reclaims completed packets but it doesn't run often enough
2034 		 * (nor do we want it to) to prevent lengthy stalls.  A
2035 		 * solution to this problem is to run the destructor early,
2036 		 * after the packet is queued but before it's DMAd.  A con is
2037 		 * that we lie to socket memory accounting, but the amount of
2038 		 * extra memory is reasonable (limited by the number of TX
2039 		 * descriptors), the packets do actually get freed quickly by
2040 		 * new packets almost always, and for protocols like TCP that
2041 		 * wait for acks to really free up the data the extra memory
2042 		 * is even less.  On the positive side we run the destructors
2043 		 * on the sending CPU rather than on a potentially different
2044 		 * completing CPU, usually a good thing.
2045 		 *
2046 		 * Run the destructor before telling the DMA engine about the
2047 		 * packet to make sure it doesn't complete and get freed
2048 		 * prematurely.
2049 		 */
2050 		struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
2051 		struct sge_txq *tq = &txq->q;
2052 
2053 		/* If the Work Request header was an exact multiple of our TX
2054 		 * Descriptor length, then it's possible that the starting SGL
2055 		 * pointer lines up exactly with the end of our TX Descriptor
2056 		 * ring.  If that's the case, wrap around to the beginning
2057 		 * here ...
2058 		 */
2059 		if (unlikely((void *)sgl == (void *)tq->stat)) {
2060 			sgl = (void *)tq->desc;
2061 			end = (void *)((void *)tq->desc +
2062 				       ((void *)end - (void *)tq->stat));
2063 		}
2064 
2065 		cxgb4_write_sgl(skb, tq, sgl, end, 0, sgl_sdesc->addr);
2066 		skb_orphan(skb);
2067 		sgl_sdesc->skb = skb;
2068 	}
2069 
2070 	/* Advance our internal TX Queue state, tell the hardware about
2071 	 * the new TX descriptors and return success.
2072 	 */
2073 	txq_advance(&txq->q, ndesc);
2074 
2075 	cxgb4_ring_tx_db(adapter, &txq->q, ndesc);
2076 	return NETDEV_TX_OK;
2077 
2078 out_free:
2079 	/* An error of some sort happened.  Free the TX skb and tell the
2080 	 * OS that we've "dealt" with the packet ...
2081 	 */
2082 	dev_kfree_skb_any(skb);
2083 	return NETDEV_TX_OK;
2084 }
2085 
2086 /**
2087  * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
2088  * @q: the SGE control Tx queue
2089  *
2090  * This is a variant of cxgb4_reclaim_completed_tx() that is used
2091  * for Tx queues that send only immediate data (presently just
2092  * the control queues) and	thus do not have any sk_buffs to release.
2093  */
2094 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
2095 {
2096 	int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
2097 	int reclaim = hw_cidx - q->cidx;
2098 
2099 	if (reclaim < 0)
2100 		reclaim += q->size;
2101 
2102 	q->in_use -= reclaim;
2103 	q->cidx = hw_cidx;
2104 }
2105 
2106 static inline void eosw_txq_advance_index(u32 *idx, u32 n, u32 max)
2107 {
2108 	u32 val = *idx + n;
2109 
2110 	if (val >= max)
2111 		val -= max;
2112 
2113 	*idx = val;
2114 }
2115 
2116 void cxgb4_eosw_txq_free_desc(struct adapter *adap,
2117 			      struct sge_eosw_txq *eosw_txq, u32 ndesc)
2118 {
2119 	struct tx_sw_desc *d;
2120 
2121 	d = &eosw_txq->desc[eosw_txq->last_cidx];
2122 	while (ndesc--) {
2123 		if (d->skb) {
2124 			if (d->addr[0]) {
2125 				unmap_skb(adap->pdev_dev, d->skb, d->addr);
2126 				memset(d->addr, 0, sizeof(d->addr));
2127 			}
2128 			dev_consume_skb_any(d->skb);
2129 			d->skb = NULL;
2130 		}
2131 		eosw_txq_advance_index(&eosw_txq->last_cidx, 1,
2132 				       eosw_txq->ndesc);
2133 		d = &eosw_txq->desc[eosw_txq->last_cidx];
2134 	}
2135 }
2136 
2137 static inline void eosw_txq_advance(struct sge_eosw_txq *eosw_txq, u32 n)
2138 {
2139 	eosw_txq_advance_index(&eosw_txq->pidx, n, eosw_txq->ndesc);
2140 	eosw_txq->inuse += n;
2141 }
2142 
2143 static inline int eosw_txq_enqueue(struct sge_eosw_txq *eosw_txq,
2144 				   struct sk_buff *skb)
2145 {
2146 	if (eosw_txq->inuse == eosw_txq->ndesc)
2147 		return -ENOMEM;
2148 
2149 	eosw_txq->desc[eosw_txq->pidx].skb = skb;
2150 	return 0;
2151 }
2152 
2153 static inline struct sk_buff *eosw_txq_peek(struct sge_eosw_txq *eosw_txq)
2154 {
2155 	return eosw_txq->desc[eosw_txq->last_pidx].skb;
2156 }
2157 
2158 static inline u8 ethofld_calc_tx_flits(struct adapter *adap,
2159 				       struct sk_buff *skb, u32 hdr_len)
2160 {
2161 	u8 flits, nsgl = 0;
2162 	u32 wrlen;
2163 
2164 	wrlen = sizeof(struct fw_eth_tx_eo_wr) + sizeof(struct cpl_tx_pkt_core);
2165 	if (skb_shinfo(skb)->gso_size &&
2166 	    !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
2167 		wrlen += sizeof(struct cpl_tx_pkt_lso_core);
2168 
2169 	wrlen += roundup(hdr_len, 16);
2170 
2171 	/* Packet headers + WR + CPLs */
2172 	flits = DIV_ROUND_UP(wrlen, 8);
2173 
2174 	if (skb_shinfo(skb)->nr_frags > 0) {
2175 		if (skb_headlen(skb) - hdr_len)
2176 			nsgl = sgl_len(skb_shinfo(skb)->nr_frags + 1);
2177 		else
2178 			nsgl = sgl_len(skb_shinfo(skb)->nr_frags);
2179 	} else if (skb->len - hdr_len) {
2180 		nsgl = sgl_len(1);
2181 	}
2182 
2183 	return flits + nsgl;
2184 }
2185 
2186 static void *write_eo_wr(struct adapter *adap, struct sge_eosw_txq *eosw_txq,
2187 			 struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
2188 			 u32 hdr_len, u32 wrlen)
2189 {
2190 	const struct skb_shared_info *ssi = skb_shinfo(skb);
2191 	struct cpl_tx_pkt_core *cpl;
2192 	u32 immd_len, wrlen16;
2193 	bool compl = false;
2194 	u8 ver, proto;
2195 
2196 	ver = ip_hdr(skb)->version;
2197 	proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : ip_hdr(skb)->protocol;
2198 
2199 	wrlen16 = DIV_ROUND_UP(wrlen, 16);
2200 	immd_len = sizeof(struct cpl_tx_pkt_core);
2201 	if (skb_shinfo(skb)->gso_size &&
2202 	    !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
2203 		immd_len += sizeof(struct cpl_tx_pkt_lso_core);
2204 	immd_len += hdr_len;
2205 
2206 	if (!eosw_txq->ncompl ||
2207 	    (eosw_txq->last_compl + wrlen16) >=
2208 	    (adap->params.ofldq_wr_cred / 2)) {
2209 		compl = true;
2210 		eosw_txq->ncompl++;
2211 		eosw_txq->last_compl = 0;
2212 	}
2213 
2214 	wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
2215 				     FW_ETH_TX_EO_WR_IMMDLEN_V(immd_len) |
2216 				     FW_WR_COMPL_V(compl));
2217 	wr->equiq_to_len16 = cpu_to_be32(FW_WR_LEN16_V(wrlen16) |
2218 					 FW_WR_FLOWID_V(eosw_txq->hwtid));
2219 	wr->r3 = 0;
2220 	if (proto == IPPROTO_UDP) {
2221 		cpl = write_eo_udp_wr(skb, wr, hdr_len);
2222 	} else {
2223 		wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
2224 		wr->u.tcpseg.ethlen = skb_network_offset(skb);
2225 		wr->u.tcpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
2226 		wr->u.tcpseg.tcplen = tcp_hdrlen(skb);
2227 		wr->u.tcpseg.tsclk_tsoff = 0;
2228 		wr->u.tcpseg.r4 = 0;
2229 		wr->u.tcpseg.r5 = 0;
2230 		wr->u.tcpseg.plen = cpu_to_be32(skb->len - hdr_len);
2231 
2232 		if (ssi->gso_size) {
2233 			struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
2234 
2235 			wr->u.tcpseg.mss = cpu_to_be16(ssi->gso_size);
2236 			cpl = write_tso_wr(adap, skb, lso);
2237 		} else {
2238 			wr->u.tcpseg.mss = cpu_to_be16(0xffff);
2239 			cpl = (void *)(wr + 1);
2240 		}
2241 	}
2242 
2243 	eosw_txq->cred -= wrlen16;
2244 	eosw_txq->last_compl += wrlen16;
2245 	return cpl;
2246 }
2247 
2248 static int ethofld_hard_xmit(struct net_device *dev,
2249 			     struct sge_eosw_txq *eosw_txq)
2250 {
2251 	struct port_info *pi = netdev2pinfo(dev);
2252 	struct adapter *adap = netdev2adap(dev);
2253 	u32 wrlen, wrlen16, hdr_len, data_len;
2254 	enum sge_eosw_state next_state;
2255 	u64 cntrl, *start, *end, *sgl;
2256 	struct sge_eohw_txq *eohw_txq;
2257 	struct cpl_tx_pkt_core *cpl;
2258 	struct fw_eth_tx_eo_wr *wr;
2259 	bool skip_eotx_wr = false;
2260 	struct tx_sw_desc *d;
2261 	struct sk_buff *skb;
2262 	int left, ret = 0;
2263 	u8 flits, ndesc;
2264 
2265 	eohw_txq = &adap->sge.eohw_txq[eosw_txq->hwqid];
2266 	spin_lock(&eohw_txq->lock);
2267 	reclaim_completed_tx_imm(&eohw_txq->q);
2268 
2269 	d = &eosw_txq->desc[eosw_txq->last_pidx];
2270 	skb = d->skb;
2271 	skb_tx_timestamp(skb);
2272 
2273 	wr = (struct fw_eth_tx_eo_wr *)&eohw_txq->q.desc[eohw_txq->q.pidx];
2274 	if (unlikely(eosw_txq->state != CXGB4_EO_STATE_ACTIVE &&
2275 		     eosw_txq->last_pidx == eosw_txq->flowc_idx)) {
2276 		hdr_len = skb->len;
2277 		data_len = 0;
2278 		flits = DIV_ROUND_UP(hdr_len, 8);
2279 		if (eosw_txq->state == CXGB4_EO_STATE_FLOWC_OPEN_SEND)
2280 			next_state = CXGB4_EO_STATE_FLOWC_OPEN_REPLY;
2281 		else
2282 			next_state = CXGB4_EO_STATE_FLOWC_CLOSE_REPLY;
2283 		skip_eotx_wr = true;
2284 	} else {
2285 		hdr_len = eth_get_headlen(dev, skb->data, skb_headlen(skb));
2286 		data_len = skb->len - hdr_len;
2287 		flits = ethofld_calc_tx_flits(adap, skb, hdr_len);
2288 	}
2289 	ndesc = flits_to_desc(flits);
2290 	wrlen = flits * 8;
2291 	wrlen16 = DIV_ROUND_UP(wrlen, 16);
2292 
2293 	left = txq_avail(&eohw_txq->q) - ndesc;
2294 
2295 	/* If there are no descriptors left in hardware queues or no
2296 	 * CPL credits left in software queues, then wait for them
2297 	 * to come back and retry again. Note that we always request
2298 	 * for credits update via interrupt for every half credits
2299 	 * consumed. So, the interrupt will eventually restore the
2300 	 * credits and invoke the Tx path again.
2301 	 */
2302 	if (unlikely(left < 0 || wrlen16 > eosw_txq->cred)) {
2303 		ret = -ENOMEM;
2304 		goto out_unlock;
2305 	}
2306 
2307 	if (unlikely(skip_eotx_wr)) {
2308 		start = (u64 *)wr;
2309 		eosw_txq->state = next_state;
2310 		eosw_txq->cred -= wrlen16;
2311 		eosw_txq->ncompl++;
2312 		eosw_txq->last_compl = 0;
2313 		goto write_wr_headers;
2314 	}
2315 
2316 	cpl = write_eo_wr(adap, eosw_txq, skb, wr, hdr_len, wrlen);
2317 	cntrl = hwcsum(adap->params.chip, skb);
2318 	if (skb_vlan_tag_present(skb))
2319 		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
2320 
2321 	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
2322 				 TXPKT_INTF_V(pi->tx_chan) |
2323 				 TXPKT_PF_V(adap->pf));
2324 	cpl->pack = 0;
2325 	cpl->len = cpu_to_be16(skb->len);
2326 	cpl->ctrl1 = cpu_to_be64(cntrl);
2327 
2328 	start = (u64 *)(cpl + 1);
2329 
2330 write_wr_headers:
2331 	sgl = (u64 *)inline_tx_skb_header(skb, &eohw_txq->q, (void *)start,
2332 					  hdr_len);
2333 	if (data_len) {
2334 		ret = cxgb4_map_skb(adap->pdev_dev, skb, d->addr);
2335 		if (unlikely(ret)) {
2336 			memset(d->addr, 0, sizeof(d->addr));
2337 			eohw_txq->mapping_err++;
2338 			goto out_unlock;
2339 		}
2340 
2341 		end = (u64 *)wr + flits;
2342 		if (unlikely(start > sgl)) {
2343 			left = (u8 *)end - (u8 *)eohw_txq->q.stat;
2344 			end = (void *)eohw_txq->q.desc + left;
2345 		}
2346 
2347 		if (unlikely((u8 *)sgl >= (u8 *)eohw_txq->q.stat)) {
2348 			/* If current position is already at the end of the
2349 			 * txq, reset the current to point to start of the queue
2350 			 * and update the end ptr as well.
