1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/skbuff.h> 36 #include <linux/netdevice.h> 37 #include <linux/etherdevice.h> 38 #include <linux/if_vlan.h> 39 #include <linux/ip.h> 40 #include <linux/dma-mapping.h> 41 #include <linux/jiffies.h> 42 #include <linux/prefetch.h> 43 #include <linux/export.h> 44 #include <net/xfrm.h> 45 #include <net/ipv6.h> 46 #include <net/tcp.h> 47 #include <net/busy_poll.h> 48 #ifdef CONFIG_CHELSIO_T4_FCOE 49 #include <scsi/fc/fc_fcoe.h> 50 #endif /* CONFIG_CHELSIO_T4_FCOE */ 51 #include "cxgb4.h" 52 #include "t4_regs.h" 53 #include "t4_values.h" 54 #include "t4_msg.h" 55 #include "t4fw_api.h" 56 #include "cxgb4_ptp.h" 57 #include "cxgb4_uld.h" 58 #include "cxgb4_tc_mqprio.h" 59 #include "sched.h" 60 61 /* 62 * Rx buffer size. We use largish buffers if possible but settle for single 63 * pages under memory shortage. 64 */ 65 #if PAGE_SHIFT >= 16 66 # define FL_PG_ORDER 0 67 #else 68 # define FL_PG_ORDER (16 - PAGE_SHIFT) 69 #endif 70 71 /* RX_PULL_LEN should be <= RX_COPY_THRES */ 72 #define RX_COPY_THRES 256 73 #define RX_PULL_LEN 128 74 75 /* 76 * Main body length for sk_buffs used for Rx Ethernet packets with fragments. 77 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room. 78 */ 79 #define RX_PKT_SKB_LEN 512 80 81 /* 82 * Max number of Tx descriptors we clean up at a time. Should be modest as 83 * freeing skbs isn't cheap and it happens while holding locks. We just need 84 * to free packets faster than they arrive, we eventually catch up and keep 85 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. It should 86 * also match the CIDX Flush Threshold. 87 */ 88 #define MAX_TX_RECLAIM 32 89 90 /* 91 * Max number of Rx buffers we replenish at a time. Again keep this modest, 92 * allocating buffers isn't cheap either. 93 */ 94 #define MAX_RX_REFILL 16U 95 96 /* 97 * Period of the Rx queue check timer. This timer is infrequent as it has 98 * something to do only when the system experiences severe memory shortage. 99 */ 100 #define RX_QCHECK_PERIOD (HZ / 2) 101 102 /* 103 * Period of the Tx queue check timer. 104 */ 105 #define TX_QCHECK_PERIOD (HZ / 2) 106 107 /* 108 * Max number of Tx descriptors to be reclaimed by the Tx timer. 109 */ 110 #define MAX_TIMER_TX_RECLAIM 100 111 112 /* 113 * Timer index used when backing off due to memory shortage. 114 */ 115 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1) 116 117 /* 118 * Suspension threshold for non-Ethernet Tx queues. We require enough room 119 * for a full sized WR. 120 */ 121 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc)) 122 123 /* 124 * Max Tx descriptor space we allow for an Ethernet packet to be inlined 125 * into a WR. 126 */ 127 #define MAX_IMM_TX_PKT_LEN 256 128 129 /* 130 * Max size of a WR sent through a control Tx queue. 131 */ 132 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN 133 134 struct rx_sw_desc { /* SW state per Rx descriptor */ 135 struct page *page; 136 dma_addr_t dma_addr; 137 }; 138 139 /* 140 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb 141 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs. 142 * We could easily support more but there doesn't seem to be much need for 143 * that ... 144 */ 145 #define FL_MTU_SMALL 1500 146 #define FL_MTU_LARGE 9000 147 148 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter, 149 unsigned int mtu) 150 { 151 struct sge *s = &adapter->sge; 152 153 return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align); 154 } 155 156 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL) 157 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE) 158 159 /* 160 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses 161 * these to specify the buffer size as an index into the SGE Free List Buffer 162 * Size register array. We also use bit 4, when the buffer has been unmapped 163 * for DMA, but this is of course never sent to the hardware and is only used 164 * to prevent double unmappings. All of the above requires that the Free List 165 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are 166 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal 167 * Free List Buffer alignment is 32 bytes, this works out for us ... 168 */ 169 enum { 170 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */ 171 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */ 172 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */ 173 174 /* 175 * XXX We shouldn't depend on being able to use these indices. 176 * XXX Especially when some other Master PF has initialized the 177 * XXX adapter or we use the Firmware Configuration File. We 178 * XXX should really search through the Host Buffer Size register 179 * XXX array for the appropriately sized buffer indices. 180 */ 181 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */ 182 RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */ 183 184 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */ 185 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */ 186 }; 187 188 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5}; 189 #define MIN_NAPI_WORK 1 190 191 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d) 192 { 193 return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS; 194 } 195 196 static inline bool is_buf_mapped(const struct rx_sw_desc *d) 197 { 198 return !(d->dma_addr & RX_UNMAPPED_BUF); 199 } 200 201 /** 202 * txq_avail - return the number of available slots in a Tx queue 203 * @q: the Tx queue 204 * 205 * Returns the number of descriptors in a Tx queue available to write new 206 * packets. 207 */ 208 static inline unsigned int txq_avail(const struct sge_txq *q) 209 { 210 return q->size - 1 - q->in_use; 211 } 212 213 /** 214 * fl_cap - return the capacity of a free-buffer list 215 * @fl: the FL 216 * 217 * Returns the capacity of a free-buffer list. The capacity is less than 218 * the size because one descriptor needs to be left unpopulated, otherwise 219 * HW will think the FL is empty. 220 */ 221 static inline unsigned int fl_cap(const struct sge_fl *fl) 222 { 223 return fl->size - 8; /* 1 descriptor = 8 buffers */ 224 } 225 226 /** 227 * fl_starving - return whether a Free List is starving. 228 * @adapter: pointer to the adapter 229 * @fl: the Free List 230 * 231 * Tests specified Free List to see whether the number of buffers 232 * available to the hardware has falled below our "starvation" 233 * threshold. 234 */ 235 static inline bool fl_starving(const struct adapter *adapter, 236 const struct sge_fl *fl) 237 { 238 const struct sge *s = &adapter->sge; 239 240 return fl->avail - fl->pend_cred <= s->fl_starve_thres; 241 } 242 243 int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb, 244 dma_addr_t *addr) 245 { 246 const skb_frag_t *fp, *end; 247 const struct skb_shared_info *si; 248 249 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 250 if (dma_mapping_error(dev, *addr)) 251 goto out_err; 252 253 si = skb_shinfo(skb); 254 end = &si->frags[si->nr_frags]; 255 256 for (fp = si->frags; fp < end; fp++) { 257 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp), 258 DMA_TO_DEVICE); 259 if (dma_mapping_error(dev, *addr)) 260 goto unwind; 261 } 262 return 0; 263 264 unwind: 265 while (fp-- > si->frags) 266 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE); 267 268 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); 269 out_err: 270 return -ENOMEM; 271 } 272 EXPORT_SYMBOL(cxgb4_map_skb); 273 274 static void unmap_skb(struct device *dev, const struct sk_buff *skb, 275 const dma_addr_t *addr) 276 { 277 const skb_frag_t *fp, *end; 278 const struct skb_shared_info *si; 279 280 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE); 281 282 si = skb_shinfo(skb); 283 end = &si->frags[si->nr_frags]; 284 for (fp = si->frags; fp < end; fp++) 285 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE); 286 } 287 288 #ifdef CONFIG_NEED_DMA_MAP_STATE 289 /** 290 * deferred_unmap_destructor - unmap a packet when it is freed 291 * @skb: the packet 292 * 293 * This is the packet destructor used for Tx packets that need to remain 294 * mapped until they are freed rather than until their Tx descriptors are 295 * freed. 296 */ 297 static void deferred_unmap_destructor(struct sk_buff *skb) 298 { 299 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head); 300 } 301 #endif 302 303 /** 304 * free_tx_desc - reclaims Tx descriptors and their buffers 305 * @adap: the adapter 306 * @q: the Tx queue to reclaim descriptors from 307 * @n: the number of descriptors to reclaim 308 * @unmap: whether the buffers should be unmapped for DMA 309 * 310 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated 311 * Tx buffers. Called with the Tx queue lock held. 312 */ 313 void free_tx_desc(struct adapter *adap, struct sge_txq *q, 314 unsigned int n, bool unmap) 315 { 316 unsigned int cidx = q->cidx; 317 struct tx_sw_desc *d; 318 319 d = &q->sdesc[cidx]; 320 while (n--) { 321 if (d->skb) { /* an SGL is present */ 322 if (unmap && d->addr[0]) { 323 unmap_skb(adap->pdev_dev, d->skb, d->addr); 324 memset(d->addr, 0, sizeof(d->addr)); 325 } 326 dev_consume_skb_any(d->skb); 327 d->skb = NULL; 328 } 329 ++d; 330 if (++cidx == q->size) { 331 cidx = 0; 332 d = q->sdesc; 333 } 334 } 335 q->cidx = cidx; 336 } 337 338 /* 339 * Return the number of reclaimable descriptors in a Tx queue. 340 */ 341 static inline int reclaimable(const struct sge_txq *q) 342 { 343 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 344 hw_cidx -= q->cidx; 345 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx; 346 } 347 348 /** 349 * reclaim_completed_tx - reclaims completed TX Descriptors 350 * @adap: the adapter 351 * @q: the Tx queue to reclaim completed descriptors from 352 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1 353 * @unmap: whether the buffers should be unmapped for DMA 354 * 355 * Reclaims Tx Descriptors that the SGE has indicated it has processed, 356 * and frees the associated buffers if possible. If @max == -1, then 357 * we'll use a defaiult maximum. Called with the TX Queue locked. 358 */ 359 static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, 360 int maxreclaim, bool unmap) 361 { 362 int reclaim = reclaimable(q); 363 364 if (reclaim) { 365 /* 366 * Limit the amount of clean up work we do at a time to keep 367 * the Tx lock hold time O(1). 368 */ 369 if (maxreclaim < 0) 370 maxreclaim = MAX_TX_RECLAIM; 371 if (reclaim > maxreclaim) 372 reclaim = maxreclaim; 373 374 free_tx_desc(adap, q, reclaim, unmap); 375 q->in_use -= reclaim; 376 } 377 378 return reclaim; 379 } 380 381 /** 382 * cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors 383 * @adap: the adapter 384 * @q: the Tx queue to reclaim completed descriptors from 385 * @unmap: whether the buffers should be unmapped for DMA 386 * 387 * Reclaims Tx descriptors that the SGE has indicated it has processed, 388 * and frees the associated buffers if possible. Called with the Tx 389 * queue locked. 390 */ 391 void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, 392 bool unmap) 393 { 394 (void)reclaim_completed_tx(adap, q, -1, unmap); 395 } 396 EXPORT_SYMBOL(cxgb4_reclaim_completed_tx); 397 398 static inline int get_buf_size(struct adapter *adapter, 399 const struct rx_sw_desc *d) 400 { 401 struct sge *s = &adapter->sge; 402 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE; 403 int buf_size; 404 405 switch (rx_buf_size_idx) { 406 case RX_SMALL_PG_BUF: 407 buf_size = PAGE_SIZE; 408 break; 409 410 case RX_LARGE_PG_BUF: 411 buf_size = PAGE_SIZE << s->fl_pg_order; 412 break; 413 414 case RX_SMALL_MTU_BUF: 415 buf_size = FL_MTU_SMALL_BUFSIZE(adapter); 416 break; 417 418 case RX_LARGE_MTU_BUF: 419 buf_size = FL_MTU_LARGE_BUFSIZE(adapter); 420 break; 421 422 default: 423 BUG(); 424 } 425 426 return buf_size; 427 } 428 429 /** 430 * free_rx_bufs - free the Rx buffers on an SGE free list 431 * @adap: the adapter 432 * @q: the SGE free list to free buffers from 433 * @n: how many buffers to free 434 * 435 * Release the next @n buffers on an SGE free-buffer Rx queue. The 436 * buffers must be made inaccessible to HW before calling this function. 437 */ 438 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n) 439 { 440 while (n--) { 441 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 442 443 if (is_buf_mapped(d)) 444 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 445 get_buf_size(adap, d), 446 DMA_FROM_DEVICE); 447 put_page(d->page); 448 d->page = NULL; 449 if (++q->cidx == q->size) 450 q->cidx = 0; 451 q->avail--; 452 } 453 } 454 455 /** 456 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list 457 * @adap: the adapter 458 * @q: the SGE free list 459 * 460 * Unmap the current buffer on an SGE free-buffer Rx queue. The 461 * buffer must be made inaccessible to HW before calling this function. 462 * 463 * This is similar to @free_rx_bufs above but does not free the buffer. 464 * Do note that the FL still loses any further access to the buffer. 465 */ 466 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q) 467 { 468 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 469 470 if (is_buf_mapped(d)) 471 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 472 get_buf_size(adap, d), DMA_FROM_DEVICE); 473 d->page = NULL; 474 if (++q->cidx == q->size) 475 q->cidx = 0; 476 q->avail--; 477 } 478 479 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) 480 { 481 if (q->pend_cred >= 8) { 482 u32 val = adap->params.arch.sge_fl_db; 483 484 if (is_t4(adap->params.chip)) 485 val |= PIDX_V(q->pend_cred / 8); 486 else 487 val |= PIDX_T5_V(q->pend_cred / 8); 488 489 /* Make sure all memory writes to the Free List queue are 490 * committed before we tell the hardware about them. 491 */ 492 wmb(); 493 494 /* If we don't have access to the new User Doorbell (T5+), use 495 * the old doorbell mechanism; otherwise use the new BAR2 496 * mechanism. 497 */ 498 if (unlikely(q->bar2_addr == NULL)) { 499 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 500 val | QID_V(q->cntxt_id)); 501 } else { 502 writel(val | QID_V(q->bar2_qid), 503 q->bar2_addr + SGE_UDB_KDOORBELL); 504 505 /* This Write memory Barrier will force the write to 506 * the User Doorbell area to be flushed. 507 */ 508 wmb(); 509 } 510 q->pend_cred &= 7; 511 } 512 } 513 514 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg, 515 dma_addr_t mapping) 516 { 517 sd->page = pg; 518 sd->dma_addr = mapping; /* includes size low bits */ 519 } 520 521 /** 522 * refill_fl - refill an SGE Rx buffer ring 523 * @adap: the adapter 524 * @q: the ring to refill 525 * @n: the number of new buffers to allocate 526 * @gfp: the gfp flags for the allocations 527 * 528 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, 529 * allocated with the supplied gfp flags. The caller must assure that 530 * @n does not exceed the queue's capacity. If afterwards the queue is 531 * found critically low mark it as starving in the bitmap of starving FLs. 532 * 533 * Returns the number of buffers allocated. 534 */ 535 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n, 536 gfp_t gfp) 537 { 538 struct sge *s = &adap->sge; 539 struct page *pg; 540 dma_addr_t mapping; 541 unsigned int cred = q->avail; 542 __be64 *d = &q->desc[q->pidx]; 543 struct rx_sw_desc *sd = &q->sdesc[q->pidx]; 544 int node; 545 546 #ifdef CONFIG_DEBUG_FS 547 if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl)) 548 goto out; 549 #endif 550 551 gfp |= __GFP_NOWARN; 552 node = dev_to_node(adap->pdev_dev); 553 554 if (s->fl_pg_order == 0) 555 goto alloc_small_pages; 556 557 /* 558 * Prefer large buffers 559 */ 560 while (n) { 561 pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order); 562 if (unlikely(!pg)) { 563 q->large_alloc_failed++; 564 break; /* fall back to single pages */ 565 } 566 567 mapping = dma_map_page(adap->pdev_dev, pg, 0, 568 PAGE_SIZE << s->fl_pg_order, 569 DMA_FROM_DEVICE); 570 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 571 __free_pages(pg, s->fl_pg_order); 572 q->mapping_err++; 573 goto out; /* do not try small pages for this error */ 574 } 575 mapping |= RX_LARGE_PG_BUF; 576 *d++ = cpu_to_be64(mapping); 577 578 set_rx_sw_desc(sd, pg, mapping); 579 sd++; 580 581 q->avail++; 582 if (++q->pidx == q->size) { 583 q->pidx = 0; 584 sd = q->sdesc; 585 d = q->desc; 586 } 587 n--; 588 } 589 590 alloc_small_pages: 591 while (n--) { 592 pg = alloc_pages_node(node, gfp, 0); 593 if (unlikely(!pg)) { 594 q->alloc_failed++; 595 break; 596 } 597 598 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE, 599 DMA_FROM_DEVICE); 600 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 601 put_page(pg); 602 q->mapping_err++; 603 goto out; 604 } 605 *d++ = cpu_to_be64(mapping); 606 607 set_rx_sw_desc(sd, pg, mapping); 608 sd++; 609 610 q->avail++; 611 if (++q->pidx == q->size) { 612 q->pidx = 0; 613 sd = q->sdesc; 614 d = q->desc; 615 } 616 } 617 618 out: cred = q->avail - cred; 619 q->pend_cred += cred; 620 ring_fl_db(adap, q); 621 622 if (unlikely(fl_starving(adap, q))) { 623 smp_wmb(); 624 q->low++; 625 set_bit(q->cntxt_id - adap->sge.egr_start, 626 adap->sge.starving_fl); 627 } 628 629 return cred; 630 } 631 632 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) 633 { 634 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail), 635 GFP_ATOMIC); 636 } 637 638 /** 639 * alloc_ring - allocate resources for an SGE descriptor ring 640 * @dev: the PCI device's core device 641 * @nelem: the number of descriptors 642 * @elem_size: the size of each descriptor 643 * @sw_size: the size of the SW state associated with each ring element 644 * @phys: the physical address of the allocated ring 645 * @metadata: address of the array holding the SW state for the ring 646 * @stat_size: extra space in HW ring for status information 647 * @node: preferred node for memory allocations 648 * 649 * Allocates resources for an SGE descriptor ring, such as Tx queues, 650 * free buffer lists, or response queues. Each SGE ring requires 651 * space for its HW descriptors plus, optionally, space for the SW state 652 * associated with each HW entry (the metadata). The function returns 653 * three values: the virtual address for the HW ring (the return value 654 * of the function), the bus address of the HW ring, and the address 655 * of the SW ring. 656 */ 657 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size, 658 size_t sw_size, dma_addr_t *phys, void *metadata, 659 size_t stat_size, int node) 660 { 661 size_t len = nelem * elem_size + stat_size; 662 void *s = NULL; 663 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL); 664 665 if (!p) 666 return NULL; 667 if (sw_size) { 668 s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node); 669 670 if (!s) { 671 dma_free_coherent(dev, len, p, *phys); 672 return NULL; 673 } 674 } 675 if (metadata) 676 *(void **)metadata = s; 677 return p; 678 } 679 680 /** 681 * sgl_len - calculates the size of an SGL of the given capacity 682 * @n: the number of SGL entries 683 * 684 * Calculates the number of flits needed for a scatter/gather list that 685 * can hold the given number of entries. 686 */ 687 static inline unsigned int sgl_len(unsigned int n) 688 { 689 /* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA 690 * addresses. The DSGL Work Request starts off with a 32-bit DSGL 691 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N, 692 * repeated sequences of { Length[i], Length[i+1], Address[i], 693 * Address[i+1] } (this ensures that all addresses are on 64-bit 694 * boundaries). If N is even, then Length[N+1] should be set to 0 and 695 * Address[N+1] is omitted. 696 * 697 * The following calculation incorporates all of the above. It's 698 * somewhat hard to follow but, briefly: the "+2" accounts for the 699 * first two flits which include the DSGL header, Length0 and 700 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3 701 * flits for every pair of the remaining N) +1 if (n-1) is odd; and 702 * finally the "+((n-1)&1)" adds the one remaining flit needed if 703 * (n-1) is odd ... 704 */ 705 n--; 706 return (3 * n) / 2 + (n & 1) + 2; 707 } 708 709 /** 710 * flits_to_desc - returns the num of Tx descriptors for the given flits 711 * @n: the number of flits 712 * 713 * Returns the number of Tx descriptors needed for the supplied number 714 * of flits. 715 */ 716 static inline unsigned int flits_to_desc(unsigned int n) 717 { 718 BUG_ON(n > SGE_MAX_WR_LEN / 8); 719 return DIV_ROUND_UP(n, 8); 720 } 721 722 /** 723 * is_eth_imm - can an Ethernet packet be sent as immediate data? 724 * @skb: the packet 725 * @chip_ver: chip version 726 * 727 * Returns whether an Ethernet packet is small enough to fit as 728 * immediate data. Return value corresponds to headroom required. 