2351 			 */
2352 			left = (u8 *)end - (u8 *)eohw_txq->q.stat;
2353 
2354 			end = (void *)eohw_txq->q.desc + left;
2355 			sgl = (void *)eohw_txq->q.desc;
2356 		}
2357 
2358 		cxgb4_write_sgl(skb, &eohw_txq->q, (void *)sgl, end, hdr_len,
2359 				d->addr);
2360 	}
2361 
2362 	if (skb_shinfo(skb)->gso_size) {
2363 		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
2364 			eohw_txq->uso++;
2365 		else
2366 			eohw_txq->tso++;
2367 		eohw_txq->tx_cso += skb_shinfo(skb)->gso_segs;
2368 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2369 		eohw_txq->tx_cso++;
2370 	}
2371 
2372 	if (skb_vlan_tag_present(skb))
2373 		eohw_txq->vlan_ins++;
2374 
2375 	txq_advance(&eohw_txq->q, ndesc);
2376 	cxgb4_ring_tx_db(adap, &eohw_txq->q, ndesc);
2377 	eosw_txq_advance_index(&eosw_txq->last_pidx, 1, eosw_txq->ndesc);
2378 
2379 out_unlock:
2380 	spin_unlock(&eohw_txq->lock);
2381 	return ret;
2382 }
2383 
2384 static void ethofld_xmit(struct net_device *dev, struct sge_eosw_txq *eosw_txq)
2385 {
2386 	struct sk_buff *skb;
2387 	int pktcount, ret;
2388 
2389 	switch (eosw_txq->state) {
2390 	case CXGB4_EO_STATE_ACTIVE:
2391 	case CXGB4_EO_STATE_FLOWC_OPEN_SEND:
2392 	case CXGB4_EO_STATE_FLOWC_CLOSE_SEND:
2393 		pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
2394 		if (pktcount < 0)
2395 			pktcount += eosw_txq->ndesc;
2396 		break;
2397 	case CXGB4_EO_STATE_FLOWC_OPEN_REPLY:
2398 	case CXGB4_EO_STATE_FLOWC_CLOSE_REPLY:
2399 	case CXGB4_EO_STATE_CLOSED:
2400 	default:
2401 		return;
2402 	}
2403 
2404 	while (pktcount--) {
2405 		skb = eosw_txq_peek(eosw_txq);
2406 		if (!skb) {
2407 			eosw_txq_advance_index(&eosw_txq->last_pidx, 1,
2408 					       eosw_txq->ndesc);
2409 			continue;
2410 		}
2411 
2412 		ret = ethofld_hard_xmit(dev, eosw_txq);
2413 		if (ret)
2414 			break;
2415 	}
2416 }
2417 
2418 static netdev_tx_t cxgb4_ethofld_xmit(struct sk_buff *skb,
2419 				      struct net_device *dev)
2420 {
2421 	struct cxgb4_tc_port_mqprio *tc_port_mqprio;
2422 	struct port_info *pi = netdev2pinfo(dev);
2423 	struct adapter *adap = netdev2adap(dev);
2424 	struct sge_eosw_txq *eosw_txq;
2425 	u32 qid;
2426 	int ret;
2427 
2428 	ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
2429 	if (ret)
2430 		goto out_free;
2431 
2432 	tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id];
2433 	qid = skb_get_queue_mapping(skb) - pi->nqsets;
2434 	eosw_txq = &tc_port_mqprio->eosw_txq[qid];
2435 	spin_lock_bh(&eosw_txq->lock);
2436 	if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
2437 		goto out_unlock;
2438 
2439 	ret = eosw_txq_enqueue(eosw_txq, skb);
2440 	if (ret)
2441 		goto out_unlock;
2442 
2443 	/* SKB is queued for processing until credits are available.
2444 	 * So, call the destructor now and we'll free the skb later
2445 	 * after it has been successfully transmitted.
2446 	 */
2447 	skb_orphan(skb);
2448 
2449 	eosw_txq_advance(eosw_txq, 1);
2450 	ethofld_xmit(dev, eosw_txq);
2451 	spin_unlock_bh(&eosw_txq->lock);
2452 	return NETDEV_TX_OK;
2453 
2454 out_unlock:
2455 	spin_unlock_bh(&eosw_txq->lock);
2456 out_free:
2457 	dev_kfree_skb_any(skb);
2458 	return NETDEV_TX_OK;
2459 }
2460 
2461 netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev)
2462 {
2463 	struct port_info *pi = netdev_priv(dev);
2464 	u16 qid = skb_get_queue_mapping(skb);
2465 
2466 	if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM))
2467 		return cxgb4_vf_eth_xmit(skb, dev);
2468 
2469 	if (unlikely(qid >= pi->nqsets))
2470 		return cxgb4_ethofld_xmit(skb, dev);
2471 
2472 	if (is_ptp_enabled(skb, dev)) {
2473 		struct adapter *adap = netdev2adap(dev);
2474 		netdev_tx_t ret;
2475 
2476 		spin_lock(&adap->ptp_lock);
2477 		ret = cxgb4_eth_xmit(skb, dev);
2478 		spin_unlock(&adap->ptp_lock);
2479 		return ret;
2480 	}
2481 
2482 	return cxgb4_eth_xmit(skb, dev);
2483 }
2484 
2485 static void eosw_txq_flush_pending_skbs(struct sge_eosw_txq *eosw_txq)
2486 {
2487 	int pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
2488 	int pidx = eosw_txq->pidx;
2489 	struct sk_buff *skb;
2490 
2491 	if (!pktcount)
2492 		return;
2493 
2494 	if (pktcount < 0)
2495 		pktcount += eosw_txq->ndesc;
2496 
2497 	while (pktcount--) {
2498 		pidx--;
2499 		if (pidx < 0)
2500 			pidx += eosw_txq->ndesc;
2501 
2502 		skb = eosw_txq->desc[pidx].skb;
2503 		if (skb) {
2504 			dev_consume_skb_any(skb);
2505 			eosw_txq->desc[pidx].skb = NULL;
2506 			eosw_txq->inuse--;
2507 		}
2508 	}
2509 
2510 	eosw_txq->pidx = eosw_txq->last_pidx + 1;
2511 }
2512 
2513 /**
2514  * cxgb4_ethofld_send_flowc - Send ETHOFLD flowc request to bind eotid to tc.
2515  * @dev: netdevice
2516  * @eotid: ETHOFLD tid to bind/unbind
2517  * @tc: traffic class. If set to FW_SCHED_CLS_NONE, then unbinds the @eotid
2518  *
2519  * Send a FLOWC work request to bind an ETHOFLD TID to a traffic class.
2520  * If @tc is set to FW_SCHED_CLS_NONE, then the @eotid is unbound from
2521  * a traffic class.
2522  */
2523 int cxgb4_ethofld_send_flowc(struct net_device *dev, u32 eotid, u32 tc)
2524 {
2525 	struct port_info *pi = netdev2pinfo(dev);
2526 	struct adapter *adap = netdev2adap(dev);
2527 	enum sge_eosw_state next_state;
2528 	struct sge_eosw_txq *eosw_txq;
2529 	u32 len, len16, nparams = 6;
2530 	struct fw_flowc_wr *flowc;
2531 	struct eotid_entry *entry;
2532 	struct sge_ofld_rxq *rxq;
2533 	struct sk_buff *skb;
2534 	int ret = 0;
2535 
2536 	len = struct_size(flowc, mnemval, nparams);
2537 	len16 = DIV_ROUND_UP(len, 16);
2538 
2539 	entry = cxgb4_lookup_eotid(&adap->tids, eotid);
2540 	if (!entry)
2541 		return -ENOMEM;
2542 
2543 	eosw_txq = (struct sge_eosw_txq *)entry->data;
2544 	if (!eosw_txq)
2545 		return -ENOMEM;
2546 
2547 	if (!(adap->flags & CXGB4_FW_OK)) {
2548 		/* Don't stall caller when access to FW is lost */
2549 		complete(&eosw_txq->completion);
2550 		return -EIO;
2551 	}
2552 
2553 	skb = alloc_skb(len, GFP_KERNEL);
2554 	if (!skb)
2555 		return -ENOMEM;
2556 
2557 	spin_lock_bh(&eosw_txq->lock);
2558 	if (tc != FW_SCHED_CLS_NONE) {
2559 		if (eosw_txq->state != CXGB4_EO_STATE_CLOSED)
2560 			goto out_free_skb;
2561 
2562 		next_state = CXGB4_EO_STATE_FLOWC_OPEN_SEND;
2563 	} else {
2564 		if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
2565 			goto out_free_skb;
2566 
2567 		next_state = CXGB4_EO_STATE_FLOWC_CLOSE_SEND;
2568 	}
2569 
2570 	flowc = __skb_put(skb, len);
2571 	memset(flowc, 0, len);
2572 
2573 	rxq = &adap->sge.eohw_rxq[eosw_txq->hwqid];
2574 	flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(len16) |
2575 					  FW_WR_FLOWID_V(eosw_txq->hwtid));
2576 	flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
2577 					   FW_FLOWC_WR_NPARAMS_V(nparams) |
2578 					   FW_WR_COMPL_V(1));
2579 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
2580 	flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V(adap->pf));
2581 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
2582 	flowc->mnemval[1].val = cpu_to_be32(pi->tx_chan);
2583 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
2584 	flowc->mnemval[2].val = cpu_to_be32(pi->tx_chan);
2585 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
2586 	flowc->mnemval[3].val = cpu_to_be32(rxq->rspq.abs_id);
2587 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
2588 	flowc->mnemval[4].val = cpu_to_be32(tc);
2589 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_EOSTATE;
2590 	flowc->mnemval[5].val = cpu_to_be32(tc == FW_SCHED_CLS_NONE ?
2591 					    FW_FLOWC_MNEM_EOSTATE_CLOSING :
2592 					    FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
2593 
2594 	/* Free up any pending skbs to ensure there's room for
2595 	 * termination FLOWC.
2596 	 */
2597 	if (tc == FW_SCHED_CLS_NONE)
2598 		eosw_txq_flush_pending_skbs(eosw_txq);
2599 
2600 	ret = eosw_txq_enqueue(eosw_txq, skb);
2601 	if (ret)
2602 		goto out_free_skb;
2603 
2604 	eosw_txq->state = next_state;
2605 	eosw_txq->flowc_idx = eosw_txq->pidx;
2606 	eosw_txq_advance(eosw_txq, 1);
2607 	ethofld_xmit(dev, eosw_txq);
2608 
2609 	spin_unlock_bh(&eosw_txq->lock);
2610 	return 0;
2611 
2612 out_free_skb:
2613 	dev_consume_skb_any(skb);
2614 	spin_unlock_bh(&eosw_txq->lock);
2615 	return ret;
2616 }
2617 
2618 /**
2619  *	is_imm - check whether a packet can be sent as immediate data
2620  *	@skb: the packet
2621  *
2622  *	Returns true if a packet can be sent as a WR with immediate data.
2623  */
2624 static inline int is_imm(const struct sk_buff *skb)
2625 {
2626 	return skb->len <= MAX_CTRL_WR_LEN;
2627 }
2628 
2629 /**
2630  *	ctrlq_check_stop - check if a control queue is full and should stop
2631  *	@q: the queue
2632  *	@wr: most recent WR written to the queue
2633  *
2634  *	Check if a control queue has become full and should be stopped.
2635  *	We clean up control queue descriptors very lazily, only when we are out.
2636  *	If the queue is still full after reclaiming any completed descriptors
2637  *	we suspend it and have the last WR wake it up.
2638  */
2639 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
2640 {
2641 	reclaim_completed_tx_imm(&q->q);
2642 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2643 		wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2644 		q->q.stops++;
2645 		q->full = 1;
2646 	}
2647 }
2648 
2649 #define CXGB4_SELFTEST_LB_STR "CHELSIO_SELFTEST"
2650 
2651 int cxgb4_selftest_lb_pkt(struct net_device *netdev)
2652 {
2653 	struct port_info *pi = netdev_priv(netdev);
2654 	struct adapter *adap = pi->adapter;
2655 	struct cxgb4_ethtool_lb_test *lb;
2656 	int ret, i = 0, pkt_len, credits;
2657 	struct fw_eth_tx_pkt_wr *wr;
2658 	struct cpl_tx_pkt_core *cpl;
2659 	u32 ctrl0, ndesc, flits;
2660 	struct sge_eth_txq *q;
2661 	u8 *sgl;
2662 
2663 	pkt_len = ETH_HLEN + sizeof(CXGB4_SELFTEST_LB_STR);
2664 
2665 	flits = DIV_ROUND_UP(pkt_len + sizeof(*cpl) + sizeof(*wr),
2666 			     sizeof(__be64));
2667 	ndesc = flits_to_desc(flits);
2668 
2669 	lb = &pi->ethtool_lb;
2670 	lb->loopback = 1;
2671 
2672 	q = &adap->sge.ethtxq[pi->first_qset];
2673 	__netif_tx_lock(q->txq, smp_processor_id());
2674 
2675 	reclaim_completed_tx(adap, &q->q, -1, true);
2676 	credits = txq_avail(&q->q) - ndesc;
2677 	if (unlikely(credits < 0)) {
2678 		__netif_tx_unlock(q->txq);
2679 		return -ENOMEM;
2680 	}
2681 
2682 	wr = (void *)&q->q.desc[q->q.pidx];
2683 	memset(wr, 0, sizeof(struct tx_desc));
2684 
2685 	wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
2686 			       FW_WR_IMMDLEN_V(pkt_len +
2687 			       sizeof(*cpl)));
2688 	wr->equiq_to_len16 = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)));
2689 	wr->r3 = cpu_to_be64(0);
2690 
2691 	cpl = (void *)(wr + 1);
2692 	sgl = (u8 *)(cpl + 1);
2693 
2694 	ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_PF_V(adap->pf) |
2695 		TXPKT_INTF_V(pi->tx_chan + 4);
2696 
2697 	cpl->ctrl0 = htonl(ctrl0);
2698 	cpl->pack = htons(0);
2699 	cpl->len = htons(pkt_len);
2700 	cpl->ctrl1 = cpu_to_be64(TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F);
2701 
2702 	eth_broadcast_addr(sgl);
2703 	i += ETH_ALEN;
2704 	ether_addr_copy(&sgl[i], netdev->dev_addr);
2705 	i += ETH_ALEN;
2706 
2707 	snprintf(&sgl[i], sizeof(CXGB4_SELFTEST_LB_STR), "%s",
2708 		 CXGB4_SELFTEST_LB_STR);
2709 
2710 	init_completion(&lb->completion);
2711 	txq_advance(&q->q, ndesc);
2712 	cxgb4_ring_tx_db(adap, &q->q, ndesc);
2713 	__netif_tx_unlock(q->txq);
2714 
2715 	/* wait for the pkt to return */
2716 	ret = wait_for_completion_timeout(&lb->completion, 10 * HZ);
2717 	if (!ret)
2718 		ret = -ETIMEDOUT;
2719 	else
2720 		ret = lb->result;
2721 
2722 	lb->loopback = 0;
2723 
2724 	return ret;
2725 }
2726 
2727 /**
2728  *	ctrl_xmit - send a packet through an SGE control Tx queue
2729  *	@q: the control queue
2730  *	@skb: the packet
2731  *
2732  *	Send a packet through an SGE control Tx queue.  Packets sent through
2733  *	a control queue must fit entirely as immediate data.
2734  */
2735 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
2736 {
2737 	unsigned int ndesc;
2738 	struct fw_wr_hdr *wr;
2739 
2740 	if (unlikely(!is_imm(skb))) {
2741 		WARN_ON(1);
2742 		dev_kfree_skb(skb);
2743 		return NET_XMIT_DROP;
2744 	}
2745 
2746 	ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
2747 	spin_lock(&q->sendq.lock);
2748 
2749 	if (unlikely(q->full)) {
2750 		skb->priority = ndesc;                  /* save for restart */
2751 		__skb_queue_tail(&q->sendq, skb);
2752 		spin_unlock(&q->sendq.lock);
2753 		return NET_XMIT_CN;
2754 	}
2755 
2756 	wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2757 	cxgb4_inline_tx_skb(skb, &q->q, wr);
2758 
2759 	txq_advance(&q->q, ndesc);
2760 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
2761 		ctrlq_check_stop(q, wr);
2762 
2763 	cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
2764 	spin_unlock(&q->sendq.lock);
2765 
2766 	kfree_skb(skb);
2767 	return NET_XMIT_SUCCESS;
2768 }
2769 
2770 /**
2771  *	restart_ctrlq - restart a suspended control queue
2772  *	@t: pointer to the tasklet associated with this handler
2773  *
2774  *	Resumes transmission on a suspended Tx control queue.
2775  */
2776 static void restart_ctrlq(struct tasklet_struct *t)
2777 {
2778 	struct sk_buff *skb;
2779 	unsigned int written = 0;
2780 	struct sge_ctrl_txq *q = from_tasklet(q, t, qresume_tsk);
2781 
2782 	spin_lock(&q->sendq.lock);
2783 	reclaim_completed_tx_imm(&q->q);
2784 	BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */
2785 
2786 	while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
2787 		struct fw_wr_hdr *wr;
2788 		unsigned int ndesc = skb->priority;     /* previously saved */
2789 
2790 		written += ndesc;
2791 		/* Write descriptors and free skbs outside the lock to limit
2792 		 * wait times.  q->full is still set so new skbs will be queued.
2793 		 */
2794 		wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2795 		txq_advance(&q->q, ndesc);
2796 		spin_unlock(&q->sendq.lock);
2797 
2798 		cxgb4_inline_tx_skb(skb, &q->q, wr);
2799 		kfree_skb(skb);
2800 
2801 		if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2802 			unsigned long old = q->q.stops;
2803 
2804 			ctrlq_check_stop(q, wr);
2805 			if (q->q.stops != old) {          /* suspended anew */
2806 				spin_lock(&q->sendq.lock);
2807 				goto ringdb;
2808 			}
2809 		}
2810 		if (written > 16) {
2811 			cxgb4_ring_tx_db(q->adap, &q->q, written);
2812 			written = 0;
2813 		}
2814 		spin_lock(&q->sendq.lock);
2815 	}
2816 	q->full = 0;
2817 ringdb:
2818 	if (written)
2819 		cxgb4_ring_tx_db(q->adap, &q->q, written);
2820 	spin_unlock(&q->sendq.lock);
2821 }
2822 
2823 /**
2824  *	t4_mgmt_tx - send a management message
2825  *	@adap: the adapter
2826  *	@skb: the packet containing the management message
2827  *
2828  *	Send a management message through control queue 0.
2829  */
2830 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
2831 {
2832 	int ret;
2833 
2834 	local_bh_disable();
2835 	ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
2836 	local_bh_enable();
2837 	return ret;
2838 }
2839 
2840 /**
2841  *	is_ofld_imm - check whether a packet can be sent as immediate data
2842  *	@skb: the packet
2843  *
2844  *	Returns true if a packet can be sent as an offload WR with immediate
2845  *	data.
2846  *	FW_OFLD_TX_DATA_WR limits the payload to 255 bytes due to 8-bit field.
2847  *      However, FW_ULPTX_WR commands have a 256 byte immediate only
2848  *      payload limit.
2849  */
2850 static inline int is_ofld_imm(const struct sk_buff *skb)
2851 {
2852 	struct work_request_hdr *req = (struct work_request_hdr *)skb->data;
2853 	unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi));
2854 
2855 	if (unlikely(opcode == FW_ULPTX_WR))
2856 		return skb->len <= MAX_IMM_ULPTX_WR_LEN;
2857 	else if (opcode == FW_CRYPTO_LOOKASIDE_WR)
2858 		return skb->len <= SGE_MAX_WR_LEN;
2859 	else
2860 		return skb->len <= MAX_IMM_OFLD_TX_DATA_WR_LEN;
2861 }
2862 
2863 /**
2864  *	calc_tx_flits_ofld - calculate # of flits for an offload packet
2865  *	@skb: the packet
2866  *
2867  *	Returns the number of flits needed for the given offload packet.
2868  *	These packets are already fully constructed and no additional headers
2869  *	will be added.
2870  */
2871 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
2872 {
2873 	unsigned int flits, cnt;
2874 
2875 	if (is_ofld_imm(skb))
2876 		return DIV_ROUND_UP(skb->len, 8);
2877 
2878 	flits = skb_transport_offset(skb) / 8U;   /* headers */
2879 	cnt = skb_shinfo(skb)->nr_frags;
2880 	if (skb_tail_pointer(skb) != skb_transport_header(skb))
2881 		cnt++;
2882 	return flits + sgl_len(cnt);
2883 }
2884 
2885 /**
2886  *	txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
2887  *	@q: the queue to stop
2888  *
2889  *	Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
2890  *	inability to map packets.  A periodic timer attempts to restart
2891  *	queues so marked.
2892  */
2893 static void txq_stop_maperr(struct sge_uld_txq *q)
2894 {
2895 	q->mapping_err++;
2896 	q->q.stops++;
2897 	set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
2898 		q->adap->sge.txq_maperr);
2899 }
2900 
2901 /**
2902  *	ofldtxq_stop - stop an offload Tx queue that has become full
2903  *	@q: the queue to stop
2904  *	@wr: the Work Request causing the queue to become full
2905  *
2906  *	Stops an offload Tx queue that has become full and modifies the packet
2907  *	being written to request a wakeup.
2908  */
2909 static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr)
2910 {
2911 	wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2912 	q->q.stops++;
2913 	q->full = 1;
2914 }
2915 
2916 /**
2917  *	service_ofldq - service/restart a suspended offload queue
2918  *	@q: the offload queue
2919  *
2920  *	Services an offload Tx queue by moving packets from its Pending Send
2921  *	Queue to the Hardware TX ring.  The function starts and ends with the
2922  *	Send Queue locked, but drops the lock while putting the skb at the
2923  *	head of the Send Queue onto the Hardware TX Ring.  Dropping the lock
2924  *	allows more skbs to be added to the Send Queue by other threads.
2925  *	The packet being processed at the head of the Pending Send Queue is
2926  *	left on the queue in case we experience DMA Mapping errors, etc.
2927  *	and need to give up and restart later.
2928  *
2929  *	service_ofldq() can be thought of as a task which opportunistically
2930  *	uses other threads execution contexts.  We use the Offload Queue
2931  *	boolean "service_ofldq_running" to make sure that only one instance
2932  *	is ever running at a time ...
2933  */
2934 static void service_ofldq(struct sge_uld_txq *q)
2935 	__must_hold(&q->sendq.lock)
2936 {
2937 	u64 *pos, *before, *end;
2938 	int credits;
2939 	struct sk_buff *skb;
2940 	struct sge_txq *txq;
2941 	unsigned int left;
2942 	unsigned int written = 0;
2943 	unsigned int flits, ndesc;
2944 
2945 	/* If another thread is currently in service_ofldq() processing the
2946 	 * Pending Send Queue then there's nothing to do. Otherwise, flag
2947 	 * that we're doing the work and continue.  Examining/modifying
2948 	 * the Offload Queue boolean "service_ofldq_running" must be done
2949 	 * while holding the Pending Send Queue Lock.
2950 	 */
2951 	if (q->service_ofldq_running)
2952 		return;
2953 	q->service_ofldq_running = true;
2954 
2955 	while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
2956 		/* We drop the lock while we're working with the skb at the
2957 		 * head of the Pending Send Queue.  This allows more skbs to
2958 		 * be added to the Pending Send Queue while we're working on
2959 		 * this one.  We don't need to lock to guard the TX Ring
2960 		 * updates because only one thread of execution is ever
2961 		 * allowed into service_ofldq() at a time.
2962 		 */
2963 		spin_unlock(&q->sendq.lock);
2964 
2965 		cxgb4_reclaim_completed_tx(q->adap, &q->q, false);
2966 
2967 		flits = skb->priority;                /* previously saved */
2968 		ndesc = flits_to_desc(flits);
2969 		credits = txq_avail(&q->q) - ndesc;
2970 		BUG_ON(credits < 0);
2971 		if (unlikely(credits < TXQ_STOP_THRES))
2972 			ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data);
2973 
2974 		pos = (u64 *)&q->q.desc[q->q.pidx];
2975 		if (is_ofld_imm(skb))
2976 			cxgb4_inline_tx_skb(skb, &q->q, pos);
2977 		else if (cxgb4_map_skb(q->adap->pdev_dev, skb,
2978 				       (dma_addr_t *)skb->head)) {
2979 			txq_stop_maperr(q);
2980 			spin_lock(&q->sendq.lock);
2981 			break;
2982 		} else {
2983 			int last_desc, hdr_len = skb_transport_offset(skb);
2984 
2985 			/* The WR headers  may not fit within one descriptor.
2986 			 * So we need to deal with wrap-around here.
2987 			 */
2988 			before = (u64 *)pos;
2989 			end = (u64 *)pos + flits;
2990 			txq = &q->q;
2991 			pos = (void *)inline_tx_skb_header(skb, &q->q,
2992 							   (void *)pos,
2993 							   hdr_len);
2994 			if (before > (u64 *)pos) {
2995 				left = (u8 *)end - (u8 *)txq->stat;
2996 				end = (void *)txq->desc + left;
2997 			}
2998 
2999 			/* If current position is already at the end of the
3000 			 * ofld queue, reset the current to point to
3001 			 * start of the queue and update the end ptr as well.
3002 			 */
3003 			if (pos == (u64 *)txq->stat) {
3004 				left = (u8 *)end - (u8 *)txq->stat;
3005 				end = (void *)txq->desc + left;
3006 				pos = (void *)txq->desc;
3007 			}
3008 
3009 			cxgb4_write_sgl(skb, &q->q, (void *)pos,
3010 					end, hdr_len,
3011 					(dma_addr_t *)skb->head);
3012 #ifdef CONFIG_NEED_DMA_MAP_STATE
3013 			skb->dev = q->adap->port[0];
3014 			skb->destructor = deferred_unmap_destructor;
3015 #endif
3016 			last_desc = q->q.pidx + ndesc - 1;
3017 			if (last_desc >= q->q.size)
3018 				last_desc -= q->q.size;
3019 			q->q.sdesc[last_desc].skb = skb;
3020 		}
3021 
3022 		txq_advance(&q->q, ndesc);
3023 		written += ndesc;
3024 		if (unlikely(written > 32)) {
3025 			cxgb4_ring_tx_db(q->adap, &q->q, written);
3026 			written = 0;
3027 		}
3028 
3029 		/* Reacquire the Pending Send Queue Lock so we can unlink the
3030 		 * skb we've just successfully transferred to the TX Ring and
3031 		 * loop for the next skb which may be at the head of the
3032 		 * Pending Send Queue.
3033 		 */
3034 		spin_lock(&q->sendq.lock);
3035 		__skb_unlink(skb, &q->sendq);
3036 		if (is_ofld_imm(skb))
3037 			kfree_skb(skb);
3038 	}
3039 	if (likely(written))
3040 		cxgb4_ring_tx_db(q->adap, &q->q, written);
3041 
3042 	/*Indicate that no thread is processing the Pending Send Queue
3043 	 * currently.
3044 	 */
3045 	q->service_ofldq_running = false;
3046 }
3047 
3048 /**
3049  *	ofld_xmit - send a packet through an offload queue
3050  *	@q: the Tx offload queue
3051  *	@skb: the packet
3052  *
3053  *	Send an offload packet through an SGE offload queue.
3054  */
3055 static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb)
3056 {
3057 	skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */
3058 	spin_lock(&q->sendq.lock);
3059 
3060 	/* Queue the new skb onto the Offload Queue's Pending Send Queue.  If
3061 	 * that results in this new skb being the only one on the queue, start
3062 	 * servicing it.  If there are other skbs already on the list, then
3063 	 * either the queue is currently being processed or it's been stopped
3064 	 * for some reason and it'll be restarted at a later time.  Restart
3065 	 * paths are triggered by events like experiencing a DMA Mapping Error
3066 	 * or filling the Hardware TX Ring.
3067 	 */
3068 	__skb_queue_tail(&q->sendq, skb);
3069 	if (q->sendq.qlen == 1)
3070 		service_ofldq(q);
3071 
3072 	spin_unlock(&q->sendq.lock);
3073 	return NET_XMIT_SUCCESS;
3074 }
3075 
3076 /**
3077  *	restart_ofldq - restart a suspended offload queue
3078  *	@t: pointer to the tasklet associated with this handler
3079  *
3080  *	Resumes transmission on a suspended Tx offload queue.
3081  */
3082 static void restart_ofldq(struct tasklet_struct *t)
3083 {
3084 	struct sge_uld_txq *q = from_tasklet(q, t, qresume_tsk);
3085 
3086 	spin_lock(&q->sendq.lock);
3087 	q->full = 0;            /* the queue actually is completely empty now */
3088 	service_ofldq(q);
3089 	spin_unlock(&q->sendq.lock);
3090 }
3091 
3092 /**
3093  *	skb_txq - return the Tx queue an offload packet should use
3094  *	@skb: the packet
3095  *
3096  *	Returns the Tx queue an offload packet should use as indicated by bits
3097  *	1-15 in the packet's queue_mapping.
3098  */
3099 static inline unsigned int skb_txq(const struct sk_buff *skb)
3100 {
3101 	return skb->queue_mapping >> 1;
3102 }
3103 
3104 /**
3105  *	is_ctrl_pkt - return whether an offload packet is a control packet
3106  *	@skb: the packet
3107  *
3108  *	Returns whether an offload packet should use an OFLD or a CTRL
3109  *	Tx queue as indicated by bit 0 in the packet's queue_mapping.
3110  */
3111 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
3112 {
3113 	return skb->queue_mapping & 1;
3114 }
3115 
3116 static inline int uld_send(struct adapter *adap, struct sk_buff *skb,
3117 			   unsigned int tx_uld_type)
3118 {
3119 	struct sge_uld_txq_info *txq_info;
3120 	struct sge_uld_txq *txq;
3121 	unsigned int idx = skb_txq(skb);
3122 
3123 	if (unlikely(is_ctrl_pkt(skb))) {
3124 		/* Single ctrl queue is a requirement for LE workaround path */
3125 		if (adap->tids.nsftids)
3126 			idx = 0;
3127 		return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
3128 	}
3129 
3130 	txq_info = adap->sge.uld_txq_info[tx_uld_type];
3131 	if (unlikely(!txq_info)) {
3132 		WARN_ON(true);
3133 		kfree_skb(skb);
3134 		return NET_XMIT_DROP;
3135 	}
3136 
3137 	txq = &txq_info->uldtxq[idx];
3138 	return ofld_xmit(txq, skb);
3139 }
3140 
3141 /**
3142  *	t4_ofld_send - send an offload packet
3143  *	@adap: the adapter
3144  *	@skb: the packet
3145  *
3146  *	Sends an offload packet.  We use the packet queue_mapping to select the
3147  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
3148  *	should be sent as regular or control, bits 1-15 select the queue.