729 */ 730 static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver) 731 { 732 int hdrlen = 0; 733 734 if (skb->encapsulation && skb_shinfo(skb)->gso_size && 735 chip_ver > CHELSIO_T5) { 736 hdrlen = sizeof(struct cpl_tx_tnl_lso); 737 hdrlen += sizeof(struct cpl_tx_pkt_core); 738 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 739 return 0; 740 } else { 741 hdrlen = skb_shinfo(skb)->gso_size ? 742 sizeof(struct cpl_tx_pkt_lso_core) : 0; 743 hdrlen += sizeof(struct cpl_tx_pkt); 744 } 745 if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen) 746 return hdrlen; 747 return 0; 748 } 749 750 /** 751 * calc_tx_flits - calculate the number of flits for a packet Tx WR 752 * @skb: the packet 753 * @chip_ver: chip version 754 * 755 * Returns the number of flits needed for a Tx WR for the given Ethernet 756 * packet, including the needed WR and CPL headers. 757 */ 758 static inline unsigned int calc_tx_flits(const struct sk_buff *skb, 759 unsigned int chip_ver) 760 { 761 unsigned int flits; 762 int hdrlen = is_eth_imm(skb, chip_ver); 763 764 /* If the skb is small enough, we can pump it out as a work request 765 * with only immediate data. In that case we just have to have the 766 * TX Packet header plus the skb data in the Work Request. 767 */ 768 769 if (hdrlen) 770 return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64)); 771 772 /* Otherwise, we're going to have to construct a Scatter gather list 773 * of the skb body and fragments. We also include the flits necessary 774 * for the TX Packet Work Request and CPL. We always have a firmware 775 * Write Header (incorporated as part of the cpl_tx_pkt_lso and 776 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 777 * message or, if we're doing a Large Send Offload, an LSO CPL message 778 * with an embedded TX Packet Write CPL message. 779 */ 780 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); 781 if (skb_shinfo(skb)->gso_size) { 782 if (skb->encapsulation && chip_ver > CHELSIO_T5) { 783 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) + 784 sizeof(struct cpl_tx_tnl_lso); 785 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 786 u32 pkt_hdrlen; 787 788 pkt_hdrlen = eth_get_headlen(skb->dev, skb->data, 789 skb_headlen(skb)); 790 hdrlen = sizeof(struct fw_eth_tx_eo_wr) + 791 round_up(pkt_hdrlen, 16); 792 } else { 793 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) + 794 sizeof(struct cpl_tx_pkt_lso_core); 795 } 796 797 hdrlen += sizeof(struct cpl_tx_pkt_core); 798 flits += (hdrlen / sizeof(__be64)); 799 } else { 800 flits += (sizeof(struct fw_eth_tx_pkt_wr) + 801 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 802 } 803 return flits; 804 } 805 806 /** 807 * cxgb4_write_sgl - populate a scatter/gather list for a packet 808 * @skb: the packet 809 * @q: the Tx queue we are writing into 810 * @sgl: starting location for writing the SGL 811 * @end: points right after the end of the SGL 812 * @start: start offset into skb main-body data to include in the SGL 813 * @addr: the list of bus addresses for the SGL elements 814 * 815 * Generates a gather list for the buffers that make up a packet. 816 * The caller must provide adequate space for the SGL that will be written. 817 * The SGL includes all of the packet's page fragments and the data in its 818 * main body except for the first @start bytes. @sgl must be 16-byte 819 * aligned and within a Tx descriptor with available space. @end points 820 * right after the end of the SGL but does not account for any potential 821 * wrap around, i.e., @end > @sgl. 822 */ 823 void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q, 824 struct ulptx_sgl *sgl, u64 *end, unsigned int start, 825 const dma_addr_t *addr) 826 { 827 unsigned int i, len; 828 struct ulptx_sge_pair *to; 829 const struct skb_shared_info *si = skb_shinfo(skb); 830 unsigned int nfrags = si->nr_frags; 831 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1]; 832 833 len = skb_headlen(skb) - start; 834 if (likely(len)) { 835 sgl->len0 = htonl(len); 836 sgl->addr0 = cpu_to_be64(addr[0] + start); 837 nfrags++; 838 } else { 839 sgl->len0 = htonl(skb_frag_size(&si->frags[0])); 840 sgl->addr0 = cpu_to_be64(addr[1]); 841 } 842 843 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | 844 ULPTX_NSGE_V(nfrags)); 845 if (likely(--nfrags == 0)) 846 return; 847 /* 848 * Most of the complexity below deals with the possibility we hit the 849 * end of the queue in the middle of writing the SGL. For this case 850 * only we create the SGL in a temporary buffer and then copy it. 851 */ 852 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; 853 854 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) { 855 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 856 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i])); 857 to->addr[0] = cpu_to_be64(addr[i]); 858 to->addr[1] = cpu_to_be64(addr[++i]); 859 } 860 if (nfrags) { 861 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 862 to->len[1] = cpu_to_be32(0); 863 to->addr[0] = cpu_to_be64(addr[i + 1]); 864 } 865 if (unlikely((u8 *)end > (u8 *)q->stat)) { 866 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1; 867 868 if (likely(part0)) 869 memcpy(sgl->sge, buf, part0); 870 part1 = (u8 *)end - (u8 *)q->stat; 871 memcpy(q->desc, (u8 *)buf + part0, part1); 872 end = (void *)q->desc + part1; 873 } 874 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ 875 *end = 0; 876 } 877 EXPORT_SYMBOL(cxgb4_write_sgl); 878 879 /* cxgb4_write_partial_sgl - populate SGL for partial packet 880 * @skb: the packet 881 * @q: the Tx queue we are writing into 882 * @sgl: starting location for writing the SGL 883 * @end: points right after the end of the SGL 884 * @addr: the list of bus addresses for the SGL elements 885 * @start: start offset in the SKB where partial data starts 886 * @len: length of data from @start to send out 887 * 888 * This API will handle sending out partial data of a skb if required. 889 * Unlike cxgb4_write_sgl, @start can be any offset into the skb data, 890 * and @len will decide how much data after @start offset to send out. 891 */ 892 void cxgb4_write_partial_sgl(const struct sk_buff *skb, struct sge_txq *q, 893 struct ulptx_sgl *sgl, u64 *end, 894 const dma_addr_t *addr, u32 start, u32 len) 895 { 896 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1] = {0}, *to; 897 u32 frag_size, skb_linear_data_len = skb_headlen(skb); 898 struct skb_shared_info *si = skb_shinfo(skb); 899 u8 i = 0, frag_idx = 0, nfrags = 0; 900 skb_frag_t *frag; 901 902 /* Fill the first SGL either from linear data or from partial 903 * frag based on @start. 904 */ 905 if (unlikely(start < skb_linear_data_len)) { 906 frag_size = min(len, skb_linear_data_len - start); 907 sgl->len0 = htonl(frag_size); 908 sgl->addr0 = cpu_to_be64(addr[0] + start); 909 len -= frag_size; 910 nfrags++; 911 } else { 912 start -= skb_linear_data_len; 913 frag = &si->frags[frag_idx]; 914 frag_size = skb_frag_size(frag); 915 /* find the first frag */ 916 while (start >= frag_size) { 917 start -= frag_size; 918 frag_idx++; 919 frag = &si->frags[frag_idx]; 920 frag_size = skb_frag_size(frag); 921 } 922 923 frag_size = min(len, skb_frag_size(frag) - start); 924 sgl->len0 = cpu_to_be32(frag_size); 925 sgl->addr0 = cpu_to_be64(addr[frag_idx + 1] + start); 926 len -= frag_size; 927 nfrags++; 928 frag_idx++; 929 } 930 931 /* If the entire partial data fit in one SGL, then send it out 932 * now. 933 */ 934 if (!len) 935 goto done; 936 937 /* Most of the complexity below deals with the possibility we hit the 938 * end of the queue in the middle of writing the SGL. For this case 939 * only we create the SGL in a temporary buffer and then copy it. 940 */ 941 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; 942 943 /* If the skb couldn't fit in first SGL completely, fill the 944 * rest of the frags in subsequent SGLs. Note that each SGL 945 * pair can store 2 frags. 946 */ 947 while (len) { 948 frag_size = min(len, skb_frag_size(&si->frags[frag_idx])); 949 to->len[i & 1] = cpu_to_be32(frag_size); 950 to->addr[i & 1] = cpu_to_be64(addr[frag_idx + 1]); 951 if (i && (i & 1)) 952 to++; 953 nfrags++; 954 frag_idx++; 955 i++; 956 len -= frag_size; 957 } 958 959 /* If we ended in an odd boundary, then set the second SGL's 960 * length in the pair to 0. 961 */ 962 if (i & 1) 963 to->len[1] = cpu_to_be32(0); 964 965 /* Copy from temporary buffer to Tx ring, in case we hit the 966 * end of the queue in the middle of writing the SGL. 967 */ 968 if (unlikely((u8 *)end > (u8 *)q->stat)) { 969 u32 part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1; 970 971 if (likely(part0)) 972 memcpy(sgl->sge, buf, part0); 973 part1 = (u8 *)end - (u8 *)q->stat; 974 memcpy(q->desc, (u8 *)buf + part0, part1); 975 end = (void *)q->desc + part1; 976 } 977 978 /* 0-pad to multiple of 16 */ 979 if ((uintptr_t)end & 8) 980 *end = 0; 981 done: 982 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | 983 ULPTX_NSGE_V(nfrags)); 984 } 985 EXPORT_SYMBOL(cxgb4_write_partial_sgl); 986 987 /* This function copies 64 byte coalesced work request to 988 * memory mapped BAR2 space. For coalesced WR SGE fetches 989 * data from the FIFO instead of from Host. 990 */ 991 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src) 992 { 993 int count = 8; 994 995 while (count) { 996 writeq(*src, dst); 997 src++; 998 dst++; 999 count--; 1000 } 1001 } 1002 1003 /** 1004 * cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell 1005 * @adap: the adapter 1006 * @q: the Tx queue 1007 * @n: number of new descriptors to give to HW 1008 * 1009 * Ring the doorbel for a Tx queue. 1010 */ 1011 inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n) 1012 { 1013 /* Make sure that all writes to the TX Descriptors are committed 1014 * before we tell the hardware about them. 1015 */ 1016 wmb(); 1017 1018 /* If we don't have access to the new User Doorbell (T5+), use the old 1019 * doorbell mechanism; otherwise use the new BAR2 mechanism. 1020 */ 1021 if (unlikely(q->bar2_addr == NULL)) { 1022 u32 val = PIDX_V(n); 1023 unsigned long flags; 1024 1025 /* For T4 we need to participate in the Doorbell Recovery 1026 * mechanism. 1027 */ 1028 spin_lock_irqsave(&q->db_lock, flags); 1029 if (!q->db_disabled) 1030 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1031 QID_V(q->cntxt_id) | val); 1032 else 1033 q->db_pidx_inc += n; 1034 q->db_pidx = q->pidx; 1035 spin_unlock_irqrestore(&q->db_lock, flags); 1036 } else { 1037 u32 val = PIDX_T5_V(n); 1038 1039 /* T4 and later chips share the same PIDX field offset within 1040 * the doorbell, but T5 and later shrank the field in order to 1041 * gain a bit for Doorbell Priority. The field was absurdly 1042 * large in the first place (14 bits) so we just use the T5 1043 * and later limits and warn if a Queue ID is too large. 1044 */ 1045 WARN_ON(val & DBPRIO_F); 1046 1047 /* If we're only writing a single TX Descriptor and we can use 1048 * Inferred QID registers, we can use the Write Combining 1049 * Gather Buffer; otherwise we use the simple doorbell. 1050 */ 1051 if (n == 1 && q->bar2_qid == 0) { 1052 int index = (q->pidx 1053 ? (q->pidx - 1) 1054 : (q->size - 1)); 1055 u64 *wr = (u64 *)&q->desc[index]; 1056 1057 cxgb_pio_copy((u64 __iomem *) 1058 (q->bar2_addr + SGE_UDB_WCDOORBELL), 1059 wr); 1060 } else { 1061 writel(val | QID_V(q->bar2_qid), 1062 q->bar2_addr + SGE_UDB_KDOORBELL); 1063 } 1064 1065 /* This Write Memory Barrier will force the write to the User 1066 * Doorbell area to be flushed. This is needed to prevent 1067 * writes on different CPUs for the same queue from hitting 1068 * the adapter out of order. This is required when some Work 1069 * Requests take the Write Combine Gather Buffer path (user 1070 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some 1071 * take the traditional path where we simply increment the 1072 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the 1073 * hardware DMA read the actual Work Request. 1074 */ 1075 wmb(); 1076 } 1077 } 1078 EXPORT_SYMBOL(cxgb4_ring_tx_db); 1079 1080 /** 1081 * cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors 1082 * @skb: the packet 1083 * @q: the Tx queue where the packet will be inlined 1084 * @pos: starting position in the Tx queue where to inline the packet 1085 * 1086 * Inline a packet's contents directly into Tx descriptors, starting at 1087 * the given position within the Tx DMA ring. 1088 * Most of the complexity of this operation is dealing with wrap arounds 1089 * in the middle of the packet we want to inline. 1090 */ 1091 void cxgb4_inline_tx_skb(const struct sk_buff *skb, 1092 const struct sge_txq *q, void *pos) 1093 { 1094 int left = (void *)q->stat - pos; 1095 u64 *p; 1096 1097 if (likely(skb->len <= left)) { 1098 if (likely(!skb->data_len)) 1099 skb_copy_from_linear_data(skb, pos, skb->len); 1100 else 1101 skb_copy_bits(skb, 0, pos, skb->len); 1102 pos += skb->len; 1103 } else { 1104 skb_copy_bits(skb, 0, pos, left); 1105 skb_copy_bits(skb, left, q->desc, skb->len - left); 1106 pos = (void *)q->desc + (skb->len - left); 1107 } 1108 1109 /* 0-pad to multiple of 16 */ 1110 p = PTR_ALIGN(pos, 8); 1111 if ((uintptr_t)p & 8) 1112 *p = 0; 1113 } 1114 EXPORT_SYMBOL(cxgb4_inline_tx_skb); 1115 1116 static void *inline_tx_skb_header(const struct sk_buff *skb, 1117 const struct sge_txq *q, void *pos, 1118 int length) 1119 { 1120 u64 *p; 1121 int left = (void *)q->stat - pos; 1122 1123 if (likely(length <= left)) { 1124 memcpy(pos, skb->data, length); 1125 pos += length; 1126 } else { 1127 memcpy(pos, skb->data, left); 1128 memcpy(q->desc, skb->data + left, length - left); 1129 pos = (void *)q->desc + (length - left); 1130 } 1131 /* 0-pad to multiple of 16 */ 1132 p = PTR_ALIGN(pos, 8); 1133 if ((uintptr_t)p & 8) { 1134 *p = 0; 1135 return p + 1; 1136 } 1137 return p; 1138 } 1139 1140 /* 1141 * Figure out what HW csum a packet wants and return the appropriate control 1142 * bits. 1143 */ 1144 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb) 1145 { 1146 int csum_type; 1147 bool inner_hdr_csum = false; 1148 u16 proto, ver; 1149 1150 if (skb->encapsulation && 1151 (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5)) 1152 inner_hdr_csum = true; 1153 1154 if (inner_hdr_csum) { 1155 ver = inner_ip_hdr(skb)->version; 1156 proto = (ver == 4) ? inner_ip_hdr(skb)->protocol : 1157 inner_ipv6_hdr(skb)->nexthdr; 1158 } else { 1159 ver = ip_hdr(skb)->version; 1160 proto = (ver == 4) ? ip_hdr(skb)->protocol : 1161 ipv6_hdr(skb)->nexthdr; 1162 } 1163 1164 if (ver == 4) { 1165 if (proto == IPPROTO_TCP) 1166 csum_type = TX_CSUM_TCPIP; 1167 else if (proto == IPPROTO_UDP) 1168 csum_type = TX_CSUM_UDPIP; 1169 else { 1170 nocsum: /* 1171 * unknown protocol, disable HW csum 1172 * and hope a bad packet is detected 1173 */ 1174 return TXPKT_L4CSUM_DIS_F; 1175 } 1176 } else { 1177 /* 1178 * this doesn't work with extension headers 1179 */ 1180 if (proto == IPPROTO_TCP) 1181 csum_type = TX_CSUM_TCPIP6; 1182 else if (proto == IPPROTO_UDP) 1183 csum_type = TX_CSUM_UDPIP6; 1184 else 1185 goto nocsum; 1186 } 1187 1188 if (likely(csum_type >= TX_CSUM_TCPIP)) { 1189 int eth_hdr_len, l4_len; 1190 u64 hdr_len; 1191 1192 if (inner_hdr_csum) { 1193 /* This allows checksum offload for all encapsulated 1194 * packets like GRE etc.. 1195 */ 1196 l4_len = skb_inner_network_header_len(skb); 1197 eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN; 1198 } else { 1199 l4_len = skb_network_header_len(skb); 1200 eth_hdr_len = skb_network_offset(skb) - ETH_HLEN; 1201 } 1202 hdr_len = TXPKT_IPHDR_LEN_V(l4_len); 1203 1204 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1205 hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1206 else 1207 hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1208 return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len; 1209 } else { 1210 int start = skb_transport_offset(skb); 1211 1212 return TXPKT_CSUM_TYPE_V(csum_type) | 1213 TXPKT_CSUM_START_V(start) | 1214 TXPKT_CSUM_LOC_V(start + skb->csum_offset); 1215 } 1216 } 1217 1218 static void eth_txq_stop(struct sge_eth_txq *q) 1219 { 1220 netif_tx_stop_queue(q->txq); 1221 q->q.stops++; 1222 } 1223 1224 static inline void txq_advance(struct sge_txq *q, unsigned int n) 1225 { 1226 q->in_use += n; 1227 q->pidx += n; 1228 if (q->pidx >= q->size) 1229 q->pidx -= q->size; 1230 } 1231 1232 #ifdef CONFIG_CHELSIO_T4_FCOE 1233 static inline int 1234 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap, 1235 const struct port_info *pi, u64 *cntrl) 1236 { 1237 const struct cxgb_fcoe *fcoe = &pi->fcoe; 1238 1239 if (!(fcoe->flags & CXGB_FCOE_ENABLED)) 1240 return 0; 1241 1242 if (skb->protocol != htons(ETH_P_FCOE)) 1243 return 0; 1244 1245 skb_reset_mac_header(skb); 1246 skb->mac_len = sizeof(struct ethhdr); 1247 1248 skb_set_network_header(skb, skb->mac_len); 1249 skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr)); 1250 1251 if (!cxgb_fcoe_sof_eof_supported(adap, skb)) 1252 return -ENOTSUPP; 1253 1254 /* FC CRC offload */ 1255 *cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) | 1256 TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F | 1257 TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) | 1258 TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) | 1259 TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END); 1260 return 0; 1261 } 1262 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1263 1264 /* Returns tunnel type if hardware supports offloading of the same. 1265 * It is called only for T5 and onwards. 1266 */ 1267 enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb) 1268 { 1269 u8 l4_hdr = 0; 1270 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE; 1271 struct port_info *pi = netdev_priv(skb->dev); 1272 struct adapter *adapter = pi->adapter; 1273 1274 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 1275 skb->inner_protocol != htons(ETH_P_TEB)) 1276 return tnl_type; 1277 1278 switch (vlan_get_protocol(skb)) { 1279 case htons(ETH_P_IP): 1280 l4_hdr = ip_hdr(skb)->protocol; 1281 break; 1282 case htons(ETH_P_IPV6): 1283 l4_hdr = ipv6_hdr(skb)->nexthdr; 1284 break; 1285 default: 1286 return tnl_type; 1287 } 1288 1289 switch (l4_hdr) { 1290 case IPPROTO_UDP: 1291 if (adapter->vxlan_port == udp_hdr(skb)->dest) 1292 tnl_type = TX_TNL_TYPE_VXLAN; 1293 else if (adapter->geneve_port == udp_hdr(skb)->dest) 1294 tnl_type = TX_TNL_TYPE_GENEVE; 1295 break; 1296 default: 1297 return tnl_type; 1298 } 1299 1300 return tnl_type; 1301 } 1302 1303 static inline void t6_fill_tnl_lso(struct sk_buff *skb, 1304 struct cpl_tx_tnl_lso *tnl_lso, 1305 enum cpl_tx_tnl_lso_type tnl_type) 1306 { 1307 u32 val; 1308 int in_eth_xtra_len; 1309 int l3hdr_len = skb_network_header_len(skb); 1310 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1311 const struct skb_shared_info *ssi = skb_shinfo(skb); 1312 bool v6 = (ip_hdr(skb)->version == 6); 1313 1314 val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) | 1315 CPL_TX_TNL_LSO_FIRST_F | 1316 CPL_TX_TNL_LSO_LAST_F | 1317 (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) | 1318 CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) | 1319 CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) | 1320 (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) | 1321 CPL_TX_TNL_LSO_IPLENSETOUT_F | 1322 (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F); 1323 tnl_lso->op_to_IpIdSplitOut = htonl(val); 1324 1325 tnl_lso->IpIdOffsetOut = 0; 1326 1327 /* Get the tunnel header length */ 1328 val = skb_inner_mac_header(skb) - skb_mac_header(skb); 1329 in_eth_xtra_len = skb_inner_network_header(skb) - 1330 skb_inner_mac_header(skb) - ETH_HLEN; 1331 1332 switch (tnl_type) { 1333 case TX_TNL_TYPE_VXLAN: 1334 case TX_TNL_TYPE_GENEVE: 1335 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 1336 htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F | 1337 CPL_TX_TNL_LSO_UDPLENSETOUT_F); 1338 break; 1339 default: 1340 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0; 1341 break; 1342 } 1343 1344 tnl_lso->UdpLenSetOut_to_TnlHdrLen |= 1345 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) | 1346 CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type)); 1347 1348 tnl_lso->r1 = 0; 1349 1350 val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) | 1351 CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) | 1352 CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) | 1353 CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4); 1354 tnl_lso->Flow_to_TcpHdrLen = htonl(val); 1355 1356 tnl_lso->IpIdOffset = htons(0); 1357 1358 tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size)); 1359 tnl_lso->TCPSeqOffset = htonl(0); 1360 tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len)); 1361 } 1362 1363 static inline void *write_tso_wr(struct adapter *adap, struct sk_buff *skb, 1364 struct cpl_tx_pkt_lso_core *lso) 1365 { 1366 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1367 int l3hdr_len = skb_network_header_len(skb); 1368 const struct skb_shared_info *ssi; 1369 bool ipv6 = false; 1370 1371 ssi = skb_shinfo(skb); 1372 if (ssi->gso_type & SKB_GSO_TCPV6) 1373 ipv6 = true; 1374 1375 lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) | 1376 LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F | 1377 LSO_IPV6_V(ipv6) | 1378 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) | 1379 LSO_IPHDR_LEN_V(l3hdr_len / 4) | 1380 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff)); 1381 lso->ipid_ofst = htons(0); 1382 lso->mss = htons(ssi->gso_size); 1383 lso->seqno_offset = htonl(0); 1384 if (is_t4(adap->params.chip)) 1385 lso->len = htonl(skb->len); 1386 else 1387 lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len)); 1388 1389 return (void *)(lso + 1); 1390 } 1391 1392 /** 1393 * t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update 1394 * @adap: the adapter 1395 * @eq: the Ethernet TX Queue 1396 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1 1397 * 1398 * We're typically called here to update the state of an Ethernet TX 1399 * Queue with respect to the hardware's progress in consuming the TX 1400 * Work Requests that we've put on that Egress Queue. This happens 1401 * when we get Egress Queue Update messages and also prophylactically 1402 * in regular timer-based Ethernet TX Queue maintenance. 1403 */ 1404 int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq, 1405 int maxreclaim) 1406 { 1407 unsigned int reclaimed, hw_cidx; 1408 struct sge_txq *q = &eq->q; 1409 int hw_in_use; 1410 1411 if (!q->in_use || !__netif_tx_trylock(eq->txq)) 1412 return 0; 1413 1414 /* Reclaim pending completed TX Descriptors. */ 1415 reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true); 1416 1417 hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 1418 hw_in_use = q->pidx - hw_cidx; 1419 if (hw_in_use < 0) 1420 hw_in_use += q->size; 1421 1422 /* If the TX Queue is currently stopped and there's now more than half 1423 * the queue available, restart it. Otherwise bail out since the rest 1424 * of what we want do here is with the possibility of shipping any 1425 * currently buffered Coalesced TX Work Request. 1426 */ 1427 if (netif_tx_queue_stopped(eq->txq) && hw_in_use < (q->size / 2)) { 1428 netif_tx_wake_queue(eq->txq); 1429 eq->q.restarts++; 1430 } 1431 1432 __netif_tx_unlock(eq->txq); 1433 return reclaimed; 1434 } 1435 1436 static inline int cxgb4_validate_skb(struct sk_buff *skb, 1437 struct net_device *dev, 1438 u32 min_pkt_len) 1439 { 1440 u32 max_pkt_len; 1441 1442 /* The chip min packet length is 10 octets but some firmware 1443 * commands have a minimum packet length requirement. So, play 1444 * safe and reject anything shorter than @min_pkt_len. 1445 */ 1446 if (unlikely(skb->len < min_pkt_len)) 1447 return -EINVAL; 1448 1449 /* Discard the packet if the length is greater than mtu */ 1450 max_pkt_len = ETH_HLEN + dev->mtu; 1451 1452 if (skb_vlan_tagged(skb)) 1453 max_pkt_len += VLAN_HLEN; 1454 1455 if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len))) 1456 return -EINVAL; 1457 1458 return 0; 1459 } 1460 1461 static void *write_eo_udp_wr(struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr, 1462 u32 hdr_len) 1463 { 1464 wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG; 1465 wr->u.udpseg.ethlen = skb_network_offset(skb); 1466 wr->u.udpseg.iplen = cpu_to_be16(skb_network_header_len(skb)); 1467 wr->u.udpseg.udplen = sizeof(struct udphdr); 1468 wr->u.udpseg.rtplen = 0; 1469 wr->u.udpseg.r4 = 0; 1470 if (skb_shinfo(skb)->gso_size) 1471 wr->u.udpseg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size); 1472 else 1473 wr->u.udpseg.mss = cpu_to_be16(skb->len - hdr_len); 1474 wr->u.udpseg.schedpktsize = wr->u.udpseg.mss; 1475 wr->u.udpseg.plen = cpu_to_be32(skb->len - hdr_len); 1476 1477 return (void *)(wr + 1); 1478 } 1479 1480 /** 1481 * cxgb4_eth_xmit - add a packet to an Ethernet Tx queue 1482 * @skb: the packet 1483 * @dev: the egress net device 1484 * 1485 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled. 1486 */ 1487 static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev) 1488 { 1489 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE; 1490 bool ptp_enabled = is_ptp_enabled(skb, dev); 1491 unsigned int last_desc, flits, ndesc; 1492 u32 wr_mid, ctrl0, op, sgl_off = 0; 1493 const struct skb_shared_info *ssi; 1494 int len, qidx, credits, ret, left; 1495 struct tx_sw_desc *sgl_sdesc; 1496 struct fw_eth_tx_eo_wr *eowr; 1497 struct fw_eth_tx_pkt_wr *wr; 1498 struct cpl_tx_pkt_core *cpl; 1499 const struct port_info *pi; 1500 bool immediate = false; 1501 u64 cntrl, *end, *sgl; 1502 struct sge_eth_txq *q; 1503 unsigned int chip_ver; 1504 struct adapter *adap; 1505 1506 ret = cxgb4_validate_skb(skb, dev, ETH_HLEN); 1507 if (ret) 1508 goto out_free; 1509 1510 pi = netdev_priv(dev); 1511 adap = pi->adapter; 1512 ssi = skb_shinfo(skb); 1513 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE) 1514 if (xfrm_offload(skb) && !ssi->gso_size) 1515 return adap->uld[CXGB4_ULD_IPSEC].tx_handler(skb, dev); 1516 #endif /* CHELSIO_IPSEC_INLINE */ 1517 1518 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) 1519 if (tls_is_skb_tx_device_offloaded(skb) && 1520 (skb->len - skb_tcp_all_headers(skb))) 1521 return adap->uld[CXGB4_ULD_KTLS].tx_handler(skb, dev); 1522 #endif /* CHELSIO_TLS_DEVICE */ 1523 1524 qidx = skb_get_queue_mapping(skb); 1525 if (ptp_enabled) { 1526 if (!(adap->ptp_tx_skb)) { 1527 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1528 adap->ptp_tx_skb = skb_get(skb); 1529 } else { 1530 goto out_free; 1531 } 1532 q = &adap->sge.ptptxq; 1533 } else { 1534 q = &adap->sge.ethtxq[qidx + pi->first_qset]; 1535 } 1536 skb_tx_timestamp(skb); 1537 1538 reclaim_completed_tx(adap, &q->q, -1, true); 1539 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; 1540 1541 #ifdef CONFIG_CHELSIO_T4_FCOE 1542 ret = cxgb_fcoe_offload(skb, adap, pi, &cntrl); 1543 if (unlikely(ret == -EOPNOTSUPP)) 1544 goto out_free; 1545 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1546 1547 chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 1548 flits = calc_tx_flits(skb, chip_ver); 1549 ndesc = flits_to_desc(flits); 1550 credits = txq_avail(&q->q) - ndesc; 1551 1552 if (unlikely(credits < 0)) { 1553 eth_txq_stop(q); 1554 dev_err(adap->pdev_dev, 1555 "%s: Tx ring %u full while queue awake!\n", 1556 dev->name, qidx); 1557 return NETDEV_TX_BUSY; 1558 } 1559 1560 if (is_eth_imm(skb, chip_ver)) 1561 immediate = true; 1562 1563 if (skb->encapsulation && chip_ver > CHELSIO_T5) 1564 tnl_type = cxgb_encap_offload_supported(skb); 1565 1566 last_desc = q->q.pidx + ndesc - 1; 1567 if (last_desc >= q->q.size) 1568 last_desc -= q->q.size; 1569 sgl_sdesc = &q->q.sdesc[last_desc]; 1570 1571 if (!immediate && 1572 unlikely(cxgb4_map_skb(adap->pdev_dev, skb, sgl_sdesc->addr) < 0)) { 1573 memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr)); 1574 q->mapping_err++; 1575 goto out_free; 1576 } 1577 1578 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); 1579 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 1580 /* After we're done injecting the Work Request for this 1581 * packet, we'll be below our "stop threshold" so stop the TX 1582 * Queue now and schedule a request for an SGE Egress Queue 1583 * Update message. The queue will get started later on when 1584 * the firmware processes this Work Request and sends us an 1585 * Egress Queue Status Update message indicating that space 1586 * has opened up. 1587 */ 1588 eth_txq_stop(q); 1589 if (chip_ver > CHELSIO_T5) 1590 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; 1591 } 1592 1593 wr = (void *)&q->q.desc[q->q.pidx]; 1594 eowr = (void *)&q->q.desc[q->q.pidx]; 1595 wr->equiq_to_len16 = htonl(wr_mid); 1596 wr->r3 = cpu_to_be64(0); 1597 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) 1598 end = (u64 *)eowr + flits; 1599 else 1600 end = (u64 *)wr + flits; 1601 1602 len = immediate ? skb->len : 0; 1603 len += sizeof(*cpl); 1604 if (ssi->gso_size && !(ssi->gso_type & SKB_GSO_UDP_L4)) { 1605 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 1606 struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1); 1607 1608 if (tnl_type) 1609 len += sizeof(*tnl_lso); 1610 else 1611 len += sizeof(*lso); 1612 1613 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | 1614 FW_WR_IMMDLEN_V(len)); 1615 if (tnl_type) { 1616 struct iphdr *iph = ip_hdr(skb); 1617 1618 t6_fill_tnl_lso(skb, tnl_lso, tnl_type); 1619 cpl = (void *)(tnl_lso + 1); 1620 /* Driver is expected to compute partial checksum that 1621 * does not include the IP Total Length. 1622 */ 1623 if (iph->version == 4) { 1624 iph->check = 0; 1625 iph->tot_len = 0; 1626 iph->check = ~ip_fast_csum((u8 *)iph, iph->ihl); 1627 } 1628 if (skb->ip_summed == CHECKSUM_PARTIAL) 1629 cntrl = hwcsum(adap->params.chip, skb); 1630 } else { 1631 cpl = write_tso_wr(adap, skb, lso); 1632 cntrl = hwcsum(adap->params.chip, skb); 1633 } 1634 sgl = (u64 *)(cpl + 1); /* sgl start here */ 1635 q->tso++; 1636 q->tx_cso += ssi->gso_segs; 1637 } else if (ssi->gso_size) { 1638 u64 *start; 1639 u32 hdrlen; 1640 1641 hdrlen = eth_get_headlen(dev, skb->data, skb_headlen(skb)); 1642 len += hdrlen; 1643 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) | 1644 FW_ETH_TX_EO_WR_IMMDLEN_V(len)); 1645 cpl = write_eo_udp_wr(skb, eowr, hdrlen); 1646 cntrl = hwcsum(adap->params.chip, skb); 1647 1648 start = (u64 *)(cpl + 1); 1649 sgl = (u64 *)inline_tx_skb_header(skb, &q->q, (void *)start, 1650 hdrlen); 1651 if (unlikely(start > sgl)) { 1652 left = (u8 *)end - (u8 *)q->q.stat; 1653 end = (void *)q->q.desc + left; 1654 } 1655 sgl_off = hdrlen; 1656 q->uso++; 1657 q->tx_cso += ssi->gso_segs; 1658 } else { 1659 if (ptp_enabled) 1660 op = FW_PTP_TX_PKT_WR; 1661 else 1662 op = FW_ETH_TX_PKT_WR; 1663 wr->op_immdlen = htonl(FW_WR_OP_V(op) | 1664 FW_WR_IMMDLEN_V(len)); 1665 cpl = (void *)(wr + 1); 1666 sgl = (u64 *)(cpl + 1); 1667 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1668 cntrl = hwcsum(adap->params.chip, skb) | 1669 TXPKT_IPCSUM_DIS_F; 1670 q->tx_cso++; 1671 } 1672 } 1673 1674 if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) { 1675 /* If current position is already at the end of the 1676 * txq, reset the current to point to start of the queue 1677 * and update the end ptr as well. 1678 */ 1679 left = (u8 *)end - (u8 *)q->q.stat; 1680 end = (void *)q->q.desc + left; 1681 sgl = (void *)q->q.desc; 1682 } 1683 1684 if (skb_vlan_tag_present(skb)) { 1685 q->vlan_ins++; 1686 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 1687 #ifdef CONFIG_CHELSIO_T4_FCOE 1688 if (skb->protocol == htons(ETH_P_FCOE)) 1689 cntrl |= TXPKT_VLAN_V( 1690 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT)); 1691 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1692 } 1693 1694 ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) | 1695 TXPKT_PF_V(adap->pf); 1696 if (ptp_enabled) 1697 ctrl0 |= TXPKT_TSTAMP_F; 1698 #ifdef CONFIG_CHELSIO_T4_DCB 1699 if (is_t4(adap->params.chip)) 1700 ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio); 1701 else 1702 ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio); 1703 #endif 1704 cpl->ctrl0 = htonl(ctrl0); 1705 cpl->pack = htons(0); 1706 cpl->len = htons(skb->len); 1707 cpl->ctrl1 = cpu_to_be64(cntrl); 1708 1709 if (immediate) { 1710 cxgb4_inline_tx_skb(skb, &q->q, sgl); 1711 dev_consume_skb_any(skb); 1712 } else { 1713 cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, sgl_off, 1714 sgl_sdesc->addr); 1715 skb_orphan(skb); 1716 sgl_sdesc->skb = skb; 1717 } 1718 1719 txq_advance(&q->q, ndesc); 1720 1721 cxgb4_ring_tx_db(adap, &q->q, ndesc); 1722 return NETDEV_TX_OK; 1723 1724 out_free: 1725 dev_kfree_skb_any(skb); 1726 return NETDEV_TX_OK; 1727 } 1728 1729 /* Constants ... */ 1730 enum { 1731 /* Egress Queue sizes, producer and consumer indices are all in units 1732 * of Egress Context Units bytes. Note that as far as the hardware is 1733 * concerned, the free list is an Egress Queue (the host produces free 1734 * buffers which the hardware consumes) and free list entries are 1735 * 64-bit PCI DMA addresses. 1736 */ 1737 EQ_UNIT = SGE_EQ_IDXSIZE, 1738 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 1739 TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 1740 1741 T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) + 1742 sizeof(struct cpl_tx_pkt_lso_core) + 1743 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64), 1744 }; 1745 1746 /** 1747 * t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data? 1748 * @skb: the packet 1749 * 1750 * Returns whether an Ethernet packet is small enough to fit completely as 1751 * immediate data. 1752 */ 1753 static inline int t4vf_is_eth_imm(const struct sk_buff *skb) 1754 { 1755 /* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request 1756 * which does not accommodate immediate data. We could dike out all 1757 * of the support code for immediate data but that would tie our hands 1758 * too much if we ever want to enhace the firmware. It would also 1759 * create more differences between the PF and VF Drivers. 1760 */ 1761 return false; 1762 } 1763 1764 /** 1765 * t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR 1766 * @skb: the packet 1767 * 1768 * Returns the number of flits needed for a TX Work Request for the 1769 * given Ethernet packet, including the needed WR and CPL headers. 1770 */ 1771 static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb) 1772 { 1773 unsigned int flits; 1774 1775 /* If the skb is small enough, we can pump it out as a work request 1776 * with only immediate data. In that case we just have to have the 1777 * TX Packet header plus the skb data in the Work Request. 1778 */ 1779 if (t4vf_is_eth_imm(skb)) 1780 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt), 1781 sizeof(__be64)); 1782 1783 /* Otherwise, we're going to have to construct a Scatter gather list 1784 * of the skb body and fragments. We also include the flits necessary 1785 * for the TX Packet Work Request and CPL. We always have a firmware 1786 * Write Header (incorporated as part of the cpl_tx_pkt_lso and 1787 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 1788 * message or, if we're doing a Large Send Offload, an LSO CPL message 1789 * with an embedded TX Packet Write CPL message. 1790 */ 1791 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); 1792 if (skb_shinfo(skb)->gso_size) 1793 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + 1794 sizeof(struct cpl_tx_pkt_lso_core) + 1795 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 1796 else 1797 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + 1798 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 1799 return flits; 1800 } 1801 1802 /** 1803 * cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue 1804 * @skb: the packet 1805 * @dev: the egress net device 1806 * 1807 * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled. 1808 */ 1809 static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb, 1810 struct net_device *dev) 1811 { 1812 unsigned int last_desc, flits, ndesc; 1813 const struct skb_shared_info *ssi; 1814 struct fw_eth_tx_pkt_vm_wr *wr; 1815 struct tx_sw_desc *sgl_sdesc; 1816 struct cpl_tx_pkt_core *cpl; 1817 const struct port_info *pi; 1818 struct sge_eth_txq *txq; 1819 struct adapter *adapter; 1820 int qidx, credits, ret; 1821 size_t fw_hdr_copy_len; 1822 unsigned int chip_ver; 1823 u64 cntrl, *end; 1824 u32 wr_mid; 1825 1826 /* The chip minimum packet length is 10 octets but the firmware 1827 * command that we are using requires that we copy the Ethernet header 1828 * (including the VLAN tag) into the header so we reject anything 1829 * smaller than that ... 1830 */ 1831 BUILD_BUG_ON(sizeof(wr->firmware) != 1832 (sizeof(wr->ethmacdst) + sizeof(wr->ethmacsrc) + 1833 sizeof(wr->ethtype) + sizeof(wr->vlantci))); 1834 fw_hdr_copy_len = sizeof(wr->firmware); 1835 ret = cxgb4_validate_skb(skb, dev, fw_hdr_copy_len); 1836 if (ret) 1837 goto out_free; 1838 1839 /* Figure out which TX Queue we're going to use. */ 1840 pi = netdev_priv(dev); 1841 adapter = pi->adapter; 1842 qidx = skb_get_queue_mapping(skb); 1843 WARN_ON(qidx >= pi->nqsets); 1844 txq = &adapter->sge.ethtxq[pi->first_qset + qidx]; 1845 1846 /* Take this opportunity to reclaim any TX Descriptors whose DMA 1847 * transfers have completed. 1848 */ 1849 reclaim_completed_tx(adapter, &txq->q, -1, true); 1850 1851 /* Calculate the number of flits and TX Descriptors we're going to 1852 * need along with how many TX Descriptors will be left over after 1853 * we inject our Work Request. 1854 */ 1855 flits = t4vf_calc_tx_flits(skb); 1856 ndesc = flits_to_desc(flits); 1857 credits = txq_avail(&txq->q) - ndesc; 1858 1859 if (unlikely(credits < 0)) { 1860 /* Not enough room for this packet's Work Request. Stop the 1861 * TX Queue and return a "busy" condition. The queue will get 1862 * started later on when the firmware informs us that space 1863 * has opened up. 1864 */ 1865 eth_txq_stop(txq); 1866 dev_err(adapter->pdev_dev, 1867 "%s: TX ring %u full while queue awake!\n", 1868 dev->name, qidx); 1869 return NETDEV_TX_BUSY; 1870 } 1871 1872 last_desc = txq->q.pidx + ndesc - 1; 1873 if (last_desc >= txq->q.size) 1874 last_desc -= txq->q.size; 1875 sgl_sdesc = &txq->q.sdesc[last_desc]; 1876 1877 if (!t4vf_is_eth_imm(skb) && 1878 unlikely(cxgb4_map_skb(adapter->pdev_dev, skb, 1879 sgl_sdesc->addr) < 0)) { 1880 /* We need to map the skb into PCI DMA space (because it can't 1881 * be in-lined directly into the Work Request) and the mapping 1882 * operation failed. Record the error and drop the packet. 1883 */ 1884 memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr)); 1885 txq->mapping_err++; 1886 goto out_free; 1887 } 1888 1889 chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 1890 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); 1891 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 1892 /* After we're done injecting the Work Request for this 1893 * packet, we'll be below our "stop threshold" so stop the TX 1894 * Queue now and schedule a request for an SGE Egress Queue 1895 * Update message. The queue will get started later on when 1896 * the firmware processes this Work Request and sends us an 1897 * Egress Queue Status Update message indicating that space 1898 * has opened up. 1899 */ 1900 eth_txq_stop(txq); 1901 if (chip_ver > CHELSIO_T5) 1902 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; 1903 } 1904 1905 /* Start filling in our Work Request. Note that we do _not_ handle 1906 * the WR Header wrapping around the TX Descriptor Ring. If our 1907 * maximum header size ever exceeds one TX Descriptor, we'll need to 1908 * do something else here. 1909 */ 1910 WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1); 1911 wr = (void *)&txq->q.desc[txq->q.pidx]; 1912 wr->equiq_to_len16 = cpu_to_be32(wr_mid); 1913 wr->r3[0] = cpu_to_be32(0); 1914 wr->r3[1] = cpu_to_be32(0); 1915 skb_copy_from_linear_data(skb, &wr->firmware, fw_hdr_copy_len); 1916 end = (u64 *)wr + flits; 1917 1918 /* If this is a Large Send Offload packet we'll put in an LSO CPL 1919 * message with an encapsulated TX Packet CPL message. Otherwise we 1920 * just use a TX Packet CPL message. 1921 */ 1922 ssi = skb_shinfo(skb); 1923 if (ssi->gso_size) { 1924 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 1925 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; 1926 int l3hdr_len = skb_network_header_len(skb); 1927 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1928 1929 wr->op_immdlen = 1930 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) | 1931 FW_WR_IMMDLEN_V(sizeof(*lso) + 1932 sizeof(*cpl))); 1933 /* Fill in the LSO CPL message. */ 1934 lso->lso_ctrl = 1935 cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) | 1936 LSO_FIRST_SLICE_F | 1937 LSO_LAST_SLICE_F | 1938 LSO_IPV6_V(v6) | 1939 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) | 1940 LSO_IPHDR_LEN_V(l3hdr_len / 4) | 1941 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff)); 1942 lso->ipid_ofst = cpu_to_be16(0); 1943 lso->mss = cpu_to_be16(ssi->gso_size); 1944 lso->seqno_offset = cpu_to_be32(0); 1945 if (is_t4(adapter->params.chip)) 1946 lso->len = cpu_to_be32(skb->len); 1947 else 1948 lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len)); 1949 1950 /* Set up TX Packet CPL pointer, control word and perform 1951 * accounting. 1952 */ 1953 cpl = (void *)(lso + 1); 1954 1955 if (chip_ver <= CHELSIO_T5) 1956 cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1957 else 1958 cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1959 1960 cntrl |= TXPKT_CSUM_TYPE_V(v6 ? 