3149  */
3150 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
3151 {
3152 	int ret;
3153 
3154 	local_bh_disable();
3155 	ret = uld_send(adap, skb, CXGB4_TX_OFLD);
3156 	local_bh_enable();
3157 	return ret;
3158 }
3159 
3160 /**
3161  *	cxgb4_ofld_send - send an offload packet
3162  *	@dev: the net device
3163  *	@skb: the packet
3164  *
3165  *	Sends an offload packet.  This is an exported version of @t4_ofld_send,
3166  *	intended for ULDs.
3167  */
3168 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
3169 {
3170 	return t4_ofld_send(netdev2adap(dev), skb);
3171 }
3172 EXPORT_SYMBOL(cxgb4_ofld_send);
3173 
3174 static void *inline_tx_header(const void *src,
3175 			      const struct sge_txq *q,
3176 			      void *pos, int length)
3177 {
3178 	int left = (void *)q->stat - pos;
3179 	u64 *p;
3180 
3181 	if (likely(length <= left)) {
3182 		memcpy(pos, src, length);
3183 		pos += length;
3184 	} else {
3185 		memcpy(pos, src, left);
3186 		memcpy(q->desc, src + left, length - left);
3187 		pos = (void *)q->desc + (length - left);
3188 	}
3189 	/* 0-pad to multiple of 16 */
3190 	p = PTR_ALIGN(pos, 8);
3191 	if ((uintptr_t)p & 8) {
3192 		*p = 0;
3193 		return p + 1;
3194 	}
3195 	return p;
3196 }
3197 
3198 /**
3199  *      ofld_xmit_direct - copy a WR into offload queue
3200  *      @q: the Tx offload queue
3201  *      @src: location of WR
3202  *      @len: WR length
3203  *
3204  *      Copy an immediate WR into an uncontended SGE offload queue.
3205  */
3206 static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src,
3207 			    unsigned int len)
3208 {
3209 	unsigned int ndesc;
3210 	int credits;
3211 	u64 *pos;
3212 
3213 	/* Use the lower limit as the cut-off */
3214 	if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) {
3215 		WARN_ON(1);
3216 		return NET_XMIT_DROP;
3217 	}
3218 
3219 	/* Don't return NET_XMIT_CN here as the current
3220 	 * implementation doesn't queue the request
3221 	 * using an skb when the following conditions not met
3222 	 */
3223 	if (!spin_trylock(&q->sendq.lock))
3224 		return NET_XMIT_DROP;
3225 
3226 	if (q->full || !skb_queue_empty(&q->sendq) ||
3227 	    q->service_ofldq_running) {
3228 		spin_unlock(&q->sendq.lock);
3229 		return NET_XMIT_DROP;
3230 	}
3231 	ndesc = flits_to_desc(DIV_ROUND_UP(len, 8));
3232 	credits = txq_avail(&q->q) - ndesc;
3233 	pos = (u64 *)&q->q.desc[q->q.pidx];
3234 
3235 	/* ofldtxq_stop modifies WR header in-situ */
3236 	inline_tx_header(src, &q->q, pos, len);
3237 	if (unlikely(credits < TXQ_STOP_THRES))
3238 		ofldtxq_stop(q, (struct fw_wr_hdr *)pos);
3239 	txq_advance(&q->q, ndesc);
3240 	cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
3241 
3242 	spin_unlock(&q->sendq.lock);
3243 	return NET_XMIT_SUCCESS;
3244 }
3245 
3246 int cxgb4_immdata_send(struct net_device *dev, unsigned int idx,
3247 		       const void *src, unsigned int len)
3248 {
3249 	struct sge_uld_txq_info *txq_info;
3250 	struct sge_uld_txq *txq;
3251 	struct adapter *adap;
3252 	int ret;
3253 
3254 	adap = netdev2adap(dev);
3255 
3256 	local_bh_disable();
3257 	txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
3258 	if (unlikely(!txq_info)) {
3259 		WARN_ON(true);
3260 		local_bh_enable();
3261 		return NET_XMIT_DROP;
3262 	}
3263 	txq = &txq_info->uldtxq[idx];
3264 
3265 	ret = ofld_xmit_direct(txq, src, len);
3266 	local_bh_enable();
3267 	return net_xmit_eval(ret);
3268 }
3269 EXPORT_SYMBOL(cxgb4_immdata_send);
3270 
3271 /**
3272  *	t4_crypto_send - send crypto packet
3273  *	@adap: the adapter
3274  *	@skb: the packet
3275  *
3276  *	Sends crypto packet.  We use the packet queue_mapping to select the
3277  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
3278  *	should be sent as regular or control, bits 1-15 select the queue.
3279  */
3280 static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb)
3281 {
3282 	int ret;
3283 
3284 	local_bh_disable();
3285 	ret = uld_send(adap, skb, CXGB4_TX_CRYPTO);
3286 	local_bh_enable();
3287 	return ret;
3288 }
3289 
3290 /**
3291  *	cxgb4_crypto_send - send crypto packet
3292  *	@dev: the net device
3293  *	@skb: the packet
3294  *
3295  *	Sends crypto packet.  This is an exported version of @t4_crypto_send,
3296  *	intended for ULDs.
3297  */
3298 int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb)
3299 {
3300 	return t4_crypto_send(netdev2adap(dev), skb);
3301 }
3302 EXPORT_SYMBOL(cxgb4_crypto_send);
3303 
3304 static inline void copy_frags(struct sk_buff *skb,
3305 			      const struct pkt_gl *gl, unsigned int offset)
3306 {
3307 	int i;
3308 
3309 	/* usually there's just one frag */
3310 	__skb_fill_page_desc(skb, 0, gl->frags[0].page,
3311 			     gl->frags[0].offset + offset,
3312 			     gl->frags[0].size - offset);
3313 	skb_shinfo(skb)->nr_frags = gl->nfrags;
3314 	for (i = 1; i < gl->nfrags; i++)
3315 		__skb_fill_page_desc(skb, i, gl->frags[i].page,
3316 				     gl->frags[i].offset,
3317 				     gl->frags[i].size);
3318 
3319 	/* get a reference to the last page, we don't own it */
3320 	get_page(gl->frags[gl->nfrags - 1].page);
3321 }
3322 
3323 /**
3324  *	cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
3325  *	@gl: the gather list
3326  *	@skb_len: size of sk_buff main body if it carries fragments
3327  *	@pull_len: amount of data to move to the sk_buff's main body
3328  *
3329  *	Builds an sk_buff from the given packet gather list.  Returns the
3330  *	sk_buff or %NULL if sk_buff allocation failed.
3331  */
3332 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
3333 				   unsigned int skb_len, unsigned int pull_len)
3334 {
3335 	struct sk_buff *skb;
3336 
3337 	/*
3338 	 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
3339 	 * size, which is expected since buffers are at least PAGE_SIZEd.
3340 	 * In this case packets up to RX_COPY_THRES have only one fragment.
3341 	 */
3342 	if (gl->tot_len <= RX_COPY_THRES) {
3343 		skb = dev_alloc_skb(gl->tot_len);
3344 		if (unlikely(!skb))
3345 			goto out;
3346 		__skb_put(skb, gl->tot_len);
3347 		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
3348 	} else {
3349 		skb = dev_alloc_skb(skb_len);
3350 		if (unlikely(!skb))
3351 			goto out;
3352 		__skb_put(skb, pull_len);
3353 		skb_copy_to_linear_data(skb, gl->va, pull_len);
3354 
3355 		copy_frags(skb, gl, pull_len);
3356 		skb->len = gl->tot_len;
3357 		skb->data_len = skb->len - pull_len;
3358 		skb->truesize += skb->data_len;
3359 	}
3360 out:	return skb;
3361 }
3362 EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
3363 
3364 /**
3365  *	t4_pktgl_free - free a packet gather list
3366  *	@gl: the gather list
3367  *
3368  *	Releases the pages of a packet gather list.  We do not own the last
3369  *	page on the list and do not free it.
3370  */
3371 static void t4_pktgl_free(const struct pkt_gl *gl)
3372 {
3373 	int n;
3374 	const struct page_frag *p;
3375 
3376 	for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
3377 		put_page(p->page);
3378 }
3379 
3380 /*
3381  * Process an MPS trace packet.  Give it an unused protocol number so it won't
3382  * be delivered to anyone and send it to the stack for capture.
3383  */
3384 static noinline int handle_trace_pkt(struct adapter *adap,
3385 				     const struct pkt_gl *gl)
3386 {
3387 	struct sk_buff *skb;
3388 
3389 	skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
3390 	if (unlikely(!skb)) {
3391 		t4_pktgl_free(gl);
3392 		return 0;
3393 	}
3394 
3395 	if (is_t4(adap->params.chip))
3396 		__skb_pull(skb, sizeof(struct cpl_trace_pkt));
3397 	else
3398 		__skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
3399 
3400 	skb_reset_mac_header(skb);
3401 	skb->protocol = htons(0xffff);
3402 	skb->dev = adap->port[0];
3403 	netif_receive_skb(skb);
3404 	return 0;
3405 }
3406 
3407 /**
3408  * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp
3409  * @adap: the adapter
3410  * @hwtstamps: time stamp structure to update
3411  * @sgetstamp: 60bit iqe timestamp
3412  *
3413  * Every ingress queue entry has the 60-bit timestamp, convert that timestamp
3414  * which is in Core Clock ticks into ktime_t and assign it
3415  **/
3416 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap,
3417 				     struct skb_shared_hwtstamps *hwtstamps,
3418 				     u64 sgetstamp)
3419 {
3420 	u64 ns;
3421 	u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2);
3422 
3423 	ns = div_u64(tmp, adap->params.vpd.cclk);
3424 
3425 	memset(hwtstamps, 0, sizeof(*hwtstamps));
3426 	hwtstamps->hwtstamp = ns_to_ktime(ns);
3427 }
3428 
3429 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
3430 		   const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len)
3431 {
3432 	struct adapter *adapter = rxq->rspq.adap;
3433 	struct sge *s = &adapter->sge;
3434 	struct port_info *pi;
3435 	int ret;
3436 	struct sk_buff *skb;
3437 
3438 	skb = napi_get_frags(&rxq->rspq.napi);
3439 	if (unlikely(!skb)) {
3440 		t4_pktgl_free(gl);
3441 		rxq->stats.rx_drops++;
3442 		return;
3443 	}
3444 
3445 	copy_frags(skb, gl, s->pktshift);
3446 	if (tnl_hdr_len)
3447 		skb->csum_level = 1;
3448 	skb->len = gl->tot_len - s->pktshift;
3449 	skb->data_len = skb->len;
3450 	skb->truesize += skb->data_len;
3451 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3452 	skb_record_rx_queue(skb, rxq->rspq.idx);
3453 	pi = netdev_priv(skb->dev);
3454 	if (pi->rxtstamp)
3455 		cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb),
3456 					 gl->sgetstamp);
3457 	if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
3458 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3459 			     PKT_HASH_TYPE_L3);
3460 
3461 	if (unlikely(pkt->vlan_ex)) {
3462 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3463 		rxq->stats.vlan_ex++;
3464 	}
3465 	ret = napi_gro_frags(&rxq->rspq.napi);
3466 	if (ret == GRO_HELD)
3467 		rxq->stats.lro_pkts++;
3468 	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
3469 		rxq->stats.lro_merged++;
3470 	rxq->stats.pkts++;
3471 	rxq->stats.rx_cso++;
3472 }
3473 
3474 enum {
3475 	RX_NON_PTP_PKT = 0,
3476 	RX_PTP_PKT_SUC = 1,
3477 	RX_PTP_PKT_ERR = 2
3478 };
3479 
3480 /**
3481  *     t4_systim_to_hwstamp - read hardware time stamp
3482  *     @adapter: the adapter
3483  *     @skb: the packet
3484  *
3485  *     Read Time Stamp from MPS packet and insert in skb which
3486  *     is forwarded to PTP application
3487  */
3488 static noinline int t4_systim_to_hwstamp(struct adapter *adapter,
3489 					 struct sk_buff *skb)
3490 {
3491 	struct skb_shared_hwtstamps *hwtstamps;
3492 	struct cpl_rx_mps_pkt *cpl = NULL;
3493 	unsigned char *data;
3494 	int offset;
3495 
3496 	cpl = (struct cpl_rx_mps_pkt *)skb->data;
3497 	if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) &
3498 	     X_CPL_RX_MPS_PKT_TYPE_PTP))
3499 		return RX_PTP_PKT_ERR;
3500 
3501 	data = skb->data + sizeof(*cpl);
3502 	skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt));
3503 	offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN;
3504 	if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short))
3505 		return RX_PTP_PKT_ERR;
3506 
3507 	hwtstamps = skb_hwtstamps(skb);
3508 	memset(hwtstamps, 0, sizeof(*hwtstamps));
3509 	hwtstamps->hwtstamp = ns_to_ktime(get_unaligned_be64(data));
3510 
3511 	return RX_PTP_PKT_SUC;
3512 }
3513 
3514 /**
3515  *     t4_rx_hststamp - Recv PTP Event Message
3516  *     @adapter: the adapter
3517  *     @rsp: the response queue descriptor holding the RX_PKT message
3518  *     @rxq: the response queue holding the RX_PKT message
3519  *     @skb: the packet
3520  *
3521  *     PTP enabled and MPS packet, read HW timestamp
3522  */
3523 static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp,
3524 			  struct sge_eth_rxq *rxq, struct sk_buff *skb)
3525 {
3526 	int ret;
3527 
3528 	if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) &&
3529 		     !is_t4(adapter->params.chip))) {
3530 		ret = t4_systim_to_hwstamp(adapter, skb);
3531 		if (ret == RX_PTP_PKT_ERR) {
3532 			kfree_skb(skb);
3533 			rxq->stats.rx_drops++;
3534 		}
3535 		return ret;
3536 	}
3537 	return RX_NON_PTP_PKT;
3538 }
3539 
3540 /**
3541  *      t4_tx_hststamp - Loopback PTP Transmit Event Message
3542  *      @adapter: the adapter
3543  *      @skb: the packet
3544  *      @dev: the ingress net device
3545  *
3546  *      Read hardware timestamp for the loopback PTP Tx event message
3547  */
3548 static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb,
3549 			  struct net_device *dev)
3550 {
3551 	struct port_info *pi = netdev_priv(dev);
3552 
3553 	if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) {
3554 		cxgb4_ptp_read_hwstamp(adapter, pi);
3555 		kfree_skb(skb);
3556 		return 0;
3557 	}
3558 	return 1;
3559 }
3560 
3561 /**
3562  *	t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages
3563  *	@rspq: Ethernet RX Response Queue associated with Ethernet TX Queue
3564  *	@rsp: Response Entry pointer into Response Queue
3565  *	@gl: Gather List pointer
3566  *
3567  *	For adapters which support the SGE Doorbell Queue Timer facility,
3568  *	we configure the Ethernet TX Queues to send CIDX Updates to the
3569  *	Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE
3570  *	messages.  This adds a small load to PCIe Link RX bandwidth and,
3571  *	potentially, higher CPU Interrupt load, but allows us to respond
3572  *	much more quickly to the CIDX Updates.  This is important for
3573  *	Upper Layer Software which isn't willing to have a large amount
3574  *	of TX Data outstanding before receiving DMA Completions.