1961 TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | 1962 TXPKT_IPHDR_LEN_V(l3hdr_len); 1963 txq->tso++; 1964 txq->tx_cso += ssi->gso_segs; 1965 } else { 1966 int len; 1967 1968 len = (t4vf_is_eth_imm(skb) 1969 ? skb->len + sizeof(*cpl) 1970 : sizeof(*cpl)); 1971 wr->op_immdlen = 1972 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) | 1973 FW_WR_IMMDLEN_V(len)); 1974 1975 /* Set up TX Packet CPL pointer, control word and perform 1976 * accounting. 1977 */ 1978 cpl = (void *)(wr + 1); 1979 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1980 cntrl = hwcsum(adapter->params.chip, skb) | 1981 TXPKT_IPCSUM_DIS_F; 1982 txq->tx_cso++; 1983 } else { 1984 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; 1985 } 1986 } 1987 1988 /* If there's a VLAN tag present, add that to the list of things to 1989 * do in this Work Request. 1990 */ 1991 if (skb_vlan_tag_present(skb)) { 1992 txq->vlan_ins++; 1993 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 1994 } 1995 1996 /* Fill in the TX Packet CPL message header. */ 1997 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) | 1998 TXPKT_INTF_V(pi->port_id) | 1999 TXPKT_PF_V(0)); 2000 cpl->pack = cpu_to_be16(0); 2001 cpl->len = cpu_to_be16(skb->len); 2002 cpl->ctrl1 = cpu_to_be64(cntrl); 2003 2004 /* Fill in the body of the TX Packet CPL message with either in-lined 2005 * data or a Scatter/Gather List. 2006 */ 2007 if (t4vf_is_eth_imm(skb)) { 2008 /* In-line the packet's data and free the skb since we don't 2009 * need it any longer. 2010 */ 2011 cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1); 2012 dev_consume_skb_any(skb); 2013 } else { 2014 /* Write the skb's Scatter/Gather list into the TX Packet CPL 2015 * message and retain a pointer to the skb so we can free it 2016 * later when its DMA completes. (We store the skb pointer 2017 * in the Software Descriptor corresponding to the last TX 2018 * Descriptor used by the Work Request.) 2019 * 2020 * The retained skb will be freed when the corresponding TX 2021 * Descriptors are reclaimed after their DMAs complete. 2022 * However, this could take quite a while since, in general, 2023 * the hardware is set up to be lazy about sending DMA 2024 * completion notifications to us and we mostly perform TX 2025 * reclaims in the transmit routine. 2026 * 2027 * This is good for performamce but means that we rely on new 2028 * TX packets arriving to run the destructors of completed 2029 * packets, which open up space in their sockets' send queues. 2030 * Sometimes we do not get such new packets causing TX to 2031 * stall. A single UDP transmitter is a good example of this 2032 * situation. We have a clean up timer that periodically 2033 * reclaims completed packets but it doesn't run often enough 2034 * (nor do we want it to) to prevent lengthy stalls. A 2035 * solution to this problem is to run the destructor early, 2036 * after the packet is queued but before it's DMAd. A con is 2037 * that we lie to socket memory accounting, but the amount of 2038 * extra memory is reasonable (limited by the number of TX 2039 * descriptors), the packets do actually get freed quickly by 2040 * new packets almost always, and for protocols like TCP that 2041 * wait for acks to really free up the data the extra memory 2042 * is even less. On the positive side we run the destructors 2043 * on the sending CPU rather than on a potentially different 2044 * completing CPU, usually a good thing. 2045 * 2046 * Run the destructor before telling the DMA engine about the 2047 * packet to make sure it doesn't complete and get freed 2048 * prematurely. 2049 */ 2050 struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1); 2051 struct sge_txq *tq = &txq->q; 2052 2053 /* If the Work Request header was an exact multiple of our TX 2054 * Descriptor length, then it's possible that the starting SGL 2055 * pointer lines up exactly with the end of our TX Descriptor 2056 * ring. If that's the case, wrap around to the beginning 2057 * here ... 2058 */ 2059 if (unlikely((void *)sgl == (void *)tq->stat)) { 2060 sgl = (void *)tq->desc; 2061 end = (void *)((void *)tq->desc + 2062 ((void *)end - (void *)tq->stat)); 2063 } 2064 2065 cxgb4_write_sgl(skb, tq, sgl, end, 0, sgl_sdesc->addr); 2066 skb_orphan(skb); 2067 sgl_sdesc->skb = skb; 2068 } 2069 2070 /* Advance our internal TX Queue state, tell the hardware about 2071 * the new TX descriptors and return success. 2072 */ 2073 txq_advance(&txq->q, ndesc); 2074 2075 cxgb4_ring_tx_db(adapter, &txq->q, ndesc); 2076 return NETDEV_TX_OK; 2077 2078 out_free: 2079 /* An error of some sort happened. Free the TX skb and tell the 2080 * OS that we've "dealt" with the packet ... 2081 */ 2082 dev_kfree_skb_any(skb); 2083 return NETDEV_TX_OK; 2084 } 2085 2086 /** 2087 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs 2088 * @q: the SGE control Tx queue 2089 * 2090 * This is a variant of cxgb4_reclaim_completed_tx() that is used 2091 * for Tx queues that send only immediate data (presently just 2092 * the control queues) and thus do not have any sk_buffs to release. 2093 */ 2094 static inline void reclaim_completed_tx_imm(struct sge_txq *q) 2095 { 2096 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 2097 int reclaim = hw_cidx - q->cidx; 2098 2099 if (reclaim < 0) 2100 reclaim += q->size; 2101 2102 q->in_use -= reclaim; 2103 q->cidx = hw_cidx; 2104 } 2105 2106 static inline void eosw_txq_advance_index(u32 *idx, u32 n, u32 max) 2107 { 2108 u32 val = *idx + n; 2109 2110 if (val >= max) 2111 val -= max; 2112 2113 *idx = val; 2114 } 2115 2116 void cxgb4_eosw_txq_free_desc(struct adapter *adap, 2117 struct sge_eosw_txq *eosw_txq, u32 ndesc) 2118 { 2119 struct tx_sw_desc *d; 2120 2121 d = &eosw_txq->desc[eosw_txq->last_cidx]; 2122 while (ndesc--) { 2123 if (d->skb) { 2124 if (d->addr[0]) { 2125 unmap_skb(adap->pdev_dev, d->skb, d->addr); 2126 memset(d->addr, 0, sizeof(d->addr)); 2127 } 2128 dev_consume_skb_any(d->skb); 2129 d->skb = NULL; 2130 } 2131 eosw_txq_advance_index(&eosw_txq->last_cidx, 1, 2132 eosw_txq->ndesc); 2133 d = &eosw_txq->desc[eosw_txq->last_cidx]; 2134 } 2135 } 2136 2137 static inline void eosw_txq_advance(struct sge_eosw_txq *eosw_txq, u32 n) 2138 { 2139 eosw_txq_advance_index(&eosw_txq->pidx, n, eosw_txq->ndesc); 2140 eosw_txq->inuse += n; 2141 } 2142 2143 static inline int eosw_txq_enqueue(struct sge_eosw_txq *eosw_txq, 2144 struct sk_buff *skb) 2145 { 2146 if (eosw_txq->inuse == eosw_txq->ndesc) 2147 return -ENOMEM; 2148 2149 eosw_txq->desc[eosw_txq->pidx].skb = skb; 2150 return 0; 2151 } 2152 2153 static inline struct sk_buff *eosw_txq_peek(struct sge_eosw_txq *eosw_txq) 2154 { 2155 return eosw_txq->desc[eosw_txq->last_pidx].skb; 2156 } 2157 2158 static inline u8 ethofld_calc_tx_flits(struct adapter *adap, 2159 struct sk_buff *skb, u32 hdr_len) 2160 { 2161 u8 flits, nsgl = 0; 2162 u32 wrlen; 2163 2164 wrlen = sizeof(struct fw_eth_tx_eo_wr) + sizeof(struct cpl_tx_pkt_core); 2165 if (skb_shinfo(skb)->gso_size && 2166 !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)) 2167 wrlen += sizeof(struct cpl_tx_pkt_lso_core); 2168 2169 wrlen += roundup(hdr_len, 16); 2170 2171 /* Packet headers + WR + CPLs */ 2172 flits = DIV_ROUND_UP(wrlen, 8); 2173 2174 if (skb_shinfo(skb)->nr_frags > 0) { 2175 if (skb_headlen(skb) - hdr_len) 2176 nsgl = sgl_len(skb_shinfo(skb)->nr_frags + 1); 2177 else 2178 nsgl = sgl_len(skb_shinfo(skb)->nr_frags); 2179 } else if (skb->len - hdr_len) { 2180 nsgl = sgl_len(1); 2181 } 2182 2183 return flits + nsgl; 2184 } 2185 2186 static void *write_eo_wr(struct adapter *adap, struct sge_eosw_txq *eosw_txq, 2187 struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr, 2188 u32 hdr_len, u32 wrlen) 2189 { 2190 const struct skb_shared_info *ssi = skb_shinfo(skb); 2191 struct cpl_tx_pkt_core *cpl; 2192 u32 immd_len, wrlen16; 2193 bool compl = false; 2194 u8 ver, proto; 2195 2196 ver = ip_hdr(skb)->version; 2197 proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : ip_hdr(skb)->protocol; 2198 2199 wrlen16 = DIV_ROUND_UP(wrlen, 16); 2200 immd_len = sizeof(struct cpl_tx_pkt_core); 2201 if (skb_shinfo(skb)->gso_size && 2202 !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)) 2203 immd_len += sizeof(struct cpl_tx_pkt_lso_core); 2204 immd_len += hdr_len; 2205 2206 if (!eosw_txq->ncompl || 2207 (eosw_txq->last_compl + wrlen16) >= 2208 (adap->params.ofldq_wr_cred / 2)) { 2209 compl = true; 2210 eosw_txq->ncompl++; 2211 eosw_txq->last_compl = 0; 2212 } 2213 2214 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) | 2215 FW_ETH_TX_EO_WR_IMMDLEN_V(immd_len) | 2216 FW_WR_COMPL_V(compl)); 2217 wr->equiq_to_len16 = cpu_to_be32(FW_WR_LEN16_V(wrlen16) | 2218 FW_WR_FLOWID_V(eosw_txq->hwtid)); 2219 wr->r3 = 0; 2220 if (proto == IPPROTO_UDP) { 2221 cpl = write_eo_udp_wr(skb, wr, hdr_len); 2222 } else { 2223 wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG; 2224 wr->u.tcpseg.ethlen = skb_network_offset(skb); 2225 wr->u.tcpseg.iplen = cpu_to_be16(skb_network_header_len(skb)); 2226 wr->u.tcpseg.tcplen = tcp_hdrlen(skb); 2227 wr->u.tcpseg.tsclk_tsoff = 0; 2228 wr->u.tcpseg.r4 = 0; 2229 wr->u.tcpseg.r5 = 0; 2230 wr->u.tcpseg.plen = cpu_to_be32(skb->len - hdr_len); 2231 2232 if (ssi->gso_size) { 2233 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 2234 2235 wr->u.tcpseg.mss = cpu_to_be16(ssi->gso_size); 2236 cpl = write_tso_wr(adap, skb, lso); 2237 } else { 2238 wr->u.tcpseg.mss = cpu_to_be16(0xffff); 2239 cpl = (void *)(wr + 1); 2240 } 2241 } 2242 2243 eosw_txq->cred -= wrlen16; 2244 eosw_txq->last_compl += wrlen16; 2245 return cpl; 2246 } 2247 2248 static int ethofld_hard_xmit(struct net_device *dev, 2249 struct sge_eosw_txq *eosw_txq) 2250 { 2251 struct port_info *pi = netdev2pinfo(dev); 2252 struct adapter *adap = netdev2adap(dev); 2253 u32 wrlen, wrlen16, hdr_len, data_len; 2254 enum sge_eosw_state next_state; 2255 u64 cntrl, *start, *end, *sgl; 2256 struct sge_eohw_txq *eohw_txq; 2257 struct cpl_tx_pkt_core *cpl; 2258 struct fw_eth_tx_eo_wr *wr; 2259 bool skip_eotx_wr = false; 2260 struct tx_sw_desc *d; 2261 struct sk_buff *skb; 2262 int left, ret = 0; 2263 u8 flits, ndesc; 2264 2265 eohw_txq = &adap->sge.eohw_txq[eosw_txq->hwqid]; 2266 spin_lock(&eohw_txq->lock); 2267 reclaim_completed_tx_imm(&eohw_txq->q); 2268 2269 d = &eosw_txq->desc[eosw_txq->last_pidx]; 2270 skb = d->skb; 2271 skb_tx_timestamp(skb); 2272 2273 wr = (struct fw_eth_tx_eo_wr *)&eohw_txq->q.desc[eohw_txq->q.pidx]; 2274 if (unlikely(eosw_txq->state != CXGB4_EO_STATE_ACTIVE && 2275 eosw_txq->last_pidx == eosw_txq->flowc_idx)) { 2276 hdr_len = skb->len; 2277 data_len = 0; 2278 flits = DIV_ROUND_UP(hdr_len, 8); 2279 if (eosw_txq->state == CXGB4_EO_STATE_FLOWC_OPEN_SEND) 2280 next_state = CXGB4_EO_STATE_FLOWC_OPEN_REPLY; 2281 else 2282 next_state = CXGB4_EO_STATE_FLOWC_CLOSE_REPLY; 2283 skip_eotx_wr = true; 2284 } else { 2285 hdr_len = eth_get_headlen(dev, skb->data, skb_headlen(skb)); 2286 data_len = skb->len - hdr_len; 2287 flits = ethofld_calc_tx_flits(adap, skb, hdr_len); 2288 } 2289 ndesc = flits_to_desc(flits); 2290 wrlen = flits * 8; 2291 wrlen16 = DIV_ROUND_UP(wrlen, 16); 2292 2293 left = txq_avail(&eohw_txq->q) - ndesc; 2294 2295 /* If there are no descriptors left in hardware queues or no 2296 * CPL credits left in software queues, then wait for them 2297 * to come back and retry again. Note that we always request 2298 * for credits update via interrupt for every half credits 2299 * consumed. So, the interrupt will eventually restore the 2300 * credits and invoke the Tx path again. 2301 */ 2302 if (unlikely(left < 0 || wrlen16 > eosw_txq->cred)) { 2303 ret = -ENOMEM; 2304 goto out_unlock; 2305 } 2306 2307 if (unlikely(skip_eotx_wr)) { 2308 start = (u64 *)wr; 2309 eosw_txq->state = next_state; 2310 eosw_txq->cred -= wrlen16; 2311 eosw_txq->ncompl++; 2312 eosw_txq->last_compl = 0; 2313 goto write_wr_headers; 2314 } 2315 2316 cpl = write_eo_wr(adap, eosw_txq, skb, wr, hdr_len, wrlen); 2317 cntrl = hwcsum(adap->params.chip, skb); 2318 if (skb_vlan_tag_present(skb)) 2319 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 2320 2321 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) | 2322 TXPKT_INTF_V(pi->tx_chan) | 2323 TXPKT_PF_V(adap->pf)); 2324 cpl->pack = 0; 2325 cpl->len = cpu_to_be16(skb->len); 2326 cpl->ctrl1 = cpu_to_be64(cntrl); 2327 2328 start = (u64 *)(cpl + 1); 2329 2330 write_wr_headers: 2331 sgl = (u64 *)inline_tx_skb_header(skb, &eohw_txq->q, (void *)start, 2332 hdr_len); 2333 if (data_len) { 2334 ret = cxgb4_map_skb(adap->pdev_dev, skb, d->addr); 2335 if (unlikely(ret)) { 2336 memset(d->addr, 0, sizeof(d->addr)); 2337 eohw_txq->mapping_err++; 2338 goto out_unlock; 2339 } 2340 2341 end = (u64 *)wr + flits; 2342 if (unlikely(start > sgl)) { 2343 left = (u8 *)end - (u8 *)eohw_txq->q.stat; 2344 end = (void *)eohw_txq->q.desc + left; 2345 } 2346 2347 if (unlikely((u8 *)sgl >= (u8 *)eohw_txq->q.stat)) { 2348 /* If current position is already at the end of the 2349 * txq, reset the current to point to start of the queue 2350 * and update the end ptr as well. 2351 */ 2352 left = (u8 *)end - (u8 *)eohw_txq->q.stat; 2353 2354 end = (void *)eohw_txq->q.desc + left; 2355 sgl = (void *)eohw_txq->q.desc; 2356 } 2357 2358 cxgb4_write_sgl(skb, &eohw_txq->q, (void *)sgl, end, hdr_len, 2359 d->addr); 2360 } 2361 2362 if (skb_shinfo(skb)->gso_size) { 2363 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) 2364 eohw_txq->uso++; 2365 else 2366 eohw_txq->tso++; 2367 eohw_txq->tx_cso += skb_shinfo(skb)->gso_segs; 2368 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2369 eohw_txq->tx_cso++; 2370 } 2371 2372 if (skb_vlan_tag_present(skb)) 2373 eohw_txq->vlan_ins++; 2374 2375 txq_advance(&eohw_txq->q, ndesc); 2376 cxgb4_ring_tx_db(adap, &eohw_txq->q, ndesc); 2377 eosw_txq_advance_index(&eosw_txq->last_pidx, 1, eosw_txq->ndesc); 2378 2379 out_unlock: 2380 spin_unlock(&eohw_txq->lock); 2381 return ret; 2382 } 2383 2384 static void ethofld_xmit(struct net_device *dev, struct sge_eosw_txq *eosw_txq) 2385 { 2386 struct sk_buff *skb; 2387 int pktcount, ret; 2388 2389 switch (eosw_txq->state) { 2390 case CXGB4_EO_STATE_ACTIVE: 2391 case CXGB4_EO_STATE_FLOWC_OPEN_SEND: 2392 case CXGB4_EO_STATE_FLOWC_CLOSE_SEND: 2393 pktcount = eosw_txq->pidx - eosw_txq->last_pidx; 2394 if (pktcount < 0) 2395 pktcount += eosw_txq->ndesc; 2396 break; 2397 case CXGB4_EO_STATE_FLOWC_OPEN_REPLY: 2398 case CXGB4_EO_STATE_FLOWC_CLOSE_REPLY: 2399 case CXGB4_EO_STATE_CLOSED: 2400 default: 2401 return; 2402 } 2403 2404 while (pktcount--) { 2405 skb = eosw_txq_peek(eosw_txq); 2406 if (!skb) { 2407 eosw_txq_advance_index(&eosw_txq->last_pidx, 1, 2408 eosw_txq->ndesc); 2409 continue; 2410 } 2411 2412 ret = ethofld_hard_xmit(dev, eosw_txq); 2413 if (ret) 2414 break; 2415 } 2416 } 2417 2418 static netdev_tx_t cxgb4_ethofld_xmit(struct sk_buff *skb, 2419 struct net_device *dev) 2420 { 2421 struct cxgb4_tc_port_mqprio *tc_port_mqprio; 2422 struct port_info *pi = netdev2pinfo(dev); 2423 struct adapter *adap = netdev2adap(dev); 2424 struct sge_eosw_txq *eosw_txq; 2425 u32 qid; 2426 int ret; 2427 2428 ret = cxgb4_validate_skb(skb, dev, ETH_HLEN); 2429 if (ret) 2430 goto out_free; 2431 2432 tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id]; 2433 qid = skb_get_queue_mapping(skb) - pi->nqsets; 2434 eosw_txq = &tc_port_mqprio->eosw_txq[qid]; 2435 spin_lock_bh(&eosw_txq->lock); 2436 if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE) 2437 goto out_unlock; 2438 2439 ret = eosw_txq_enqueue(eosw_txq, skb); 2440 if (ret) 2441 goto out_unlock; 2442 2443 /* SKB is queued for processing until credits are available. 2444 * So, call the destructor now and we'll free the skb later 2445 * after it has been successfully transmitted. 2446 */ 2447 skb_orphan(skb); 2448 2449 eosw_txq_advance(eosw_txq, 1); 2450 ethofld_xmit(dev, eosw_txq); 2451 spin_unlock_bh(&eosw_txq->lock); 2452 return NETDEV_TX_OK; 2453 2454 out_unlock: 2455 spin_unlock_bh(&eosw_txq->lock); 2456 out_free: 2457 dev_kfree_skb_any(skb); 2458 return NETDEV_TX_OK; 2459 } 2460 2461 netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev) 2462 { 2463 struct port_info *pi = netdev_priv(dev); 2464 u16 qid = skb_get_queue_mapping(skb); 2465 2466 if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM)) 2467 return cxgb4_vf_eth_xmit(skb, dev); 2468 2469 if (unlikely(qid >= pi->nqsets)) 2470 return cxgb4_ethofld_xmit(skb, dev); 2471 2472 if (is_ptp_enabled(skb, dev)) { 2473 struct adapter *adap = netdev2adap(dev); 2474 netdev_tx_t ret; 2475 2476 spin_lock(&adap->ptp_lock); 2477 ret = cxgb4_eth_xmit(skb, dev); 2478 spin_unlock(&adap->ptp_lock); 2479 return ret; 2480 } 2481 2482 return cxgb4_eth_xmit(skb, dev); 2483 } 2484 2485 static void eosw_txq_flush_pending_skbs(struct sge_eosw_txq *eosw_txq) 2486 { 2487 int pktcount = eosw_txq->pidx - eosw_txq->last_pidx; 2488 int pidx = eosw_txq->pidx; 2489 struct sk_buff *skb; 2490 2491 if (!pktcount) 2492 return; 2493 2494 if (pktcount < 0) 2495 pktcount += eosw_txq->ndesc; 2496 2497 while (pktcount--) { 2498 pidx--; 2499 if (pidx < 0) 2500 pidx += eosw_txq->ndesc; 2501 2502 skb = eosw_txq->desc[pidx].skb; 2503 if (skb) { 2504 dev_consume_skb_any(skb); 2505 eosw_txq->desc[pidx].skb = NULL; 2506 eosw_txq->inuse--; 2507 } 2508 } 2509 2510 eosw_txq->pidx = eosw_txq->last_pidx + 1; 2511 } 2512 2513 /** 2514 * cxgb4_ethofld_send_flowc - Send ETHOFLD flowc request to bind eotid to tc. 2515 * @dev: netdevice 2516 * @eotid: ETHOFLD tid to bind/unbind 2517 * @tc: traffic class. If set to FW_SCHED_CLS_NONE, then unbinds the @eotid 2518 * 2519 * Send a FLOWC work request to bind an ETHOFLD TID to a traffic class. 2520 * If @tc is set to FW_SCHED_CLS_NONE, then the @eotid is unbound from 2521 * a traffic class. 2522 */ 2523 int cxgb4_ethofld_send_flowc(struct net_device *dev, u32 eotid, u32 tc) 2524 { 2525 struct port_info *pi = netdev2pinfo(dev); 2526 struct adapter *adap = netdev2adap(dev); 2527 enum sge_eosw_state next_state; 2528 struct sge_eosw_txq *eosw_txq; 2529 u32 len, len16, nparams = 6; 2530 struct fw_flowc_wr *flowc; 2531 struct eotid_entry *entry; 2532 struct sge_ofld_rxq *rxq; 2533 struct sk_buff *skb; 2534 int ret = 0; 2535 2536 len = struct_size(flowc, mnemval, nparams); 2537 len16 = DIV_ROUND_UP(len, 16); 2538 2539 entry = cxgb4_lookup_eotid(&adap->tids, eotid); 2540 if (!entry) 2541 return -ENOMEM; 2542 2543 eosw_txq = (struct sge_eosw_txq *)entry->data; 2544 if (!eosw_txq) 2545 return -ENOMEM; 2546 2547 if (!(adap->flags & CXGB4_FW_OK)) { 2548 /* Don't stall caller when access to FW is lost */ 2549 complete(&eosw_txq->completion); 2550 return -EIO; 2551 } 2552 2553 skb = alloc_skb(len, GFP_KERNEL); 2554 if (!skb) 2555 return -ENOMEM; 2556 2557 spin_lock_bh(&eosw_txq->lock); 2558 if (tc != FW_SCHED_CLS_NONE) { 2559 if (eosw_txq->state != CXGB4_EO_STATE_CLOSED) 2560 goto out_free_skb; 2561 2562 next_state = CXGB4_EO_STATE_FLOWC_OPEN_SEND; 2563 } else { 2564 if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE) 2565 goto out_free_skb; 2566 2567 next_state = CXGB4_EO_STATE_FLOWC_CLOSE_SEND; 2568 } 2569 2570 flowc = __skb_put(skb, len); 2571 memset(flowc, 0, len); 2572 2573 rxq = &adap->sge.eohw_rxq[eosw_txq->hwqid]; 2574 flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(len16) | 2575 FW_WR_FLOWID_V(eosw_txq->hwtid)); 2576 flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) | 2577 FW_FLOWC_WR_NPARAMS_V(nparams) | 2578 FW_WR_COMPL_V(1)); 2579 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN; 2580 flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V(adap->pf)); 2581 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH; 2582 flowc->mnemval[1].val = cpu_to_be32(pi->tx_chan); 2583 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT; 2584 flowc->mnemval[2].val = cpu_to_be32(pi->tx_chan); 2585 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID; 2586 flowc->mnemval[3].val = cpu_to_be32(rxq->rspq.abs_id); 2587 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS; 2588 flowc->mnemval[4].val = cpu_to_be32(tc); 2589 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_EOSTATE; 2590 flowc->mnemval[5].val = cpu_to_be32(tc == FW_SCHED_CLS_NONE ? 2591 FW_FLOWC_MNEM_EOSTATE_CLOSING : 2592 FW_FLOWC_MNEM_EOSTATE_ESTABLISHED); 2593 2594 /* Free up any pending skbs to ensure there's room for 2595 * termination FLOWC. 2596 */ 2597 if (tc == FW_SCHED_CLS_NONE) 2598 eosw_txq_flush_pending_skbs(eosw_txq); 2599 2600 ret = eosw_txq_enqueue(eosw_txq, skb); 2601 if (ret) 2602 goto out_free_skb; 2603 2604 eosw_txq->state = next_state; 2605 eosw_txq->flowc_idx = eosw_txq->pidx; 2606 eosw_txq_advance(eosw_txq, 1); 2607 ethofld_xmit(dev, eosw_txq); 2608 2609 spin_unlock_bh(&eosw_txq->lock); 2610 return 0; 2611 2612 out_free_skb: 2613 dev_consume_skb_any(skb); 2614 spin_unlock_bh(&eosw_txq->lock); 2615 return ret; 2616 } 2617 2618 /** 2619 * is_imm - check whether a packet can be sent as immediate data 2620 * @skb: the packet 2621 * 2622 * Returns true if a packet can be sent as a WR with immediate data. 2623 */ 2624 static inline int is_imm(const struct sk_buff *skb) 2625 { 2626 return skb->len <= MAX_CTRL_WR_LEN; 2627 } 2628 2629 /** 2630 * ctrlq_check_stop - check if a control queue is full and should stop 2631 * @q: the queue 2632 * @wr: most recent WR written to the queue 2633 * 2634 * Check if a control queue has become full and should be stopped. 2635 * We clean up control queue descriptors very lazily, only when we are out. 2636 * If the queue is still full after reclaiming any completed descriptors 2637 * we suspend it and have the last WR wake it up. 2638 */ 2639 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr) 2640 { 2641 reclaim_completed_tx_imm(&q->q); 2642 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 2643 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 2644 q->q.stops++; 2645 q->full = 1; 2646 } 2647 } 2648 2649 #define CXGB4_SELFTEST_LB_STR "CHELSIO_SELFTEST" 2650 2651 int cxgb4_selftest_lb_pkt(struct net_device *netdev) 2652 { 2653 struct port_info *pi = netdev_priv(netdev); 2654 struct adapter *adap = pi->adapter; 2655 struct cxgb4_ethtool_lb_test *lb; 2656 int ret, i = 0, pkt_len, credits; 2657 struct fw_eth_tx_pkt_wr *wr; 2658 struct cpl_tx_pkt_core *cpl; 2659 u32 ctrl0, ndesc, flits; 2660 struct sge_eth_txq *q; 2661 u8 *sgl; 2662 2663 pkt_len = ETH_HLEN + sizeof(CXGB4_SELFTEST_LB_STR); 2664 2665 flits = DIV_ROUND_UP(pkt_len + sizeof(*cpl) + sizeof(*wr), 2666 sizeof(__be64)); 2667 ndesc = flits_to_desc(flits); 2668 2669 lb = &pi->ethtool_lb; 2670 lb->loopback = 1; 2671 2672 q = &adap->sge.ethtxq[pi->first_qset]; 2673 __netif_tx_lock(q->txq, smp_processor_id()); 2674 2675 reclaim_completed_tx(adap, &q->q, -1, true); 2676 credits = txq_avail(&q->q) - ndesc; 2677 if (unlikely(credits < 0)) { 2678 __netif_tx_unlock(q->txq); 2679 return -ENOMEM; 2680 } 2681 2682 wr = (void *)&q->q.desc[q->q.pidx]; 2683 memset(wr, 0, sizeof(struct tx_desc)); 2684 2685 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | 2686 FW_WR_IMMDLEN_V(pkt_len + 2687 sizeof(*cpl))); 2688 wr->equiq_to_len16 = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2))); 2689 wr->r3 = cpu_to_be64(0); 2690 2691 cpl = (void *)(wr + 1); 2692 sgl = (u8 *)(cpl + 1); 2693 2694 ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_PF_V(adap->pf) | 2695 TXPKT_INTF_V(pi->tx_chan + 4); 2696 2697 cpl->ctrl0 = htonl(ctrl0); 2698 cpl->pack = htons(0); 2699 cpl->len = htons(pkt_len); 2700 cpl->ctrl1 = cpu_to_be64(TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F); 2701 2702 eth_broadcast_addr(sgl); 2703 i += ETH_ALEN; 2704 ether_addr_copy(&sgl[i], netdev->dev_addr); 2705 i += ETH_ALEN; 2706 2707 snprintf(&sgl[i], sizeof(CXGB4_SELFTEST_LB_STR), "%s", 2708 CXGB4_SELFTEST_LB_STR); 2709 2710 init_completion(&lb->completion); 2711 txq_advance(&q->q, ndesc); 2712 cxgb4_ring_tx_db(adap, &q->q, ndesc); 2713 __netif_tx_unlock(q->txq); 2714 2715 /* wait for the pkt to return */ 2716 ret = wait_for_completion_timeout(&lb->completion, 10 * HZ); 2717 if (!ret) 2718 ret = -ETIMEDOUT; 2719 else 2720 ret = lb->result; 2721 2722 lb->loopback = 0; 2723 2724 return ret; 2725 } 2726 2727 /** 2728 * ctrl_xmit - send a packet through an SGE control Tx queue 2729 * @q: the control queue 2730 * @skb: the packet 2731 * 2732 * Send a packet through an SGE control Tx queue. Packets sent through 2733 * a control queue must fit entirely as immediate data. 2734 */ 2735 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb) 2736 { 2737 unsigned int ndesc; 2738 struct fw_wr_hdr *wr; 2739 2740 if (unlikely(!is_imm(skb))) { 2741 WARN_ON(1); 2742 dev_kfree_skb(skb); 2743 return NET_XMIT_DROP; 2744 } 2745 2746 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc)); 2747 spin_lock(&q->sendq.lock); 2748 2749 if (unlikely(q->full)) { 2750 skb->priority = ndesc; /* save for restart */ 2751 __skb_queue_tail(&q->sendq, skb); 2752 spin_unlock(&q->sendq.lock); 2753 return NET_XMIT_CN; 2754 } 2755 2756 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 2757 cxgb4_inline_tx_skb(skb, &q->q, wr); 2758 2759 txq_advance(&q->q, ndesc); 2760 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) 2761 ctrlq_check_stop(q, wr); 2762 2763 cxgb4_ring_tx_db(q->adap, &q->q, ndesc); 2764 spin_unlock(&q->sendq.lock); 2765 2766 kfree_skb(skb); 2767 return NET_XMIT_SUCCESS; 2768 } 2769 2770 /** 2771 * restart_ctrlq - restart a suspended control queue 2772 * @t: pointer to the tasklet associated with this handler 2773 * 2774 * Resumes transmission on a suspended Tx control queue. 2775 */ 2776 static void restart_ctrlq(struct tasklet_struct *t) 2777 { 2778 struct sk_buff *skb; 2779 unsigned int written = 0; 2780 struct sge_ctrl_txq *q = from_tasklet(q, t, qresume_tsk); 2781 2782 spin_lock(&q->sendq.lock); 2783 reclaim_completed_tx_imm(&q->q); 2784 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */ 2785 2786 while ((skb = __skb_dequeue(&q->sendq)) != NULL) { 2787 struct fw_wr_hdr *wr; 2788 unsigned int ndesc = skb->priority; /* previously saved */ 2789 2790 written += ndesc; 2791 /* Write descriptors and free skbs outside the lock to limit 2792 * wait times. q->full is still set so new skbs will be queued. 2793 */ 2794 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 2795 txq_advance(&q->q, ndesc); 2796 spin_unlock(&q->sendq.lock); 2797 2798 cxgb4_inline_tx_skb(skb, &q->q, wr); 2799 kfree_skb(skb); 2800 2801 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 2802 unsigned long old = q->q.stops; 2803 2804 ctrlq_check_stop(q, wr); 2805 if (q->q.stops != old) { /* suspended anew */ 2806 spin_lock(&q->sendq.lock); 2807 goto ringdb; 2808 } 2809 } 2810 if (written > 16) { 2811 cxgb4_ring_tx_db(q->adap, &q->q, written); 2812 written = 0; 2813 } 2814 spin_lock(&q->sendq.lock); 2815 } 2816 q->full = 0; 2817 ringdb: 2818 if (written) 2819 cxgb4_ring_tx_db(q->adap, &q->q, written); 2820 spin_unlock(&q->sendq.lock); 2821 } 2822 2823 /** 2824 * t4_mgmt_tx - send a management message 2825 * @adap: the adapter 2826 * @skb: the packet containing the management message 2827 * 2828 * Send a management message through control queue 0. 2829 */ 2830 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb) 2831 { 2832 int ret; 2833 2834 local_bh_disable(); 2835 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb); 2836 local_bh_enable(); 2837 return ret; 2838 } 2839 2840 /** 2841 * is_ofld_imm - check whether a packet can be sent as immediate data 2842 * @skb: the packet 2843 * 2844 * Returns true if a packet can be sent as an offload WR with immediate 2845 * data. 2846 * FW_OFLD_TX_DATA_WR limits the payload to 255 bytes due to 8-bit field. 2847 * However, FW_ULPTX_WR commands have a 256 byte immediate only 2848 * payload limit. 2849 */ 2850 static inline int is_ofld_imm(const struct sk_buff *skb) 2851 { 2852 struct work_request_hdr *req = (struct work_request_hdr *)skb->data; 2853 unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi)); 2854 2855 if (unlikely(opcode == FW_ULPTX_WR)) 2856 return skb->len <= MAX_IMM_ULPTX_WR_LEN; 2857 else if (opcode == FW_CRYPTO_LOOKASIDE_WR) 2858 return skb->len <= SGE_MAX_WR_LEN; 2859 else 2860 return skb->len <= MAX_IMM_OFLD_TX_DATA_WR_LEN; 2861 } 2862 2863 /** 2864 * calc_tx_flits_ofld - calculate # of flits for an offload packet 2865 * @skb: the packet 2866 * 2867 * Returns the number of flits needed for the given offload packet. 2868 * These packets are already fully constructed and no additional headers 2869 * will be added. 2870 */ 2871 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb) 2872 { 2873 unsigned int flits, cnt; 2874 2875 if (is_ofld_imm(skb)) 2876 return DIV_ROUND_UP(skb->len, 8); 2877 2878 flits = skb_transport_offset(skb) / 8U; /* headers */ 2879 cnt = skb_shinfo(skb)->nr_frags; 2880 if (skb_tail_pointer(skb) != skb_transport_header(skb)) 2881 cnt++; 2882 return flits + sgl_len(cnt); 2883 } 2884 2885 /** 2886 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion 2887 * @q: the queue to stop 2888 * 2889 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting 2890 * inability to map packets. A periodic timer attempts to restart 2891 * queues so marked. 2892 */ 2893 static void txq_stop_maperr(struct sge_uld_txq *q) 2894 { 2895 q->mapping_err++; 2896 q->q.stops++; 2897 set_bit(q->q.cntxt_id - q->adap->sge.egr_start, 2898 q->adap->sge.txq_maperr); 2899 } 2900 2901 /** 2902 * ofldtxq_stop - stop an offload Tx queue that has become full 2903 * @q: the queue to stop 2904 * @wr: the Work Request causing the queue to become full 2905 * 2906 * Stops an offload Tx queue that has become full and modifies the packet 2907 * being written to request a wakeup. 2908 */ 2909 static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr) 2910 { 2911 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 2912 q->q.stops++; 2913 q->full = 1; 2914 } 2915 2916 /** 2917 * service_ofldq - service/restart a suspended offload queue 2918 * @q: the offload queue 2919 * 2920 * Services an offload Tx queue by moving packets from its Pending Send 2921 * Queue to the Hardware TX ring. The function starts and ends with the 2922 * Send Queue locked, but drops the lock while putting the skb at the 2923 * head of the Send Queue onto the Hardware TX Ring. Dropping the lock 2924 * allows more skbs to be added to the Send Queue by other threads. 2925 * The packet being processed at the head of the Pending Send Queue is 2926 * left on the queue in case we experience DMA Mapping errors, etc. 2927 * and need to give up and restart later. 2928 * 2929 * service_ofldq() can be thought of as a task which opportunistically 2930 * uses other threads execution contexts. We use the Offload Queue 2931 * boolean "service_ofldq_running" to make sure that only one instance 2932 * is ever running at a time ... 2933 */ 2934 static void service_ofldq(struct sge_uld_txq *q) 2935 __must_hold(&q->sendq.lock) 2936 { 2937 u64 *pos, *before, *end; 2938 int credits; 2939 struct sk_buff *skb; 2940 struct sge_txq *txq; 2941 unsigned int left; 2942 unsigned int written = 0; 2943 unsigned int flits, ndesc; 2944 2945 /* If another thread is currently in service_ofldq() processing the 2946 * Pending Send Queue then there's nothing to do. Otherwise, flag 2947 * that we're doing the work and continue. Examining/modifying 2948 * the Offload Queue boolean "service_ofldq_running" must be done 2949 * while holding the Pending Send Queue Lock. 2950 */ 2951 if (q->service_ofldq_running) 2952 return; 2953 q->service_ofldq_running = true; 2954 2955 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) { 2956 /* We drop the lock while we're working with the skb at the 2957 * head of the Pending Send Queue. This allows more skbs to 2958 * be added to the Pending Send Queue while we're working on 2959 * this one. We don't need to lock to guard the TX Ring 2960 * updates because only one thread of execution is ever 2961 * allowed into service_ofldq() at a time. 2962 */ 2963 spin_unlock(&q->sendq.lock); 2964 2965 cxgb4_reclaim_completed_tx(q->adap, &q->q, false); 2966 2967 flits = skb->priority; /* previously saved */ 2968 ndesc = flits_to_desc(flits); 2969 credits = txq_avail(&q->q) - ndesc; 2970 BUG_ON(credits < 0); 2971 if (unlikely(credits < TXQ_STOP_THRES)) 2972 ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data); 2973 2974 pos = (u64 *)&q->q.desc[q->q.pidx]; 2975 if (is_ofld_imm(skb)) 2976 cxgb4_inline_tx_skb(skb, &q->q, pos); 2977 else if (cxgb4_map_skb(q->adap->pdev_dev, skb, 2978 (dma_addr_t *)skb->head)) { 2979 txq_stop_maperr(q); 2980 spin_lock(&q->sendq.lock); 2981 break; 2982 } else { 2983 int last_desc, hdr_len = skb_transport_offset(skb); 2984 2985 /* The WR headers may not fit within one descriptor. 2986 * So we need to deal with wrap-around here. 2987 */ 2988 before = (u64 *)pos; 2989 end = (u64 *)pos + flits; 2990 txq = &q->q; 2991 pos = (void *)inline_tx_skb_header(skb, &q->q, 2992 (void *)pos, 2993 hdr_len); 2994 if (before > (u64 *)pos) { 2995 left = (u8 *)end - (u8 *)txq->stat; 2996 end = (void *)txq->desc + left; 2997 } 2998 2999 /* If current position is already at the end of the 3000 * ofld queue, reset the current to point to 3001 * start of the queue and update the end ptr as well. 3002 */ 3003 if (pos == (u64 *)txq->stat) { 3004 left = (u8 *)end - (u8 *)txq->stat; 3005 end = (void *)txq->desc + left; 3006 pos = (void *)txq->desc; 3007 } 3008 3009 cxgb4_write_sgl(skb, &q->q, (void *)pos, 3010 end, hdr_len, 3011 (dma_addr_t *)skb->head); 3012 #ifdef CONFIG_NEED_DMA_MAP_STATE 3013 skb->dev = q->adap->port[0]; 3014 skb->destructor = deferred_unmap_destructor; 3015 #endif 3016 last_desc = q->q.pidx + ndesc - 1; 3017 if (last_desc >= q->q.size) 3018 last_desc -= q->q.size; 3019 q->q.sdesc[last_desc].skb = skb; 3020 } 3021 3022 txq_advance(&q->q, ndesc); 3023 written += ndesc; 3024 if (unlikely(written > 32)) { 3025 cxgb4_ring_tx_db(q->adap, &q->q, written); 3026 written = 0; 3027 } 3028 3029 /* Reacquire the Pending Send Queue Lock so we can unlink the 3030 * skb we've just successfully transferred to the TX Ring and 3031 * loop for the next skb which may be at the head of the 3032 * Pending Send Queue. 3033 */ 3034 spin_lock(&q->sendq.lock); 3035 __skb_unlink(skb, &q->sendq); 3036 if (is_ofld_imm(skb)) 3037 kfree_skb(skb); 3038 } 3039 if (likely(written)) 3040 cxgb4_ring_tx_db(q->adap, &q->q, written); 3041 3042 /*Indicate that no thread is processing the Pending Send Queue 3043 * currently. 3044 */ 3045 q->service_ofldq_running = false; 3046 } 3047 3048 /** 3049 * ofld_xmit - send a packet through an offload queue 3050 * @q: the Tx offload queue 3051 * @skb: the packet 3052 * 3053 * Send an offload packet through an SGE offload queue. 3054 */ 3055 static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb) 3056 { 3057 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */ 3058 spin_lock(&q->sendq.lock); 3059 3060 /* Queue the new skb onto the Offload Queue's Pending Send Queue. If 3061 * that results in this new skb being the only one on the queue, start 3062 * servicing it. If there are other skbs already on the list, then 3063 * either the queue is currently being processed or it's been stopped 3064 * for some reason and it'll be restarted at a later time. Restart 3065 * paths are triggered by events like experiencing a DMA Mapping Error 3066 * or filling the Hardware TX Ring. 3067 */ 3068 __skb_queue_tail(&q->sendq, skb); 3069 if (q->sendq.qlen == 1) 3070 service_ofldq(q); 3071 3072 spin_unlock(&q->sendq.lock); 3073 return NET_XMIT_SUCCESS; 3074 } 3075 3076 /** 3077 * restart_ofldq - restart a suspended offload queue 3078 * @t: pointer to the tasklet associated with this handler 3079 * 3080 * Resumes transmission on a suspended Tx offload queue. 3081 */ 3082 static void restart_ofldq(struct tasklet_struct *t) 3083 { 3084 struct sge_uld_txq *q = from_tasklet(q, t, qresume_tsk); 3085 3086 spin_lock(&q->sendq.lock); 3087 q->full = 0; /* the queue actually is completely empty now */ 3088 service_ofldq(q); 3089 spin_unlock(&q->sendq.lock); 3090 } 3091 3092 /** 3093 * skb_txq - return the Tx queue an offload packet should use 3094 * @skb: the packet 3095 * 3096 * Returns the Tx queue an offload packet should use as indicated by bits 3097 * 1-15 in the packet's queue_mapping. 3098 */ 3099 static inline unsigned int skb_txq(const struct sk_buff *skb) 3100 { 3101 return skb->queue_mapping >> 1; 3102 } 3103 3104 /** 3105 * is_ctrl_pkt - return whether an offload packet is a control packet 3106 * @skb: the packet 3107 * 3108 * Returns whether an offload packet should use an OFLD or a CTRL 3109 * Tx queue as indicated by bit 0 in the packet's queue_mapping. 3110 */ 3111 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb) 3112 { 3113 return skb->queue_mapping & 1; 3114 } 3115 3116 static inline int uld_send(struct adapter *adap, struct sk_buff *skb, 3117 unsigned int tx_uld_type) 3118 { 3119 struct sge_uld_txq_info *txq_info; 3120 struct sge_uld_txq *txq; 3121 unsigned int idx = skb_txq(skb); 3122 3123 if (unlikely(is_ctrl_pkt(skb))) { 3124 /* Single ctrl queue is a requirement for LE workaround path */ 3125 if (adap->tids.nsftids) 3126 idx = 0; 3127 return ctrl_xmit(&adap->sge.ctrlq[idx], skb); 3128 } 3129 3130 txq_info = adap->sge.uld_txq_info[tx_uld_type]; 3131 if (unlikely(!txq_info)) { 3132 WARN_ON(true); 3133 kfree_skb(skb); 3134 return NET_XMIT_DROP; 3135 } 3136 3137 txq = &txq_info->uldtxq[idx]; 3138 return ofld_xmit(txq, skb); 3139 } 3140 3141 /** 3142 * t4_ofld_send - send an offload packet 3143 * @adap: the adapter 3144 * @skb: the packet 3145 * 3146 * Sends an offload packet. We use the packet queue_mapping to select the 3147 * appropriate Tx queue as follows: bit 0 indicates whether the packet 3148 * should be sent as regular or control, bits 1-15 select the queue. 3149 */ 3150 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb) 3151 { 3152 int ret; 3153 3154 local_bh_disable(); 3155 ret = uld_send(adap, skb, CXGB4_TX_OFLD); 3156 local_bh_enable(); 3157 return ret; 3158 } 3159 3160 /** 3161 * cxgb4_ofld_send - send an offload packet 3162 * @dev: the net device 3163 * @skb: the packet 3164 * 3165 * Sends an offload packet. This is an exported version of @t4_ofld_send, 3166 * intended for ULDs. 3167 */ 3168 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb) 3169 { 3170 return t4_ofld_send(netdev2adap(dev), skb); 3171 } 3172 EXPORT_SYMBOL(cxgb4_ofld_send); 3173 3174 static void *inline_tx_header(const void *src, 3175 const struct sge_txq *q, 3176 void *pos, int length) 3177 { 3178 int left = (void *)q->stat - pos; 3179 u64 *p; 3180 3181 if (likely(length <= left)) { 3182 memcpy(pos, src, length); 3183 pos += length; 3184 } else { 3185 memcpy(pos, src, left); 3186 memcpy(q->desc, src + left, length - left); 3187 pos = (void *)q->desc + (length - left); 3188 } 3189 /* 0-pad to multiple of 16 */ 3190 p = PTR_ALIGN(pos, 8); 3191 if ((uintptr_t)p & 8) { 3192 *p = 0; 3193 return p + 1; 3194 } 3195 return p; 3196 } 3197 3198 /** 3199 * ofld_xmit_direct - copy a WR into offload queue 3200 * @q: the Tx offload queue 3201 * @src: location of WR 3202 * @len: WR length 3203 * 3204 * Copy an immediate WR into an uncontended SGE offload queue. 3205 */ 3206 static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src, 3207 unsigned int len) 3208 { 3209 unsigned int ndesc; 3210 int credits; 3211 u64 *pos; 3212 3213 /* Use the lower limit as the cut-off */ 3214 if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) { 3215 WARN_ON(1); 3216 return NET_XMIT_DROP; 3217 } 3218 3219 /* Don't return NET_XMIT_CN here as the current 3220 * implementation doesn't queue the request 3221 * using an skb when the following conditions not met 3222 */ 3223 if (!spin_trylock(&q->sendq.lock)) 3224 return NET_XMIT_DROP; 3225 3226 if (q->full || !skb_queue_empty(&q->sendq) || 3227 q->service_ofldq_running) { 3228 spin_unlock(&q->sendq.lock); 3229 return NET_XMIT_DROP; 3230 } 3231 ndesc = flits_to_desc(DIV_ROUND_UP(len, 8)); 3232 credits = txq_avail(&q->q) - ndesc; 3233 pos = (u64 *)&q->q.desc[q->q.pidx]; 3234 3235 /* ofldtxq_stop modifies WR header in-situ */ 3236 inline_tx_header(src, &q->q, pos, len); 3237 if (unlikely(credits < TXQ_STOP_THRES)) 3238 ofldtxq_stop(q, (struct fw_wr_hdr *)pos); 3239 txq_advance(&q->q, ndesc); 3240 cxgb4_ring_tx_db(q->adap, &q->q, ndesc); 3241 3242 spin_unlock(&q->sendq.lock); 3243 return NET_XMIT_SUCCESS; 3244 } 3245 3246 int cxgb4_immdata_send(struct net_device *dev, unsigned int idx, 3247 const void *src, unsigned int len) 3248 { 3249 struct sge_uld_txq_info *txq_info; 3250 struct sge_uld_txq *txq; 3251 struct adapter *adap; 3252 int ret; 3253 3254 adap = netdev2adap(dev); 3255 3256 local_bh_disable(); 3257 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 3258 if (unlikely(!txq_info)) { 3259 WARN_ON(true); 3260 local_bh_enable(); 3261 return NET_XMIT_DROP; 3262 } 3263 txq = &txq_info->uldtxq[idx]; 3264 3265 ret = ofld_xmit_direct(txq, src, len); 3266 local_bh_enable(); 3267 return net_xmit_eval(ret); 3268 } 3269 EXPORT_SYMBOL(cxgb4_immdata_send); 3270 3271 /** 3272 * t4_crypto_send - send crypto packet 3273 * @adap: the adapter 3274 * @skb: the packet 3275 * 3276 * Sends crypto packet. We use the packet queue_mapping to select the 3277 * appropriate Tx queue as follows: bit 0 indicates whether the packet 3278 * should be sent as regular or control, bits 1-15 select the queue. 