3575  */
3576 static void t4_tx_completion_handler(struct sge_rspq *rspq,
3577 				     const __be64 *rsp,
3578 				     const struct pkt_gl *gl)
3579 {
3580 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
3581 	struct port_info *pi = netdev_priv(rspq->netdev);
3582 	struct adapter *adapter = rspq->adap;
3583 	struct sge *s = &adapter->sge;
3584 	struct sge_eth_txq *txq;
3585 
3586 	/* skip RSS header */
3587 	rsp++;
3588 
3589 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
3590 	 */
3591 	if (unlikely(opcode == CPL_FW4_MSG &&
3592 		     ((const struct cpl_fw4_msg *)rsp)->type ==
3593 							FW_TYPE_RSSCPL)) {
3594 		rsp++;
3595 		opcode = ((const struct rss_header *)rsp)->opcode;
3596 		rsp++;
3597 	}
3598 
3599 	if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) {
3600 		pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n",
3601 			__func__, opcode);
3602 		return;
3603 	}
3604 
3605 	txq = &s->ethtxq[pi->first_qset + rspq->idx];
3606 
3607 	/* We've got the Hardware Consumer Index Update in the Egress Update
3608 	 * message. These Egress Update messages will be our sole CIDX Updates
3609 	 * we get since we don't want to chew up PCIe bandwidth for both Ingress
3610 	 * Messages and Status Page writes.  However, The code which manages
3611 	 * reclaiming successfully DMA'ed TX Work Requests uses the CIDX value
3612 	 * stored in the Status Page at the end of the TX Queue.  It's easiest
3613 	 * to simply copy the CIDX Update value from the Egress Update message
3614 	 * to the Status Page.  Also note that no Endian issues need to be
3615 	 * considered here since both are Big Endian and we're just copying
3616 	 * bytes consistently ...
3617 	 */
3618 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
3619 		struct cpl_sge_egr_update *egr;
3620 
3621 		egr = (struct cpl_sge_egr_update *)rsp;
3622 		WRITE_ONCE(txq->q.stat->cidx, egr->cidx);
3623 	}
3624 
3625 	t4_sge_eth_txq_egress_update(adapter, txq, -1);
3626 }
3627 
3628 static int cxgb4_validate_lb_pkt(struct port_info *pi, const struct pkt_gl *si)
3629 {
3630 	struct adapter *adap = pi->adapter;
3631 	struct cxgb4_ethtool_lb_test *lb;
3632 	struct sge *s = &adap->sge;
3633 	struct net_device *netdev;
3634 	u8 *data;
3635 	int i;
3636 
3637 	netdev = adap->port[pi->port_id];
3638 	lb = &pi->ethtool_lb;
3639 	data = si->va + s->pktshift;
3640 
3641 	i = ETH_ALEN;
3642 	if (!ether_addr_equal(data + i, netdev->dev_addr))
3643 		return -1;
3644 
3645 	i += ETH_ALEN;
3646 	if (strcmp(&data[i], CXGB4_SELFTEST_LB_STR))
3647 		lb->result = -EIO;
3648 
3649 	complete(&lb->completion);
3650 	return 0;
3651 }
3652 
3653 /**
3654  *	t4_ethrx_handler - process an ingress ethernet packet
3655  *	@q: the response queue that received the packet
3656  *	@rsp: the response queue descriptor holding the RX_PKT message
3657  *	@si: the gather list of packet fragments
3658  *
3659  *	Process an ingress ethernet packet and deliver it to the stack.
3660  */
3661 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
3662 		     const struct pkt_gl *si)
3663 {
3664 	bool csum_ok;
3665 	struct sk_buff *skb;
3666 	const struct cpl_rx_pkt *pkt;
3667 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3668 	struct adapter *adapter = q->adap;
3669 	struct sge *s = &q->adap->sge;
3670 	int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
3671 			    CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
3672 	u16 err_vec, tnl_hdr_len = 0;
3673 	struct port_info *pi;
3674 	int ret = 0;
3675 
3676 	pi = netdev_priv(q->netdev);
3677 	/* If we're looking at TX Queue CIDX Update, handle that separately
3678 	 * and return.
3679 	 */
3680 	if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) ||
3681 		     (*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) {
3682 		t4_tx_completion_handler(q, rsp, si);
3683 		return 0;
3684 	}
3685 
3686 	if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
3687 		return handle_trace_pkt(q->adap, si);
3688 
3689 	pkt = (const struct cpl_rx_pkt *)rsp;
3690 	/* Compressed error vector is enabled for T6 only */
3691 	if (q->adap->params.tp.rx_pkt_encap) {
3692 		err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec));
3693 		tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec));
3694 	} else {
3695 		err_vec = be16_to_cpu(pkt->err_vec);
3696 	}
3697 
3698 	csum_ok = pkt->csum_calc && !err_vec &&
3699 		  (q->netdev->features & NETIF_F_RXCSUM);
3700 
3701 	if (err_vec)
3702 		rxq->stats.bad_rx_pkts++;
3703 
3704 	if (unlikely(pi->ethtool_lb.loopback && pkt->iff >= NCHAN)) {
3705 		ret = cxgb4_validate_lb_pkt(pi, si);
3706 		if (!ret)
3707 			return 0;
3708 	}
3709 
3710 	if (((pkt->l2info & htonl(RXF_TCP_F)) ||
3711 	     tnl_hdr_len) &&
3712 	    (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
3713 		do_gro(rxq, si, pkt, tnl_hdr_len);
3714 		return 0;
3715 	}
3716 
3717 	skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
3718 	if (unlikely(!skb)) {
3719 		t4_pktgl_free(si);
3720 		rxq->stats.rx_drops++;
3721 		return 0;
3722 	}
3723 
3724 	/* Handle PTP Event Rx packet */
3725 	if (unlikely(pi->ptp_enable)) {
3726 		ret = t4_rx_hststamp(adapter, rsp, rxq, skb);
3727 		if (ret == RX_PTP_PKT_ERR)
3728 			return 0;
3729 	}
3730 	if (likely(!ret))
3731 		__skb_pull(skb, s->pktshift); /* remove ethernet header pad */
3732 
3733 	/* Handle the PTP Event Tx Loopback packet */
3734 	if (unlikely(pi->ptp_enable && !ret &&
3735 		     (pkt->l2info & htonl(RXF_UDP_F)) &&
3736 		     cxgb4_ptp_is_ptp_rx(skb))) {
3737 		if (!t4_tx_hststamp(adapter, skb, q->netdev))
3738 			return 0;
3739 	}
3740 
3741 	skb->protocol = eth_type_trans(skb, q->netdev);
3742 	skb_record_rx_queue(skb, q->idx);
3743 	if (skb->dev->features & NETIF_F_RXHASH)
3744 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3745 			     PKT_HASH_TYPE_L3);
3746 
3747 	rxq->stats.pkts++;
3748 
3749 	if (pi->rxtstamp)
3750 		cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb),
3751 					 si->sgetstamp);
3752 	if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
3753 		if (!pkt->ip_frag) {
3754 			skb->ip_summed = CHECKSUM_UNNECESSARY;
3755 			rxq->stats.rx_cso++;
3756 		} else if (pkt->l2info & htonl(RXF_IP_F)) {
3757 			__sum16 c = (__force __sum16)pkt->csum;
3758 			skb->csum = csum_unfold(c);
3759 
3760 			if (tnl_hdr_len) {
3761 				skb->ip_summed = CHECKSUM_UNNECESSARY;
3762 				skb->csum_level = 1;
3763 			} else {
3764 				skb->ip_summed = CHECKSUM_COMPLETE;
3765 			}
3766 			rxq->stats.rx_cso++;
3767 		}
3768 	} else {
3769 		skb_checksum_none_assert(skb);
3770 #ifdef CONFIG_CHELSIO_T4_FCOE
3771 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
3772 			  RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
3773 
3774 		if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
3775 			if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
3776 			    (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
3777 				if (q->adap->params.tp.rx_pkt_encap)
3778 					csum_ok = err_vec &
3779 						  T6_COMPR_RXERR_SUM_F;
3780 				else
3781 					csum_ok = err_vec & RXERR_CSUM_F;
3782 				if (!csum_ok)
3783 					skb->ip_summed = CHECKSUM_UNNECESSARY;
3784 			}
3785 		}
3786 
3787 #undef CPL_RX_PKT_FLAGS
3788 #endif /* CONFIG_CHELSIO_T4_FCOE */
3789 	}
3790 
3791 	if (unlikely(pkt->vlan_ex)) {
3792 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3793 		rxq->stats.vlan_ex++;
3794 	}
3795 	skb_mark_napi_id(skb, &q->napi);
3796 	netif_receive_skb(skb);
3797 	return 0;
3798 }
3799 
3800 /**
3801  *	restore_rx_bufs - put back a packet's Rx buffers
3802  *	@si: the packet gather list
3803  *	@q: the SGE free list
3804  *	@frags: number of FL buffers to restore
3805  *
3806  *	Puts back on an FL the Rx buffers associated with @si.  The buffers
3807  *	have already been unmapped and are left unmapped, we mark them so to
3808  *	prevent further unmapping attempts.
3809  *
3810  *	This function undoes a series of @unmap_rx_buf calls when we find out
3811  *	that the current packet can't be processed right away afterall and we
3812  *	need to come back to it later.  This is a very rare event and there's
3813  *	no effort to make this particularly efficient.
3814  */
3815 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
3816 			    int frags)
3817 {
3818 	struct rx_sw_desc *d;
3819 
3820 	while (frags--) {
3821 		if (q->cidx == 0)
3822 			q->cidx = q->size - 1;
3823 		else
3824 			q->cidx--;
3825 		d = &q->sdesc[q->cidx];
3826 		d->page = si->frags[frags].page;
3827 		d->dma_addr |= RX_UNMAPPED_BUF;
3828 		q->avail++;
3829 	}
3830 }
3831 
3832 /**
3833  *	is_new_response - check if a response is newly written
3834  *	@r: the response descriptor
3835  *	@q: the response queue
3836  *
3837  *	Returns true if a response descriptor contains a yet unprocessed
3838  *	response.
3839  */
3840 static inline bool is_new_response(const struct rsp_ctrl *r,
3841 				   const struct sge_rspq *q)
3842 {
3843 	return (r->type_gen >> RSPD_GEN_S) == q->gen;
3844 }
3845 
3846 /**
3847  *	rspq_next - advance to the next entry in a response queue
3848  *	@q: the queue
3849  *
3850  *	Updates the state of a response queue to advance it to the next entry.
3851  */
3852 static inline void rspq_next(struct sge_rspq *q)
3853 {
3854 	q->cur_desc = (void *)q->cur_desc + q->iqe_len;
3855 	if (unlikely(++q->cidx == q->size)) {
3856 		q->cidx = 0;
3857 		q->gen ^= 1;
3858 		q->cur_desc = q->desc;
3859 	}
3860 }
3861 
3862 /**
3863  *	process_responses - process responses from an SGE response queue
3864  *	@q: the ingress queue to process
3865  *	@budget: how many responses can be processed in this round
3866  *
3867  *	Process responses from an SGE response queue up to the supplied budget.
3868  *	Responses include received packets as well as control messages from FW
3869  *	or HW.
3870  *
3871  *	Additionally choose the interrupt holdoff time for the next interrupt
3872  *	on this queue.  If the system is under memory shortage use a fairly
3873  *	long delay to help recovery.
3874  */
3875 static int process_responses(struct sge_rspq *q, int budget)
3876 {
3877 	int ret, rsp_type;
3878 	int budget_left = budget;
3879 	const struct rsp_ctrl *rc;
3880 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3881 	struct adapter *adapter = q->adap;
3882 	struct sge *s = &adapter->sge;
3883 
3884 	while (likely(budget_left)) {
3885 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
3886 		if (!is_new_response(rc, q)) {
3887 			if (q->flush_handler)
3888 				q->flush_handler(q);
3889 			break;
3890 		}
3891 
3892 		dma_rmb();
3893 		rsp_type = RSPD_TYPE_G(rc->type_gen);
3894 		if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
3895 			struct page_frag *fp;
3896 			struct pkt_gl si;
3897 			const struct rx_sw_desc *rsd;
3898 			u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
3899 
3900 			if (len & RSPD_NEWBUF_F) {
3901 				if (likely(q->offset > 0)) {
3902 					free_rx_bufs(q->adap, &rxq->fl, 1);
3903 					q->offset = 0;
3904 				}
3905 				len = RSPD_LEN_G(len);
3906 			}
3907 			si.tot_len = len;
3908 
3909 			/* gather packet fragments */
3910 			for (frags = 0, fp = si.frags; ; frags++, fp++) {
3911 				rsd = &rxq->fl.sdesc[rxq->fl.cidx];
3912 				bufsz = get_buf_size(adapter, rsd);
3913 				fp->page = rsd->page;
3914 				fp->offset = q->offset;
3915 				fp->size = min(bufsz, len);
3916 				len -= fp->size;
3917 				if (!len)
3918 					break;
3919 				unmap_rx_buf(q->adap, &rxq->fl);
3920 			}
3921 
3922 			si.sgetstamp = SGE_TIMESTAMP_G(
3923 					be64_to_cpu(rc->last_flit));
3924 			/*
3925 			 * Last buffer remains mapped so explicitly make it
3926 			 * coherent for CPU access.
3927 			 */
3928 			dma_sync_single_for_cpu(q->adap->pdev_dev,
3929 						get_buf_addr(rsd),
3930 						fp->size, DMA_FROM_DEVICE);
3931 
3932 			si.va = page_address(si.frags[0].page) +
3933 				si.frags[0].offset;
3934 			prefetch(si.va);
3935 
3936 			si.nfrags = frags + 1;
3937 			ret = q->handler(q, q->cur_desc, &si);
3938 			if (likely(ret == 0))
3939 				q->offset += ALIGN(fp->size, s->fl_align);
3940 			else
3941 				restore_rx_bufs(&si, &rxq->fl, frags);
3942 		} else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
3943 			ret = q->handler(q, q->cur_desc, NULL);
3944 		} else {
3945 			ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
3946 		}
3947 
3948 		if (unlikely(ret)) {
3949 			/* couldn't process descriptor, back off for recovery */
3950 			q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
3951 			break;
3952 		}
3953 
3954 		rspq_next(q);
3955 		budget_left--;
3956 	}
3957 
3958 	if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16)
3959 		__refill_fl(q->adap, &rxq->fl);
3960 	return budget - budget_left;
3961 }
3962 
3963 /**
3964  *	napi_rx_handler - the NAPI handler for Rx processing
3965  *	@napi: the napi instance
3966  *	@budget: how many packets we can process in this round
3967  *
3968  *	Handler for new data events when using NAPI.  This does not need any
3969  *	locking or protection from interrupts as data interrupts are off at
3970  *	this point and other adapter interrupts do not interfere (the latter
3971  *	in not a concern at all with MSI-X as non-data interrupts then have
3972  *	a separate handler).