3279 */ 3280 static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb) 3281 { 3282 int ret; 3283 3284 local_bh_disable(); 3285 ret = uld_send(adap, skb, CXGB4_TX_CRYPTO); 3286 local_bh_enable(); 3287 return ret; 3288 } 3289 3290 /** 3291 * cxgb4_crypto_send - send crypto packet 3292 * @dev: the net device 3293 * @skb: the packet 3294 * 3295 * Sends crypto packet. This is an exported version of @t4_crypto_send, 3296 * intended for ULDs. 3297 */ 3298 int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb) 3299 { 3300 return t4_crypto_send(netdev2adap(dev), skb); 3301 } 3302 EXPORT_SYMBOL(cxgb4_crypto_send); 3303 3304 static inline void copy_frags(struct sk_buff *skb, 3305 const struct pkt_gl *gl, unsigned int offset) 3306 { 3307 int i; 3308 3309 /* usually there's just one frag */ 3310 __skb_fill_page_desc(skb, 0, gl->frags[0].page, 3311 gl->frags[0].offset + offset, 3312 gl->frags[0].size - offset); 3313 skb_shinfo(skb)->nr_frags = gl->nfrags; 3314 for (i = 1; i < gl->nfrags; i++) 3315 __skb_fill_page_desc(skb, i, gl->frags[i].page, 3316 gl->frags[i].offset, 3317 gl->frags[i].size); 3318 3319 /* get a reference to the last page, we don't own it */ 3320 get_page(gl->frags[gl->nfrags - 1].page); 3321 } 3322 3323 /** 3324 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list 3325 * @gl: the gather list 3326 * @skb_len: size of sk_buff main body if it carries fragments 3327 * @pull_len: amount of data to move to the sk_buff's main body 3328 * 3329 * Builds an sk_buff from the given packet gather list. Returns the 3330 * sk_buff or %NULL if sk_buff allocation failed. 3331 */ 3332 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl, 3333 unsigned int skb_len, unsigned int pull_len) 3334 { 3335 struct sk_buff *skb; 3336 3337 /* 3338 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer 3339 * size, which is expected since buffers are at least PAGE_SIZEd. 3340 * In this case packets up to RX_COPY_THRES have only one fragment. 3341 */ 3342 if (gl->tot_len <= RX_COPY_THRES) { 3343 skb = dev_alloc_skb(gl->tot_len); 3344 if (unlikely(!skb)) 3345 goto out; 3346 __skb_put(skb, gl->tot_len); 3347 skb_copy_to_linear_data(skb, gl->va, gl->tot_len); 3348 } else { 3349 skb = dev_alloc_skb(skb_len); 3350 if (unlikely(!skb)) 3351 goto out; 3352 __skb_put(skb, pull_len); 3353 skb_copy_to_linear_data(skb, gl->va, pull_len); 3354 3355 copy_frags(skb, gl, pull_len); 3356 skb->len = gl->tot_len; 3357 skb->data_len = skb->len - pull_len; 3358 skb->truesize += skb->data_len; 3359 } 3360 out: return skb; 3361 } 3362 EXPORT_SYMBOL(cxgb4_pktgl_to_skb); 3363 3364 /** 3365 * t4_pktgl_free - free a packet gather list 3366 * @gl: the gather list 3367 * 3368 * Releases the pages of a packet gather list. We do not own the last 3369 * page on the list and do not free it. 3370 */ 3371 static void t4_pktgl_free(const struct pkt_gl *gl) 3372 { 3373 int n; 3374 const struct page_frag *p; 3375 3376 for (p = gl->frags, n = gl->nfrags - 1; n--; p++) 3377 put_page(p->page); 3378 } 3379 3380 /* 3381 * Process an MPS trace packet. Give it an unused protocol number so it won't 3382 * be delivered to anyone and send it to the stack for capture. 3383 */ 3384 static noinline int handle_trace_pkt(struct adapter *adap, 3385 const struct pkt_gl *gl) 3386 { 3387 struct sk_buff *skb; 3388 3389 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN); 3390 if (unlikely(!skb)) { 3391 t4_pktgl_free(gl); 3392 return 0; 3393 } 3394 3395 if (is_t4(adap->params.chip)) 3396 __skb_pull(skb, sizeof(struct cpl_trace_pkt)); 3397 else 3398 __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt)); 3399 3400 skb_reset_mac_header(skb); 3401 skb->protocol = htons(0xffff); 3402 skb->dev = adap->port[0]; 3403 netif_receive_skb(skb); 3404 return 0; 3405 } 3406 3407 /** 3408 * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp 3409 * @adap: the adapter 3410 * @hwtstamps: time stamp structure to update 3411 * @sgetstamp: 60bit iqe timestamp 3412 * 3413 * Every ingress queue entry has the 60-bit timestamp, convert that timestamp 3414 * which is in Core Clock ticks into ktime_t and assign it 3415 **/ 3416 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap, 3417 struct skb_shared_hwtstamps *hwtstamps, 3418 u64 sgetstamp) 3419 { 3420 u64 ns; 3421 u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2); 3422 3423 ns = div_u64(tmp, adap->params.vpd.cclk); 3424 3425 memset(hwtstamps, 0, sizeof(*hwtstamps)); 3426 hwtstamps->hwtstamp = ns_to_ktime(ns); 3427 } 3428 3429 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl, 3430 const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len) 3431 { 3432 struct adapter *adapter = rxq->rspq.adap; 3433 struct sge *s = &adapter->sge; 3434 struct port_info *pi; 3435 int ret; 3436 struct sk_buff *skb; 3437 3438 skb = napi_get_frags(&rxq->rspq.napi); 3439 if (unlikely(!skb)) { 3440 t4_pktgl_free(gl); 3441 rxq->stats.rx_drops++; 3442 return; 3443 } 3444 3445 copy_frags(skb, gl, s->pktshift); 3446 if (tnl_hdr_len) 3447 skb->csum_level = 1; 3448 skb->len = gl->tot_len - s->pktshift; 3449 skb->data_len = skb->len; 3450 skb->truesize += skb->data_len; 3451 skb->ip_summed = CHECKSUM_UNNECESSARY; 3452 skb_record_rx_queue(skb, rxq->rspq.idx); 3453 pi = netdev_priv(skb->dev); 3454 if (pi->rxtstamp) 3455 cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb), 3456 gl->sgetstamp); 3457 if (rxq->rspq.netdev->features & NETIF_F_RXHASH) 3458 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 3459 PKT_HASH_TYPE_L3); 3460 3461 if (unlikely(pkt->vlan_ex)) { 3462 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 3463 rxq->stats.vlan_ex++; 3464 } 3465 ret = napi_gro_frags(&rxq->rspq.napi); 3466 if (ret == GRO_HELD) 3467 rxq->stats.lro_pkts++; 3468 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE) 3469 rxq->stats.lro_merged++; 3470 rxq->stats.pkts++; 3471 rxq->stats.rx_cso++; 3472 } 3473 3474 enum { 3475 RX_NON_PTP_PKT = 0, 3476 RX_PTP_PKT_SUC = 1, 3477 RX_PTP_PKT_ERR = 2 3478 }; 3479 3480 /** 3481 * t4_systim_to_hwstamp - read hardware time stamp 3482 * @adapter: the adapter 3483 * @skb: the packet 3484 * 3485 * Read Time Stamp from MPS packet and insert in skb which 3486 * is forwarded to PTP application 3487 */ 3488 static noinline int t4_systim_to_hwstamp(struct adapter *adapter, 3489 struct sk_buff *skb) 3490 { 3491 struct skb_shared_hwtstamps *hwtstamps; 3492 struct cpl_rx_mps_pkt *cpl = NULL; 3493 unsigned char *data; 3494 int offset; 3495 3496 cpl = (struct cpl_rx_mps_pkt *)skb->data; 3497 if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) & 3498 X_CPL_RX_MPS_PKT_TYPE_PTP)) 3499 return RX_PTP_PKT_ERR; 3500 3501 data = skb->data + sizeof(*cpl); 3502 skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt)); 3503 offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN; 3504 if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short)) 3505 return RX_PTP_PKT_ERR; 3506 3507 hwtstamps = skb_hwtstamps(skb); 3508 memset(hwtstamps, 0, sizeof(*hwtstamps)); 3509 hwtstamps->hwtstamp = ns_to_ktime(get_unaligned_be64(data)); 3510 3511 return RX_PTP_PKT_SUC; 3512 } 3513 3514 /** 3515 * t4_rx_hststamp - Recv PTP Event Message 3516 * @adapter: the adapter 3517 * @rsp: the response queue descriptor holding the RX_PKT message 3518 * @rxq: the response queue holding the RX_PKT message 3519 * @skb: the packet 3520 * 3521 * PTP enabled and MPS packet, read HW timestamp 3522 */ 3523 static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp, 3524 struct sge_eth_rxq *rxq, struct sk_buff *skb) 3525 { 3526 int ret; 3527 3528 if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) && 3529 !is_t4(adapter->params.chip))) { 3530 ret = t4_systim_to_hwstamp(adapter, skb); 3531 if (ret == RX_PTP_PKT_ERR) { 3532 kfree_skb(skb); 3533 rxq->stats.rx_drops++; 3534 } 3535 return ret; 3536 } 3537 return RX_NON_PTP_PKT; 3538 } 3539 3540 /** 3541 * t4_tx_hststamp - Loopback PTP Transmit Event Message 3542 * @adapter: the adapter 3543 * @skb: the packet 3544 * @dev: the ingress net device 3545 * 3546 * Read hardware timestamp for the loopback PTP Tx event message 3547 */ 3548 static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb, 3549 struct net_device *dev) 3550 { 3551 struct port_info *pi = netdev_priv(dev); 3552 3553 if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) { 3554 cxgb4_ptp_read_hwstamp(adapter, pi); 3555 kfree_skb(skb); 3556 return 0; 3557 } 3558 return 1; 3559 } 3560 3561 /** 3562 * t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages 3563 * @rspq: Ethernet RX Response Queue associated with Ethernet TX Queue 3564 * @rsp: Response Entry pointer into Response Queue 3565 * @gl: Gather List pointer 3566 * 3567 * For adapters which support the SGE Doorbell Queue Timer facility, 3568 * we configure the Ethernet TX Queues to send CIDX Updates to the 3569 * Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE 3570 * messages. This adds a small load to PCIe Link RX bandwidth and, 3571 * potentially, higher CPU Interrupt load, but allows us to respond 3572 * much more quickly to the CIDX Updates. This is important for 3573 * Upper Layer Software which isn't willing to have a large amount 3574 * of TX Data outstanding before receiving DMA Completions. 3575 */ 3576 static void t4_tx_completion_handler(struct sge_rspq *rspq, 3577 const __be64 *rsp, 3578 const struct pkt_gl *gl) 3579 { 3580 u8 opcode = ((const struct rss_header *)rsp)->opcode; 3581 struct port_info *pi = netdev_priv(rspq->netdev); 3582 struct adapter *adapter = rspq->adap; 3583 struct sge *s = &adapter->sge; 3584 struct sge_eth_txq *txq; 3585 3586 /* skip RSS header */ 3587 rsp++; 3588 3589 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 3590 */ 3591 if (unlikely(opcode == CPL_FW4_MSG && 3592 ((const struct cpl_fw4_msg *)rsp)->type == 3593 FW_TYPE_RSSCPL)) { 3594 rsp++; 3595 opcode = ((const struct rss_header *)rsp)->opcode; 3596 rsp++; 3597 } 3598 3599 if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) { 3600 pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n", 3601 __func__, opcode); 3602 return; 3603 } 3604 3605 txq = &s->ethtxq[pi->first_qset + rspq->idx]; 3606 3607 /* We've got the Hardware Consumer Index Update in the Egress Update 3608 * message. These Egress Update messages will be our sole CIDX Updates 3609 * we get since we don't want to chew up PCIe bandwidth for both Ingress 3610 * Messages and Status Page writes. However, The code which manages 3611 * reclaiming successfully DMA'ed TX Work Requests uses the CIDX value 3612 * stored in the Status Page at the end of the TX Queue. It's easiest 3613 * to simply copy the CIDX Update value from the Egress Update message 3614 * to the Status Page. Also note that no Endian issues need to be 3615 * considered here since both are Big Endian and we're just copying 3616 * bytes consistently ... 3617 */ 3618 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) { 3619 struct cpl_sge_egr_update *egr; 3620 3621 egr = (struct cpl_sge_egr_update *)rsp; 3622 WRITE_ONCE(txq->q.stat->cidx, egr->cidx); 3623 } 3624 3625 t4_sge_eth_txq_egress_update(adapter, txq, -1); 3626 } 3627 3628 static int cxgb4_validate_lb_pkt(struct port_info *pi, const struct pkt_gl *si) 3629 { 3630 struct adapter *adap = pi->adapter; 3631 struct cxgb4_ethtool_lb_test *lb; 3632 struct sge *s = &adap->sge; 3633 struct net_device *netdev; 3634 u8 *data; 3635 int i; 3636 3637 netdev = adap->port[pi->port_id]; 3638 lb = &pi->ethtool_lb; 3639 data = si->va + s->pktshift; 3640 3641 i = ETH_ALEN; 3642 if (!ether_addr_equal(data + i, netdev->dev_addr)) 3643 return -1; 3644 3645 i += ETH_ALEN; 3646 if (strcmp(&data[i], CXGB4_SELFTEST_LB_STR)) 3647 lb->result = -EIO; 3648 3649 complete(&lb->completion); 3650 return 0; 3651 } 3652 3653 /** 3654 * t4_ethrx_handler - process an ingress ethernet packet 3655 * @q: the response queue that received the packet 3656 * @rsp: the response queue descriptor holding the RX_PKT message 3657 * @si: the gather list of packet fragments 3658 * 3659 * Process an ingress ethernet packet and deliver it to the stack. 3660 */ 3661 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp, 3662 const struct pkt_gl *si) 3663 { 3664 bool csum_ok; 3665 struct sk_buff *skb; 3666 const struct cpl_rx_pkt *pkt; 3667 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 3668 struct adapter *adapter = q->adap; 3669 struct sge *s = &q->adap->sge; 3670 int cpl_trace_pkt = is_t4(q->adap->params.chip) ? 3671 CPL_TRACE_PKT : CPL_TRACE_PKT_T5; 3672 u16 err_vec, tnl_hdr_len = 0; 3673 struct port_info *pi; 3674 int ret = 0; 3675 3676 pi = netdev_priv(q->netdev); 3677 /* If we're looking at TX Queue CIDX Update, handle that separately 3678 * and return. 3679 */ 3680 if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) || 3681 (*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) { 3682 t4_tx_completion_handler(q, rsp, si); 3683 return 0; 3684 } 3685 3686 if (unlikely(*(u8 *)rsp == cpl_trace_pkt)) 3687 return handle_trace_pkt(q->adap, si); 3688 3689 pkt = (const struct cpl_rx_pkt *)rsp; 3690 /* Compressed error vector is enabled for T6 only */ 3691 if (q->adap->params.tp.rx_pkt_encap) { 3692 err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec)); 3693 tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec)); 3694 } else { 3695 err_vec = be16_to_cpu(pkt->err_vec); 3696 } 3697 3698 csum_ok = pkt->csum_calc && !err_vec && 3699 (q->netdev->features & NETIF_F_RXCSUM); 3700 3701 if (err_vec) 3702 rxq->stats.bad_rx_pkts++; 3703 3704 if (unlikely(pi->ethtool_lb.loopback && pkt->iff >= NCHAN)) { 3705 ret = cxgb4_validate_lb_pkt(pi, si); 3706 if (!ret) 3707 return 0; 3708 } 3709 3710 if (((pkt->l2info & htonl(RXF_TCP_F)) || 3711 tnl_hdr_len) && 3712 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) { 3713 do_gro(rxq, si, pkt, tnl_hdr_len); 3714 return 0; 3715 } 3716 3717 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN); 3718 if (unlikely(!skb)) { 3719 t4_pktgl_free(si); 3720 rxq->stats.rx_drops++; 3721 return 0; 3722 } 3723 3724 /* Handle PTP Event Rx packet */ 3725 if (unlikely(pi->ptp_enable)) { 3726 ret = t4_rx_hststamp(adapter, rsp, rxq, skb); 3727 if (ret == RX_PTP_PKT_ERR) 3728 return 0; 3729 } 3730 if (likely(!ret)) 3731 __skb_pull(skb, s->pktshift); /* remove ethernet header pad */ 3732 3733 /* Handle the PTP Event Tx Loopback packet */ 3734 if (unlikely(pi->ptp_enable && !ret && 3735 (pkt->l2info & htonl(RXF_UDP_F)) && 3736 cxgb4_ptp_is_ptp_rx(skb))) { 3737 if (!t4_tx_hststamp(adapter, skb, q->netdev)) 3738 return 0; 3739 } 3740 3741 skb->protocol = eth_type_trans(skb, q->netdev); 3742 skb_record_rx_queue(skb, q->idx); 3743 if (skb->dev->features & NETIF_F_RXHASH) 3744 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 3745 PKT_HASH_TYPE_L3); 3746 3747 rxq->stats.pkts++; 3748 3749 if (pi->rxtstamp) 3750 cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb), 3751 si->sgetstamp); 3752 if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) { 3753 if (!pkt->ip_frag) { 3754 skb->ip_summed = CHECKSUM_UNNECESSARY; 3755 rxq->stats.rx_cso++; 3756 } else if (pkt->l2info & htonl(RXF_IP_F)) { 3757 __sum16 c = (__force __sum16)pkt->csum; 3758 skb->csum = csum_unfold(c); 3759 3760 if (tnl_hdr_len) { 3761 skb->ip_summed = CHECKSUM_UNNECESSARY; 3762 skb->csum_level = 1; 3763 } else { 3764 skb->ip_summed = CHECKSUM_COMPLETE; 3765 } 3766 rxq->stats.rx_cso++; 3767 } 3768 } else { 3769 skb_checksum_none_assert(skb); 3770 #ifdef CONFIG_CHELSIO_T4_FCOE 3771 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \ 3772 RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F) 3773 3774 if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) { 3775 if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) && 3776 (pi->fcoe.flags & CXGB_FCOE_ENABLED)) { 3777 if (q->adap->params.tp.rx_pkt_encap) 3778 csum_ok = err_vec & 3779 T6_COMPR_RXERR_SUM_F; 3780 else 3781 csum_ok = err_vec & RXERR_CSUM_F; 3782 if (!csum_ok) 3783 skb->ip_summed = CHECKSUM_UNNECESSARY; 3784 } 3785 } 3786 3787 #undef CPL_RX_PKT_FLAGS 3788 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3789 } 3790 3791 if (unlikely(pkt->vlan_ex)) { 3792 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 3793 rxq->stats.vlan_ex++; 3794 } 3795 skb_mark_napi_id(skb, &q->napi); 3796 netif_receive_skb(skb); 3797 return 0; 3798 } 3799 3800 /** 3801 * restore_rx_bufs - put back a packet's Rx buffers 3802 * @si: the packet gather list 3803 * @q: the SGE free list 3804 * @frags: number of FL buffers to restore 3805 * 3806 * Puts back on an FL the Rx buffers associated with @si. The buffers 3807 * have already been unmapped and are left unmapped, we mark them so to 3808 * prevent further unmapping attempts. 3809 * 3810 * This function undoes a series of @unmap_rx_buf calls when we find out 3811 * that the current packet can't be processed right away afterall and we 3812 * need to come back to it later. This is a very rare event and there's 3813 * no effort to make this particularly efficient. 3814 */ 3815 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q, 3816 int frags) 3817 { 3818 struct rx_sw_desc *d; 3819 3820 while (frags--) { 3821 if (q->cidx == 0) 3822 q->cidx = q->size - 1; 3823 else 3824 q->cidx--; 3825 d = &q->sdesc[q->cidx]; 3826 d->page = si->frags[frags].page; 3827 d->dma_addr |= RX_UNMAPPED_BUF; 3828 q->avail++; 3829 } 3830 } 3831 3832 /** 3833 * is_new_response - check if a response is newly written 3834 * @r: the response descriptor 3835 * @q: the response queue 3836 * 3837 * Returns true if a response descriptor contains a yet unprocessed 3838 * response. 3839 */ 3840 static inline bool is_new_response(const struct rsp_ctrl *r, 3841 const struct sge_rspq *q) 3842 { 3843 return (r->type_gen >> RSPD_GEN_S) == q->gen; 3844 } 3845 3846 /** 3847 * rspq_next - advance to the next entry in a response queue 3848 * @q: the queue 3849 * 3850 * Updates the state of a response queue to advance it to the next entry. 3851 */ 3852 static inline void rspq_next(struct sge_rspq *q) 3853 { 3854 q->cur_desc = (void *)q->cur_desc + q->iqe_len; 3855 if (unlikely(++q->cidx == q->size)) { 3856 q->cidx = 0; 3857 q->gen ^= 1; 3858 q->cur_desc = q->desc; 3859 } 3860 } 3861 3862 /** 3863 * process_responses - process responses from an SGE response queue 3864 * @q: the ingress queue to process 3865 * @budget: how many responses can be processed in this round 3866 * 3867 * Process responses from an SGE response queue up to the supplied budget. 3868 * Responses include received packets as well as control messages from FW 3869 * or HW. 3870 * 3871 * Additionally choose the interrupt holdoff time for the next interrupt 3872 * on this queue. If the system is under memory shortage use a fairly 3873 * long delay to help recovery. 3874 */ 3875 static int process_responses(struct sge_rspq *q, int budget) 3876 { 3877 int ret, rsp_type; 3878 int budget_left = budget; 3879 const struct rsp_ctrl *rc; 3880 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 3881 struct adapter *adapter = q->adap; 3882 struct sge *s = &adapter->sge; 3883 3884 while (likely(budget_left)) { 3885 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 3886 if (!is_new_response(rc, q)) { 3887 if (q->flush_handler) 3888 q->flush_handler(q); 3889 break; 3890 } 3891 3892 dma_rmb(); 3893 rsp_type = RSPD_TYPE_G(rc->type_gen); 3894 if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) { 3895 struct page_frag *fp; 3896 struct pkt_gl si; 3897 const struct rx_sw_desc *rsd; 3898 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags; 3899 3900 if (len & RSPD_NEWBUF_F) { 3901 if (likely(q->offset > 0)) { 3902 free_rx_bufs(q->adap, &rxq->fl, 1); 3903 q->offset = 0; 3904 } 3905 len = RSPD_LEN_G(len); 3906 } 3907 si.tot_len = len; 3908 3909 /* gather packet fragments */ 3910 for (frags = 0, fp = si.frags; ; frags++, fp++) { 3911 rsd = &rxq->fl.sdesc[rxq->fl.cidx]; 3912 bufsz = get_buf_size(adapter, rsd); 3913 fp->page = rsd->page; 3914 fp->offset = q->offset; 3915 fp->size = min(bufsz, len); 3916 len -= fp->size; 3917 if (!len) 3918 break; 3919 unmap_rx_buf(q->adap, &rxq->fl); 3920 } 3921 3922 si.sgetstamp = SGE_TIMESTAMP_G( 3923 be64_to_cpu(rc->last_flit)); 3924 /* 3925 * Last buffer remains mapped so explicitly make it 3926 * coherent for CPU access. 