3973  */
3974 static int napi_rx_handler(struct napi_struct *napi, int budget)
3975 {
3976 	unsigned int params;
3977 	struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
3978 	int work_done;
3979 	u32 val;
3980 
3981 	work_done = process_responses(q, budget);
3982 	if (likely(work_done < budget)) {
3983 		int timer_index;
3984 
3985 		napi_complete_done(napi, work_done);
3986 		timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
3987 
3988 		if (q->adaptive_rx) {
3989 			if (work_done > max(timer_pkt_quota[timer_index],
3990 					    MIN_NAPI_WORK))
3991 				timer_index = (timer_index + 1);
3992 			else
3993 				timer_index = timer_index - 1;
3994 
3995 			timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
3996 			q->next_intr_params =
3997 					QINTR_TIMER_IDX_V(timer_index) |
3998 					QINTR_CNT_EN_V(0);
3999 			params = q->next_intr_params;
4000 		} else {
4001 			params = q->next_intr_params;
4002 			q->next_intr_params = q->intr_params;
4003 		}
4004 	} else
4005 		params = QINTR_TIMER_IDX_V(7);
4006 
4007 	val = CIDXINC_V(work_done) | SEINTARM_V(params);
4008 
4009 	/* If we don't have access to the new User GTS (T5+), use the old
4010 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
4011 	 */
4012 	if (unlikely(q->bar2_addr == NULL)) {
4013 		t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
4014 			     val | INGRESSQID_V((u32)q->cntxt_id));
4015 	} else {
4016 		writel(val | INGRESSQID_V(q->bar2_qid),
4017 		       q->bar2_addr + SGE_UDB_GTS);
4018 		wmb();
4019 	}
4020 	return work_done;
4021 }
4022 
4023 void cxgb4_ethofld_restart(struct tasklet_struct *t)
4024 {
4025 	struct sge_eosw_txq *eosw_txq = from_tasklet(eosw_txq, t,
4026 						     qresume_tsk);
4027 	int pktcount;
4028 
4029 	spin_lock(&eosw_txq->lock);
4030 	pktcount = eosw_txq->cidx - eosw_txq->last_cidx;
4031 	if (pktcount < 0)
4032 		pktcount += eosw_txq->ndesc;
4033 
4034 	if (pktcount) {
4035 		cxgb4_eosw_txq_free_desc(netdev2adap(eosw_txq->netdev),
4036 					 eosw_txq, pktcount);
4037 		eosw_txq->inuse -= pktcount;
4038 	}
4039 
4040 	/* There may be some packets waiting for completions. So,
4041 	 * attempt to send these packets now.
4042 	 */
4043 	ethofld_xmit(eosw_txq->netdev, eosw_txq);
4044 	spin_unlock(&eosw_txq->lock);
4045 }
4046 
4047 /* cxgb4_ethofld_rx_handler - Process ETHOFLD Tx completions
4048  * @q: the response queue that received the packet
4049  * @rsp: the response queue descriptor holding the CPL message
4050  * @si: the gather list of packet fragments
4051  *
4052  * Process a ETHOFLD Tx completion. Increment the cidx here, but
4053  * free up the descriptors in a tasklet later.
4054  */
4055 int cxgb4_ethofld_rx_handler(struct sge_rspq *q, const __be64 *rsp,
4056 			     const struct pkt_gl *si)
4057 {
4058 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
4059 
4060 	/* skip RSS header */
4061 	rsp++;
4062 
4063 	if (opcode == CPL_FW4_ACK) {
4064 		const struct cpl_fw4_ack *cpl;
4065 		struct sge_eosw_txq *eosw_txq;
4066 		struct eotid_entry *entry;
4067 		struct sk_buff *skb;
4068 		u32 hdr_len, eotid;
4069 		u8 flits, wrlen16;
4070 		int credits;
4071 
4072 		cpl = (const struct cpl_fw4_ack *)rsp;
4073 		eotid = CPL_FW4_ACK_FLOWID_G(ntohl(OPCODE_TID(cpl))) -
4074 			q->adap->tids.eotid_base;
4075 		entry = cxgb4_lookup_eotid(&q->adap->tids, eotid);
4076 		if (!entry)
4077 			goto out_done;
4078 
4079 		eosw_txq = (struct sge_eosw_txq *)entry->data;
4080 		if (!eosw_txq)
4081 			goto out_done;
4082 
4083 		spin_lock(&eosw_txq->lock);
4084 		credits = cpl->credits;
4085 		while (credits > 0) {
4086 			skb = eosw_txq->desc[eosw_txq->cidx].skb;
4087 			if (!skb)
4088 				break;
4089 
4090 			if (unlikely((eosw_txq->state ==
4091 				      CXGB4_EO_STATE_FLOWC_OPEN_REPLY ||
4092 				      eosw_txq->state ==
4093 				      CXGB4_EO_STATE_FLOWC_CLOSE_REPLY) &&
4094 				     eosw_txq->cidx == eosw_txq->flowc_idx)) {
4095 				flits = DIV_ROUND_UP(skb->len, 8);
4096 				if (eosw_txq->state ==
4097 				    CXGB4_EO_STATE_FLOWC_OPEN_REPLY)
4098 					eosw_txq->state = CXGB4_EO_STATE_ACTIVE;
4099 				else
4100 					eosw_txq->state = CXGB4_EO_STATE_CLOSED;
4101 				complete(&eosw_txq->completion);
4102 			} else {
4103 				hdr_len = eth_get_headlen(eosw_txq->netdev,
4104 							  skb->data,
4105 							  skb_headlen(skb));
4106 				flits = ethofld_calc_tx_flits(q->adap, skb,
4107 							      hdr_len);
4108 			}
4109 			eosw_txq_advance_index(&eosw_txq->cidx, 1,
4110 					       eosw_txq->ndesc);
4111 			wrlen16 = DIV_ROUND_UP(flits * 8, 16);
4112 			credits -= wrlen16;
4113 		}
4114 
4115 		eosw_txq->cred += cpl->credits;
4116 		eosw_txq->ncompl--;
4117 
4118 		spin_unlock(&eosw_txq->lock);
4119 
4120 		/* Schedule a tasklet to reclaim SKBs and restart ETHOFLD Tx,
4121 		 * if there were packets waiting for completion.
4122 		 */
4123 		tasklet_schedule(&eosw_txq->qresume_tsk);
4124 	}
4125 
4126 out_done:
4127 	return 0;
4128 }
4129 
4130 /*
4131  * The MSI-X interrupt handler for an SGE response queue.
4132  */
4133 irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
4134 {
4135 	struct sge_rspq *q = cookie;
4136 
4137 	napi_schedule(&q->napi);
4138 	return IRQ_HANDLED;
4139 }
4140 
4141 /*
4142  * Process the indirect interrupt entries in the interrupt queue and kick off
4143  * NAPI for each queue that has generated an entry.
4144  */
4145 static unsigned int process_intrq(struct adapter *adap)
4146 {
4147 	unsigned int credits;
4148 	const struct rsp_ctrl *rc;
4149 	struct sge_rspq *q = &adap->sge.intrq;
4150 	u32 val;
4151 
4152 	spin_lock(&adap->sge.intrq_lock);
4153 	for (credits = 0; ; credits++) {
4154 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
4155 		if (!is_new_response(rc, q))
4156 			break;
4157 
4158 		dma_rmb();
4159 		if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
4160 			unsigned int qid = ntohl(rc->pldbuflen_qid);
4161 
4162 			qid -= adap->sge.ingr_start;
4163 			napi_schedule(&adap->sge.ingr_map[qid]->napi);
4164 		}
4165 
4166 		rspq_next(q);
4167 	}
4168 
4169 	val =  CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
4170 
4171 	/* If we don't have access to the new User GTS (T5+), use the old
4172 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
4173 	 */
4174 	if (unlikely(q->bar2_addr == NULL)) {
4175 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
4176 			     val | INGRESSQID_V(q->cntxt_id));
4177 	} else {
4178 		writel(val | INGRESSQID_V(q->bar2_qid),
4179 		       q->bar2_addr + SGE_UDB_GTS);
4180 		wmb();
4181 	}
4182 	spin_unlock(&adap->sge.intrq_lock);
4183 	return credits;
4184 }
4185 
4186 /*
4187  * The MSI interrupt handler, which handles data events from SGE response queues
4188  * as well as error and other async events as they all use the same MSI vector.
4189  */
4190 static irqreturn_t t4_intr_msi(int irq, void *cookie)
4191 {
4192 	struct adapter *adap = cookie;
4193 
4194 	if (adap->flags & CXGB4_MASTER_PF)
4195 		t4_slow_intr_handler(adap);
4196 	process_intrq(adap);
4197 	return IRQ_HANDLED;
4198 }
4199 
4200 /*
4201  * Interrupt handler for legacy INTx interrupts.
4202  * Handles data events from SGE response queues as well as error and other
4203  * async events as they all use the same interrupt line.
4204  */
4205 static irqreturn_t t4_intr_intx(int irq, void *cookie)
4206 {
4207 	struct adapter *adap = cookie;
4208 
4209 	t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
4210 	if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) |
4211 	    process_intrq(adap))
4212 		return IRQ_HANDLED;
4213 	return IRQ_NONE;             /* probably shared interrupt */
4214 }
4215 
4216 /**
4217  *	t4_intr_handler - select the top-level interrupt handler
4218  *	@adap: the adapter
4219  *
4220  *	Selects the top-level interrupt handler based on the type of interrupts
4221  *	(MSI-X, MSI, or INTx).
4222  */
4223 irq_handler_t t4_intr_handler(struct adapter *adap)
4224 {
4225 	if (adap->flags & CXGB4_USING_MSIX)
4226 		return t4_sge_intr_msix;
4227 	if (adap->flags & CXGB4_USING_MSI)
4228 		return t4_intr_msi;
4229 	return t4_intr_intx;
4230 }
4231 
4232 static void sge_rx_timer_cb(struct timer_list *t)
4233 {
4234 	unsigned long m;
4235 	unsigned int i;
4236 	struct adapter *adap = from_timer(adap, t, sge.rx_timer);
4237 	struct sge *s = &adap->sge;
4238 
4239 	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
4240 		for (m = s->starving_fl[i]; m; m &= m - 1) {
4241 			struct sge_eth_rxq *rxq;
4242 			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
4243 			struct sge_fl *fl = s->egr_map[id];
4244 
4245 			clear_bit(id, s->starving_fl);
4246 			smp_mb__after_atomic();
4247 
4248 			if (fl_starving(adap, fl)) {
4249 				rxq = container_of(fl, struct sge_eth_rxq, fl);
4250 				if (napi_schedule(&rxq->rspq.napi))
4251 					fl->starving++;
4252 				else
4253 					set_bit(id, s->starving_fl);
4254 			}
4255 		}
4256 	/* The remainder of the SGE RX Timer Callback routine is dedicated to
4257 	 * global Master PF activities like checking for chip ingress stalls,
4258 	 * etc.
4259 	 */
4260 	if (!(adap->flags & CXGB4_MASTER_PF))
4261 		goto done;
4262 
4263 	t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
4264 
4265 done:
4266 	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
4267 }
4268 
4269 static void sge_tx_timer_cb(struct timer_list *t)
4270 {
4271 	struct adapter *adap = from_timer(adap, t, sge.tx_timer);
4272 	struct sge *s = &adap->sge;
4273 	unsigned long m, period;
4274 	unsigned int i, budget;
4275 
4276 	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
4277 		for (m = s->txq_maperr[i]; m; m &= m - 1) {
4278 			unsigned long id = __ffs(m) + i * BITS_PER_LONG;
4279 			struct sge_uld_txq *txq = s->egr_map[id];
4280 
4281 			clear_bit(id, s->txq_maperr);
4282 			tasklet_schedule(&txq->qresume_tsk);
4283 		}
4284 
4285 	if (!is_t4(adap->params.chip)) {
4286 		struct sge_eth_txq *q = &s->ptptxq;
4287 		int avail;
4288 
4289 		spin_lock(&adap->ptp_lock);
4290 		avail = reclaimable(&q->q);
4291 
4292 		if (avail) {
4293 			free_tx_desc(adap, &q->q, avail, false);
4294 			q->q.in_use -= avail;
4295 		}
4296 		spin_unlock(&adap->ptp_lock);
4297 	}
4298 
4299 	budget = MAX_TIMER_TX_RECLAIM;
4300 	i = s->ethtxq_rover;
4301 	do {
4302 		budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i],
4303 						       budget);
4304 		if (!budget)
4305 			break;
4306 
4307 		if (++i >= s->ethqsets)
4308 			i = 0;
4309 	} while (i != s->ethtxq_rover);
4310 	s->ethtxq_rover = i;
4311 
4312 	if (budget == 0) {
4313 		/* If we found too many reclaimable packets schedule a timer
4314 		 * in the near future to continue where we left off.
4315 		 */
4316 		period = 2;
4317 	} else {
4318 		/* We reclaimed all reclaimable TX Descriptors, so reschedule
4319 		 * at the normal period.
4320 		 */
4321 		period = TX_QCHECK_PERIOD;
4322 	}
4323 
4324 	mod_timer(&s->tx_timer, jiffies + period);
4325 }
4326 
4327 /**
4328  *	bar2_address - return the BAR2 address for an SGE Queue's Registers
4329  *	@adapter: the adapter
4330  *	@qid: the SGE Queue ID
4331  *	@qtype: the SGE Queue Type (Egress or Ingress)
4332  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
4333  *
4334  *	Returns the BAR2 address for the SGE Queue Registers associated with
4335  *	@qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
4336  *	returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
4337  *	Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
4338  *	Registers are supported (e.g. the Write Combining Doorbell Buffer).
4339  */
4340 static void __iomem *bar2_address(struct adapter *adapter,
4341 				  unsigned int qid,
4342 				  enum t4_bar2_qtype qtype,
4343 				  unsigned int *pbar2_qid)
4344 {
4345 	u64 bar2_qoffset;
4346 	int ret;
4347 
4348 	ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
4349 				&bar2_qoffset, pbar2_qid);
4350 	if (ret)
4351 		return NULL;
4352 
4353 	return adapter->bar2 + bar2_qoffset;
4354 }
4355 
4356 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
4357  * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
4358  */
4359 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
4360 		     struct net_device *dev, int intr_idx,
4361 		     struct sge_fl *fl, rspq_handler_t hnd,
4362 		     rspq_flush_handler_t flush_hnd, int cong)
4363 {
4364 	int ret, flsz = 0;
4365 	struct fw_iq_cmd c;
4366 	struct sge *s = &adap->sge;
4367 	struct port_info *pi = netdev_priv(dev);
4368 	int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING);
4369 
4370 	/* Size needs to be multiple of 16, including status entry. */
4371 	iq->size = roundup(iq->size, 16);
4372 
4373 	iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
4374 			      &iq->phys_addr, NULL, 0,
4375 			      dev_to_node(adap->pdev_dev));
4376 	if (!iq->desc)
4377 		return -ENOMEM;
4378 
4379 	memset(&c, 0, sizeof(c));
4380 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
4381 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4382 			    FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
4383 	c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
4384 				 FW_LEN16(c));
4385 	c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
4386 		FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
4387 		FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
4388 		FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
4389 		FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
4390 							-intr_idx - 1));
4391 	c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
4392 		FW_IQ_CMD_IQGTSMODE_F |
4393 		FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
4394 		FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
4395 	c.iqsize = htons(iq->size);
4396 	c.iqaddr = cpu_to_be64(iq->phys_addr);
4397 	if (cong >= 0)
4398 		c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F |
4399 				FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC
4400 							:  FW_IQ_IQTYPE_OFLD));
4401 
4402 	if (fl) {
4403 		unsigned int chip_ver =
4404 			CHELSIO_CHIP_VERSION(adap->params.chip);
4405 
4406 		/* Allocate the ring for the hardware free list (with space
4407 		 * for its status page) along with the associated software
4408 		 * descriptor ring.  The free list size needs to be a multiple
4409 		 * of the Egress Queue Unit and at least 2 Egress Units larger
4410 		 * than the SGE's Egress Congrestion Threshold
4411 		 * (fl_starve_thres - 1).