3927 */ 3928 dma_sync_single_for_cpu(q->adap->pdev_dev, 3929 get_buf_addr(rsd), 3930 fp->size, DMA_FROM_DEVICE); 3931 3932 si.va = page_address(si.frags[0].page) + 3933 si.frags[0].offset; 3934 prefetch(si.va); 3935 3936 si.nfrags = frags + 1; 3937 ret = q->handler(q, q->cur_desc, &si); 3938 if (likely(ret == 0)) 3939 q->offset += ALIGN(fp->size, s->fl_align); 3940 else 3941 restore_rx_bufs(&si, &rxq->fl, frags); 3942 } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) { 3943 ret = q->handler(q, q->cur_desc, NULL); 3944 } else { 3945 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN); 3946 } 3947 3948 if (unlikely(ret)) { 3949 /* couldn't process descriptor, back off for recovery */ 3950 q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX); 3951 break; 3952 } 3953 3954 rspq_next(q); 3955 budget_left--; 3956 } 3957 3958 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16) 3959 __refill_fl(q->adap, &rxq->fl); 3960 return budget - budget_left; 3961 } 3962 3963 /** 3964 * napi_rx_handler - the NAPI handler for Rx processing 3965 * @napi: the napi instance 3966 * @budget: how many packets we can process in this round 3967 * 3968 * Handler for new data events when using NAPI. This does not need any 3969 * locking or protection from interrupts as data interrupts are off at 3970 * this point and other adapter interrupts do not interfere (the latter 3971 * in not a concern at all with MSI-X as non-data interrupts then have 3972 * a separate handler). 3973 */ 3974 static int napi_rx_handler(struct napi_struct *napi, int budget) 3975 { 3976 unsigned int params; 3977 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi); 3978 int work_done; 3979 u32 val; 3980 3981 work_done = process_responses(q, budget); 3982 if (likely(work_done < budget)) { 3983 int timer_index; 3984 3985 napi_complete_done(napi, work_done); 3986 timer_index = QINTR_TIMER_IDX_G(q->next_intr_params); 3987 3988 if (q->adaptive_rx) { 3989 if (work_done > max(timer_pkt_quota[timer_index], 3990 MIN_NAPI_WORK)) 3991 timer_index = (timer_index + 1); 3992 else 3993 timer_index = timer_index - 1; 3994 3995 timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1); 3996 q->next_intr_params = 3997 QINTR_TIMER_IDX_V(timer_index) | 3998 QINTR_CNT_EN_V(0); 3999 params = q->next_intr_params; 4000 } else { 4001 params = q->next_intr_params; 4002 q->next_intr_params = q->intr_params; 4003 } 4004 } else 4005 params = QINTR_TIMER_IDX_V(7); 4006 4007 val = CIDXINC_V(work_done) | SEINTARM_V(params); 4008 4009 /* If we don't have access to the new User GTS (T5+), use the old 4010 * doorbell mechanism; otherwise use the new BAR2 mechanism. 4011 */ 4012 if (unlikely(q->bar2_addr == NULL)) { 4013 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A), 4014 val | INGRESSQID_V((u32)q->cntxt_id)); 4015 } else { 4016 writel(val | INGRESSQID_V(q->bar2_qid), 4017 q->bar2_addr + SGE_UDB_GTS); 4018 wmb(); 4019 } 4020 return work_done; 4021 } 4022 4023 void cxgb4_ethofld_restart(struct tasklet_struct *t) 4024 { 4025 struct sge_eosw_txq *eosw_txq = from_tasklet(eosw_txq, t, 4026 qresume_tsk); 4027 int pktcount; 4028 4029 spin_lock(&eosw_txq->lock); 4030 pktcount = eosw_txq->cidx - eosw_txq->last_cidx; 4031 if (pktcount < 0) 4032 pktcount += eosw_txq->ndesc; 4033 4034 if (pktcount) { 4035 cxgb4_eosw_txq_free_desc(netdev2adap(eosw_txq->netdev), 4036 eosw_txq, pktcount); 4037 eosw_txq->inuse -= pktcount; 4038 } 4039 4040 /* There may be some packets waiting for completions. So, 4041 * attempt to send these packets now. 4042 */ 4043 ethofld_xmit(eosw_txq->netdev, eosw_txq); 4044 spin_unlock(&eosw_txq->lock); 4045 } 4046 4047 /* cxgb4_ethofld_rx_handler - Process ETHOFLD Tx completions 4048 * @q: the response queue that received the packet 4049 * @rsp: the response queue descriptor holding the CPL message 4050 * @si: the gather list of packet fragments 4051 * 4052 * Process a ETHOFLD Tx completion. Increment the cidx here, but 4053 * free up the descriptors in a tasklet later. 4054 */ 4055 int cxgb4_ethofld_rx_handler(struct sge_rspq *q, const __be64 *rsp, 4056 const struct pkt_gl *si) 4057 { 4058 u8 opcode = ((const struct rss_header *)rsp)->opcode; 4059 4060 /* skip RSS header */ 4061 rsp++; 4062 4063 if (opcode == CPL_FW4_ACK) { 4064 const struct cpl_fw4_ack *cpl; 4065 struct sge_eosw_txq *eosw_txq; 4066 struct eotid_entry *entry; 4067 struct sk_buff *skb; 4068 u32 hdr_len, eotid; 4069 u8 flits, wrlen16; 4070 int credits; 4071 4072 cpl = (const struct cpl_fw4_ack *)rsp; 4073 eotid = CPL_FW4_ACK_FLOWID_G(ntohl(OPCODE_TID(cpl))) - 4074 q->adap->tids.eotid_base; 4075 entry = cxgb4_lookup_eotid(&q->adap->tids, eotid); 4076 if (!entry) 4077 goto out_done; 4078 4079 eosw_txq = (struct sge_eosw_txq *)entry->data; 4080 if (!eosw_txq) 4081 goto out_done; 4082 4083 spin_lock(&eosw_txq->lock); 4084 credits = cpl->credits; 4085 while (credits > 0) { 4086 skb = eosw_txq->desc[eosw_txq->cidx].skb; 4087 if (!skb) 4088 break; 4089 4090 if (unlikely((eosw_txq->state == 4091 CXGB4_EO_STATE_FLOWC_OPEN_REPLY || 4092 eosw_txq->state == 4093 CXGB4_EO_STATE_FLOWC_CLOSE_REPLY) && 4094 eosw_txq->cidx == eosw_txq->flowc_idx)) { 4095 flits = DIV_ROUND_UP(skb->len, 8); 4096 if (eosw_txq->state == 4097 CXGB4_EO_STATE_FLOWC_OPEN_REPLY) 4098 eosw_txq->state = CXGB4_EO_STATE_ACTIVE; 4099 else 4100 eosw_txq->state = CXGB4_EO_STATE_CLOSED; 4101 complete(&eosw_txq->completion); 4102 } else { 4103 hdr_len = eth_get_headlen(eosw_txq->netdev, 4104 skb->data, 4105 skb_headlen(skb)); 4106 flits = ethofld_calc_tx_flits(q->adap, skb, 4107 hdr_len); 4108 } 4109 eosw_txq_advance_index(&eosw_txq->cidx, 1, 4110 eosw_txq->ndesc); 4111 wrlen16 = DIV_ROUND_UP(flits * 8, 16); 4112 credits -= wrlen16; 4113 } 4114 4115 eosw_txq->cred += cpl->credits; 4116 eosw_txq->ncompl--; 4117 4118 spin_unlock(&eosw_txq->lock); 4119 4120 /* Schedule a tasklet to reclaim SKBs and restart ETHOFLD Tx, 4121 * if there were packets waiting for completion. 4122 */ 4123 tasklet_schedule(&eosw_txq->qresume_tsk); 4124 } 4125 4126 out_done: 4127 return 0; 4128 } 4129 4130 /* 4131 * The MSI-X interrupt handler for an SGE response queue. 4132 */ 4133 irqreturn_t t4_sge_intr_msix(int irq, void *cookie) 4134 { 4135 struct sge_rspq *q = cookie; 4136 4137 napi_schedule(&q->napi); 4138 return IRQ_HANDLED; 4139 } 4140 4141 /* 4142 * Process the indirect interrupt entries in the interrupt queue and kick off 4143 * NAPI for each queue that has generated an entry. 4144 */ 4145 static unsigned int process_intrq(struct adapter *adap) 4146 { 4147 unsigned int credits; 4148 const struct rsp_ctrl *rc; 4149 struct sge_rspq *q = &adap->sge.intrq; 4150 u32 val; 4151 4152 spin_lock(&adap->sge.intrq_lock); 4153 for (credits = 0; ; credits++) { 4154 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 4155 if (!is_new_response(rc, q)) 4156 break; 4157 4158 dma_rmb(); 4159 if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) { 4160 unsigned int qid = ntohl(rc->pldbuflen_qid); 4161 4162 qid -= adap->sge.ingr_start; 4163 napi_schedule(&adap->sge.ingr_map[qid]->napi); 4164 } 4165 4166 rspq_next(q); 4167 } 4168 4169 val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params); 4170 4171 /* If we don't have access to the new User GTS (T5+), use the old 4172 * doorbell mechanism; otherwise use the new BAR2 mechanism. 4173 */ 4174 if (unlikely(q->bar2_addr == NULL)) { 4175 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 4176 val | INGRESSQID_V(q->cntxt_id)); 4177 } else { 4178 writel(val | INGRESSQID_V(q->bar2_qid), 4179 q->bar2_addr + SGE_UDB_GTS); 4180 wmb(); 4181 } 4182 spin_unlock(&adap->sge.intrq_lock); 4183 return credits; 4184 } 4185 4186 /* 4187 * The MSI interrupt handler, which handles data events from SGE response queues 4188 * as well as error and other async events as they all use the same MSI vector. 4189 */ 4190 static irqreturn_t t4_intr_msi(int irq, void *cookie) 4191 { 4192 struct adapter *adap = cookie; 4193 4194 if (adap->flags & CXGB4_MASTER_PF) 4195 t4_slow_intr_handler(adap); 4196 process_intrq(adap); 4197 return IRQ_HANDLED; 4198 } 4199 4200 /* 4201 * Interrupt handler for legacy INTx interrupts. 4202 * Handles data events from SGE response queues as well as error and other 4203 * async events as they all use the same interrupt line. 4204 */ 4205 static irqreturn_t t4_intr_intx(int irq, void *cookie) 4206 { 4207 struct adapter *adap = cookie; 4208 4209 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0); 4210 if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) | 4211 process_intrq(adap)) 4212 return IRQ_HANDLED; 4213 return IRQ_NONE; /* probably shared interrupt */ 4214 } 4215 4216 /** 4217 * t4_intr_handler - select the top-level interrupt handler 4218 * @adap: the adapter 4219 * 4220 * Selects the top-level interrupt handler based on the type of interrupts 4221 * (MSI-X, MSI, or INTx). 4222 */ 4223 irq_handler_t t4_intr_handler(struct adapter *adap) 4224 { 4225 if (adap->flags & CXGB4_USING_MSIX) 4226 return t4_sge_intr_msix; 4227 if (adap->flags & CXGB4_USING_MSI) 4228 return t4_intr_msi; 4229 return t4_intr_intx; 4230 } 4231 4232 static void sge_rx_timer_cb(struct timer_list *t) 4233 { 4234 unsigned long m; 4235 unsigned int i; 4236 struct adapter *adap = from_timer(adap, t, sge.rx_timer); 4237 struct sge *s = &adap->sge; 4238 4239 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) 4240 for (m = s->starving_fl[i]; m; m &= m - 1) { 4241 struct sge_eth_rxq *rxq; 4242 unsigned int id = __ffs(m) + i * BITS_PER_LONG; 4243 struct sge_fl *fl = s->egr_map[id]; 4244 4245 clear_bit(id, s->starving_fl); 4246 smp_mb__after_atomic(); 4247 4248 if (fl_starving(adap, fl)) { 4249 rxq = container_of(fl, struct sge_eth_rxq, fl); 4250 if (napi_schedule(&rxq->rspq.napi)) 4251 fl->starving++; 4252 else 4253 set_bit(id, s->starving_fl); 4254 } 4255 } 4256 /* The remainder of the SGE RX Timer Callback routine is dedicated to 4257 * global Master PF activities like checking for chip ingress stalls, 4258 * etc. 4259 */ 4260 if (!(adap->flags & CXGB4_MASTER_PF)) 4261 goto done; 4262 4263 t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD); 4264 4265 done: 4266 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD); 4267 } 4268 4269 static void sge_tx_timer_cb(struct timer_list *t) 4270 { 4271 struct adapter *adap = from_timer(adap, t, sge.tx_timer); 4272 struct sge *s = &adap->sge; 4273 unsigned long m, period; 4274 unsigned int i, budget; 4275 4276 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) 4277 for (m = s->txq_maperr[i]; m; m &= m - 1) { 4278 unsigned long id = __ffs(m) + i * BITS_PER_LONG; 4279 struct sge_uld_txq *txq = s->egr_map[id]; 4280 4281 clear_bit(id, s->txq_maperr); 4282 tasklet_schedule(&txq->qresume_tsk); 4283 } 4284 4285 if (!is_t4(adap->params.chip)) { 4286 struct sge_eth_txq *q = &s->ptptxq; 4287 int avail; 4288 4289 spin_lock(&adap->ptp_lock); 4290 avail = reclaimable(&q->q); 4291 4292 if (avail) { 4293 free_tx_desc(adap, &q->q, avail, false); 4294 q->q.in_use -= avail; 4295 } 4296 spin_unlock(&adap->ptp_lock); 4297 } 4298 4299 budget = MAX_TIMER_TX_RECLAIM; 4300 i = s->ethtxq_rover; 4301 do { 4302 budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i], 4303 budget); 4304 if (!budget) 4305 break; 4306 4307 if (++i >= s->ethqsets) 4308 i = 0; 4309 } while (i != s->ethtxq_rover); 4310 s->ethtxq_rover = i; 4311 4312 if (budget == 0) { 4313 /* If we found too many reclaimable packets schedule a timer 4314 * in the near future to continue where we left off. 4315 */ 4316 period = 2; 4317 } else { 4318 /* We reclaimed all reclaimable TX Descriptors, so reschedule 4319 * at the normal period. 4320 */ 4321 period = TX_QCHECK_PERIOD; 4322 } 4323 4324 mod_timer(&s->tx_timer, jiffies + period); 4325 } 4326 4327 /** 4328 * bar2_address - return the BAR2 address for an SGE Queue's Registers 4329 * @adapter: the adapter 4330 * @qid: the SGE Queue ID 4331 * @qtype: the SGE Queue Type (Egress or Ingress) 4332 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 4333 * 4334 * Returns the BAR2 address for the SGE Queue Registers associated with 4335 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also 4336 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE 4337 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID" 4338 * Registers are supported (e.g. the Write Combining Doorbell Buffer). 4339 */ 4340 static void __iomem *bar2_address(struct adapter *adapter, 4341 unsigned int qid, 4342 enum t4_bar2_qtype qtype, 4343 unsigned int *pbar2_qid) 4344 { 4345 u64 bar2_qoffset; 4346 int ret; 4347 4348 ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0, 4349 &bar2_qoffset, pbar2_qid); 4350 if (ret) 4351 return NULL; 4352 4353 return adapter->bar2 + bar2_qoffset; 4354 } 4355 4356 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0 4357 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map 4358 */ 4359 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq, 4360 struct net_device *dev, int intr_idx, 4361 struct sge_fl *fl, rspq_handler_t hnd, 4362 rspq_flush_handler_t flush_hnd, int cong) 4363 { 4364 int ret, flsz = 0; 4365 struct fw_iq_cmd c; 4366 struct sge *s = &adap->sge; 4367 struct port_info *pi = netdev_priv(dev); 4368 int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING); 4369 4370 /* Size needs to be multiple of 16, including status entry. */ 4371 iq->size = roundup(iq->size, 16); 4372 4373 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0, 4374 &iq->phys_addr, NULL, 0, 4375 dev_to_node(adap->pdev_dev)); 4376 if (!iq->desc) 4377 return -ENOMEM; 4378 4379 memset(&c, 0, sizeof(c)); 4380 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 4381 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4382 FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0)); 4383 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F | 4384 FW_LEN16(c)); 4385 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) | 4386 FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) | 4387 FW_IQ_CMD_IQANDST_V(intr_idx < 0) | 4388 FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) | 4389 FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx : 4390 -intr_idx - 1)); 4391 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) | 4392 FW_IQ_CMD_IQGTSMODE_F | 4393 FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) | 4394 FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4)); 4395 c.iqsize = htons(iq->size); 4396 c.iqaddr = cpu_to_be64(iq->phys_addr); 4397 if (cong >= 0) 4398 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F | 4399 FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC 4400 : FW_IQ_IQTYPE_OFLD)); 4401 4402 if (fl) { 4403 unsigned int chip_ver = 4404 CHELSIO_CHIP_VERSION(adap->params.chip); 4405 4406 /* Allocate the ring for the hardware free list (with space 4407 * for its status page) along with the associated software 4408 * descriptor ring. The free list size needs to be a multiple 4409 * of the Egress Queue Unit and at least 2 Egress Units larger 4410 * than the SGE's Egress Congrestion Threshold 4411 * (fl_starve_thres - 1). 4412 */ 4413 if (fl->size < s->fl_starve_thres - 1 + 2 * 8) 4414 fl->size = s->fl_starve_thres - 1 + 2 * 8; 4415 fl->size = roundup(fl->size, 8); 4416 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64), 4417 sizeof(struct rx_sw_desc), &fl->addr, 4418 &fl->sdesc, s->stat_len, 4419 dev_to_node(adap->pdev_dev)); 4420 if (!fl->desc) 4421 goto fl_nomem; 4422 4423 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc); 4424 c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F | 4425 FW_IQ_CMD_FL0FETCHRO_V(relaxed) | 4426 FW_IQ_CMD_FL0DATARO_V(relaxed) | 4427 FW_IQ_CMD_FL0PADEN_F); 4428 if (cong >= 0) 4429 c.iqns_to_fl0congen |= 4430 htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) | 4431 FW_IQ_CMD_FL0CONGCIF_F | 4432 FW_IQ_CMD_FL0CONGEN_F); 4433 /* In T6, for egress queue type FL there is internal overhead 4434 * of 16B for header going into FLM module. Hence the maximum 4435 * allowed burst size is 448 bytes. For T4/T5, the hardware 4436 * doesn't coalesce fetch requests if more than 64 bytes of 4437 * Free List pointers are provided, so we use a 128-byte Fetch 4438 * Burst Minimum there (T6 implements coalescing so we can use 4439 * the smaller 64-byte value there). 4440 */ 4441 c.fl0dcaen_to_fl0cidxfthresh = 4442 htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ? 4443 FETCHBURSTMIN_128B_X : 4444 FETCHBURSTMIN_64B_T6_X) | 4445 FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ? 4446 FETCHBURSTMAX_512B_X : 4447 FETCHBURSTMAX_256B_X)); 4448 c.fl0size = htons(flsz); 4449 c.fl0addr = cpu_to_be64(fl->addr); 4450 } 4451 4452 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4453 if (ret) 4454 goto err; 4455 4456 netif_napi_add(dev, &iq->napi, napi_rx_handler); 4457 iq->cur_desc = iq->desc; 4458 iq->cidx = 0; 4459 iq->gen = 1; 4460 iq->next_intr_params = iq->intr_params; 4461 iq->cntxt_id = ntohs(c.iqid); 4462 iq->abs_id = ntohs(c.physiqid); 4463 iq->bar2_addr = bar2_address(adap, 4464 iq->cntxt_id, 4465 T4_BAR2_QTYPE_INGRESS, 4466 &iq->bar2_qid); 4467 iq->size--; /* subtract status entry */ 4468 iq->netdev = dev; 4469 iq->handler = hnd; 4470 iq->flush_handler = flush_hnd; 4471 4472 memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr)); 4473 skb_queue_head_init(&iq->lro_mgr.lroq); 4474 4475 /* set offset to -1 to distinguish ingress queues without FL */ 4476 iq->offset = fl ? 0 : -1; 4477 4478 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq; 4479 4480 if (fl) { 4481 fl->cntxt_id = ntohs(c.fl0id); 4482 fl->avail = fl->pend_cred = 0; 4483 fl->pidx = fl->cidx = 0; 4484 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0; 4485 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl; 4486 4487 /* Note, we must initialize the BAR2 Free List User Doorbell 4488 * information before refilling the Free List! 4489 */ 4490 fl->bar2_addr = bar2_address(adap, 4491 fl->cntxt_id, 4492 T4_BAR2_QTYPE_EGRESS, 4493 &fl->bar2_qid); 4494 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL); 4495 } 4496 4497 /* For T5 and later we attempt to set up the Congestion Manager values 4498 * of the new RX Ethernet Queue. This should really be handled by 4499 * firmware because it's more complex than any host driver wants to 4500 * get involved with and it's different per chip and this is almost 4501 * certainly wrong. Firmware would be wrong as well, but it would be 4502 * a lot easier to fix in one place ... For now we do something very 4503 * simple (and hopefully less wrong). 4504 */ 4505 if (!is_t4(adap->params.chip) && cong >= 0) { 4506 u32 param, val, ch_map = 0; 4507 int i; 4508 u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log; 4509 4510 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 4511 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | 4512 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id)); 4513 if (cong == 0) { 4514 val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X); 4515 } else { 4516 val = 4517 CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X); 4518 for (i = 0; i < 4; i++) { 4519 if (cong & (1 << i)) 4520 ch_map |= 1 << (i << cng_ch_bits_log); 4521 } 4522 val |= CONMCTXT_CNGCHMAP_V(ch_map); 4523 } 4524 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 4525 ¶m, &val); 4526 if (ret) 4527 dev_warn(adap->pdev_dev, "Failed to set Congestion" 4528 " Manager Context for Ingress Queue %d: %d\n", 4529 iq->cntxt_id, -ret); 4530 } 4531 4532 return 0; 4533 4534 fl_nomem: 4535 ret = -ENOMEM; 4536 err: 4537 if (iq->desc) { 4538 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len, 4539 iq->desc, iq->phys_addr); 4540 iq->desc = NULL; 4541 } 4542 if (fl && fl->desc) { 4543 kfree(fl->sdesc); 4544 fl->sdesc = NULL; 4545 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc), 4546 fl->desc, fl->addr); 4547 fl->desc = NULL; 4548 } 4549 return ret; 4550 } 4551 4552 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id) 4553 { 4554 q->cntxt_id = id; 4555 q->bar2_addr = bar2_address(adap, 4556 q->cntxt_id, 4557 T4_BAR2_QTYPE_EGRESS, 4558 &q->bar2_qid); 4559 q->in_use = 0; 4560 q->cidx = q->pidx = 0; 4561 q->stops = q->restarts = 0; 4562 q->stat = (void *)&q->desc[q->size]; 4563 spin_lock_init(&q->db_lock); 4564 adap->sge.egr_map[id - adap->sge.egr_start] = q; 4565 } 4566 4567 /** 4568 * t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue 4569 * @adap: the adapter 4570 * @txq: the SGE Ethernet TX Queue to initialize 4571 * @dev: the Linux Network Device 4572 * @netdevq: the corresponding Linux TX Queue 4573 * @iqid: the Ingress Queue to which to deliver CIDX Update messages 4574 * @dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers 4575 */ 4576 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq, 4577 struct net_device *dev, struct netdev_queue *netdevq, 4578 unsigned int iqid, u8 dbqt) 4579 { 4580 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 4581 struct port_info *pi = netdev_priv(dev); 4582 struct sge *s = &adap->sge; 4583 struct fw_eq_eth_cmd c; 4584 int ret, nentries; 4585 4586 /* Add status entries */ 4587 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 4588 4589 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, 4590 sizeof(struct tx_desc), sizeof(struct tx_sw_desc), 4591 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, 4592 netdev_queue_numa_node_read(netdevq)); 4593 if (!txq->q.desc) 4594 return -ENOMEM; 4595 4596 memset(&c, 0, sizeof(c)); 4597 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F | 4598 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4599 FW_EQ_ETH_CMD_PFN_V(adap->pf) | 4600 FW_EQ_ETH_CMD_VFN_V(0)); 4601 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F | 4602 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c)); 4603 4604 /* For TX Ethernet Queues using the SGE Doorbell Queue Timer 4605 * mechanism, we use Ingress Queue messages for Hardware Consumer 4606 * Index Updates on the TX Queue. Otherwise we have the Hardware 4607 * write the CIDX Updates into the Status Page at the end of the 4608 * TX Queue. 