4412 		 */
4413 		if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
4414 			fl->size = s->fl_starve_thres - 1 + 2 * 8;
4415 		fl->size = roundup(fl->size, 8);
4416 		fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
4417 				      sizeof(struct rx_sw_desc), &fl->addr,
4418 				      &fl->sdesc, s->stat_len,
4419 				      dev_to_node(adap->pdev_dev));
4420 		if (!fl->desc)
4421 			goto fl_nomem;
4422 
4423 		flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
4424 		c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
4425 					     FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
4426 					     FW_IQ_CMD_FL0DATARO_V(relaxed) |
4427 					     FW_IQ_CMD_FL0PADEN_F);
4428 		if (cong >= 0)
4429 			c.iqns_to_fl0congen |=
4430 				htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
4431 				      FW_IQ_CMD_FL0CONGCIF_F |
4432 				      FW_IQ_CMD_FL0CONGEN_F);
4433 		/* In T6, for egress queue type FL there is internal overhead
4434 		 * of 16B for header going into FLM module.  Hence the maximum
4435 		 * allowed burst size is 448 bytes.  For T4/T5, the hardware
4436 		 * doesn't coalesce fetch requests if more than 64 bytes of
4437 		 * Free List pointers are provided, so we use a 128-byte Fetch
4438 		 * Burst Minimum there (T6 implements coalescing so we can use
4439 		 * the smaller 64-byte value there).
4440 		 */
4441 		c.fl0dcaen_to_fl0cidxfthresh =
4442 			htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ?
4443 						   FETCHBURSTMIN_128B_X :
4444 						   FETCHBURSTMIN_64B_T6_X) |
4445 			      FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ?
4446 						   FETCHBURSTMAX_512B_X :
4447 						   FETCHBURSTMAX_256B_X));
4448 		c.fl0size = htons(flsz);
4449 		c.fl0addr = cpu_to_be64(fl->addr);
4450 	}
4451 
4452 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4453 	if (ret)
4454 		goto err;
4455 
4456 	netif_napi_add(dev, &iq->napi, napi_rx_handler);
4457 	iq->cur_desc = iq->desc;
4458 	iq->cidx = 0;
4459 	iq->gen = 1;
4460 	iq->next_intr_params = iq->intr_params;
4461 	iq->cntxt_id = ntohs(c.iqid);
4462 	iq->abs_id = ntohs(c.physiqid);
4463 	iq->bar2_addr = bar2_address(adap,
4464 				     iq->cntxt_id,
4465 				     T4_BAR2_QTYPE_INGRESS,
4466 				     &iq->bar2_qid);
4467 	iq->size--;                           /* subtract status entry */
4468 	iq->netdev = dev;
4469 	iq->handler = hnd;
4470 	iq->flush_handler = flush_hnd;
4471 
4472 	memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr));
4473 	skb_queue_head_init(&iq->lro_mgr.lroq);
4474 
4475 	/* set offset to -1 to distinguish ingress queues without FL */
4476 	iq->offset = fl ? 0 : -1;
4477 
4478 	adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
4479 
4480 	if (fl) {
4481 		fl->cntxt_id = ntohs(c.fl0id);
4482 		fl->avail = fl->pend_cred = 0;
4483 		fl->pidx = fl->cidx = 0;
4484 		fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
4485 		adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
4486 
4487 		/* Note, we must initialize the BAR2 Free List User Doorbell
4488 		 * information before refilling the Free List!
4489 		 */
4490 		fl->bar2_addr = bar2_address(adap,
4491 					     fl->cntxt_id,
4492 					     T4_BAR2_QTYPE_EGRESS,
4493 					     &fl->bar2_qid);
4494 		refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
4495 	}
4496 
4497 	/* For T5 and later we attempt to set up the Congestion Manager values
4498 	 * of the new RX Ethernet Queue.  This should really be handled by
4499 	 * firmware because it's more complex than any host driver wants to
4500 	 * get involved with and it's different per chip and this is almost
4501 	 * certainly wrong.  Firmware would be wrong as well, but it would be
4502 	 * a lot easier to fix in one place ...  For now we do something very
4503 	 * simple (and hopefully less wrong).
4504 	 */
4505 	if (!is_t4(adap->params.chip) && cong >= 0) {
4506 		u32 param, val, ch_map = 0;
4507 		int i;
4508 		u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log;
4509 
4510 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
4511 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
4512 			 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
4513 		if (cong == 0) {
4514 			val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
4515 		} else {
4516 			val =
4517 			    CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
4518 			for (i = 0; i < 4; i++) {
4519 				if (cong & (1 << i))
4520 					ch_map |= 1 << (i << cng_ch_bits_log);
4521 			}
4522 			val |= CONMCTXT_CNGCHMAP_V(ch_map);
4523 		}
4524 		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
4525 				    &param, &val);
4526 		if (ret)
4527 			dev_warn(adap->pdev_dev, "Failed to set Congestion"
4528 				 " Manager Context for Ingress Queue %d: %d\n",
4529 				 iq->cntxt_id, -ret);
4530 	}
4531 
4532 	return 0;
4533 
4534 fl_nomem:
4535 	ret = -ENOMEM;
4536 err:
4537 	if (iq->desc) {
4538 		dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
4539 				  iq->desc, iq->phys_addr);
4540 		iq->desc = NULL;
4541 	}
4542 	if (fl && fl->desc) {
4543 		kfree(fl->sdesc);
4544 		fl->sdesc = NULL;
4545 		dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
4546 				  fl->desc, fl->addr);
4547 		fl->desc = NULL;
4548 	}
4549 	return ret;
4550 }
4551 
4552 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
4553 {
4554 	q->cntxt_id = id;
4555 	q->bar2_addr = bar2_address(adap,
4556 				    q->cntxt_id,
4557 				    T4_BAR2_QTYPE_EGRESS,
4558 				    &q->bar2_qid);
4559 	q->in_use = 0;
4560 	q->cidx = q->pidx = 0;
4561 	q->stops = q->restarts = 0;
4562 	q->stat = (void *)&q->desc[q->size];
4563 	spin_lock_init(&q->db_lock);
4564 	adap->sge.egr_map[id - adap->sge.egr_start] = q;
4565 }
4566 
4567 /**
4568  *	t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue
4569  *	@adap: the adapter
4570  *	@txq: the SGE Ethernet TX Queue to initialize
4571  *	@dev: the Linux Network Device
4572  *	@netdevq: the corresponding Linux TX Queue
4573  *	@iqid: the Ingress Queue to which to deliver CIDX Update messages
4574  *	@dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers
4575  */
4576 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
4577 			 struct net_device *dev, struct netdev_queue *netdevq,
4578 			 unsigned int iqid, u8 dbqt)
4579 {
4580 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4581 	struct port_info *pi = netdev_priv(dev);
4582 	struct sge *s = &adap->sge;
4583 	struct fw_eq_eth_cmd c;
4584 	int ret, nentries;
4585 
4586 	/* Add status entries */
4587 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
4588 
4589 	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
4590 			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
4591 			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
4592 			netdev_queue_numa_node_read(netdevq));
4593 	if (!txq->q.desc)
4594 		return -ENOMEM;
4595 
4596 	memset(&c, 0, sizeof(c));
4597 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
4598 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4599 			    FW_EQ_ETH_CMD_PFN_V(adap->pf) |
4600 			    FW_EQ_ETH_CMD_VFN_V(0));
4601 	c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
4602 				 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
4603 
4604 	/* For TX Ethernet Queues using the SGE Doorbell Queue Timer
4605 	 * mechanism, we use Ingress Queue messages for Hardware Consumer
4606 	 * Index Updates on the TX Queue.  Otherwise we have the Hardware
4607 	 * write the CIDX Updates into the Status Page at the end of the
4608 	 * TX Queue.
4609 	 */
4610 	c.autoequiqe_to_viid = htonl(((chip_ver <= CHELSIO_T5) ?
4611 				      FW_EQ_ETH_CMD_AUTOEQUIQE_F :
4612 				      FW_EQ_ETH_CMD_AUTOEQUEQE_F) |
4613 				     FW_EQ_ETH_CMD_VIID_V(pi->viid));
4614 
4615 	c.fetchszm_to_iqid =
4616 		htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V((chip_ver <= CHELSIO_T5) ?
4617 						 HOSTFCMODE_INGRESS_QUEUE_X :
4618 						 HOSTFCMODE_STATUS_PAGE_X) |
4619 		      FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
4620 		      FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
4621 
4622 	/* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */
4623 	c.dcaen_to_eqsize =
4624 		htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
4625 					    ? FETCHBURSTMIN_64B_X
4626 					    : FETCHBURSTMIN_64B_T6_X) |
4627 		      FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4628 		      FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4629 		      FW_EQ_ETH_CMD_CIDXFTHRESHO_V(chip_ver == CHELSIO_T5) |
4630 		      FW_EQ_ETH_CMD_EQSIZE_V(nentries));
4631 
4632 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
4633 
4634 	/* If we're using the SGE Doorbell Queue Timer mechanism, pass in the
4635 	 * currently configured Timer Index.  THis can be changed later via an
4636 	 * ethtool -C tx-usecs {Timer Val} command.  Note that the SGE
4637 	 * Doorbell Queue mode is currently automatically enabled in the
4638 	 * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ...
4639 	 */
4640 	if (dbqt)
4641 		c.timeren_timerix =
4642 			cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F |
4643 				    FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix));
4644 
4645 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4646 	if (ret) {
4647 		kfree(txq->q.sdesc);
4648 		txq->q.sdesc = NULL;
4649 		dma_free_coherent(adap->pdev_dev,
4650 				  nentries * sizeof(struct tx_desc),
4651 				  txq->q.desc, txq->q.phys_addr);
4652 		txq->q.desc = NULL;
4653 		return ret;
4654 	}
4655 
4656 	txq->q.q_type = CXGB4_TXQ_ETH;
4657 	init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
4658 	txq->txq = netdevq;
4659 	txq->tso = 0;
4660 	txq->uso = 0;
4661 	txq->tx_cso = 0;
4662 	txq->vlan_ins = 0;
4663 	txq->mapping_err = 0;
4664 	txq->dbqt = dbqt;
4665 
4666 	return 0;
4667 }
4668 
4669 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
4670 			  struct net_device *dev, unsigned int iqid,
4671 			  unsigned int cmplqid)
4672 {
4673 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4674 	struct port_info *pi = netdev_priv(dev);
4675 	struct sge *s = &adap->sge;
4676 	struct fw_eq_ctrl_cmd c;
4677 	int ret, nentries;
4678 
4679 	/* Add status entries */
4680 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
4681 
4682 	txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
4683 				 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
4684 				 NULL, 0, dev_to_node(adap->pdev_dev));
4685 	if (!txq->q.desc)
4686 		return -ENOMEM;
4687 
4688 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
4689 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4690 			    FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
4691 			    FW_EQ_CTRL_CMD_VFN_V(0));
4692 	c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
4693 				 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
4694 	c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
4695 	c.physeqid_pkd = htonl(0);
4696 	c.fetchszm_to_iqid =
4697 		htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4698 		      FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
4699 		      FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
4700 	c.dcaen_to_eqsize =
4701 		htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
4702 					     ? FETCHBURSTMIN_64B_X
4703 					     : FETCHBURSTMIN_64B_T6_X) |
4704 		      FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4705 		      FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4706 		      FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
4707 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
4708 
4709 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4710 	if (ret) {
4711 		dma_free_coherent(adap->pdev_dev,
4712 				  nentries * sizeof(struct tx_desc),
4713 				  txq->q.desc, txq->q.phys_addr);
4714 		txq->q.desc = NULL;
4715 		return ret;
4716 	}
4717 
4718 	txq->q.q_type = CXGB4_TXQ_CTRL;
4719 	init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
4720 	txq->adap = adap;
4721 	skb_queue_head_init(&txq->sendq);
4722 	tasklet_setup(&txq->qresume_tsk, restart_ctrlq);
4723 	txq->full = 0;
4724 	return 0;
4725 }
4726 
4727 int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid,
4728 			unsigned int cmplqid)
4729 {
4730 	u32 param, val;
4731 
4732 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
4733 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) |
4734 		 FW_PARAMS_PARAM_YZ_V(eqid));
4735 	val = cmplqid;
4736 	return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
4737 }
4738 
4739 static int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_txq *q,
4740 				 struct net_device *dev, u32 cmd, u32 iqid)
4741 {
4742 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4743 	struct port_info *pi = netdev_priv(dev);
4744 	struct sge *s = &adap->sge;
4745 	struct fw_eq_ofld_cmd c;
4746 	u32 fb_min, nentries;
4747 	int ret;
4748 
4749 	/* Add status entries */
4750 	nentries = q->size + s->stat_len / sizeof(struct tx_desc);
4751 	q->desc = alloc_ring(adap->pdev_dev, q->size, sizeof(struct tx_desc),
4752 			     sizeof(struct tx_sw_desc), &q->phys_addr,
4753 			     &q->sdesc, s->stat_len, NUMA_NO_NODE);
4754 	if (!q->desc)
4755 		return -ENOMEM;
4756 
4757 	if (chip_ver <= CHELSIO_T5)
4758 		fb_min = FETCHBURSTMIN_64B_X;
4759 	else
4760 		fb_min = FETCHBURSTMIN_64B_T6_X;
4761 
4762 	memset(&c, 0, sizeof(c));
4763 	c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F |
4764 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4765 			    FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
4766 			    FW_EQ_OFLD_CMD_VFN_V(0));
4767 	c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
4768 				 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
4769 	c.fetchszm_to_iqid =
4770 		htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4771 		      FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
4772 		      FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
4773 	c.dcaen_to_eqsize =
4774 		htonl(FW_EQ_OFLD_CMD_FBMIN_V(fb_min) |
4775 		      FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4776 		      FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4777 		      FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
4778 	c.eqaddr = cpu_to_be64(q->phys_addr);
4779 
4780 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4781 	if (ret) {
4782 		kfree(q->sdesc);
4783 		q->sdesc = NULL;
4784 		dma_free_coherent(adap->pdev_dev,
4785 				  nentries * sizeof(struct tx_desc),
4786 				  q->desc, q->phys_addr);
4787 		q->desc = NULL;
4788 		return ret;
4789 	}
4790 
4791 	init_txq(adap, q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
4792 	return 0;
4793 }
4794 
4795 int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq,
4796 			 struct net_device *dev, unsigned int iqid,
4797 			 unsigned int uld_type)
4798 {
4799 	u32 cmd = FW_EQ_OFLD_CMD;
4800 	int ret;
4801 
4802 	if (unlikely(uld_type == CXGB4_TX_CRYPTO))
4803 		cmd = FW_EQ_CTRL_CMD;
4804 
4805 	ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, cmd, iqid);
4806 	if (ret)
4807 		return ret;
4808 
4809 	txq->q.q_type = CXGB4_TXQ_ULD;
4810 	txq->adap = adap;
4811 	skb_queue_head_init(&txq->sendq);
4812 	tasklet_setup(&txq->qresume_tsk, restart_ofldq);
4813 	txq->full = 0;
4814 	txq->mapping_err = 0;
4815 	return 0;
4816 }
4817 
4818 int t4_sge_alloc_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq,
4819 			     struct net_device *dev, u32 iqid)
4820 {
4821 	int ret;
4822 
4823 	ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, FW_EQ_OFLD_CMD, iqid);
4824 	if (ret)
4825 		return ret;
4826 
4827 	txq->q.q_type = CXGB4_TXQ_ULD;
4828 	spin_lock_init(&txq->lock);
4829 	txq->adap = adap;
4830 	txq->tso = 0;
4831 	txq->uso = 0;
4832 	txq->tx_cso = 0;
4833 	txq->vlan_ins = 0;
4834 	txq->mapping_err = 0;
4835 	return 0;
4836 }
4837 
4838 void free_txq(struct adapter *adap, struct sge_txq *q)
4839 {
4840 	struct sge *s = &adap->sge;
4841 
4842 	dma_free_coherent(adap->pdev_dev,
4843 			  q->size * sizeof(struct tx_desc) + s->stat_len,
4844 			  q->desc, q->phys_addr);
4845 	q->cntxt_id = 0;
4846 	q->sdesc = NULL;
4847 	q->desc = NULL;
4848 }
4849 
4850 void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
4851 		  struct sge_fl *fl)
4852 {
4853 	struct sge *s = &adap->sge;
4854 	unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
4855 
4856 	adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
4857 	t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
4858 		   rq->cntxt_id, fl_id, 0xffff);
4859 	dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
4860 			  rq->desc, rq->phys_addr);
4861 	netif_napi_del(&rq->napi);
4862 	rq->netdev = NULL;
4863 	rq->cntxt_id = rq->abs_id = 0;
4864 	rq->desc = NULL;
4865 
4866 	if (fl) {
4867 		free_rx_bufs(adap, fl, fl->avail);
4868 		dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
4869 				  fl->desc, fl->addr);
4870 		kfree(fl->sdesc);
4871 		fl->sdesc = NULL;
4872 		fl->cntxt_id = 0;
4873 		fl->desc = NULL;
4874 	}
4875 }
4876 
4877 /**
4878  *      t4_free_ofld_rxqs - free a block of consecutive Rx queues
4879  *      @adap: the adapter
4880  *      @n: number of queues
4881  *      @q: pointer to first queue
4882  *
4883  *      Release the resources of a consecutive block of offload Rx queues.
4884  */
4885 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
4886 {
4887 	for ( ; n; n--, q++)
4888 		if (q->rspq.desc)
4889 			free_rspq_fl(adap, &q->rspq,
4890 				     q->fl.size ? &q->fl : NULL);
4891 }
4892 
4893 void t4_sge_free_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq)
4894 {
4895 	if (txq->q.desc) {
4896 		t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0,
4897 				txq->q.cntxt_id);
4898 		free_tx_desc(adap, &txq->q, txq->q.in_use, false);
4899 		kfree(txq->q.sdesc);
4900 		free_txq(adap, &txq->q);
4901 	}
4902 }
4903 
4904 /**
4905  *	t4_free_sge_resources - free SGE resources
4906  *	@adap: the adapter
4907  *
4908  *	Frees resources used by the SGE queue sets.
4909  */
4910 void t4_free_sge_resources(struct adapter *adap)
4911 {
4912 	int i;
4913 	struct sge_eth_rxq *eq;
4914 	struct sge_eth_txq *etq;
4915 
4916 	/* stop all Rx queues in order to start them draining */
4917 	for (i = 0; i < adap->sge.ethqsets; i++) {
4918 		eq = &adap->sge.ethrxq[i];
4919 		if (eq->rspq.desc)
4920 			t4_iq_stop(adap, adap->mbox, adap->pf, 0,
4921 				   FW_IQ_TYPE_FL_INT_CAP,
4922 				   eq->rspq.cntxt_id,
4923 				   eq->fl.size ? eq->fl.cntxt_id : 0xffff,
4924 				   0xffff);
4925 	}
4926 
4927 	/* clean up Ethernet Tx/Rx queues */
4928 	for (i = 0; i < adap->sge.ethqsets; i++) {
4929 		eq = &adap->sge.ethrxq[i];
4930 		if (eq->rspq.desc)
4931 			free_rspq_fl(adap, &eq->rspq,
4932 				     eq->fl.size ? &eq->fl : NULL);
4933 		if (eq->msix) {
4934 			cxgb4_free_msix_idx_in_bmap(adap, eq->msix->idx);
4935 			eq->msix = NULL;
4936 		}
4937 
4938 		etq = &adap->sge.ethtxq[i];
4939 		if (etq->q.desc) {
4940 			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4941 				       etq->q.cntxt_id);
4942 			__netif_tx_lock_bh(etq->txq);
4943 			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4944 			__netif_tx_unlock_bh(etq->txq);
4945 			kfree(etq->q.sdesc);
4946 			free_txq(adap, &etq->q);
4947 		}
4948 	}
4949 
4950 	/* clean up control Tx queues */
4951 	for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
4952 		struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
4953 
4954 		if (cq->q.desc) {
4955 			tasklet_kill(&cq->qresume_tsk);
4956 			t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
4957 					cq->q.cntxt_id);
4958 			__skb_queue_purge(&cq->sendq);
4959 			free_txq(adap, &cq->q);
4960 		}
4961 	}
4962 
4963 	if (adap->sge.fw_evtq.desc) {
4964 		free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
4965 		if (adap->sge.fwevtq_msix_idx >= 0)
4966 			cxgb4_free_msix_idx_in_bmap(adap,
4967 						    adap->sge.fwevtq_msix_idx);
4968 	}
4969 
4970 	if (adap->sge.nd_msix_idx >= 0)
4971 		cxgb4_free_msix_idx_in_bmap(adap, adap->sge.nd_msix_idx);
4972 
4973 	if (adap->sge.intrq.desc)
4974 		free_rspq_fl(adap, &adap->sge.intrq, NULL);
4975 
4976 	if (!is_t4(adap->params.chip)) {
4977 		etq = &adap->sge.ptptxq;
4978 		if (etq->q.desc) {
4979 			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4980 				       etq->q.cntxt_id);
4981 			spin_lock_bh(&adap->ptp_lock);
4982 			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4983 			spin_unlock_bh(&adap->ptp_lock);
4984 			kfree(etq->q.sdesc);
4985 			free_txq(adap, &etq->q);
4986 		}
4987 	}
4988 
4989 	/* clear the reverse egress queue map */
4990 	memset(adap->sge.egr_map, 0,
4991 	       adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
4992 }
4993 
4994 void t4_sge_start(struct adapter *adap)
4995 {
4996 	adap->sge.ethtxq_rover = 0;
4997 	mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
4998 	mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
4999 }
5000 
5001 /**
5002  *	t4_sge_stop - disable SGE operation
5003  *	@adap: the adapter
5004  *
5005  *	Stop tasklets and timers associated with the DMA engine.  Note that
5006  *	this is effective only if measures have been taken to disable any HW
5007  *	events that may restart them.
5008  */
5009 void t4_sge_stop(struct adapter *adap)
5010 {
5011 	int i;
5012 	struct sge *s = &adap->sge;
5013 
5014 	if (s->rx_timer.function)
5015 		del_timer_sync(&s->rx_timer);
5016 	if (s->tx_timer.function)
5017 		del_timer_sync(&s->tx_timer);
5018 
5019 	if (is_offload(adap)) {
5020 		struct sge_uld_txq_info *txq_info;
5021 
5022 		txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
5023 		if (txq_info) {
5024 			struct sge_uld_txq *txq = txq_info->uldtxq;
5025 
5026 			for_each_ofldtxq(&adap->sge, i) {
5027 				if (txq->q.desc)
5028 					tasklet_kill(&txq->qresume_tsk);
5029 			}
5030 		}
5031 	}
5032 
5033 	if (is_pci_uld(adap)) {
5034 		struct sge_uld_txq_info *txq_info;
5035 
5036 		txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO];
5037 		if (txq_info) {
5038 			struct sge_uld_txq *txq = txq_info->uldtxq;
5039 
5040 			for_each_ofldtxq(&adap->sge, i) {
5041 				if (txq->q.desc)
5042 					tasklet_kill(&txq->qresume_tsk);
5043 			}
5044 		}
5045 	}
5046 
5047 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
5048 		struct sge_ctrl_txq *cq = &s->ctrlq[i];
5049 
5050 		if (cq->q.desc)
5051 			tasklet_kill(&cq->qresume_tsk);
5052 	}
5053 }
5054 
5055 /**
5056  *	t4_sge_init_soft - grab core SGE values needed by SGE code
5057  *	@adap: the adapter
5058  *
5059  *	We need to grab the SGE operating parameters that we need to have
5060  *	in order to do our job and make sure we can live with them.
5061  */
5062 
5063 static int t4_sge_init_soft(struct adapter *adap)
5064 {
5065 	struct sge *s = &adap->sge;
5066 	u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
5067 	u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
5068 	u32 ingress_rx_threshold;
5069 
5070 	/*
5071 	 * Verify that CPL messages are going to the Ingress Queue for
5072 	 * process_responses() and that only packet data is going to the
5073 	 * Free Lists.
5074 	 */
5075 	if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
5076 	    RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
5077 		dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
5078 		return -EINVAL;
5079 	}
5080 
5081 	/*
5082 	 * Validate the Host Buffer Register Array indices that we want to
5083 	 * use ...
5084 	 *
5085 	 * XXX Note that we should really read through the Host Buffer Size
5086 	 * XXX register array and find the indices of the Buffer Sizes which
5087 	 * XXX meet our needs!
5088 	 */
5089 	#define READ_FL_BUF(x) \
5090 		t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
5091 
5092 	fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
5093 	fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
5094 	fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
5095 	fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
5096 
5097 	/* We only bother using the Large Page logic if the Large Page Buffer
5098 	 * is larger than our Page Size Buffer.
5099 	 */
5100 	if (fl_large_pg <= fl_small_pg)
5101 		fl_large_pg = 0;
5102 
5103 	#undef READ_FL_BUF
5104 
5105 	/* The Page Size Buffer must be exactly equal to our Page Size and the
5106 	 * Large Page Size Buffer should be 0 (per above) or a power of 2.
5107 	 */
5108 	if (fl_small_pg != PAGE_SIZE ||
5109 	    (fl_large_pg & (fl_large_pg-1)) != 0) {
5110 		dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
5111 			fl_small_pg, fl_large_pg);
5112 		return -EINVAL;
5113 	}
5114 	if (fl_large_pg)
5115 		s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
5116 
5117 	if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
5118 	    fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
5119 		dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
5120 			fl_small_mtu, fl_large_mtu);
5121 		return -EINVAL;
5122 	}
5123 
5124 	/*
5125 	 * Retrieve our RX interrupt holdoff timer values and counter
5126 	 * threshold values from the SGE parameters.
5127 	 */
5128 	timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
5129 	timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
5130 	timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
5131 	s->timer_val[0] = core_ticks_to_us(adap,
5132 		TIMERVALUE0_G(timer_value_0_and_1));
5133 	s->timer_val[1] = core_ticks_to_us(adap,
5134 		TIMERVALUE1_G(timer_value_0_and_1));
5135 	s->timer_val[2] = core_ticks_to_us(adap,
5136 		TIMERVALUE2_G(timer_value_2_and_3));
5137 	s->timer_val[3] = core_ticks_to_us(adap,
5138 		TIMERVALUE3_G(timer_value_2_and_3));
5139 	s->timer_val[4] = core_ticks_to_us(adap,
5140 		TIMERVALUE4_G(timer_value_4_and_5));
5141 	s->timer_val[5] = core_ticks_to_us(adap,
5142 		TIMERVALUE5_G(timer_value_4_and_5));
5143 
5144 	ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
5145 	s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
5146 	s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
5147 	s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
5148 	s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
5149 
5150 	return 0;
5151 }
5152 
5153 /**
5154  *     t4_sge_init - initialize SGE
5155  *     @adap: the adapter
5156  *
5157  *     Perform low-level SGE code initialization needed every time after a
5158  *     chip reset.
5159  */
5160 int t4_sge_init(struct adapter *adap)
5161 {
5162 	struct sge *s = &adap->sge;
5163 	u32 sge_control, sge_conm_ctrl;
5164 	int ret, egress_threshold;
5165 
5166 	/*
5167 	 * Ingress Padding Boundary and Egress Status Page Size are set up by
5168 	 * t4_fixup_host_params().
5169 	 */
5170 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
5171 	s->pktshift = PKTSHIFT_G(sge_control);
5172 	s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
5173 
5174 	s->fl_align = t4_fl_pkt_align(adap);
5175 	ret = t4_sge_init_soft(adap);
5176 	if (ret < 0)
5177 		return ret;
5178 
5179 	/*
5180 	 * A FL with <= fl_starve_thres buffers is starving and a periodic
5181 	 * timer will attempt to refill it.  This needs to be larger than the
5182 	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
5183 	 * stuck waiting for new packets while the SGE is waiting for us to
5184 	 * give it more Free List entries.  (Note that the SGE's Egress
5185 	 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
5186 	 * there was only a single field to control this.  For T5 there's the
5187 	 * original field which now only applies to Unpacked Mode Free List
5188 	 * buffers and a new field which only applies to Packed Mode Free List
5189 	 * buffers.
5190 	 */
5191 	sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
5192 	switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
5193 	case CHELSIO_T4:
5194 		egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
5195 		break;
5196 	case CHELSIO_T5:
5197 		egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
5198 		break;
5199 	case CHELSIO_T6:
5200 		egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
5201 		break;
5202 	default:
5203 		dev_err(adap->pdev_dev, "Unsupported Chip version %d\n",
5204 			CHELSIO_CHIP_VERSION(adap->params.chip));
5205 		return -EINVAL;
5206 	}
5207 	s->fl_starve_thres = 2*egress_threshold + 1;
5208 
5209 	t4_idma_monitor_init(adap, &s->idma_monitor);
5210 
5211 	/* Set up timers used for recuring callbacks to process RX and TX
5212 	 * administrative tasks.
5213 	 */
5214 	timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
5215 	timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
5216 
5217 	spin_lock_init(&s->intrq_lock);
5218 
5219 	return 0;
5220 }
5221