4609 */ 4610 c.autoequiqe_to_viid = htonl(((chip_ver <= CHELSIO_T5) ? 4611 FW_EQ_ETH_CMD_AUTOEQUIQE_F : 4612 FW_EQ_ETH_CMD_AUTOEQUEQE_F) | 4613 FW_EQ_ETH_CMD_VIID_V(pi->viid)); 4614 4615 c.fetchszm_to_iqid = 4616 htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V((chip_ver <= CHELSIO_T5) ? 4617 HOSTFCMODE_INGRESS_QUEUE_X : 4618 HOSTFCMODE_STATUS_PAGE_X) | 4619 FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) | 4620 FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid)); 4621 4622 /* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */ 4623 c.dcaen_to_eqsize = 4624 htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5 4625 ? FETCHBURSTMIN_64B_X 4626 : FETCHBURSTMIN_64B_T6_X) | 4627 FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 4628 FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 4629 FW_EQ_ETH_CMD_CIDXFTHRESHO_V(chip_ver == CHELSIO_T5) | 4630 FW_EQ_ETH_CMD_EQSIZE_V(nentries)); 4631 4632 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 4633 4634 /* If we're using the SGE Doorbell Queue Timer mechanism, pass in the 4635 * currently configured Timer Index. THis can be changed later via an 4636 * ethtool -C tx-usecs {Timer Val} command. Note that the SGE 4637 * Doorbell Queue mode is currently automatically enabled in the 4638 * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ... 4639 */ 4640 if (dbqt) 4641 c.timeren_timerix = 4642 cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F | 4643 FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix)); 4644 4645 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4646 if (ret) { 4647 kfree(txq->q.sdesc); 4648 txq->q.sdesc = NULL; 4649 dma_free_coherent(adap->pdev_dev, 4650 nentries * sizeof(struct tx_desc), 4651 txq->q.desc, txq->q.phys_addr); 4652 txq->q.desc = NULL; 4653 return ret; 4654 } 4655 4656 txq->q.q_type = CXGB4_TXQ_ETH; 4657 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd))); 4658 txq->txq = netdevq; 4659 txq->tso = 0; 4660 txq->uso = 0; 4661 txq->tx_cso = 0; 4662 txq->vlan_ins = 0; 4663 txq->mapping_err = 0; 4664 txq->dbqt = dbqt; 4665 4666 return 0; 4667 } 4668 4669 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq, 4670 struct net_device *dev, unsigned int iqid, 4671 unsigned int cmplqid) 4672 { 4673 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 4674 struct port_info *pi = netdev_priv(dev); 4675 struct sge *s = &adap->sge; 4676 struct fw_eq_ctrl_cmd c; 4677 int ret, nentries; 4678 4679 /* Add status entries */ 4680 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 4681 4682 txq->q.desc = alloc_ring(adap->pdev_dev, nentries, 4683 sizeof(struct tx_desc), 0, &txq->q.phys_addr, 4684 NULL, 0, dev_to_node(adap->pdev_dev)); 4685 if (!txq->q.desc) 4686 return -ENOMEM; 4687 4688 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F | 4689 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4690 FW_EQ_CTRL_CMD_PFN_V(adap->pf) | 4691 FW_EQ_CTRL_CMD_VFN_V(0)); 4692 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F | 4693 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c)); 4694 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid)); 4695 c.physeqid_pkd = htonl(0); 4696 c.fetchszm_to_iqid = 4697 htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 4698 FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) | 4699 FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid)); 4700 c.dcaen_to_eqsize = 4701 htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5 4702 ? FETCHBURSTMIN_64B_X 4703 : FETCHBURSTMIN_64B_T6_X) | 4704 FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 4705 FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 4706 FW_EQ_CTRL_CMD_EQSIZE_V(nentries)); 4707 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 4708 4709 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4710 if (ret) { 4711 dma_free_coherent(adap->pdev_dev, 4712 nentries * sizeof(struct tx_desc), 4713 txq->q.desc, txq->q.phys_addr); 4714 txq->q.desc = NULL; 4715 return ret; 4716 } 4717 4718 txq->q.q_type = CXGB4_TXQ_CTRL; 4719 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid))); 4720 txq->adap = adap; 4721 skb_queue_head_init(&txq->sendq); 4722 tasklet_setup(&txq->qresume_tsk, restart_ctrlq); 4723 txq->full = 0; 4724 return 0; 4725 } 4726 4727 int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid, 4728 unsigned int cmplqid) 4729 { 4730 u32 param, val; 4731 4732 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 4733 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) | 4734 FW_PARAMS_PARAM_YZ_V(eqid)); 4735 val = cmplqid; 4736 return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 4737 } 4738 4739 static int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_txq *q, 4740 struct net_device *dev, u32 cmd, u32 iqid) 4741 { 4742 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 4743 struct port_info *pi = netdev_priv(dev); 4744 struct sge *s = &adap->sge; 4745 struct fw_eq_ofld_cmd c; 4746 u32 fb_min, nentries; 4747 int ret; 4748 4749 /* Add status entries */ 4750 nentries = q->size + s->stat_len / sizeof(struct tx_desc); 4751 q->desc = alloc_ring(adap->pdev_dev, q->size, sizeof(struct tx_desc), 4752 sizeof(struct tx_sw_desc), &q->phys_addr, 4753 &q->sdesc, s->stat_len, NUMA_NO_NODE); 4754 if (!q->desc) 4755 return -ENOMEM; 4756 4757 if (chip_ver <= CHELSIO_T5) 4758 fb_min = FETCHBURSTMIN_64B_X; 4759 else 4760 fb_min = FETCHBURSTMIN_64B_T6_X; 4761 4762 memset(&c, 0, sizeof(c)); 4763 c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F | 4764 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4765 FW_EQ_OFLD_CMD_PFN_V(adap->pf) | 4766 FW_EQ_OFLD_CMD_VFN_V(0)); 4767 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F | 4768 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c)); 4769 c.fetchszm_to_iqid = 4770 htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 4771 FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) | 4772 FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid)); 4773 c.dcaen_to_eqsize = 4774 htonl(FW_EQ_OFLD_CMD_FBMIN_V(fb_min) | 4775 FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 4776 FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 4777 FW_EQ_OFLD_CMD_EQSIZE_V(nentries)); 4778 c.eqaddr = cpu_to_be64(q->phys_addr); 4779 4780 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4781 if (ret) { 4782 kfree(q->sdesc); 4783 q->sdesc = NULL; 4784 dma_free_coherent(adap->pdev_dev, 4785 nentries * sizeof(struct tx_desc), 4786 q->desc, q->phys_addr); 4787 q->desc = NULL; 4788 return ret; 4789 } 4790 4791 init_txq(adap, q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd))); 4792 return 0; 4793 } 4794 4795 int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq, 4796 struct net_device *dev, unsigned int iqid, 4797 unsigned int uld_type) 4798 { 4799 u32 cmd = FW_EQ_OFLD_CMD; 4800 int ret; 4801 4802 if (unlikely(uld_type == CXGB4_TX_CRYPTO)) 4803 cmd = FW_EQ_CTRL_CMD; 4804 4805 ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, cmd, iqid); 4806 if (ret) 4807 return ret; 4808 4809 txq->q.q_type = CXGB4_TXQ_ULD; 4810 txq->adap = adap; 4811 skb_queue_head_init(&txq->sendq); 4812 tasklet_setup(&txq->qresume_tsk, restart_ofldq); 4813 txq->full = 0; 4814 txq->mapping_err = 0; 4815 return 0; 4816 } 4817 4818 int t4_sge_alloc_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq, 4819 struct net_device *dev, u32 iqid) 4820 { 4821 int ret; 4822 4823 ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, FW_EQ_OFLD_CMD, iqid); 4824 if (ret) 4825 return ret; 4826 4827 txq->q.q_type = CXGB4_TXQ_ULD; 4828 spin_lock_init(&txq->lock); 4829 txq->adap = adap; 4830 txq->tso = 0; 4831 txq->uso = 0; 4832 txq->tx_cso = 0; 4833 txq->vlan_ins = 0; 4834 txq->mapping_err = 0; 4835 return 0; 4836 } 4837 4838 void free_txq(struct adapter *adap, struct sge_txq *q) 4839 { 4840 struct sge *s = &adap->sge; 4841 4842 dma_free_coherent(adap->pdev_dev, 4843 q->size * sizeof(struct tx_desc) + s->stat_len, 4844 q->desc, q->phys_addr); 4845 q->cntxt_id = 0; 4846 q->sdesc = NULL; 4847 q->desc = NULL; 4848 } 4849 4850 void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq, 4851 struct sge_fl *fl) 4852 { 4853 struct sge *s = &adap->sge; 4854 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff; 4855 4856 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL; 4857 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP, 4858 rq->cntxt_id, fl_id, 0xffff); 4859 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len, 4860 rq->desc, rq->phys_addr); 4861 netif_napi_del(&rq->napi); 4862 rq->netdev = NULL; 4863 rq->cntxt_id = rq->abs_id = 0; 4864 rq->desc = NULL; 4865 4866 if (fl) { 4867 free_rx_bufs(adap, fl, fl->avail); 4868 dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len, 4869 fl->desc, fl->addr); 4870 kfree(fl->sdesc); 4871 fl->sdesc = NULL; 4872 fl->cntxt_id = 0; 4873 fl->desc = NULL; 4874 } 4875 } 4876 4877 /** 4878 * t4_free_ofld_rxqs - free a block of consecutive Rx queues 4879 * @adap: the adapter 4880 * @n: number of queues 4881 * @q: pointer to first queue 4882 * 4883 * Release the resources of a consecutive block of offload Rx queues. 4884 */ 4885 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q) 4886 { 4887 for ( ; n; n--, q++) 4888 if (q->rspq.desc) 4889 free_rspq_fl(adap, &q->rspq, 4890 q->fl.size ? &q->fl : NULL); 4891 } 4892 4893 void t4_sge_free_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq) 4894 { 4895 if (txq->q.desc) { 4896 t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0, 4897 txq->q.cntxt_id); 4898 free_tx_desc(adap, &txq->q, txq->q.in_use, false); 4899 kfree(txq->q.sdesc); 4900 free_txq(adap, &txq->q); 4901 } 4902 } 4903 4904 /** 4905 * t4_free_sge_resources - free SGE resources 4906 * @adap: the adapter 4907 * 4908 * Frees resources used by the SGE queue sets. 4909 */ 4910 void t4_free_sge_resources(struct adapter *adap) 4911 { 4912 int i; 4913 struct sge_eth_rxq *eq; 4914 struct sge_eth_txq *etq; 4915 4916 /* stop all Rx queues in order to start them draining */ 4917 for (i = 0; i < adap->sge.ethqsets; i++) { 4918 eq = &adap->sge.ethrxq[i]; 4919 if (eq->rspq.desc) 4920 t4_iq_stop(adap, adap->mbox, adap->pf, 0, 4921 FW_IQ_TYPE_FL_INT_CAP, 4922 eq->rspq.cntxt_id, 4923 eq->fl.size ? eq->fl.cntxt_id : 0xffff, 4924 0xffff); 4925 } 4926 4927 /* clean up Ethernet Tx/Rx queues */ 4928 for (i = 0; i < adap->sge.ethqsets; i++) { 4929 eq = &adap->sge.ethrxq[i]; 4930 if (eq->rspq.desc) 4931 free_rspq_fl(adap, &eq->rspq, 4932 eq->fl.size ? &eq->fl : NULL); 4933 if (eq->msix) { 4934 cxgb4_free_msix_idx_in_bmap(adap, eq->msix->idx); 4935 eq->msix = NULL; 4936 } 4937 4938 etq = &adap->sge.ethtxq[i]; 4939 if (etq->q.desc) { 4940 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, 4941 etq->q.cntxt_id); 4942 __netif_tx_lock_bh(etq->txq); 4943 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 4944 __netif_tx_unlock_bh(etq->txq); 4945 kfree(etq->q.sdesc); 4946 free_txq(adap, &etq->q); 4947 } 4948 } 4949 4950 /* clean up control Tx queues */ 4951 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) { 4952 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i]; 4953 4954 if (cq->q.desc) { 4955 tasklet_kill(&cq->qresume_tsk); 4956 t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0, 4957 cq->q.cntxt_id); 4958 __skb_queue_purge(&cq->sendq); 4959 free_txq(adap, &cq->q); 4960 } 4961 } 4962 4963 if (adap->sge.fw_evtq.desc) { 4964 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL); 4965 if (adap->sge.fwevtq_msix_idx >= 0) 4966 cxgb4_free_msix_idx_in_bmap(adap, 4967 adap->sge.fwevtq_msix_idx); 4968 } 4969 4970 if (adap->sge.nd_msix_idx >= 0) 4971 cxgb4_free_msix_idx_in_bmap(adap, adap->sge.nd_msix_idx); 4972 4973 if (adap->sge.intrq.desc) 4974 free_rspq_fl(adap, &adap->sge.intrq, NULL); 4975 4976 if (!is_t4(adap->params.chip)) { 4977 etq = &adap->sge.ptptxq; 4978 if (etq->q.desc) { 4979 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, 4980 etq->q.cntxt_id); 4981 spin_lock_bh(&adap->ptp_lock); 4982 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 4983 spin_unlock_bh(&adap->ptp_lock); 4984 kfree(etq->q.sdesc); 4985 free_txq(adap, &etq->q); 4986 } 4987 } 4988 4989 /* clear the reverse egress queue map */ 4990 memset(adap->sge.egr_map, 0, 4991 adap->sge.egr_sz * sizeof(*adap->sge.egr_map)); 4992 } 4993 4994 void t4_sge_start(struct adapter *adap) 4995 { 4996 adap->sge.ethtxq_rover = 0; 4997 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD); 4998 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD); 4999 } 5000 5001 /** 5002 * t4_sge_stop - disable SGE operation 5003 * @adap: the adapter 5004 * 5005 * Stop tasklets and timers associated with the DMA engine. Note that 5006 * this is effective only if measures have been taken to disable any HW 5007 * events that may restart them. 5008 */ 5009 void t4_sge_stop(struct adapter *adap) 5010 { 5011 int i; 5012 struct sge *s = &adap->sge; 5013 5014 if (s->rx_timer.function) 5015 del_timer_sync(&s->rx_timer); 5016 if (s->tx_timer.function) 5017 del_timer_sync(&s->tx_timer); 5018 5019 if (is_offload(adap)) { 5020 struct sge_uld_txq_info *txq_info; 5021 5022 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 5023 if (txq_info) { 5024 struct sge_uld_txq *txq = txq_info->uldtxq; 5025 5026 for_each_ofldtxq(&adap->sge, i) { 5027 if (txq->q.desc) 5028 tasklet_kill(&txq->qresume_tsk); 5029 } 5030 } 5031 } 5032 5033 if (is_pci_uld(adap)) { 5034 struct sge_uld_txq_info *txq_info; 5035 5036 txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO]; 5037 if (txq_info) { 5038 struct sge_uld_txq *txq = txq_info->uldtxq; 5039 5040 for_each_ofldtxq(&adap->sge, i) { 5041 if (txq->q.desc) 5042 tasklet_kill(&txq->qresume_tsk); 5043 } 5044 } 5045 } 5046 5047 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) { 5048 struct sge_ctrl_txq *cq = &s->ctrlq[i]; 5049 5050 if (cq->q.desc) 5051 tasklet_kill(&cq->qresume_tsk); 5052 } 5053 } 5054 5055 /** 5056 * t4_sge_init_soft - grab core SGE values needed by SGE code 5057 * @adap: the adapter 5058 * 5059 * We need to grab the SGE operating parameters that we need to have 5060 * in order to do our job and make sure we can live with them. 5061 */ 5062 5063 static int t4_sge_init_soft(struct adapter *adap) 5064 { 5065 struct sge *s = &adap->sge; 5066 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu; 5067 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5; 5068 u32 ingress_rx_threshold; 5069 5070 /* 5071 * Verify that CPL messages are going to the Ingress Queue for 5072 * process_responses() and that only packet data is going to the 5073 * Free Lists. 5074 */ 5075 if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) != 5076 RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) { 5077 dev_err(adap->pdev_dev, "bad SGE CPL MODE\n"); 5078 return -EINVAL; 5079 } 5080 5081 /* 5082 * Validate the Host Buffer Register Array indices that we want to 5083 * use ... 5084 * 5085 * XXX Note that we should really read through the Host Buffer Size 5086 * XXX register array and find the indices of the Buffer Sizes which 5087 * XXX meet our needs! 5088 */ 5089 #define READ_FL_BUF(x) \ 5090 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32)) 5091 5092 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF); 5093 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF); 5094 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF); 5095 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF); 5096 5097 /* We only bother using the Large Page logic if the Large Page Buffer 5098 * is larger than our Page Size Buffer. 5099 */ 5100 if (fl_large_pg <= fl_small_pg) 5101 fl_large_pg = 0; 5102 5103 #undef READ_FL_BUF 5104 5105 /* The Page Size Buffer must be exactly equal to our Page Size and the 5106 * Large Page Size Buffer should be 0 (per above) or a power of 2. 5107 */ 5108 if (fl_small_pg != PAGE_SIZE || 5109 (fl_large_pg & (fl_large_pg-1)) != 0) { 5110 dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n", 5111 fl_small_pg, fl_large_pg); 5112 return -EINVAL; 5113 } 5114 if (fl_large_pg) 5115 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT; 5116 5117 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) || 5118 fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) { 5119 dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n", 5120 fl_small_mtu, fl_large_mtu); 5121 return -EINVAL; 5122 } 5123 5124 /* 5125 * Retrieve our RX interrupt holdoff timer values and counter 5126 * threshold values from the SGE parameters. 5127 */ 5128 timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A); 5129 timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A); 5130 timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A); 5131 s->timer_val[0] = core_ticks_to_us(adap, 5132 TIMERVALUE0_G(timer_value_0_and_1)); 5133 s->timer_val[1] = core_ticks_to_us(adap, 5134 TIMERVALUE1_G(timer_value_0_and_1)); 5135 s->timer_val[2] = core_ticks_to_us(adap, 5136 TIMERVALUE2_G(timer_value_2_and_3)); 5137 s->timer_val[3] = core_ticks_to_us(adap, 5138 TIMERVALUE3_G(timer_value_2_and_3)); 5139 s->timer_val[4] = core_ticks_to_us(adap, 5140 TIMERVALUE4_G(timer_value_4_and_5)); 5141 s->timer_val[5] = core_ticks_to_us(adap, 5142 TIMERVALUE5_G(timer_value_4_and_5)); 5143 5144 ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A); 5145 s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold); 5146 s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold); 5147 s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold); 5148 s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold); 5149 5150 return 0; 5151 } 5152 5153 /** 5154 * t4_sge_init - initialize SGE 5155 * @adap: the adapter 5156 * 5157 * Perform low-level SGE code initialization needed every time after a 5158 * chip reset. 5159 */ 5160 int t4_sge_init(struct adapter *adap) 5161 { 5162 struct sge *s = &adap->sge; 5163 u32 sge_control, sge_conm_ctrl; 5164 int ret, egress_threshold; 5165 5166 /* 5167 * Ingress Padding Boundary and Egress Status Page Size are set up by 5168 * t4_fixup_host_params(). 5169 */ 5170 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 5171 s->pktshift = PKTSHIFT_G(sge_control); 5172 s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64; 5173 5174 s->fl_align = t4_fl_pkt_align(adap); 5175 ret = t4_sge_init_soft(adap); 5176 if (ret < 0) 5177 return ret; 5178 5179 /* 5180 * A FL with <= fl_starve_thres buffers is starving and a periodic 5181 * timer will attempt to refill it. This needs to be larger than the 5182 * SGE's Egress Congestion Threshold. If it isn't, then we can get 5183 * stuck waiting for new packets while the SGE is waiting for us to 5184 * give it more Free List entries. (Note that the SGE's Egress 5185 * Congestion Threshold is in units of 2 Free List pointers.) For T4, 5186 * there was only a single field to control this. For T5 there's the 5187 * original field which now only applies to Unpacked Mode Free List 5188 * buffers and a new field which only applies to Packed Mode Free List 5189 * buffers. 5190 */ 5191 sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A); 5192 switch (CHELSIO_CHIP_VERSION(adap->params.chip)) { 5193 case CHELSIO_T4: 5194 egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl); 5195 break; 5196 case CHELSIO_T5: 5197 egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl); 5198 break; 5199 case CHELSIO_T6: 5200 egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl); 5201 break; 5202 default: 5203 dev_err(adap->pdev_dev, "Unsupported Chip version %d\n", 5204 CHELSIO_CHIP_VERSION(adap->params.chip)); 5205 return -EINVAL; 5206 } 5207 s->fl_starve_thres = 2*egress_threshold + 1; 5208 5209 t4_idma_monitor_init(adap, &s->idma_monitor); 5210 5211 /* Set up timers used for recuring callbacks to process RX and TX 5212 * administrative tasks. 5213 */ 5214 timer_setup(&s->rx_timer, sge_rx_timer_cb, 0); 5215 timer_setup(&s->tx_timer, sge_tx_timer_cb, 0); 5216 5217 spin_lock_init(&s->intrq_lock); 5218 5219 return 0; 5220 } 5221